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ADVERTISEMENT

André Lichnerowicz Prizes
for Poisson Geometry 2020/2021

We are glad to announce the winners of the André Lichnerowicz Prizes for Poisson Geometry 2020/2021 which were 
awarded at the Global Poisson webinar on the 27th of May 2021.

The prize is named in memory of André Lichnerowicz whose works have been fundamental in establishing Poisson 
geometry as a branch of modern mathematics and is traditionally assigned during the International Conference on 
Poisson Geometry in Mathematics and Physics. It has been attributed every two years since 2008, to researchers who 
obtained their doctorate eight years prior to the Conference.

The laureates of the 2020/2021 edition are: 

Xiaomeng Xu (Peking University) 
Xiaomeng Xu completed his PhD degree in 2016 at the University of Geneva, under 
the supervision of Anton Alekseev. After a postdoctoral position at MIT, he joined 
Peking University as an Assistant Professor. In his work, Xu constructed explicit 
Ginzburg-Weinstein linearizations of Poisson-Lie groups and their quantization. His 
results on the relationships between Stokes phenomena, Yang-Baxter equations, 
and Frobenius manifolds uncovered deep connections between the theory of 
meromorphic ODE’s with higher order poles and the theory of quantum groups. Xu 
also used classical integrable systems on Lie-Poisson spaces to study the structure 
of Stokes matrices, which advanced the understanding of Stokes phenomena and 
isomonodromy deformations. In earlier work, Xu has contributed to the theory of 
Courant algebroids, string principal bundles, and homotopy Poisson manifolds as 
objects in higher structure aspects of Poisson geometry. 

Pavel Safronov (University of Edinburgh) 
Pavel Safronov completed his PhD degree in 2014 at the University of Texas at Austin 
under the supervision of David Ben-Zvi. After postdoctoral positions in Oxford, Bonn 
and Geneva, and a lectureship at the University of Zurich, he joined the University of 
Edinburgh as a Lecturer. Safronov is awarded an André Lichnerowicz Prize in Poisson 
Geometry 2020/2021 for his fundamental contributions in shifted Poisson geometry 
and in deformation quantization theory. He advanced the understanding of classical 
notions of symplectic reduction and of Poisson-Lie groups within the framework of 
shifted Poisson geometry. His results on deformation quantization led to applications 
to the Bonahon-Wong conjecture on Azumaya locus of the Kauffman bracket and to 
Witten’s conjecture on finiteness of skein modules in quantum topology. 

GLOBAL
POISSON
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A message from the president

Dear EMS members,
Let me focus my editorial on some re-

flections on the virtual European Congress
8ECM that took place in Portorož. Despite
the difficult circumstances of which we all
know, the congress was extremely well-run;
the organizers did a wonderful job, and
the number of registered participants was
record-breaking. Thus we may truly speak

of the great success of the congress, even though sadly some
major aspects were lacking (or available only to the few people
who were physically present): personal meetings with colleagues,
lively exchanges of ideas, initiation or continuation of scientific
cooperations, and the networking that is so important, in par-
ticular for the younger generation. I was hoping that the virtual
congress would be able to provide at least some help with these
social aspects, but unfortunately this did not work out in a fully
satisfactory way.

This brings me to some general observations on the congress
that I would like to share, and in the course of which I would also
like to ask some (possibly provocative) questions, with the goal of
starting a discussion.

The number of people that were logged in for the plenary,
invited and prize talks was very disappointing. Most of these talks,
with only three or four exceptions, were attended by less than
100 participants. This observation also holds for the 7ECM that
I organized in Berlin, which was a real and not a virtual congress.
Therefore it seems natural to discuss whether such a big congress,
with almost 50 major talks, is the right format.

Do we need to organize such a big congress (with a major
CO₂ footprint when real and not virtual) if these major talks are
not sufficiently interesting to enough people? I definitely believe
that we need to reduce the number of talks. Indeed, I sometimes
have the feeling that the main aspect of these talks is to provide
the speaker with a quality stamp of being a leader in the field.
Is this what we want as a community? Is the mathematical com-
munity perhaps so large, and its spectrum so broad, that the idea
of having a joint congress for all mathematicians may actually be
obsolete?

Did all of those invited speakers truly realize their ambas-
sador role? Having listened to more than 20 of the talks, which
were of very mixed quality, I doubt this. Speakers should be told
much more clearly that they are speaking to a broad mathematical
audience and not to a small number of specialists. They should
then reflect carefully upon whether they really want to give the talk
if they are not able or willing to make this effort. If the invitation
to give the talk is nothing more than a quality stamp, then maybe
it should not be extended at all.

We should also discuss the inflation concerning the number of
prizes that are now awarded in the academic community. Within
the EMS, we present 12 prizes, of which 11 are for young scientists.
In itself, this is reasonable. However, we do need to ask whether
these prizes reflect the strength of the research or the lobbying
talents of the various groups that make the nominations? Then
again, if only very small numbers of people are sufficiently inter-
ested to listen to the prize talks, are we doing the right thing at all,
or are we again merely offering the prizewinners subjective quality
stamps? Do we really need so many prizes?

One aspect of the congress that surprised me in a very positive
way was the special sessions that I attended. The quality of these
was really great, and there were many lively discussions. This seems
to be an aspect that is worth strengthening, which is why we want
to start a series of EMS topical conferences.

My goal in asking these questions is to start a discussion about
the way in which we, the mathematical community of Europe and
the world, want to proceed into the future. Please feel free to send
me your opinions on all this. If there is sufficient interest, then I will
initiate a committee to discuss the next steps.

Volker Mehrmann
President of the EMS
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Almost impossible E8 and Leech lattices

Maryna Viazovska

We start this short note by introducing two remarkable mathem-
atical objects: the E8 root lattice Λ8 in 8-dimensional Euclidean
space and the Leech lattice Λ24 in 24-dimensional space. These two
lattices stand out among their lattice sisters for several reasons.

The first reason is that these both lattices are related to other
unique and exceptional mathematical objects. The E8 lattice is the
root lattice of the semisimple exceptional Lie algebra E8. The quo-
tient of Λ8 by a suitable sublattice is isomorphic to the Hamming
binary code of dimension 8 and minimum distance 4, which in its
turn is an optimal error-correcting binary code with these para-
meters. The Leech lattice is famously connected to the exceptional
finite simple groups, monstrous moonshine [7] and the monster
vertex algebra [1].

Another reason is that Λ8 and Λ24 are solutions to a number
of optimization problems. The E8 and Leech lattice provide op-
timal sphere packings in their respective dimensions [5,23]. Also
both lattices are universally optimal, which means that among all
point configurations of the same density, the Λ8 and Λ24 have the
smallest possible Gaussian energy [6].

The third reason for our interest in these lattices is less obvious.
The optimality of the E8 and Leech lattices can be proven in a rather
short way, while the solutions of analogous problems in other
dimensions, even dimensions much smaller than 8 and 24, is still
wide open. Finally, this last property seems to be inherited by other
geometric objects obtained from Λ8 and Λ24, such as Hamming
code, Golay code and the sets of shortest vectors of both lattices.

1 E8 and Leech lattices

The E8 lattice Λ8 is the unique (up to an isomorphism) even unimod-
ular lattice in the Euclidean spaceℝ8. We recall that a lattice Λ⊂ℝd

is even if for every lattice vector ℓ= (ℓ1,…,ℓd) its Euclidean length
squared |ℓ|2 = ℓ2

1 +⋯+ ℓ2
d is an even integer. A lattice Λ ⊂ ℝd is

unimodular if the volume of the quotient ℝd/Λ is 1. Equivalently,
the average number of lattice points per unit of volume is 1.

The existence of an even unimodular lattice in ℝ8 was first
proven non-constructively by H. J. S. Smith in 1867 and followed
from his newly discovered mass formula for lattices. The mass

formula for even unimodular lattices in dimension d divisible by 8
states that

∑
Λ

1
|Aut(Λ)| = |Bd/2|

d ∏
1≤ j<d/2

|B2j|
4j

,

where the left-hand sum is taken over all isomorphism classes of
lattices Λ, |Aut(Λ)| denotes the size of the group of orthogonal
transformations acting on Λ, and Bk are the Bernoulli numbers. Note
that even unimodular lattices exist only in dimensions divisible by 8.
In the smallest possible dimension 8, the right-hand side of the
mass formula becomes

|B4|
8

|B2|
4

|B4|
8

|B6|
12

=
|− 1

30 |
8

| 16 |
4

|− 1
30 |
8

| 1
42 |
12

= 1
696729600

.

The mass is non-zero, and therefore there exists at least one even
unimodular lattice in dimension 8. Moreover, the formula shows
that such a lattice is highly symmetrical. The explicit Gram matrix of
the E8 lattice was first given by Korkin and Zolotarev in 1873 [14].

One remarkable property of the E8 lattice is that the corres-
ponding sphere packing has very high density. The E8-lattice sphere
packing 𝒫E8 is the union of open Euclidean balls with centers at
the lattice points and radius 1

√2
. These non-intersecting congruent

balls cover ΔE8 ≔
π4

384 ≈ 0.25367 of the volume of ℝ8. In 2016 the
author showed that this density cannot be improved.

Theorem 1. No packing of unit balls in Euclidean space ℝ8 has
density greater than that of the E8-lattice packing.

The Leech lattice Λ24 was constructed by J. Leech in 1967 [15].
This lattice is an even unimodular lattice of rank 24. There exist
24 isomorphism classes of such lattices. Among these 24, the
Leech lattice is the unique one having the shortest non-zero vector
of length 2 (in the other 23 classes, the shortest vector has min-
imal possible for even lattices length √2). As the minimal distance
between two points in Λ24 is 2, it is a good candidate for a dense
sphere packing. The Λ24-lattice sphere packing is the packing of
unit balls with centers at the points of Λ24. This packing has dens-
ity ΔΛ24 ≔

π12

12! ≈ 0.00193. In joint work with H. Cohn, A. Kumar,
S. Miller and D. Radchenko, we proved the following.
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Theorem 2. No packing of unit balls in Euclidean space ℝ24 has
density greater than that of the Λ24-lattice packing.

In the next section, we explain how these results fit into a more
general framework.

2 The sphere packing problem

The sphere packing problem asks for the maximal portion of Euclid-
ean space that can be covered with non-overlapping congruent
balls. This natural geometric question is interesting from many
points of view. The sphere packing problem is a toy model for
many physical systems [17] and a mathematical framework for
error correcting codes in communication theory [20]. The known
and putative solutions of the sphere packing problem are geomet-
rically intriguing configurations, and in many cases possess other
extremal properties and unexpected symmetries.

The recorded modern history of the sphere packing problem
goes back to the sixteenth century and is documented in the corres-
pondence between a statesman, Sir Walter Raleigh, and a scientist,
Thomas Harriot. Harriot was asked by Raleigh to find the most
efficient way to stack cannonballs on the deck of the ship. Harriot
studied various stacking patterns, computed the number of cannon-
balls in a triangular pyramid and in a pyramid with square base, and
constructed face-centered cubic and hexagonal closed packings.
In 1591, he wrote a letter to Raleigh explaining some of these
findings. At the beginning of the seventeenth century, Harriot
exchanged letters with Johannes Kepler and shared his ideas on
sphere packings. In 1611, Kepler wrote an essay “Strena Seu de
Nive Sexangula”, in which he described face-centered cubic and
hexagonal close packings and asserted that “the packing will be
the tightest possible, so that in no other arrangement could more
pellets be stuffed into the same container”. This assertion became
famously known as Kepler’s conjecture.

The quest to solve Kepler’s conjecture lasted for almost three
centuries. We briefly recall the most important landmarks on the
way to the solution. In 1863, Carl Friedrich Gauss [12] showed
that the densest lattice packings in ℝ3 are the face-centered cubic
and hexagonal closed lattices. For a long time, the proof of the
conjecture in the general case remained beyond the reach. Even
much simpler geometric questions created serious debates, for
example the so-called sphere kissing problem. The sphere kissing
problem asks for the maximal number of non-intersecting unit
balls that can simultaneously touch one unit ball. This question can
be seen as a weak local version of the sphere packing problem.
The kissing number in dimension 3 is 12. Another important step
was the rigorous solution of the packing problem for unit disks in
dimension 2 [11,21]. The final solution of Kepler’s conjecture was
famously given by Thomas Hales [13].

The sphere packing problem and the sphere kissing problem
are easily generalized to Euclidean spaces of other dimensions.
At the moment the sphere packing problem has been completely
solved in dimensions 1, 2, 3, 8 and 24. Conjectural solutions to the
sphere packing problem in dimensions from 4 to 10 are listed in [8].
Analogs of the packing problem can be formulated in other metric
spaces. A subset X of a metric space (ℳ, ρ) is called an r0-code
if the distance between any two distinct points of X is greater
than or equal to r0. One interesting example of a metric space is
the Hamming space. The binary Hamming space of dimension d
is the vector space 𝔽d

2 over the finite field 𝔽2 equipped with the
following metric: the distance between the vectors x = (x1,…, xd)
and y=(y1,…,yd) is the number of indices i between 1 and d such
that xi ≠ yi. A subset X ⊂ 𝔽d

2 is a code of length d, dimension n
and distance r if X is a vector subspace over 𝔽2 of dimension n
and an r-code with respect to Hamming distance. Then we say
that X is a (d,n, r) code. Codes in Hamming spaces are particularly
interesting for us because of their connection to the lattices in
Euclidean spaces. There are several ways to produce a Euclidean
lattice from a code in Hamming space; some of them are described
in [9, Chapter 5]. For example, the E8 lattice can be constructed
from the binary Hamming code (8, 4, 4) by applying the so-called
“construction A”, and the Leech lattice can be obtained in a more
complicated way from the binary Golay code (24, 12, 8).

3 Energy minimization

A natural generalization of the sphere packing problem is the
question of minimizing the energy of pairwise interactions between
points. In this case, we consider configurations with a fixed number
of points on a compact metric space, or configurations with fixed
point density in the non-compact case.

Let Cf be a finite subset in ℝd. Fix a potential function

p∶ (0,∞) → ℝ.

The potential p-energy of Cf is
1

|Cf|
∑

x,y∈Cf
x≠ y

p(|x− y|).

We would like to extend this definition to infinite discrete subsets
of Euclidean space.

Let C be a discrete closed subset of ℝd. We say C has density ρ
if

lim
r→∞

|C∩ Bd(0, r)|
vol(Bd(0, r))

= ρ.

The lower p-energy of C is

Ep(C) ≔ lim inf
r→∞

1
|C∩ Bd(0, r)|

∑
x,y∈C∩Bd(0,r)

x≠ y

p(|x− y|).

If the limit exists, we call Ep(C) the p-energy of C.

EMS MAGAZINE 121 (2021) 5



4 Universal optimality

We rephrase a famous saying: “An optimal configuration is optimal
everywhere”. Is it possible that one configuration is optimal for all
potentials? The answer is obviously no; however, some configur-
ations provide an optimal solution for a wide family of potential
functions p.

One important family of potentials in Euclidean space are Gauss-
ian functions pα(r) = e−αr2 , where α is a positive real number. The
convex cone spanned by all real Gaussians is the cone of com-
pletely monotonic functions of squared distance. In [3], H. Cohn
and A. Kumar introduced the following definition.

Definition 3. Let C be a discrete subset ofℝd with density ρ, where
ρ > 0. We say that C is universally optimal if it minimizes p-energy
whenever p∶ (0,∞) → ℝ is a completely monotonic function of
squared distance.

The following result was established in [22] back in 1979.

Theorem 4. The lattice ℤ is universally optimal.

This result is also proven in [3] with the help of linear program-
ming, the proof technique which will be explained in the next
section. Moreover, in the same paper, Cohn and Kumar made the
following conjecture.

Conjecture 5. The lattices A2, Λ8 and Λ24 are universally optimal.

In joint work with H. Cohn, A. Kumar, S. Miller and D. Rad-
chenko [6], we have proved the following.

Theorem 6. The lattices Λ8 and Λ24 are universally optimal.

Not much is known about universally optimal configurations in
Euclidean space, and in particular whether the lattices in Theorem 4
and Conjecture 5 give the complete list of all universally optimal
lattices. In [4], the authors provide numerical evidence that the
root lattice D4 and the configuration D+

9 (the definition of this
configuration is given in [4]) might be universally optimal.

5 Magic functions for geometric optimization problems

In this section, we will talk about the proof techniques used in
Theorems 1, 2 and 6. Curiously, similar methods were used to
prove the optimality of the binary Hamming code (8, 4, 4), the
binary Golay code (24, 12, 8), and the optimality of the shortest
vectors of the E8 and Leech lattices as kissing configurations in their
respective dimensions. This method is often referred to as linear
programming. The key idea is to reduce a geometric optimization

problem on a spaceℳ to minimizing a linear functional on a certain
suitably constructed cone of functions on ℳ.

For packing and energy minimization problems, the following
two cones of functions play an important role. Let (ℳ, ρ) be
a metric space. We denote by Spec(ρ) the set of values taken by
ρ∶ ℳ×ℳ → ℝ≥0. A function f ∶ Spec(ρ) → ℂ is copositive if for
all finite subsets X ⊂ ℳ we have

∑
x,y∈X

f(ρ(x, y)) ≥ 0.

A function f∶ Spec(ρ)→ℂ is positive definite if for all finite subsets
X ⊂ ℳ and all complex weights (wx)x∈X we have

∑
x,y∈X

wxwy f(ρ(x, y)) ≥ 0.

The cone of copositive functions is extremely powerful, and the
possibility of effectively optimizing over it would lead to solutions of
many geometric questions. Unfortunately, this cone is very complex
and to our knowledge there is no easy way to work with it directly.
However, the cone of copositive functions contains a much simpler
one, namely the cone of positive definite functions. This cone has
a simple description in terms of harmonic analysis on ℳ. We refer
the reader to [9, Chapter 9] for details.

The following theorem is a simple yet powerful tool for bound-
ing the size of codes in compact metric spaces.

Theorem 7. Let (ℳ, ρ) be a metric space. Suppose that

f∶ Spec(ρ) → ℝ

is a copositive function such that

f(0) = 1, (1)

f(r) ≤ − 1
N− 1

for r ≥ r0. (2)

Then an r0 code in ℳ contains at most N points.

Proof. The proof of this theorem is very simple. Suppose that
X ⊂ ℳ is an r0 code. Then the copositivity of f implies

∑
x,y∈X

f(ρ(x, y)) ≥ 0. (3)

On the other hand, by conditions (1) and (2), we estimate

∑
x,y∈X

f(ρ(x, y)) = ∑
x∈X

f(ρ(x, x)) + ∑
x,y∈X
x≠ y

f(ρ(x, y))

≤ |X| − |X|(|X| − 1)
N− 1

. (4)

The two equations above imply that |X| ≤ N.

We are interested in the examples when the upper bound
provided by Theorem 7 is sharp, in particular, the cases when the

6 EMS MAGAZINE 121 (2021)



auxiliary function f is positive definite. We have already mentioned
several configurations which are “LP-sharp”. For instance, the op-
timality of the Hamming binary code (8,4, 4) follows from the fact
that the polynomial

pH8(t) ≔
1
30

(t− 4)(t− 8) − 1
15

is positive definite with respect to Hamming distance on 𝔽8
2 ,

see [10] and [9, Chapter 9]. A positive definite auxiliary function
proving the optimality of the binary Golay code (24, 12, 8) is also
given in [9, Chapter 9]. The 240 shortest vectors of the E8-lattice
and the 196 560 shortest vectors of the Leech lattice are the op-
timal kissing configurations in their respective dimensions. In 1979,
Odlyzko and Sloane [18] and V. Levenstein [16] independently con-
structed positive definite polynomials on the sphere proving the
optimality. A survey of these results and the polynomials can be
found in [9, Chapter 9] and in [19]. Moreover, by similar techniques,
Cohn and Kumar showed that the shortest vectors of E8 and Leech
lattices are universally optimal configurations on the sphere [3].

H. Cohn and N. Elkies [2] applied the ideas of linear program-
ming to the sphere packing problem in Euclidean space. Before we
explain their method, let us introduce some notation. The Fourier
transform of an L1 function f ∶ ℝd → ℂ is defined as

ℱ(f)(y) = ̂f(y) ≔ ∫
ℝd

f(x) e−2πix⋅y dx, y ∈ ℝd,

where x ⋅ y = 1
2 |x|

2 + 1
2 |y|

2 − 1
2 |x − y|2 is the standard scalar

product in ℝd. A C∞ function f ∶ ℝd → ℂ is called a Schwartz
function if it tends to zero as |x| → ∞ faster than any inverse
power of |x|, and the same holds for all partial derivatives of f. The
following theorem is the key result of [2].

Theorem 8. Suppose that f ∶ ℝd → ℝ is a Schwartz function,
r0 ∈ ℝ>0, and they satisfy

f(x) ≤ 0 for |x| ≥ r0, (5)

̂f(x) ≥ 0 for all x ∈ ℝd, (6)

f(0) = ̂f(0) = 1. (7)

Then the density of d-dimensional sphere packings is bounded
above by

π
d
2 rd0

2dΓ( d2 + 1)
.

Note that this number is the volume of a ball of radius r0
2 in ℝd.

This theorem produces an upper bound for the density of
a sphere packing in every dimension. However, this bound is not
expected to be sharp in general. A surprising discovery made by
Cohn and Elkies was that they were able to obtain bounds numeric-
ally extremely close to the sharp ones in dimensions 1, 2, 8 and 24.

In [23], the author showed that the linear programming bound is
indeed sharp in dimension 8.

Theorem 9. There exists a radial Schwartz function fE8 ∶ ℝ8 → ℝ
which satisfies

fE8(x) ≤ 0 for |x| ≥ √2,

̂fE8(x) ≥ 0 for all x ∈ ℝ8,

fE8(0) = ̂fE8(0) = 1.

Furthermore, in joint work with H. Cohn, A. Kumar, S. D. Miller
and D. Radchenko [5], we proved the sharpness of the linear
programming bound in dimension 24.

Theorem 10. There exists a radial Schwartz function fΛ24 ∶ ℝ24→ℝ
which satisfies

fΛ24(x) ≤ 0 for |x| ≥ 2,

̂fΛ24(x) ≥ 0 for all x ∈ ℝ24,

fΛ24(0) = ̂fΛ24(0) = 1.

The energy minimization problem also can be addressed by lin-
ear programming. The following bound was introduced by H. Cohn
and A. Kumar.

Theorem 11. Let p∶ (0,∞) → ℝ be any function, and suppose
f ∶ ℝd → ℝ is a Schwartz function. If f(x) ≤ p(|x|) for all x ∈
ℝd ⧵ {0} and ̂f(y) ≥ 0 for all y ∈ℝd, then every subset of ℝd with
density ρ has lower p-energy at least ρ ̂f(0) − f(0).

In [5], we construct functions fΛd,α for all d ∈ 8, 24 and real
positive α such that fΛd,α(x) ≤ e−α|x|2 for all x ∈ ℝd ⧵ {0} and
̂f(y)≥0 for all y∈ℝd, and also ρ ̂fΛd,α(0)− fΛd,α(0)= Er↦ e−αr2(Λd).

The construction of these functions implies Theorem 6. Informally,
we call the auxiliary functions fE8, fΛ24, fΛd,α the “magic functions”
as they magically prove difficult geometric statements.

6 Fourier interpolation and sharp bounds

In this final section, we briefly explain the strategy for finding magic
functions. Let us first consider the case of compact spaces. Suppose
that X ⊂ ℳ is an optimal r0 code in the metric space (ℳ, ρ), and
a copositive function f ∶ Spec(M) → ℝ satisfies the conditions of
Theorem 7 for N = |X|; in other words, f proves the sharp bound
on the size of r0-codes. In this case, inequalities (3) and (4) imply
that f(ρ(x, y)) = −1

N−1 for all pairs of distinct points x, y ∈ X and

∑x,y∈X f(ρ(x, y)) = 0. Moreover, if we represent f as a sum of
copositive functions f = f1 +⋯+ fk, then ∑x,y∈X fi(ρ(x, y)) = 0
for i = 1,…, k. In many cases, these linear conditions are sufficient
to find the function f.
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Similar ideas work in the case of Euclidean space and can be
applied to magic functions for the Cohn–Elkies bound of Theorem 8
and the Cohn–Kumar bound of Theorem 11. Suppose that Λd ⊂ℝd

is a unimodular lattice and fΛd is a magic function satisfying the
conditions of Theorem 8 and thus proving the optimality of the Λd

lattice sphere packing. Without loss of generality, we may assume
that fΛd is radial and the value fΛd(x) depends only on the Euclidean
length |x|. Combining the Poisson summation formula

∑
x∈Λd

fΛd(x) = ∑
y∈Λ∗

d

̂fΛd(y)

with conditions (5)–(7) of Theorem 8, we deduce that fΛd(x)= 0 for
all x ∈ Λd ⧵ {0} and ̂fΛd(y) = 0 for all y ∈ Λ∗

d ⧵ {0} (here Λ∗
d is the

lattice dual to Λd). Moreover, since fΛd is smooth, these equalities
hold up to second order.

It turns out that we can recover the whole function fΛd from
this information on its values at lattice points. In [6], we proved
the following Fourier interpolation formula.

Theorem 12. Let (d, n0) be (8, 1) or (24, 2). There exists a col-
lection of radial Schwartz functions an, bn, ̃an, b̃n ∶ ℝd → ℝ such
that for every f ∈ 𝒮rad(ℝd) and x ∈ ℝd,

f(x) =
∞

∑
n=n0

f(√2n)an(x) +
∞

∑
n=n0

f ′(√2n)bn(x)

+
∞

∑
n=n0

̂f(√2n) ̃an(x) +
∞

∑
n=n0

̂f ′(√2n)b̃n(x),

and these series converge absolutely.

The above interpolation formula allowed us to find magic func-
tions fE8 , fΛ24 , fE8,α and fΛ24,α as explicit contour integrals, and based
on these integral representations prove the inequalities posed on
these functions by Theorems 8 and 11, respectively.

Finally, the Fourier interpolation formulas of this type seem
to be very intriguing objects in their own right, and it would be
worth searching for more such examples and more geometric
applications.
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At the crossroads of simulation and data analytics

Patrice Hauret

For more than three years, the EU-MATHS-IN Industrial Core Team¹
has been developing transverse influences to advertise the role of
Digital Twins at the service of European industry, as a key enabler
for advanced products and connected services. Digital Twins has
also spread to growing areas like health and climate monitoring.
Behind this buzzword, the complementarity of first principle mod-
elling and data analytics plays an instrumental role. In the present
article, we depict the context and the opportunities, the European
environment with its funded programs, some open software plat-
forms, and most importantly a mathematical toolbox to address
the underlying challenges, all of which testify to the tremendous
vitality of this field.

1 Introduction

When identifying, within EU-MATHS-IN, a subject that would rally
a majority of companies, from banks to aeronautics, from the
health sector to the need of renewal in the energy business, Digital
Twins emerged as a rather natural choice [17].

The concept was first created by NASA. Throughout its entire
life cycle, a product or process can be accompanied by a virtual
representation, called its Digital Twin. Digital Twins allow novel
digital assistance for design optimisation, process control, life-
cycle management, predictive maintenance, or risk analysis. Digital
Twins have become so important to business today that they
were identified as one of Gartner’s Top 10 Strategic Technology
Trends [18,27,47]. They are becoming a business imperative, cov-
ering the entire lifecycle of an asset or process and forming the
foundation for connected products and services. New business op-
portunities will emerge, benefitting from the cooperation between
large companies, SMEs, startups and academia. To turn this vision
into reality, novel mathematical and computer science technologies
are required to describe, structure, integrate and interpret across
many engineering disciplines.

¹ ATOS, Bosch, Dassault Aviation, EcoMT, EY, Michelin, NORS Group,
Shell, Siemens

Supporting this development requires a combination of efforts.
High fidelity modelling is key to account for multi-physics and multi-
scale systems, and to identify new design levers at the smallest
scales. It is often derived from first principle approaches and relies
on the power provided by High Performance Computing to deliver
the expected prediction in a reasonable time frame. On the other
hand, reduced order modelling must provide real-time estimates
to enable system optimisation, or in combination with statistical
learning to achieve efficient modelling compliant with available
data in real time during operation. An example of that kind of need
is given by autonomous transport. In particular, corresponding solu-
tions must be realised on the edge to provide sufficiently fast and
robust interactions with the real process. The fields of application
are growing rapidly in the health sector (e.g., www.digitwin.org)
and in climate monitoring [3].

Key to digital twinning is a joint use of data and first principle
approaches. In the frequent cases where large amounts of data
prove not to be available, this complementarity makes it possible to
realise Smart Data concepts, fostering the efficiency and the robust-
ness of predictions and enabling the quantification of associated
uncertainties and risks.

The economic impact of related applications is estimated to
cover a worldwide market of 90 billion euros per year by 2025.
These opportunities are clearly reinforced by the high concentration
of simulation firms in Europe, the highest in the world. Europe also
benefits from a long-standing proficiency in mathematics. Several
reports [11,14,15] have additionally shown the economic impact
of mathematical sciences in the US, the Netherlands and France.
Furthermore, US studies [41] in the past have also highlighted the
European strength in the field.

This being said, the combined use of statistical learning and
first principle modelling is not new. Model calibration is an old
topic. The Kalman filter lay at the core of space conquest, and has
been essential in the efficient control of remote systems. There
remain, however, several challenges for achieving a clever way of
combining simulation methods for complex systems, data collec-
tion, correction procedures and uncertainty quantification. Besides
this, Digital Twins are expected to become self-learning objects
that can actually provide guidance and high level services in op-
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eration, digesting sensor data with the help of reduced models.
A significant part of these ambitions relies on a set of mathematical
methods as well as integrated environments.

2 A favourable environment

2.1 European Commission Programs
Horizon Europe² is a Research and Innovation funding program
that is in place until 2027, with a total budget of 95.5 billion euros.
Its three pillars are (I) Excellent Science, (II) Global Challenges and
European Industrial Competitiveness, (III) Innovative Europe. The
European Research Council (President: J.-P. Bourguignon) supports
pillar I, while the DG Connect Directorate (Dir: K. Rouhana) spe-
cifically supports the present topic, as well as High Performance or
Quantum Computing, as part of pillar II. Calls are the mechanisms
through which individual projects get funded.

Of key importance is the EuroHPC Joint Undertaking. This is
a joint initiative between the EU, European countries and private
partners to develop a World Class Supercomputing Ecosystem in
Europe. The initiative has two major partners onboard: ETP4HPC
and the Big Data Value Association, which reflects the ambition to
establish synergies between highly accurate simulations and data
analytics. It is also oriented towards large companies and SMEs,
in order to boost innovation potential and competitiveness, while
widening the use of HPC in Europe. EU-MATHS-IN is involved in the
TransContinuum Initiative, as a binding effort between ETP4HPC
and BDVA, and contributes to a Strategic Research Agenda co-
ordinated by Zoltán Horváth.

2.2 Some open platforms and funded projects
Open software enables new actors including SMEs, potentially with
the help of a proper knowledgeable accompaniment, to access
highly technological solutions, develop new ideas and start new
businesses depending on associated exploitation rights. It clearly
shifts development effort from low-value work to value creation.
Open platforms can also act as binding environments to interface
commercial products with clear added value. Sharing software
components between academia and industry may be a way to
reinforce the European momentum on the development of new
mathematical algorithms in order to, e.g., take advantage of new
European HPC architectures or data-simulation hybridation. The
development of better interoperability is expected to accelerate
innovation and boost European leadership.

² ec.europa.eu/info/horizon-europe_en

Open software has been developed ranging from simulation
tools to data analysis with applications like mechanics or biology.
Furthermore, it has clearly evolved to provide integrated envir-
onments, especially relying on Python interfacing which is a key
element to foster collaboration, to integrate various expertises and
to make content widely accessible. Let us mention here two pro-
jects supported by the European Community that clearly support
this ambition.

MSO4SC
Societal challenges are increasing in complexity, and contribut-
ing to their resolution requires a holistic approach. It is necessary
to provide decision-makers with tools that allow long-term risk
analysis, improvements or even optimisation and control. One of
the key technologies in this process is the use of mathematical
Modelling, Simulation and Optimisation (MSO) methods, which
have proven to be effective tools for solving problems such as
the realistic prediction of wind fields, solar radiation, air pollu-
tion and forest fires, prediction of climate change, improving the
filtration process for drinking water treatment and optimisation
methods for intensity-modulated radiation therapy. These meth-
ods are highly complex and are typically processed via the most
modern tools of ICT, including high performance computing and
access to big data bases; they usually require the support of skilled
experts, who are often not available, in particular in small and
medium-sized businesses. The main goal of this project is to con-
struct an e-infrastructure that provides, in a user-driven, integrative
way, tailored access to the necessary services, resources and even
tools for fast prototyping, also providing the service producers
with the mathematical framework. The e-infrastructure consists
of an integrated MSO application catalogue containing models,
software, validation and benchmark and the MSO cloud, a user-
friendly cloud infrastructure for selected MSO applications and
developing frameworks from the catalogue. This will reduce the
‘time-to-market’ for consultants working on the above-mentioned
societal challenges.

Open Dream Kit
OpenDreamKit is a project that brings together a range of projects
and associated software to create and strengthen virtual research
environments. The most widely-used research environment is the
Jupyter Notebook from which computational research and data
processing can be directed. The OpenDreamKit project provides
interfaces to well-established research codes and tools so that they
can be used seamlessly and combined from within a Jupyter Note-
book. OpenDreamKit also supports open source research codes
directly by investing into structural improvements and new features
to not only connect all of these tools, but also enrich them and
make them more sustainable.
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3 A mathematical toolbox

We emphasise here four complementary perspectives on the joint
exploitation of simulation and data: (i) techniques coming from
optimal command, ranging from calibration to filtering, that allow
identification of hidden parameters, model correction and hand-
ling noisy forcing terms, (ii) solution space reduction that enables
fast solving and efficient correction, (iii) multi-fidelity co-kriging
in order to merge and prioritise the feedback issuing from simula-
tions and measurements on given observables, (iv) physics-inspired
neural networks that directly learn the model solution, based on
an a priori (set of) underlying model(s). Each of these approaches
corresponds to a different balance in the roles of physical models
and collected data. In this text, we do not claim any exhaustiv-
ity, and mathematical descriptions will remain formal. The idea
is to provide a fairly broad overview of the field while remaining
accessible to the vast majority of mathematician readers.

3.1 Optimal control: From calibration to filtering
General setting
Let Λ be a vector space of parameters. For every λ∈ Λ, the solution
uλ∈𝒰 of the “best-knowledge”model is defined to be the solution
of the partial differential system

𝒜(λ,uλ) = 0 in 𝒱∗,

in a weak formal form, where 𝒱 is a Hilbert space and 𝒱∗ its
dual. The parameter space Λ encompasses modelling choices, the
domain shape and the boundary conditions, as well as forcing
terms.

Additionally, the physical quantity

Z∶ λ ∈ Λ ↦ Z(λ) ∈ 𝒵

is known, potentially with some noise, at the sampling points
(λk) ∈ Λ as (ℤk). The purpose of our quest is to take benefit from
this information to estimate Z(λ) outside the sampling points, or
to improve the solution uλ itself given by the model.

Calibration and model correction. As an example, let us augment
Λ into Λ×𝒱 in order to account for a modelling error term in 𝒱
as we consider the augmented system

𝒜(λ,uλ,ξ) + ξ = 0 in 𝒱∗,

where ξ ∈ 𝒱. For each sampling point λk, the idea is to find the
most adequate parameter λ of the model close to λk and the model
correction ξ ∈𝒱 in order to best account for the measurement ℤk.
The calibration and model correction in the vicinity of λk can be
formulated as finding

(λ∗
k , ξ

∗
k ) = arg inf

λ,ξ
{1
2
|J(λ,u) − ℤk|2

+ α
2
|λ− λk|2 +

β
2
|ξ|2}, (1)

where 𝒜(λ, u) + ξ = 0 in 𝒱∗, and | ⋅ | stands for the Hilbertian
norms in 𝒵, Λ and 𝒱. The scalar coefficients α,β ∈ ℝ∗

+ are taken
sufficiently large. As classically given by the techniques of optimal
control [30], the solution is characterised by the following system:

𝒜(λ,u) − 1
β
p = 0, (2)

⟨du𝒜,p⟩𝒱∗,𝒱 + Δ ⋅ duJ = 0, (3)

⟨dλ𝒜,p⟩𝒱∗,𝒱 + Δ ⋅ dλJ+ α(λ− λk) = 0, (4)

in𝒱∗,𝒰∗ and Λ∗ respectively, with Δ= J(λ,u)−ℤk. Equation (3)
is called the adjoint problem and equation (4) defines the gradient
of the cost function with respect to λ, that must vanish. The gradi-
ent expression enables an iterative calibration in order to avoid the
resolution of the coupled system (2)–(3)–(4). One has ξ ∗

k = − 1
βp

and we use the notation p∗
k ≔ p in 𝒱.

Once the calibration and error corrections are performed at
sampling points, let us introduce the functions ̂λ∗(λ), ̂ξ∗(λ), ̂p∗(λ)
obtained by kriging under the form

□̂∗(λ) = ∑
k

fk(λ)□∗
k , □ ∈ {λ, ξ,p},

that comply with values (λ∗
k ), (ξ ∗

k ), (p∗
k ) at sampling points (λk).

For every λ ∈ Λ, an updated model can be formulated as finding
the solution ̂uλ ∈ 𝒰 such that

𝒜( ̂λ∗(λ), ̂uλ) + ̂ξ∗(λ) = 0 in 𝒱∗, (5)

with the estimator ̂Z(λ) = J( ̂λ∗(λ), ̂uλ). For purposes of efficiency,
the spaces 𝒰 and 𝒱 can be replaced by some reduced basis
approximation in (5).

Bayesian inference. Parameters λ and measurements Z(λ) can be
considered as random variables. The relevance of this point of
view is supported by their potential discrete natures and by the
uncertainties and noise attached to them. Assume p (resp. q) is
the probability density followed by λ (resp. Z). Bayesian inference
provides the conditional density

p(λ|Z) = q(Z|λ)p(λ)
∫q(Z|λ)p(λ)dλ

∝ q(Z|λ)p(λ),

where p(λ) is called the prior, i.e., the a priori distribution expected
on λ; q(Z|λ) is the output likelihood given λ, i.e., the uncertainty on
the output measurement or simulation. It results in an assessment
of the λ|Z distribution, known as posterior, that can be used as
a new prior and so on, until uncertainties are judged satisfactory
[22,26].

From a practical standpoint, a Markov Chain Monte Carlo
approach can be used to simulate samples according to the distri-
bution followed by λ, and a surrogate model – for instance relying
on reduced bases – can be used to diminish the computational
cost required to determine the output Z.
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Figure 1. Perseverance Rover landing map on Mars (Credit:
ESA/DLR/FU-Berlin/NASA/JPL-Caltech, visit mars.nasa.gov/mars2020)

Selection of parameters. In order to make the approaches as effi-
cient as possible, the parametric space Λmust be reduced. A rather
natural approach relies on variance decomposition, i.e. on the iden-
tification of subspaces within Λ for which the covariance matrix
𝔼[Z ′ ⊗ Z ′] possesses the largest components; Z ′ = Z−𝔼(Z). This
can be done by Sobol decomposition or Principal Component Ana-
lysis for linear models [23]. Observe that in the vicinity of λ, the
privileged most influential subspaces are given by the singular value
decomposition of dλZ⊗ dλZ in TλΛ× TλΛ, the differential being
computed by the adjoint method.

Sometimes, the parameters correspond to local characteristics
of the model, such as material laws, and can be selected without
involving the full resolution of the model. This is the case in Ortiz
et al. [24, 28], which rely on local measurements or simulations
with a closest-point projection approach.

Filtering: From space conquest to cardiovascular modelling
The complementarity between first principle modelling and data
analytics was pioneered in a uniquemanner by space conquest. This
clever combination makes it possible to benefit from the predictive
power of simple dynamic models and the ability to cope with noise
and uncertainties within the environment; as a result, it offers the
possibility of automated decisions when long transmission times
allow for neither full real-time feedback on the system state nor
efficient human steering. We describe the main associated ideas
within a linear framework; cf. [5,6,13,30].

Filtering and optimal control. The above motivation was the main
boost for the development of Kalman filtering, which is closely
related to optimal control. Let u(t) ∈ ℝn describe the state of the
system at time t ∈ [0, T] such that

̇u = Au+ Bλ+ F, u(0) = u0 + ξ, (6)

where λ ∈ ℝp, p < n, stands for an unknown forcing contribution
and ξ for the uncertainty on the initial condition. Measurements
Z = Hu+ ε ∈ ℝm over [0, T], with m < n, up to an error ε, are
available in order to help estimate the real trajectory, through the
determination of λ and ξ such that

1
2
|ξ|2N + 1

2
∫

T

0
|Hu− Z|2M + 1

2
∫

T

0
|λ|2L

is infimised. Optimality is achieved for λ(t) = L−1B⊤p(t) and ξ =
N−1p(0), where the adjoint state p is a solution of the backward
system in time

̇p = −A⊤p+ H⊤M(Hu− Z), p(T) = 0.

In order to avoid the difficulty of a two-end problem in u and p,
the optimal solution u can be proven to decompose as u= ̂u+ Pp,
where P is the operator solution from Riccati’s equation

̇P − PA⊤ − AP+ PH⊤MHP− BL−1B⊤ = 0, P(0) = N−1.

The component ̂u obeys the filtered dynamics

̇̂u = A ̂u+ F+ K(Z− H ̂u), ̂u(0) = u(0),

where K= PH⊤M is Kalman’s gain; it reaches the optimal trajectory
at time t = T, as p(T) = 0. Beyond this Linear Quadratic setting,
filtering can incorporate robust control, and adapt in many ways to
the case of nonlinear systems (Extended Kalman Filter, Unscented
Kalman Filter).

Hamilton–Jacobi–Bellman. Dynamic programming is of particular
importance in order to proceed to nonlinear extensions. For every
q ∈ ℝn and t ∈ [0, T], let us define the cost-to-come function

V(q, t) = min
λ;u(t)=q

{1
2
|ξ|2N + 1

2
∫

t

0
|Hu− Z|2M + 1

2
∫

t

0
|λ|2L},

where the minimum is taken over controls τ ∈ [0, t] ↦ λ(τ) ∈ ℝp

and trajectories τ ∈ [0, t] ↦ u(τ) ∈ ℝn with end-points u(0) =
u0 + ξ and u(t) = q. The cost function V is a solution of the
Hamilton–Jacobi–Bellman equation

̇V −ℋ∗(u,∇uV(u, t), t) = 0,

in the sense of viscosity solutions, where

ℋ∗(u,p; t) = ℋ(u,p, L−1B⊤p; t),

ℋ(u,p,λ; t) = 1
2
|Hu− Z|2M + 1

2
|λ|2L − ⟨Au+ Bλ+ F,p⟩.
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Observe that the optimality equations above read

̇u = −∂ℋ∗

∂p
, ̇p = ∂ℋ∗

∂u
.

Taking V(u, 0) = 1
2 |u− u0|2N as an initial condition, let us assume

the HJB equation admits a solution V ∈ C 1(0, T;ℝn). Then, for all
t ∈ [0, T] the optimal command is given by

λ∗(t) = arg min
λ∈ℝp

ℋ(u(t),∇uV(u(t), t),λ, t).

This provides the estimated dynamics

̇̂u = A ̂u+ F− (∇2
uV)−1H⊤M(Z− H ̂u), ̂u(0) = u0.

In the present linear setting, one has [37]

V(u, t) = 1
2
(u− ̂u(t))⊤P(t)−1(u− ̂u(t))

+ 1
2
∫

t

0
|H ̂u(s) − Z(s)|2M ds.

Stochastic perspective. Assume equation (6) is interpreted as a
stochastic differential equation, where λ(t) and ε(t) are zero-mean
independent Gaussian processes with covariance matrices Q and R
respectively. The best mean square estimator ̂u(t) = 𝔼[u(t)|Z(t)]
follows the same equation as in the previous paragraphs with
M = R−1 and L = Q−1. The covariance matrix P(t) = 𝔼[(u− ̂u) ⊗
(u− ̂u)] obeys Riccati’s equation.

Figure 2. Aortic simulation for which viscoelastic boundary conditions are
calibrated from medical imaging (courtesy of Moireau et al., see [38]).

Figure 3. Heat equation resolved from an initial condition to a given
end-time. The best-knowledge model uses single material, when the true
solution corresponds to a bi-material. 121 measurement points are spread
over the domain. Left: solution for the bk model (values from 17.80 °C
to 18.25 °C). Right: Synthetic true solution using a bi-material plate
(values from 17.90 °C to 18.23 °C) relying on seven basis vectors
(courtesy of Benaceur, see [4]).

Stability and control. Kalman’s gain achieves control optimality in
the sense detailed above. Nevertheless, it can prove costly to de-
termine, and difficult to access for distributed systems. As a matter
of fact, some feedback terms acting as Lyapunov functions can
suffice for practical purposes. Let us assume in the above that the
gain K is chosen in the form K = αH⊤ℳ with a symmetric definite
positive matrix ℳ and a coefficient α to determine. It follows that
the error e = u− ̂u satisfies

̇e = (A− KH)e+ Bλ− Kε, e(0) = ε,

and can be made rapidly decreasing provided that λ and ε remain
moderate and α is taken sufficiently large. This approach has been
implemented with multiple refinements by Moireau et al. [39],
comparing in-depth the displacement vs. velocity controls.

3.2 Solution space reduction
Reduced bases. The notion of reduced bases makes it possible
to resolve the equations of the model in a low-dimensional sub-
space of solutions, rather than a large full finite element space for
instance. It is reputed to go back to Rayleigh’s intuition, and is
key to benefit from surrogate models that comply with the first
physical principles, with high computational efficiency. It is particu-
larly useful for high-dimensional models, as in Quantum Mechanics
for instance. The approach has been made particularly popular by
the work of Maday, Patera et al. [32]. Some interesting challenges
rise when handling highly nonlinear problems [33]; it is particularly
striking when contact mechanics is involved [4], when structure
preservation is concerned [20, 21], or when local accuracy is of
particular importance [46]. The efficiency of the method is well
established when the Kolmogorov n-width of the solution manifold
rapidly decreases as n → +∞; cf. [2,8].
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Reduced order bases allow physical models to be interrogated
(almost) as efficiently as data sets, making it possible to foster
standard statistical learning methods [1,19].

Parameterised-Background Data-Weak (PBDW) approach. Let

ℳbk ≔ {ubk(λ); λ ∈ Λ} ⊂ 𝒰

be the solution manifold for the “best-knowledge” model. It can
be gradually approximated with diminishing errors by solutions of
the model in reduced spaces ℛ1 ⊂ ⋯ ⊂ ℛN ⊂ ⋯ ⊂ 𝒰.

The true solution utrue ∈ 𝒰 is unknown, but can be partially
captured by experimental observations ℓobs

m ∈ 𝒰∗ given as con-
tinuous linear forms of the solution: 1 ≤ m ≤ M. They provide the
scalar quantities ℤm = ℓobs

m (utrue) ∈ ℝ. Let us write (qm) for the
associated liftings satisfying (qm, v) = ℓobs

m (v) for all v ∈𝒰, where
(⋅, ⋅) denotes the inner product in the Hilbert space 𝒰. It is im-
perative that the sensors be numerous enough (N ≤ M) to control
the components of the reduced solution in the selected space ℛM;
more specifically, one must have ℛN ∩𝒰⟂

M = {0} where 𝒰⟂
M is

orthogonal to 𝒰M ≔ span{qm, 1 ≤ m ≤ M} in 𝒰.
The PBDWmethod [34–36] determines the approximation uN,M

of the solution utrue in the form

uN,M = rN,M + ηN,M ∈ ℛM ⊕𝒰,

where

(uN,M,q) = (utrue,q) for all q ∈ 𝒰M, (7)

and the norm ‖ηN,M‖𝒰 is infimised. It boils down to finding rM,N ∈
ℛM and ηM,N ∈ 𝒰M such that

(rN,M,q) + (ηN,M,q) = (utrue,q) for all q ∈ 𝒰M,

(ηN,M, r) = 0 for all r ∈ ℛN.

This has been extended to a dynamic setting by Benaceur [4],
in collaboration with Patera. The method allows for a real-time
correction of the solution, based upon available measurements. In
case of noisy measurements, a regularisation is required and the
following functional:

γ‖ηN,M‖2𝒰 + 1
M

M

∑
m=1

|ℓobsm (rN,M + ηN,M) − ℤm|2, γ > 0,

is infimised in order to compromise between the minimisation of
the term ‖ηN,M‖𝒰 and the constraint (7), thus avoiding overfitting.

Data-driven reduced modelling. Each time the above reconstruc-
tion generates a prediction uN,M(λk) for a given state λk ∈ Λ of
the system, the vector ubk(λk) can be replaced by uN,M(λk) in the
reduced basis for the system. This can be done by the dynamic
reduced basis low rank adaption proposed by Peherstorfer and
Wilcox [42].

Another point of view consists in fitting the expression of the
operators involved in the best-knowledge model, when projec-

Figure 4. Co-kriging makes it possible to take joint advantage of
(i) accurate but costly data (in red) and (ii) fast but inaccurate models
(in green); computed using OpenMDAO and Scikit Learn Python
packages.

ted onto an a priori reduced basis. This idea was proposed by
Peherstorfer and Wilcox [43], who named it operator inference.

Finally, composite spaces can be constructed by the assembling
of subdomains in which key driving parameters are retained and
local reduced bases are adopted; coupling between subdomains
can be performed via Lagrange multipliers, and the hidden para-
meters (for instance describing certain levels of damage within
a structure) can be determined by statistical classification methods.
Such approaches have been developed by Patera et al., and are
called Port-Reduced Reduced-Basis Component (PR-RBC) methods;
cf. [7,16,48].

Tensor approximation of solutions. Since functions in separable
form are dense in spaces of sufficiently regular functions, one can
decompose the solution of the parameterised model problem in
the form

uλ = ∑
ℓ

wℓ(λ)uℓ in 𝒰, for all λ ∈ Λ,

by means of Proper Generalised Decompositions [10]. Of course, λ
can easily incorporate a wide variety of correction terms, so as to
account for the current state of the system. This general philosophy
has been widely popularised by Chinesta and Nouy; see [9,40] and
the references therein.

3.3 Multi-fidelity prediction and co-kriging
In many practical cases, several sources of information (simula-
tion and measurement campaigns) provide predictions of various
accuracies for the observables. Let Λ be the parameter space under
consideration. For every 1 ≤ j ≤ J, the j-th measurement or simu-
lation campaign is performed at sampling points Dj = (λ j

k)1≤ k≤Kj

with the model Zj and provides data points ℤj;k = Zj(λ
j
k). The
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accuracy increases with j and the most accurate forecast therefore
corresponds to j = J.

Kriging. We set j = 1, and recall the construction of the univer-
sal kriging ̂Z1(λ) as a non-biased approximation of Z1(λ) with
minimum variance in the form

̂Z1(λ) =
K1

∑
k=1

w1;k(λ)ℤ1;k = w1(λ)⊤ℤ1.

Universal kriging additionally assumes that Z1(λ) is a Gaussian
process with unknown average of the form

𝔼(Z1(λ)) =
I1

∑
i=1

f1; i(λ)β1; i = f1(λ)⊤β1,

and space correlation σ2
1 r1(λ,λ′;θ), where σ1 is a variance scaling

factor and θ a parameter of the space-correlation function r1. The
parameters β1, σ1 and θ can be determined through maximum like-
lihood. The non-biased minimum variance predictor is achieved for
w1(λ) = C−1(c(λ) + F⊤(FC−1F⊤)−1b(λ)), where the matrices
F,C are given by their components

Fik = f1; i(λ1k ), Ckℓ = cov(ℤ1;k,ℤ1;ℓ),

and the vectors c,b by

ck(λ) = cov(Z1(λ),ℤ1;k), b(λ) = f1(λ) − FC−1c(λ).

Recursive co-kriging. Co-kriging was pioneered by Kennedy and
O’Hagan [25]. The recursive multi-fidelity adaptation introduced
by Le Gratiet and Garnier [29] reads

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪
⎩

Zj+1(λ) = ρj(λ) ̃Zj(λ) + δj(λ),

̃Zj(λ) independent of δj(λ),

ρj(λ) = gj(λ)⊤γj,

where the following Gaussian processes are defined by their means
and covariance matrices as

δj(λ) ∼ GP(fj(λ)⊤βj;σ2
j rj(λ,λ′)),

Z1(λ) ∼ GP(f1(λ)⊤β1;σ2
1 r1(λ,λ′));

̃Zj(λ) is a Gaussian process with distribution

[Zj(λ)|Z(j) = ℤ(j),βj, γj−1,σ2
j ],

where Z (j) = (Z1(D1),…, Zj(Dj)) and ℤ(j) = (ℤ1,…,ℤj).
The combined use of reduced models, full accuracy simulations

and measurements clearly allow for very efficient and accurate
surrogate models. The co-kriging above, further developed in [44],
has the huge advantage of recursiveness and as a result, a very
accessible computational cost.

3.4 Physics-Informed Neural Network
Neural networks have had great success with classification prob-
lems, together with Support Vector Machines for instance [1]. They
generate functions that are dense among continuous functions
(cf. Cybenko [12]), and conciliate smoothness with the ability to
represent thresholds quite accurately. Fitting can be performed by
a back descent gradient inspired by optimal control techniques.
Furthermore, robust and powerful Python libraries, like Tensor

Flow, are freely available.
Physics-Informed Neural Networks were introduced by Raissi,

Perdikaris and Karniadakis [45]. They combine the statistical learn-
ing of the solution, say u on the space-time domain [0, T] × Ω
sampled on points (tn, xi) as un

i , under the penalised constraint
that u is expected to resolve a partial differential equation of the
form 𝒜(u) = 0 in [0, T] ×Ω. This reads as the infimisation

inf
̃u
{∑
n, i

| ̃u(tn, xi) − uni |2 +∑
n, i

|𝒜( ̃u)(tn, xi)|2},

which is close to (1) when J(λ, u) = u. A Bayesian approach can
be used to identify the parameters from the model, as developed
in [49]. Lucor et al. have developed the approach for the thermo-
mechanical simulation of an incompressible viscous flow [31];
cf. Figures 5 and 6.

4 Conclusion

The combined use of first principle models and data analytics is
an avenue for predictive sciences. It is a privileged way to syner-
gise the modelling knowledge present in simulation software with
the relevance of available data, while guaranteeing a high level
of predictiveness in operation. Beyond the necessity of a growing
mathematical toolbox to handle problems of optimal control with
extreme efficiency, several challenges are implied: (i) the neces-
sity of developing porosity at the interface between competences
(numerical analysis, optimal control and automatism, high per-
formance computing, statistics, computer sciences), (ii) the need
for integrated development environments, with a role to play in
the question of open software, and (iii) data protection, as data
becomes an outstanding source of value.
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Figure 5. Left: computation domain containing an incompressible viscous flow heated at the bottom (the yellow box
materialises the training subdomain); right: iso-temperature surfaces as reconstructed in the training subdomain by the
Physics-Inspired Neural Network (courtesy of Didier Lucor, Atul Agrawal and Anne Sergent; see [31]).
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Figure 6. Learning curve displaying the cost function to infimise along
with iterations (courtesy of Didier Lucor, Atul Agrawal, and Anne Sergent;
see [31]).
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A conversation with Reuben Hersh

Ulf Persson

In the spring of 2009 the NCM (Nationellt Centrum för Matematik)
a didactic institute located in Gotheburg and founded by Bengt
Johansson, invited Marcus du Sautoy to give a popular lecture.
I was invited along to the luncheon and dinner and was asked to
interview the guest, but he was too busy, so instead I ‘made up’
an interview on the basis of his lecture, the conversations at meals,
the discussion at the center, and snatches of interchanges during
walks between venues. Thus I wrote down both questions and
answers and submitted it to du Sautoy, who made some minor
changes. The whole interview was published in the Newsletter of
the Swedish Math Society, for which I was conveniently the chief
editor. The director Johansson liked it so much that he had the
whole procedure repeated with Keith Devlin later that summer and
the next year he wanted to invite Ian Stewart, who could not come,
so instead I was dispatched to Warwick University. The following
winter I was sent to Boston, where I had a few sessions with my
old advisor David Mumford, and then I went to New Mexico where
I spent a few days with Reuben Hersh. Later on I was sent to
Paris talking to Cédric Villani, Yves Meyer and Luc Illusie. For those
opportunities I am indebted to the generosity of the NCM, which
is somewhat ironic as I have been a vocal critic of mathematical
didacticians and their various claims to be scientific.

The routine I initiated with Sautoy has not only served me
on the missions launched by NCM but also on other occasions,
as when interviewing Fields Medalists at the ICM, the results of
which have been published in the EMS. My inspiration has been
Eckermann’s Gespräche mit Goethe (Conversations with Goethe)
and the procedure is straightforward. I have a discussion with the
subject, ideally over several days, but that is not an option at an
ICM, and I keep no notes, I make no recordings of anything but
trust my memory. After the interview I may jot down some cryptic
notes to myself as a support and then I sit down and make up
a conversation, or if you prefer an interview. This is great fun as it
is in the spirit of writing a play, for one thing you get to formulate
both questions and answers, and the purpose is to give the illusion
of a conversation which, at least in a literal sense, has never taken
place. Some people may be shocked at this confession and dismiss
it all as counterfeit; on the other hand the subject has the last
word and can make as many amendments as they want (some

Ulf Persson, July 2021

subjects, such asMumford and Hersh, got into the spirit of the thing
and made extensive elaborations, but most have been satisfied
with minor revisions). The conversation as such may have never
taken place, nor have the involved used the exact formulations
presented, but so what? As long as the subjects give their consents
and blessings everything is fine. The form of an interview or, as
I prefer, conversation, is just a way of conveying information and
hopefully also the character of the people involved, and as such
presents a lively way of so doing.

The earlier ‘interviews’ were published in The Newsletter of
the Swedish Math Society and it was my intention to collect them
all in a book but that ambition has not yet come to fruition. In
the meantime nothing prevents me to let them appear to a larger
audience and below I present the interview with Reuben Hersh
which was conducted in his home in Santa Fe in February 2011.
It was published in Bulletin of the Swedish Math Society in 2015 to
which Hersh made some minor revisions in light of the time which
had passed. Early in 2020 Hersh died at the age of 92 and the
interview was also published on his memorial page through his son
Daniel Hersh. My stay with Reuben and his partner Vera was very
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memorable and I regret that it turned out to be the only occasion
I was going to have to meet him in the flesh; prior to this, we had
kept up a rewarding e-mail exchange, which of course continued,
and would do so until his death a decade later.

For an introduction to Reuben Hersh I refer to my recent obitu-
ary in the EMS Newsletter 116, June 2020. The original publication
was in the Bulletin of the Swedish Math Society, October 2015,
and we thank the society for permission to republish it.

Ulf Persson (UP): So you went to Harvard at fifteen, wasn’t that
very young?

Reuben Hersh (RH): There were a few sixteen-year olds as well.
Smart Jewish kids from New York, who wouldn’t have been let
into Harvard in normal times. The war was on, this was 1943, and
most of the regular Harvard boys were in the Navy, so we were
let in to help fill the seats in the classrooms. Then after the war,
things changed, it stopped being such a genteel snob school.

UP: Did you do any math at that time?

RH: I had enjoyed math a lot in high school. But my calculus course
with DavidWidder was a disaster. Just plodding throughmotivation-
less technicalities. It killed all my interest. Instead I began to think
of myself more as a writer. But Harvard didn’t offer a degree in
creative writing in those days. So instead I majored in English lit.
I read a lot of fiction, poetry, drama. I wrote short lyric poems, and
even won the Lloyd Mckim Garrison prize for poetry by a Harvard
undergraduate. Two years running. (Not much competition, with
most of the usual Harvard boys away in the Navy.) I still have the
silver tombstone medal with my name on it, and I’m sure that
the stuff that won the prize is still on file in some little room in
Widener Library. My poetry professor Robert Hillyer nominated
me to represent Harvard in an undergraduate poetry competition
at Mt Holyoke, that’s an Ivy League girl’s college. I hitchhiked
to Mt Holyoke, and showed up a bit late at the formal dinner.
Wouldn’t spend the money for a train ticket.

UP: So you gave up completely on math?

RH: I did have two friends,Johnny Wermer and Henry Helson, who
later became successful mathematicians. They were a bit older
than me. I just found out recently that Henry had died. That was
sad. Have you heard of those guys? Wermer has a Swedish wife.

UP: Of course I have heard of them. So what did you do after you
graduated?

RH: Well, I had assumed I was going to go into the Army to fight
Hitler. As soon as I was 18, I could join the army without my
parent’s consent. But I was too late! The war ended in August

Reuben Hersh,
February 2011

1945, and I wasn’t 18 until December. I graduated in January 1946.
But I had no other plans, no idea what else to do, and I expected
to be drafted eventually any way, so I joined the army. They had
18-month enlistments available. I somehow survived basic training,
and ended up classified as a clerk/typist. I spent seven months
as a clerk typist in the U.S. Military Government headquarters in
Seoul, Korea.

UP: What did you do next?

RH: I was discharged at Camp Stoneman in California and hitch-
hiked home to Mount Vernon, New York, my parent’s home.
I moved back in with them, and tried just sitting at home and
writing, in order to become a writer…

UP: But it was not working, you were frustrated.

RH: Desperately. I just couldn’t do it. None of it was any good. I was
too young. I had no experiences worth writing about. Of course
everyone has the experience of growing up – childhood and family
life – but that has been written to death. I had nothing original
to say.

UP: So you had to give up on that?

RH: Yes, I had to give it up. And I had to support myself, I had
to get out of my parent’s house. Somehow my mother knew
someone who knew someone who was an editor on a magazine,
and he knew Leon Svirsky, who was one of the editors of Scientific
American. You know about Scientific American?
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UP: Yes, of course. I remember they published retrospectives from
50 and 100 years earlier.

RH: That magazine had really deteriorated, it was almost dead, and
three science writers from Time and Life magazine decided to buy it
up, get the right to use the name, and do something different. This
was 1947. Their idea was publish articles by scientists themselves,
telling the public about their own work.

UP: It was a real discontinuity.

RH: Definitely. Of course most scientists can’t write in a style ac-
cessible to the general public, but with a lot of help from editors,
something actually readable may come out. They had just pro-
moted the office boy, so there was an opening for me, working in
the mail room. I spent a year packing up copies of Albert G. Ingalls’
books on amateur telescope making. Then gradually I got more in-
teresting things to do, minor writing and editing. I was assigned to
read old issues and write those retrospectives you just referred to.

UP: But you did not want to spend the rest of your life there.

RH: I couldn’t see myself doing this for the rest of my life. After
four years there, I quit and tried to become a machinist. Being
a veteran, I could take advantage of the GI Bill and get some paid
schooling in the evenings, at the Machine and Metal Trades High
School on York Avenue. Do you know what a lathe is?

UP: Of course I know.

RH: A lathe is a machine that cuts cylindrical parts. Machine parts
that have to rotate are cylindrical. But manual work didn’t come
easy to me.

UP: You had trouble understanding the instructions.

RH: Right. I had a hard time understanding without clear instruc-
tions. They left so many obvious things out, things which were
not obvious to me. But eventually I got reasonably good at it. Not
great, but good enough to hold a job and make a living. You can
learn a lot of things as long as you put your mind to it.

UP: But you did not spend your whole life there either.

RH: No, I did not. I had a very stupid accident using a band saw.
I sawed off the upper half of my right thumb.

UP: And at the time there was no point to retrieve it and have it
sewn on again. Micro-surgery had not yet been invented.

RH: It really scared me, and I decided I had to do something else.
Everything I had done up to then – joining the army, trying to be
a writer, trying to be a working class activist – it all was a way
of trying to help change the world, fight Fascism and racism
and oppression and so on. But it had all been a delusion, almost
a waste of time. I had tried to change the world, and I just couldn’t
do it. Moreover, all this happened at almost the same time as
Nikita Khrushchev’s famous secret speech to the congress of the
CPSU, where the head of the CPSU revealed that he and his asso-
ciates had been servants of a paranoid sociopathic mass murderer.
So finally I decided that if my efforts to change the world had
been useless or worse, I might as well just do whatever I en-
joyed. It took a while to figure out what I really enjoyed. Then
I remembered that I used to enjoy mathematics and decided to
apply to graduate school.

UP: And so you got into mathematics? But you had had very little
mathematics, why should you be accepted as a graduate student?

RH: Fortunately, I applied at NYU, which had a somewhat open
mind about off-beat applicants. I wanted to stay in New York,
and between NYU and Columbia, NYU was a better bet. I was
interviewed by a guy I had never heard of, a professor named
Fritz John. Of course, later I knew very well who he was. He was
skeptical, so I told him that I had gotten a perfect score on the
math part of the Graduate Record Exam. He answered, And what
is the graduate record exam? I explained that to him, and he
thought about it, and said, Probably means something. So he
told me to take advanced calculus in summer school, and then
if I did OK I could apply for admission as a graduate student in
the fall. Summer school was where I met Harold Shapiro. He had
a summer job at NYU teaching advanced calculus. He is another
mathematician who has a Swedish wife.

UP: You were quite old by then.

RH: Twenty-nine. A rather mature age to start in mathematics.

UP: But it had advantages?

RH: Unlike many other burgeoning mathematicians I was not bur-
dened with unrealistic ambitions. I didn’t expect to do great things,
I would be happy if I could just get a job and support myself. I was
married. I had married very young. At twenty. Far too young.

UP: I always thought that teenage marriages were very romantic.

RH: What a mistake! Anyway we lived in New Jersey in a town near
Hackensack called Teaneck. Living in Manhattan was impossible
unless you were willing to live in a slum. So I ended up commuting
every day across the river.
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UP: You were dedicated.

RH: I enjoyed it. And I had the great good luck that Peter Lax offered
to bemy advisor. Hewas just one year older thanme, he had already
been famous for over a decade. He was a Hungarian prodigy at
fifteen. Paul Erdos introduced him to Einstein as a Hungarian math
prodigy. Why Hungarian? Einstein asked. Peter showed me his list
of problems, and I picked the one that looked the easiest, because
it was just algebra. I got nowhere. As a matter of fact, it was a very
hard problem that took decades before anyone was able to solve it.
In the end I worked on the mixed initial-boundary value problem.
At that time a major active field was developing the theory of
linear partial differential equations from second to higher order.
The classical theory was limited almost entirely to second order.
You know about the Laplace, the wave and the heat equations? Of
course you do, every mathematician does, even if you don’t admit it.
Louis Nirenberg did a lot of work generalizing the Laplace equation
to higher order elliptic equations. Lax’s specialty was hyperbolic
equations, generalizing the wave equation, so I got involved in the
hyperbolic case. You want to hear all the gory details?

UP: Sure.

RH: Well, my job was to find the most general correct boundary
conditions for a general hyperbolic system in a half-space. I was
stuck for a long time. Then I ran across a trick in a textbook on
applied mathematics. You can combine a Laplace transform in
time with Fourier transforms in the unbounded space variables,
to reduce the mixed initial-boundary problem in a half-space to
an ordinary differential equation in a single spatial variable, the
variable orthogonal to the boundary. The resulting ODE problem is
a kind of boundary value problem, with one boundary at infinity.
This trick, which the textbook used in one particular limited context,
could be used in a much more general setting. After that insight,
I just had to write it up and show it to Lax. His reaction was Laplace
transform? I haven’t used the Laplace transform in years.

UP: And Laplace transform was Widder’s specialty! Quite a coincid-
ence. So it became your thesis?

RH: It was good enough to land me a two-year instructor-ship at
Stanford, Way beyond my humble expectations.

UP: So whom did you meet in Stanford?

RH: Polya was there, but I had very little interaction with him at
that time. Hörmander was there.

UP: He was visiting Stanford?

RH: He was a regular professor. I had worked on his first book on
PDEs and found one silly little misprint, and when I told him so,
he looked really disturbed. It took a few seconds for him to see
the error – a misspelling of see as se, which of course is correct
in Swedish! Then he looked relieved, and slightly amused. At the
time he was teaching a course on several complex variables. That
subject wasn’t interesting to me, but I was very impressed by the
way he handed out typed lecture notes before each lecture. When
I expressed my admiration, he said, There’s nothing to it, just go
like this, and pretended typing with his fingers in the air, with
a little smile.

UP: It must have come in very handy when he had his book pub-
lished. I remember it very well. It was in our school-library. I under-
stood nothing. That excited me a lot. I guess he is very efficient.

RH: I ran into him again at Stanford years later, at a week’s celebra-
tion for Peter Lax turning sixty. He still remembered me. He had
put the result of my thesis into his multi-volumed work on PDE.
But he made a qualification. He said I had not solved it completely,
only in the rough. Reiko Sakamoto had convinced him that she
had the first complete proof. That’s not true. I solved it, then she
did it over again in a much more obscure manner. But who cares?
It doesn’t matter.

UP: Do you have any other stories about Hörmander?

RH: He gave a talk once while his famous predecessor Arne Beurling
was in the audience. Hörmander was doing everything with Fourier
transforms, and just to show that he too had a finger in the
pie, Beurling asked about doing it with Fourier series. Hörmander
quickly and briefly dismissed Beurling’s remark as too trivial a case
to even mention.

UP: Paul Cohen was there at Stanford too?

RH: Yes, I knew Cohen fairly well. He could be very aggressive. He
always wanted to be on top. He would ask you a question and if
you weren’t prepared to battle with him, you had to either admit
defeat or just ignore him. As if he was still a prodigy. He grew up
in impoverished circumstances, and was introduced to calculus
when he was nine or so. He had been asked by Scientific American
magazine for an article about the continuum hypothesis, but they
found his contribution impossible to edit for publication. He was
looking for help. I did rewrite it successfully, it was published as
a joint article. Later on he suggested that we work together on
a popular book, but I declined. From a career viewpoint that was
probably a mistake, but I just didn’t feel comfortable working with
him. You know about Courant–Robbins, don’t you?

UP: Of course, it’s a classic.
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RH: Do you know that Robbins wasn’t supposed to be listed as a co-
author? Courant was the senior author, and he expected sole credit,
of course with an acknowledgment to Robbins in the preface. After
all, Courant–Hilbert was written by Courant, not Hilbert, with a lot
of help from junior authors, and Hilbert was listed as the senior
author only as a token of respect. But Robbins forced Courant
to list him as a co-author. He got no information about royalties,
though. Every once in a while a check would arrive in the mail,
with a friendly greeting, but no explanation.

UP: So you ran into Courant when you were at the Courant institute,
before it was named Courant?

RH: It was named after him after he retired. I even used a desk
where he had once sat. People were really impressed by that. Later
on Jerry Berkowitz assignedme as a graduate assistant to work with
Courant on the English translation of volume 2 of Courant–Hilbert –
Partial Differential Equations. I was just supposed to do copy editing
of the galley proofs, but as an experienced editor I couldn’t help
making occasional suggestions for editorial improvement. This
always amused him greatly. Sometimes he accepted my advice.
Once I went to a course he was giving. He spoke in such a soft
voice that only the people in the front row could hear him. He
started out by saying he had sometimes been told that people
couldn’t always hear him, so would anyone who couldn’t hear him
please raise their hand, and then he would know he should talk
louder. No one raised a hand. Courant was famous for playing up
to the rich and powerful. He got a lot of funding that way, and
used it very successfully, but some mathematicians turned up their
noses at such vulgar behavior.

UP: Anyone else you recall from your Courant days.

RH: There was another Harold Shapiro in addition to the Swedish
Harold S. Shapiro, I mean Harold N. Shapiro, the number theorist.
A loud guy. They used to say, S is for skinny, N is for noisy. Do you
know what Harold N. did to a promising student of his?

UP: Something unmentionable?

RH: He gave him as a thesis problem the twin prime conjecture.
Can you believe it?

UP: I can believe anything.

RH: The poor student! That’s the kind of problem you give if you
hope to become famous through your student.

UP: The chances would be slim, though.

RH: And the student could be destroyed. Let’s go back to Cohen.

UP: The Continuum hypothesis?

RH: You know the story of how it happened?

UP: Cohen had no high regard for logicians, and told them, give
me your hardest problem and I will solve it.

RH: And they did! And he went ahead and solved it! Just imagine
how those guys must have felt.

UP: End of story.

RH: It hasn’t ended yet. Forcing is still keeping the logicians busy.
Once he had it solved, Cohen had to go to Princeton to show it
to Gödel. He knocked on Gödel’s door. Gödel opened the door,
peered out, snatched the manuscript and closed the door.

UP: Just like that?

RH: A couple of days later, after Gödel had read the manuscript,
Paul was invited inside.

UP: Mathematicians are strange. What do you think of the current
fashionable theories of Asperger being so prevalent among math-
ematicians? Masha Gessen in her recent book on Perelman makes
a big deal out of it.

RH: I don’t think labeling it as Asperger’s syndrome helps very
much. And in her book, which otherwise I found quite impressive,
I thought the section on Asperger’s was tasteless and unnecessary.
I said so in my review in the Intelligencer.

UP: To me this is just a manifestation of the intolerance for eccent-
ricity. The dictatorship of mediocrity. It is the flip side of genius
adulation. The bottom line being that those geniuses may be very
clever and all that and do things beyond our conceptions, but they
are defective, not to say fatally flawed. It gives some consolation.

RH: Could be.

UP: When I was a beginning graduate student I heard a rumor
from a visiting student of logic, that Gödel had already solved
the CH. That he in fact knew it much deeper than Cohen, who was
humbled.

RH: No, that’s not true. After all, there has been a thorough invest-
igation of Gödel’s Nachlass.

UP: So Gödel gave Cohen his blessing?
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RH: He did. In due time,that is. Cohen became a bit impatient for
Gödel’s public endorsement. Gödel reassured him and told him
to relax.

UP: That sounds very human.

RH: Did you know that Cohen also married a Swedish woman?

UP: Had no idea. Wermer, Shapiro and now Cohen, where will this
end?

RH: Cohen met Christina while he was in Sweden to visit the Mittag-
Leffler Institute. With that name, there was no way he could pass
her off as Jewish. He was very secretive about it. Finally he found
a rabbi willing to marry them. Rabbis don’t usually consent to marry
someone to a non-Jew.

UP: And they lived happily ever after.

RH: Yes, as far as Cohen could be happy. He told me that they were
a good couple because they were both childish. But as I said, he
wasn’t an easy character. At Stanford he usually argued against
hiring or promoting anybody. No candidate was ever good enough.
He had very few students.

UP: Sarnak was a student of his.

RH: Sarnak is a tough cookie, he could stand up to Cohen. He wrote
a eulogy on Cohen in the Notices. Cohen developed some strange
disease and died in his early seventies. He had spent decades trying
as hard as he could to prove the Riemann conjecture. He actually
said to someone I know, I’ll show those bastards I’m not dead yet.
There were four people he considered worth talking to about it.
Selberg and Bombieri, I don’t remember the other two.

UP: But I do not want to drop this issue of Asperger yet. Regardless
or not whether you take the kind of diagnosis seriously, and I believe
that it is anyway applied frivolously ignoring some more clinical
criteria available; one may perhaps speak of certain character traits
of mathematicians.

RH: To tell the truth, most mathematicians are boring. Most of
them have no real intellectual interests, they just have a knack
for doing mathematics well enough to make a living, teaching
the same course over and over, and every now and then com-
ing up with some theorem. It’s the same way with artists. You
tend to think of them romantically, but most of them are very
mundane.

UP: So the vulgar conception of mathematicians as a kind of en-
gineers may not be too far off?

RH: Not too far off. But numerical analysis is looked down on by
most mathematicians just because mathematicians want to be
above engineers. Peter Lax is an outstanding exception. He com-
bines a great mathematical mind, deeply theoretical and abstract,
along with original, effective down-to-earth calculations.

UP: This is supposed to be rather rare.

RH: His interest in computation isn’t just to give examples of general
principles. He’s genuinely interested in it for its own sake, as well
as for its practical utility.

UP: What about Polya?

RH: We invited him to speak at New Mexico. People in the depart-
ment were impressed by my connections at Stanford. Phillips and
Cohen came too, but you asked about Polya. He gave two talks.
His lecture at the College of Education was called Let Us Teach
Guessing. He used a problem which I later learned is a special case
of Steiner’s problem. Into how many regions is space divided by
five planes chosen at random? You simplify from five planes to
four, then three, then two, and from three dimensions to two, and
then you guess. He was admirably patient. And pedagogical. For
example, he used a ruler to represent a line, and divided it in two
with a finger, then divided it once more using a finger on his other
hand, then he ran out of hands and used his nose! The audience
loved it. Later on I realized how good his books on problem solv-
ing are. It was easy to underestimate him. Hermann Weyl once
had to comment on him. He said something to the effect that
Polya likes to solve nice little problems one after another, but Weyl
himself could never work like that. That was unfair. Polya chose
important problems. He extracted the essence of some difficulty
and presented it very concretely.

UP: I read that Polya considered himself too smart to be a philo-
sopher, but not smart enough to be a physicist, so he chose
mathematics.

RH: Replace the word ‘smart’ with ‘good’ and you would have the
right quotation.

UP: Polya got to be very old, almost a hundred. But not as old as
Cartan or Struik. Not to mention Vietoris, who got to be 111.

RH: When did Vietoris stop publishing mathematical papers?

UP: He published some when he was well over a hundred.

RH: Remarkable. Polya spent his last years in misery. He became
blind. But he was a wonderful man. Old world civility. We took him
to a Mexican restaurant once. He ordered a chile relleno. My wife
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cried out to him not to eat the seeds. He smiled and explained that
he was Hungarian, he knew very well how to deal with hot stuff.
Then his face turned red and his eyes were popping, but he kept
smiling. He certainly didn’t let on the pain. Wonderful guy.

UP: Going to New Mexico was not the end of your career as
a mathematician?

RH: Why should it be? I started to collaborate with a young probab-
ilist, Richard Griego. We got into applications of probability theory
to partial differential equations. We wrote a popular article on
how to solve the Dirichlet problem using Brownian motion. It was
published in Scientific American in the late sixties.

UP: In fact I very much remember that article. It must have been
in 1969. I had just finished high-school. I recall my father was
intrigued by it.

RH: Happy to hear it. In fact, I have met other people who benefited
from it. Griego and I started a new method of probabilistic solution
of differential equations. It all started with an obscure paper by
Mark Kac, whichwe realized could be vastly generalized by operator
methods. We studied operator differential equations controlled
by a stochastic process. Peter Lax gave it the right name, random
evolutions. Do you want to hear more details? To make sense of
what I just said?

UP: Sure.

RH: Well, the main point was to use the central limit theorem from
probability as a tool to prove singular perturbation theorems about
differential equations. A nice example is to start with a large number
of Newtonian particles moving at constant speeds, and suffering
collisions which make them switch direction and speed at random.
If you put in a couple of properly scaled small parameters, you
can make the mean free path between collisions go to zero. Our
random evolution model permits us to use the central limit theorem
to prove that this system of transport equations, a hyperbolic
system, goes to a certain diffusion equation, a parabolic equation,
in the limit. In physical language, this is a rigorous proof of the
diffusion approximation for a high-density gas.

UP: But then it came to an end. Your career as a research scientist
was short but glorious.

RH: You said it, I didn’t. It was only about fifteen years. But my
work exceeded my expectations. As I already explained. I never
expected to become an above average researcher. At the end,
there was a paper I was co-authoring. When it came back from
being reviewed, I realized that what we were trying to do was
essentially routine and uninteresting. Mistakes you can usually

correct, often they indicate that you are on to something important
and challenging. But not in this case. I apologized to my co-author.
I simply couldn’t go on with it. It was a tough time. My marriage
was falling apart. We had married too young, we had eventually
grown apart. I sought and found professional help, trying to sort
out my life. And then I fell in love! How wonderful! I felt guilty, of
course, but I couldn’t help myself. I got divorced, and life started
over. As I tell people, and especially you, life begins at sixty. Look
at me!

UP: So it was your new love that provided your resurrection?

RH: And also having vibrant intellectual interests that I was passion-
ate about. I had something to think about. And that is the aspect
of my resurrection that will interest you.

UP: It was on the philosophy of mathematics and its practice, I un-
derstand. What made you into the Reuben Hersh that you are now,
and for which people will remember you when all else is gone?

RH: Forget about being remembered, don’t expect it. So many
people are clamoring to be remembered, and who gets chosen is
usually just a matter of chance. But I had an encompassing interest,
and I had two talents which are seldom combined, a knack for
mathematics and a knack for writing. You seem to have them too.

UP: That is very kind of you to say so. It was ‘The Mathematical
Experience’ which launched you.

RH: I had gotten hooked on philosophy of math when I volunteered
to teach a course that was listed in my department’s catalogue as
Foundations of Mathematics. No one had ever offered it, before or
since. I expected to just do my usual thing when teaching a subject
I know nothing about – pick the best textbook I can find, and stay
a chapter ahead of the students. Not this time! All the textbooks
I found simply presented three viewpoints – logicist, intuitionist,
and formalist, and left it plain that all three were inadequate, unsat-
isfactory, failures. End of course!! As a teacher I found that situation
deeply unacceptable. After all, I ought to at least know what was
my own personal philosophy of math. But I found that I simply
didn’t know. So I had to find out where I stood, what was my
understanding of the nature of the subject to which I devoted my
life. On my part, The Mathematical Experience was a stage in my
struggle to figure out my own answers. Then also, my career as
a mathematician had given me a special kind of experience, which
had not been much exploited in a literary way. I was very lucky
to find Phil Davis as a collaborator. We never dreamed that the
book would make such a splash. It was far short of our original
intentions, but we were desperate and submitted what we had. It
seemed only a rag-bag at the time, but nevertheless, it worked,
after all!
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UP: Yes, I remember very well reading the book in the early 80’s.
I was impressed by it. I felt that the authors, of whom I had no
idea, were really up to something. I also recall Borel at a lunch at
the Institute praising the book at the time as a serious work done
by people who understood mathematics and what it meant to be
a mathematician.

RH: Borel said that? By the way, is Borel related to Emile Borel, the
famous French analyst?

UP: Not that I know. I doubt it though. Armand Borel was Swiss
for one thing.

RH: The book was reviewed by Martin Gardner. You know him, of
course.

UP: Yes. I got a book of his essays translated into Swedish when
I was a child. Later I read his columns in the Scientific American.
And just a year or so before he died I got into epistolary contact
with him. He typed letters the old-fashioned way, even sent me
a paper model of a Klein bottle he had made. You cannot do that
on e-mail. The reason for getting in touch with him was to refute
your anti-Platonist stand in the EMS Newsletter. You may recall the
occasion.

RH: I certainly do. You know Gardner believed in God? Literally.
He even wrote a chapter advocating the effectiveness of prayer.
Gardner was assigned to review our book for the New York Review
of Books. Of course that was wonderful. Attention to this kind of
book in the NYR, what more can you ask for? You know the NYR,
of course?

UP: I have subscribed to it since the mid-seventies.

RH: Good for you. Sowe have somethingmore in common. Anyway,
Gardner liked our book on the whole, but he attacked our anti-
Platonist philosophy.

UP: You got a mixed review, in other words.

RH: Gardner was a Platonist. That makes sense for someone who
believes in God. If you believe in God, you have an obvious place
to put mathematics out there. I understand why my anti-Platonism
upset or offended him. I never met him personally, but we did have
a sort of connection by our common connection to the Scientific
American. There were attacks from some other people that I can’t
so easily tolerate. The worst was from a certain computer list-serve
called FOM, meaning Foundations of Mathematics. It belongs to
a clique of logicians who not only work on axiomatic set theory,
they worship it as The Foundation Of Mathematics. In what sense
does mathematics have or need a foundation, let alone what might

such a foundation be? I got lured into signing on to this activity.
When I refused to convert to their ideology they made me an object
of abuse and ridicule. Eventually I escaped by signing off from their
computer list. And then, much before all that, there was Professor
Hilary Putnam.

UP: A logician at Harvard. Nothing to do with the Putnam exam
I take it, although I always made the naive connection when I first
encountered his name.

RH: No connection. Jewish mother, WASP father. You know what
a WASP is?

UP: I spent several years in the States. In a sense part of my form-
ative ones.

RH: Sorry. You never know. I don’t want to take anything for gran-
ted. Anyway I had sent a piece on philosophy of mathematics to
the Monthly. Putnam was the referee. He referred to my piece as
doggerel. I guess he thought of his own stuff as real poetry. As
a consequence, The Monthly rejected it, which was a good thing,
as Gian-Carlo Rota quickly published it in his journal – the Advances.
A much better place for it.

UP: Rota was a dictator.

RH: Sure. And an excellent editor! You should know about that.
I’ve never been an editor. Being one gives you a lot of power, and
you need to use it wisely in order to do a good job.

UP: By the way I think of philosophy as the poetry of science. Philo-
sophers do not take kindly to this notion. I mean it as a compliment
though. What I mean is that philosophy proceeds by evocation
rather than argument, and that it is very important that you present
it in an elegant way. Among mathematicians expounding on philo-
sophy I find that Yuri Manin stands out. He is a real pleasure to
read.

RH: Manin is great. He has such wide and penetrating interests. Did
you ever read his book on logic? It’s written from the perspective
of a mathematician. And as I understand, written from scratch. He
taught himself logic.

UP: Yes. I was very much influenced by it. I came across it when
I once tried to teach mathematical logic to undergraduates at
Columbia.

RH: The problem with most academic philosophy of mathematics
is that it’s not about actual mathematics, it’s about other philo-
sophers of mathematics, their little clique. They aren’t interested
in mathematics or mathematicians, they aren’t even interested in
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regular ordinary philosophers, they are just writing to answer each
other and argue with each other. Look at Quine, for God’s sake.
Very well respected within the logic community. But such an arrog-
ant pedant. He didn’t know about the Riemann hypothesis – OK.
I can understand that. But what was far worse, he wasn’t even
interested! The supposed greatest living philosopher of mathem-
atics, and he neither knows nor cares about the most important
open problem in mathematics. This man wrote that everything in
mathematics can be got down to sets. In plain words, to do philo-
sophy of mathematics, it’s unnecessary to know anything about
mathematics beyond set theory. How ignorant, presumptuous and
arrogant! I am too blunt, I know. I have actually met a few philo-
sophers who have a taste for mathematics. and I have finally met
one here in New Mexico who is willing to talk and listen to me.
Apart from this new acquaintance, there is really no one around
here with whom I can discuss those matters, who really wants to
listen. Some do it politely for a few minutes. My wife tries to do
it, but she can only take so much. It’s really exhilarating to have
someone who listens as attentively as you. It’s wonderful. It makes
me blabber, and now I fear I am going beyond all bounds. Are you
really going to write all this down?

UP: As much as I will be able to recall. Your powers of recollection
are remarkable, once you start unwinding the threads of your
memory. So much is retained. Not immediately accessible of course.
You have to pull at it. But eventually one thing will lead to another.

RH: Still, it makes me a bit nervous. Where were we?

UP: We were speaking of the ignorance of philosophers when it
comes to mathematics. I admit that the more ignorant you are the
easier it is to hold firm opinions.

RH: Take Alonzo Church. An important, influential logician, cer-
tainly. No question about that. Church wrote down a long formula,
involving an X; then he needed another formula identical to the
first, except that X was replaced by Y. After mentioning that of
course he could simply write something like let X be replaced
by Y, he decided that the safest thing was to just write the whole
thing all over again, but using Y instead of X. Super careful. Incred-
ible. When Gian-Carlo Rota was an undergraduate at Princeton
he attended Church’s course. Solomon Lefschetz looked into the
room, saw Rota sitting there, and shook his head in disapproval.
And then, what about Ludwig Wittgenstein? Mathematics is noth-
ing but calculations. It has nothing to do with concepts or ideas.
How absurd! He is saying such a thing, even while mathematicians
are trying hard to explain to him that we are interested in IDEAS
ABOUT CALCULATION. With Alan Turing sitting right there in front
of him, Wittgenstein is saying mathematics has nothing to do with
concepts!

UP: I guess we are in a sense talking about Church’s thesis. The
point of mathematics is to make sense of calculations and to decide
what calculations are to be done.

RH: You can put it that way if you want. Or their idea that mathem-
atics essentially consists of deductive proofs. But in reality, nobody
could follow all the way through a completely explicit detailed
formal proof of any substantial interesting piece of mathematics.
Unless it’s a very simple one, like the examples that Hardy pulled
out in order to convince people of the beauty and compelling
power of mathematics.

UP: It is a commendable ambition.

RH: But misleading.

UP: Very much so. What makes for a convincing argument is not
a long deductive chain but the way it fits into the web of mathem-
atics.

RH: Well, in order to include him in my book What is Mathematics,
Really?, I had to read Wittgenstein.

UP: He seemed very influenced by Russell, thinking of mathematics
in a so to speak mechanical way, as a sequence of tautologies.
Ultimately this view implies that mathematics contains no new
knowledge, everything is in the axioms. It strikes me as some-
what peculiar that the richness of number theory is hidden in the
simple axioms of Peano. There seem not to be enough information
in them.

RH: That was the early Wittgenstein, the Wittgenstein of the Tracta-
tus. The later Wittgenstein was completely different. He had some
good points and some very bad ones. He emphasized that math-
ematics, like language, is a human activity. Excellent! But he went
on to claim that a mathematician is free to do anything he pleases,
anything at all. That is not true, it is ridiculous.

UP: So you agree that there are constraints. A mathematician is
bound by rules beyond his control.

RH: Exactly. That is the essence of the mathematical experience, as
eloquently described by Hardy.

UP: So you do not deny its validity?

RH: Not at all. Why should I?

UP: You have said that mathematics is objective as far as the indi-
vidual is concerned, and subjective as far as the collective. Would
you care to elaborate?
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RH: Leslie White was the one who first said that plainly and clearly.
Of course mathematics has a very high degree of objectivity. It
doesn’t matter what is your race, nationality, or religion, root 2 is
irrational and pi is transcendental.

UP: So women do not think another mathematics.

RH: No. The Cauchy–Kovalevskaya theorem is neither male nor
female.

UP: In what sense is mathematics subjective?

RH: Mathematics is a collective invention, like law or art or lan-
guage. It’s external from the viewpoint of the individual studying it,
but it’s internal with respect to human culture as a whole. It exists
within the shared consciousness of human beings. Of course it’s
still very different from law, language or art. In particular, math-
ematics certainly is not just a language, although some people do
thoughtlessly say so.

UP: I have a colleague who seriously claims that the difficulties
students have with mathematics are linguistic. They have simply
not understood ‘mathematish’ so to speak. They need to have the
definitions of mathematics and the formulas translated into plain
everyday language. According to this theory some of us instinctively
acquire ‘mathematish’ but the rest need to be explicitly instructed
as to its ‘grammar’ and vocabulary.

RH: That is dumb.

UP: I am glad that you agree. What is worse that this colleague
seems to catch the ears of mathematical educators. What about
law and art?

RH: Law is about more or less arbitrary regulations and their ra-
tional interpretation, and of course that doesn’t have the same
force as mathematical reasoning. And art, although many math-
ematicians claim that they are really artists, is likewise softer than
down-to-earth mathematics and does not command the same kind
of consensus, not even the same kind that law inspires.

UP: When you speak about mathematics are you not really speaking
about the practice of mathematics? Mathematics is practiced by
human beings, and we do not see it practiced anywhere than
by humans, thus the argument that it is a human invention and
would not make sense outside humanity is more or less tautological,
in the sense of being circular and trivial. And of course what is
considered important and beautiful in mathematics is subjective
and vulnerable to the forces of fashion. Definitions and concepts
are human inventions, but like all inventions, in the mental as well
as the physical world, they have unintended consequences.

RH: But you exempt truth?

UP: Yes, I exempt truth. What is true in mathematics is not up to
our discretion, certainly not as individuals.

RH: But in practice truth is agreed on by a process of social con-
firmation. I can give you a specific concrete example. As I told
you before, I worked on linear partial differential equations with
constant coefficients. My work was later extended by Heinz-Otto
Kreiss to the case of variable coefficients. His theorem was quickly
accepted as a known result that anyone else can freely quote and
use. The proof is long and complicated. I could never really un-
derstand it all. But in the course of my mathematical education
and research there have been many things that I accepted without
completely understanding the proof. I would just assume it was my
own fault, either I didn’t know enough or I wasn’t smart enough or
I wasn’t trying hard enough. Lax decided Kreiss’s theorem was true.
I don’t know for certain how thoroughly he went into it. He knew
Kreiss well and had a high opinion of his mathematical work. This
particular result fitted well into what one might expect, based on
general knowledge of the subject. It used the appropriate tools and
methods, it encountered and overcame the expected difficulties.
I would expect that he listened to Kreiss explaining it to him in his
office until he was convinced. Once Lax decided it was true, no
one doubted it. When Kreiss wrote it up for publication in NYU’s
Communications on Pure and Applied Mathematics, he didn’t have
to struggle to make every detail clear and explicit. He could pub-
lish it in an incomplete, cryptic form, because it had already been
accepted by everyone. I suspect that you know of similar examples
in your own field.

UP: Sure. One obvious example is Hironaka’s resolution of singular-
ities. I doubt that anyone has really gone through all the details.
Most people like me, who have appealed to it in their work have
not even made the attempt to read the paper, but trust it anyway,
because that is socially acceptable. In a way it can be seen as an
axiom, something you can rely on without understanding. And
an even more generally known example, the proof that there are
only 26 sporadic groups. The proof of that, scattered through tens
of thousands of journal papers, is too long for any single mind to
fathom in all its devilish details. And sure enough, as I understand
it, small defects are continually being discovered and fixed, the
general idea being that all the mistakes are fixable.

RH: So you agree, even when it comes to truth in mathematics it is
a matter of social convention.

UP: But the remarkable thing is that this convention is so consen-
sual. As I have already noted, deductive reasoning is not congenial
to humans, when we as referees accept a paper we use other
supplementary ways of being convinced. I agree with you that in
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practice mathematical truth is based on social consensus. In fact
everything you say on the practice of mathematics we agree on. But
I think that there is something beyond the practice of mathematics,
beyond the human fallible way of doing mathematics. Outside of
mathematics, socially accepted truths may be successfully chal-
lenged. And even in mathematics, if there is a counter-example to
a previously authorized theorem, that will surely trump. Just as in
science, our accepted truths are only provisional, although many
of them have stood the test of time for a remarkably long time.

RH: Absolutely right. Nevertheless, I hold that the practice of math-
ematics is all there is to it. I would also emphasize that the most
fundamental mathematical practices – counting on your fingers,
and spatial intuition – are grounded, like all human activity, in our
physical beings, in our bodies and in being in the world. Anything
beyond that is mysticism. Wittgenstein’s great insight, which was
bitterly contested, is that the role of philosophy should be to show
the fly the way out of the fly bottle. So many philosophical quandar-
ies are illusory and artificial. The fact that language allows a certain
question to be asked, by no means implies that a meaningful an-
swer is possible or even conceivable. A famous fascinating question
was first asked by Leibniz, and then repeated by Heidegger: ‘Why
is there something rather than nothing?’ It is a useless question.
It does not make sense, and no conceivable answer to it could
make sense. The only reason that the question is asked is that it is
possible to formulate it. Mathematical Platonism is a similar kind of
fallacy. It arises from the unfounded idea that there must be some-
thing to mathematics beyond the practice of mathematics. You
and I can agree on every basic issue of mathematics and disagree
on this transcendental issue, which is not even an issue.

UP: What is your position on physical laws? Do they exist or are
they just social constructs?

RH: Of course they exist, they are existing social constructs. To talk
as if social constructs are things that don’t really exist is untenable
nonsense. Your electric bill exists, you’d better pay it or you’ll be
sorry. As to the laws of physics, they are not observed with our eyes
or our instruments, they are formulated as part of our effort tomake
sense of the physical world. That means of course that we can’t
just make them up any way we please. There is a physical reality
out there. The most devout anti-materialist doesn’t doubt that his
teeth are real, when he is having a really agonizing toothache.

UP: This is of course the standpoint of Karl Popper. Physical theories
are just human constructs, but belonging to the objective world
of thought – World 3 in fact, to use his somewhat unimaginative
terminology, to be distinguished from the World 2 of individual
thought and consciousness, all of them distinct fromWorld 1 of the
physical world. They are provisional. Theories are only ‘true’ as long
as they are not contradicted. This is inductive reasoning according

to Poppers interpretation of induction, which most of his critics do
not seem to get. It concords beautifully with R. G. Collingwoods’
distinction between deductive and inductive logic, the former is
compelling the latter is permitting. Now, Popper failed really to
consider mathematics seriously, probably because like most modern
philosophers, and here I very much include Wittgenstein, he did
not know much about mathematics and had certainly done no
work in mathematics, which is a prerequisite for understanding
mathematics. Thus he tended to exempt mathematics from science.
He did not consider it empirical and thus not liable to the fallacies
provided by inductive reasoning. He thought of it as an island of
pure and incontestable truth, and hence as somewhat uninteresting.
But when it comes to the practice of mathematics we know that
it is not really deductive, mathematical truths are also products
of social consensus. The difference is that traditional truths of
mathematics can be challenged just as traditional beliefs are in
science as I have already mentioned. And just as in science there
are objective ways of coming to a verdict. By objective I mean ways
that are agreed on prior to their conclusions. It is not like the case
of fashion, when one fashion replaces another, the transformation
is incontestable. The new fashion simply takes over as a social force
trumping the old one who no longer has any say. This is not the
way ‘truths’ are overthrown in science, although the in my opinion
over-rated Thomas Kuhn and his theory of paradigm shifts, seem
to imply something like that. Popper is clearer on the issue. The
change is through a test. A test is not of universal validity, it is simply
designed as to be accepted by two warring parties, by finding so to
speak the ‘biggest common divisor’. This is democratic. Not in the
sense of voting, but always seeking and finding common ground.
Popper’s vision, and as such it is meta-physical and transcendental,
is that there is a ‘Truth out there’ but we humans will only be
able to approximate it. Intrinsic to his vision is that when one
approximation replaces another this new approximation will be
a ‘better one’. Science, as a human enterprise is accumulative and
progresses. Unlike the humanities and philosophy changes are not
random and frivolous. As Kuhn remarks, and here I agree with him,
progress is based on repudiation, by closing off certain lines of
thought we are, in my words, able to penetrate deeper into the
configuration space of ideas. This is how evolution works.

RH: That was quite a mouthful. I thought I was the one being in-
terviewed, not the one who needs to be lectured to. I have also
noticed that Popper seemed to ignore mathematics, putting it
on a sort of pedestal. But his student Imre Lakatos applied Pop-
perian thinking to mathematics, and profitably too. His writings
on mathematics offended the cliques of academic philosophy of
mathematics, and so they didn’t get the attention they deserved
until long after his death.

UP: Sometimes this is an advantage. Your disciples may propagate
your ideas and then you do not have to worry about internal
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consistencies, on the contrary the more inconsistently they are
presented, the wider the potential audience. Just think of the case
of someone like Marx.

RH: Your jokes do enliven the conversation. Science is not the phys-
ical world, as I told you, it is our collective attempt to make sense
of the physical world. Your notion seems to be that there has to
be an actual Mathematics playing the role of the physical world,
apart from us, residing in some Platonic heaven. And then apart
from that transcendental Mathematics, there is also the practice
of mathematics, which is the human effort to make sense of
the inhuman transcendental Mathematics. You are the fly that
needs to be led out of the bottle. You are seduced by false analo-
gies. Let’s make this discussion a bit more concrete, Does infinity
exist?

UP: Existence has so many meanings. You can easily get confused.

RH: That’s my point. But you know the meaning of the question,
even if it’s embarrassing to you.

UP: I agree with you that it is a key question, a kind of litmus test
when it comes to the Platonic conception of mathematics. Truly it is
very hard to manifest infinity in a physical way. Even if the universe
would be infinite, which some cosmologists seem to believe, how
would we ever verify it? All I can say is that Gauss did not believe
in the actual infinity, only the potential.

RH: Long before Gauss, that goes back to Aristotle. It was Georg
Cantor who by one sweeping gesture collected all the integers into
one set.

UP: This was a very powerful thing to do.

RH: Infinitely powerful, it would seem. But by that very token, clearly
illusory. It’s one more example of language letting us reify an act
which has only verbal meaning. Take the fact that every number
can be doubled, so that there are as many even numbers as there
are numbers. This was first noticed by Galileo. In the language of
set theory, it gives the surprising fact that a subset of a set can be as
numerous as the set itself. But all it really says is that every number
can be doubled. And this is actually not so easy, if your number
consists of a really very, very great many decimal digits. The notion
of infinity is really a negative one, not a positive one. It means that
we agree to ignore the boundary of the domain we are studying,
it’s very far away and we can just ignore it. For example, in theory
(but not in practice) we can ignore the fact that when numbers
get very large they become very difficult to factor. Or in geometry,
what is the Euclidean plane but a very, very large sandbox? So big
that we never need to draw a circle so big that it hits the boundary.
So we can just pretend that there isn’t a boundary at all. In fact,

the word infinity just means no boundary. There is no such thing
as an infinitude of riches. Imagining that you have collected all the
integers, and calling that imagined collection N, does not enable
you to take all the numbers under your control.

UP: It is in fact much harder and much more vertiginous to think
of very large finite numbers, you know the number of digits of
which takes so many digits to write down that it in itself must be
expressed by a number with so many digits and so on a number
of times the digits of which, you get the idea…

RH: …I get the idea…

UP: …than to think of infinity itself which is trivial.

RH: It is trivial because infinity simply says we wish to ignore the
boundary. It simplifies, not to say trivializes. We simply ignore
technical difficulties. We sweep them under the rug.

UP: The rug which is infinity and which allows everything to be
swept under it. Are we not coming full circle?

RH: There is no need to go full circle. Infinity is just a stratagem
to simplify our thinking. Mankind will never reach infinity. Why
worry about large numbers we will never reach? Surely there is
a number M large enough to delimit the ambitions of all humans.
If we want to check something, anything, it would be enough to
check it up to that number.

UP: Now you are getting carried away. That number M certainly
becomes elusive. It is aptly named by the letter M for being meta-
physical. It cannot bemanipulated like an ordinary number, because
it is a meta-physical number. It cannot be specified, at least not by
humans, because if specified and pinned down, so would M+ 1.
You remind me of a boy who thinks that numbers are buttons.
Through immense diligence and dedication he collects all the but-
tons in the world and then he says that adding one is impossible,
because after all there are no buttons left to add with. What would
you say to that boy? That he should start collecting grains of sand
instead like Archimedes?

RH: I would have a long, serious conversation with him. Still you
must admit that infinity is a pretty slippery concept. And if you don’t
think so, it’s because you’re so used to the concept that you no
longer find it strange and contradictory as mathematical innocents
find it. On the other hand, you think that those incredibly high
cardinals, inaccessible, measurable or whatever they are called,
that are thought up by logicians, have a transcendent reality? If so,
God chooses strange vessels for his insights.

UP: I must admit that I find those things very fishy indeed.
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RH: Yes.

UP: So if you deny infinity you deny that there is any meaning to
the notion of an infinitude of primes?

RH: Euclid never said infinity of primes. He simply showed how,
given any collection of primes, you can construct a new one.

UP: Yet even if you believe in the potential infinity as opposed to
the actual, you have some faith in an inexhaustible supply. What
you are saying is that there are two levels of existence, one po-
tential and one actual. The former somehow weaker than the
latter. You are denying the infinitude of the actual but not of the
potential.

RH: There is nothing mysterious about that. Accepting infinity is
simply agreeing to ignore complications at the horizon by pre-
tending there is none. The same goes for primes. When it comes
down to producing an inexhaustible supply of primes, Euclid’s
method becomes impractical. Humans can make long lists of
primes, but I will never be surprised if every such attempt can
be superseded.

UP: But that by itself is a testimony to infinity itself, no matter
how many occasions, you will never be surprised. It reminds me
that a single counter example to a theorem compels you to reject
a potentially infinite number of purported proofs sight unseen,
admittedly based on the transcendental faith in the consistency of
mathematics.

RH: That is interesting.

UP: Now in analysis you are dealing all the time with infinite sets,
especially countably infinite. And think nothing about it. Giving
an infinite series, any finite sub sum gives no clue as to whether
it is convergent or not, in a sense you need to ‘see’ all the terms
to make sense of it. The same with constructions of Cantor sets
and other fractal animals. To stop half-way would leave you with
something silly, it is only when you go all the way to infinity those
creatures become truly interesting. Now the negative result of the
uncountability of the reals is the only thing you need to take into
account when you are an analyst. Modern measure theory would
be impossible without it. Thus in a sense the countable infinities
are actualities for the analyst, while the uncountable of reals is
merely potential and in a sense metaphysical. To go beyond this
in human mathematical practice is simply pointless, no serious
mathematics involves anything beyond the continuum. It might be
different would we be able to do arguments involving an actual
infinite number of steps, then every theorem in number theory
could be verified using case by case study. It would be infinitely
boring. In a very literal way to boot.

RH: With some care you could easily do away with those countable
actual infinities, which are as chimerical as the set of all integers.
But I agree that it would be painful. Infinity is just a shorthand
designed for convenience. And as to fractals, their applications
to nature are suggestive enough. It’s really beside the point that
on a physical level those structures can’t go on indefinitely. The
wonders of infinity can be well approximated.

UP: The idea of infinity is very much connected to the desire for im-
mortality. No one wants to live forever, because eternity is an awful
long time, yet everyone would like to postpone dying indefinitely.

RH: Speak for yourself.

UP: The idea of your own mortality is a scary concept, especially
when you are young. It does not matter whether you live to a hun-
dred, a thousand and even a million, the very idea that you yourself
will at some time be at the brink of extinction is what is terrifying.
The hidden assumption, which seems so natural when you are
young, is the identity of your ‘I’ over time. This is no trivial as-
sumption, in fact it begs a lot, as you realize when you start to get
a more intimate acquaintance with aging. My point is that math-
ematical concepts such as infinity ties with some very fundamental
existential issues.

RH: That only goes to show what I have been trying to say, namely,
that mathematical concepts have no transcendental origin, but are
perfectly explainable by the human psyche. As to actual infinity,
have you ever come across the name of Tipler?

UP: Did he not co-author a book on the Anthropomorphic prin-
ciple in Cosmos, to the effect that everything in the universe was
fine-tuned to prepare the way for the developments of humans,
or at least theoretical physicists. I guess this was just within the
boundaries of reputable science.

RH: Whether within or not I don’t know, certainly he has gone
beyond them in later years. I came across a short article of his on
the Internet recently. Using some simple physical principles, such as
the indestructibility of information and the eventual evaporation of
black holes, he predicted with unassailable logic that we humans
would all be downloaded into infinite information traveling at the
speed of light, all over the place.

UP: This seems like wishful thinking.

RH: Indeed it is. And he becomes really weird when he claims that
this final state will be God, and the Christian God to boot.

UP: This shows a certain lack of imagination. It reminds me of an
old idea of mine, namely that the past injects into the future, that
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no information is lost, that every event no matter how insignificant
leaves a tiny trace no matter how elusive and diluted that can
be in principle used to reconstruct the event. Otherwise what
meaning would there be to say that a thing has occurred in the
past, without we having no way of finding out. Psychologically it
is easier to imagine that two different causes have the same effect
than the same cause having two different effects. It was my way
of turning this upside down.

RH: Once again, you are…

UP: …were…

RH: …OK, were the fly in the bottle needing to be led out.

UP: To return to more concrete issues. You recently published
a book – Loving and hating mathematics. The very title seems
to indicate that your feelings about mathematics are ambivalent.

RH: Aren’t yours? Don’t you hate it at times?

UP: I guess I have to admit that. I presume that Loving and Hating
Mathematics is even more focused on the human interaction with
mathematics than was The Mathematical Experience. Some might
say it is gossipy.

RH: I like gossip. Within limits, of course.

UP: This time you co-authored the book with your wife, who is
not a mathematician. How did that affect the writing of the book?
Was that a major factor in emphasizing the human perspective?

RH: She said, Let’s do something together! So we had to find a sub-
ject that we had in common. In fact, I think it was something that
I always wanted to do.

UP: I like to say that you can be very emotional about mathematics,
but mathematics offer you no way of expressing your emotions.
Maybe this is a clue to the frustration it certainly provokes.

RH: Our book is very much about being emotional about mathem-
atics. What else are loving and hating it? As to not being able to
express emotion through mathematics, I am not exactly sure what
you really mean by that. I guess to some extent you may be overly
influenced by your professed Platonist view of mathematics.

UP: Is it not clear what I mean? Mathematics is completely uncon-
cerned with humans and human emotions.

RH: The standard convention in mathematics is to strictly exclude
humans and human emotions from what one writes down. On the

other hand, when on occasion someone violates that convention,
and their mathematical writing includes something human or even
humanly emotional, it often turns out to be very popular and
successful!

UP: But that is exactly my point. We may leave that topic. Your
initial book with Davis was a great success as we have already
confirmed. Do you think that this one will be as well?

RH: It’s impossible to predict commercial success when it comes to
books. If it wasn’t, publishing would be so much easier. I could tell
you a secret, provided you don’t tell anyone, or include it in this
interview…

UP: …but if I do not include any names?…

RH: …that might be fine. Anyway, a certain writer published popu-
lar columns in a well-known newspaper. When he collected them
in a book it was expected to sell very well, but it didn’t. As to
our latest book, we have participated in a couple of book-signing
events here in New Mexico. They were reasonably successful, but
we both are known locally. I doubt that we would have such suc-
cess on a national scale. However, I am trying to enhance the
publicity of the book by enlisting U-Tube. If I could get a video on
the book propagating on the Web, that would do wonders for
its sales.

UP: So you are concerned about the sales of your book?

RH: Don’t be so haughty. Just wait until you publish a book. I bet
you will find the matter of its sales of utmost importance. Your
books are like your children, you wish them every success…

UP: …and your only ticket to immortality?

RH: Speak for yourself. The key is to get a very good video. I had
been thinking of using animation, but when it’s done by profes-
sionals it gets very expensive.¹

UP: In ‘loving and hating’ and also in many of your articles you
bring up racism in general and anti-Semitism in particular. Is being
Jewish very important to you?

RH: Yes and No. I’d like to say No, but there’s no getting away
from recent history. My memoir on Jews in U.S. mathematics has
been chosen for Princeton’s next anthology of the best recent
articles on math. As I told you, my teen-age ambition was to

¹ In the original version there was a longer digression on this projected
video, but as naught come of it, he asked me to delete it as being
irrelevant, when I asked for his permission to publish the interview.
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fight Hitler. I’m not a Zionist, but my father was. He sent me to
Zionist summer camps when I was a child, in order to learn Yiddish,
among other things. I resisted his pressure, and learned very little
Yiddish. I am very strongly opposed to Israel’s policies toward the
Palestinians. I have been included on lists of so-called self-hating
Jews. Concerning religious participation, I feel most at home with
Quakers. They try to change the world in a modest and humble
way. I very much sympathize with that, even if I often despair. You
can’t always despair. Sometimes you have to force yourself to be
optimistic, to feel that you can make a difference in the world.

UP: As to the notion of races in general and Jewishness in particular,
is that not mere social constructs. When it comes to races one can
at least try and base it on some objective criteria such as DNA. But
that does not work for deciding who is a Jew or not.

RH: Social constructs can have nasty consequences.

UP: I also think that concomitant with the kind of xenophobia
we associate with racism there is also a sentimental fascination
for exotic elements among your ancestors. Both tendencies can
probably be found in many individuals, testifying to the intrinsic in-
consistencies in our desires. I myself harbor some hopes that I may
have Lappish blood (or more precisely mitochondria). Likewise to
follow the historical flow of ancient populations, as reflected in
present day DNA or cultural traits is a fascinating exercise, although
it has by some been attacked as racism. Then humans are as a spe-
cies remarkably genetically uniform, supposedly as a consequence
of a fairly recent bottle-neck which almost wiped us out. It is note-
worthy that any child can learn to speak the prevalent tongue
without accent regardless of race…

RH: That was another mouthful. What are you really up to? I
thought you were trying to bring up anti-Semitism.

UP: By all means. I am thinking of George Birkhoff. Hewas notorious
was he not?

RH: Not to be unfair, but he was a real bastard.

UP: But he was not alone in the States at the time. Anti-Semitism, if
in a relatively milder form was rampant, just as assumptions about
the inferiority of the blacks.

RH: That’s right, he wasn’t alone. Some people were anti-Semitic,
some were not. James Alexander, the topologist at Princeton, used
his upper-class connections to force the Princeton administration
to hire Solomon Lefschetz as a professor of mathematics. Unique in
1923, a Jewish professor in such an Ivy League college. At Columbia,
Cassius Jackson Keyser was instrumental in hiring their first Jewish
math professor, Edward Kasner. Their example shows that there

was a choice whether to be anti-Semitic or not. Of course, Birkhoff
had a theory. He explained that Jews mature earlier, and hence
gentiles should be protected against them.

UP: It was a kind of affirmative action.

RH: Thank you for another amusing comment. James reports a con-
versation between Birkhoff and an officer of the Rockefeller Found-
ation, who noted afterwards, ‘B. speaks long and earnestly con-
cerning the Jewish question and the importation of Jewish scholars.
He has no theoretical prejudice against the race and on the con-
trary every wish to be absolutely fair and sympathetic. He does
however think that we must be more realistic than we are at
present concerning the dangers in the situation and he is privately
and entirely confidentially more or less sympathetic with the dif-
ficulties of Germany. He does not approve of their methods, but
he is inclined to agree that the results were necessary. No doubt
he didn’t know that within a few years the results would be the
murder of millions of men, women and children, including nearly
three dozen of my own cousins. Here’s a funny story about Birk-
hoff that is certified by someone I know who knows someone who
was there when it happened. Birkhoff actually was trying to get
Rochester to hire a Jewish refugee mathematician. They refused.
He replied in anger, Who do you think you are, Harvard? You get
the joke?

UP: Not really.

RH: For a second-rate university like Rochester, it was pretentious
to be anti-Semitic. For an elite institution like Harvard, it was only
natural.

UP: It would have been different if he had been Jewish. Then he
would have been classified as self-hating and been forgiven as an
eccentric.

RH: What on earth are you talking about? Forgiven by who? Are
you serious, or just baiting me? But I gladly admit that Birkhoff’s
anti-Semitism was nowhere near as bad as Hitler’s.

UP: If he had been exposed to the Nazi variant hemay have changed
his views, as many moderate anti-Semitics did after the war. No
one has done as much as Hitler as to discredit anti-Semitism. But
at what a price!

RH: Yes, we must thank Dear Adolf for that. Birkhoff lived until
1944. So, to be fair, by then he may no longer have been inclined
to agree that the results were necessary. For all we know, he might
have voted against the Holocaust. When Ralph Phillips wrote about
Birkhoff’s active malignant influence, Saunders Mac Lane, who
collaborated with Birkhoff’s son Garrett, was sufficiently irritated

34 EMS MAGAZINE 121 (2021)



to write an article in defense of Birkhoff. No surprise – his defense
was, It’s not fair to single him out, everybody was like that in those
days. But then, to be fair, maybe MacLane never heard of Keyser
or Alexander.

MacLane studied in Göttingen during the 30’s. He later repor-
ted that he had experienced nothing untoward. It would be honest
to write and report that at the time you didn’t notice anything
wrong, now you know that you were badly mistaken, blind to what
was going on. I could respect that. But to still pretend after all
those years that nothing was really bad, because you didn’t notice
it, that’s bizarre, to put it politely.

UP: In retrospect, for obvious reason, we tend to emphasize the anti-
Semitic elements in early Nazi propaganda. I do not believe, pace
Goldhagen, that this was what attracted people to Nazism at the
time. Anti-Communism I think was a far more serious factor. I guess
that the anti-Semitic rhetoric was more of an embarrassment.

RH: So let’s not be angry at those early Nazi-supporting voters,
they may really just have been premature anti-communists. Well,
to be fair, they got what they wanted, and a little bit more. War
against Russia, yes! And the battle of Stalingrad! Destruction of the
Reichswehr! Suicide of Adolf Hitler! A communist dictatorship over
half of die Heimat! And the murder of my grandparents, whom
I never met. Murdered, wantonly and openly, in Vinnitsa, Ukraine,
in 1945. If it’s not unfair or off-subject to say so.

UP: People cast their votes for all kinds of silly reasons. I would not
be surprised that Hitler got votes because he was a vegetarian. Yes
supporters, whatever their motivations, obviously have a moral
responsibility and there is all the reason to be angry at them. (Angry
by the way is a mild word, it holds out the possibility of forgiveness,
you may want a stronger.) Yet if you are searching for psychological
explanations, it is fully legitimate to look beyond the obvious ones
such as anti-Semitism.

RH: Did you know that Nevanlinna was a Nazi?

UP: Osmo Pekonen at Math Intelligencer told me.

RH: Yes, Pekonen wrote about it. That was instructive, and some-
what courageous of him. Nevanlinna was not only a Nazi, he was
a Nazi who made up a story claiming he had saved a Jew! You
know the story about André Weil visiting Finland, being accused
of being a spy, about to be executed, when Nevanlinna saved him?

UP: Yes, I do. I recall being told about it by Ahlfors wife, long before
it appeared in print. What about it?

RH: Not to be unfair, it was a lie. Nevanlinna just made it up after
the war, to make himself look a little better.

UP: He fooled Weil!

RH: He fooled everybody.

UP: Not Pekonen.

RH: He wasn’t even born then.

UP: What is your next project about?

RH: I’m starting to write a biography of my old advisor Peter Lax.
What I really want to do is to write his autobiography. To make his
life and work really come alive. I don’t know whether I’m up to
the challenge. I’ve never done anything like this before.

UP: But you have dreamt of doing it. Come on, you were a budding
writer once. Now rise to the occasion. It must be very exciting. You
can do much more than you think.

RH: Thank you.

UP: And I would advise you to title the book ’The autobiography
of Peter Lax’ and have you as the sole author.

RH: That was already done by Gertrude Stein. She wrote The Auto-
biography of Alice B. Toklas.

UP: Maybe we should stop now. You must be exhausted.

RH: I am not. I could keep on talking for ever.

UP: Potentially or actually?

RH: Actually of course.
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Building virtual bridges everywhere:
A report on the 2020 and 2021 Bridges online conferences

Eve Torrence

The international Bridges Conference is the world’s largest con-
ference on mathematical connections in art, music, architecture,
and culture. Since 1998, Bridges has traveled to North America,
Europe, and Asia, and has attracted participants from over thirty
countries.

In a typical year the Bridges conference is an eclectic mix of events
ranging from traditional academic talks to a mathematical art
exhibition and a fashion show. There are hands-on workshops,
a mathematical poetry reading, a short film festival, theater and
dance presentations, musical events, and a public Family Day of
informal workshops for the local community. Participants include
artists, mathematicians, computer scientists, and curious and cre-
ative people frommany other fields. Academics and non-academics
alike are welcome and comfortable in this rich environment of
collaboration.

The Bridges conferences were born from the Art and Mathe-
matics conferences held annually by mathematician and sculptor
Nat Friedman at the State University in Albany, New York from
1992–1997. Carlo Sequin was one of many attendees who found
the 1997 conference “particularly stimulating and contagious”.
Carlo was inspired to host the 1998 Art and Mathematics confer-
ence at the University of California, Berkeley. Many people were
clearly excited about the possibilities for such meetings, as a total
of six math and art conferences were held in 1998, including the
first Bridges conference organized by Reza Sarhangi. Nat formed
the International Society of the Arts, Mathematics, and Architec-
ture (ISAMA) in 1998 and held the first ISAMA conference in San
Sebastian, Spain in 1999.

With Reza’s endless energy and warm personality, the Bridges
conferences quickly became an annual gathering of people inter-
ested in exploring the rich interdisciplinary links betweenmathemat-
ics and the arts. The annual Bridges Proceedings, which contains
a paper for every talk presented at the conference, became an
important record of mathematics and arts research. In the Preface
to the first Bridges Conference Proceedings Reza wrote, “A major
reason for developing the Bridges Conference and this collection
of papers is our desire to come together from a diverse set of

apparently separated disciplines, to share and recognize abstract
similarities, common patterns, and underlying characteristics”.

While the Bridges Proceedings are an important collection of
work, there are many restrictions that must be imposed on the
papers given that the Proceedings are produced and published
before the conference each year. A desire to allow more time to
develop and refine articles and to publish art and mathematics
research year-round led to the establishment of the Journal of
Mathematics and the Arts (JMA) in 2007. JMA is not a Bridges
publication, but many of the same people who love Bridges have
been instrumental in founding, editing, and writing for JMA.

Reza organized the first five Bridges conferences at his home
universities, Southwestern College in Winfield, Kansas (1998–2001)
and Towson University in Maryland (2002). In 2003 Bridges be-
came an international gathering when the meeting was held jointly
with ISAMA at the University of Granada in Spain. After one more
meeting in Winfield in 2004 the growing popularity of Bridges
led to invitations to hold the conference at institutions across the
globe. The 2005 meeting in Banff, Canada was followed by meet-
ings in England, Spain, the Netherlands, Hungary, Portugal, Korea,
Finland, Sweden, and Austria, with periodic meetings in North
America scattered in between.

The 2020 conference was scheduled to be held at Aalto Uni-
versity in Helsinki and Espoo, Finland. The pandemic forced a can-
cellation of the in-person conference and a virtual version of the
conference was quickly developed. Authors were encouraged, but
not required to submit short videos or links to websites on their
papers. The poetry reading was also assembled from contributed
videos. Discussions were possible in the comments for each author’s
page, but this exchange was a poor substitute for in-person interac-
tions. The 2020 conference website, with links to all these resources
is permanently available at https://2020.bridgesmathart.org.

The Bridges conference Proceedings from every year are avail-
able for free at http://archive.bridgesmathart.org. The 2020 Pro-
ceedings contains papers relating mathematical topics such as
topology, geometry, knot theory, combinatorics, and algebra to
a huge variety of art forms, from fiber arts to poetry. Scrolling
through the Proceeding one can find a wealth of exciting ideas
to explore. From papers on experiencing geometric spaces such
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as Non-Euclidean Billiards in VR, by Jeff Weeks, and Dancing the
Quaternions, by Karl Schaffer, to fiber arts like Folding Fabric: Fash-
ion from Origami, by Uyen Nguyen, and Knotty Knits are Tangles in
Tori, by Shashank GMarkande and Elisabetta Matsumoto. Topology
is explored in papers such as Topological Classification of Vittorio
Giorgini’s Sculptures, by Daniela Giorgi, Marco Del Francia, Mas-
simo Ferri, and Paolo Cignoni, and Maximizing the Symmetry of
Knots, by Peter Alexander Generao and Carlo H. Séquin. It is easy to
spend hours roaming these enticing papers. You may find a paper
likeWallpaper Patterns from Nonplanar Chain Mail, by Frank Farris
or Hilbert’s Portrait via his Space-Filling Curve, by Judy Holdener, is
the perfect way to introduce your students to these topics.

As in other years, the pieces from the Exhibition of Mathe-
matical Art are available at gallery.bridgesmathart.org/exhibitions.
A beautiful color glossy catalog of the art exhibition is also pub-
lished annually. But nothing can substitute for the experience of
wandering the gallery and experiencing these eclectic displays in
person. We also greatly missed the rich exchange of ideas possible
when talking to each artist about their work.

A wide variety of artistic media were represented in the 2020
exhibition, including drawing, painting, beadwork, weaving, ceram-
ics, woodwork, stained glass, metalwork, quilting, paper cutting
and folding, and 2D and 3D digital prints. Artists drew inspiration
from the mathematics of fractals, polyhedra, non-Euclidean and
four-dimensional geometry, tiling, knot theory, number theory, and
more. The incredible range of materials, techniques, and concepts
is a visible display of the breadth and depth of mathematics and
its applications. Professional artists exhibit their work alongside
mathematicians and others with less formal artistic training. There
is also some outstanding work by students. The result is a fascinat-

ing display that can be enjoyed by people with a huge variety of
knowledge of art and mathematics.

A small example of the variety of media, techniques, and math-
ematics from the 2020 exhibition can be seen in the images in
Figure 2. Ulrich Mikloweit is an artist who makes gorgeous poly-
hedra based paper sculptures cut and assembled entirely by hand.
His 2020 contribution was a portrayal of the three stellations of
the dodecahedron. Kerry Mitchell is a digital artist who uses his
sophisticated knowledge of mathematics to produce beautiful de-
signs. Judy Holdner is a mathematician who works in many media.
Her 2020 contribution was a portrait of Hilbert using a 3D printed
Hilbert curve. Of course, it wouldn’t be 2020 without at least one
abstract sculpture of a virus. Kacper Dobras and Briony Thomas
created this colorful rendition of a polio virus.

Videos from the annual Bridges Short Film Festival are also
posted at gallery.bridgesmathart.org/exhibitions. The creative di-
versity of the eight 2020 contributions is impressive. For example,
Spatial Variants of a Propeller, by the Kocaeli Team, shows the
filmmakers’ inspiration for and development of a kinetic sculpture
based on an iconic propeller displayed in Kocaeli, Turkey. George
Hart’s Warped-Grid Jigsaw Puzzles shows how to design complex
puzzles using algorithms and transformations. The results are stun-
ning works of art that can be assembled over and over. The Arts
of the Finite Topology Conjecture, by Katrin Leschke, Chloe Ali-
gianni, Lee Boyd Allatson, Jenny Hibberd, and Andrew Johnston,
explores a collaboration between a mathematician, two musicians
and a dancer and their interpretations of this conjecture. It is just
a taste of what was clearly an exciting and rich experiment and is
a great example for mathematicians and artists interested in such
partnerships.

 
Figure 1. Bridges participants on the polyhedral climbing structure in the Mathematical Garden of the Tekniska Museet
in Stockholm, Sweden (Equirectangular projection of spherical photograph by Henry Segerman)

EMS MAGAZINE 121 (2021) 37



    

Figure 2. (a) Four Dodecahedra, by Ulrich Mikloweit, Freelance Artist, Germany. (b) Truchet Bugaloo, by Kerry Mitchell, Artist, USA. (c) Hilbert,
Judy Holdener, Professor of Mathematics, Kenyon College, USA. (d) PolioMechanics 1.0, by Kacper Dobras, Research Assistant, and Briony Thomas,
Lecturer in Design Science, School of Mechanical Engineering, University of Leeds, UK

The annual BridgesMathematical Poetry reading is organized by
Sarah Glaz. In 2020 this popular event was enacted via a collection
of videos of poets reading their work and can be accessed through
the 2020 virtual conference page https://2020.bridgesmathart.org
under the Poetry Reading heading. The written versions of the
poems can be found in the printed Bridges 2020 Poetry Anthology.
Links to how to purchase this anthology and the three previous
volumes are listed on the Poetry Reading page. The poems have
multi-dimensional connections to mathematics and a wide range
of styles, from traditional to lyrical and visual interpretations of
this medium. 2020 titles include I Forgot the Turnkey to the Void
by Carol Dorf, The Mathematician’s December, by Sarah Glaz,
AMother’sMath is Never Done, by Gizem Karaali,How Taylor Series
can Resonate on a First Date by Lisa Lajeunesse, and Singularity
by Mike Naylor. Mathematical Poetry is the perfect way to soothe
and inspire a world in the midst of a pandemic.

Among the few live events held over Zoom for Bridges 2020
were four 90-minute workshops. Free registration was required
to obtain the Zoom code and over 200 people from around the
world signed up. Many first-time attendees were excited to be
able to participate in a Bridges workshop without the expense
of travel. Stephen Erfle and Katherine Erfle showed how to use
Excel to explore a rich collection of symmetric patterns in Exploring
Symmetry using Aestheometry in Classrooms and Beyond. This
workshop would be a wonderful way to inspire students to ex-
plore the relationships between geometry, algebra, and simple
number theory. In A Two-Dimensional Introduction to Sashiko, by
Carol Hayes and Katherine Seaton, participants learned the his-
tory of this traditional Japanese needlework and the underlying
mathematics as well has how to design and construct these pieces.
Participants could experiment with needle and thread or pencil and
paper. In António Araújo’s workshop, Dürer Machines Running
Back and Forth, he introduced his method for drawing anamorphic
images. Attendees cheerfully shared photos of their drawings taken
from the exact viewpoint that displays the perspective illusion. All

the workshops generated wonderful discussions and were much
needed opportunities for social interaction among Bridges friends
new and old.

A few, less formal live events were also organized. These were
listed under Social Events and Informal Gatherings and included
a short meeting to exchange ideas about math and dance and
a social hour. The last Social Event was an online version of In-
formal Music night, a campy mix of singing, dancing, and other
performances by Bridges participants. In recent years the final
act has been a conference song written and performed by Doug
Norton. A video of Doug singing this year’s rendition can be seen
at http://2020.bridgesmathart.org/ under the heading “Wrap Up”.
The lyrics, sung to the tune “Rudolph the Red Nosed Reindeer,”
give a sense of the fun and creative environment of a Bridges
conference:

We’ve had Bridges Linz, Waterloo, Banff, and Alhambra,
Towson, Jyväskylä, London, and Coimbra.
But what will Fate decree for bizarro year twenty-twenty?
Welcome to Bridges Nowhere! There’s no need to rent a room.
No need to book that airfare: sign up for your space in Zoom.

They’ve wrapped up the Proceedings
(though we didn’t quite proceed):

Lots of great math/art reading; entertainment guaranteed!
Knotty knits and trefoil knots, steganography,
Virtual reality, fractal cohomology,
Fashion-fold origami, labyrinths and spiroplots,
Lampshade Miura-ori, Morton’s tritangentless knots.

Orbifolds and gyrations, tiles dendritic and Truchet,
Girih and pied-de-poule ones, hyperbolic plane crochet.

Coptic bananas, heptagons,
perhaps the plaintive numbers flow;
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Hallå STEAM, platonicons, derivision, sgraffito.
Aalto, Espoo, Helsinki, Otaniemi.
Plans wrecked by COVID-19;

Unforeseen, quarantine, more hygiene, please, vaccine!
Very keen to reconvene, back on routine,

Back to the live math-art scene:

Beauty beyond perfection, augmented reality,
Math and art intersection, unveiling infinity!

The paradox of this pandemic is that we’ve learned how important
face-to-face interaction is for learning and the exchange of ideas,
yet we have been able to achieve surprisingly successful events
online. The creative growth that this pandemic forced has led to
many innovations.

For Bridges 2021 we are planning a greatly expanded virtual
conference. There will be many more live events, including paper
presentations, social events, a Mathematical Art Exhibition open-
ing, workshops, and of course, Informal Music night. We will be
using virtual spaces to host interactive events and to allow for
more personal exchanges. For example, we will try to approximate
the experience of the art exhibition with a virtual exhibition that
participants can “walk through” and talk to the artists. Time will
be scheduled for participants to discuss papers and ask questions
of authors.

We anticipate a large international gathering. This is a wonder-
ful chance for people to experience the Bridges conference from
home and to increase awareness of the exciting current research in
the growing field of mathematics and the arts. Information about
how to register and attend is available at bridgesmathart.org.

It is with great hope that we plan to finally host Bridges Aalto
in person in 2022. But for 2021, we hope to see you virtually!

Eve Torrence is a professor of mathematics at Randolph-Macon College
in Virginia, USA and a member of the Bridges Organization Board of
Directors. She is the author of Cut and Assemble Icosahedra: Twelve
Models in White and Color (Dover). Eve co-edited the 2016 and 2018
Bridges Conference Proceedings with her partner, Bruce Torrence. Other
Torrence and Torrence collaborations include The Student’s Introduction
to Mathematica and the Wolfram Language (Cambridge), Mathematics
Awareness Month 2014, and the raising of two wonderful children.
Eve enjoys designing mathematical sculpture and incorporating the arts
into teaching mathematics.

etorrenc@rmc.edu

 
Figure 3. An audience enjoys the outdoor debut of “Witches of Agnesi” at the 2018 Bridges conference (Photo by Bruce Torrence)
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Institute of Mathematics of the Czech Academy of Sciences

Jiří Rákosník and Miroslav Rozložník

The Institute of Mathematics of the Czech
Academy of Sciences, located in the very
centre of Prague with a small group of re-
searchers working in Brno, is the leading
research institution in mathematics in the
Czech Republic. The mission of the Institute
is to foster fundamental research in mathem-

atics and its applications and to provide the necessary infrastructure.
In cooperation with universities, the Institute carries out doctoral
study programmes and provides training for young scientists.

The Institute was established in 1947 as the Institute for Math-
ematics of the Czech Academy of Sciences and Arts (Česká akade-
mie věd a umění). The initiator and the first director was Eduard
Čech. In 1953, the Institute was reorganized and incorporated
into the newly established Czechoslovak Academy of Sciences. In
1993, when Czechoslovakia split, the Institute became a part of
the newly established Czech Academy of Sciences. In 2007, the
Institute, together with 53 other institutes of the Czech Academy
of Sciences, was transformed into a public research institution. This
status provides much broader autonomy, especially in research and
personnel policy, but still under public control as the vast major-
ity of funds come from public sources. Institutional funding forms
about 60% of the resources and is provided by the Czech Academy
of Sciences based on regular evaluation of research quality. About
35% of the revenue is earned through competitions for grant pro-
jects, and 5% results from economic activities related mainly to
the publication of research journals.

The Institute currently employs around 90 researchers. Al-
most half of them are foreigners, with more than 20 nationalities.
Postdoctoral fellows and PhD students represent more than 25%
of the research staff. All researchers are hired in open competitions
for 2–5 year contracts with the possibility of further extension
based on a successful personal evaluation. Unfortunately, getting
good PhD students is complicated by the legislation that allows
the Institute to be involved in their education only in conjunction
with a university. This means that a number of students are coming
from abroad. The infrastructure is supported by 20 staff members
who provide the services of the library, IT, project support, editorial
office, administration and management.

Research

The research strategy of the Institute is based on bottom-up activit-
ies that are supported, encouraged and guided by the management
in close cooperation with the Board of the Institute. The Interna-
tional Advisory Board is asked for advice on important decisions.

The fields of research include those connected with the best
tradition of Czech mathematics as well as newly developed areas.
The traditional fields are inherently connected with the founding
members and strong personalities of the Institute such as Eduard
Čech (Stone–Čech compactification in topology, Čech cohomology,
Čech closure operator), Jaroslav Kurzweil (Henstock–Kurzweil integ-
ral, stability theory for ordinary differential equations), Ivo Babuška
(theory of finite element method, Ladyzhenskaya–Babuška–Brezzi
condition), Jindřich Nečas (regularity of generalized solutions of
elliptic equation, theory of elasto-plastic bodies in continuummech-
anics), Miroslav Fiedler (Fiedler algebraic connectivity in graph the-
ory, Fiedler vector in linear algebra and matrix theory), and Vlastimil
Pták (Pták topological vector spaces, Pták subtraction theorem and
the notion of the critical exponent of iterative processes).

Following the high standards set by these distinguished per-
sonalities, research teams have been cultivating the traditional and
strong mathematical disciplines while also opening new research
directions. Current research focuses on mathematical analysis (dif-
ferential equations, numerical analysis, functional analysis, theory
of function spaces), mathematical logic and logical foundations
of computer science, complexity theory, combinatorics, set theory,
numerical linear algebra, general and algebraic topology, category
theory, optimization and control theory, algebraic and differential
geometry and mathematical physics.

The research at the Institute is organized in five departments
that are described in the following paragraphs.

Abstract Analysis
Originally called Department of Topology and Functional Analysis,
this department represents a continuation of one of the tradition-
ally strong research directions in the Institute. Under the leadership
of Wieslaw Kubiś, the team recently reassessed their research focus.
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The emphasis has shifted from the traditional topics of the theory of
Banach spaces, operator theory, classical topology and functional
analysis to those areas where mathematical logic plays a signific-
ant role, even though it is not the main object of study, namely
descriptive set theory, algebraic topology, category theory, and the
theory of C*-algebras. For this reason, the department has been
renamed Abstract Analysis.

Several team members are currently involved in the prestigious
EXPRO project of excellence funded in 2020–2024 by the Czech
Science Foundation and lead by Wieslaw Kubiś. The project aims
to explore and classify generic mathematical objects appearing in
the above-mentioned areas of abstract analysis.

Algebra, Geometry and Mathematical Physics
Formed in 2014 on a bottom-up initiative of several members
of other teams, this department steadily grows and continuously
proves to be one of the most successful within the Institute. They
investigate algebraic and differential geometry and closely related
areas of mathematical physics. Their research focuses on mathem-
atical aspects of modern theoretical physics, mathematical models
aiming at understanding the nature of matter, fields, and spacetime.
Research topics include representation theory and its applications
to algebraic geometry, homological algebra, algebraic topology,
applied category theory, tensor classification, mathematical aspects
of string field theory, generalized theory of gravitation, and study
of Einstein equations.

The team achieved excellent results in the theory of gravity, ana-
lytical solutions of Einstein equations, and modified theories of grav-
ity. Using their conformal-to-Kundt method, Vojtěch Pravda and
Alena Pravdová with their colleagues from the Charles University
identified and studied several classes of new static spherically sym-
metric vacuum solutions of the field equations of modified gravity,
including a new non-Schwarzschild black hole. This discovery attrac-
ted widespread attention and was even reported in the media. Mar-
tin Markl and his collaborators achieved the ultimate result on loop
homotopy algebras in closed string field theory and constructed
the disconnected rational homotopy theory. In 2018, he received
the Praemium Academiae award of the Czech Academy of Sciences,
connected with generous funding that allowed him to hire several
talented postdocs and establish his own ambitious research group.

Evolution Differential Equations
The research of this department focuses on theoretical analysis of
complex multi-field evolution processes in physics, in particular con-
tinuum mechanics and thermodynamics. Special attention is paid
to the description of interacting phenomena of different physical
natures, such as biological systems, stratified or viscoelastic fluids,
contact mechanics between fluids and solids or between rigid,
elastic, or elastoplastic solids, fluid diffusion in deformable porous

media, electric and magnetic effects in moving solids and fluids,
magnetohydrodynamics, liquid crystals, hysteresis, thermal effects
and radiation, or temperature-induced phase transitions in a large
parameter range. The systems under consideration are based on
physical laws of conservation of mass, momentum, energy, bal-
ance of entropy, including also energy exchange principles between
mechanical, thermal, and electromagnetic energy in multifunctional
materials.

Eduard Feireisl, the principal investigator of the ERC Advanced Grant
MATHEF (Mathematical Thermodynamics of Fluids), 2013–2018.

An outstanding achievement was the ERC Advanced Grant
MATHEF (Mathematical Thermodynamics of Fluids) awarded to
Eduard Feireisl in 2013–2018. He and his collaborators built a com-
plete mathematical theory describing the motion of compressible
viscous heat-conducting fluids, including aspects of stochastic for-
cing and construction of convergent numerical schemes. The novel
and original approach to the interpretation of the principles of con-
tinuum thermodynamics in modelling heat-conducting fluid flow
turned out to be a rich source of results for the general theory, as
for example, the concept of dissipative measure-valued solutions.
Further essential results concerned well-posedness, regularity and
stability of the Euler system and similar partial differential equations,
including the construction of a stable finite volume scheme and
proof of its convergence via dissipative measure-valued solutions.

The team members are involved in the Nečas Center for Math-
ematical Modeling, a research platform established by the Institute,
the Charles University and the Institute of Computer Science of the
Czech Academy of Sciences with the ambition of coordinating and
supporting research and education activities in the theoretical and
applied mathematics, particularly in the field of continuum mechan-
ics. They are also active in the network for industrial mathematics
EU-MATHS-IN.CZ (part of the European network EU-MATHS-IN).

Mathematical Logic and Theoretical Computer Science
The research programme of this department concerns mathemat-
ical problems arising from theoretical computer science, logic, set
theory, finite combinatorics, and control theory. The main topics
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Tomáš Vejchodský, Director of the Institute, in the promotional video presenting the cooperation with the
company Doosan-Bobcat EMEA, youtube.com/watch?v=_I2KN-z_fo4.

studied by its members include proof and computational complex-
ity, logical foundations of arithmetic, quantum information theory,
graph theory, and set theory. The problems studied have found-
ational importance in themselves, and potentially also practical
applications, for example in data security.

In the area of the logical foundations of mathematics, the
team is one of the world’s leading centres of research in bounded
arithmetic and proof complexity. Computational complexity is a dis-
cipline with a short history that has only recently been recognized
as an important field not only in computer science but also in math-
ematics. It is also due to the fact that fundamental questions in this
domain (e.g. the famous “P versus NP” problem) belong to the set
of mathematical problems which resist being solved for decades.
Pavel Pudlák’s group attacks these problems using methods of
mathematical logic. He believes that the reason why we cannot
answer these questions is fundamental in nature, and therefore
their logical aspects should be studied. The research domain in
which he and his colleagues work and have already reached im-
portant results is called proof complexity. While computational

Pavel Pudlák, the principal investigator of the ERC Advanced Grant
FEALORA (Feasibility, Logic and Randomness in Computational
Complexity) in 2014–2018.

complexity deals with how difficult it is to compute something,
proof complexity asks how difficult it is to prove it.

Numerical Analysis
Following a decades-long tradition, this department investigates
both theoretical and practical aspects of computational science,
mainly numerical methods for partial differential equations and
numerical linear algebra, whereas classical and strong areas have
been complemented with new research topics. Its members focus
on questions of convergence, efficiency, and reliability of numer-
ical methods for partial differential equations, including matrix
computations and high-performance implementations on parallel
computer architectures. Members of the team led by Michal Křížek
are experts in the finite element method, saddle-point systems,
preconditioning, domain decomposition methods, rounding error
analysis, high-performance computing and computational fluid
dynamics.

The team is involved in the Nečas Center for Mathematical
Modeling and in the network for industrial mathematics EU-MATHS-
IN.CZ. It has succeeded in competitions for the CPU time at large
European computers and cooperates with the IT4Innovations Na-
tional Supercomputing Center of the Technical University in Ostrava.

Members of the five above-mentioned departments organize a
dozen regular seminars and about the same number of interna-
tional workshops and conferences. Around 150 foreign researchers
visit the Institute every year. In 2016, the Institute established
Eduard Čech Distinguished Visitor Programme with the aim of sig-
nificantly enhancing its creative environment by attracting highly
distinguished mathematicians for a longer period of time. One
visitor is selected every year to deliver a series of lectures and
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to essentially develop scientific collaboration with researchers in
the Institute. The visitor is also expected to deliver the prestigious
Eduard Čech Lecture for the general mathematical community.

Other activities and service to the community

Although the emphasis is on fundamental research, attention is
also paid to connections with applications. The Institute is involved
in the Strategy AV21 programme “Hopes and Risks of the Digital
Era” run by the Czech Academy of Sciences. The role of the Institute
is to develop mathematical models for engineering applications.
The Institute cooperates on a long-term basis with the Innova-
tion Centre of the company Doosan Bobcat EMEA, the renowned
producer of compact loaders and excavators.

The Institute publishes three mathematical journals. The Czecho-
slovak Mathematical Journal and Mathematica Bohemica are con-
tinuations of Časopis pro pěstování mathematiky a fysiky (Journal
for Cultivation of Mathematics and Physics) established in 1872.
The aim of these two journals is to publish original research pa-
pers of high scientific quality in all fields of mathematics. The third
journal, Applications of Mathematics, specializes in mathematical
papers directed at applications in various branches of science.

The Institute also provides several services for the wide math-
ematical community and public. Its library, with almost 100,000
volumes including 35,000 monographs and 1,300 journal titles, is
the largest public mathematical library in the country. Since 1996,
the Prague editorial Group cooperates with zbMATH to produce
metadata and reviews of mathematical publications. Since 2009,
the Institute has been developing the Czech Digital Mathematics
Library (DML-CZ, https://dml.cz) with the aim of digitizing, organiz-
ing and archiving the relevant mathematical literature published
throughout history in the Czech lands, and providing free access
to metadata and full texts. DML-CZ currently includes 17 journal
titles, proceedings of 8 conference series, and about 300 books.
The Institute is a member of the international consortium that
has developed the European Digital Mathematics Library (EuDML,
https://eudml.org).

Students during the Open House Days and the exhibition of Imaginary
posters demonstrating the beauty of mathematical surfaces.

Close attention is paid to the popularization of mathematics.
Public lectures in the annual Open House Days used to be attended
by more than a thousand visitors, mostly high-school students.
The restrictions connected with the Covid-19 pandemic inspired us
to create a webpage for students and the general public present-
ing various mathematical problems, popular lectures and other
interesting materials like posters celebrating the laureates of the
Abel Prize.

Posters presenting the winners of the Abel Prize.

The well-being of the Institute employees and their work-life
balance is supported in various ways. There is a tradition of cultiv-
ating a friendly atmosphere and an effort to approach and comply
with individual needs of employees. The main objective of the
currently running project “Institute of Mathematics CAS goes for
HR Award – implementation of the professional HR management”
is to improve the stimulating and attractive work environment in
the Institute and to apply for the HR Excellence in Research Award
(known as the HR Award) granted by the European Commission.

To learn more about the Institute, please visit the webpage
www.math.cas.cz.
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A group photo of members of the Institute at the annual bike trip,
July 30, 2020.

Jiří Rákosník obtained his CSc (PhD equivalent) in 1980 at the Charles
University in Prague. Since then, he has been working in the Institute
of Mathematics of the Czech Academy of Sciences, in the position of
the director in 2014–2019. His research interests focus on the theory
of function spaces. For 25 years, he has been active in the digitization
of mathematical literature, in close cooperation with zbMATH, and in
building the Czech Digital Mathematics Library and the European Digital
Mathematics Library. He serves as the current Secretary of the EMS.

rakosnik@math.cas.cz

Miroslav Rozložník graduated in Mathematics in 1992 and obtained
his PhD in Applied Mathematics in 1997 at the Faculty of Nuclear
Sciences and Physical Engineering of the Czech Technical University
in Prague. In 1998–2000, he worked on a postdoctoral fellow position
at the Swiss Federal Institute of Technology (ETH) in Zürich. He is the
author or co-author of one book and more than 40 journal publications.
His research interests include numerical linear algebra, saddle point
problems, parallel computing and rounding error analysis. From 2001
he was a research fellow at the Institute of Computer Science of the
Czech Academy of Sciences until 2017, when he moved to the Institute
of Mathematics, where he currently serves as the deputy director.
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The International Association of Applied Mathematics and Mechanics

Jörg Schröder

The Society of Applied Mathematics and
Mechanics (GAMM, “Gesellschaft für An-
gewandte Mathematik und Mechanik”)
has its roots in the joint meetings of the
German Mathematical Society, the Ger-
man Physical Society, and the German

Society for Technical Physics. It was founded in 1922 by Ludwig
Prandtl and Richard von Mises. Following the motivation of the
founding fathers, our scientific organization encourages the inter-
national cooperation of applied mathematics with all subfields of
mechanics and physics, which are among the foundations of engin-
eering sciences. Thus, GAMM promotes the scientific development
of applied mathematics and mechanics and has been able to con-
tribute significantly to progress in hydro- and aerodynamics, solid
mechanics, numerical mathematics and mathematics for industrial
applications. The society has an international orientation and today
comprises about 1400 members.

The foundation of GAMM is closely related to the foundation of
the Journal of Applied Mathematics and Mechanics (ZAMM, “Zeit-
schrift für Angewandte Mathematik und Mechanik”) by Richard

Left: Richard von Mises (April 19, 1883 – July 14, 1953).
Right: Ludwig Prandtl (February 4, 1875 –August 15, 1953).

von Mises in 1921. Motivated by the economic situation after the
First World War, engineers, among others, displayed a particular re-
sponsibility for the reconstruction of Germany, which is reflected in
the versatile activities of the VDI, the Association of German Engin-
eers. Committees for technical mechanics and physics were formed
in some of the district associations, which devoted themselves to
topics such as the calculus of differences and vector calculus as well
as their applications in engineering, elastic and inelastic deforma-
tions for special constructions, and a logarithmic integration device.
A finding in the meeting of the board of directors of the VDI on
September 19, 1920 stated: “It is astonishing how simple methods
[vector calculus, difference calculus, conformal mappings] can be
used to solve many technical problems (Es ist erstaunlich, auf wie
einfachem Wege […] man viele technische Probleme hierdurch
lösen kann.)” (Z.-VDI 65, 1921, page 54). Although the VDI had
already been publishing research papers in the form of individual
booklets for 19 years, it was of great importance to the Committee
for Mathematics and Mechanics to continuously publish short crit-
ical reports on current topics in addition to sporadically appearing
extensive original papers. The foundation of ZAMM, which began
to appear in 1921, was based on this foundation. The guiding
principle of Richard von Mises is particularly noteworthy here:

To overcome the boundaries between pure mathematics
and the application of mathematical theories, especially in
the engineering sciences.

This policy was and is of great importance for our interdisciplinary
acting scientific community. The 100th anniversary of ZAMM was
taken as an opportunity to produce a series of selected publications
highlighting the developments since the beginning of the journal.
The first article [2] in this series recounts the beginnings of ZAMM.

GAMM regularly initiates annual meetings at different locations
in Germany and nearby European countries. A first meeting, or
rather, an informal gathering with representatives of hydro- and
aeromechanics, took place in Innsbruck in 1922. In 1925, GAMM
held its first scientific meeting in Dresden. There were annual meet-
ings until 1938, which in the following years took place only under
difficult and limited conditions until 1943. After the Second World
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War, GAMM resumed its activities in 1950 with the Darmstadt
meeting. This meeting is of particular importance because a new
foundation of GAMM was not necessary due to the merger of the
societies of the English and American zones. A broad spectrum of
keynote lectures on the disciplines represented in GAMM and the
Ludwig Prandtl Memorial Lecture organized jointly with the Ger-
man Aerospace Society (DGLR, “Deutsche Gesellschaft für Luft- und
Raumfahrt“) since 1957 are complemented at the annual meetings
by mini-symposia on current developments in applied mathematics
and mechanics and further sections with short lectures. The sec-
tions are dedicated to particular fields and offer the opportunity,
especially for younger participants, to introduce themselves and
their work to the scientific community. An outline of the history of
GAMM up to the 1970s can be found in [1].

GAMM establishes GAMM activity groups (“GAMM Fachaus-
schüsse“) on request of its members for current research topics,
aimed at further differentiation and specialization of scientific is-
sues. They were established in the early 1950s and today contribute
significantly to developing important future areas of applied math-
ematics and mechanics. There are currently 17 activity groups,
which largely shape the scientific activities of the society outside
the annual meetings. For this purpose, they organize seminars
and workshops, participate in the organization of large national
and international conferences, and prepare statements on particu-
lar problems from the point of view of the respective committee.
The activity groups are established for a term of 11 years and are
evaluated twice during this period.

Since 1989, GAMM has annually awarded the Richard von
Mises Prize for outstanding scientific achievements in applied math-
ematics and mechanics. The prize promotes young scientists and

includes a certificate, a free two-year membership, and prize money.
Traditionally, this award is presented during the opening session of
the GAMM annual meeting, at which the awardees prominently
present their research results in a keynote lecture.

Thanks to the legacy of Dr. Klaus Körper, the Dr. Klaus Körper
Foundation was established in 2011. It awards four prizes annually
for the best dissertations of the past year in applied mathematics
and mechanics.

An important task of GAMM is to recruit new members and
to support these young scientists in building their careers. The
GAMM Juniors deserve special mention in this context. They have
established themselves as an essential part of our organization. For
example, since 2017, a YAMM (Young Academics Meet Mentors)
Lunch has been organized at our annual meeting. Here, young
academics have the opportunity to ask experienced scientists ques-
tions about career paths and opportunities. Furthermore, in 2021,
the GAMM Juniors organized a pre-GAMM event for the first time
as part of our annual meeting. This event was a great success in
preparing young scientists for the keynote lectures of our 91st
annual meeting.

The GAMM Student Chapters, introduced in 2018, have taken
their first steps and form another important building block for
new impulses to make GAMM attractive and sustainable. Currently,
eight Young Investigator Groups strengthen interdisciplinary col-
laboration and exchange in applied mathematics and mechanics
between master students, Ph.D. students, and scientists. They
organize a variety of activities ranging from barbecue parties to
workshops and excursions.

In addition to the already mentioned ZAMM, the GAMM-Mit-
teilungen with scientific contributions are published quarterly, the
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GAMM-Rundbrief with generally understandable editorials and
socio-political information is published semi-annually, the PAMM
(Proceedings in Applied Mathematics and Mechanics) with contri-
butions of the GAMM annual meetings is published once a year,
and recently also a GAMM student journal has been established.

In my view, today more than ever, the sciences have a respons-
ibility to society as a whole to provide adequate advice to other
institutions through knowledge-based findings. Interdisciplinary
work and a lively exchange with other scientists are a necessity for
these purposes. GAMMmeets this challenge through its continuous
development and the commitment of its status groups.

For further information on GAMM and our activities, please
visit the website www.gamm-ev.de.
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Pop Math: find math everywhere!

Andreas Matt and Roberto Natalini
Raising Public Awareness Committee of the EMS

Communication of Mathematics is growing. Some years ago, com-
munication was done by writing some books, giving a few public
talks and preparing the occasional exhibit, or in rare cases, open-
ing a mathematics museum. Most of these efforts were aimed
at young people, and very few serious academic mathematicians
were interested in taking part in these activities.

Nowadays, outreach activities are essential in every math de-
partment or scientific institution, and even outside the world of
academics one can find dedicated mathematics outreach organiza-
tions or professional math communicators. Promoting math, and
more generally STEM disciplines, is considered not only useful but
crucial for the future development of the field and for the educa-
tional and economic growth of different countries. It has become
something of a fundamental duty for all mathematicians.

Today, apart from an increasing production of books and public
talks, there is a flourishing of new ideas: hands-on museums of
mathematics, interactive exhibitions, theater shows and movies,
web sites and YouTube channels, podcasts, documentaries, graphic
novels, and even activities related to dance and other perform-
ing arts.

As the Raising Public Awareness Committee of the European
Mathematical Society, we have been observing, registering, and
even taking part in this trend for many years, and we have long
been aware of the difficulty in creating a true European or interna-
tional network connecting these initiatives. All too often, similar
initiatives are started in different countries from scratch, there are
few opportunities to share the different experiences, and it is very
difficult to have an overview of what is happening in other regions.
Even a simple database recording all math awareness events across
Europe was missing.

For all these reasons, as a committee, we decided to start a sort
of map/calendar on which all the outreach events in mathematics
in Europe could take their place. It was based on similar ideas of
interactive maps with events used by the international non-profit
organization IMAGINARY and the International Day of Mathemat-
ics. The big difference with our idea is that it is intended to be
a joint effort and an open calendar, so that everybody – without
even the need for a user account – can easily publish and promote
their own mathematics outreach events. And of course, everybody

should be able to use the calendar to locate ongoing and upcoming
events around their own city!

But just as this project was under construction, the world was
hit as we all know by the pandemic, and we had to stop and re-
think how to restructure this map/calendar to take into account
the big changes that were taking place everywhere. Suddenly,
all the face-to-face events that we would have liked to collect,
advertise and archive had disappeared, replaced, maybe temporar-
ily, by dozens of online events on various platforms, often with
participants dispersed in various corners of the world.

It was certainly a dramatic turning point, and even activities
to promote mathematics had to quickly adapt to this new situ-
ation, which in spite of all the negative consequences we faced
also brought surprising new opportunities. In just a few months,
everybody’s habits have changed; now, connecting from Europe
to follow an event in Australia or the United States has become
completely normal. Naturally, our project had to take all this into
account.

Finally, in January 2021 we came out with our new website
dedicated to the collection of outreach events in Europe and the
rest of the world: Pop Math www.popmath.eu

The website displays, on a world map, the announcements of
all mathematics outreach events for a general audience, as well as
academic or professional events concerning mathematics outreach.
The events can be commercial or non-profit, online or in-person,
and have a limited duration. To feed the database, we decided to
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rely on the math community. Everybody who wishes can submit
an event from this page: www.popmath.eu/submit-event

While the main goal is still the creation of a virtual place to
find and share all the events of mathematical outreach in a simple
way, Pop Math is also an archive of everything happening in the
field, since it has the ability to preserve links to all past events; this
is particularly useful for the online events. You will be surprised by
the amount and type of events on Pop Math: from an international
mathematics engagement conference organized in collaboration
between Paris, New York and Berlin to talks in local languages on
numbers, mathematics and climate or artificial intelligence, from
large national math festivals to new traveling exhibitions. And some
events are also physical, or even hybrid, combining the real and
the virtual worlds.

In the future, and with the collaboration of the mathematical
community, we aim to improve our initiative in various directions.
One of the possible new features we hope to implement is the
creation of an applet to embed our map in every (third party) site,
by giving some customization choices to the systems managers to
take into account some regional realities. Another direction would
be to create the first directory of all individuals and groups active in
math outreach, so as to aid and simplify the organization of local
events and to assist people in academic institutions to improve
their communication of math to every type of audience.

We hope everyone will be able to take advantage of, appreciate
and contribute to Pop Math!

Andreas Matt (PhD in Machine Learning 2004, Universities of Innsbruck
and Buenos Aires) is director of IMAGINARY, a non-profit organization
for the communication of current research in mathematics based in
Berlin. He has worked from 2007 until 2016 for the Mathematisches
Forschungsinstitut Oberwolfach and is a member of the Raising Public
Awareness Committee of the European Mathematical Society.

andreas.matt@imaginary.org

Roberto Natalini (PhD in Mathematics 1986, University of Bordeaux,
France) is the director of the Istituto per le Applicazioni del Calcolo
of the National Research Council of Italy since 2014 and his research
is about models in applied mathematics. He is the chair of the Raising
Public Awareness Committee of the European Mathematical Society.

roberto.natalini@cnr.it
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ICMI column

Susanne Prediger

Connecting from far and near – a successful hybrid
ICME conference

ICME, the International Congress onMathematical Education, is like
the Olympics of worldwide mathematics education conferences,
taking place only every four years and gathering more than 3500
participants from all over the world.

Due to the pandemic, ICME 14 in 2020 had to be postponed,
and even in July 2021 it could only take place in a hybrid mode.
Mainly the Chinese colleagues were on site, while the rest of
the world was online. The ICMI EC was grateful that at least our
brave ICMI president, Frederick Leung, took on himself the burden
of a two week quarantine to be able to attend the congress in
Shanghai in person.

The hybrid mode allowed 3988 participants from 129 countries
to participate in the congress, among them about 1100 participants
from China. A program with seven plenary activities, 65 invited lec-
tures, four survey teams and five lectures of ICME awardees offered
substantial input on mathematics education research and math-
ematics education practices. Within the 62 Topic Study Groups,
1817 accepted presentations were provided, which shows the wide
and active participation that shapes this conference.

Although the hybrid mode made informal conversations very
difficult and forced many people to work during strange night
hours, we are grateful for the wonderful organization by the
Chinese local organizing committee and the international program
committee, which led to a very successful conference.

Additionally, the hybrid mode even had some interesting ad-
vantages. More than 1700 participants from underrepresented
countries were able to participate with waived fees, and this was
a fantastic opportunity to include many more researchers from
underrepresented countries than the usual solidarity fund is able
to finance!

My personal highlights of the conference were the following
five, but this is of course completely subjective:
• The fact that country representatives from banned countries
could take part in the assembly of ICMI country representations
for the first time – even if only creative technical VPN solutions
made this important participation possible.

• Cédric Villani’s plenary lecture in which he attracted the listen-
ers’ attention and fascination to the nature of mathematical
research practices for a full hour without relying on any visual-
ization aids like powerpoint. Cédric Villani is an ideal person
for initiating deep and insightful communication between the
fields of mathematics research and mathematics education!

• Early career researchers from all over the world who worked
so hard in our ECRD workshop and asked such substantial
questions.

• Lingyuan Gu’s plenary lecture in which he presented a 45 year-
long research and development project for Mathematics Teach-
ing Reform in Shanghai. It massively helped to understand how
China was able to develop so quickly from a third world country
into one of the most dynamic STEM-led economies. The ambi-
tious mathematics education reform program played a major
role in this, with the sincerity and intensity of collaboration
between teachers, teacher educators and mathematics educa-
tion researchers who connected experimenting and developing
curricula and teacher education in an impressive way.

• The multiple occasions in plenary panels, TSGs and workshops
in which we discussed equity challenges and potentials to
strengthen equity via mathematics education. The diverse voic-
es from all over the world made clear that issues of equity have
a great many different faces, but they are a highly relevant
concern in nearly every country and will continue to challenge
us as a scientific community.

Susanne Prediger is full professor in mathematics education research
at TU Dortmund University and director of the DZLM network at the IPN
Leibniz Institute for Science and Mathematics Education. She is a member
of the ICMI Executive Committee.

prediger@math.uni-dortmund.de
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ERME column

regularly presented by Jason Cooper and Frode Rønning

In this issue, with a contribution by
Laura Black, Anette Bagger, Anna Chronaki, Nina Bohlmann and Sabrina Bobsin Salazar

ERME Thematic Working Groups

The European Society for Research in Mathematics Education
(ERME), holds a biennial conference (CERME), in which research is
presented and discussed in Thematic Working Groups (TWG). We
continue the initiative of introducing the working groups, which
we began in the September 2017 issue, focusing on ways in which
European research in the field of mathematics education may be
interesting or relevant for research mathematicians. Our aim is
to enrich the ERME community with new participants, who may
benefit from hearing about research methods and findings and
contribute to future CERMEs.

Introducing CERME’s Thematic Working Group 10 – Social,
Cultural and Political Aspects of Mathematics Education

Group Leaders: Laura Black, Anette Bagger, Anna Chronaki,
Nina Bohlmann and Sabrina Bobsin Salazar

This working group discusses mathematics and mathematics edu-
cation within the realms of the cultural, the social and the political.
TWG10 builds on the premise that engaging with mathematics is
always more than an encounter between an individual and a math-
ematical object, whether it be in a classroom, a workplace or
a university setting. Instead, it views such encounters as shaped
and produced by wider cultural and societal contexts that are inher-
ently social and political. As such, the group addresses questions
such as:
• How is mathematics valued in society?
• How does mathematics act in society?
• Who is mathematics for?
• What are legitimate sources of reference?
• Who decides what is legitimate?
• What mathematics should be taught and learned in schools
and universities?

• Who decides what mathematics is taught in these contexts?
As an example, in a recent paper [5], Maheux, Proulx, L’Italien-
Bruneau and Lavallée-Lamarche question the traditional view of

seeing “professional mathematics” as the reference by which all
other forms of mathematics are judged. Instead, the authors sug-
gest considering school mathematics as an alternative reference
for what mathematics is.

TWG10 began in 2004 at CERME 3 with a focus on teaching
and learning mathematics in multicultural classrooms. De Abreu,
Grogorió and Boistrup [1] reported that this stemmed from an
interest that was gathering momentum in the mathematics edu-
cation community at the time, due to the increased levels of
migration in European countries, contributing to increased diversity
in classrooms. Consequently, the group has a long-standing interest
in diversity in relation to mathematics from a number of angles:
(1) diversity as expressed in terms of the attributes of people

who engage with mathematics (either professionally or in
classrooms), such as gender, ethnicity, language, socio-eco-
nomic status, social class, (dis)abilities, and so on;

(2) diversity in terms of ways of perceiving the world and giv-
ing structure to it, such as aspirations, worldviews, ideologies,
school systems, and governance structures;

(3) diversity in relation to the variety of sites where doing math-
ematics takes place, such as schools and universities but also
homes, workplaces, after-school organisations, communities;
and finally,

(4) diversity in relation to who is doing the research and who is
being researched, posing methodological issues of an ethical
nature. Clearly this generates a degree of openness in terms
of what counts as mathematics and mathematical thinking,
but it also recognises the need to adopt an inclusive approach
in considering who has the right to do, think, and learn with
mathematics.

Whilst culture is viewed as central to thinking, doing, learning and
teaching mathematics, more recently “the socio-political turn” in
mathematics education has come to the fore [2]. TWG10 adopts
a critical perspective in recognising that mathematics may be used
in ways that reproduce existing power relations in the world as
weapons of capitalism, but crucially, and perhaps more significantly,
the group is also focused on how mathematics can be used to
challenge or disrupt activities, events, and practices that produce
social inequalities. This draws on work in the field of critical math-
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ematics education which has been central to developing teaching
approaches that utilise mathematics in ways that help learners un-
derstand their own struggles against oppression and injustice. See
for instance the work of Gutstein [3,4] and colleagues on teaching
mathematics for social justice in the US.

The work of TWG10 is characterised by a strong openness to
perspectives and methods that are not yet established within the
field of mathematics education, and is interdisciplinary in that it
draws on broader fields in social and political theory, anthropology
and cultural studies. This adds to the agenda outlined above by
identifying innovative and creative ways to understand, critique and
address issues of social inequality in relation to mathematics, and
proposes creative openings and new imageries. The work of the
group also emphasises an ethos of reflexivity, as noted in TWG10’s
group introductory report for CERME 11: “Research in this group
is characterised by an effort to reflect on its own double role in
not only analysing but also shaping the possibilities of seeing and
inventing mathematics education practices” [6]. This all adds up
to a body of work that is both critical and architectural – it both
questions the elite gatekeeping function of mathematics (partic-
ularly in education, but also in wider society) and also highlights
alternative practices and ways of being that position mathematics
as progressive rather than restrictive.
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Book reviews

Entropy and Diversity: The Axiomatic Approach by Tom Leinster

Reviewed by Stefan Forcey

At least since the recording of the Noahic
directive “two of every kind”, humans have
instinctively felt that extinction is loss. Be-
cause the viable forms of DNA-based life
are developed by such arduous processes,
it seems like a profound waste of hard-won
information to let species become extinct.
Furthermore, we know that there are many
dependencies between relatively unrelated
taxa: for instance birds may depend on ber-

ries, or insects, or fish, and humans depend on all the above. Due
to habitat loss, pollution and climate change, the potential for
a catastrophic domino effect appears to be increasingly imminent.
It could be wished that there was not such a clear need for a book
like Tom Leinster’s new book Entropy and Diversity: The Axiomatic
Approach.

However, in times of natural or artificial disaster, we may be
forced into triage situations. With finite resources at our disposal,
we may be compelled to decide which biome or which species
to save, and measurements of biological diversity help make that
decision. Greater diversity means less chance of cascading loss, at
least as a first approximation. Further justifications are found in
the study of drug resistant bacteria, as well as the study of human
gut health, as Dr. Leinster points out in the introduction. Recent
experience demonstrates that sometimes we may even desire to
minimize diversity, as in the example of virus mutations that have
the potential to be worse than their common ancestor.

The thesis of Entropy and Diversity is that by beginning with the
list of properties we wish our diversity measurement to obey, we
can often completely describe the function or family of functions
that will fit those requirements. This is what is called the axiomatic
approach. Showing a tight relationship between structure and
properties allows the author to review a long list of measurements
of diversity (and inversely, entropy) to demonstrate how they are
specializations of general principles. At another level, we see that

both the contribution of a single individual and the diversity of
a community are special cases of a concept of value that is axio-
matically determined. Furthermore, many mathematical invariants
measuring size (such as cardinality, volume, surface area, fractional
dimension, and Euler characteristic) arise from a single concept, of
a general invariant called the magnitude of an enriched category.
It is shown that this magnitude is closely related to maximum
diversity: indeed in some cases they are precisely the same.

Perhaps the most distinctive new contribution here is Leinster’s
work (with C. A. Cobbold) on defining a family of diversity measures
that depends on both the relative abundances of the species in
a population and the pairwise differences between them. The
similarity (or dissimilarity) between two species can be measured
in many different ways: genetic, phylogenetic, or functional. By
defining the value of a species to be its expected similarity (on
average) to a randomly chosen individual from the population, it is
shown that Leinster and Cobbold’s diversity measures are special
cases of an aggregate value function, which also captures the Hill
numbers and the phylogenetic diversity of Chao, Chiu and Jost. Not
only does the new family of diversity measures respect the similarity
matrix (finite metric), and obey the desired properties, it also has
the surprising feature of being simultaneously maximizable. Given
a similarity matrix, it is shown that the entire family of diversity
measures is maximized for a single probability distribution of the
species in that ecosystem. The common maximum is yet another
invariant measurement, but one which measures (the magnitude
of) the metric itself.

In the early chapters, Dr. Leinster motivates and explains the
basic problem of deciding how to measure biological diversity, and
covers the steps of solving an equation to find a missing func-
tion. Then he begins answering those questions with an exposition
of Shannon entropy from information theory. Deformations and
relative versions of entropy are also covered, each with its corres-
ponding inverse concept of diversity. The central chapters introduce
the concepts of mathematical size, value, means and magnitude,
and relate them back to the special cases of diversity measures.
Along the way, there is a chapter on using probabilistic methods to
solve functional equations. Finally there is a nice axiomatic charac-
terization of information loss, discussion of entropy modulo a prime
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number, and the promised deep dive into the category-theoretical
foundations.

Entropy and Diversity is a thorough presentation of the math-
ematics of measuring diversity, including many new results of
uniqueness, unification and utility. Beyond the practical value, it is
also a display of mathematical art. Beautiful patterns, at deeper
and deeper levels of abstraction, are exhibited to clarify the simpli-
city of what at first might appear to be abstruse formulas. Leinster
approaches the subject like a craftsman, paying attention to every
detail. The book is over 450 pages long, but it is so nicely organ-
ized and readable that I felt immediately drawn in rather than
intimidated. The book is directly accessible to a general audience
comfortable with mathematical reasoning. It will be a valuable ref-
erence for both mathematicians and mathematical ecologists. The
new material has already engendered a lot of discussion on future
directions, as can be seen in some recent online conversations:
• johncarlosbaez.wordpress.com/2011/11/07/measuring-
biodiversity

• golem.ph.utexas.edu/category/2020/12/entropy_and_
diversity_the_axio.html

Tom Leinster, Entropy and Diversity: The Axiomatic Approach. Cambridge
University Press, 2021, 458 pages, Paperback ISBN 978-1-108-96557-6,
eBook ISBN 978-1-108-96217-9.

Stefan Forcey teaches mathematics at the University of Akron, sometimes
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Number Theory by Andrej Dujella

Reviewed by Jean-Paul Allouche

As a student of Number Theory, I really ap-
preciated the famous book of G. H. Hardy
and E.M. Wright, while some of my
friends frequently mentioned the book
of Z. I. Borevich and I. R. Shafarevich. Of
course, even these two books did not cover
the whole (huge) field of Number Theory,
and several other excellent books could be
cited as well. More recently, many books
have been devoted to (parts of) this vast

field whose characteristic is to be both primary and not primary
(pun intended). The meaning of the expression “Number Theory”

itself has changed over time – partly because the domain has ex-
ploded – to the point that some contemporary authors now refer
to “Modern Number Theory”…

A very recent book, entitled Number Theory and based on
teaching materials, has been written by A. Dujella. Devoted to
several subfields of this domain, this book is both extremely nice
to read and to work from. It starts from primary results given in
the first three chapters, ranging from the Peano axioms to the
principle of induction, from the Fibonacci numbers to Euclid’s al-
gorithm, from prime numbers to congruences, and so on. Chapter 3
ends with primitive roots, decimal representation of rationals, and
pseudoprimes. Chapters 4 and 5 then deal with quadratic residues
(including the computation of square roots modulo a prime num-
ber) and quadratic forms (including the representation of integers
as sums of 2, 4, or 3 squares). Chapters 6 and 7 are devoted to
arithmetic functions (in particular, multiplicative functions, asymp-
totic behaviour of the summatory function of classical arithmetic
functions, and the Dirichlet product), and to the distribution of
primes (elementary estimates for the number of primes less than
a given number, the Riemann function, Dirichlet characters, and
a proof that an infinite number of primes are congruent to ℓ mod-
ulo k when gcd(ℓ, k) = 1). Chapter 8 deals with first results on
Diophantine approximation, from continued fractions to Newton
approximations and the LLL algorithm, while Chapter 9 studies
applications of Diophantine approximation to cryptography (RSA,
attacks on RSA, etc.). Actually two more chapters are devoted
to Diophantine approximation, Chapter 10 (linear Diophantine
approximation, Pythagorean triangles, Pellian equations, the Local-
global principle,…) and Chapter 14 (Thue equations, the method
of Tzanakis, linear forms in logarithms, Baker–Davenport reduc-
tion,…). Chapters 11, 12, and 13 deal with polynomials, algebraic
numbers, and approximation of algebraic numbers. The book
ends with Chapters 15 and 16 which cover elliptic curves and
Diophantine problems.

This quick and largely incomplete description clearly shows
that this book addresses many jewels of number theory. This is
done in a particularly appealing way, mostly elementary when pos-
sible, with many well-chosen examples and attractive exercises.
I arbitrarily choose two delightful examples, the kind of “element-
ary” statements that a beginner could attack, but whose proofs
require some ingenuity, namely the unexpected statements 4.6
and 4.7:

Example 4.6. Let p > 5 be a prime number. Prove that there are
two consecutive positive integers that are both quadratic residues
and two consecutive positive integers that are both quadratic
nonresidues modulo p.

Example 4.7. Let n be an integer of the form 16 k+ 12 and let
{b1,b2,b3,b4} be a set of integers such that bi ⋅ bj + n is a perfect
square for all i, j such that i ≠ j. Prove that all numbers bi are even.
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The book also comprises short historical indications and 426
references. It really made me think of my first reading of Hardy
and Wright, and I almost felt regret that I cannot start studying
Number Theory again from scratch, but using this book! I highly
recommend it not only to neophytes, but also to more “established”
scientists who would like to start learning Number Theory, or to
refresh and increase their knowledge of the field in an entertaining
and subtle way.

Andrej Dujella, Number Theory. Textbook of the University of Zagreb,
Školska knjiga, Zagreb, 2021, 621 pages, translated by Petra Švob,
ISBN 978-953-0-30897-8.
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The Raven’s Hat by Jonas Peters and Nicolai Meinshausen

Reviewed by Adhemar Bultheel

This book introduces, with some variations,
eight mathematically flavoured games or
puzzles. As the authors accurately explain
in their preface, the type of problems they
present look at first sight almost impossible
to solve. It is only after a careful analysis,
reducing it to a formal (say mathematical)
reformulation, that it becomes clear that
a solution strategy can be designed that is
in some sense even optimal. Each time, the

discussion of the solution to a problem is taken as an excellent pre-
text to explain some piece of mathematics. A reader with a minimal
mathematical background will learn what a Hamming code is, what
a cyclic group is, and some elements of linear algebra, probability,
and even broader topics such as information theory, projective
geometry, and algebraic topology. What starts as a playful game
with a seemingly impossible solution becomes, after placing it
in an appropriate mathematical context, relatively easy to solve.
Moreover, by isolation and abstraction of the essentials, it becomes
simple to consider more general situations. A better advertisement
for the power of mathematics and a stronger motivation to study
mathematical formalism and mathematical structures can hardly
be found.

The book opens with a classic game, which is also for the title
of the book. So let’s take this as an illustration of the concept
used by the authors throughout. Consider three players (in this
book the players are adorable ravens illustrated in graphics by
Malte Meinhausen). Each player has a blue or red hat on his head.
They see the other players but they cannot see the colour of their
own hat. All players have to guess their own hat’s colour (red,
blue, or don’t know) without communicating with each other. The
players, as a team, win the game if at least one player is correct and
none is wrong (where the don’t know answer is not considered
wrong). There exist innumerable variations of this type of game,
generally called ”hat-problems”. The present problem, which asks
for a successful collective strategy, was originally formulated by
Todd Ebert in 1998. It was Elwyn Berlekamp who later connected
the solution to coding theory and solved it for n players when n is of
the form 2m − 1. The solution for general n is still an open problem
today. This kind of (brief) historical background of the problem
is also given for the problems presented in the other chapters,
which is a nice feature of the book. To work towards solving the
problem, the authors first propose some guessing strategies or
naive trials, possibly introducing a first formalism such as coding
the red-blue colours as 0-1 and the configurations of three hats as
binary numbers from 000 to 111, with the first bit for player 1, the
second for player 2, and the last for player 3. This shows that there
are a total of 8 possible states, and each player knows 2 of the 3 bits
in the true number and must guess the bit of her own position. The
probability of winning for the 3 players is maximized if each player
chooses her own colour (0-1 bit) so that the ”distance” to one of
the 8= 23 possibilities is minimal. The crux is to define this distance
as the Hamming distance, which is the mathematical contribution
to the solution in the form of coding theory. Once the principle is
clear, it is easy to generalize the solution to n = 2m − 1 players.

This problem involves some elementary probability, and probab-
ility is also an ingredient for several of the other problems discussed
in this book (both of its authors are professors of statistics). Several
variants of the game correspond to the following description: a set
of players needs to guess something on the basis of partial informa-
tion that is available to them, and the goal is to agree on a strategy
that will maximize their chance of winning the game as a team. For
example, in the second game of this book, the n players have their
name hidden in n boxes, and they have to find the box with their
own name in a minimal number of trials for the whole team. Here
the mathematical tool is the factorization of a permutation into
cycles. In the existing literature, the players are often presented as
prisoners that are collectively freed if they win. In this book, the
stories vary, but all the illustrations portray ravens with hats.

Let me skim more quickly over the other chapters. Somewhat
related to the two hat-problems mentioned above is a problem
where there are more colours for the hats and where the players
are lined up in such a way that each player can only see the other
players (and their hats) who are positioned in front of them. This
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seems to contain strictly less information than when they can all
see each other, but when the players start guessing the colour of
their own hat one after another, starting with the one at the back,
the extra information is provided. Here it is cyclic groups that come
to the rescue to solve the problem. Another game is a magical
card trick which is based on understanding correctly how much
randomness is introduced in an ordered card deck by riffle shuffling
or cutting the deck. While the previous problems involved simple
counting, a bit of probability, and basic algebraic concepts, there is
no way around introducing the logarithm when information theory
is involved. Not that the logarithm is an advanced topic, but still
it requires some understanding of mathematics beyond counting.
A further game introduces some projective geometry with a pinch
of graph theory. Somewhat of a different nature is the problem
involving two globes placed randomly on the table, in which one is
asked to find the place or country that are in the same (or opposite)
position on the two globes. This means that the axis defined by
the position of that place on globe 1 and the globe centre should
be parallel to the corresponding axis for globe 2. For this problem,
one needs to realize that there is a mathematical one-to-one match
of the two globes by a translation (to match up the centres) and
a single rotation. The axis of the latter gives the solution. This
requires the introduction of some linear algebra to see that the
problem is a simple eigenvalue problem for a 3D rotation matrix.
The final game is, once again, a classic, involving hanging a picture
on a wall. If there is one nail on which the frame string can be
hooked, then the picture will fall when the nail is removed. The
game is to wind the string of the frame around two (or more) nails
in such a way that if one nail is removed, the frame will not drop
to the floor. Here the naive reader is confronted with group theory
and algebraic topology to find a general solution.

For an inexperienced puzzler, the problems look challenging
at first sight, so she is gradually guided by the authors towards
a solution with several variants of naive trials, pointing at the short-
comings, and just enough mathematics is used to deal with the
problem at hand. If, in a top-down approach, the mathematics were
to be introduced first with the problem solution as an a posteriori
application, this approach would not have the same motivating
effect. A simple problem that has a hard solution leads to math-
ematics that not only solves the original problem, but that can
immediately be applied to generalizations and other variants of
the problem. For readers who are attracted to solving puzzles and
games, but who have a weak (or no) mathematical background,
the authors provide several appendices with additional explanation
of notation, binary and complex numbers, converging sequences,
probability, etc. as well as some extra details on specific problems
discussed in the chapters. This is an engaging book that all puzzlers,
and certainly novices to the field, will love.

Jonas Peters and Nicolai Meinshausen, The Raven’s Hat. MIT Press, 2021,
192 pages, Paperback ISBN 978-0-262-04451-6.

Games for Your Mind by Jason Rosenhouse

Reviewed by Adhemar Bultheel

If you ask a connoisseur where to look
for logic puzzles, then she will almost
certainly mention Raymond Smullyan
(1919–2017), and perhaps also Lewis
Carroll (1832–1898) and some of the
columns of Martin Gardner (1914–2010).
Obviously, this kind of puzzle has exis-
ted since antiquity, but these three names
are certainly among those that popular-
ized the topic as we know it today. Jason
Rosenhouse is a mathematics professor

at James Madison University. He has written a book on the The
Monty Hall Problem (Oxford, 2009), he is also the co-author of one
entitled Taking Sudoku Seriously (Oxford, 2011), and he is a co-
editor of three volumes on Mathematics of Various Entertaining
Subjects (Princeton, 2015–2019); with all this, he has gained quite
a reputation in the gamers-and-puzzlers community. This book will
considerably add to his authority.

In his preface, Rosenhouse mentions that his original idea was
to write a book with some entertaining logic puzzles à la Carroll
and Smullyan. However, the actual result is a book that goes well
beyond a mere collection of entertaining brain teasers. It explains
the mechanisms and principles needed to solve the puzzles, but it
also instructs the reader about the history of logic and its interpret-
ation by different philosophical disciplines. Some example puzzles
are solved and discussed, and just as in a mathematics textbook,
some solved exercises are inserted to illustrate the theory. After
each principle is explained, a list of puzzles is given for the reader
to solve. They feel like exercises after the lesson; solutions are given
at the end of each chapter.

It is clear that logic influences and interacts with mathematics.
Deciding what is true and what is not, means deciding what to ac-
cept as being proved or not. This is done by checking the rules that
were followed to arrive at the result. Therefore, one has to agree on
what rules should be followed and what axioms one should start
from. This quickly results in a discussion about the foundations
of mathematics and philosophical considerations. Thus, while the
puzzles as such are challenging but entertaining, it is also necessary
to assimilate some background for which a leisurely scanning of the
text is insufficient; it really requires staying focused while reading.

Rosenhouse divides the book into five parts: (1) A general
introduction to logic and puzzles, (2) Lewis Carroll and Aristotelian
logic, (3) Raymond Smullyan and mathematical logic, (4) Puzzles
based on nonclassical logics, (5) Miscellaneous topics. The titles of
the first four are self-explanatory. First, in part one, some general
considerations about logic are given as well as some sample puzzles
to whet the appetite. Logic is boringly simple in everyday life, but
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when philosophy is involved, it needs more precise definitions
of its atoms, called propositions, and one must understand the
mechanism of categorical syllogisms if one wants to explore puzzles
based on Aristotelian logic.

Parts 2 and 3 are the main parts of the book. In the part about
Lewis Carroll, a short introduction of Aristotle’s syllogism serves
as an introduction to a discussion of Carroll’s book The game of
logic (1886), in which he used certain diagrams to visualize the
syllogism that solves the puzzles. In his book Symbolic logic (1896),
Carroll solves sorites puzzles, meaning that one must deduce a con-
clusion from more than two categorical propositions. Rosenhouse
explains how Carroll did this with more analytical techniques and
tree graphs. Finally, the book discusses two journal papers that
Carroll published inMind. The first one involves if-then propositions
andmodus ponens andmodus tollens arguments. The other paper
is a regression problem. If p and p → q are true, then one would
normally conclude that q is true, using (p& (p→ q))→ q. But what
if we do not accept the latter form of the modus ponens? A naive
solution is to add it to the system, but that sets into action a recurs-
ive addition of propositions ad infinitum like in Zeno’s paradox of
Achilles and the tortoise. Rosenhouse gives an extensive discussion
about how this problem has been tackled by different authors.

In part 3, we leave syllogisms and move on to newer forms
of formal logic, with Smullyan as the main puzzler. Smullyan’s
puzzles often involve knights (who always speak the truth) and
knaves (who always lie). Some examples of this type of puzzle are
given with a bit of formal logic in an appetizing chapter. This is
however then followed by several chapters on the history of logic,
ranging from Aristotle through John Locke, George Boole and John
Venn, to the formal system of Bertrand Russell and Kurt Gödel’s
incompleteness theorems. There is less room for puzzles in these
chapters; however, some elements can still be illustrated in puzzle
form, typically the Smullyan type puzzles in which we meet people
who may be either knights or knaves. In this type of problem, one
usually is tasked with asking a question which reveals either who
is what or what is true. In several puzzles where the problem is to
find out whether p is true, the appropriate question to ask has the
form: Is p true if and only if you are a knight? Smullyan attributes
this principle to Nelson Goodman.

Part 4 gives an introduction to several more recent forms of
logic. For example, three-valued logic is involved if people can
be knights, knaves or neutral. Or probability can be involved in
fuzzy logic if people are not either knights or knaves, but can be
picked from a continuum between the two extremes, so that they
answer questions truthfully or not according to a certain probability
distribution.

Finally in the last part, several further topics are discussed.
One is the Hardest Logic Puzzle Ever published by George Boolos
in 1996, which has attracted a lot of academic interest, becoming
a bit of a legend with a life of its own. This puzzle involves three
gods: one answers with a lie, one with the truth, and one answers

randomly. You do not know who is who and their answers are “da”
and “ja”, but you do not know which word means “yes” and which
one means “no”. The problem is to find out how many questions
you need to ask, and which ones, in order to discover who is who.
Other topics in this part are paradoxes and so called metapuzzles
(in which some extra hidden information can be deduced). The
concluding chapter gives some examples from fiction in the form
of film and literature where some logic is involved. It ranges over
a broad spectrum from Mr. Spock in Star Trek to the famous super-
intelligent detectives Auguste Dupin, Sherlock Holmes, Hercule
Poirot, and many others who solve crimes using logic. An appendix
contains a very useful glossary of definitions of logic-related terms,
along with an extensive index.

Even though this book is entertaining and addressed to a
lay public, it goes well beyond a mere popularizing puzzle book,
situated somewhere between entertainment and an introductory
course in logic. The part on Gödel’s theorems is, for example, not
just entertaining but quite a good explanation of the problem for an
interested lay reader, including a Turing-like machine. The puzzles
presented range from simple to extremely difficult. In most cases,
the origin of the puzzle is mentioned. They are usually formulated
as stories, in imitation of the initiator of the genre, Lewis Carroll,
who always formulated his puzzles for children. Lovers of the Smul-
lyan puzzles or Lewis Carroll will be happy to read the background
material compiled in this book. Conversely, it may also introduce
readers to Smullyan’s many puzzle books. Moreover, extending
the type of underlying logic, Rosenhouse opens a door to more
general types of entertaining puzzles. To raise interest in logic is
a good thing not only for everyday life or for mathematics, but
also for computer science, where it plays in important role in topics
such as logic programming and its use in machine learning.

Jason Rosenhouse, Games for Your Mind. Princeton University Press,
2020, 352 pages, Hardcover ISBN 978-0-691-17407-5, e-book ISBN
978-0-691-20034-7.

Adhemar Bultheel is emeritus professor at the Department of Computer
Science of the KU Leuven (Belgium). He has been teaching mainly
undergraduate courses in analysis, algebra, and numerical mathematics.

adhemar.bultheel@cs.kuleuven.be
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Solved and unsolved problems

Michael Th. Rassias

The present column is devoted to Game Theory.

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.

245
We consider a setting where there is a set of m candidates

C = {c1,…, cm}, m ≥ 2,

and a set of n voters [n]={1,…,n}. Each voter ranks all candidates
from the most preferred one to the least preferred one; we write
a ≻i b if voter i prefers candidate a to candidate b. A collection
of all voters’ rankings is called a preference profile. We say that
a preference profile is single-peaked if there is a total order ⊲
on the candidates (called the axis) such that for each voter i the
following holds: if i’s most preferred candidate is c and a ⊲ b ⊲ c
or c ⊲ b⊲ a, then b≻i a. That is, each ranking has a single ‘peak’,
and then ‘declines’ in either direction from that peak.

(i) In general, if we aggregate voters’ preferences over candidates,
the resulting majority relation may have cycles: e.g., if a ≻1 b≻1 c,
b≻2 c≻2 a and c≻3 a≻3 b, then a strict majority (2 out of 3) voters
prefer a to b, a strict majority prefer b to c, yet a strict majority
prefer c to a. Argue that this cannot happen if the preference profile
is single-peaked. That is, prove that if a profile is single-peaked,
a strict majority of voters prefer a to b, and a strict majority of
voters prefer b to c, then a strict majority of voters prefer a to c.

(ii) Suppose that n is odd and voters’ preferences are known to be
single-peaked with respect to an axis ⊲. Consider the following
voting rule: we ask each voter i to report their top candidate t(i),
find a median voter i∗, i.e.

|{i ∶ t(i) ⊲ t(i∗)}| < n
2

and |{i ∶ t(i∗) ⊲ t(i)}| < n
2
,

and output t(i∗). Argue that under this voting rule no voter can
benefit from voting dishonestly, if a voter i reports some candidate

a ≠ t(i) instead of t(i), this either does not change the outcome
or results in an outcome that i likes less than the outcome of the
truthful voting.

(iii) We say that a preference profile is 1D-Euclidean if each can-
didate cj and each voter i can be associated with a point in ℝ so
that the preferences are determined by distances, i.e. there is an
embedding x ∶ C ∪ [n] → ℝ such that for all a,b ∈ C and i ∈ [n]
we have a ≻i b if and only if |x(i) − x(a)| < |x(i) − x(b)|. Argue
that a 1D-Euclidean profile is necessarily single-peaked. Show that
the converse is not true, i.e. there exists a single-peaked profile
that is not 1D-Euclidean.

(iv) Let P be a single-peaked profile, and let L be the set of candid-
ates ranked last by at least one voter. Prove that |L| ≤ 2.

(v) Consider an axis c1 ⊲ ⋯ ⊲ cm. Prove that there are exactly
2m−1 distinct votes that are single-peaked with respect to this
axis. Explain how to sample from the uniform distribution over
these votes.

These problems are based on references [4] (parts (i) and (ii)), [2]
(part (iii)) and [1, 5] (part (v)); part (iv) is folklore. See also the
survey [3].
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Consider a standard prisoners’ dilemma game described by the
following strategic form, with δ > β > 0 > γ:

C D

C
β δ

β γ

D
γ 0

δ 0

Assume that any given agent either plays C or D and that agents
reproduce at a rate determined by their payoff from the strategic
form of the game plus a constant f. Suppose that members of an
infinite population are assorted into finite groups of size n. Let q
denote the proportion of agents playing strategy C (“altruists”) in
the population as a whole and qi denote the proportion of agents
playing C in group i. We assume that currently q ∈ (0, 1).

The process of assortment is abstract, but we assume that it has
finite expectation E[qi] = q and variance Var[qi] = σ2. Members
within each group are then randomly paired off to play one iteration
of the prisoners’ dilemma against another member of their group.
All agents then return to the overall population.
(a) Find a condition relating q, σ2, β, γ, δ and n under which

the proportion of altruists in the overall population rises after
a round of play.

(b) Now interpret this game as one where each player can confer
a benefit b upon the other player by individually incurring
a cost c, with b > c > 0, so that β = b− c, δ = b and γ = −c.
Prove that, as long as (i) there is some positive assortment in
group formation and (ii) the ratio c

b is low enough, then the
proportion of altruists in the overall population will rise after
a round of play.
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Consider a village consisting of n farmers who live along a circle
of length n. The farmers live at positions 1, 2,…,n. Each of them
is friends with the person to the left and right of them, and each
friendship has capacitym wherem is a non-negative integer. At the
end of the year, each farmer does either well (her wealth is +1
dollars) or not well (her wealth is−1 dollars) with equal probability.
Farmers’ wealth realizations are independent of each other. Hence,
for a large circle the share of farmers in each state is on average 1.

The farmers share risk by transferring money to their direct
neighbors. The goal of risk-sharing is to create as many farmers
with OK wealth (0 dollars) as possible. Transfers have to be in
integer dollars and cannot exceed the capacity of each link (which
is m).

A few examples with a village of size n = 4 serve to illustrate
risk-sharing.
• Consider the case where farmers 1 to 4 have wealth

(+1,−1,+1,−1).

In that case, we can share risk completely with farmer 1 sending
a dollar to agent 2 and farmer 3 sending a dollar to farmer 4.
This works for any m ≥ 1.

• Consider the case where farmers 1 to 4 have wealth

(+1,+1,−1,−1).

In that case, we can share risk completely with farmer 1 sending
a dollar to farmer 2, farmer 2 sending two dollars to farmer 3
and farmer 3 sending one dollar to farmer 4. In this case, we
need m ≥ 2. If m = 1, we can only share risk among half the
people in the village.

Show that for any wealth realization an optimal risk-sharing ar-
rangement can be found as the solution to a maximum flow
problem.

Tanya Rosenblat (School of Information and Department
of Economics, University of Michigan, USA)

248
This exercise is a continuation of Problem 247 where we stud-
ied risk-sharing among farmers who live on a circle village and
are friends with their direct neighbors to the left and right with
friendships of a certain capacity. Assume that for any realization
of wealth levels the best possible risk-sharing arrangement is im-
plemented and denote the expected share of unmatched farmers
with U(n,m). Show that U(n,m) → 1

2m+1 as n → ∞.

Tanya Rosenblat (School of Information and Department
of Economics, University of Michigan, USA)
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In a combinatorial auction there are m items for sale to n buyers.
Each buyer i has some valuation function vi(⋅) which takes as input
a set S of items and outputs that bidder’s value for that set. These
functions will always be monotone (vi(S∪ T) ≥ vi(S) for all S, T),
and satisfy vi(∅) = 0.

Definition 1 (Walrasian equilibrium). A price vector p⃗ ∈ ℝm
≥0 and

a list B1,…,Bn of subsets of [m] form a Walrasian equilbrium for
v1,…, vn if the following two properties hold:
• Each Bi ∈ argmaxS{vi(S) −∑j∈ S pj}.
• The sets Bi are disjoint, and ⋃i Bi = [m].

Prove that a Walrasian equilibrium exists for v1,…, vn if and
only if there exists an integral¹ optimum to the following linear
program:

maximize ∑
i
∑
S

vi(S) ⋅ xi,S

such that, for all i, ∑
S

xi,S = 1,

for all j, ∑
S∋ j

∑
i

xi,S ≤ 1,

for all i, S, xi,S ≥ 0.

Hint. Take the dual, and start from there.

Matt Weinberg (Computer Science, Princeton University, USA)
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Consider a game played on a network and a finite set of players
𝒩 = {1, 2,…,n}. Each node in the network represents a player
and edges capture their relationships. We use G = (gi j)1≤ i, j≤n

to represent the adjacency matrix of a undirected graph/network,
i.e. gi j = gj i ∈{0,1}. We assume gi i = 0. Thus,G is a zero-diagonal,
squared and symmetric matrix. Each player, indexed by i, chooses
an action xi ∈ ℝ and obtains the following payoff:

πi(x1, x2,…, xn) = xi −
1
2
x2i + δ ∑

j∈𝒩
gi jxixj.

The parameter δ > 0 captures the strength of the direct links
between different players. For simplicity, we assume 0 < δ < 1

n−1 .
A Nash equilibrium is a profile x∗ = (x∗

1 ,…, x∗
n ) such that, for

any i = 1,…,n,

πi(x∗1 ,…, x∗n ) ≥ πi(x∗1 ,…, x∗i−1, xi, x
∗
i+1,…, x∗n ) for any xi ∈ ℝ.

In other words, at a Nash equilibrium, there is no profitable devi-
ation for any player i choosing x∗

i .

¹ That is, a point such that each xi,S ∈ {0, 1}.

Let w = (w1,w2,…,wn)′, wi > 0 for all i (the transpose of
a vector w is denoted by w′), and In the n × n identity matrix.
Define the weighted Katz–Bonacich centrality vector as

b(G,w) = [In − δG]−1w.

HereM≔ [I− δG]−1 denote the inverse Leontief matrix associated
with network G, while mi j denote its i j entry, which is equal to
the discounted number of walks from i to j with decay factor δ.
Let 1n = (1, 1,…, 1)′ be a vector of 1s. Then the unweighted
Katz–Bonacich centrality vector can be defined as

b(G,1) = [I− δG]−11n.

1. Show that this network game has a unique Nash equilibrium
x∗(G). Can you link this equilibrium to the Katz–Bonacich
centrality vector defined above?

2. Let x∗(G) = ∑n
i=1 x

∗
i (G) denote the sum of actions (total

activity) at the unique Nash equilibrium in part 1. Now suppose
that you can remove a single node, say i, from the network.
Which node do you want to remove such that the sum of effort
at the new Nash equilibrium is reduced the most? (Note that,
after the deletion of node i, we remove all the links of node i,
and the remaining network, denoted by G−i, can be obtained
by deleting the i-th row and i-th column of G.)
Mathematically, you need to solve the key player problem

max
i∈𝒩

(x∗(G) − x∗(G−i)).

In other words, you want to find a player who, once removed,
leads to the highest reduction in total action in the remaining
network.
Hint. You may come up with an index ci for each i such that
the key player is the one with the highest ci. This ci should be
expressed using the Katz–Bonacich centrality vector defined
above.

3. Now instead of deleting a single node, we can delete any pair
of nodes from the network. Can you identify the key pair, that
is, the pair of nodes that, once removed, reduces total activity
the most?
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II Open problem

Equilibrium in Quitting Games
by Eilon Solan (School of Mathematical Sciences,
Tel Aviv University, Israel)²

Alaya, Black, and Catherine are involved in an endurance match,
where each player has to decide if and when to quit, and the
outcome depends on the set of players whose choice is larger
than the minimum of the three choices. Formally, each of the
three has to select an element of ℕ ∪ {∞}: the choice ∞ cor-
responds to the decision to never quit, and the choice n ∈ ℕ
corresponds to the decision to quit the match in round n. Denote
by nA (resp. nB, nC) Alaya’s (resp. Black’s, Catherine’s) choice, and by
n∗ ≔min{nA,nB,nC}. As a result of their choices, the players receive
payoffs, which are determined by the set {i ∈ {A,B,C}∶ ni > n∗}
and on whether n∗ < ∞. As a concrete example, suppose that if
n∗ = ∞, the payoff of each player is 0, and if n∗ < ∞, the payoffs
are given by the table in Figure 1.

Each entry in the figure represents one possible outcome. For
example, when n∗ = nA = nB < nC, the payoffs of the three players
are (1, 0, 1): the left-most number in each entry is the payoff to
Alaya, the middle number is the payoff to Black, and the right-most
number is the payoff to Catherine. This game is an instance of
a class of games that are known as quitting games.

How should the players act in this game? To provide an answer,
we formalize the concepts of strategy and equilibrium. As the
choice of each participant may be random, a strategy for a player is
a probability distribution overℕ∪{∞}. Denote a strategy of Alaya
(resp. Black, Catherine) by σA (resp. σB, σC), and by γi(σA,σB,σC)
the expected payoff to player i under the vector of strategies
(σA,σB,σC). A vector of strategies (σ∗

A ,σ
∗
B ,σ

∗
C ) is an equilibrium

if no player can increase her or his expected payoff by adopting
another strategy while the other two stick to their strategies:

γA(σ∗
A ,σ

∗
B ,σ

∗
C ) ≥ γA(σA,σ∗

B ,σ
∗
C )

for every strategy σA of Alaya, and analogous inequalities hold for
Black and Catherine.

The three-player quitting game with payoffs as described above
was studied by Flesch, Thuijsman, and Vrieze [2] who proved that
the following vector of strategies (σ∗

A ,σ
∗
B ,σ

∗
C ) is an equilibrium:

1 2 3 4 5 6 7 8 9 … ∞
σ∗
A ∶ 1

2 0 0 1
4 0 0 1

8 0 0 … 0
σ∗
B ∶ 0 1

2 0 0 1
4 0 0 1

8 0 … 0
σ∗
C ∶ 0 0 1

2 0 0 1
4 0 0 1

8 … 0

² The author thanks János Flesch, Ehud Lehrer, and Abraham Neyman
for commenting on earlier versions of the text, and acknowledges the
support of the Israel Science Foundation, Grant #217/17.

Under (σ∗
A , σ

∗
B , σ

∗
C ), with probability 1 the minimum n∗ is the

choice of exactly one player: n∗ = nA with probability
4
7 , n∗ = nB

with probability 2
7 , and n∗ = nC with probability

1
7 . It follows that

the vector of expected payoffs under (σ∗
A ,σ

∗
B ,σ

∗
C ) is

γ(σ∗
A ,σ

∗
B ,σ

∗
C ) =

4
7
⋅ (1, 3, 0) + 2

7
⋅ (0, 1, 3) + 1

7
⋅ (3, 0, 1)

= (1, 2, 1).

Can a player profit by adopting a strategy different than σ∗
A , σ

∗
B ,

or σ∗
C , assuming the other two stick to their prescribed strategies?

It is a bit tedious, but not too difficult, to verify that this is not the
case, hence (σ∗

A ,σ
∗
B ,σ

∗
C ) is indeed an equilibrium.

In fact, Flesch, Thuijsman, and Vrieze [2] proved that under
all equilibria of the game, with probability 1 the minimum n∗ co-
incides with the choice of exactly one player. Moreover, a vector
of strategies is an equilibrium if and only if the set ℕ can be par-
titioned into blocks of consecutive numbers, and up to circular
permutations of the players, the support of the strategy of Alaya
(which is a probability distribution over ℕ∪ {∞}) is contained in
blocks number 1, 4, 7,…, and the total probability that nA is in
block 3k − 2 is 1

2k (for each k ∈ ℕ), the support of the strategy
of Black (resp. Catherine) is contained in blocks number 2, 5, 8,…
(resp. 3, 6, 9,…), and the total probability that nB (resp. nC) is in
block 3k− 1 (resp. 3k) is 1

2k (for each k ∈ ℕ).
Does an equilibrium exist if the payoffs are not given by the

table in Figure 1, but rather by other numbers? Solan [6] showed
that this is not the case. He studied a three-player quitting game
that differs from the game of [2] in three payoffs:
• the payoffs in the entry n∗ = nA = nB < nC are (1+ η, 0, 1),
• the payoffs in the entry n∗ = nA = nC < nB are (0, 1, 1+ η),
• the payoffs in the entry n∗ = nB = nC < nA are (1, 1+ η, 0);
and showed that provided η is sufficiently small, the game has
no equilibrium. For example, the strategy vector (σ∗

A ,σ
∗
B ,σ

∗
C ) de-

scribed above is no longer an equilibrium, because Catherine is
better off selecting nC = 1 with probability 1, thereby obtaining
expected payoff 1

2 ⋅ 1+ 1
2 ⋅ (1+ η) = 1+ η

2 , which is higher than
her expected payoff under (σ∗

A ,σ
∗
B ,σ

∗
C ) (that is still 1).

Yet in Solan’s variation [6], for every ε > 0 there is an ε-equi-
librium: a vector of strategies such that no player can profit more
than ε by deviating to another strategy, in other words,

γA(σ∗
A ,σ

∗
B ,σ

∗
C ) ≥ γA(σA,σ∗

B ,σ
∗
C ) − ε,

for every strategy σA of Alaya, and analogous inequalities hold
for Black and Catherine. Indeed, given a positive integer m, con-
sider the following variation of (σ∗

A ,σ
∗
B ,σ

∗
C ), denoted ( ̂σA, ̂σB, ̂σC),

where the set ℕ is partitioned into blocks of size m: block k con-
tains the integers {(k− 1)m+ 1, (k− 1)m+ 2,…, km}, for each
k∈ℕ. ̂σA is the probability distribution that assigns to each integer
in block 3k− 2 the probability 1

m⋅2k , for every k ∈ ℕ. Similarly, ̂σB
(resp. ̂σC) is the probability distribution that assigns to each integer
in block 3k− 1 (resp. 3k) the probability 1

m⋅2k , for every k ∈ ℕ. As
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Black’s choice nB > n∗ nB = n∗ nB > n∗ nB = n∗

Alaya’s choice
nA > n∗ 0,1,3 nA > n∗ 3,0,1 1,1,0

nA = n∗ 1,3,0 1,0,1 nA = n∗ 0,1,1 0,0,0

Catherine’s choice nC > n∗ nC = n∗

Figure 1. The payoffs to the players in the game when n∗ <∞. In red, purple, and green the choices and payoffs
of respectively Alaya, Black, and Catherine. Alaya chooses a row, Black a column, and Catherine a matrix.

mentioned above, the strategy vector ( ̂σA, ̂σB, ̂σC) is an equilibrium
of the game whose payoff function is given in Figure 1, and one
can verify that provided m ≥ 1

ε , it is an ε-equilibrium of Solan’s
variation [6].

It follows from [5] that an ε-equilibrium exists in every three-
player quitting game, for every ε > 0, regardless of the payoffs.
One of the most challenging problems in game theory to date is
the following.

251*
Does an ε-equilibrium exist in quitting games that include more
than three players, for every ε > 0?

For partial results, see [1,3,4,7–9], which use different tools
to study the problem: dynamical systems, algebraic topology, and
linear complementarity problems. The open problem is a step in
solving several other well-known open problems in game theory:
the existence of ε-equilibria in stopping games, the existence of uni-
form equilibria in stochastic games, and the existence of ε-equilibria
in repeated games with Borel-measurable payoffs.

It is interesting to note that if we defined

n∗ ≔ max{1{nA<∞} ⋅ nA,1{nB<∞} ⋅ nB,1{nC<∞} ⋅ nC},

then an ε-equilibrium need not exist for small ε > 0. Indeed, with
this definition, the three-player game in which the payoff of player i
is 1 if ∞ > ni = n∗ > nj for each j ≠ i, and 0 otherwise, has no
ε-equilibrium for ε ∈ (0, 23 ).
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III Solutions

237
We take for our probability space (X,m): the unit interval X=[0,1]
equipped with Lebesgue measure m defined on ℬ(X), the Borel
subsets of X and let (X,m, T) be an invertible measure preserving
transformation, that is T ∶ X0 → X0 is a bimeasurable bijection of
some Borel set X0 ∈ ℬ(X) of full measure so that and m(TA) =
m(T−1A) = m(A) for every A ∈ ℬ(X).

Suppose also that T is ergodic in the sense that the only T-
invariant Borel sets have either zero- or full measure (A ∈ ℬ(X),
TA = A ⇒ m(A) = 0, 1).

Birkhoff’s ergodic theorem says that for every integrable func-
tion f ∶ X → ℝ,

1
n

n−1

∑
k=0

f ∘ T k −−−→
n→∞

𝔼(f) ≔ ∫
X
f dm a.s.

The present exercise is concerned with the possibility of general-
izing this. Throughout, (X,m, T) is an arbitrary ergodic, measure
preserving transformation as above.

Warm-up 1. Show that if f ∶ X → ℝ is measurable, and

m([ lim
n→∞

|
n−1

∑
k=0

f ∘ T k| < ∞]) > 0,

then 1
n ∑

n−1
k=0 f ∘ T k converges in ℝ a.s.

Warm-up 1 is [1, Lemma 1]. For a multidimensional version, see [1,
Conjecture 3].

Warm-up 2. Show that if f∶ X →ℝ is as in Warm-up 1, there exist
g,h∶ X→ℝmeasurable with h bounded so that f= h+ g− g∘ T n.

Warm-up 2 is established by adapting the proof of [3, Theorem A].
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Problem. Show that there is a measurable function f ∶ X → ℝ
satisfying 𝔼(|f|) = ∞ so that

1
n

n−1

∑
k=0

f ∘ T k

converges in ℝ a.s.

The existence of such f for a specially constructed ergodic
measure preserving transformation is shown in [2, Example b]. The
point here is to prove it for an arbitrary ergodic measure preserving
transformation of (X,m).

Jon Aaronson (Tel Aviv University, Israel)

Solution by the proposer
We’ll fix sequences εk,Mk > 0, Nk ∈ ℕ (k ≥ 1). For each ε,M > 0,
N ≥ 1, we’ll construct a small coboundary f (ε,M,N). The desired
function will be of the form F ≔ ∑k≥1 f

(εk,Mk,Nk) for a suitable
choice of εk,Mk > 0, Nk ∈ ℕ (k ≥ 1).

To construct f (ε,M,N), choose, using Rokhlin’s lemma, a set
B∈ℬ such that {T kB ∶ |k| ≤ 2N} are disjoint andm(A) = ε where
A ≔ ⨃|k|≤2N T

kB. Let

f = f (ε,M,N) ≔ M
2N

∑
k=1

(−1)k1TkB.

It follows that

Snf(x) ∈ {0,M,−M} for all n ≥ 1, x ∈ X;

Snf(x) = 0 for all 1 ≤ n ≤ N, x ∉ A;

E(|f|) = Mm(
2N

⨃
j=1

T jB) = Mε2N
4N+ 1

> Mε
3

.

Set εk ≔ 1
5k ,Mk = 6k, Nk = 7k, and define F (k) ≔ f (εk,Mk,Nk) as above.

Since

∑
k≥1

m([F(k) ≠ 0]) ≤ ∑
k≥1

εk < ∞,

this is a finite sum and so

F ≔ ∑
k≥1

F(k) ∶ X → ℝ.

Proof that E(|F|) = ∞. For each K ≥ 1,

|F| ≥ |F(K) + ∑
1≤ j≤K−1

F(j)|1[F(k) =0 ∀ k>K]

≥ (|F(K)| − ∑
1≤ j≤K−1

|F(j)|)1[F(k) =0 ∀ k>K]

≥ (MK − ∑
1≤ j≤K−1

Mj)1[F(K) ≠0 & F(k) =0 ∀ k>K]

≥ 4
5
MK1[F(K) ≠0 & F(k) =0 ∀ k>K]

and

E(|F|) ≥ 4
5
MKm([F(K) ≠ 0 & F(k) = 0 ∀ k > K]).

Next,

ℰK ≔ [F(k) = 0 ∀ k > K]c = ⋃
k≥K+1

⋃
1≤ j≤2Nk

T kBk

whence

m(ℰK) ≤ ∑
k≥K+1

εk
2

= 1
2 ∑

k≥K+1

1
5k

= εK
40

.

It follows that

m([F(K) ≠ 0] ⧵ℰK) = m(
2NK

⨃
j=1

T jBK ⧵ℰK) > εK
3

− εK
40

= 37εK
120

,

whence

E(|F|) ≥ 4
5
MKm([F(K) ≠ 0] ⧵ℰK) >

37εKMK

150
−−−→
K→∞

∞.

Proof that SnF = o(n) a.s. There is a function κ ∶ X → ℕ so that
for a.s. x ∈ X, x ∈ Ac

k for all k ≥ κ(x). Suppose that k ≥ κ(x) and
2Nk ≤ n < 2Nk+1, then

|SnF(x)| = |
k

∑
j=1

SnF(j)(x)| ≤
k

∑
j=1

Mj <
6
5
⋅ (6

7
)
k
⋅ Nk

and
|SnF(x)|

n
−−−→
n→∞

0 a.s.
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238
Let (Ω,ℱ,ℙ) be a probability space and {Xn ∶ n≥ 1} be a sequence
of independent and identically distributed (i.i.d.) random variables
on Ω. Assume that there exists a sequence of positive numbers
{bn ∶ n ≥ 1} such that bn

n ≤ bn+1
n+1 for every n ≥ 1, limn→∞

bn
n = ∞,

and∑∞
n=1ℙ(|Xn| ≥ bn) < ∞. Prove that, if Sn ≔ ∑n

j=1 Xj for each
n ≥ 1, then

lim
n→∞

Sn
bn

= 0 almost surely.

Comment. The desired statement says that, if such a sequence {bn ∶
n ≥ 1} exists, then {Xn ∶ n ≥ 1} satisfies the (generalized) Strong
Law of Large Numbers (SLLN) when averaged by {bn ∶ n ≥ 1}.
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If Xn ∈ L1(ℙ) for every n ≥ 1, then the desired statement fol-
lows trivially from Kolmogorov’s SLLN, since in which case, with
probability one,

lim
n→∞

Sn
n

= 𝔼[X1],

and hence

Sn
bn

= Sn
n

⋅ n
bn

must converge to 0 under the assumptions on {bn ∶ n ≥ 1}. There-
fore, the desired statement can be viewed as an alternative to
Kolmogorov’s SLLN for i.i.d. random variables that are not integ-
rable.

Linan Chen (McGill University, Montreal, Quebec, Canada)

Solution by the proposer
As explained above, we will need to prove the desired statement
without assuming integrability of Xn’s. For every n≥ 1, we truncate
Xn at the level bn by defining Yn = Xn if |Xn| < bn, and Yn = 0 if
|Xn| ≥ bn. Then, {Yn ∶ n ≥ 1} is again a sequence of independent
random variables. It follows from the assumption on {bn ∶ n ≥ 1}
that

∞

∑
n=1

ℙ(Xn ≠ Yn) =
∞

∑
n=1

ℙ(|Xn| ≥ bn) < ∞,

which, by the Borel–Cantelli lemma, implies that the sequence of
the truncated random variables {Yn ∶ n ≥ 1} is equivalent to the
original sequence {Xn ∶ n ≥ 1} in the sense that

ℙ(Xn ≠ Yn infinitely often) = 0, or equivalently,

ℙ(Xn = Yn eventually always) = 1.
(1)

Next, by setting b0 = 0, we have that
∞

∑
n=1

ℙ(|Xn| ≥ bn) =
∞

∑
n=1

∞

∑
k=n+1

ℙ(bk−1 ≤ |X1| < bk)

=
∞

∑
k=2

k−1

∑
n=1

ℙ(bk−1 ≤ |X1| < bk)

=
∞

∑
k=2

(k− 1)ℙ(bk−1 ≤ |X1| < bk)

=
∞

∑
k=1

kℙ(bk−1 ≤ |X1| < bk) − 1,

and hence the assumption on {bn ∶ n ≥ 1} implies that
∞

∑
k=1

kℙ(bk−1 ≤ |X1| < bk) < ∞. (2)

Our next goal is to establish the desired SLLN statement for
{Yn ∶ n ≥ 1}. To be specific, we want to show that if Tn ≔ ∑n

j=1 Yj

for each n ≥ 1, then limn→∞
Tn
bn

= 0 almost surely. We will achieve
this goal in two steps.

Step 1 is to treat the convergence of 𝔼[Tn]
bn

. To this end, we
derive an upper bound for this term as

𝔼[|Tn|]
bn

≤ 1
bn

n

∑
j=1

𝔼[|Yj|] =
1
bn

n

∑
j=1

∫
{|X1|<bj}

|X1|dℙ

= 1
bn

n

∑
j=1

j

∑
k=1

∫
{bk−1≤|X1|<bk}

|X1|dℙ

≤ 1
bn

n

∑
k=1

(n− k+ 1)bkℙ(bk−1 ≤ |X1| < bk)

≤ 2n
bn

n

∑
k=1

bkℙ(bk−1 ≤ |X1| < bk).

Then (2) implies that
∞

∑
k=1

bkℙ(bk−1 ≤ |X1| < bk)
(bk/k)

=
∞

∑
k=1

kℙ(bk−1 ≤ |X1| < bk) < ∞,

which, by Kronecker’s lemma, leads to

lim
n→∞

n
bn

n

∑
k=1

bkℙ(bk−1 ≤ |X1| < bk) = 0.

Hence, we conclude that limn→∞
𝔼[|Tn|]

bn
= 0.

Step 2 is to establish the convergence of Tn−𝔼[Tn]
bn

, for which
we will use a martingale convergence argument. We note that if

Mn ≔
n

∑
j=1

Yj −𝔼[Yj]
bj

for each n ≥ 1, then {Mn ∶ n ≥ 1} is a martingale (with respect to
the natural filtration) and for each n ≥ 1,

𝔼[M2
n] ≤

n

∑
j=1

𝔼[Y2
j ]

b2j
=

n

∑
j=1

1
b2j

∫
{|X1|<bj}

X2
1 dℙ

≤
n

∑
j=1

j

∑
k=1

b2k
b2j

ℙ(bk−1 ≤ |X1| < bk)

≤
n

∑
k=1

(
n

∑
j= k

1
j2
)k2ℙ(bk−1 ≤ |X1| < bk)

≤ C
n

∑
k=1

kℙ(bk−1 ≤ |X1| < bk),

where the second last inequality follows from the assumption that
bn
n is increasing in n, and the last inequality is due to the fact
that there exists constant C > 0 such that ∑∞

j= k
1
j2 ≤ C

k for every
k ≥ 1. Hence, (2) implies that {Mn ∶ n ≥ 1} is bounded in L2(ℙ).
A standard martingale convergence result implies that limn→∞Mn

exists in ℝ almost surely³, which, by Kronecker’s lemma again,
leads to

lim
n→∞

Tn −𝔼[Tn]
bn

= 0 almost surely.

³One can also use Kolmogorov’s maximal inequality to prove the almost
sure existence of the limit of Mn.
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Finally, we write Sn
bn
as

Sn
bn

= Sn − Tn
bn

+ Tn −𝔼[Tn]
bn

+ 𝔼[Tn]
bn

,

where the last two terms have been proven to converge to 0 almost
surely, and (1) implies that, with probability one, the limit of the
first term is also 0. We have completed the proof.

239
In Beetown, the bees have a strict rule: all clubs must have exactly
k members. Clubs are not necessarily disjoint. Let b(k) be the
smallest number of clubs that the n ≥ k2 bees can form, such
that no matter how they divide themselves into two teams to play
beeball, there will always be a club all of whose membees are on
the same team. Prove that

2k−1 ≤ b(k) ≤ Ck2 ⋅ 2k

for some constant C > 0.
Rob Morris (IMPA, Rio de Janeiro, Brasil)

Solution by the proposer
This is an old result of Erdős, and a classic application of the prob-
abilistic method. Let us think of the two teams as being red and
blue, so that a club is ‘monochromatic’ if all of its membees are on
the same team.

First, for the lower bound, we need to show that if m < 2k−1,
then for any collection of m clubs there exists a colouring with no
monochromatic club. To do so, we choose the teams randomly,
and observe that the expected number of monochromatic clubs
is less than 1. To be precise, let Pr(b is red) = 1

2 , independently
for each bee b, and let S count the number of monochromatic
clubs. Then, by linearity of expectation, 𝔼[S] = m ⋅ 2−k+1 < 1,
since each club is monochromatic with probability exactly 2−k+1.
But this implies that Pr(S = 0) > 0, so there exists a colouring with
no monochromatic club, as required.

For the upper bound, we choose the clubs randomly. To be
precise, choose N = k2 bees, and choose each club uniformly
and independently from the k-subsets of these N bees. The idea
is that, for any colouring of the bees, the expected number of
monochromatic clubs is at least k2, so the probability of having
no monochromatic club should be at most e−k2. Since there are
2k

2
colourings of these bees, the expected number of colourings

with no monochromatic clubs is less than 1, so there must exist
a choice for which it is zero.

To spell out the details, fix a colouring, and suppose that x of
the N chosen bees are red. The probability that a random club is
monochromatic is

((x
k
)+ (N− x

k
))(N

k
)
−1

≥ 2 ⋅ (N/2
k

)(N
k
)
−1

≥ 2−k−c

for some constant c > 0, where in the final inequality we used the
fact that N ≥ k2.

Now, let T count the number of colourings of the N bees with
no monochromatic club, and observe that if there are m = k22k+c

clubs, then

𝔼[T] ≤ ∑
colourings

of the N bees

(1− 2−k−c)m ≤ 2k
2
e−k2 < 1.

It follows that there exists a choice of m clubs such that T = 0, as
required.

240
N agents are in a room with a server, and each agent is looking
to get served, at which point the agent leaves the room. At any
discrete time step, each agent may choose to either shout or stay
quiet, and an agent gets served in that round if (and only if) that
agent is the only one to have shouted. The agents are indistin-
guishable to each other at the start, but at each subsequent step,
every agent gets to see who has shouted and who has not. If
all the agents are required to use the same randomised strategy,
show that the minimum time to clear the room in expectation is
N+ (2+ o(1)) log2 N.

Bhargav Narayanan (Rutgers University, Piscataway, USA)

Solution by the proposer
Here is a simple strategy that works in expected time N + (2+
o(1)) log2 N. The agents all toss independent fair coins to decide
whether to shout or not in each of the first k = (2+ o(1)) log2 N
rounds. It is easy to see that with high probability, after these k
rounds, every agent (still in the room) has a unique ‘history’, i.e. no
two agents have the exact same sequence of turns (shouting/
staying quiet). Now the agents are all distinguishable, and we are
done in N more steps; for example, the agents can interpret each
others histories as numbers in binary, and can get served in increas-
ing order. Below, we show that no strategy can do significantly
better.

At any time, we can partition all the agents into clusters based
on their history so far: two agents go into the same cluster if they
have chosen to do the same thing in all previous rounds. By the
requirement that the agents all have the same randomised strategy,
we know that at any time, all the agents in the same cluster must
have the same strategy. Let X be the number of times an agent
from a cluster of size at least 2 gets served and leaves the room,
and let Y be the number of times either
1. exactly two agents from the same cluster, and nobody else, ask

to be served, or
2. nobody asks to be served at all.
An easy computation shows that

ℙ(Bin(m,p) = 1) ≤ ℙ(Bin(m,p) = 0) + ℙ(Bin(m,p) = 2)
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for all m > 1 and any 0 ≤ p ≤ 1; consequently, it is easy to see
that Y stochastically dominates X. So, if for some strategy,

ℙ(X > 2(log2 N)2) > 1
log2 N

,

then the expected time to clear the room, which is at least N+ Y,
is at least N + 2 log2 N in expectation. So we may assume that
X < 2(log2 N)2 with high probability for any strategy under con-
sideration.

Let S be the set of agents who leave the room only when they
belong to their own singleton cluster. As we just observed, the
number of such agents |S| =M = N− X may be assumed to be at
least N− 2(log2N)2. The key observation is this: if someone leaves
the room in a particular step, the cluster structure of S does not
change in that step. To see this, note that when an agent not from
S leaves the room, that agent shouts and everyone in S does not,
so there is no change to the cluster structure of S. On the other
hand, when an agent from S leaves the room, that agent is, by
definition, already in their own singleton cluster, and every other
agent in S does not shout in this step; again, there is no change in
the cluster structure of S.

But we know that at the end of the process, which let us say
takes N+Δ rounds, S has been split from a single cluster into M
singleton clusters. Nothing changes in the cluster structure of S in
the N rounds when someone leaves the room, so S gets broken
down into singleton clusters in the remaining Δ steps.

Consider these Δ steps where nobody leaves the room. Determ-
inistically, in the first log2M− 1 of these steps, we can produce
at most M

2 singletons in S. The remaining M
2 agents in S are all in

clusters of size at least 2. Divide all these cluster into sub-clusters
each of size 2 (by ignoring agents if necessary). The result is at
least M

6 2-clusters that we still need to break down into singletons
(the worst case being when the M

2 agents are each in a cluster
of size 3). The probability that a 2-cluster breaks down into two
singletons at any given time step, with any strategy, is at most 1

2 .
So in any strategy, we need at least another log2M− log2 log2M
time steps, say, for all these 2-clusters to separate into singletons.
Thus, Δ≥ 2 log2M− log2 log2M with high probability, which with
our previous bound on M, tells us that any strategy takes at least
N+ (2− o(1)) log2 N steps to clear the room.

241
Consider the following sequence of partitions of the unit interval
I: First, define π1 to be the partition of I into two intervals, a red
interval of length 1

3 and a blue one of length
2
3 . Next, for anym> 1,

define πm+1 to be the partition derived from πm by splitting all
intervals of maximal length in πm, each into two intervals, a red
one of ratio 1

3 and a blue one of ratio 2
3 , just as in the first step.

For example π2 consists of three intervals of lengths 1
3 (red), 2

9
(red) and 4

9 (blue), the last two are the result of splitting the blue

interval in π1. The figure above illustrates π1,…,π4, from top to
bottom.

Let m ∈ ℕ and consider the m-th partition πm.
1. Choose an interval in πm uniformly at random. Let Rm be

the probability you chose a red interval. Does the sequence
(Rm)m∈ℕ converge? If so, what is the limit?

2. Choose a point in I uniformly at random. Let Am be the probab-
ility that the point is colored red. Does the sequence (Am)m∈ℕ

converge? If so, what is the limit?
Yotam Smilansky (Rutgers University, NJ, USA)

Solution by the proposer
The proposed solution is based on path counting results [1] on
an appropriately defined graph, and can be generalized to higher
dimensions and to more complicated sequences of partitions [2].

LetG be a weighted graph with a single vertex and two directed
loops: a red one of length − log( 13 ) and a blue one of length
− log( 23 ), and consider directed walks along the edges of G that
originate at the vertex and terminate on a point of a colored loop.
The first important observation is that there is a 1-1 correspondence
between colored intervals in πm and walks of length ℓm on G,
where (ℓm)m∈ℕ is the increasing sequence of lengths of closed
orbits on G. In the following illustration, the top is partition π1 and
the corresponding two walks of length ℓ1 = − log( 23 ), and the
bottom is partition π2 and the corresponding three walks of length
ℓ2 = −2 log( 23 ).

In general, a splitting of an interval corresponds to an extension
of a walk that terminates at the vertex to two new walks, one that
extends onto the red loop and the other onto the blue. Therefore,
Rm is the relative part of walks of length ℓm that terminate on
the red loop. For Am, consider random walks on G and prescribe
probabilities to the two outgoing loops: a walk along G is extended
onto the red loop when reaching the vertex with probability 1

3 , and
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onto the blue loop with probability 2
3 . These are chosen because

1
3 of a split interval is colored red and 2

3 colored blue. It follows
that Am is the probability that a walker is located on the red loop
after walking a walk of length ℓm.

The second observation is that in order to compute the asymp-
totic behavior of Rm and Am, one can apply the well-knownWiener–
Ikehara theorem, originally devised to approach the prime number
theorem. The theorem states that if there exists λ∈ℝ for which the
Laplace transform of a counting function is analytic for ℜ(s) > λ,
has a simple pole at s = λ and no other singular points on the
vertical line ℜ(s) = λ, then the main term of the growth rate is
ceλx, with c the residue of the Laplace transform at s = λ.

A direct computation shows that the Laplace transform for the
number of walks that terminate on the red loop is

1
s
⋅

1− ( 1
3)

s

1− ( 1
3)

s − ( 2
3)

s .

Inspecting the term 1−( 1
3)

s −( 2
3)

s one sees that s= 1 is a simple
root of maximal real part, and so to apply the Wiener–Ikehara
theorem it suffices to establish that there are no other roots of the
form 1+ i t. Indeed, a careful but elementary inspection shows
that otherwise, the loops of G must have commensurable lengths,
or equivalently log2 3 ∈ ℚ, which is of course false. The Laplace
transform of the total number of walks is similar but has numerator
2− ( 1

3)
s − ( 2

3)
s, and so Rm tends to the ratio of the residues of

these two transforms at s = 1, that is, limm→∞ Rm = 2
3 . Similarly,

the Laplace transform for Am is
1
3

s
⋅

1− ( 1
3)

s

1− ( 1
3)

s+1 − ( 2
3)

s+1 ,

with the same poles but shifted by−1. It follows that Am converges
to the residue at s = 0, namely

lim
m→∞

Am =
− 1

3 log
1
3

− 1
3 log

1
3 − 2

3 log
2
3

.

Note that the limit of Rm is simply the length of the blue interval
in π1, and the limit of Am can be viewed as the relative contribution
of the red interval to the partition entropy of π1. This interpretation
leads me to suspect that there may exist a more direct and illumin-
ating approach to these problems, possibly based on tools from
probability and dynamics, and I would be very happy to discuss
any ideas or suggestions.
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242
Prove that there exist c < 1 and ε > 0 such that if A1,…,Ak are
increasing events of independent boolean random variables with
Pr(Ai) < ε for all i, then

Pr(exactly one of A1,…,Ak occurs) ≤ c.

(What is the smallest c that you can prove?)
Here A ⊂ {0, 1}n is an “increasing event” if whenever x ∈ A,

then the vector obtained by changing any coordinates of x from 0
to 1 still lies in A.

A useful fact is the Harris inequality, which states that for in-
creasing events A and B of boolean random variables, Pr(A∩ B) ≥
Pr(A) Pr(B).

I learned of this problem from Jeff Kahn.
Yufei Zhao (MIT, Cambridge, USA)

Solution by the proposer
We will show that the claim is true for every ε > 0 and c = 1+ε

2 .
If Pr(A1 ∪⋯∪ Ak) ≤ c, then the conclusion is automatic. So

let us assume that Pr(A1 ∪⋯∪Ak) > c. Since Pr(Ai) < ε for each i,
there exists some j such that Pr(A1 ∪⋯∪ Aj) lies within ε

2 of 1
2 .

Let B = A1 ∪⋯∪ Aj and C = Aj+1 ∪⋯∪ Ak. We write B and C
for the complementary events.

If exactly one of A1,…,Ak occurs, then exactly one of B and C
can occur. So

Pr(exactly one of A1,…,Ak occurs) ≤ Pr(B∩ C) + Pr(B∩ C)

≤ Pr(B) Pr(C) + Pr(B) Pr(C)

≤ max{Pr(B), Pr(B)}

≤ 1+ ε
2

where the second inequality is due to Harris’ inequality.
Remark. It is conjectured that for any c > 1

e there exists some
ε > 0 for which the statement is true. Here 1

e is optimal, since if
Ai are independent Bernoulli random variables with mean 1

k , then
the number of occurrences is asymptotically Poisson with mean 1,
with so that the probability of single occurrence is 1

e + o(1).

We are eager to receive your solutions to the proposed problems,
and any ideas that you may have on open problems. Send your
solutions to Michael Th. Rassias (Institute of Mathematics, Univer-
sity of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland;
michail.rassias@math.uzh.ch).

We also solicit your suggestions for new problems together
with their solutions, for the next “Solved and unsolved problems”
column, which will be devoted to Topology/Geometry.
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