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A message from the president

Dear EMS members,
After more than two years of online

meetings, the EMS council finally met in
person on June 25–26 to elect the new
president and members of the executive
committee and also to decide on several
important issues that will change the oper-
ation of the EMS. First of all, I congratulate
the new president Jan Philip Solovej, the

new vice president Beatrice Pelloni, the new treasurer Samuli
Siltanen, and the new member-at-large Victoria Gould, who will
start office January 1, 2023. I also thank the departing EC members,
vice president Betül Tanbay and treasurer Mats Gyllenberg for their
service to the EMS. It was great to work with you over such a long
time and steer the EMS through these difficult times. I also want
to thank the Slovenian colleagues for organizing the council in the
wonderful town of Bled.

Besides several changes of the statutes which will allow con-
siderably more procedures with virtual meetings, the following
important decisions were made.

(For more details on these three new activities, see the EMS
website.)

EMS Young Academy

To strengthen the support and integration of the young generation
of mathematicians in Europe, the EMS Council in Bled has approved
the formation of an EMS Young Academy (EMYA), for which each
EMS member society/member institute can every year nominate
two early career mathematicians (3rd year PhD students up to
5 years after PhD, allowing for career breaks). The first nomination
period ends September 30, 2022. Every year a committee formed
by the EMS EC will select up to 30 members of the EMYA, for
a four-year membership duration. The EMYA will establish itself
bylaws and an organizational structure and it is supposed to sug-
gest procedures for the future development of the EMS. The EMYA
will be supported by a separate budget and it will also nominate
a representative for the EMS EC who will be elected for a two-year
period by the council.

EMS Topical Activity Groups

To address the large diversity of the European mathematical com-
munity and to integrate the scientific cooperation across Europe
and all mathematical fields, starting 2023, a group of (at least 7)
members of the EMS can apply to form an EMS topical activity
group (EMS-TAG). The activity groups will be selected and evalu-
ated on a four-year basis by an evaluation committee. EMS TAGs
can organize meetings and workshops. They can apply for sup-
port from the EMS, they can nominate EMS committee members
and speakers for conferences, and they are expected to plan and
organize applications to European funding programs.

Support of large events

To promote mathematics across the board, across geographic
boundaries, and across discipline boundaries, the EMS also calls
for large, inclusive, and cross-institutional events that complement
or extend existing infrastructure for such meetings. Supported
events can range from special semesters to interdisciplinary study
groups and large showcase events; calls will be made four times
a year, with a first call on December 1, 2022. Proposals are re-
quired to utilize a significant amount of funding supporting regions
and communities that do not have the infrastructure or the fin-
ances to organize such large-scale events. Applicants from low-
and middle-income countries are particularly encouraged to apply.

Volker Mehrmann
President of the EMS
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Seeing the invisible: Digital holography

Ana Carpio

For the past years there has been an increasing interest in de-
veloping mathematical and computational methods for digital
holography. Holographic techniques furnish noninvasive tools for
high-speed 3D live cell imaging. Holograms can be recorded in
the millisecond or microsecond range without damaging samples.
A hologram encodes the wave field scattered by an object as an
interference pattern. Digital holography aims to create numerical
images from digitally recorded holograms. We show here that
partial differential equation constrained optimization, topological
derivatives of shape functionals, iteratively regularized Gauss–
Newton methods, Bayesian inference, and Markov chain Monte
Carlo techniques provide effective mathematical tools to invert
holographic data with quantified uncertainty. Holography set-ups
are particularly challenging because a single incident wave is
employed. Similar tools could be useful in inverse scattering prob-
lems involving other types of waves and different emitter/receiver
configurations, such as microwave imaging or elastography, for
instance.

1 Introduction

Experimental sciences have traditionally been a source of chal-
lenging mathematical problems with a double edge: while mathe-
matical theories are created, technology moves fast and industry
develops. Imaging sciences provide a remarkable example. Typical
imaging systems, such as radar [28], magnetic resonance tomogra-
phy, ultrasound, echography [25], and seismic imaging [34], pose
inverse scattering problems with a similar mathematical structure.
In all of them, waves generated by a set of emitters interact with
a medium under study and the wave field resulting from the in-
teraction is recorded at a set of receivers [10]. Different imaging
systems resort to different types of waves and arrange emitters and
receivers according to varied geometries. The nature of the em-
ployed waves depends on factors such as the size of the specimens
under study, the contrast between components, and the damage
caused to the sample during the imaging procedure. Knowing the
emitted and recorded waves, we aim to infer the structure of the
medium.

Approximating the solutions of inverse scattering problems is
a challenging task because such problems are severely ill posed [10].
Given arbitrary data, the problem under study may not admit a so-
lution, the solution may not be unique, or it may not depend
continuously on the given data. This means that small errors may
lead to a solution different from the searched one. In view of
the relevant technological applications in a host of fields, such as
medicine, security, geophysics, or materials testing, to mention
a few, there is a need of even better mathematical techniques for
classical imaging problems, as well as a need of new ideas to tackle
new imaging set-ups.

We focus here on recent developments in digital holography,
summarizing work done during the past 10 years in collabora-
tion with experimentalists designing holographic microscopes. This
collaboration started in 2012 thanks to the interdisciplinary com-
munication environment created at the Harvard University’s Kavli
Institute seminars. Since then, we have developed analytical and
computational tools to handle inverse problems arising in digi-
tal holography, in collaboration with researchers from Harvard
University and Tesla, Universidad Complutense de Madrid, Univer-
sidad Politécnica de Madrid, Universidad de Oviedo, Université de
Technologie de Compiègne, and New York University.

Digital in-line holography is a noninvasive tool for accelerated
three-dimensional imaging of soft matter and live cells [16,23,26,
37] that achieves high spatial (nanometers) and temporal (microsec-
onds) resolution without the need of toxic fluorescent markers or
stains. In this context, a hologram is a two-dimensional light in-
terference pattern encoding information about the optical and
geometrical properties of a set of objects [35]. Shining a properly
chosen light beam back through the hologram we can recreate
the original three-dimensional image. Instead, digital holography
is designed to produce numerical reconstructions of the objects in
an automatic way, which amounts to solving computationally an
inverse scattering problem. We will show next that optimization
schemes with partial differential equation constraints, analysis of
the topological derivative of objective functions, regularized Gauss–
Newton iterations, and Bayesian inference are effective tools to
invert holographic data in the presence of noise while quantifying
uncertainty.
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Figure 1. Formation of an in-line hologram. A laser beam hits an object.
The scattered and undiffracted beams form an interference pattern on
a screen, which is recorded at a mesh of detectors. Laser lights have
wavelengths varying from about 405 nm (violet light) to about 660 nm
(red light). Typical object sizes are in the micron range (1 µm = 10−6m,
1 nm = 10−9m).

2 The forward problem

The forward problem is a mathematical model of how a holo-
gram is generated. Figure 1 illustrates how an in-line hologram
is formed, though more complicated set-ups are possible. First,
a laser light beam interacts with a sample. Then, interference of
the scattered light field with the undiffracted beam generates the
hologram on a detector screen past the object [23]. The light wave
field obeys the Maxwell equations. Typically, the emitted laser
beams are time harmonic, that is, 𝓔inc(x, t) = Re[e−ıωtEinc(x)].
The resulting wave field is also time harmonic, namely,𝓔Ω,κ(x, t) =
Re[e−ıωtEΩ,κ(x)], with complex amplitude EΩ,κ(x) governed by
the stationary Maxwell equations. The resulting forward prob-
lem is

curl( 1
μe

curl E)− κ2e
μe

E = 0 in ℝ3 ⧵Ω,

curl( 1
μi

curl E)− κ2i
μi
E = 0 in Ω,

̂n× E− = n̂× E+ on ∂Ω,

1
μi
n̂× curl E− = 1

μe
n̂× curl E+ on ∂Ω,

lim
|x|→∞

|x||curl(E− Einc) ×
x
|x| − ıκe(E− Einc)| = 0,

(1)

where μi, εi and κi = ω2
i εiμi are the permeabilities, permittivities

and wavenumbers of the imaged objects Ω, while μe, εe and κe
correspond to the ambient medium [3] and are known. In biomed-
ical applications, μi ∼ μe ∼ μ0, μ0 being the vacuum permeability.
The upper signs − and + represent limit values from inside and
outside Ω, respectively, and n̂ denotes the outer unit normal vector.
Incident waves are polarized in a direction p̂ orthogonal to the

direction of propagation d̂, that is, Einc(x) = E0p̂ e ıκe
̂d⋅x, where E0

stands for the magnitude of the incident field.
For any smooth region Ω′ ⊂ ℝ3 ⧵ Ω and any real κe > 0, sys-

tem (1) has a unique solution [31] in the Sobolev space H2,0(Ω′) =
{E ∈ H2(Ω′), div E = 0} that is continuous in Ω′ (see [19]). For
collections of spheres and piecewise-constant κi, one can calcu-
late Mie series solutions [3]. Starshaped object parametrizations
with piecewise-constant μi allow for fast spectral solvers [20,24].
Coupled BEM/FEM formulations [29,31] are convenient for more
general parametrizations, while discrete dipole approximations
[36,38] solve the problem avoiding the use of parametrizations.

In principle, the hologram is obtained evaluating the solution of
the forward problem (1) at detectors placed on the screen: IΩ,κi =
|Einc + Esc,Ω,κi|2 = |EΩ,κi|2. In practice, the measured holograms
Imeas are corrupted by noise.

3 Deterministic inverse problem

Given a hologram Imeas measured at screen points xj, j = 1,…,N,
the inverse holography problem seeks objects Ω = ⋃L

ℓ=1Ωℓ and
functions κi ∶ Ω → ℝ+ such that

Imeas(xj) = |EΩ,κi(xj)|2, j = 1,…,N,

where EΩ,κi = Einc + Esc,Ω,κi is the solution of the forward problem
(1) with an object Ω and the wavenumber κi (see [5]). Since the
measured data are not exact, in practice one seeks shapes Ω and
functions κi for which the error between the recorded hologram
and the synthetic hologram that would be generated solving (1)
for the proposed objects and wavenumbers is as small as possible.

3.1 Constrained optimization
We recast the inverse problem as an optimization problem with
a partial differential equation constraint: find Ω and κi minimizing
the cost functional

J(Ω, κi) =
1
2

N

∑
j=1

|IΩ,κi(xj) − Imeas(xj)|2, (2)

where IΩ,κi = |EΩ,κi|2 and EΩ,κi is the solution of (1). Here Ω and κi
are the design variables and the stationary Maxwell system (1) is
the constraint. For exact data, the true objects would be a global
minimum at which the functional (2) vanishes. In general, spurious
local minima may arise.

3.2 Topological derivative based approximations
A topological study of the shape functional (2) for κi fixed provides
first guesses of the imaged objects without a priori information
on them. The topological derivative of a shape functional [32]
quantifies its sensitivity to removing and including points in an
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object. Given a point x in a region ℛ, we have the expansion

J(ℛ ⧵ Bε(x)) = J(ℛ) + 4
3
πε3DT(x,ℛ) + o(ε3), ε → 0, (3)

for any ball Bε(x) = B(x, ε) centered at x with radius ε. The factor
DT(x,ℛ) is the topological derivative of the functional at x (see [32]).
If DT(x,ℛ) is negative, J(ℛ ⧵ Bε(x)) < J(ℛ) for ε > 0 small. We
expect the cost functional to decrease by forming objects Ωap with
points below a large enough negative threshold [9,14,27]:

Ωap ≔ {x ∈ ℛ ∣ DT(x,ℛ) < −C0}, C0 > 0. (4)

When μe = μi,ℛ=ℝ3 and Einc(x)= p̂e ıκez, asymptotic expansions
yield the formula [27]

DT(x,ℝ3) = 3Re[κ
2
e (κ2e − κ2i )
(κ2i + 2κ2e )

E(x) ⋅ P(x)], x ∈ ℝ3, (5)

where E = Einc and

P(x)=
N

∑
j=1

curlcurl( 2
κ2e

Gκe(x− xj)(Imeas(xj)− |Einc(xj)|2)Einc(xj))

with Gκe(x) = 1
4π|x|e

ıκe|x| denoting the outgoing Green function
of the Helmholtz equation [31]. Once Ωap is constructed, we fit a
parametrized contour qap to its boundary. Starshaped parametriza-
tions are typical choices. Figure 2 exemplifies the procedure. The
method is robust to noise, in the sense that perturbations of the
data with random 10% or 20% noise, for instance, produce similar
results. Notice that the value of κi enters through a factor that we
may scale out in (5) and it is not really needed to localize the object.
Similar results are obtained using the topological energy [6]

ET(x,ℝ3) = |E(x)|2|P(x)|2,

which does not involve κi at all. No knowledge of κi is needed to
construct a first guess of the objects.

Figure 2. Slice y = 0 of the topological derivative computed using
expression (5) for holographic data Imeas corresponding to a sphere of
radius 0.45 µm illuminated by polarized light of wavelength 520 nm and
placed at a distance 28 µm of a CMOS screen. Axis units are microns. The
red contour marks the location of the true object, while the cyan contour
represents the approximation. Redrawn from [5].

3.3 Regularized Gauss–Newton iterations
Fast methods to improve our knowledge of the objects starting
from an initial guess are based on the following result. Let us con-
sider two Hilbert spaces X, Y and a Fréchet differentiable operator
ℱ∶ D(ℱ) ⊂ X→ Y. Assuming that the exact data y∈ Y are attain-
able (that is, there is x∈ X such thatℱ(x) = y), but only noisy data
yδ verifying ‖yδ − y‖Y ≤ δ are accessible, the iteratively regularized
Gauss–Newton (IRGN) method [1] constructs a sequence xδk+1 as
follows. We linearize the equation at xδk at each step, approximate
the solution of ℱ(xδk ) +ℱ′(xδk )ξ = yδ through the minimization
problem

ξk+1 = Argmin
ξ∈X

‖ℱ(xδk ) +ℱ′(xδk )ξ− yδ‖2Y
+ αk‖xδk + ξ− x0‖2X

and set xδk+1 = xδk + ξk+1. The Tikhonov term αk‖xδk + ξ − x0‖2X
has regularizing properties and promotes convergence for spe-
cific choices x0 and αk (see [21]). The theory of linear Tikhonov
regularization guarantees that

ξk+1 = −(ℱ′(xδk )∗ℱ′(xδk ) + αkI)−1[ℱ′(xδk )∗(ℱ(xδk ) − yδ)
+ αk(xδk − x0)],

whereℱ′(xδk )∗ denotes the adjoint of the Fréchet derivativeℱ′(xδk ).
The noise level δ affects the stopping criterion, the so-called dis-
crepancy principle.

In a holography set-up, the mapℱ is the operator that to each
parametrization of objects q assigns the synthetic hologram I(q)
generated by solving the forward problem for those objects. Star-
shaped parametrizations are a standard choice for simple objects.
They describe each object by a few parameters: its center and
a radius function represented by a finite combination of spheri-
cal harmonics [5,20]. Given a starshaped parametrization qk and
a recorded hologram Imeas with a level of noise δ, the IRGN method
first solves the linearized equation

I(qk) + I′(qk)ξ = Imeas

by addressing the nonlinear least squares problem

ξk+1 = Argminξ{‖Imeas − I(qk) − I′(qk)ξ‖22
+ αk‖qk + ξ− qap‖2Hs(𝕊2)},

where H s(𝕊2), s > 0, is an adequate Sobolev space [5], and then
sets qk+1 = qk + ξk+1. The initial parametrization q0 = qap rep-
resents the first guess of the objects constructed by topological
methods. The updated objects Ωk correspond to the parametriza-
tions qk. The stopping criterion for the noise level δ is as follows.
If the synthetic hologram calculated numerically for the current
approximation of the objects I(qk) satisfies

‖I(qk) − Imeas‖2 ≤ τδ,

we stop the algorithm, τ > 0 being a parameter adjusted to guar-
antee a reasonable approximation while preventing early stops.
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Figure 3. For the hologram in Figure 4 (redrawn from [5]): (a) True geometry. (b) Slice x = 5 of the topological derivative (5). Red contours are true objects.
(c) Initial guess defined by (4). (d) Approximation after 4 steps of the IRGN method. (e) Slice of the topological derivative (6) at step 4. Cyan regions are
approximate objects. (f) Approximation after creating an object at step 4 and applying once the IRGNM. (g) Slice of the topological derivative (6) at step 5.
(h) Approximation after creating an object at step 5 and applying once the IRGNM. (i) Final approximation. Axis units are µm. (j) Decrease in the cost.

Figure 4. Hologram generated by the three objects represented in
Figure 3(a), obtained with violet light having a wavelength of 405 nm
emitted at z = 0 and recorded at z = 10. Axis units are microns. Redrawn
from [5].

Figures 3 and 4 illustrate the process. Figure 4 depicts the
hologram generated by the configuration with three objects shown
in Figure 3 (a). We use the topological derivative (5) to spot a first
dominant object at the top and locate an object there, see panel (b).
Then we apply the IRGN method, see panels (c) and (d). At step 4
the cost functional, depicted in panel (j), stagnates without fulfilling
the stopping criteria. This suggests that more objects should be
created. This can be done by hybrid methods, as we explain next.

3.4 Topologically informed IRGN methods
Approaches that use initial object parametrization as reference
have a drawback: the initial guess of the number of objects may be
wrong. To overcome it, we have developed hybrid algorithms [5]
combining topological derivatives and regularized Gauss–Newton
iterations [5]. We fit an initial parametrization qap to the first guess
of the objects constructed by topological methods. Then, we apply
the IRGN method and check that the cost (2) decreases. When the
cost stagnates without fulfilling the stopping criteria, we reset Ωap

equal to the current guess of the objectsΩk for the last parametriza-
tion obtained qk and calculate the topological derivative of the
cost for ℛ = ℝ3 ⧵Ωap. This is given by (3) if x ∈ ℛ = ℝ3 ⧵Ω and
its equivalent

J(ℝ3 ⧵ (Ω ⧵ Bε(x)))

= J((ℝ3 ∪ Bε(x)) ⧵Ω)

= J(ℝ3 ⧵Ω) − 4
3
πε3DT(x,ℝ3 ⧵Ω) + o(ε3)

if x ∈ Ω. Asymptotic calculations yield the formula [5,9]

DT(x,ℝ3 ⧵Ω)

=

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪
⎩

3Re[κ
2
e (κ2e − κ2i )
(κ2i + 2κ2e )

E(x) ⋅ P(x)], x ∈ ℝ3 ⧵Ω,

3Re[κ
2
i (κ2e − κ2i )
(κ2e + 2κ2i )

E(x) ⋅ P(x)], x ∈ Ω,
(6)
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when μe = μi, with forward and conjugate adjoint fields satisfying
transmission Maxwell problems with object Ω = Ωap:

curl(curl E) − κ2eE = 0 in ℝ3 ⧵Ω,

curl(curl E) − κ2i E = 0 in Ω,

n̂× E− = n̂× E+ on ∂Ω,

̂n× curl E− = n̂× curl E+ on ∂Ω,

lim
|x|→∞

|x||curl(E− Einc) × x̂− ıκe(E− Einc)| = 0,

curl(curl P) − κ2eP = 2
N

∑
j=1

(Imeas − |E|2)Eδxj in ℝ3 ⧵Ω,

curl(curl P) − κ2i P = 0 in Ω,

̂n× P− = n̂× P+ on ∂Ω,

̂n× curl P− = n̂× curl P+ on ∂Ω,

lim
|x|→∞

|x||curl P× x̂− ıκeP| = 0,

where n̂ is the unit outer normal, x̂= x/|x| and δxj are Dirac masses
concentrated at the detectors xj, j = 1, ...,N.

We create a new approximationΩnew fromΩap by removing the
points in Ωap at which the topological derivate surpasses a positive
threshold cnew and adding the points outside Ωap at which the
topological derivate falls below a negative threshold −Cnew, see
[6,9]:

Ωnew ≔ {x ∈ Ωap ∣ DT(x,ℝ3 ⧵Ωap) < cnew}

∪ {x ∈ ℝ3 ⧵Ωap ∣ DT(x,ℝ3 ⧵Ωap) < −Cnew}.

The constants Cnew, cnew are selected to ensure a decrease in the
cost functional (2) keeping κi fixed. Once Ωnew is constructed, we
fit a parametrization qnew to its contour and restart the IRGN pro-
cedure for qap = qnew. The procedure stops when the changes in
the cost and the parametrizations fall below selected thresholds.

Let us revisit the example studied in Figures 3 and 4. At step 4
of the IRGN method the cost stagnates without fulfilling the stop-
ping criteria. We calculate the topological derivative (6) of the
cost for the current approximation of the objects, illustrated in
Figure 3 (e). A new region where the topological derivative attains
large negative values appears. We create a new object there and
update the parametrization, see panel (f). Then we apply the IRGN
method again. Since the cost functional still stagnates without
fulfilling the stopping criteria, we recalculate the topological deriva-
tive (6) for the available object approximation. Panel (g) suggests
the creation of a third object. We update the IRGN method using
this new configuration, and evolve the resulting object configura-
tion, represented in panel (h), until the stopping criterion is met at
panel (i) after 24 steps. Panel (j) illustrates stagnation and decrease
of the cost as new objects are added to the parametrization using
topological information and the updated IRGN method evolves,
in a logarithmic scale. These simulations assume κi known and
fixed. Once first guesses for κi are available, we can implement

this procedure considering constant values for κi at each compo-
nent of the parametrization. Obtaining first guesses for κi that are
reliable enough is a hard task [7] and the optimization procedure
can encounter difficulties. Bayesian approaches provide alterna-
tive procedures that can handle these difficulties while quantifying
uncertainty associated to noise and missing information.

4 Bayesian inverse problem

Bayesian formulations consider all unknowns in the inverse prob-
lem as random variables. Given a recorded hologram Imeas, we
seek a finite-dimensional vector of parameters ν characterizing the
imaged objects. When we assume the presence of L objects, ν is
formed by L blocks, one per object. Using Bayes’ formula [22,33]

ppt(ν) ≔ p(ν|Imeas) =
p(Imeas|ν)
p(Imeas)

ppr(ν), (7)

where ppr(ν) represents the prior probability of the variables, which
incorporates our previous knowledge on them, while p(Imeas|ν) is
the conditional probability or likelihood of observing Imeas given ν.
The solution of the Bayesian inverse problem is the posterior prob-
ability ppt(ν|Imeas) of the parameters given the data. Sampling the
posterior distribution, we obtain statistical information on the most
likely values of the object parameters with quantified uncertainty.

4.1 Likelihood choice
Assuming additive Gaussian measurement noise, the measured
hologram and the synthetic hologram obtained for the true object
parameters are related by Imeas = I(νtrue) + ε, where the measure-
ment noise ε is distributed as a multivariate Gaussian 𝒩(0, Γn)
with zero mean and covariance matrix Γn. A possible choice for the
likelihood p(Imeas|ν) is [8]

p(Imeas|ν) =
1

(2π)N/2√|Γn|
exp(−1

2
‖I(ν) − Imeas‖2Γ−1

n ) (8)

with ‖v‖2Γ−1
n

= vtΓ−1
n v. Here, I(ν) represents the synthetic hologram

obtained solving the forward problem (1) for objects characterized
by parameters ν, see Section 2.

4.2 Topological priors
A typical choice for the prior distribution is a multivariate Gaussian

ppr(ν) =
1

(2π)n/2
1

√|Γpr|
exp(−1

2
(ν− ν0)tΓ−1

pr (ν− ν0)) (9)

if ν is “admissible”, and ppr(ν) = 0 when ν is “not admissible”,
that is, it does not satisfy known constraints on the parameter set,
see [8] for details. Here, Γpr is the covariance matrix and n is the to-
tal number of parameters characterizing the objects. The mean ν0
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is typically a set of parameter values characterizing an initial guess
of the objects. Sharp priors are obtained fitting parametrizations
to first guesses of the objects obtained from the study of topologi-
cal fields associated to deterministic shape costs, as explained in
Section 3.2.

4.3 Markov chain Monte Carlo sampling
Combining (7), (8) and (9), the posterior probability becomes (ne-
glecting normalization constants)

ppt(ν) ∝ exp(−1
2
‖I(ν) − Imeas‖2Γ−1

n − 1
2
‖ν− ν0‖2Γ−1

pr )

when ν is admissible, and ppt(ν) = 0 otherwise. Markov chain
Monte Carlo (MCMC) methods provide tools to sample unnormal-
ized posteriors. Classical MCMC methods, such as Hamiltonian
Monte Carlo or Metropolis–Hastings [30] construct a chain of n-
dimensional states ν(0) → ν(1) → ⋯ → ν(k) → ⋯ which evolve to
be distributed in accordance with the target distribution ppt(ν).
After sampling an initial state ν(0) from the prior distribution (9),
the chain advances from one state ν(k) to the next ν(k+1) by means
of a transition operator that varies with the method employed [30].
More recent ensemble MCMC samplers [13, 18] draw W initial
states from the prior distribution (the “walkers” or “particles”) and
transition to new states while mixing the previous ones to generate
several chains. This approach allows for parallelization and can
handle multimodal posteriors [8].

Figure 5 illustrates the results in a two-dimensional geome-
try, to reduce the computational cost in the tests. A few million
samples were generated, which requires solving an identical num-
ber of forward problems. In two-dimensional set-ups we replace
the stationary transmission problem for the Maxwell equations
by a transmission problem posed for the Helmholtz equation [8].
Assuming κi is piecewise constant, we resort to fast boundary
elements to solve the Hemholtz transmission problems in two
dimensions [12]. Once a large enough collection of samples is
generated [17], we extract statistical information describing the
imaged object: the most likely shapes, sizes, locations, as well as
uncertainty in the predictions. While starshaped two-dimensional
objects can be reasonably characterized with 10–20 parameters,
three-dimensional objects require 80–90. Full characterization of
the posterior probability by MCMC sampling becomes more expen-
sive as the number of parameters and the time required to solve
forward problems increase.

4.4 Laplace approximation
The full characterization of the posterior probability is a challenging
and costly probability problem for moderate- and high-dimensional
parameters ν. Low-cost approximations of the posterior distribution
often rely on finding the maximum a posteriori (MAP) point, that
is, the set of parameters that maximize the posterior probability.

Figure 5. For the two-dimensional object depicted in red, with violet light
having a wavelength of 405 nm emitted at y = −5 and recorded at y = 5,
we present statistical information obtained from the samples generated
by MCMC sampling. A contour projection of a two-dimensional histogram
represents the probability of belonging to the object, compared to the
contours of the true object, the prior mean and the MAP (maximum
a posteriori) approximation. The probability is multimodal, as evidenced
by additional two-dimensional histograms representing the probability of
being the center of mass of the object, the most likely values for the
largest/smallest object radii and their orientation, the most likely areas,
and the deviation from a spherical shape. Two main peaks are identified.
The main mode corresponds to a majority of samples wrapping around
the object, while the second mode represents the contribution of
additional large samples elongated in the direction of incidence of the
incoming wave and represents an aberration of this imaging system,
which uses only one incident wave. This effect may not be observed for
other shapes, sizes, or light wavelengths – it depends on the geometry.
Axis units are microns. Redrawn from [8].
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Upon taking logarithms, maximizing the posterior probability of
the parameter set ν given the data Imeas is equivalent to minimizing
the regularized cost functional [2]

J(ν) ≔ 1
2
‖I(ν) − Imeas‖2Γ−1

n + 1
2
‖ν− ν0‖2Γ−1

pr . (10)

This is a nonlinear least-squares problem of the form previously
considered in deterministic inversion, including regularization terms
provided by the prior knowledge. We can solve it efficiently by using
an adapted Levenberg–Marquardt–Fletcher iterative scheme [15].
Starting from ν0 = ν0, we set νk+1 = νk + ξk+1, where ξk+1 is the
solution of

(HGN
λk (ν

k) +ωk diag(HGN
λk (ν

k)))ξk+1 = −gλk(νk). (11)

Here, HGN is the Gauss–Newton approximation to the Hessian of
the functional (10) and g is its gradient, while λk is a scaling factor
for Γ−1

pr that balances the different orders of magnitude of the two
terms defining the cost in the first iterations, and becomes equal
to 1 at a certain point. At each step, the adjustable parameter
ωk > 0 increases until the cost J(νk) decreases, and decreases oth-
erwise, making the iteration closer to Gauss–Newton or gradient
schemes as required.

Linearization about the resulting MAP point νMAP (the so-called
Laplace approximation) provides an approximation of the posterior
distribution by a Gaussian with mean νMAP and posterior covariance
Γpo = HGN(νMAP)−1. Sampling this Gaussian, we extract statistical
information representing the dominant mode at a much lower com-
putational cost, see Figure 6. Reaching νMAP takes about 20 steps
of scheme (11). The whole process, sampling included, is finished
in a few minutes, instead of a few days.

We have considered κi fixed and known in these tests. In case
it is constant and unknown, it becomes an additional parameter
included in ν. In the end, we obtain additional histograms reflecting
uncertainty about the value with highest probability [8].

5 Perspectives

Digital holography poses challenging inverse problems which pro-
vide an opportunity to develop and test a variety of analytical and
computational tools. First guesses of imaged objects are obtained
by calculating the topological derivative of misfit functionals com-
paring the true hologram and the synthetic holograms that would
be generated for different object configurations according to the se-
lected forward model. Such guesses are robust to noise in the data.
To reduce dimensionality, one can characterize the imaged objects
by means of starshaped parametrizations. In a deterministic frame-
work, we have shown that hybrid schemes combining iteratively
regularized Gauss–Newton methods with topological derivative
initializations and updates lead to good reconstructions of simple
object configurations in a few steps, using stopping criteria that

Figure 6. Counterpart of Figure 5 using the Laplace approximation
of the posterior density. The main mode corresponding to the true object
is captured. Axis units are microns. Redrawn from [8].

take into account the expected level of noise in the data. We are
able to quantify uncertainty in such predictions by resorting to
Bayesian formulations with topological priors. In two dimensions,
Markov chain Monte Carlo methods provide a complete characteri-
zation of the posterior probability of the observed hologram being
that is generated by a few starshaped objects. Three-dimensional
tests are affordable for very simple shapes, such as a sphere or
a cylinder [11]. Handling high-dimensional parametrizations, in
three dimensions or just irregular shapes, requires the introduction
of strategies to reduce the computational cost. Laplace approxima-
tions based on optimizing to find the highest probability parameter
set and then linearizing the posterior probability about it to obtain
a multivariate Gaussian distribution are useful tools for uncertainty
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quantification when there is a single dominant mode. Developing
fast sampling methods which are robust as dimension grows would
be an important step forward to handle more general situations.

Holography set-ups are particularly challenging due to the fact
that a single incident wave is used. We have focused here on light
imaging, though acoustic waves can also be used to resolve at
different scales. We expect similar techniques to be useful in inverse
scattering problems involving other types of waves and different
emitter/receiver configurations, such as microwave imaging or
elastography, for instance.

Acknowledgements. Thanks to Krzysztof Burnecki for the kind
invitation to write this article. The author is indebted to the Kavli In-
stitute Seminars at Harvard for the interdisciplinary communication
environment that initiated this work, M. P. Brenner for hospitality
while visiting Harvard University, R. E. Caflisch for hospitality while
visiting the Courant Institute at New York University, V. N. Manoha-
ran for discussions of light holography, and D.G. Grier for an
introduction to acoustic holography. The work summarized here
has been done in collaboration with Thomas G. Dimiduk (Harvard
University and Tesla), María Luisa Rapún (Universidad Politécnica
de Madrid), Virginia Selgas (Universidad de Oviedo), Frédérique Le
Louër (Université de Technologie de Compiègne), Georg Stadler
(New York University), and Sergei Iakunin (Universidad Complutense
de Madrid, now at the Basque Center for Applied Mathematics).
This research was partially supported by the FEDER/MICINN–AEI
grants PID2020-112796RB-C21, MTM2017-84446-C2-1-R, Fun-
dación Caja Madrid Mobility grants, and MICINN “Salvador de
Madariaga” Mobility grant PRX18/00112.

References

[1] A. B. Bakushinskii, On a convergence problem of the iterative-
regularized Gauss–Newton method. Zh. Vychisl. Mat. i Mat. Fiz. 32,
1503–1509 (1992)

[2] C. M. Bishop, Pattern recognition and machine learning. Springer,
New York (2006)

[3] C. F. Borhen and D. R. Huffman, Absorption and scattering of light
by small particles. Wiley Sciences, John Wiley & Sons, Berlin (1998)

[4] T. Bui-Thanh, O. Ghattas, J. Martin and G. Stadler, A computational
framework for infinite-dimensional Bayesian inverse problems Part I:
The linearized case, with application to global seismic inversion.
SIAM J. Sci. Comput. 35, A2494–A2523 (2013)

[5] A. Carpio, T. G. Dimiduk, F. Le Louër and M. L. Rapún, When
topological derivatives met regularized Gauss–Newton iterations in
holographic 3D imaging. J. Comput. Phys. 388, 224–251 (2019)

[6] A. Carpio, T. G. Dimiduk, M. L. Rapún and V. Selgas, Noninva-
sive imaging of three-dimensional micro and nanostructures by
topological methods. SIAM J. Imaging Sci. 9, 1324–1354 (2016)

[7] A. Carpio, T. G. Dimiduk, V. Selgas and P. Vidal, Optimization
methods for in-line holography. SIAM J. Imaging Sci. 11, 923–956
(2018)

[8] A. Carpio, S. Iakunin and G. Stadler, Bayesian approach to inverse
scattering with topological priors. Inverse Problems 36, Article
ID 105001 (2020)

[9] A. Carpio and M.-L. Rapún, Solving inhomogeneous inverse
problems by topological derivative methods. Inverse Problems 24,
Article ID 045014 (2008)

[10] D. Colton and R. Kress, Inverse acoustic and electromagnetic
scattering theory. Appl. Math. Sci. 93, Springer, Berlin (1992)

[11] T. G. Dimiduk and V. N. Manoharan, Bayesian approach to
analyzing holograms of colloidal particles. Optics Express 24,
24045–24060 (2016)

[12] V. Domínguez, S. Lu and F.-J. Sayas, A fully discrete Calderón
calculus for two dimensional time harmonic waves. Int. J. Numer.
Anal. Model. 11, 332–345 (2014)

[13] M. M. Dunlop and G. Stadler, A gradient-free subspace-adjusting
ensemble sampler for infinite-dimensional Bayesian inverse
problems, preprint, arXiv:2202.11088v1 (2022)

[14] G. R. Feijoo, A new method in inverse scattering based on the
topological derivative. Inverse Problems 20, 1819–1840 (2004)

[15] R. Fletcher, Modified Marquardt subroutine for non-linear least
squares. Technical report 197213 (1971)

[16] J. Fung, R. P. Perry, T. G. Dimiduk and V. N. Manoharan, Imaging
multiple colloidal particles by fitting electromagnetic scattering
solutions to digital holograms. J. Quant. Spectroscopy Radiative
Transfer 113, 212–219 (2012)

[17] A. Gelman and D. B. Rubin, Inference from iterative simulation
using multiple sequences. Statist. Sci. 7, 457–472 (1992)

[18] J. Goodman and J. Weare, Ensemble samplers with affine invariance.
Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010)

[19] P. Grisvard, Elliptic problems in nonsmooth domains. Classics Appl.
Math. 69, SIAM, Philadelphia (2011)

[20] H. Harbrecht and T. Hohage, Fast methods for three-dimensional
inverse obstacle scattering problems. J. Integral Equations Appl. 19,
237–260 (2007)

[21] T. Hohage, Logarithmic convergence rates of the iteratively regular-
ized Gauss–Newton method for an inverse potential and an inverse
scattering problem. Inverse Problems 13, 1279–1299 (1997)

[22] J. Kaipio and E. Somersalo, Statistical and computational inverse
problems. Appl. Math. Sci. 160, Springer, New York (2005)

[23] S. H. Lee, Y. Roichman, G. R. Yi, S. H. Kim, S. M. Yang, A. van
Blaaderen, P. van Oostrum and D. G. Grier, Characterizing and
tracking single colloidal particles with video holographic microscopy.
Optics Express 15, 18275–18282 (2007)

[24] F. Le Louër, A spectrally accurate method for the direct and inverse
scattering problems by multiple 3D dielectric obstacles. ANZIAM J.
59, E1–E49 (2018)

[25] A. Maier, S. Steidl, V. Christlein, J. Hornegger, Medical imaging
systems: An introductory guide. Springer (2018)

[26] P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery,
T. Colomb and C. Depeursinge, Digital holographic microscopy:
a noninvasive contrast imaging technique allowing quantitative
visualization of living cells with subwavelength axial accuracy.
Optics Letters 30, 468–478 (2005)

EMS MAGAZINE 125 (2022) 11

https://arxiv.org/abs/2202.11088v1


[27] M. Masmoudi, J. Pommier and B. Samet, The topological asymp-
totic expansion for the Maxwell equations and some applications.
Inverse Problems 21, 547–564 (2005)

[28] S. W. McCandless and C. R. Jackson, Principles of synthetic aperture
radar. In SAR Marine Users Manual, NOAA (2004)

[29] S. Meddahi, F.-J. Sayas and V. Selgás, Nonsymmetric coupling of
BEM and mixed FEM on polyhedral interfaces. Math. Comp. 80,
43–68 (2011)

[30] R. M. Neal, MCMC using Hamiltonian dynamics. In Handbook
of Markov Chain Monte Carlo, edited by S. Brooks, A. Gelman,
G. L. Jones and X. L. Meng, Chapman & Hall/CRC Handb. Mod. Stat.
Methods, CRC Press, Boca Raton, 113–162 (2011)

[31] J.-C. Nédélec, Acoustic and electromagnetic equations. Appl. Math.
Sci. 144, Springer, New York (2001)

[32] J. Sokołowski and A. Żochowski, On the topological derivative in
shape optimization. SIAM J. Control Optim. 37, 1251–1272 (1999)

[33] A. Tarantola, Inverse problem theory and methods for model param-
eter estimation. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia (2005)

[34] J. Tromp, Seismic wavefield imaging of Earth’s interior across scales.
Nature Reviews Earth & Environment 1, 40–53 (2020)

[35] T. Vincent, Introduction to holography. CRC Press (2012)

[36] A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar,
K. Chaudhary and V. N. Manoharan, Using the discrete dipole
approximation and holographic microscopy to measure rotational
dynamics of non-spherical colloidal particles. J. Quant. Spectroscopy
Radiative Transfer 146, 499–509 (2014)

[37] A. Yevick, M. Hannel and D. G. Grier, Machine-learning approach
to holographic particle characterization. Optics Express 22,
26884–26890 (2014)

[38] M. A. Yurkin and A. G. Hoekstra, The discrete-dipole-approximation
code ADDA: Capabilities and known limitations. J. Quant.
Spectroscopy Radiative Transfer 112, 2234–2247 (2011)

Ana Carpio graduated in numerical analysis from Universidad del País
Vasco in Spain. She holds a PhD in mathematics from Laboratoire Jacques
Louis Lions (Université Paris VI, now Paris Sorbonne), and has been
a postdoctoral fellow at the Oxford Centre for Industrial and Applied
Mathematics. She is a recipient of the SEMA (Spanish Society of Applied
Mathematics) Prize to Young Researchers. Since 2006, she is a professor
of applied mathematics at Universidad Complutense de Madrid and
a member of the Gregorio Millán Barbany Institute for Modelling and
Simulation in Fluid Dynamics, Nanoscience and Industrial Mathematics
at Universidad Carlos III de Madrid. Currently, she serves as a Spanish
representative in the ECMI (European Consortium for Mathematics in
Industry) Council. Her main topics of research nowadays are inverse
problems and data driven computational models in biomedicine.

ana_carpio@mat.ucm.es

12 EMS MAGAZINE 125 (2022)

mailto:ana_carpio@mat.ucm.es


Left-right reversal illusion

Kokichi Sugihara

This article presents a class of 3D optical illusions, in which the
apparent orientation of an object changes to the opposite in
a mirror. We first show the mathematics behind such illusions,
and then present a method for designing objects with desired
appearances. Next, we show two simple subclasses, which can
be realized using paper, and hence can be useful even for children
to create their own illusion objects.

1 Introduction

The real world and its mirror image are plane-symmetric to each
other with respect to the surface of the mirror. However, an object
and its mirror image do not necessarily appear plane-symmetric
because human visual perception can be distorted due to optical
illusions [1, 3]. One typical case is a left-right reversal illusion [9].
An example is shown in Figure 1, where an object is placed on
a desk and a mirror is placed vertically behind it. The object is an
arrow pointing to the right, but it points to the left in the mirror.
We call this class of objects the “left-right reversing objects.” Their
behaviors look impossible, and hence they belong to the class of
“impossible objects” [11].

In this article, we focus on left-right reversing objects. We first
show the mathematics behind them, and then present a method
for designing such objects with desired appearances. Next, we
exhibit two simple subclasses, which can be constructed using
paper and hence can be useful even for children to create their
own illusion objects.

2 Left-right reversal created by line-symmetric objects

Let B be a set of points in the 3D space, l be a straight line, and
rot(B; l) be the set of points obtained by rotating B around l by 180°.
If rot(B; l) = B, B is said to be line-symmetric with respect to l, and
l is called a line of symmetry.

Suppose that we fix a line-symmetric object B in space in such
a way that the line of symmetry is vertical, as shown in Figure 2 (a),
where the dot-dashed line represents the line of symmetry. Let v1

Figure 1. Arrow that changes direction when seen in a mirror.

v₂

v₂′

v₁ v₁

B B

M

(a) (b)

Figure 2. Line-symmetric object and two mutually opposite
viewing directions.

and v2 be two viewing directions that are parallel to a common
plane containing the line of symmetry, with these views directed
towards the object from opposite sides, with the same downward
angle. Then B looks the same when we see it from the directions v1
and v2. This is the basic nature of a line-symmetric object. As shown
in Figure 2 (b), if we use a vertical mirror M and see the reflected
image along the direction v ′2 instead of seeing it directly along v2,
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Figure 3. Computer graphics images of the object in Figure 1.

the left and right will be exchanged. Thus, if the original appearance
along v1 is a right-facing arrow, the appearance along v ′2 will be
a left-facing arrow.

Indeed, this optical process is seen in Figure 1. Figure 3 shows
computer graphics images of the object. The left top is the plan
view, from which we can see that the boundary of the object is
point-symmetric with respect to the center. The line of symmetry
of this object passes through the center and is perpendicular to the
image plane. The left bottom image is the front view, and the right
bottom image is the side view. From those images we may deduct
that the object is line-symmetric with respect to a vertical line. The
top right image shows the appearance along the special viewing
direction, which makes the object look like a right-facing arrow.

As this example demonstrates, once we have a line-symmetric
object, we can produce a left-right reversal illusion. The next ques-
tion is how to create a line-symmetric object having a desired
appearance.

3 How to produce a desired appearance

Let (x, y, z) be a Cartesian coordinate system in 3D space. Figure 4
shows this coordinate system in such a way that the left half shows
the (x, y)-plane and the right half shows the (z, y)-plane, with the
common vertical y-direction. Suppose that, as shown in the left part
of Figure 4, we fix two x-monotone curves, y= c1(x) and y= c2(x),
−1 ≤ x ≤ 1, on the (x, y)-plane that satisfy c1(−1) = c2(−1),
c1(1) = c2(1), and c1(x) > c2(x) for −1 < x < 1. Let S denote
the closed curve composed of these two curves, and S′ denote the
curve obtained when we rotate S by 180° around the z-axis. In
Figure 4, S′ is represented by broken lines.

Our goal is to find the space curve, say T, that coincides with S
when seen along the viewing direction v1 =(0,1,− tanα) and with
S′ when seen along the viewing direction v2 = (0,−1,− tanα).
In Figure 4, we take the right-facing arrow as the curve S, and
then c1(x) = −c2(x), −1 ≤ x ≤ 1. However, this condition is not

y

x z

P

R

Q

v₁

c₁(x)

v₂

Q′

α

y

α

1−1

c₂(x)

Figure 4. Construction of a left-right reversing object having
a desired shape.

necessary in general; that is, the curve S is not necessarily symmetric
with respect the x-axis.

For an arbitrary x, we consider two points P= (x,c1(x), 0) and
Q= (−x,c2(−x), 0). When we rotate S by 180° around the origin,
Q is transformed into Q′ = (x,−c2(−x), 0), and hence P and Q′

align along the same line parallel to the y-axis.
Let R denote the point that matches P when seen along v1 and

matches Q′ when seen along v2. As shown on the right side of
Figure 4, the point that matches P when seen along the direction
v1 is on a line passing through P and parallel to v1. This point is
represented by

z1 = −(y− c1(x)) tanα.

In its turn, the point that matches Q′ when seen in the direction
v2 is on the line passing through Q′ and parallel to v2. This point is
represented by

z2 = (y+ c2(−x)) tanα.

The point R is obtained by setting z1 = z2 (= z). This yields the
formula

y = c1(x) − c2(x)
2

,

and substituting this expression in the formula for z1, we obtain

z = c1(x) + c2(−x)
2

tanα.

Finally, we obtain

R = (x, c1(x) − c2(−x)
2

,
c1(x) + c2(−x)

2
tanα).

As x moves from −1 to 1, the point R traces a space curve that we
denote by T1. Let T2 be the curve that is line-symmetric to T1 with
respect to the z-axis. Then

T2 = (−x,−c1(x) − c2(−x)
2

,
c1(x) + c2(−x)

2
tanα),

where −1 ≤ x ≤ 1.
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Figure 5. Left-right reversing fish.

The curves T1 and T2 together form a closed space curve de-
noted by T, which is our objective. That is, T coincides with S when
seen along v1 and coincides with S′ when seen along v2.

We constructed the 3D object in Figure 1 by first computing
the space curve T from the boundary of an arrow shape using
the above method, then translating T in the vertical direction (the
direction parallel to the z-axis) and obtaining the swept cylindrical
surface, and finally by wrapping the top and the bottom with
continuous surfaces.

Figures 5, 6 and 7 show three more examples of left-right
reversing objects computed by the method described above. The
object in Figure 5 is a fish facing towards the left, which however
faces towards the right in the mirror. Note that the upper and
lower boundary curves of the fish shape are not symmetric with
respect to the x-axis.

In Figure 6 (a), a bird faces towards the right, but its mirror
image faces towards the left. In this case, we gave the initial bound-
ary curve of the bird shape on the (x, z)-plane instead of on the
(x, y)-plane, so that the resulting bird is almost vertical instead of
being almost horizontal. Figure 6 (b) and (c) present the front view
and the side view, respectively, of this object.

Figure 7 shows a jet airplane facing towards the left, but facing
in the opposite direction in the mirror. In this case, the upper and
lower boundaries are not x-monotone, but we can nevertheless
construct the object. Indeed, the monotonicity condition is too
strong; what we need is a one-to-one correspondence between
the points on the given curve and those with the same x-coordinate
on the 180° rotated curve.

In all examples, we first computed the space curve T, and then
added the thickness by translating T in the direction perpendicular
to the plane containing the initial curve S. Thus, the translation is
vertical in Figures 5 and 7, and horizontal in Figure 6.

(a) Object and its mirror image

(b) Front view (c) Side view

Figure 6. Left-right reversing bird.

Figure 7. Left-right reversing jet airplane.

4 Human factors of the illusion

Mathematically, the left-right reversal illusion is created by a line-
symmetric 3D object. However, we also must consider human
factors to strengthen the illusion.
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In the objects shown in last section, we adopted a swept surface
when the curve T moves along a straight line. The reason is as
follows: T is a space curve and physically matches S when it is seen
in the viewing direction v1. However, there is no guarantee that S
is perceived. One may perceive S, perceive T, or perceive any other
curve that matches T in the viewing direction v1. Thus, we need
some additional trick for the viewer to perceive S instead of any
other possible interpretations.

For this purpose, we used a remarkable characteristic of the
human vision system, that is, the preference for rectangularity. The
human brain prefers right angles to other angles when interpreting
2D pictures as 3D objects [4,5,12]. When we see a parallelogram,
we are apt to interpret it as a rectangle seen in the slanted direction.
This tendency is very strong and can be used to design various
types of depth illusions, such as impossible motions [7], ambiguous
cylinders [8], and topology-disturbing objects [10].

When T is translated vertically, the swept surface forms a cylin-
der whose height is the same wherever we measure it. Therefore,
we may expect that the viewer interprets the top curve as the sec-
tion obtained when we cut the cylinder by the plane perpendicular
to the axis. This section is identical to the original curve S.

Another factor to note is the difference between a 3D ob-
ject and its projected image. When we look at Figures 1, 5, 6 (a),
and 7, most of us can enjoy the illusion without any special effort.
However, we must note that these figures are 2D images taken
by a camera. When we see an actual 3D object, in contrast, the
illusion is not as strong because we have stereoscopic vision.

When we see a real object with two eyes, we can perceive the
depth to the surface of the object by the triangulation principle
[1,2]. This function is called binocular stereoscopic vision. Hence,
we can figure out the actual shape of the object relatively easily.

When we see an image taken by a camera, however, binocular
stereoscopic vision is not a factor in perceiving the image. A camera
has only one set of lenses, and hence taking a picture with a camera
is equivalent to seeing an object with one eye while closing the
other. As a result, our brain needs to choose some 3D structure
among many possibilities and usually chooses one that has many
right angles. For this reason, the left-right reversal illusion can be
perceived more strongly when we see projected images than when
we see actual objects.

5 Construction by rectangular cylinders

The left-right reversal illusion can be created when we construct
a line-symmetric object. One simple way to accomplish this is to use
a rectangular cylinder. The black lines in Figure 8 show a diagram of
the unfolded surface of a rectangular cylinder. When we print it on
a sheet of paper, fold it along the vertical lines, and glue it so that
the left and right edges meet, we obtain a rectangular cylinder.

c c

Figure 8. Unfolded surface of a rectangular cylinder.

Figure 9. Left-right reversing rocket made from the diagram in Figure 8.

Next, as shown by the red lines in Figure 8, let us cut off the
upper part in such a way that the leftmost side and the third side
from the left are cut along the same curve, and the second and
the fourth sides are cut along the straight lines connecting the end
point of c and the starting point of the other c (the red broken
lines in the figure). Then the resulting cylinder is a line-symmetric
object whose line of symmetry is parallel to the axis of the cylinder
and passes through the center of the rectangle section. Therefore,
by placing the resulting cylinder vertically in front of a mirror and
viewing it from a high angle, we can see the left-right reversal
illusion.

Figure 9 shows the object constructed from the diagram in
Figure 8. We painted the inner side of the cylinder in blue. The
top of the cylinder appears to be a rocket facing towards the left,
while it faces towards the right in the mirror. The thickness of the
apparent shape as well as the lengths of the left- and right-side
edges depend on the slant angle α along which we look down
at the object. In the case of Figure 9, we adjusted the viewing
angle so that one of the side edges degenerates to a point and
consequently the head of the rocket forms a sharp corner.

Figure 10 displays two more examples: (a) shows a fish and (b)
shows a cascade of arrows. The colors in the mirror change simply
because the inner side of each cylinder was painted in two colors.
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(a) Fish

(b) Cascade of arrows

Figure 10. Left-right reversal illusion made by rectangular cylinders.

The method is very simple. We need to use the same curve
twice, as shown by the points labeled c in Figure 8. Therefore, it
might be fun even for children to search for the curves that can
create their own original shapes.

6 Construction by pictures

Another simple way to construct a line-symmetric object is to draw
a picture. Figure 11 shows an example. The direct view of the
drawing looks like a staircase going up from left to right, while in
the mirror it goes up from right to left. Not only the staircase but
also the upper and lower floors and walls are all left-right reversed
in the mirror.

The drawing used in Figure 11 is shown in Figure 12. Note that
this drawing is point-symmetric: if we rotate it by 180° around the
center, we get the same picture as the initial image. This in turn
means that the picture is line-symmetric with respect to the line

Figure 11. Left-right reversing drawing of a staircase.

Figure 12. Drawing used in Figure 11.

that passes through the center of the drawing and is perpendicular
to the picture plane. Therefore, the left and the right are reversed
in the mirror because of the same reason as described above.

However, the perceptual process is a little more complicated
because our brain automatically interprets 2D pictures as 3D objects
whenwe look at the scene in Figure 11. If one does not interpret the
drawing as a 3D structure, one could easily understand Figure 11,
because the drawing in Figure 12 is just reflected by the mirror. In
fact, the nearest point of the drawing is mapped to the farthest
point in the mirror. However, the human brain has a stronger
preference for rectangles than for general parallelograms [4,5,12].
Thus, when we look at Figure 11, our brain perceives a 3D object
instead of a 2D drawing, and realizes that the mirror image is
inconsistent.

Another example is shown in Figure 13. This object is also a hor-
izontally placed drawing, and it is point-symmetric with respect to
the center, and hence line-symmetric with respect to a vertical line.
However, it is a perspective projection instead of the orthographic
projection of a 3D object, and consequently, the impression of
3D structure is strong. Physically, the nearest part is mapped to the
farthest part in the mirror. However, because we interpret the near-
est part as the lowest part of the 3D structure, we try to find the
corresponding counterpart around the nearest area in the mirror
and fall into an inconsistent perception.
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Figure 13. Another left-right reversing illusion made with a drawing.

Figure 14. Mixture of a horizontal drawing (staircase) and non-horizontal
structure (supporting walls).

The final example, shown in Figure 14, is a mixture of a horizon-
tal drawing and an actual 3D structure. The staircase is a drawing
fixed horizontally, with only the side walls not horizontal. The whole
structure is line-symmetric with respect to a vertical line, and as
a result, we can perceive the left-right reversal illusion.

7 Concluding remarks

We have demonstrated how a line-symmetric 3D structure can
create a left-right reversal illusion and presented a method for
designing illusion objects with desired appearances. We also pre-
sented two simple classes of line-symmetric structures: rectangular
cylinders and point-symmetric 2D pictures. These simple classes

can offer material for anyone, even for children, to create their
own illusion objects, and to experience the illusion.

From an educational point of view, these two simple classes of
illusion objects enjoy several advantages. First, children can create
their own objects instead of just being handed existing objects.
This may stimulate their active involvement. Second, children can
experience the illusion using real 3D objects instead of just viewing
images taken by a camera. This should provide an opportunity
to understand the difference between seeing objects and seeing
their images, and thus help children understand the importance of
having two eyes. Third, illusion objects can give children an oppor-
tunity to understand the power of mathematics, which provides
a framework to create illusions in a systematic manner rather than
by heuristics.

Optical illusions in general cover a wide range of visual phe-
nomena, including misperception of size, orientation, shape, color,
brightness, and motion. Among them, the depth illusion, which
includes the left-right reversal illusion, is remarkable in that the
mechanism can be understood from a mathematical point of view
more clearly than other classes of optical illusions. Indeed, the
interpretation of 2D retinal images as 3D objects is an ill-defined
problem, in the sense that the answer is not unique [2, 6], and
by observing the behavior of human visual perception, we can
guess what kind of possibilities are chosen more frequently. This
understanding also helps us create new optical illusions. The left-
right reversal illusion is one of the common illusions that can be
discovered using mathematics.
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Interview with Abel laureate 2022 Dennis Sullivan

Bjørn Ian Dundas and Christian F. Skau

Professor Sullivan, first we want to congratulate you on being
awarded the Abel Prize for 2022 for your groundbreaking con-
tributions to topology in its broadest sense and, in particular, its
algebraic, geometric and dynamical aspects. You will receive the
Abel Prize from His Majesty the King of Norway tomorrow.

Thank you!

You have worked in very many different fields, and, actually, your
supervisor, William Browder, described you as sort of an intellec-
tual vacuum cleaner. But it seems that you always had a guiding
principle for what you are doing. If mathematics rests upon two
pillars: space and number, you have been partial to space to the
extent that you want to replace number by space.

A part of this quest of yours is the question: “What is a man-
ifold?” And that is perhaps a good place to start; before we
continue on your journey, as you say, from the outside to the
inside, intuitively: what is a manifold?

It is space, expressed logically in terms of a set of points.

It’s space, but it’s sort of a special space, isn’t it?

No. The idea of space is that you can move things around. There
isn’t an invisible wall that makes you stop here, but you can move
around. Any object which is locally like that is called a manifold.
Space itself is an intuitive word, that we all know about. But there
is an actual concept called manifold, which is the logical version of
that intuitive concept. It’s an attractive notion when you first learn
about it as a math student. And the first math theory about these
manifolds that I learned about was sort of strange.

Tell us!

You attached to such an object, which you didn’t really describe
in terms of its logical definition, some other objects which were
very abstract and part of algebraic topology. And when you had
enough of those with the right conditions, you could build the
manifold.

So you could actually reconstruct the manifold from these abstract
objects?

You could build it up to equivalence. But you didn’t really construct
the points of the manifold in a canonical way. So, it has no points.
It was like a black box. The information is stored there. And that is
where numbers come in; all these concepts are based on numbers,
the algebra, whereas the actual texture of space is not there.

Is it like the recipe for the cake versus the cake?

Yeah, I’d say it’s exactly like that; it’s a good idea. You must have
prepared that?

No, we did not!

It’s a very good interpretation. It’s like a cake with no edges or
layers. It’s just this delicious cake going on for ever, right?

And you really want to get at the cake?

Well, that is what you are attracted to, the idea of space and
its texture. And then, it turned out, that every time I would ask
a professor a question, he gave me an answer that was in terms
of number, which is algebraic topology and homotopy theory. So
I had to learn that, as it were. I adjusted the geometrical problem
so that it fitted with the numbers, so to speak. You know, some
goals are not achievable and some are within reach, so I adjusted
to get the ones within reach during that period.

Is what you describe here more or less what is called surgery,
where you actually build the space according to the prescription?

Right, you have a prescription of the information: how many holes
it has, how many handles etc., and you build an actual manifold
with that description. And surgery allows you to build it. That
was a powerful technique. Actually, it was a secondary technique
following Thom’s cobordism theory, which was very influential.
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Abel Prize laureate Dennis Sullivan receives the Abel Prize from His Majesty, King Harald of Norway.
©Naina Helén Jåma / The Abel Prize

But the important distinction here is between what can be de-
formed and pushed, well, in homotopy theory, in the homotopy
type – to use technical jargon – as opposed to the actual manifold?

Right. First, it’s interesting that the classification of closed manifolds
is an interesting subject. It’s not, a priori, clear that it will be so,
but it’s extremely interesting classifying manifolds that are closed.
You know, no boundary, not going off to infinity.

Classically, one knows the classification for surfaces. That goes
back to Abel and Riemann. They figured that out. The sphere, the
genus number, abelian functions, abelian differentials, and so on.
But already Poincaré discovered that in dimension three it’s much
more complex. And then it gets more and more complex as the
dimension goes up.

It was kind of interesting that there is enough “number ma-
chinery”, so to speak, to understand spaces of dimension five and
higher. That was an amazing development, basically due to Thom,
I would say, who started this, and surgery was completing this
story. And I got in on the last big boat heading to… wherever.

With the surgery exact sequence?

Kind of. Browder – youmentioned Browder – hewas presenting this
theory. And it was in a complicated form. You could sort of change
it around a little bit and get it simpler. And then you could see from
the changed picture which areas could be developed completely.

The smooth structure is still open, in some sense, up to finiteness.
I mean, we know all the infinite part for the smooth structures.

And that is an area where the previous Abel Prize winner Milnor
had a huge impact.

Yeah, on that one, certainly. His 1963 paper with Kervaire was my
math bible.

This actually leads us to your thesis in Princeton. Princeton must
have been a fascinating place to be at that time?

Absolutely! All these famous people around with their expertise.

So you could just ask them?

Yeah, you could just ask them every day at tea, you didn’t have
to make an appointment, because they all came to tea. You could
ask them anything you wanted to.

There is a cute story about when you are closing in on your thesis,
and you had a discussion with Milnor. Could you tell it?

Well, I had this sequence of steps, and if I could do them all, I could
solve what I wanted. But each step had a clear surgery part and
then it had a Milnor exotic sphere part. I didn’t know how they
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where linked together, so I went into his office, because I had
a serious question. At tea you could ask any question, but this was
serious. He looked at it and said: “Why don’t you just forget the
Milnor-part”. He didn’t say it that way, but something like: “Why
don’t you just forget the exotic sphere part, and just do the first
part.” And this worked for piecewise differentiable manifolds.

So this is the combinatorial manifold case?

Yes, I call them combinatorial manifolds, or PL manifolds, or piece-
wise differentiable manifolds. You allow the differential structure
to break, but you keep the combinatorial structure. And I said:
“Thank you Professor Milnor”, but I thought: “Oh, these piecewise
linear manifolds, I like smooth manifolds, but these are just piece-
wise linear.” And I thought about it: “Wait a minute, if I do that,
I know the structure completely! That is, I know the local structure
completely.” And I just had to figure out the global structure, which
took another year, but then it solved the whole problem.

And you asked your thesis advisor Browder: “Can this go into my
thesis?”

Well, yeah, that’s right. I asked him: “I have this sequence of steps,
which have these coefficients, and if you can do all the steps you
get this result. Can that be a part of my thesis?” And he said: “Well,
I guess that is your thesis.”

And that answered a long standing question that people had been
wondering about for quite a while? We are thinking about the
so-called Hauptvermutung.

That was actually the driving engine. There was this more fa-
mous question about whether the combinatorial structure was
uniquely determined by the topological structure. And that was
called the Hauptvermutung. And it turned out that whenever
I could understand the theory of what I was discussing completely,
I could use the technique of Novikov to prove my list of numbers
were zero.

The next eight months was like a race, it was really a race
against reality. Every time I could understand this global theory
better, I could prove the Hauptvermutung. It turned out that I could
prove everything was zero except one little thing in dimension four
that wasn’t zero, but had order two, and that was it. A few years
later they actually found counterexamples in that little place there.
So I proved as much as one could.

What you call “that little place” is an obstruction group in dimen-
sion four, right?

Yes, that was my obstruction group in dimension four. In a sense,
that isn’t the way I work. Well, I would love it if I could solve a well-

known question, but I really like understanding things better. So,
I actually like the theory that says that these are all the piecewise
linear manifolds in a given homotopy type, and you can compute
these numbers and then you know which one you have, and that
is a complete discussion. It turns out that 99 out of a 100 of those
numbers are also topological invariants. So you get this corollary.
People today only know the corollary. And now they even have
a simpler proof, so everything I have done is forgotten! So I’m glad
I get this Prize so I can talk about it again.

Immediately from there you move on and do other amazing stuff.
You discover that the Galois group has important consequences
for the study of manifolds. Indeed, you solve a famous conjecture
that way. Could you elaborate on that, focusing on the manifold
aspect of it? Specifically, how come you have a Galois action on
manifolds, it doesn’t seem reasonable at all.

I would say that it’s still not understood. In other words, there was
this list of invariants – I’m simplifying it a little bit – but a big part
of that list could be collected into one element in K-theory. And
K-theory has this symmetry, the Adams operations. One knows that
when you look at the roots of unity in the complex numbers, that
is if you add the roots of unity and form that field, that gives you
the abelian part of the Galois group. And the symmetry of those
fields, more precisely, you have to complete the manifold theory –
it’s technically a little strange to topologists and geometers – you
complete the number aspect of manifolds so to speak, and that
has symmetry exactly the abelian part of the big Galois group. So
we have Abel and Galois together.

And that symmetry exists in K-theory, so it acts on the invariants
of manifolds. So, the manifolds were just given the information,
the homotopy type and these other numerical invariants, and the
Galois group acted on these invariants, and therefore it acted
on the manifolds. That is how it came about. It doesn’t come
about in a natural explicit geometric way, and that gave rise to this
Jugendtraum, or dream of youth, a term coined by Kronecker in
a different context. This Jugendtraum, explaining this in elementary
terms, is still open.

How can we viewmanifolds? As we would view algebraic varieties?

It’s a little strange, you see. If you think of usual algebraic vari-
eties with real numbers and complex numbers, they are normal
topological spaces. And this topology comes from the topology
of complex numbers or the real numbers, right? The Galois group
doesn’t preserve that topology. A lesson from algebraic geometry
is that to understand things that are defined in terms of integers
it is best understood by looking at each prime and looking at the
real completion, and view the information that way. The “inter-
section” of all this information gives the integral information. It’s
kind of sophisticated. This was actually too much for my topologi-
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cal colleagues. They didn’t want to hear about it. The geometric
topologists, not the homotopy theorists. The homotopy theorists –
they loved it!

So, you are assembling all this information, one prime at a time,
plus the rational information?

Yeah, for a manifold the finite prime part splits into the prime two
and all the odd primes. Individual odd primes behave the same
way. Because of the Poincaré duality, it’s like a quadratic form. It’s
well known that quadratic forms behave differently at the prime
two than at the odd primes.

Could we for a moment segue into a different topic, though still
associated with the name Poincaré. We are thinking of the term
Poincaré moment, which refers to the experience Poincaré himself
described where he in a flash saw the solution to a problem he had
worked on for months. Have you had such Poincaré moments?

I search for them all the time, but they come very seldom.

Could you tell us about the fascinating experience you had when
you were about to take the oral exam as part of your PhD?

Oh, yeah, yes, right. There is a little book by Milnor called Topology
from a differentiable viewpoint. About how you could do all of the
usual things, you know, the Königsberg bridge problem, continuing
to Betti numbers, etc., etc. You could do all that more geometrically
using smooth functions and regular values, preimages of the nice
points, submanifolds and stuff like that. That was Milnor’s beautiful
description of the Thom theory from 1953, okay? So, we were
studying that for the orals, and I knew it forwards and backwards,
I could answer any question.

I was walking in to take the exam, and thought: “Let me look
at it one more time before the exam”. I went to the library, opened
the book, looked at it. It’s a small book, it’s got ten theorems in it.
But still, there are a lot of steps, and I was looking at it one more
time, and then this basic picture appeared to me: You have a map
to something like a sphere, and you take the preimage of a point –
which is what is called a nice value – you get a nice submanifold
by the Implicit Function Theorem. You get local coordinates, and
then the neighborhood sort of funnels down, like you would push
a slinky down and flatten it out completely. But this was saying
something about the global map: There is the preimage of one
point, and then I noticed: “Oh, wait a minute, the preimage of
one point has all the information.” The complement may be very
complicated in the domain, but the complement of a point or a disk
in the image sphere is contractible. It’s like taking a point out of
a balloon, it contracts, it’s contractible! So you can extend the
mapping to the contractible part uniquely. Any choice you make
will be related by deformation to any other choice.

Dennis Parnell Sullivan – 2022 Abel Prize laureate.
© John Griffin / Stony Brook University / Abel Prize

Suddenly the whole book, or the whole theory, became clear.
It just follows from this picture, from this slinky picture, with the
logical remark that the complement here is contractible, so there
is no more information. That is just pure logic, plus this simple
picture. The whole book fell away, the entire theory fell away. If I got
amnesia but was left with that picture in mymind, I could reproduce
the whole book and the whole theory. And then I thought: “This
is what it means to understand mathematics”. I was a graduate
student! So, I want to feel this again!

And have you?

Yes! However, it takes longer and longer.

Of your other main results in this area, is there any one that has
such a picture in your mind, where you actually see the entire
theory?

Well, I mean, basically this sequence of steps things I was talking
about, where you take preimages and use this picture, I kept using
it. For example you know how a screwdriver works, it goes into
the slot and you turn it. You can take apart this house, you know.
I mean, you can do anything. You have to have a simple tool, you
have to understand it, and then use it. Well, that wasn’t exactly
a Poincaré moment.

The Poincaré moment I was thinking of, when you said that,
was when he put his foot on the bus and he realized that the
holomorphic bijections of the unit disk were the same as the sym-
metries or the congruences of non-euclidean geometry. And that
was a fantastic connection. He knew both things. But, in a sense,
the connection is themoment. This largely dictated the next century,
and all the work of Thurston and so on.
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But you must have had a similar experience, when you proved the
Adams conjecture. You’ve commented that it wasn’t really impor-
tant that the Galois action corresponded to the Adams operations.
Still, it must have been very important to you at the time when
you were trying to solve the Adams conjecture, that they were the
same. That must have been a revelation, that that actually could
be true?

Well, it’s not my creation, it was Quillen’s observation that some-
how these Adams operations, whatever they are, let’s just say they
are some symmetries of something that relates to manifolds and
space.

The symmetry is related to the fact that, when you are working
in the field of algebra, you may assume that p times anything is 0,
where p is a prime, like 3 times anything is zero, 3 being the prime.
There is an amazing fact that if you work, for example, with 3 times
something is 0, and you take a number x and you cube it, and you
take another number y and cube it, then if you add the two and
then cube the sum of the two numbers, you get the same thing:
x3 + y3 = (x+ y)3. This is because of what the binomial coefficient
theorem says, that you get these 1, 3, 3, 1-terms, but 3 is zero, so
you get 1 and 1. That shows that you have this symmetry in each
of these prime worlds. So, you have this additional symmetry given
by what is called the Frobenius automorphism. That is fantastic!

Quillen had already suggested that there is a relation between
the Adams conjecture and Frobenius, but then that was a little too
exotic for me. I wanted to use the answer to the Adams conjecture,

I didn’t want to prove it. And then I heard – I hadn’t met him yet –
that he wasn’t going to work on it, because he first had to learn
200 pages of Grothendieck and transfer it into his setting. Okay,
he only wrote perfect papers, it had to be perfect, or else he didn’t
write it.

It’s Quillen you are talking about, right?

Yes, it’s Quillen. Now I’m adding what I found out later, as I read
more of his work: every paper is perfect. Perfect isn’t the right
word, it’s optimal. You can’t do better. So, I heard about this, and
I said: “Okay, I’m going to pretend that this is true, because Quillen
made this connection, and he could have written the proof out.”
And then I said: “But wait a minute, I can’t just pretend that this is
true, I’ve got to prove it myself.” But if it’s true, it’s easier to prove.
Because you know it’s true. It’s a topological theorem, so I just
kept working on it.

I worked on it for six months, which in those times was a really
long time because things were happening faster. I reduced it to
something – it was equivalent to something – and then I tried for
a long time to prove this something, but I couldn’t do it. And then:
I remember sitting on the lawn, I remember exactly that moment,
August 19, 1967. I had just driven up from Mexico with my family
to Berkeley. I was going to spend two years there. I was sitting on
the lawn of the house where we were staying for a few days until
we got our own place, and I thought: “What has Quillen said about
this?” He said: “Frobenius! algebraic symmetry! at the primes!” It
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turned out that it gave my condition immediately, and so I had
a proof of the Adams conjecture.

In some sense that was a Poincaré moment. It took me a year to
write out the details. There were different details, less foreboding
than what Quillen had envisaged, so I was able to do it.

And that spawned the so-called MIT notes, which became widely
circulated and famous?

That spawned the MIT notes, yeah. You have to first localize, then
complete and then do all the related homotopy theory.

And then you moved on to the quasiconformal manifolds and
Lipschitz conditions. How did that transition happen?

You sort of skipped about ten years… but we don’t have so many
hours!

Yeah, we agreed to skip the rational homotopy theory, which really
hurts, but…

Okay, but let me make one point about that. Algebraic geometry
and stuff like that just does the finite primes. It turns out that all the
information in this algebraic topology which is determined at the
primes, has this extra symmetry in it, which is related to algebraic
geometry. But then I thought: “Wait a minute, what about the
infinite prime, the archimedean place?” I didn’t know any analysis,
or anything like that. “But, maybe it has to do with differential
forms?” And it turned out that it did. It’s sort of like algebra does
this part, analysis and geometry do this part.

Which does open analysis to all of the rational theory.

Right!

And you then prove that cohomology in many situations deter-
mines the entire rational type; Kähler manifolds.

Yeah, it had nice corollaries. The idea was to express the information
in terms that are natural. It’s natural to express the information
of the infinite part, rational numbers, real numbers, in terms of
differential forms, which is natural for analysis and geometry.

So you have this information for the primes with the Galois action
and you have analysis on the differential forms for the infinite
piece?

All of which is related to topology, right. But then, to go on, all
of this was frustrating, because it was outside the manifold. They
were sort of invariants. I liked facts about things inside the mani-
fold. Foliations or dynamical systems and fractal sets, these things

are inside the manifold and they are constructed by infinite pro-
cesses inside the manifold. So I started to learn about these infinite
processes.

That began the dynamics part. It was sort of like just follow-
ing this interest inside, there was no logical reason. I was starting
over as a graduate student again, I’d say. It turns out that the best
way to understand the holomorphic part of manifold theory in
dimension two is not through the smooth structure, but in terms
of the quasiconformal structure. That is the best way to under-
stand dimension two. And it’s amenable to certain infinite fractal
processes. Anyway, it was natural to leave this highly sophisticated
algebraic viewpoint and go back to the original interest in man-
ifolds, like dynamics – and processes like dynamics – inside the
manifold. I mean, physical processes take place in space, so this
is all about everything else in science. You know, even medicine;
your body has tubes with fluids and so on.

Let’s talk a little more about these dynamical systems and their
importance in studying manifolds. Perhaps we could start with
something very concrete, namely Denjoy’s answer in the 1930s to
a question posed by Poincaré about circle diffeomorphisms with-
out periodic points. This was taken up and extended enormously
in the ’70s by Michel Herman and his student Yoccoz, answering,
among other things, a question posed by Arnold. With this as back-
ground, could we ask you how this theory impacted your desire, so
to speak, to understand things inside the manifold? This in contrast
to the picture you give of manifolds locally being like a puddle of
milk looked at from the outside – there isn’t much personality.

Let me answer this by first posing the question: “Why is it interest-
ing to know about manifolds?” It’s all about space. Okay, we have
done the number aspect, but why is it really interesting?Well, all the
processes that we see go on in space. All that stuff that is described
by various other fields, ODEs, partial differential equations, func-
tional analysis, that’s all part of describing the processes. It’s also
combinatorics, computer algorithms. All that is about processes
in time, but all these processes in time go on in space.

I didn’t know all that then, but I wanted to know more about
things going on inside manifolds. A little dynamical system could
create an interesting fractal set inside the manifold. And if you
perturb that dynamical system, that fractal set was still there. It
was structurally stable. So I had to learn about things such as Cantor
sets, fractals and stuff. So I started and I’d say it was almost a ten
year period of time before I got to quasiconformal mappings.

This was at the end of the ’70s. I was thinking about dynamics
and foliations, like this idea of an onion that is foliated. That is a very
attractive picture, and these were interesting objects. Thurston
had arrived on the scene, and he blew everybody’s mind away,
including mine. Immodestly, I have to say that I was smart enough
to appreciate that I was watching Mozart playing the piano. I mean,
not everyone did, because Thurston wasn’t so communicative.
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But he was one of your heroes along with Thom, wasn’t he?

Yes, but he was younger than I was, he was my younger brother
hero. All this fitted with this desire of mine to go inside the mani-
folds, and understand more geometric things. So I started studying
dynamics, and I learned about the Smale school. And then, in
France, I started going to Michel Herman’s lectures, and I met
Yoccoz, his student. Michel Herman was working on the problem
you alluded to in your question. It happened like this: Denjoy died
in 1974, and Michel Herman was working on his papers for the
French Mathematical Society. Herman started to talk about the
Denjoy argument. So, I learned that argument. And then Herman
started answering these questions, refining what Denjoy had done.
You have to remember that Poincaré was doing celestial mechan-
ics, in particular, the three body problem. He came up with this
question that was answered by Denjoy, who did this a couple of
decades after Poincaré died, actually.

This is all about one dimensional manifolds. It turns out that
they are actually among the hardest from this interior point of view.
They are very difficult. Herman analyzed the very fine structure
of diffeomorphisms of the circle, and we were learning as he
was producing results. I was just intrigued about it. For example,
there is a beautiful example involving the golden ratio number and
Fibonacci numbers, and that intrigued me.

And this is while you are at IHÉS?

At IHÉS, yes. He was at Orsay, which was just a walk across the
valley of the Yvette. The interesting thing about the real line is that

there are three kinds of distortions that behave algebraically very
nicely. There’s the metric distance distortion, the ratio distance
distortion and the cross ratio distortion; corresponding respectively
to metric geometry, affine geometry and projective geometry. And
there is the usual chain rule. You take the logarithm of that, it’s
a nice formula under composition, and now you can do two other
compositions with these higher distortions. Those were the key
things that I used to explain Herman’s work to myself.

Michel Herman’s theorem took a whole volume of Publications
Mathématiques de l’IHÉS, and I wanted to get it down to something
like just a few key moments of understanding. And you could –
after a couple of years thinking about it – get it down to something
you could tell on the phone to somebody. That was my challenge:
Find a proof that I could tell to somebody on the phone. You have
to understand it, you can’t write down a lot of formulas and calcu-
late and stuff like that, you have to understand it. It was just like
that, the desire to understand, and it was just like fun, you know.

But then, in ’82, I heard that physicists had discovered some-
thing startling related to phase change. You know, the water gets
colder and colder, and suddenly it forms this crystal, right? It’s
when all this rigidity happens. That is called phase change. There
are a lot of situations where that happens in physics. It turned out
that physicists had calculated one such in a dynamics example,
where you adjust a certain parameter to the freezing point, I’d say,
and then you get this incredible thing: It could have depended on
infinitely many parameters, and it doesn’t depend on anything at
all, it’s universal!

That was what Feigenbaum first discovered, right?
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Feigenbaum discovered that there was this rate (from the other
direction). Then other physicists discovered – and Feigenbaum too,
actually; he hadn’t communicated it as well as the other ones –
that it was this intrinsic geometry, like a crystal, I’d say.

What was interesting about this for me was that there were
not enough techniques available to prove this at the time. It was
numerically calculated. You can take this formula and that formula,
and do this infinite process, calculate and – bingo! The Hausdorff
dimension is 0.5308…, or something like that. So, here is a theorem
that is true and it is precisely formulated. True with quotes, because
it was numerically true. The available techniques weren’t enough
to prove it. It turned out that you just had to add three more things
to the Michel Herman and Yoccoz stuff, and then you could prove
it. But it took eight years.

The idea was, I could stop whatever I was doing, and just work
on this, there wouldn’t be any counterexamples, you know. And
a proof would need new math.

And you were the one that came up with a proof?

Yeah, I found it and it took eight years.

And that was in ’82?

It was in ’90. It was ’82 when I heard about it.

And in the meantime…

…in the meantime? I was just working on this. There might be
other things that appeared in print, but I wasn’t working on
anything else.

For instance the non-wandering-domain theorem?

No, that is ’81.

It was published in ’85?

No no no, that was already over. Iwas in quasiconformal mappings;
Ahlfors and Bers’ theory goes into dynamics. That was already fait
accompli by 1980.

That must have been very inspirational that you got this result
about non-wandering sets.

It was sort of obvious. It was obvious from the understanding.

But it wasn’t obvious to Fatou.

No, but he didn’t have this theory of quasiconformal mappings,
this deformation theory.

It must have been very satisfactory for you to prove that?

Well, no it’s not, no no, you have misread me. These prizes and
stuff are nice, but that’s not the point. It’s not the point to solve
a problem, the point is to understand. And by this point, by the
time, you understood what Ahlfors and Bers were doing, it was
like a Poincaré moment, where you say: “This theory here could be
very useful in this other theory”. These are disjoint universes, and
do this Fatou–Julia thing, and just transfer the technique over.

Are you now talking about your dictionary?

That is the first entry of my dictionary, right.

In the paper where you prove the non-wandering domain you state
the dictionary in the introduction. But do you use your dictionary
in order to prove, say, the non-wandering result?

I do. There is something called the Ahlfors finiteness theorem,
and you take what makes that work, and you restructure it over
in this other domain. It was really using the comparison, the
correspondence.

The non-wandering result, the Fatou theorem, corresponds to
a known theorem in this Kleinian group category. It’s about the
idea of understanding, not the names, not what field it is, but what
is the math idea. The math idea is the same here and here.

Is this like you were telling us a moment ago, that once you know
something is true, it’s way easier to prove it? Was the dictionary
some sort of guidance in that respect – you knew what would
be true?

No, it’s like when you arrange a party: you have to have enough
drinks, enough food. I mean, you have to have enough stuff. You
have to accommodate the correspondence. In retrospect you can
say that the Fatou problem corresponds to something known over
here, in Ahlfors and Bers, okay?

The underlying math is the same, and that is satisfying. But it
was so obvious, it wasn’t exciting. The idea is, if you think in terms
of structures, the structure here and the structure there were the
same, two examples, the same structure.

So we were talking about your dictionary between the Kleinian
groups and quadratic or complex dynamics, if you like, right?

That is one item in the dictionary. The dictionary says: “For every
item here, there should be a corresponding item here, because the
basic elements of the two universes are the same. In fact, I once
introduced Bers at a conference to Mostow. Bers asked: “Why are
you introducing us? We’ve know each other for years, we’re close
friends, but we never talk math”. Like he said it proudly. I said:
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“Well, I have this one theorem. If you do this it is Mostow’s theorem,
if you do this it is your theorem.”

How did they react to that?

You know, people are in their comfortable world, it’s already
rich and beautiful, they are happy there. I’m not like that, when
I start to understand something, I start wanting to move sideways,
somehow.

So, you have the dictionary and what you’re telling us is that the
underlying mathematics of the two things are the same. But not for
any particular reason; it’s just the same? It occasionally happens
that you have two different mathematical problems, and the way
you handle them, or the way their combinatorics work is just the
same, for no apparent reason.

No. The question is: “what are the basic elements that are involved
in the mathematics, in each situation?” In this case there is dy-
namics which has a certain form actually, a technical form called
hyperfiniteness, related to von Neumann algebras, and also it has
to do with Riemann’s ideas of deforming the complex structure.
Okay, so those are the two ideas.

There is an underlying complex structure, that is preserved by
the dynamics. These are called holomorphic dynamical systems. This
technique can be used in the entire field. But before this happened
there was a field called Fatou–Julia theory and one separate field
involving Poincaré limit sets and domains of discontinuity and so
on. These were two different fields. This was occupied by complex
analysts, and this was occupied, in modern time, by dynamical
systems people. The basic elements of the underlying discussion
were the same. Every advance here should correspond to something
over there.

It’s just to look at things in simple terms, without the words.
I don’t let my graduate students use names, they can’t use any
proper name. They have to say, in an English sentence, in terms of
basic concepts, like linear algebra or integers what the hell they
are talking about. And I slap them around if they don’t, verbally.

You are known to be very broad in your interests in mathematics,
and you see connections that other people do not see. But could we
ask you a provocative question: is there some type of mathematics
that you don’t like?

No, because there is this one tapestry, it’s all connected. It’s like the
tapestry behind you, it goes all around. Everything is interesting
to me.

And now the fluid dynamics enters. Can you tell us about that and
why? Okay, you have a punchline in the end here, we won’t spoil
it for you.

I forgot…

Oh, you promised to replace Newton’s calculus by Poincaré’s
combinatorial topology.

Oh, right, of course yes, but that isn’t a punchline, that’s the theme.
The idea is, yeah, so, quick history of math, right: We had the
Greeks, they had their problems, more than two thousand years
ago. Newton came along and he invented the calculus along with
Leibniz. Suddenly, a bunch of problems the Greeks had could be
solved. You can compute volumes of new things. Because with
calculus you sort of ignore higher order error terms. Error of 0.1
decimal place, and errors of 0.001, you ignore all those, and you
just try to get the first part. And then the formula is simple, and
you get this beautiful theory.

But, you know, if you look a physicist in the eyes and ask,
they’ll say: “The continuum doesn’t exist.” The continuum doesn’t
exist, because, what do we know about it? The atomic models,
elementary particles, there is no physics below 33 decimal places.
There is no physical theory, you can’t even talk about distance
below that.

On the other hand, the calculus ideal works beautifully, we have
gravity, Einstein’s theory. By the way, Einstein’s theory hasn’t been
connected to the standard model, which is the way the elementary
particles interact, with these small distances getting down to Planck
scale. In fact, Planck scale is sort of the scale in which gravity and
the strong forces of nature are comparable.

Even the physicists use the continuum… like in a religious
way! As if it exists! And they know it’s not true, because Newton’s
calculus leads to classical physics, which is negated by quantum
theory. But it’s so beautiful! Representation theory, Lie groups, it’s
so beautiful, and they can make models, and the models work! But
there is no basis somehow, there is something missing, right? In
the physics theory.

So, fluid mechanics has been in between the classical and the
quantum discussion, you might say, the statistical discussion. It has
been in between, and in three dimensions… Well, in two dimen-
sions it has theoretically been worked out, not computationally, but
theoretically worked out. For the same mathematical reasons, this
Ahlfors–Bers theory and this deformation theory works, analysis,
it’s related to that, and I understood that. That was one reason I got
in, I understand that, and half of that theory works in dimension
three, but not the other half.

I was astonished to hear, in ’91 or ’92, that these basic hydro-
dynamics equations in three dimensions weren’t theoretically un-
derstood – whether they have solutions or not – because in dimen-
sion two it was all clearcut, and I understood why. They’re used all
over the world by engineers to produce oil and by doctors to fix
aneurysms. The latter use a little turbulence inside the aneurysms
and do a little support thing here, doctors can do several a day,
and they can fix people up that might die at any point.
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How could it be true that 3D hydrodynamics was so mysterious?
Also about that same time onewas able to put things on a computer
quite well, but still there is now a limitation of a thousand of grid
points or so in each direction. Thousand by thousand by thousand,
that is a billion. You calculate, but then there is a matrix problem,
billion by billion, so that is beyond reach. So there is this definite
limitation to what one can compute. This mathematical problem,
which actually became one of these millennium problems later,
I was already working on it for about a decade before, is beautiful,
precise and so on. But it’s not practical. What is really important
is: what can you understand at the scale where you can compute?
And then maybe prove theorems too.

The idea I had was, this is all about space – processes hap-
pening in space. And you’ve got the Newton continuum, which
gives you a beautiful algebra picture of space, you have differential
forms, calculus, the Leibniz’ rule for a product, you know. Great! It
turns out that if you discretize the problem and put it on a com-
puter, you’ve got to do difference quotients instead of derivatives,
and they don’t satisfy the product rule which has an h2-error, di-
vided by h, still an h-error. But then h goes to 0. That is in every
computation, that error term. So the idea is, and they know this,
the numerical analysts know this, of course, they know this much
better than I do, but they don’t seem to have a theoretical way to
approach it. So, the idea is, or Poincaré told us, for all this topology,
all the numbers games we were talking about before, which is quite
deep, has to be done by breaking space into little chunks, and do
some combinatorics with that. So, that is combinatorial topology,
that allows you to understand the non-linear aspect, which has
a product structure. That has been my theme of understanding,
and now I have been working on it for three decades, and I think
I have made some progress recently.

To take the discretization that we have to do in order to calculate
anything in fluid mechanics and anything like that. Are you saying
that we should make that as a main object of study itself?

Yes! We should study the full algebraic topology – this is going
back to the beginning now: Poincaré duality, intersections, how
things intersect, that’s the ring structure. You know, these objects
in a manifold can be intersected, and that gives a ring structure.

Do you think the Navier–Stokes problem, which we’ve been talking
about, is one of the hardest Millennium Prize Problems?

No idea. I’m even not concerned with it as a Millennium Prob-
lem. I’d love to prove it, but I’d rather understand some vari-
ant of it. I mean, what made this dictionary stuff so interesting
in a way, there were several Fields Medals there and stuff like
that, was because they had these pictures of the Mandelbrot set.
Once a waiter came along while we were working on it, and
he said: “Oh, that’s the Mandelbrot set”. Everybody knows the

Mandelbrot set, right? There are good computations of the Mandel-
brot set, you can zoom in to any scale, it gets more and more
complicated, it’s beautiful, like a fern or something. And you go
deeper, and then there is a new thing, you know, it’s precise. And
that has led to many statements and conjectures, half of which
have become theorems, and half of which are still open. So, it
has been a very active field. We don’t have such good computa-
tions for fluids in general. We don’t have enough understanding.
We can just try, if it works: good. If it doesn’t work, you know:
bad. So, the idea is to put more kind of conceptual work on the
problem.

To use Poincaré’s ideas, to break space up to combinatorial
pieces, see how they interact, put other pieces to cover the breaks
which reveals the Poincaré duality, and put all that into the com-
puter programs that is treating the Navier–Stokes equation.

You’ve said several times, that simplicity is the thing. When Atle
Selberg was interviewed two years before he died, one of the
things he stressed very much, was, and we quote him with a direct
translation from Norwegian: “I believe that it is the simple things
that will survive in mathematics.” Would you agree with that?

Oh yeah, of course. C’est evident! You know, like a screwdriver.
It’s going to last forever, if it’s simple, and it’s useful. I’ll go even
further, the goal of mathematics is to simplify everything. I think
that the complicated things can be simplified.

Actually, Selberg mentioned Hermann Weyl as a prime example
of a person that could attack a problem, simplify it and solve it.

I think that is a good method, because there are these fundamen-
tal points, like the moments I was describing with the graduate
students, organize everything. They aren’t easy to find, you know.
What are the central points? You don’t know a priori. And you start
by getting a sense of it, it has to do with the structure: what is the
structure of the situation. A little “Grothendieck-like”.

The time is…

I’m not tired! I know this phenomenon; if hours are late and the
mathematician one is talking to is tired, then one just asks him
a question about what he is doing, right? And he starts talking,
and suddenly he’s full of energy again!

This is going to be the last question, we promise! During our
preparatory Zoom-meeting we mentioned a 1828 quote of Abel’s
we’d like you to comment on.

One should give a problem such a form that it is possible
to solve it, something one can always do with any problem.
In presenting a problem in this manner, the actual wording
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of it contains the germ to its solution, and shows the route
one should take. I have treated several topics in analysis and
algebra in this manner, and although I have often posed
myself problems that surpass my powers, I have never-
theless attained a great number of general results that
have shed a broad light on the nature of these quantities,
the knowledge of which is the object of mathematics.

Do you have any comment on this?

The formulation of the problem is very important. Even more,
a given problem may not be the correct formulation of the problem.
Every problem stands, if it’s well-defined, but it could be that there
is a slightly different version of the problem which is more natural
and will be successfully solved, you know.

I’m willing to change the problem, while it sounds like Abel is
trying to take the problem as given and put it in its best perspective.
I’m also willing to change a problem slightly, to one that can be
solved, right? But I certainly agree with that.

Another thing that I’ve noticed, as I’ve been around doing this
for a long time, is that when a subject is sort of complete, you can
look back, you know, it’s very easy to close the barn door after the
horse has escaped. You know that you should have done it before.
When you look at the final story, you would say, “Jeez, if we had
started over here, then it would be natural to do this, and then you
would have gotten there very quickly.” Using just a simple picture
of what has happened.

So, if you are in a situation where you don’t have that, look for
it. That is kind of what Abel said.

On behalf of the Norwegian Mathematical Society and the Euro-
pean Mathematical Society and the two of us we would like to
thank you very much for this most interesting interview.

It was my pleasure, I assure you!

Thank you!
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The Rényi Institute

András Stipsicz

The Rényi Institute is located in the historic center of Budapest,
in a beautiful palace from the end of the nineteenth century. The
institute plays a central and dominant role in Hungarian mathemat-
ics. Its main mission is to advance mathematical research at the
highest level, and (in cooperation with universities in Budapest) it
also plays an important role in training young mathematicians.

The Rényi Institute was founded in 1950, as part of the chain
of research institutes of the Hungarian Academy of Sciences (HAS).
Its founding director, Alfréd Rényi, a well-versed and outstanding
mathematician with important contributions to probability theory,
graph theory and number theory, envisioned an institute produc-
ing significant mathematical results to serve the applied sciences.
Therefore, initially the research activities of the institute concen-
trated on applied mathematics, and subsequently fields of more
theoretical nature were slowly introduced. Today the institute hosts
departments in all major fields of theoretical mathematics, includ-
ing algebra, geometry, analysis, probability theory, number theory,
topology, set theory, and many branches of discrete mathematics.
In the past few years, the institute extended its research divisions
towards more applied directions, such as network science, financial
mathematics, and the mathematical foundations of artificial intel-
ligence. The interplay between the theoretical and applied sides
of research at the Rényi Institute already produced exciting results,
and the institute is devoted to further foster this interchange of
ideas and methods. In 2019 the institute became part of the chain
of research institutes of the Eötvös Loránd Research Network.

In the recent past researchers of the Rényi Institute won an
impressively large number of prestigious grants, both on the Eu-
ropean and on the national scale, including 11 ERC grants of
various levels (Consolidator and Advanced Grants, and a Synergy
Grant), several Marie Skłodowska-Curie grants, and many Momen-

Endre Szemerédi 2012
©Erlend Aas/Scanpix

László Lovász 2021
©Abel Prize

tum (Lendület) and Frontier (Élvonal) grants from the Hungarian
Academy of Sciences and from the Hungarian grant agency NKFIH.

Important international mathematical prizes have been award-
ed to institute scientists, including the most coveted mathematical
prize, the Abel prize, to Endre Szemerédi in 2012 and László Lovász
in 2021.

The Rényi Institute was represented (by invited or plenary speak-
ers) at all International Congresses of Mathematicians (ICM) in the
past 30 years – in 2018 four mathematicians from the institute
lectured in Rio at the ICM2018, and the ICM in 2022 (originally
planned in St. Petersburg and moved online) will also have a mathe-
matician from the institute as invited speaker. Institute researchers
are frequent participants in the European Congresses of Mathe-
matics (ECM) – at ECM8 in 2020 (held in 2021) a plenary speaker
represented the institute.
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1. János Pintz 2008 Advanced
2.  Imre Bárány 2010 Advanced
3.  András Stipsicz 2011 Advanced
4. Endre Szemerédi 2012 Advanced
5. Balázs Szegedy 2013 Consolidator
6. Miklós Abért 2014 Consolidator
7. László Pyber 2016 Advanced
8. Gábor Pete 2017 Consolidator
9. László Lovász 2018 Synergy*
10. János Pach 2019 Advanced
11. Gábor Tardos 2021 Advanced

* joint with László Barabási Albert and Jaroslav Nešetřil

A Rényi ERC csapata. Standing row: Abért, Szemerédi, Pintz, Bárány, Lovász, Pyber, Pach. Squat row: Stipsicz, Pete, Tardos, Szegedy.
©Gergely Szilágyi / Rényi Institute

The Rényi Institute currently employs roughly 120 researchers,
among them 60 tenured mathematicians and 60 visitors. Guests
come on all levels, as PhD students, recent PhDs, postdoctoral re-
searchers and senior mathematicians, and from all over the world,
from Europe to the Americas and Asia. The infrastructure is sup-
ported by roughly 30 staff members, managing a library, an IT cen-
ter, the administration, and keeping the building up and running.

Following the footsteps of Paul Erdős (one of the most influ-
ential mathematicians of the twentieth century), Pál Turán, Alfréd
Rényi and many other outstanding researchers, discrete mathemat-
ics plays a central role in the scientific activities of the institute. With
the generation of László Lovász and Endre Szemerédi, together
with an impressively large number of successful fellow researchers,
the subject flourished further. Another dominant school (initiated
by Rényi) is working in probability theory, and developed into a sig-
nificant center through the work of Imre Csiszár, Gábor Tusnády,
Domokos Szász, Bálint Tóth and others. Today the Rényi Institute
is among the top research institutions worldwide in graph the-
ory, combinatorics, limits of graphs, discrete probability, and many
more subfields surrounding these areas.

The institute has a longstand-
ing tradition in organizing in-
ternational-level conferences,
workshops, and summer and

winter schools. The success of these activities led to the launching
of the Erdős Center, which allows researchers to organize thematic

semesters at the institute, strengthening its bonds to the inter-
national mathematical community throughout the world. These
semesters then provide opportunities for mathematically oriented
students in Budapest to get a first-hand experience of cutting-edge
research in a wide variety of mathematical topics. Topics for the
first two years are fixed (ranging from network science, including
large networks, to automorphic forms, optimal transport, algebraic
geometry and low-dimensional topology), while for the years to
come a call for proposals has been launched.

The education of the next generation of scientists is among
the institute’s top priorities. Being a research institute rather than
an educational center, the main emphasis has been put on help-
ing young scientists on the doctoral and postdoctoral level. The
institute receives an impressive number of visitors (for visits span-
ning from a few weeks to two–three years) in a wide spectrum of
mathematical disciplines. It also offers a program for professors at
Hungarian universities to spend sabbatical years within the walls
of the institute, to submerge in the research activities there. The
institute maintains a so-called hyphenated Fulbright-Rényi-BSM
(Budapest Semesters in Mathematics) scholarship program both for
scholars and talented recent graduates from US-based universities.
Indeed, many professors at the institute serve as members of the
faculty of Budapest Semesters in Mathematics, a widely known
and acknowledged, excellence-based study abroad program in
mathematics for advanced undergraduate students.

Realizing current trends in mathematics and other sciences, the
Rényi Institute has started new research directions in the mathe-
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matical foundations of artificial intelligence (AI), mainly concerning
neural networks and deep learning. The AI team shows a careful
balance of theoretical scientists and deep learning/machine learn-
ing practitioners. The practitioners in the team are well-versed and
up to date in the extremely fast-paced world of deep learning,
but nevertheless can contribute to foundational research. The the-
orists of the team are world-class experts in the highly abstract
theoretical machinery, but they also do not shy away from running
simulations. This balance creates an optimal environment for a free
flow of ideas between theory and practice, and thus supports the
general goal of bridging the gap between mathematical theory and
machine learning practice. The AI team serves as a leading partner
of the consortium of the Hungarian Artificial Intelligence National
Laboratory, responsible for the theoretical foundations of AI. The
participation in the National Lab provided a newly deployed high-
performance computing center for AI within the institute’s walls.
Furthermore, the Rényi Institute offers help to many industrial part-
ners in mathematics as well as in applying deep learning modeling
and algorithms to their work.

The institute also participates in other aspects of service for
the mathematical community. Researchers of the institute provide
the backbone of scientific journals, by editing Studia Scientiar-
ium Mathematicarum Hungarica (a mathematical journal founded
by Alfréd Rényi) and Acta Mathematica Hungarica (a journal of
the Hungarian Academy of Sciences) and working as editors in
other significant international journals. The Rényi Institute also
participates in disseminating mathematical research through the
electronic journal Érintő (Tangent), aiming to present mathematical
ideas and results on various levels for a widely varied audience,
ranging from interested high school students to researchers of
other disciplines. Researchers of the institute also participate in
mentoring programs for talented high school students.

András Stipsicz, member of the Hungarian Academy of Sciences, and
the director of the Rényi Institute since 2019. His research is devoted to
low-dimensional topology, three- and four-dimensional manifold theory,
and contact three-manifold topology.

stipsicz.andras@renyi.hu
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IMAG, the Institute of Mathematics of the University of Granada

Jose A. Cañizo, Ginés López and Joaquín Pérez

Logo of IMAG

The Institute of Mathematics of the University of Granada is an
international center for research and advanced training in mathe-
matics, where mathematicians from several countries collaborate
on common strategic areas in theoretical and applied mathemat-
ics, with emphasis on differential geometry, functional analysis,
differential equations and modeling, statistics, and operational
research. The institute stands for excellence in research, has been
quite successful in fundraising, and has become one of the main
centers of mathematical research in Spain.

Structure, objectives, and facilities

IMAG is the acronym for the Institute of Mathematics of the Uni-
versity of Granada (UGR). The institute was officially created in
May 2015, although its activities started in 2013 as one of the
four venues of the Spanish Institute of Mathematics (IEMath),
a competitive national project today discontinued.

The fundamental mission of IMAG is to carry out scientific
research and specialized training in all areas of mathematics. This
mission is developed by accomplishing actions of different nature:
1. Supporting external researchers that collaborate with members

of the institute.
2. Holding research seminars and conferences of international

importance.
3. Carrying out Master and PhD programs in mathematics.
4. Organizing strategic events aimed at bringing mathematics and

society together (outreach, gender activities, etc.).

IMAG facilities are located in a building donated by the Spanish Na-
tional Research Council (CSIC), at approximately 500 meters from

The institute building is located at the Campus Center,
Rector López-Argüeta S/N.

the Science Campus of the UGR. In its three floors, the building
includes a conference room, two class and seminar rooms, two
meeting rooms, 13 individual offices, and 37 posts distributed in
8 multiple offices, reading area, library, printer and computer rooms,
and a warehouse. Equipment includes blackboards, electronic in-
teractive whiteboards, video projectors, and a videoconferencing
system. All offices have desktop computers connected to the UGR
network, and several laptops are available for use. Printing needs
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IMAG provides common areas for discussion and reading in a relaxed atmosphere, besides offices and
seminar/conference rooms.

Conference room at IMAG

are covered by three copier-printers installed on network. Besides
Ethernet connections in the offices, a wireless internet connection
is available everywhere in the building. As part of the UGR research
infrastructure, electronic access to databases and journals is also
available.

Research lines and activities

The institute is currently populated by more than 100 researchers
from different countries around the world, particularly interested
in four main areas of research, listed below.
A. Modeling and differential equations

A.1. Modeling of physical and biological processes
A.2. Geometric and nonlocal partial differential equations

B. Geometric and physical shapes
B.1. Geometric analysis
B.2. Mathematical physics

C. Linear and nonlinear infinite-dimensional analysis
C.1. Geometry and structure of Banach spaces
C.2. Operators on Banach spaces and Banach algebras
C.3. Nonlinear geometry of Banach and metric spaces

D. Statistics and operations research
D.1. Stochastic modeling and forecasting
D.2. Data science
D.3. Applications/data-driven research

The institute participates in four Master and PhD math programs,
all with Excellence Awards from the Spanish National Research
Agency (AEI). Special mention is owed to the program “Mathemat-
ics”, coordinated by UGR and participated by four other Andalu-
sian universities, whose component at UGR is entirely developed
at IMAG.

The above research and training activities at IMAG are comple-
mented by Transfer of Knowledge and Culture/Outreach Services.

Some numbers and people at IMAG

The intense research activity of our institute is particularly shown
by indicators pertaining to the pre-pandemic period. From 2016 to
2020, IMAG hosted 21 workshops and meetings, two three-month
international Doc-Courses on specific topics, at least 270 seminars
and colloquia, and more than 370 external visits of researchers, of
which approximately one half were foreigners.

IMAG has a solid and visible position in the international arena.
It is headed since its opening by Joaquín Pérez, an internationally
reputed leader in the differential geometry of minimal surfaces.

EMS MAGAZINE 125 (2022) 35



Among international projects led by members of the institute, we
highlight the recent ERC Advanced Grant in Holomorphic Partial Dif-
ferential Relations (2022–2027) by F. Forstnerič (external member
of IMAG and long-term collaborator, University of Ljubljana, Slove-
nia), the ERC Advanced Grant inNonlocal PDEs for Complex Particle
Dynamics (2020–2025) by J. A. Carrillo (external member of IMAG,
currently professor at Oxford University, former graduate and PhD
student at UGR, and one of the leaders of the PDE group at IMAG),
and the ERC Starting Grant in Analysis of Moving Incompressible
Fluid Interfaces (2015–2022) by F. Gancedo (external member of
IMAG and now assistant professor at University of Seville).

Besides its role as a research institute of the UGR, IMAG is one
of the two current venues (the other being IMUS, the Institute of
Mathematics of the University of Seville) of the recently approved
Andalusian Institute of Mathematics (IAMAT), a new structure that
aims to strengthen research in mathematics at the regional level,
together with other Andalusian universities.

Excellence Seal “María de Maeztu”

The excellent level of mathematical research at IMAG is supported
by more than 25 research projects at international, national, and
regional levels, awarded to members of the institute and currently
in execution. As a consequence of its successful trajectory, starting
in January 2022 IMAG enjoys a “María de Maeztu Excellence Unit”
accreditation by the AEI, funded with almost two million euros for

Logo of the Program of Excellence “Maria de Maeztu”
by the Spanish Research Agency (AEI)

a period of four years. This is an extremely competitive program
by the AEI which seeks institutional strengthening and is aimed at
centers and units of excellence in the public sector and private non-
profit research institutions, whose scientific leadership is proven
at an international level, with capacities to decisively contribute to
advancing on the frontier of knowledge and generate high-impact
results, as well as to exert a driving effect on the Spanish science,
technology, and innovation system.

Present and future projects

As part of the IMAG’s international strengthening policy, the insti-
tute has recently associated with the Banff International Research
Station (BIRS, Canada) in hosting a series of research workshops
that are part of the scientific program of BIRS. This is one of the key

Interaction of researchers in different domains has proven essential for strengthtening the scientific life at IMAG.
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actions undertaken by IMAG within the framework of the María de
Maeztu Seal. The pilot program will begin in 2023, and it is planned
that starting in 2024, IMAG will function as a center associated
with BIRS. In this way, IMAG is the first European center associated
with BIRS, offering its excellent scientific programs with easy access
to the European mathematical community, with the rich natural
and cultural backdrop of Andalusia.

Another direction in which the institute projects substantial
growth in the coming years is in the area of artificial intelligence.
The environment of Granada, with the IA Lab co-partnered by UGR
and the international technology companies Indra and Google,
will undoubtedly be a fertile ground for the development of ap-
plied research in mathematics for data analysis and the transfer of
knowledge to society and business.

Despite having a relatively short trajectory, the institute is the
continuation of an intense international research activity that has
been carried out in the mathematics section of the UGR for more
than 30 years. Several generations of UGR mathematicians laid the
foundations, and now the IMAG is reaping the rewards while pro-
jecting its image with increasing weight at the international level.
Email: imag@ugr.es Website: imag.ugr.es

Jose A. Cañizo is vice-director of IMAG and assistant professor at UGR. He
works in applied mathematics and is one of the research group leaders
in the field of kinetic theory and aggregation processes in physics and
biology. Author of a number of highly cited works, he also serves in
the editorial board of the journal Communications in Pure and Applied
Analysis since 2014. Former coordinator of a trilateral project including
researchers in Spain, France, and Austria, he maintains fruitful contacts
with Oxford and Cambridge Universities, among others.

canizo@ugr.es

Ginés López is secretary of IMAG and professor at UGR, and one of the
leaders of the functional analysis team at IMAG. He works on geometric
properties in Banach spaces in connection to the Radon–Nikodym,
point-of-continuity, Krein–Milman, Daugavet, and diameter-two prop-
erties, norm attaining functionals, etc. He enjoys strong international
connections, collaborating with J. Langemets, G. Godefroy, and V. Kadets,
among others.

glopezp@ugr.es

Joaquín Pérez is director of IMAG, professor at UGR, and one of the
leaders of the geometric analysis group at IMAG, which after more than
30 years and several generations of geometers, has a long international
recognition as one of the top teams in minimal surface theory. He has
served in several strategic and organizational positions, both at the
national and international levels (former coordinator of the French-
Spanish network of geometric analysis, editor-in-chief of the Royal
Spanish Mathematical Society, individual member delegate of the
EMS council, to name a few).

jperez@ugr.es
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On the International Day of Mathematics

Betül Tanbay

To celebrate the beauty and importance of mathematics and its es-
sential role in everyone’s life, the International Mathematical Union
(IMU) has led the initiative to have UNESCO proclaim March 14 as
the International Day of Mathematics (IDM). On November 26,
2019, the 40th General Conference of UNESCO approved the
proclamation.

March 14 was already known as Pi Day and was being cele-
brated in many countries around the world. This certainly helped
the approval, but it all would not have happened without the ef-
forts of Christiane Rousseau from the University of Montreal, the
initiator of the project at the IMU.

The second name to mention right away is Andreas Daniel
Matt, director of IMAGINARY, a non-profit organization dedicated
to communicating modern mathematics. The IMAGINARY team
won the call for hosting the IDM website: www.idm314.org.

The IMU executive board gathered a group of mathematicians
to constitute the first IDM-Governing Board, and the first decision
taken was to have a theme for each year. We started with an
ambitious one for the first IDM, to be celebrated on March 14,
2020: Mathematics is everywhere.

A wonderful webpage was prepared in seven languages to
show the use of mathematics in different subjects and issues:
https://everywhere.idm314.org/, and a map was presented to
access the activities all around the planet, on which more than
a thousand activities were announced: www.idm314.org/2020-
idm.html

Two parallel international launch events were planned, the first
one in Paris at the UNESCO Headquarters, and the second one as
a plenary event at the Next Einstein Forum 2020 in Nairobi, Kenya.

The whole world knows what happened just before: Pandemic
was everywhere. Despite huge lockdowns, hundreds of activi-
ties still took place, one of the biggest ones being realized by
the Istanbul municipality, an IMAGINARY exhibition in the main
underground station hallways of the 16-million megalopolis.

Despite the general panic, the pandemic has also been an
occasion to see that Mathematics was indeed everywhere, as the
whole world started talking about rates of change, geometric or
exponential growth, the R0 reproduction index, analyzing graphs
and understanding probabilities. Mathematics and statistics have

been essential tools for decision makers in predicting the evolution
of the disease and optimizing mitigation strategies with limited
resources.

In view of the pandemic, the 2021 theme was chosen to be
“Mathematics for a Better World”. As the role played by mathe-
matics in building a better world goes well beyond the response
to the pandemic, schools were invited to explore examples such as
the mathematics of fair division, which has so many applications
in designing economic and social policies.

This time, with the experience of the previous year, almost
all activities have been prepared online. The result was still quite
a success: more than seven hundred events throughout the world1,
a poster challenge to which more than 2000 posters were submit-
ted2, and again a webpage in five languages on the different uses
of mathematics3.

More and more theme proposals arrive to IDM theme calls, and
the selected theme of IDM22 was proposed by Yuliya Nesterova,
a graduate student from the University of Ottawa in Canada. She

A photo from the Mathematics Unites photo challenge: a Fibonacci spiral
formation by the students of Sri. H. D. Devegowda Government First
Grade College, Paduvalahippe, India.

1 https://www.idm314.org/2021-idm.html
2 https://www.idm314.org/2021-poster-challenge-gallery.html
3 https://betterworld.idm314.org/
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explains: “Mathematics unites, to signal that it is a common lan-
guage we all have and a common subject with which to find one
another.”

At a time when we, as humans on this planet, urgently need
a common language other than our mother tongue, a common
value other than our credit cards, a common ground other than
politics, to solve our common problems, the choice of the theme
seemed more than adequate. A few months after this beautiful
theme was chosen, it was even more disappointing than the pan-
demic to face a war in Europe just a few days before March 14,
2022.

Despite the terrible polarization the war hinted to, mathemati-
cians tried to unite, and IDM 2022 is still being celebrated on
all continents: from Uzbekistan to the Philippines, from Guinea
to Rwanda, from Dominican Republic to Peru, from Moldova to
Montenegro. An international live celebration4 in five languages
(Arabic, English, French, Portuguese, and Spanish) took place on
March 14. Also, a 48-hour live coverage5 on the IDM website
started at 00:00 New Zealand time and ended at 24:00 Pacific time.
The international celebration was complemented by national and
local competitions, conferences, exhibitions, and talks, organized
by mathematical societies, research institutes, museums, schools,
universities. The Mathematics Unites photo challenge generated
more than three thousand entries; some the most beautiful and
inspiring photos are displayed in galleries: www.idm314.org/2022-
photo-challenge-gallery-intro.html.

4 https://www.idm314.org/2022-global-event-program.html
5 https://www.idm314.org/launch-2022.html

People and organizations all over the world announced almost
two thousand events in their cities: www.idm314.org/ theme2022.

A special series of online teacher training sessions with par-
ticipants from Africa and Latin America accompanying IDM will
take place during the next five years. It will start in the fall of 2022
with a Portuguese workshop for primary and secondary mathemat-
ics teachers from Mozambique, Angola, Portugal, Cap Verde and
São Tomé and Príncipe. The series is part of the Global-South IDM
project and is supported by the Simons Foundation with the goal
to further engage with Africa and Latin America and to expand
the network for local IDM celebrations.

For IDM22, UNESCO has published a tool kit called Mathe-
matics for Action: Supporting Science-Based Decision Making,
launched6 on March 14, 2022. The open access tool kit7 consists
of a collection of lively two-page briefs highlighting the role of
mathematics in addressing the Sustainable Development Goals of
the UN 2030 Agenda, for instance, how to monitor an epidemic,
to model climate change, or to measure biodiversity.

So, here we are, heading for a new theme in the middle of the
year 2022, in the midst of pandemics and wars. If the number 0 is
an absorbing element for mathematical multiplication, war is an
absorbing element for human multiplication and well-being. It is
loss no matter what the results may be.

Were we too ambitious when we declared that “mathematics is
everywhere”? Could mathematics help us live in “a better world”?

6 https://en.unesco.org/commemorations/mathematics
7 https://unesdoc.unesco.org/ark:/48223/pf0000380883.locale=en
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How can mathematics unite, in times when neighbors become
enemies?

But still, I believe there is a reason why mathematicians choose
and keep ambitious themes. Once we are convinced of a statement,
we cannot abandon the goal of proving it right. We cannot afford
discouragement. In a world of post-truth, I believe mathematicians
are among the best placed to make affirmative statements. Maybe
because mathematics is about interrogations, because it teaches
us to ask questions! A true statement is reached by raising the
right questions. If mathematicians feel that something important
is to be proven, they know they must work a lot, consistently and
beyond their own lifetime, using past experience and trusting future
developments. Einstein’s words are well known: “the important
thing is not to stop questioning”.

I wish all of us peace, health, and the courage to ask the right
questions.

Betül Tanbay is a professor in functional analysis at the Boğaziçi University
in Istanbul. She was founder and first co-director of the Istanbul Center
for Mathematical Sciences. She was the first female president of the
Turkish Mathematical Society, and she has also served and serves in many
committees of the IMU or EMS. Tanbay received her undergraduate
degree from Université Louis Pasteur, Strasbourg in 1982, and graduate
degrees from UC Berkeley in 1989.

tanbay@boun.edu.tr
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ERME column

regularly presented by Jason Cooper and Frode Rønning

In this issue, with a contribution by
Michela Maschietto and Alik Palatnik

CERME12

The 12th Congress of the European Society for Research in Math-
ematics Education, CERME12, was held as an online conference
from 2 to 6 February 2022, organized by the Free University of
Bolzano, Italy. The congress was due to be held in 2021, but was
postponed because of the COVID-19 pandemic. with the hope that
it would be possible to run it as a physical conference. Unfortu-
nately, this did not work out. However, the organizers in Bolzano
did a great job turning the conference into an online event, includ-
ing also social events in addition to the sessions in the Thematic
Working Groups (TWGs).

A total of more than 900 participants attended CERME12,
distributed over 27 TWGs. Around 540 papers and 130 posters
were presented. Two plenary lectures were delivered: one titled
Enhancing language for developing conceptual understanding –
a research journey connecting different research approaches, by
Susanne Prediger from TU Dortmund, Germany, and another, ti-
tled Conceptualizing individual-context relationships in teaching:
Developments in research on teachers’ knowledge, beliefs and
identity, by Jeppe Skott from Linneaus University, Sweden, and
University of Agder, Norway. A plenary panel around the topic of
Big Questions in Mathematics Education was held on the final day
of the conference.

Two new Thematic Working Groups began their activity at
the 12th conference: TWG11 – Algorithmics (taking the number
11 from the discontinued Comparative studies in mathematics
education), and TWG27 – The Professional Practices, Preparation
and Support of Mathematics Teacher Educators.

Planning for CERME13 is well underway. CERME13 will be held
at the Eötvös Loránd University, Budapest, Hungary from 10 to
14 July 2023. See http://erme.site/cerme-conferences/. Scheduling
the conference in the summer is hoped to improve the chances
of holding it face-to-face, and to bring us back to schedule with
CERME14, to be held in February 2025.

CERME Thematic Working Groups

We continue the initiative of introducing the CERME working
groups, which we began in the September 2017 issue, focusing
on ways in which European research in the field of mathematics
education may be interesting or relevant for people working in
pure and applied mathematics. Our aim is to enrich the ERME com-
munity with new participants, who may benefit from hearing about
research methods and findings and contribute to future CERMEs.

Introducing CERME Thematic Working Group 4 –
Geometry Teaching and Learning

Michela Maschietto and Alik Palatnik

CERME’s Thematic Working Group on geometry was created at
CERME3 in 2003 [5]. Throughout the history of CERME, this TWG
has had different names, so as to take into account different aspects
of teaching and learning geometry and/or to emphasize particular
ones: from Geometrical thinking, through Geometry, and currently
Geometry teaching and learning. Typically, around 25 participants
from all over Europe, the Americas, Asia, Africa, and Australia
attend the working group, and 15–20 papers/posters are presented
and discussed per conference.

Research on geometry teaching and learning has several com-
ponents that have been addressed in the conferences. Emphasis
and interest have varied from one conference to another, depend-
ing on the papers presented in the working group. Four main topics
can be identified: specific aspects of mathematical activity in geom-
etry, including what it means to be “doing geometry” and how to
characterize geometrical thinking; learning geometry, in terms of
students’ processes in solving geometrical tasks, with attention to
visualization, language, argumentation, transition between differ-
ent representations and use of tools; teaching geometry, from the
point of view of curriculum, methodologies, tools, tasks and com-
petencies; teacher education in geometry, referring to contexts,
practices, content and perspectives. On the one hand, this richness
of components shows the complexity of the geometry thematic; on
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the other hand, participants critically comment that some compo-
nents seem to be less present in the range of papers for discussion
because those components are within the scope of other working
groups. In general, the papers discussed in TWG4 concern research
carried out from kindergarten to secondary school and, at the
university level, mainly prospective primary school teachers; there
are no papers concerning other university students or the transi-
tion to tertiary geometry (which might be addressed in TWG14 on
university mathematics).

As said above, a recurring topic of discussions has been to
characterize what is meant by “doing geometry”, i.e., geometri-
cal thinking and its development. Since the first meeting of the
TWG, the development of shared theoretical frameworks has been
crucial to ground collaboration among the participants. Besides
the always-mentioned van Hiele levels [6], other approaches and
frameworks, such as the geometrical paradigms, the geometrical
working space, the formulation of geometrical thinking in terms
of (four) competencies have been discussed [5]. Other approaches
have been added over the years, referring to spatial skills. The
metaphor of space has also been used to articulate three facets of
doing geometry – in the realm of physical space, geometrical space,
and graphical space [4]. During CERME10 [3] and CERME11 [4], the
discussions were about the characterization of these spaces and
their mutual relationships, from the psychological and mathematics
education points of view. The psychological point of view refers
to the exploration of relationships between physical and graphical
space, while from the mathematics education point of view, the fo-
cus is traditionally on the links between graphical and geometrical
space. In this perspective, geometry consists of establishing relation-
ships between these spaces, and to solve geometry problems one
needs to “grasp space” and make the information usable in another
kind of space [1]. In the papers presented in CERME12, some of
these frameworks have become less prominent or even missing in
their theoretical references, although they do emerge in the discus-
sions. For instance, research on spatial skills and on spaces was not
present, though questions on relationships between geometrical
knowledge and spatial knowledge arose. Other frameworks, such
as van Hiele levels, were critically discussed, especially in relation
to the tests based on them and to the components of geometrical
thinking/competencies that they do or do not help to grasp. Finally,
two other theoretical elements have become relevant in recently
discussed research: the embodied approach in experiments carried
out with students at different school levels, especially in relation to
the use of tools, and emotional and motivational aspects emerging-
in and accompanying activities in geometry. In general, these new
theoretical elements allow us to reexamine the questions “What
does it mean to learn geometry?”, “What geometry should our
students know when they move from primary to secondary to
tertiary education?” and “What skills (visual, reasoning, operational
and figural) should students/pupils acquire/develop by the end of
a given school level?”.

Besides psychology, another area of shared interest between
mathematics education and other disciplines concerns language,
both in terms of the emergence of the geometrical lexicon and the
construction of the meanings of words used in geometry (consider-
ing that it is a long and complex process that cannot be reduced to
the matter of “vocabulary”). Many contributions in TWG04 pertain
to argumentation, justification, reasoning or demonstration, topics
in which geometry has a privileged status, because it is often the
only context in which school students engage in proving.

In all CERMEs, research on the use of tools (both material and
digital) in geometry teaching and learning have been discussed.
Many contributions have focused on dynamic geometry software
for 2D geometry, mainly at the secondary level, but with some
contributions concerning teacher education. With respect to the
previous CERMEs, in CERME12 we discussed a paper on the 3D
environment of GeoGebra that demonstrated and discussed how
in solving a geometrical construction, students intertwined the 2D
procedure of construction, visualization of 3D objects, and rela-
tionships between procedures and representations. 3D geometry
learning environment is an interesting topic yet to be developed
in future CERMEs, also including Augmented and Virtual Reality
for 3D geometry. In addition, the situation of online teaching,
compelled by the current pandemic, has raised some new ques-
tions that need to be studied pertaining to teaching geometry
online, its consequences for learning, and its influence on students’
conceptualization.

In addition to digital tools, research on material tools has
been presented and discussed at several CERMEs. For instance,
in CERME10, a paper on the Pythagorean theorem proposed the
analysis of an experiment on the use of material artifacts (called
“mathematical machines” and related to one of the proofs of the
theorem), intending to discuss the mediation of these artifacts in
the construction of meanings in geometry. Regarding 3D geometry,
at CERME12 there were two contributions on the use of construc-
tion kits and 3D pens, which allow the creation and exploration of
solids in microspace and mesospace [2]. Research on 3D geometry
with different types of tools could be a fruitful topic for further
development, with implications for teacher education in geometry.

In this working group, the variety of nationalities of the partici-
pants (from different countries of the world) has always allowed
a comparison of teacher training programs, mathematics curric-
ula (in particular, in geometry) and teaching practices that have
developed in the different countries, even when this was not the
main object of investigation. In the perspective of the vertical de-
velopment of geometric thinking, the link between primary and
secondary school has emerged as a fundamental question.

At CERME12, the works on teacher education accounted for
half of the accepted contributions. While there is a group at CERME
dedicated to teacher education, the discussion in TWG4 allowed
us to focus on the specificities of geometry and its unique mathe-
matical processes. The papers presented in CERME12, on the one
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hand, have led to the question of which tasks are emblematic for
prospective teachers; on the other hand, they have paid attention
to teachers’ beliefs relating to geometry itself and the “ideas” that
prospective teachers have about the fundamental objects of geom-
etry. This aspect is closely linked to the study of the motivational
and emotional aspects in doing geometry, as mentioned above,
from the students’ perspective. Classification tasks in the plane
and in 3D space have emerged as particularly interesting in terms
of enabling geometric processes for primary-school prospective
teachers; these are tasks in which, after analyzing the content
knowledge, prospective teachers are asked to anticipate or analyze
pupils’ solving processes. With these tasks, it is possible to work
simultaneously on content knowledge, which is often lacking in
prospective teachers according to research reports, and on the spe-
cific competence for teaching geometry. Further studies are needed
to characterize design principles and applications of emblematic
tasks for teacher education in geometry.

Finally, during CERME12 some researchers proposed to ex-
plore new topics, such as non-Euclidean geometries, topology, and
analytical geometry at various levels of education.

To summarize, TWG4 is an active group whose work reflects
both long-standing and emerging trends in the field of geom-
etry education and stimulates further research in this area. On
all the topics of this TWG, contributions are welcome not only
from researchers in mathematics education, but also from research
mathematicians, to enrich the discussion on geometry teaching and
learning even more. We leave this suggestion for the next CERME.
The diversity and inclusiveness of our group embodies the spirit
of communication and collaboration of CERME and contributes
to our understanding of international perspectives on geometry
education, to advance the teaching and learning of geometry.
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The transition of zbMATH towards an open information platform
for mathematics (II): A two-year progress report

Klaus Hulek and Olaf Teschke

Two years ago, we outlined in this column [Eur. Math. Soc. Newsl.
116, 44–47 (2020)] the vision of zbMATH Open as an open service
for mathematics research. Here we give a report of the achieve-
ments since then.

1 Introduction

Two years ago, we described in this column [3] the vision to trans-
form zbMATH into an open service for mathematics research.
This has now become reality. For this, we first received a spe-
cial transformation grant from the German government, with the
perspective that this could be made permanent after a successful
evaluation after two years. In our original application we outlined
several goals which are essential requirements of the mathem-
atical community. We described and discussed these also in [3].
Naturally, the two-year period is not long enough to expect that
these long-term goals could have been fully completed. In addition,
the pandemic created its own problems, which needed to be ad-
dressed. In spite of this, we were able to achieve several important
milestones, and the evaluation at the end of the transformation
period confirmed that the grant should be made permanent. This
now provides zbMATH Open with sustainable funding through
the Leibniz Association. In this column, we report on the progress
made since the beginning of 2020.

2 Preparatory work (I): Legal aspects

What has been known as the reviewing service Zentralblatt, or
later the zbMATH database, has been, since its foundation by
Springer Verlag in 1931, a commercial enterprise for many dec-
ades. Naturally, all legal documents, from the editorial contract
to the indexing agreements with the many publishers active in
mathematics, were based on the model of a subscription service,
distributed to a well-defined and controllable set of customers
(with their own licensing contracts of various terms). Transition to
an Open Access, and beyond this, Open Data platform, required
a complete replacement of these agreements, and related negoti-

ations. One result of the new editorial contract among the editorial
institutions of the European Mathematical Society, FIZ Karlsruhe –
Leibniz Institute for Information Infrastructure, and Heidelberg
Academy of Sciences was that the role of a commercial distributor,
which had been faithfully fulfilled by Springer-Nature AG, became
obsolete, leading to separation from a partner which had been
very supportive of zbMATH, especially in difficult times. On this
occasion, we would like to thank our Springer colleagues for their
decades of commitment, which was concluded by enabling a co-
ordinated transition from subscriptions to Open Access by the end
of 2020. The role of the European Mathematical Society, as well
as the Heidelberg Academy, is to ensure the scientific quality of
the service and to further the involvement of the mathematical
community.

Retrospectively, the amount of legal preparations achieved in
2020 is amazing. This includes a large number of renewed indexing
contracts with a majority of mathematics publishers, a considerable
fraction of which agreed also to Open Data services within the new
zbMATH Open platform. While it had already been decided that
all data generated within the zbMATH editorial process (such as
reviews, author disambiguation data, or semantic and interlinking
data) would be made available under the CC BY-SA license (https://
creativecommons.org/licenses/by-sa/4.0/), not all publisher data
would fit into this framework (e.g., abstracts which would usually
come along with a different copyright). Nevertheless, this could be
achieved for a considerable part of the information, and there is
ongoing activity to expand this further.

Also, the terms and conditions, both for users and reviewers,
needed to be adapted and agreed upon accordingly. Finally, also the
interface was revised, with a special focus on minimizing storage
and processing of user data. While subscriptions required extensive
user tracking and detailed usage reports for libraries, Open Access
allowed for a platform built upon the principle of data avoidance
and data minimization. As of 2021, zbMATH Open is indeed one of
the few complex sites that can be used completely without cookies
(and consequently, without the need for cookie approvals), with
only optional cookies needed to store user preferences if required.

With these issues being completed in the course of 2020, it
was possible to start zbMATH Open at the beginning of 2020.
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3 Becoming open: Usage and feedback

2021 being the first full year of zbMATH Open as a free service, it
might be interesting to look at some experiences concerning usage
figures and user feedback. Without doubt, the special situation of
the still looming COVID-19 pandemic and its impact on working be-
haviour drove both the interest in and the willingness to contribute
to open services. Historically, zbMATH had about 1,200 subscrip-
tions, where access was often channelled via institutional proxies.
This resulted in about 22 million customer searches per year. In an
average month of 2021, more than 60,000 unique visitors used
the site, with more than 32 million searches in 2021. This indicates
that Open Access facilitated a much broader user base, which is
still growing (2022 March figures point toward 40 million searches
this year).

The user survey conducted mid-2021 supported this impres-
sion. While a lot of specific questions pertaining to zbMATH Open
features, service and data quality confirmed a significant positive
development in comparison with the already very good results
of 2016 (see the report [1]), the main emphasis of the feedback
was an unanimously enthusiastic appreciation of becoming open.
Moreover, numerous ideas for the further improvement have been
advanced, some of which could already be incorporated, such as an
upgrade of the BibTEX output toward a more standardized format
and the improvement of the site’s accessibility. We experienced also
a new overwhelming willingness to contribute reviews. Despite the
universal limitations caused by the pandemic, almost 1,200 new
reviewers joined the service (about twice as many as in previous
years), and 13%more reviews were contributed in 2021 compared
to 2020.

Though it might be unfair to pick a single example, a good
illustration of the increased reach is perhaps Peter Scholze’s review
of the Publ. Res. Inst. Math. Sci. volume containing Shinichi Moch-
izuki’s work Inter-universal Teichmüller theory (https://zbmath.org/
1465.14002). Openly available, is was within days distributed,
linked, and discussed on a large variety of platforms (Reddit, Twitter,
MathOverflow,…), and was retrieved within a few days more than
10,000 times, making it likely the most-read zbMATH review of
all time.

4 Preparatory work (II): Backend upgrades

While the transition to an open service required also some accom-
panying developments, the main efforts were focused on new
features that would be enabled by being an open data platform
allowing to interlink with other free sources. While most of such fea-
tures could not be deployed before 2021, there was a considerable
amount of necessary preparations done in 2020. Among the essen-
tial upgrades in the backend was the replacement of the indexing
software. Since going online in the mid-90s, zbMATH was based on

Figure 1. References to DLMF from the review of the Andrews, Askey and
Roy’s book Special Functions

an in-house code optimized for the specific data that traditionally
formed the service. However, this came along with limitations as
a growing interconnectedness lead to the import of heterogeneous
data from various sources. Hence, the complete indexing code was
replaced by Elasticsearch (www.elastic.co/de/elasticsearch/), which
not just allowed for much more flexibility, but also led to a signi-
ficant speed-up of update as well as search time. Moreover, the
challenging part of retaining the traditional features of the service
could be achieved.

Another key component was the development of a new re-
viewer backend that was also optimized with respect to the experi-
ences of mobile work. It would have been impossible to handle the
growth of the numbers of reviewers and reviews in 2021 without
this system. Simultaneously, the backend and frontend compon-
ents were recoded from Python 2 to Python 3, keeping up with
the status of the programming language in which the system is
developed.

5 New features

The first newly available open data facet even predated the open
access of the interface: In September 2020, the first version of the
zbMATH Open OAI-PMH API was released, based on the data of
the Jahrbuch über die Fortschritte der Mathematik (JFM). This was
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possible thanks to the European Mathematical Society and SUB
Göttingen, which had made these data already available under
a CC BY-SA 4.0 license (more details about JFM as a part of zbMATH
Open have been given earlier in this column, see [11]). The exper-
ience acquired in this initial version facilitated its expansion to
zbMATH Open data in a stable version in 2021 [7,9], which forms
now a core component in distributing zbMATH Open data. Based
on this interface, further APIs with the aim of supporting extended
standards and interlinking specific services are being developed.

An immediate application was the development of a linking
API enabling the interlinking of zbMATH Open and the NIST Digital
Library of Mathematical Functions (DLMF). The system, which can
be adapted in the future to interlink with further research data
resources, was described in this column before [2], and the resulting
interlinking data are now also visible in zbMATH Open.

The more traditional tasks of providing literature and author
information also benefitted considerably from the open approach.
The improved and extended zbMATcH API allowed for the inter-
linking with many more open fulltext sources, not just twice as
many integrated arXiv links, but also almost 100,000 new links to
Unpaywall and CiteSeerX resources. Author profiles contain now
identifiers from and links to as much as 15 external services. Vice
versa, additional information from these sources can be included,
enabling, e.g., the display of various non-ASCII spellings. Further-
more, the profiles differentiate now between various roles, like
author, editor, or further contributions (like appendix authors). Like-
wise, additional information from the coauthor graph is displayed
(both features were frequently asked for in the user surveys).

Figure 2. 2022 zbMATH author profile

It is perhaps also an interesting aspect that the underlying
author disambiguation data have been further improved, with
significant support by the community interface [5] as well as various
external community platforms. The latter comprises such different
examples as the correction of several mistakes in the attribution
of works of Renée Peiffer (of the Peiffer identity) on Twitter [4], as
well as the insight that the Rabinowitsch trick was most likely not,
as commonly assumed, discovered by G. Y. Rainich [12].

Another frequently requested facet that is under active devel-
opment is an affiliation information. There already exists an internal
database of about 15,000 disambiguated entities of mathematical
institutions, which is currently matched to publications and authors.
When completed, this will allow us to release a transparent, open
data institution facet of zbMATH Open – we will be happy to report
on its progress soon!

6 Future developments and projects

The ongoing internal development to integrate and interlink further
publications, author and affiliation information, research data and
community platforms is only one side of the evolving network.
The other is the use of zbMATH Open data in projects conduc-
ted worldwide. Currently, there are several projects which already
make extensive use of zbMATH Open data, especially in semantic
analysis and the history of mathematics. For example, Norbert
Schappacher’s book [8], commissioned on the occasion of the IMU
centenary, contains a detailed analysis of ICM speakers, their net-
works and working fields based on zbMATH Open data. For already
several years, the ISC project Gender Gap in Science (https://gender-
gap-in-science.org/), led by the IMU, is supported by zbMATH Open
data which are an integral part of its visualization platform Gender
Publication Gap (https://gender-publication-gap.f4.htw-berlin.de/;
see also [6] in this column).

Through zbMATH Open data, FIZ Karlsruhe, the institution
which produces, develops, and maintains zbMATH Open, was able
to engage in several Open Science projects. Perhaps the most
important is the Mathematical Research Data initiative (MarDI)
(https://mardi4nfdi.de), which has been approved as the mathem-
atics consortium within the evolving German National Research
Data Infrastructure and started to work by the end of 2021. Other
projects, pertaining to the EOSC cloud and the development of
a math-specific plagiarism detection system based on [10], have
already been approved, while others are in preparation.

But, above all, it is the mathematics community that drives
the further development of zbMATH Open by providing ideas and
contributions. We highly appreciate the ever-increasing number
of valuable reviews, as well as your suggestions and feedback to
editor@zbmath.org!
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Book reviews

The Polyhedrists by Noam Andrews

Reviewed by Adhemar Bultheel

Euclid’s Elements has been the book of
choice for centuries to teach geometry.
Three-dimensional geometry was only con-
sidered near the end in Book XI, and the
regular or Platonic solids (tetrahedron, cube,
octahedron, dodecahedron and icosahed-
ron) appeared in the very last Book XIII. This
was not on the regular curriculum of the
quadrivium. Besides these five regular solids
and the thirteen Archimedean solids that

can be seen as semi-regular, it became fashionable among artists
and craftsmen of the 15–17th century to use or depict these solids
in their work. Soon several truncations, indentations, and stella-
tions generated a plethora of so-called irregular solids. Irregular is
a misleading term, since they are still very symmetric, but they do
not satisfy the classical definition of the Platonic or Archimedean
corpora. Note that it were not the mathematicians who published
theory-free texts with plots and maps useful as manuals to pro-
duce these solids. With the invention of perspective, showing these
objects in their pictures was a token of craftsmanship and it illus-
trated the supposed mathematical, or at least intellectual skills of
the person being portrayed. With many examples and beautiful
illustrations, the historian and architect Noam Andrews tells the
story of this evolution in the wake of the Renaissance period.

The most iconic pictures involving nested polyhedra can be
linked to Kepler, who associated the Platonic solids with the solar
system. Also well known is Dürer’s Melencolia I, featuring a poly-
hedron and a magic square. Some may know the portrait of Luca
Pacioli attributed to Jacopo de’ Barban that has a water-filled glass
polyhedron hanging on a string and a solid polyhedron on the
table. Pacioli is the author of Divina proportione (1509), a book
illustrated by Leonardo Da Vinci in which he discusses the golden
ratio and the use of perspective. The latter was invented less than
a century ago and that was brought to a conclusion by Da Vinci.

Andrews explains how the polyhedral ideas evolved mainly
throughout the 16th century. It all starts with Erhard Ratdolt’s
edition of Euclid’s Elements (1482) that had some graphical illustra-
tions. These illustrations are natural for us, but they were new then,
in the early days of book printing. Graphics helped to understand
the proofs, but it was a completely different matter to paint, etch
or draw the three-dimensional geometric solids in proper perspect-
ive. At the universities, the study of perspective was part of optics.
Drawing and constructing the solids was the concern of an artist
and not so much of mathematical interest.

In the next chapters, the 16th century Bavarian city of Nurem-
berg is the historical scenery. This is where Dürer had access to
the Regiomontanus-Walther library and where he published his
book on geometry Underweysung der Vermessung (1525) [Instruc-
tion on measurement] treating among other things the Platonic,
Archimedean, and other solids. That book contained a lot of accu-
mulated knowledge, not only for painters and sculptors, but also
for stonemasons, carpenters and goldsmiths. He places visualisa-
tion central, which was new for mathematical texts. Nets of planar
developments of polyhedra could be cut out and folded and glued
together to form a paper 3D version of the solid and vice versa,
the solids could be developed into a printable 2D net.

Now Lehrbücher started circulating in Southern Germany.
These were like very graphical instruction manuals, that were
not generated at a university. They were manuals for artists and
craftsmen that were devoid of theory and theorems. For example,
Augustin Hirshvogel’s Geometria (1543) was a very popular one.
The 3D versions could be used as art objects but also as a teach-
ing object to practice perspective. Placed in front of the student,
mechanical devices were constructed that allowed to transfer the
view of a solid to a planar perspective view. Theory and theorems
were not involved.

Wenzel Jamnitzer was a famous goldsmith/mathematician who
worked for the Holy Roman Emperors. He also came to Nuremberg
where he published his Perspectiva corporum regularium (1568)
providing 24 variations (6 per page) for each of the 5 Platonic
solids, starting from the simple solid, modified by increasingly more
complicate truncations, indentations, or stellations.
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The next two chapters are about probably lesser known forms
of polyhedrism. The first is polyhedral marquetry often for furniture
in the form of cabinets. There is an exquisite example of such a cab-
inet in the Museum for Applied Arts in Cologne, richly decorated
with polyhedral objects. The little known, somewhat enigmatic
artist Lorenz Stöer was a very popular inspiration for Augsburger
cabinets. He produced eleven surrealistic colour graphics showing
deserted ruins of cities populated by all kinds of polyhedral struc-
tures. The last chapter is about the invention of sophisticated lathes
or turn tables used by master turners to make ivory columns (Säu-
len) which had on top, or sometimes half way, some sphere-like
dodecahedron or another solid with opened faces so that inside
you can find another smaller one that had yet another one inside,
like Russian matryoshkas. These contrefait spheres were fashion-
able at the Saxonian court in Dresden. Egidius Lobenigk and Georg
& Hans Wecker were famous master turners.

In an epilogue, Andrews reflects on the role played by the
polyhedrists. The popularisation did come from the application, and
not from the theory. It was only by the end of the 16th century that
gradually the subject became again absorbed by the academia. This
movement with popular Lehrbücher has awakened geometry from
almost two thousand year of frozen knowledge. Artists started to
think outside the plane and the generalisation and endless variation
of the classical solids made it possible for geometry to break loose
from its static immobility and an incentive was given for a more
evolved geometry as developed by Kepler, Monge, Descartes, and
at a larger scale even Einstein.

This is a nicely illustrated and easy to read book on some
less-known historical aspects of applied geometry. Most of the
material covered is restricted to Southern Germany and its con-
tent is mostly historical and cultural, with little mathematics. It is
however interesting to learn how this specific geometrical topic
became aesthetically fashionable and how it evolved outside the
universities, yet undoubtedly had an impact on the development
of geometry.

Noam Andrews, The Polyhedrists. MIT Press, 2022, 316 pages, Paperback
ISBN 978-0-2620-4604-6.

Adhemar Bultheel is emeritus professor at the Department of Computer
Science of the KU Leuven (Belgium). He has been teaching mainly
undergraduate courses in analysis, algebra, and numerical mathematics.

Adhemar.Bultheel@cs.kuleuven.be
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Origametry – Mathematical Methods in Paper Folding
by Thomas C. Hull

Reviewed by Ana Rita Pires

Origami is the art of paper folding, with
ancient origins: the classic Japanese pa-
per crane was supposedly devised in the
6th century. The last hundred years have
brought new interest in this art, with
the creation of increasingly complex and
beautiful origami models (such as the five
intersecting tetrahedra on the cover of the
book, created by the author Tom Hull and
voted by the British Origami Society as one

of the top ten origami models of all time), and also with the ap-
pearance of applications ranging from nano-robots for medical use
to solar arrays for spacecraft. In parallel, rich mathematical theories
related to origami were developed, at a particularly rapid pace in
the last decade.

“Origametry” is the most comprehensive reference book on the
connections between origami and mathematics. Its author, Tom
Hull, is an associate professor of mathematics at Western New Eng-
land University who has been studying the mathematics of origami
for decades. He compiles and describes in one volume a truly im-
pressive amount of material created by numerous researchers on
a diverse array of the mathematical aspects of paper folding.

The book is divided into four parts.
Part I describes Geometric Constructions. It introduces the basic

origami operations and shows how they can be used to trisect an
angle, construct a regular heptagon, and more generally solve any
cubic equation – all of which are famously impossible to achieve
using a straightedge and compass. A complete classification of
what constructions are possible with these basic origami operations
is achieved by determining the field of origami numbers using
Galois theory. Further avenues of research in this direction concern
geometric constructions that can be achieved using multifolds (in
which the paper is folded in a way that creates more than one
crease at once) or curved creases.

If you unfold an origami model, you get a crease pattern, a pat-
tern of line segments that represent valley folds and mountain
folds and intersect at definite angles. The main question in Part II
of this book, titled The Combinatorial Geometry of Flat Origami, is
whether a crease pattern can be flat-folded, that is, folded into an
origami model that lies flat in a plane once all the creases are folded
(such as a paper crane before pulling out the wing flaps to make
it three-dimensional). Maekawa’s and Kawasaki’s Theorems give
conditions for a crease pattern to be locally flat-foldable around
each of its vertices. Both results are easy to state and have short
proofs. The first gives the necessary condition that the number
of valley folds and the number of mountain folds at each vertex
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differs by two, and the second gives the necessary and sufficient
condition that the alternating sum of consecutive angles at each
vertex is zero. It turns out that the question of whether a crease
pattern is globally flat-foldable is much harder; it is in fact NP-
hard. The proof involves reducing this problem to the not-all-equal
3-satisfiability problem, an NP-complete version of the Boolean
satisfiability problem, by creating origami “gadgets” whose flat-
foldability requirements mimic the Boolean values of the variables
and the clauses. This second part of the book also contains a vari-
ety of other foldability questions, of which two examples are the
fold-and-cut problem (Given a two-dimensional shape, can you
fold a piece of paper so that applying a single straight cut will pro-
duce that shape? Yes, for any shape.) and Arnold’s rumpled rouble
problem (Is it possible to increase the perimeter of a rectangle by
folding it into a different shape? Yes, as much as one wishes.).

After looking at the geometry and combinatorics of flat origami,
the book turns in Part III to connections with other branches of
mathematics, namely Algebra, Topology, and Analysis in Origami.
For algebra, group theory is used to relate the symmetries of
a crease pattern with the symmetries of its flat-folded model. For
topology, the notion of folding along straight lines on (a subset of)
the Euclidean plane is extended not just to folding along geodesics
on Riemannian surfaces, but further to “isometric foldings” of
Riemannian manifolds in arbitrary dimension. An isometric fold-
ing is a continuous map from the crease pattern manifold to the
origami model manifold that sends piecewise geodesic segments to
piecewise geodesic segments. It turns out that even in this setting,
suitable generalizations of Maekawa’s and Kawasaki’s Theorems
exist. For analysis, it examines the problem of finding an isomet-
ric folding on Euclidean space that satisfies a given differential
equation and boundary condition – a Dirichlet problem.

Part IV of the book is titled Non-Flat Folding and mostly ex-
amines the mathematical underpinnings of rigid origami, that is,
three-dimensional origami models made of flat polygonal faces
which remain rigid during the folding process. Rigid origami is the
natural setting for applications in engineering, with objects whose
faces are made of a rigid material such as metal or glass and are
joined by hinges. This is an active area of research, with practical
problems often driving the mathematical research. For example:
a question coming from mechanics and robotics is whether a cer-
tain crease pattern will self-fold to its desired final state by applying
forces in certain hinges.

This is a true maths book: with theorems, proofs, definitions,
and examples. It also contains historical remarks, open problems,
and diversions, which range from interesting and fun exercises
to explore to straightforward parts of proofs that the reader is
invited to complete. Between the diversions and the open prob-
lems, this book is bound to inspire several undergraduate, master’s,
and even PhD theses. It is a delightful and informative read for
mathematicians curious about the mathematics behind origami,
essential for researchers starting out in this area, and handy for

educators searching for ideas in topics connecting mathematics,
origami, and its applications. Even though it is not written with
that goal specifically in mind, it could be used as a textbook for
a graduate course or a reading course.

A final word of advice: have some paper at the ready, it is
difficult to resist folding along while reading!

Thomas C. Hull, Origametry – Mathematical Methods in Paper Folding.
Cambridge University Press, 2020, 342 pages, Paperback ISBN
978-1-1087-4611-3.
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Teaching School Mathematics: Algebra by Hung-Hsi Wu

Reviewed by António de Bivar Weinholtz

This is the third book in a series of six
covering the K-12 curriculum, as an instru-
ment for the mathematical education of
schoolteachers. It follows two volumes enti-
tled “Understanding Numbers in Elementary
School Mathematics” and “Teaching School
Mathematics: Pre-Algebra”, and it com-
pletes the presentation of the mathematical
topics included in the K-8 curriculum. With
numbers and operations, finite probability

and an introduction to geometry and geometric measurement
covered in the previous two volumes, here the author deals with
the topics that can be found in any middle school or high school
introductory course on algebra: linear equations in one and two
variables, linear inequalities in one and two variables, simultaneous
linear equations, the concepts of a function, polynomial functions,
exponents, and a detailed study of linear and quadratic functions.
The volume also contains a very helpful appendix with a list of
assumptions, definitions, theorems, and lemmas from the previous
pre-algebra volume.
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Repeating the advice given in the review of the second book
in the series, I strongly recommend reading first the review of the
first volume (António de Bivar Weinholtz, Book Review, “Under-
standing Numbers in Elementary School Mathematics” by Hung-Hsi
Wu. Eur.Math. Soc.Mag. 122 (2021), pp. 66–67; https://ems.press/
content/serial-article-files/15117). There, one can find the reasons
why I deem this set of books a milestone in the struggle for a sound
mathematical education of youths. I shall not repeat here all the
historical and scientific arguments that sustain this claim. How-
ever, I wish to restate, regarding this third volume as well, that
although it is written for schoolteachers, as an instrument for their
mathematical education (both during pre-service years and for their
professional development), and to provide a resource for authors of
textbooks, its potential audience should be wider. Indeed, I believe
that it should include anyone with the basic ability to appreciate
the beauty of the use of human reasoning in our quest to under-
stand the world around us and the capacity and will to make the
necessary efforts, which are required here as for any enterprise
that is really worthwhile.

As in the previous volumes, the author sets out to explain why,
in his view, for the specific topics treated in each one of the books
– here introductory algebra – the goal of getting students to prop-
erly learn these topics seems to have been so much out of reach, at
least for the last few decades. He finds ample evidence, after such
a long period of time of observing so many frustrated attempts to
“renew” the teaching of school mathematics, that students fail to
learn algebra not because they don’t like the way it is taught, but
because they find the core of what they are taught to be incom-
prehensible. As in previous volumes, the author calls “textbook
school mathematics (TSM)” the content of what has generally been
offered to students under the name of “mathematics”, and in par-
ticular of “algebra”, and argues that in fact it does not satisfy five
fundamental principles of this subject:
1. Precise definitions are essential.
2. Every statement must be supported by mathematical reasoning.
3. Mathematical statements are precise.
4. Mathematics is coherent.
5. Mathematics is purposeful.
The precise implications of these principles, of course, depend on
the grade we are dealing with, but if they are not constantly kept in
mind by designers of curricula, textbook authors, and teachers, and
if they are not progressively conveyed to students, no real learning
of mathematics is possible. While being essential when dealing
with any part of the school math curriculum, these principles are
of particular importance when dealing with algebra; it is also in
algebra that some of the most harmful misunderstandings have
tainted TSM, along with the mistreatment of fractions that was
widely analyzed in the previous books. With the explicit purpose
of freeing school mathematics from these unfortunate mistakes,
the author describes them with due detail, as far as school algebra
is concerned, and he anticipates how the proper presentation of

this subject in this volume makes possible to avoid all of them. Let
us briefly review this list of “critical subjects”.

(1) One of the more visible characteristics of algebra is the
necessity to use a set of symbols that goes beyond those that
represent specific numbers, basic operations and equality and or-
der, extensively used in basic arithmetic since the first grades. The
proper use of symbols is one of the important features of mathe-
matics in general, and the learning of introductory algebra is one
of the fundamental steps for the acquisition of this kind of skill. But
the term “variable” that occurs naturally in this stage and in several
other situations in mathematics is not in itself a mathematical con-
cept, although it can occur in precise mathematical expressions like
“a real function of two real variables” or it can be used in informal
explanations, where “variable” is just a shorthand for “an element
in a set”. Nevertheless, TSM has risen “the understanding of the
concept of variable” to the dignity of a crucial step in the learning
of algebra, attempting definitions of “variable” like “a quantity that
changes” and that, not having any precise sense whatsoever, only
end up in confusing the minds of teachers and students.

(2) This confusion gets worse when one tries to use this so-
called “concept of variable” to define what an equation is, as is
common in TSM.

(3) As a geometric foundation of the properties of similar trian-
gles is absent from TSM, any attempt to give a proper treatment of
the concept and properties of the slope of a straight line is bound
to be unsuccessful.

(4) This mistreatment prevents an adequate study of this most
important relation between algebra and geometry that is the study
of first-order linear equations in two variables and systems of two
such equations and their graphs (or “sets of solutions”, in their geo-
metrical representation), namely why the graphs of these equations
are exactly the non-vertical straight lines.

(5) For the same reason, it becomes impossible in TSM to
properly learn the algebraic characterization of parallel and per-
pendicular lines. The “solution” often adopted in TSM to define
parallelism and perpendicularity of lines by using the characteristic
properties of slopes in each case (respectively equal slopes and the
product of slopes equal to −1, except in the case of the perpen-
dicularity of a pair of horizontal-vertical lines) is totally inadequate,
as students by that time are already familiar with the concepts of
parallel and perpendicular lines, and so they deserve an explanation
on how the latter can be related to the aforementioned properties
of slopes, not as new definitions, but as theorems to be proven.

(6) The concept of constant rate (in particular, constant speed)
is one that students have met on several occasions when they reach
the stage of an introductory algebra course, but this is the proper
opportunity to clarify these concepts. However, they are never
defined in TSM and instead TSM engages in an abstruse discussion
of a “concept” called “proportional reasoning” which is supposed
to be the basis of the understanding of rate, although it is hardly
ever given a proper definition. Once again, the possible meanings of
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this so-called “proportional reasoning” can and should be examined
thoroughly so that much of the aforementioned abstruse approach
can be eliminated from school curricula and the really fundamental
concepts that it aims to replace can be put on a firm mathematical
foundation.

(7) The graph of an equation (sometimes called the graphical
representation of the set of its solutions) is also in severe want of
a precise definition in TSM. This leads to a situation in which it is
impossible to understand why the solution of two simultaneous
linear equations is the point of intersection of the two lines that
are the graphs of the equations.

(8) The same can be said about the graph of linear inequalities
in two variables.

(9) The introduction of rational exponents is also often an
occasion for the frequent confusion in TSM between definitions
and theorems.

(10) Finally, the treatment of quadratic equations and functions
is often chaotic in TSM, without the unifying proper use of their
graphs.

Each one of these serious mathematical issues and others
that are presented in due course in this volume are dealt with;
this provides the tools to fix them and replace TSM by a sound
mathematical treatment of introductory school algebra.

Also with respect to this topic, I have to state that, given
the availability of this set of books, there is no excuse left for
schoolteachers, textbook authors and government officials to per-
sist in the unfortunate practice of trying to serve to students this
fundamental part of school mathematics in a way that is in fact
unlearnable…

As in the previous volumes of this series, on each topic the
author provides the reader with numerous illuminating activities,
and an excellent choice of a wide range of exercises.

Hung-Hsi Wu, Teaching School Mathematics: Algebra. American
Mathematical Society, 2016, 274 pages, Hardback ISBN
978-1-4704-2721-4, eBook ISBN 978-1-4704-3019-1.
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Solved and unsolved problems

Michael Th. Rassias

The present column is devoted to Differential Equations.

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.

260
Let f ∶ [0,∞)→ℝ be a C 1-differentiable and convex function with
f(0) = 0.
(i) Prove that, for every x∈ [0,∞), the following inequality holds:

∫
x

0
f(t)dt ≤ x2

2
f ′(x).

(ii) Determine all functions f for which we have equality.

Dorin Andrica (“Babeş-Bolyai” University, Cluj-Napoca,
Romania) and Mihai Piticari (“Dragoş Vodă” National College,
Câmpulung Moldovenesc, Romania)

261
Let y(x) be the unknown function of the following fractional-order
derivative Cauchy problem:

⎧
⎨
⎩

Dαy = f(x, y), 0 < α < 1,

y(0) = y∗.

Find the solution of this problem by solving an equivalent first-
order ordinary Cauchy problem, with a solution independent on
the kernel of the fractional operator.

Carlo Cattani (Engineering School, DEIM,
University “La Tuscia”, Viterbo, Italy)

262
Let y(x) be the unknown function of the following Bernoulli frac-
tional-order Cauchy problem:

⎧
⎨
⎩

Dαy = g(x)yβ, 0 < α < 1, β ≠ 0, 1,

y(0) = y∗,

where g(x) is a continuous function in the interval I = [0,∞).
Find the solution of this problem by solving an equivalent first-

order ordinary Cauchy problem, with a solution independent on
the kernel of the fractional operator.

Carlo Cattani (Engineering School, DEIM,
University “La Tuscia”, Viterbo, Italy)

263
Let g be a real-valued C 2-function defined on (0,∞), strictly increas-
ing, such that g(x) > 1 for all x ∈ (0,∞) and g(2) < 4. Consider
the boundary value problem

y″ = −g(x)y, y(0) = 1, y′(0) = 0.

Prove that the solution y has exactly one zero in (0,π/2), i.e., there
exists a unique point x0 ∈ (0,π/2) such that y(x0) = 0, and give
a positive lower bound for x0.

Luz Roncal (BCAM – Basque Center for Applied Mathematics,
Bilbao, Spain, Ikerbasque Basque Foundation for Science,
Bilbao, Spain and Universidad del País Vasco/Euskal Herriko
Unibertsitatea, Bilbao, Spain)

264
We propose an interesting stochastic-source scattering problem
in acoustics. The stochastic nature for such problems forces us to
deal with stochastic partial differential equations (SPDEs), rather
than the partial differential equations (PDEs) which hold for the
corresponding deterministic counterparts. In particular, we provide
the appropriate variational formulation for the stochastic-source
Helmholtz equation.
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We consider the following boundary value problem (BVP) for
the Helmholtz equation with a stochastic source:

⎧
⎨
⎩

Δu+ k2u = f in D,

u = 0 on ∂D,
(1)

where f = ∑
a
faHa is a generalized stochastic source and

Ha(ω) =
∞

∏
i=1

hai(⟨ω, ξδ i⟩)

are stochastic Hermite polynomials with ω ∈ Ω, Ω being a probab-
ility space. The Hermite polynomials are denoted by hai, whereas
the tensor product is denoted by ξd j. We also define the Hermite
functions ξn(x) as follows:

ξn(x) = π− 1
4 ((n− 1)!)−

1
2 e− x2

2 hn−1(x), n = 1, 2, 3,…,

and we set d j ≔ (d j
1,d

j
2,…,d j

m), where d j
i ∈ ℕ is related to the

following tensor products:

ξd j ≔ ξd j
1 ⊗ ξd j

2
⊗⋯⊗ ξd j

m, j = 1, 2, 3,…,

with i < j ⇔ d i
1 + d i

2 +⋯+ d i
m ≤ d j

1 + d j
2 +⋯+ d j

m and |dj| =
d j
1 + d j

2 +⋯+ d j
m. In addition, we employ the countable index

I = {a = (a1,a2,…) ∣ ai ∈ ℕ∪ {0}}, and there only finitely many
ai ≠ 0.

For the stochastic problem (1), we use the expansions

u = ∑
a∈ I

uaHa and f = ∑
a∈ I

faHa

to get a hierarchy of deterministic BVPs

⎧
⎨
⎩

Δua + k2ua = fa in D,

ua = 0 on ∂D.
(2)

Assume that ua ∈ H1
0(D) solves problem (2). Then prove that, for

every v ∈ H1
0(D), the solution ua satisfies

−∫
D
∇ua ⋅ ∇v dx+∫

D
k2uav dx = ∫

D
fav dx.

George Kanakoudis, Konstantinos G. Lallas and Vassilios
Sevroglou (Department of Statistics and Insurance Science,
University of Piraeus, Piraeus 18534, Greece)

265
For a Newtonian incompressible fluid, the Navier–Stokes momen-
tum equation, in vector form, reads [3]

ρ(∂u
∂t

+ u ⋅ ∇u) = −∇p+ μ∇2u+ F,

u = u(x, t), u∶ Rn × (0,∞) → Rn.
(1)

Here, ρ is the fluid density, u is the velocity vector field, p is the
pressure, μ is the viscosity, and F is an external force field.

(i) Assuming that both the pressure drop ∇p and the external
field F are negligible, it is easy to show that equation (1) reduces to

∂u
∂t

+ u ⋅ ∇u = ν∇2u,

and finally to equation (2), where ν = μ
ρ is the so-called kinematic

viscosity [4].
(ii) Regarding the one-dimensional viscous Burgers equation

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2

, u = u(x, t), (2)

prove that an analytical solution can be obtained by means of the
Tanh Method [1,2,4] as

u(x, t) = λ[1− tanh( λ
2ν

(x− λt))], λ > 0.

M.A. Xenos and A. C. Felias (Department of Mathematics,
University of Ioannina, Greece)
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II Open problems

(A) Uniqueness of positive steady states for KPP equations
in general domains

by Henri Berestycki (Centre d’analyse et de mathématique
sociales, EHESS-CNRS, Paris, France; Institute for Advanced Study,
Hong Kong University of Science and Technology)

Reaction-diffusion equations
These arise ubiquitously in the modelling of population dynamics,
and more generally in biology and ecology. Remarkably, various
fields converge on these equations. In addition to modelling in the
life sciences and, of course, nonlinear partial differential equations,
they arise in probability theory (via branching particle systems)
and statistical physics. These equations have witnessed remarkable
progress in recent years. Yet, many basic problems remain open.
The object of this note is to present a couple of such questions
that are simple to formulate.
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Reaction-diffusion equations of homogeneous type read in
general as ∂tu− Δu = f(u) in ℝN. The nonlinear term f is called
the reaction term and the Laplacian operator is associated with
diffusion. This equation is termed homogeneous because it does
not involve explicitly the location x (or time t) and also because it is
set in all of space. The Fisher–KPP case (or strong KPP case) refers
to the class of nonlinear terms f of class C1 that satisfy

f(0) = f(1) = 0, and the function s ↦ f(s)
s

is decreasing on (0, 1].
(1)

The archetypal example is f(u) = u(1− u). These reactions terms
were introduced and first studied by Fisher [9] and Kolmogorov,
Petrovsky and Piskunov (KPP) [10]. I will discuss some questions
related to the uniqueness of bounded positive stationary solutions,
that is, bounded positive solutions of the semilinear elliptic equation
−Δu = f(u) with boundary conditions.

Heterogeneous equations
In recent years, many works have addressed heterogeneous ver-
sions of the equations introduced above. These arise in various
guises. First, the reaction term f is allowed to vary in space and time:
f = f(t, x,u). Likewise, in various models, one wishes to consider
more general second-order elliptic operators than the Laplacian:

∑
i j

ai j(x)
∂2u
∂xi∂xj

+∑
i

bi(x)
∂u
∂xi

.

My works with Hamel and Rossi [6] and Hamel and Nadin [4] are
devoted precisely to this type of question. The interested reader
will find in or infer from these papers open problems analogous to
several that I describe here.

Another natural heterogeneity arises from the geometry of the
domain of propagation when it is not the whole space. Given an
open subset Ω ⊂ ℝN subject to Dirichlet boundary conditions, we
are led to study the problem

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪
⎩

−Δu = f(u) in Ω,

0 < u ≤ 1 in Ω,

u = 0 on ∂Ω.

(2)

Indeed, in many cases of interest, f(s) < 0 for all s > 1, and then
one can show that any non-negative bounded solution (besides 0)
satisfies 0 < u < 1.

Existence
To discuss the existence of a positive solution of (2), we use the gen-
eralized principal Dirichlet eigenvalue in the domain Ω, defined as

λ(Ω) ≔ inf
𝜙∈H1

0(Ω)⧵{0}

∫Ω|∇𝜙|2

∫Ω𝜙2 .

This definition coincides in the present case with the notion of
generalized principal eigenvalue introduced in [7] and applied to
unbounded domains in [8]. We can then state the existence result
in a more general framework of weak KPP class:

f(0) = f(1) = 0, 0 < f(s) < f ′(0)s for all s ∈ (0, 1). (3)

Existence in (2) is conditioned by this eigenvalue.

Theorem 1. Let f satisfy the weak KPP condition (3). Then (2)
admits a positive bounded solution if λ(Ω) < f ′(0). Conversely, if
λ(Ω) > f ′(0), (2) has no positive bounded solution.

This result from [2] is analogous to the one for variable-coef-
ficient operators in ℝd in [6] and is obtained with the same argu-
ments.

Uniqueness. When the domain Ω is bounded and f satisfies the
strong KPP assumption (1), the solution of (2) is unique when it
exists [1]. This raises a natural question: is the same true in unboun-
ded domains? Cole Graham and myself [2] have been working on
this problem and our progress leads us to formulate the following.

Conjecture 2. Consider an unbounded uniformly smooth (say
C2,α) domain Ω. Under the strong KPP condition (1), the solution
of problem (2) is unique when it exists.

Here, “uniformly smooth” means that there is a fixed r > 0
such that for any boundary point p ∈ ∂Ω, its boundary neighbour-
hood ∂Ω∩ Br(p) can be represented as the graph of some C2,α

function 𝜙p ∶ D→ℝ, where D is the unit ball in ℝN−1 and ‖𝜙p‖C2,α
is bounded independently of the point p (see [5, Section 1.3]).
One may be even more demanding and lift this uniform regularity
condition.

266*
Open problem. In a locally smooth domain Ω with f of strong
KPP-type, is the solution of problem (2) unique when it exists?

The conjecture in its full generality is open. In my work with
Cole Graham [2], we prove uniqueness under a non-degeneracy
condition. This result covers a large variety of cases and can be
viewed as generic. Its statement requires the use of eigenvalues
on various limits of Ω. We say that Ω∗ is the connected limit of Ω
along a sequence (xn)n∈ℕ ⊂ Ω if the following holds. There exists
a uniformly C2,α domain Ω̃ ⊃ Ω∗ such that Ω− xn → Ω̃ locally
uniformly in C2,α as n → ∞, and Ω∗ is the connected component
of Ω̃ whose closure contains 0. We then define the principal limit
spectrum as

Σ(Ω) ≔ {λ(Ω∗) ∣ Ω∗ is a connected limit of Ω},
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and we let Σ(Ω) denote its closure. We refer to the elements of Σ
as (principal) limit eigenvalues. One of our main results in [2] is the
following.

Theorem 3. Suppose Ω is uniformly smooth, f satisfies (1), and
f ′(0) ∉ Σ(Ω). Then the solution of (2) is unique when it exists.

An example. To illustrate Conjecture 2 and Theorem 3, consider
the following domain in ℝ2 that we call the “infinite light bulb”.

We assume that the round portion is sufficiently large that
λ1(Ω) < f ′(0). Then, by Theorem 1, we know that (2) admits
at least one solution. We can show that Σ(Ω) = {λ(Ω), π2/L2}.
Thus Theorem 3 applies when L ≠ π/√f ′(0). The critical case
L = π/√f ′(0) is not covered by our result. Nonetheless, in [2], we
exploit the explicit structure of Ω to prove that the solution of (2)
is still unique in this case. This supports Conjecture 2.

Robin type conditions
Other types of boundary conditions are of interest as well. We can
consider the Robin problem

⎧⎪⎪
⎨⎪⎪⎩

−Δu = f(u) in Ω, 0 < u ≤ 1,

−∂u
∂ν

= γu on ∂Ω,
(4)

where ν is the unit outward normal vector field on the boundary
∂Ω and γ ≥ 0 is a constant. More generally, one might consider
a function γ(x) ≥ 0 that varies on ∂Ω.

Conjecture 4. In a uniformly smooth domain Ω with f of strong
KPP-type, the solution of problem (4) is unique when it exists.

In our forthcoming work [2], we establish an analogue of The-
orem 3 in the Robin case. This requires a suitable notion of the
generalized principal Robin eigenvalue.

General positive and other reaction terms
In [2], we also consider the more general class of positive nonlinear
terms f. This class is defined by the conditions

f(0) = f(1) = 0, f ′(0) > 0, f(s) > 0 for all s ∈ (0, 1). (5)

In all of space ℝN, uniqueness holds in the more general positive
case. Indeed, under conditions (5), u≡1 is the unique solution of (2)
when Ω = ℝN. For a proof, I refer the reader to the forthcoming
book [3]. The presence of boundary changes matters significantly.
In fact, in a proper subset Ω⊂ℝN with Dirichlet or Robin boundary,
solutions of (2) (or (4)) need not be unique. However, uniqueness
holds under Neumann boundary conditions.

Theorem 5. In a uniformly smooth domain Ω with f of positive
type (5), the unique solution of the Neumann problem (4) with
γ = 0 is u ≡ 1.

This result is a generalization of one in my earlier work with
Hamel and Nadirashvili [5]. This form is due to Rossi [11]. It naturally
calls for the following.

267*
Problem. Can the result of Theorem 5 be extended to locally
smooth domains?
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(B) A problem in geometric analysis
by Michael Struwe (Departement Mathematik, ETH Zürich,
Switzerland)

The last 40 years have seen enormous progress in the application
of variational methods to problems in geometric analysis, which
in general are characterized by the possibility of “bubbling” and
topological degeneration of sequences of approximate solutions
obtained either by regularization of the problem, or as “Palais–
Smale sequences” for the energy functional involved. In critical
point theory therefore it is vital to understand the possible inter-
action of the problem at hand with its “cousins” that characterize
the “bubbling”, in particular, when the sought-after critical points
are of “mountain-pass” type.

As an example consider the (by now classical) “Nirenberg prob-
lem” of finding conformal metrics of prescribed Gauss curvature
on the standard 2-sphere, which has given rise to sophisticated
analytic approaches and deep insights into the interplay of analysis
and geometry, but which still poses a challenge, even though many
partial answers have been obtained.

Nirenberg’s problem
After the work of Berger [1] and Kazdan–Warner [4] on conformal
metrics of prescribed Gauss curvature on closed Riemann surfaces,
the particular case, proposed by Nirenberg, of finding conformal
metrics g = e2ug0 on the sphere S2 with its standard round metric
g0 having a given function f as Gauss curvature Kg = f has attracted
the attention of geometric analysts.

In view of the equation

Kg = e−2u(−Δ0u+ 1)

relating Kg and u, where Δ0 is the Laplace–Beltrami operator in
the metric g0, for given f ∶ S2 → ℝ, we need to solve the nonlinear
partial differential equation

−Δ0u+ 1 = f e2u on S2. (1)

The problem is variational. Indeed, introducing the Liouville
energy

S(u) = ⨍
S2
(|∇u|2 + 2u)dμ0,

where dμ0 is the area element in the metric g0 and ⨍S2 =
1
4π ∫S2

denotes the average, and setting

E(u) = S(u) − log(⨍
S2
f e2u dμ0) (2)

for u ∈ H1(S2), the standard Sobolev space of L2-functions on S2

with square-integrable weak derivatives, solutions of (1) may be
characterized as critical points of E.

Via the Möbius group M of conformal diffeomorphisms of the
sphere, for any point p ∈ S2 the functional E may be compared

with the functional

Ep(u) = S(u) − log(⨍
S2
f(p)e2u dμ0),

where f is replaced by the constant f(p). Indeed, given any p ∈ S2,
any t ≥ 1, letting Φp ∶ S2 ⧵ {−p} → ℝ2 be the stereographic pro-
jection from the point −p ∈ S2 and letting δt ∶ ℝ2 ∋ z → tz ∈ ℝ2

be the standard dilation, we obtain the Möbius map

Φp,t = Φ−1
p ∘ δt ∘Φp ∈ M.

Letting up,t = u∘Φp,t + log|Φ′
p,t|, where wewrite |Φ′|=√detdΦ

for brevity, we then have

S(up,t) = S(u)

(see for instance [2, Proposition 2.1]) and thus

E(up,t) = S(up,t) − log(⨍
S2
f e2up,t dμ0)

= S(u) − log(⨍
S2
(f ∘Φ−1

p,t )e2u dμ0) → Ep(u) as t → ∞.

For large t > 1, it was shown by Chang–Yang [2] that the
first and second variation of E at up,t may be related to ∇f(p)
and ∇2f(p), respectively. From this observation, they deduce the
following existence result.

Theorem 6 (Chang–Yang [2], Theorem II′). Suppose that f > 0 is
a smooth function satisfying the non-degeneracy condition

Δ0f(p) ≠ 0 at any p ∈ S2 with ∇f(p) = 0 (3)

and the index count condition

∑
∇f(p)=0,Δ0f(p)<0

(−1)ind(p) ≠ 1. (4)

Then there is a smooth solution u to (1).

Interpretation
Condition (4) in Theorem 6 may be interpreted in terms of the “last
Morse inequality” related to the variational integral (2), that is, in
terms of an equation identifying the “topological degree” d = 1
of the (contractible) set of admissible functions H1(S2) with the
sum of the topological degrees of all critical points of E, including
the contributions of the degenerate variational problems related
to the functionals Ep, p ∈ S2. With what we remarked above, the
latter contribution is given by the left-hand side of (4). Thus, if that
term is different from 1, there has to be a further contribution to
the total topological degree of all critical points, then necessarily
coming from a solution u to (1).

Open problem
In [8] an example was given showing that condition (4) in The-
orem 6 in general cannot be removed; thus, with the non-degen-
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eracy condition (3), condition (4) is not only sufficient but also in
general necessary for the existence of a solution to (1).

However, we are still lacking a precise characterization of all
solutions of (1). In particular, we should be able to obtain the
existence of multiple solutions in certain cases. A simple instance
of such a case, where – hopefully – the problem is feasible, would
be when the given function f is symmetric with respect to reflection
in a plane and is a Morse function similar to the example studied
in [8] but satisfying the Chang–Yang condition (4).

268*
Problem. Let F be the set of functions 0 < f ∈ C∞(S2) with

f(x1, x2, x3) = f(−x1, x2, x3) for x = (x1, x2, x3) ∈ S2,

having a saddle point at the north pole x3 = 1, a minimum at
the south pole x3 = −1, and precisely two maxima as critical
points, all of which are non-degenerate and satisfy (3), and such
that condition (4) holds. Find conditions for f ∈ F such that there
is more than one solution of (1), and characterize the set of all
solutions of (1) in the sense of Morse theory.

Of course, the question may easily be widened to a larger class
F of functions.

Related challenges
Note that Chang–Yang [2] showed that when f ≢ 1 solutions of
(1) never are relative minima of the energy E.

The Nirenberg problem thus can be seen in the larger context of
finding critical points of “mountain-pass” type for variational prob-
lems characterized by conformal invariance and “bubbling”. A clas-
sic instance of such problems is in 4-dimensional gauge theory, in
particular, in the question concerning the existence of 1-equivariant,
non-minimal Yang–Mills connections in the trivial SU(2)-bundle
over S4, which remained open after Sibner–Sibner–Uhlenbeck [6]
obtained m-equivariant, non-minimal Yang–Mills connections for
any m ≥ 2; see also Donaldson [3, pp. 309–310] for further de-
tails. Moreover, conformal invariance is responsible for many of
the difficulties encountered by Rivière [5] in his recent work on
“min-max” critical points for the Willmore energy related to sphere
eversion.

Recall that Smale [7] famously showed that it is possible to “turn
a sphere inside out” via a continuous path of C 2-immersions of S2

into ℝ3. Moreover, Bryant characterized all immersed Willmore
spheres in ℝ3 as being given by the images by inversions of simply
connected, complete, non-compact minimal surfaces with planar
ends, with Willmore energy given by 4πk, where k is the number
of ends, and index equal to k − 3. Finally, a topological result
of Banchoff–Max shows that any path everting the sphere has
to contain at least one immersion with a quadruple point and
therefore, by a result of Li–Yau, with Willmore energy β ≥ 16π.
Combining these pieces of information, Rivière conjectured that

the inversion of a simply connected, complete minimal surface
with k = 4 planar ends, thus having index m = 1 and Willmore
energy 16π, should give a “min-max Willmore sphere”, achieving
the least maximal Willmore energy along paths of immersions of S2

into ℝ3 that “turn the sphere inside out”. But in the variational
ansatz “bubbling” may occur, and many questions remain to be
solved. See [5] for further details and references.

Similarly, in gauge theory the desired 1-equivariant, non-min-
imal Yang–Mills connections in the trivial SU(2)-bundle over S4

should achieve the least maximal Yang–Mills energy along paths
of connections beginning at a 1-equivariant Yang–Mills instanton
and ending at a 1-equivariant anti-instanton. But again “bubbling”
comes in the way.
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III Solutions

252
Prove that the space of unordered couples of distinct points of
a circle is the (open) Möbius band. More formally, consider

(S1 × S1) ⧵ {(x, x) ∣ x ∈ S1}

and the equivalence relation on this space (x, y) ≡ (y, x); prove
that the quotient topological space is the (open) Möbius band.

Costante Bellettini (Department of Mathematics,
University College London, UK)

Solution by the proposer
The space of ordered pairs of points of a circle is the cartesian
product S1 × S1, hence a torus. This is the same as the unit square
[0, 1] × [0, 1] with the following identifications: [0, 1] × {0} is
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identified with [0,1]× {1}, both with orientation from left to right;
{0} × [0, 1] is identified with {1} × [0, 1], both with orientation
from bottom to top. Note that the four vertices of the square are
the same point. We now need to remove couples of the type (x, x)
(same point of the circle), which implicitly removes (1,0) and (0,1)
as well. Hence, we are now looking at the square with the diagonal
from (0, 0) to (1, 1) removed, and with (1, 0) and (0, 1) removed,
keeping the identification we had earlier. Next, we need to identify
couples (x,y) and (y,x) (since wewant to study unordered couples).
This amounts to removing one of the two triangles that have been
obtained after removing the diagonal of the square; without loss of
generality we assume that we remove the top-left triangle. What is
left is the triangle with vertices (0,0), (1,0), (1,1), with the longer
side removed (the one that was the diagonal of the square), with
the point (1, 0) removed, and with the following identification:
any point (x, 0) was identified (in the original torus) with the point
(x, 1), which has then been identified with the point (1, x). Hence,
the triangle has the horizontal side oriented left-to-right identified
with the vertical side oriented bottom-to-top. We can check that
this is the (open) Möbius band as follows: the point (1, 0) is not in
the triangle (nor is the longer side of the triangle), so we can stretch
the point (1, 0) until the triangle becomes a rectangle, with the
stretched point that has become the side opposite to the side that
was the diagonal of the square. The identification of the remaining
two sides gives the (open) Möbius band.

253
In the Euclidean plane, let γ1 and γ2 be two concentric circles of
radius respectively r1 and r2, with r1 < r2. Show that the locus γ of
points P such that the polar line of P with respect to γ2 is tangent
to γ1 is a circle of radius r22/r1.

Acknowledgement. I want to thank the professors who guided
me in the first part of my career for giving me the ideas for these
problems.

Paola Bonacini (Mathematics and Computer Science
Department, University of Catania, Italy)

Solution by the proposer
Let P be any point such that the polar line r of P with respect to γ2
is tangent to γ1. Then clearly P is external to γ2. Let C be the centre
of the two circles, {Q} = γ1 ∩ r and {T1, T2} = γ2 ∩ r. Since r is
tangent to γ1 in Q, we can assert that the line CQ is orthogonal
to r and, since r is the polar of P with respect to γ2, the line CP is
orthogonal to the line r. So, the points P, Q and C are collinear and
the angles T̂1QP, T̂2QP, T̂1QC and T̂2QC are right. We also know
that T̂1CQ = T̂2CQ = α, where 0 < α < π

2 . So we can assert that

QT1 = QT2 = √r22 − r21 ,

and by looking at the triangle CQT1, we see that

r1 = r2 cosα ⟹ cosα = r1
r2
.

Clearly, T̂1PQ = π
2 − α, and consequently,

QP = QT1 cot(
π
2
− α) = r22 − r21

r1
.

This implies that

PC = QP+ QC = r22
r1
,

which clearly shows that γ is a circle of centre C and radius r22/r1.

254
Let A ⊆ ℝ3 be a connected open subset of Euclidean space, and
suppose that the following conditions hold:
(1) Every smooth irrotational vector field on A admits a potential

(i.e., it is the gradient of a smooth function).
(2) The closure A of A is a smooth compact submanifold of ℝ3 (of

course, with non-empty boundary).
Show that A is simply connected. Does this conclusion hold even
if we drop condition (2) on A?

Roberto Frigerio (Dipartimento di Matematica,
Università di Pisa, Italy)

Solution by the proposer
The usual scalar product on ℝ3 induces an identification between
smooth vector fields and differential 1-forms, which identifies ir-
rotational vector fields with closed forms, and fields admitting
a potential with exact forms. Therefore, condition (1) may be re-
stated as follows: every smooth 1-form on A is exact, i.e., the
first de Rham cohomology group of A vanishes. By the de Rham
Theorem, this is in turn equivalent to the fact that the singular
homology module H1(A,ℝ) vanishes.

Since any compact manifold with boundary is homotopy equi-
valent to its interior, we may thus assume that H1(A,ℝ) = 0.
A well-known consequence of the Poincaré Duality Theorem is
that, for any compact orientable 3-manifold with boundary M, the
dimension of H1(∂M,ℝ) is twice the dimension of H1(M,ℝ). Since
every codimension-0 submanifold of ℝ3 is obviously orientable, we
thus have H1(∂A,ℝ) = 0. Let S1,…, Sk be the components of the
boundary ∂A. Since

H1(∂A,ℝ) =
k

⨁
i=1

H1(Si,ℝ)

and the 2-sphere is the only compact orientable 2-manifold without
boundary with vanishing first cohomology group, we can conclude
that Si is diffeomorphic to the 2-sphere for every i = 1,…, k.
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It is well known that every smooth sphere in ℝ3 bounds a
smooth closed disc (this is no longer true for non-smooth spheres;
see below); hence, for every i = 1,…, k, we have Si = ∂Bi, where
Bi ⊆ ℝ3 is a smooth disc. Since A is connected, it readily follows
that there exists one of these closed discs, say B1, such that

A = B1 ⧵ (int(B2) ∪⋯∪ int(Bk)).

In other words, A is a closed disc with some open discs removed,
and in particular it is simply connected.

In order to prove that A is simply connected, the condition that
A be the interior of a compact smooth manifold with boundary is
essential. Indeed, let S ⊆ ℝ3 ⊆ S3 be the well-known Alexander
horned sphere. Then S separates S3 into two connected compon-
ents: one of them, say A1, is homeomorphic to an open ball; the
other one, say A2, is not simply connected. However, Alexander
duality implies that

H1(A1,ℝ)⊕ H1(A2,ℝ) = H1(S3 ⧵ S) ≅ H1(S,ℝ) = 0.

We thus haveH1(A2,ℝ)= 0while π1(A2)≠{1}. By setting A=A2,
we thus get a non-simply connected open connected subset A of
ℝ3 such that every smooth irrotational vector field on A admits
a potential.

255
A regulus is a surface in ℝ3 that is formed as follows: We consider
pairwise skew lines ℓ1, ℓ2, ℓ3 ⊂ ℝ3 and take the union of all lines
that intersect each of ℓ1, ℓ2, and ℓ3. Prove that, for every regulus U,
there exists an irreducible polynomial f ∈ ℝ[x, y, z] of degree two
that vanishes on U.

Adam Sheffer (Department of Mathematics, Baruch College,
City University of New York, NY, USA)

Proof
Let 𝒫 be a set of 9 points that is obtained by arbitrarily choosing
three points from each of ℓ1, ℓ2, and ℓ3. We write

f(x, y, z) = a1x2 + a2y2 + a3z2 + a4xy+ a5xz

+ a6yz+ a7x+ a8y+ a9z+ a10.

Asking f to vanish at a specific point is equivalent to a linear equa-
tion in the variables a1,…,a10. Thus, asking f to vanish at all points
of 𝒫 yields a system of 9 linear equations with 10 variables. Since
the number of variables is larger, this system admits a nontrivial
solution. Thus, there exists a nonzero polynomial f ∈ ℝ[x, y, z] of
degree at most two that vanishes on 𝒫. Let W ⊂ ℝ3 be the set of
points at which f vanishes.

Let f1 ∈ ℝ[s] be the restriction of f to the line ℓ1. Since f
vanishes on at least three points of ℓ1, the polynomial f1 has at
least three roots. Since deg f1 ≤ 2 but this polynomial has more
than two roots, we have that f1(s) = 0. In other words, ℓ1 ⊂ W.

By repeating the above argument, we get that ℓ1, ℓ2, ℓ3 ⊂ W. By
definition, no plane contains a pair of skew lines, so W cannot
contain a plane. This implies that f is irreducible of degree two.

Consider a line ℓ ′ that intersects ℓ1, ℓ2 and ℓ3. Since these
three lines are pairwise skew, the three intersection points are
distinct, so |ℓ ′ ∩ U| ≥ 3. By restricting f to ℓ ′ as above, we get
that ℓ ′ ⊂ W. Since U is the union of all such lines ℓ ′, we get that
U ⊆ W. This proof is by Larry Guth, although it may have also
existed earlier.

256
(Enumerative Geometry). How many lines pass through 4 generic
lines in a 3-dimensional complex projective space ℂℙ3?

Mohammad F. Tehrani (Department of Mathematics,
University of Iowa, USA)

Introductory remarks
This is a problem in an over a century-old area of mathematics
called enumerative geometry. Enumerative geometry is concerned
with finding or counting geometric objects (mainly curves, i.e.,
1-dimensional objects over the ground field) satisfying certain geo-
metric conditions (e.g., passing through a specified set of objects
or having a particular degree, genus, and types of singularities).
Enumerative geometry was revolutionized in the mid-1990s by
the novel predictions of mirror symmetry that led to the creation
of Gromov–Witten theory and extensive study of such questions
in complex algebraic geometry, symplectic geometry, and string-
theoretic physics.

The most straightforward example in this area is the number
of lines passing through two points, where the answer is 1. Here,
one can interpret the word “line” as a real line in the real Euclidean
space ℝn, a complex line in the complex Euclidean space ℂn, or
a complex projective line (i.e., ℂℙ1 ≅ S2) in the complex projective
space ℂℙn. The answer is the same regardless of the context. The
same is not true in most other questions. Gromov–Witten theory
is mostly about counting complex curves in complex projective
varieties or closed symplectic manifolds. The benefits of studying
complex curves in compact complex/almost complex manifolds is
two-fold. First, the compactness of the spaces involved results in
finite counts. Second, working over complex numbers ensures that
count of such objects does not depend on the choices involved.
Recall that a degree-d polynomial over ℂ has always d roots (when
counted with multiplicities), but a degree-d polynomial over ℝ has
at most d roots.

Solution by the proposer
Before finding the answer, let us indeed argue that the expected
answer is a finite number. As in linear algebra, this is done by com-
puting degrees of freedom and the number of equations imposed
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by the constraints. As we mentioned above, there is exactly one
line passing through two distinct points in ℂℙ3; the dimension of
the space of pairs of such points is 3+ 3 = 6. However, for each
line, there is a (1+ 1 = 2)-dimensional family of pairs of points
that yield that particular line. Therefore, assuming that the set of
lines in ℂℙ3 is a nice geometric space, its dimension should be
6− 2 = 4. The reduction in the dimension caused by the condi-
tion of intersecting any of the given lines is 1. It follows that the
reduction in the dimension caused by the condition of intersecting
all given four lines is 4. Since 4− 4 = 0, the solution set should be
discrete. Since we are working with compact spaces, it will indeed
be finite. Bellow, using Schubert calculus on Grassmannians, we
will compute this number. We challenge the reader to think about
the following real affine version of the question using elementary
techniques: How many lines pass through 4 generic lines in ℝ3?

The n-dimensional complex projective space ℂℙn is the pro-
jectivization of ℂn+1 in the sense that each point in the former
corresponds to a line in the latter. In one dimension higher, every
projective line in ℂℙn is the projectivization of a plane in ℂn+1.
Therefore, the space of lines in ℂℙ3 is the same as the space of
planes in ℂ4, which is known as the (complex) Grassmannian man-
ifold Gr(2, 4). More generally, the Grassmannian Gr(r,n) is a com-
pact complex (r×(n− r))-dimensional manifold that parametrizes
the r-dimensional subspaces of ℂn. Let ℓ⊂ℂℙ3 be a line that is the
projectivization of a two-dimensional subspace V ⊂ ℂ4. The sub-
space of lines in ℂℙ3 that intersect ℓ is a submanifold Xℓ of Gr(2,4)
with dimℂ Xℓ = 4− 1 = 3. The points of Xℓ correspond to two-
dimensional subspaces V ′ ⊂ ℂ4 such that dimℂ(V∩ V ′) ≥ 1. Even
though Xℓ depends on ℓ, the homology class A∈H6(Gr(2,4),ℤ)≅
ℤ of Xℓ does not depend on ℓ. The homology groups of the Grass-
mannian are generated by a specific class of complex submanifolds
known as Schubert cycles. All the odd degree homology groups
are trivial.

Digression on Schubert calculus
Let λ≝(λ1 ≥ λ2 ≥⋯≥ λr) be a sequence of non-negative integers
between 0 and n− r, and define |λ| = ∑ λi. Given a sequence
of vector spaces W ≝ (0 ⊈ W1 ⊈ ⋯ ⊈ Wn = ℂn), the Schubert
cycle σλ = σλ(W), with Poincaré dual PD(σλ) ∈ H2|λ|(Gr(r,n),ℤ),
is defined to be

σλ(W) = {V ∈ Gr(r,n) ∶ dim(V∩Wn− r+ i−λi) ≥ i}. (1)

The homology class of σλ(W) does not depend on W. There is
a geometric way of describing a non-decreasing sequence λ which
helps with understanding the computations involving Schubert
cycles. A Young diagram is a finite collection of boxes, or cells,
arranged in left-justified rows, with the row lengths weakly decreas-
ing (each row has the same or shorter length than its predecessor).
Listing the number of boxes in each row gives a sequence λ of
non-negative integers, such that |λ| is the total number of boxes
of the diagram. Figure 1 shows the Young diagram of λ = (5,4, 1).

Figure 1. Young diagram of λ = (5, 4, 1)

A special case of the so-called Pieri formula states that

σ(1,0,…,0) ⋅ σλ = ∑σν,

where the left-hand side is the intersection of two cycles and the
sum on the right-hand side is over all partitions ν which can be
obtained by adding one box to the Young diagram of λ.

Going back to the counting of the proposed problem, it follows
from (1) that A = σ(1,0). Therefore,

[Xℓ1] ⋅ [Xℓ2] ⋅ [Xℓ3] ⋅ [Xℓ4] = σ4
(1,0) ∈ H0(Gr(2, 4),ℤ) ≅ ℤ.

By Pieri’s formula, we have

σ(1,0) ⋅ σ(1,0) = σ(2,0) + σ(1,1) ⟹ σ3
(1,0) = σ(2,1) + σ(2,1)

⟹ σ4
(1,0) = 2σ(2,2) = 2.

Note that the Schubert cycle σ(2,2)(W) is the point W2 ∈ Gr(2, 4)
(i.e., it generates H0(Gr(2, 4),ℤ)). It is straightforward (but crucial)
to show that for generic 4 lines ℓ1, ℓ2, ℓ3, ℓ4, the intersection
Xℓ1 ∩ Xℓ2 ∩ Xℓ3 ∩ Xℓ4 is transverse. We conclude that the answer
to the proposed problem is 2.

257
I learned about the following problem from Shmuel Weinberger. It
can be viewed as a topological analogue of Arrow’s Impossibility
Theorem.

(a) A group of n friends have decided to spend their summer
cottaging together on an undeveloped island, which happens to be
a perfect copy of the closed 2-disk D2. Their first task is to decide
where on this island to build their cabin. Being democratically-
minded, the friends decide to vote on the question. Each friend
chooses his or her favourite point on D2. The friends want a func-
tion that will take as input their n votes, and give as output
a suitable point on D2 to build. They believe, to be reasonable and
fair, their “choice” function should have the following properties:
• (Continuity) It should be continuous as a function (D2)n → D2.
This means, if one friend changes their vote by a small amount,
the output will change only a small amount.

• (Symmetry) The n friends should be indistinguishable from each
other. If two friends swap votes, the final choice should be
unaffected.

• (Unanimity) If all n friends chose the same point x, then x should
be the final choice.

For which values of n does such a choice function exist?
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(b) The friends’ second task is to decide where along the
shoreline of the island they will build their dock. The shoreline
happens to be a perfect copy of the circle S1. Again, they decide
to take the problem to a vote. For which values of n does a con-
tinuous, symmetric, and unanimous choice function (S1)n → S1

exist?
These are special cases of the following general problem in

topological social choice theory: given a topological space X, for
what values of n does X admit a social choice function that is
continuous, symmetric, and unanimous? In other words, when is
there a function A ∶ Xn → X satisfying
• A is continuous,
• A(x1,…, xn) is independent of the ordering of x1,…, xn, and
• A(x, x, x,…, x) = x for all x ∈ X?

Jenny Wilson (Department of Mathematics,
University of Michigan, USA)

Solution by the proposer
Consider the general problem described in the last paragraph. The
statement that A(x1,…, xn) is independent of the ordering of
x1,…, xn is the statement that the function A factors through the
symmetric product, the quotient of Xn by the action of the sym-
metric group Σn, endowed with the quotient topology. Elements
of Xn/Σn are multisets of n (not necessarily distinct) points in X.
The statement that A(x, x,…, x) = x is the statement that the
composition

X
Δ
→ Xn → Xn/Σn → X,

x ↦ (x, x,…, x) ↦ {x, x,…, x} ↦ A(x, x,…, x) = x

is the identity function. Thus the problem is equivalent to the
following: does there exist a retraction from the symmetric product
Xn/Σn onto the image of the diagonal?

(a) An appropriate choice function exists for any n. Identify
the island (up to homeomorphism) with the closed unit disk in ℝ2.
Since the disk is convex, we can (for example) let

A(x1, x2,…, xn) =
x1 + x2 +⋯+ xn

n

be the average value of the n points.
(b) Such a choice function only exists for n= 1. We first consider

the case n = 2, since this case reduces to a problem that will be
familiar to many algebraic topology students.

The symmetric product (S1 × S1)/Σ2 is the Möbius band and
the image of the diagonal is its boundary, as pictured.

Σ2

However, the boundary is not a retract of the Möbius band: the
inclusion of the boundary induces the map 2ℤ↪ℤ on fundamental
groups, which does not have a left inverse.

This argument generalizes for any n ≥ 2. We can realize the
n-torus (S1)n as the unit cube in ℝn with opposite faces identified.
The 2n corners are identified to a single point x, which we choose
as basepoint.

Let γ be a path from the origin to the point (1, 1,…, 1) ∈ ℝn

along n mutually orthogonal edges of the cube, pictured here for
n= 3. Construct (say, by straight-line homotopy) a based homotopy
from the diagonal to γ.

γ

The n orthogonal edges are identified in the symmetric product
to a single loop. Thus, in π1((S1)n/Σn, Σn ⋅ x) the image of the
diagonal (which equals the image of γ) has an nth root. The image
of the diagonal in (S1)n/Σn cannot be a retract.

For the general problem, Eckmann–Ganea–Hilton and later
(independently) Weinberger proved the following results; see Eck-
mann’s survey [1].

Theorem. Suppose that X is homotopy equivalent to a finite sim-
plicial complex. If X is contractible, the function A exists for any n.
If X is not contractible, it exists only for n = 1.

Theorem. Suppose that X is homotopy equivalent to a connected
CW complex. Then the map A exists for all n if and only if X is
a product of rational Eilenberg–MacLane spaces.

Weinberger [2] notes that there exist other infinite CW com-
plexes for which a choice function exists for (some) arbitrarily large
values of n. For example, the infinite-dimensional real projective
space ℝP∞ admits a social choice function A for any odd value of
n, but not for any even value.

References
[1] B. Eckmann, Social choice and topology: A case of pure and applied

mathematics. Expo. Math. 22, 385–393 (2004)

[2] S. Weinberger, On the topological social choice model. J. Econom.
Theory 115, 377–384 (2004)

We wait to receive your solutions to the proposed problems and
ideas on the open problems. Send your solutions to Michael
Th. Rassias by email to mthrassias@yahoo.com.

We also solicit your new problems with their solutions for
the next “Solved and unsolved problems” column, which will be
devoted to Number Theory.
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Report from the EMS Council in Bled (25–26 June 2022)

Richard Elwes

The EMS Council is the governing body which meets every two
years to take the decisions that will determine the society’s future.
After a condensed online meeting in 2020, the Council was able to
hold an in-person meeting with a full agenda on the weekend of
25–26 June 2022, in the stunning surroundings of Bled (Slovenia).
The meeting was generously and efficiently hosted by the University
of Primorska, represented by rector Klavdija Kutnar. On Saturday
evening, the meeting was addressed by Boštjan Kuzman from the
Society of Mathematicians, Physicists and Astronomers of Slovenia
(DMFA) who introduced the assembled company to Josip Plemelj
(1873–1967) who grew up in Bled and went on to make important
contributions to the theory of harmonic functions and related
fields, as well as becoming the first chancellor of the University of
Ljubljana. His beautiful villa in Bled is now managed by the DMFA
and available to visit and as a venue for small meetings.

Officers’ reports and finance

The Council was opened on Saturday morning by EMS Vice Pres-
ident Betül Tanbay with the unfortunate news that the President,
Volker Mehrmann, had that morning tested positive for COVID and,
despite being on site, would need to participate over Zoom. The
President then presented his report, recalling several of the major
developments during his tenure, which ends this year. Many of
the items in his report were revisited later during the meeting. He
reminded the Council that the EMS website1 and database have
been rebranded and rebuilt, with much of the expertise and lead-
ership provided by EMS Press, while the EMS Newsletter has been
transformed into the EMS Magazine. The EMS’s 30th anniversary
was celebrated (two years late) at a very enjoyable event in March
2022 at ICMS in Edinburgh. A celebratory brochure was distributed
to mark the event (and is available online2).

1 https://euromathsoc.org/
2 Thirty Years of EMS, available at https://euromathsoc.org/about

Lake Bled (by Arne Müseler / arne-mueseler.com / CC-BY-SA-3.0)
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The EMS has joined the European Open Science Cloud (EOSC)
in order to raise the voice of mathematics in the developments
and, if possible, to join major research proposals.

Following the success of the Caucasian Mathematical Confer-
ences (the third of which took place in 2019 in Rostov-on-Don),
the Executive Committee has decided to launch a series of Balkan
Mathematical Conferences. The first will take place in July 2023 in
Pitești jointly with the Congress of Romanian Mathematicians.

The President noted that funding for mathematics by the EU,
particularly the European Research Council (ERC), has substantially
reduced in recent years. A major reason for this is that the number
of applications from the mathematics community is low. This is
a major problem, and so far EMS initiatives aimed at improving
this situation have not had a big impact, but it will be important
to continue addressing this problem.

The Treasurer (Mats Gyllenberg) delivered his report next, stat-
ing that the EMS is in robust financial health. This, of course, is
good news, but part of the reason for this is the pandemic, which
has reduced opportunities to spend money on scientific activities.
The Executive Committee is committed to spending money on
scientific activities, a major part of the EMS’s raison d’être. This
is reflected in proposals for a new “EMS Young Academy” and
“EMS Topical Activity Groups” (more details below). Recalling that
for financial purposes the society is governed by Finnish law, the
Council approved financial statements for 2020 & 2021, as well
as the budgets for 2023 & 2024, and the appointment of both
professional and lay auditors.

Membership and publicity

EMS Secretary Jiří Rákosník reported on the EMS membership,
with individual members having recently exceeded 3,000. The
Council regretfully approved the termination of the membership of
the Mathematical Society of the Republic of Moldova, which has
fallen behind on its membership fees and has been non-responsive
to communications. Sadly, the Emmy Noether Research Institute
for Mathematics has terminated its membership with effect from
January 2023. On the positive side, the Mathematical Society of
South Eastern Europe (MASSEE) has joined the EMS as an associate
member, and the Council was pleased to agree an arrangement of
reciprocal membership with the Indonesian Mathematical Society.
There were no other applications for corporate membership.

EMS Publicity Officer Richard Elwes was absent, but delivered
his report via video, updating the delegates on his activities, in
particular the growth of the EMS social media platforms: the Twitter
account @EuroMathSoc has recently passed 10,000 followers, the
Facebook account (also @EuroMathSoc) is approaching 5,000,
and a LinkedIn page has recently been launched. An EMS YouTube
page was set-up in 2020 initially to host the EMS video “The Era of
Mathematics” (created with the support of the EMS Education

Committee). He offered the view that the EMS should aim to
increase the use of its YouTube page in future. He also discussed
other avenues of publicity including displaying new designs for
EMS flyers and posters.

Elections to Executive Committee

The most exciting part of any Council meeting is the election of new
officers. In previous years the election of the President has often
been unopposed, but this time the Council was delighted to have
three top quality candidates for the next EMS Presidency. After
impressive presentations from all three, the Council was pleased
to elect Jan Philip Solovej as President for the term 2023–26. Two
unopposed elections followed: Beatrice Pelloni as Vice President,
and Samuli Siltanen as Treasurer. This left one election for member-
at-large of the Executive Committee: after strong presentations by
four candidates, Victoria Gould was elected.

Changes to statutes and bylaws

The Council approved changes to the EMS’s statutes and bylaws,
several purely technical (for example to correct outdated or in-
consistent terminology), but some substantive. Two changes will
apply to future Council meetings. Firstly, the Executive Committee
will be able to decide to enable delegates to participate virtually,
and secondly a Nomination Committee will be set up to short-list
candidates for future EMS elections. (As now, candidates will still
be able to be proposed from the floor at the Council meeting.)

Most significantly, the Council approved the establishment of
two major new initiatives: an EMS Young Academy for early career
mathematicians, and EMS Topical Activity Groups. More details of
these exciting developments will follow in future editions of the
Magazine.

European Congress of Mathematics and other meetings

Following the great success (despite equally great setbacks) of the
8th European Congress of Mathematics in Portorož in 2021, Juan
González-Meneses, chair of the Organizing Committee, reported
on plans for the 9th ECM in Seville (15–19 July 2024). Preparations
are going well, with support from all the Spanish mathematical
societies. The organisers will provide 150 grants for young people
and people from less advantaged countries, and satellite events
are expected all over Spain.

In a significant increase in the EMS’s offering, the Execut-
ive Committee has decided to open calls for proposals of large
cross-institutional events. These might include special semesters,
interdisciplinary study groups, or large showcase events targeting
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new theories or emerging problems. They might involve the in-
teraction of more than one mathematical area, or the discussion
between mathematics and other disciplines.

The goal will be for these events to be spread across Europe,
complementing existing infrastructure for mathematical meetings.
However, they will not provide funding for programmes and work-
shops organised in settings which are already well served. Instead,
proposals will be required to deploy significant funding to sup-
port regions and communities that do not otherwise have the
infrastructure or finances to organise such large-scale events.

Reports from EMS committees

The Council received reports regarding each of the EMS’s ten stand-
ing committees, which carry out a great deal of the society’s work.
This began with the Education Committee, where Vice President
Betül Tanbay relayed the regrettable news that the chair, Jürg
Kramer, has recently resigned, and that the Executive Committee
is searching for a replacement. She discussed the committee’s
many and varied activities, on both the theoretical and practical
sides of mathematical education. These include the EU-funded
INNOMATH project3 to develop resources for gifted mathematics
school-students, supporting the creation of the EMS video “The Era
of Mathematics” in 2020 (available on the EMS YouTube channel),
and undertaking a major survey and pedagogical research on the
secondary-tertiary transition.

3 https://innomath.eu/

EMS Secretary Jiří Rákosník conveyed to the meeting that the
Meetings Committee has also undertaken a huge amount of work
in the last two years evaluating more than 60 applications for EMS
support for summer schools and other scientific events. Since this
committee will become even busier in the future with the start of
the Topical Activity Groups, the committee will be increased in size.
He also reminded the Council that the deadline for applications
has been moved from September to July to give the Meetings
Committee more time for its deliberations.

Carola Schönlieb, chair of the Committee for Applications and
Interdisciplinary Relations (formerly the Committee for Applied
Mathematics), reported that the committee has been substantially
renewed, both in its name, with nine new members in 2022, and
a revised programme and mode of operation. It is a busy committee
which has formed several individual working groups, including
on prize nominations and relations with other bodies such as the
European Research Council. The committee collaborates with other
EMS organs, most notably the Meetings Committee.

Sophie Dabo reported via Zoom on the Committee for Devel-
oping Countries, which she chairs. The committee has 11 members
and 17 associate members and cooperates with local organisations
in developing countries towards several goals. These include de-
veloping mathematical curricula and MSc and PhD programmes,
funding researchers to attend and organise conferences, helping
to build libraries. The committee administers the designation Emer-
ging Regional Centre of Excellence (ERCE) which is awarded to
suitable institutions for a period of four years (renewable). Cur-
rently there are 7 ERCE centres. Since 2017, the committee has
administered the Simons for Africa programme funded by the
Simons Foundation, which supports researchers in Africa. To date

Council delegates and guests (photo courtesy of University of Primorska)
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more than 210 applications have been evaluated with almost 58%
success. An important source of funding for the committee’s work
is donations from EMS members through a link on the EMS website.

Adam Skalski, the chair of the ERCOM (European Research
Centres on Mathematics) committee, delivered a report. This com-
mittee brings together the scientific directors of 30 mathematical
research centres around Europe to work on issues of common
interest. He discussed the committee’s activities and invited the
Council to view their website ercom.org.

Betül Tanbay (EMS Vice President) reported that the Ethics Com-
mittee is continuing to function. Its activities include maintaining
the EMS Code of Practice4, encouraging journals and publishers to
respond to allegations of unethical behaviour in a conscientious
manner, and providing a mechanism whereby individual research-
ers can ask the committee to help them pursue claims of unethical
behaviour. The committee has also recently set up a webpage in
cooperation with the Committee for Publications and Electronic
Dissemination on predatory journals and publishers.5

Frédéric Hélein (Executive Committee) reported on the work
of the European Solidarity Committee, which supports research-
related activities for researchers from financially weaker countries
(for example travel grants to young mathematicians). However,
throughout the COVID pandemic, there has been little demand for
this type of activity. The committee also handled the Kovalevskaja
grants for the participation of young mathematicians at the ICM.
Unfortunately, this large amount of work was in vain, once the
ICM moved online. With many members’ terms due to expire this
year, this committee will need to be replenished.

Thierry Bouche, chair of the Committee for Publishing and Elec-
tronic Dissemination, reminded the Council that this committee has
existed since April 2017, replacing the former Publications Commit-
tee and Committee for Electronic Publishing. The committee has
carefully studied the evolving open access landscape and written
strategy documents in response to the initiative Plan S, arguing for
the importance of a diversity of models beyond “Gold” Open Ac-
cess which is often favoured by aggressively commercial publishers.
The committee also supervises the work of the European Digital
Mathematics Library (see below), while a subgroup is working to
evaluate the functioning of zbMATH Open from the perspective of
a user. Committee member Tomaž Pisanski delivered a presentation
on the problem of ranking and classifying mathematical journals,
noting some discrepancy between Scimago and zbMATH Open.

Jorge Buescu (EMS Vice President) informed the meeting about
the many activities of the Committee for Raising Public Awareness,
including its involvement in the International Day of Mathematics6,
its on- and off-line outreach activities, and notably the POP MATH

4 https://euromathsoc.org/code-of-practice
5 https://euromathsoc.org/predatory-publishing
6 https://www.idm314.org/

portal7, an online calendar and map of popular mathematics events
across Europe.

Alessandra Celletti, chair of the Committee for Women in
Mathematics, reported on its work. The committee has proposed
interviews of women mathematicians for the EMS Magazine, facil-
itated nominations for international prizes and EMS Lectures, and
supported applications for summer schools at the Institut Mittag-
Leffler jointly with the society of European Women in Mathematics.
The chair and committee member Stanislawa Kanas published
the article “Underrepresentation of women in editorial boards of
scientific and EMS journals” in the EMS Newsletter8 as part of
their work on this topic. The committee monitors the gender gap
in the editorial boards of EMS publications and helps to address
such imbalances. On the 20th of May 2022, the committee organ-
ised the successful first EMS Women in Mathematics Day, within
the broader initiative of ”May 12th”, a celebration of women in
mathematics in memory of Maryam Mirzakhani.

Publications and projects

Fernando Pestana da Costa, editor-in-chief of the EMS Magazine
since September 2020, reported on many recent improvements,
with the name, format, and design having changed from issue 119
in March 2021. The EMS Press has constructed a new webpage9
where articles can be read and downloaded either individually or
as an entire issue. The EMS will appreciate the support of national
societies in continuing to promote the EMS Magazine and acquire
good contributions.

André Gaul, the managing director of the EMS Press, reported
remotely. In 2019, a new company fully owned by EMS was es-
tablished in Berlin, focused on independent, fair, and sustainable
publishing using modern electronic tools. A completely new plat-
form was built, and the Subscribe to Open (S2O) business model
has been rolled out. EMS Press publishes 25 journals, with the new
Memoirs of the EMS (first volume published in May 2022) catering
for longer works than typical research articles. Book production
amounts to approximately 12 titles per year. Unified EMS and
EMS Press branding has been developed, and the EMS Press also
provides significant technology to the EMS (e.g. website, document
cloud, unified login system, submission forms, etc.).

Editor-in-chief Klaus Hulek of zbMATHOpen delivered his report
on what is now the world’s biggest dedicated database on math-
ematical literature, with around 4.4 million documents and more
than 39,000 software packages. It is published by FIZ Karlsruhe,
the EMS, and Heidelberg Academy of Sciences and Humanities. He

7 https://www.popmath.eu/
8A. Celletti and S. Kanas, Underrepresentation of women in editorial
boards of scientific and EMS journals, EMS Newsl. 118, 60–63 (2020)

9 https://euromathsoc.org/magazine
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described the enormous preparations that were needed for the
2021 transition to open access, when Zentralblatt MATH became
zbMATH Open, with financial support from the German govern-
ment. The goal is to grow beyond an open access interface, to
a fuller open data platform. Recently added features include en-
hanced author profiles, including non-ASCII scripts (e.g. Arabic,
Chinese, Japanese, Cyrillic,…). The first year of open access shows
very good results with around 60,000 unique visitors per month,
and increased numbers of searches, completed documents, and
reviewer commitments. Reviewers are rewarded for their efforts
with reductions on EMS publications.

Thierry Bouche, chair of the European Digital Mathematical
Library10, delivered a report. The EuDML is a distributed library
taking contents from several sources, and was created in a project
partly financed by the European Commission in 2010–2013. Its
service continues despite the lack of funding since then, and runs
in a reduced capacity thanks to voluntary work from motivated
partners.

A report was delivered by Zoltán Horváth, the president of the
very active and successful project EU-MATHS-IN (European Service
Network of Mathematics for Industry and Innovations). This was es-
tablished by EMS and ECMI (European Consortium for Mathematics
in Industry) in 2011, intended as a one-stop-shop at the European
level, to facilitate exchanges between application-driven mathem-
atical research and its use in innovations in industry, science, and
society. He reported on plans for new tools and requested that the
EMS help promote this network’s important activities.

Russian war in Ukraine

On both days of the meeting, there was impassioned discussion of
topics around the Russian invasion of Ukraine, and the measures
the EMS has taken in response. The EMS President re-affirmed that
the society stands in full solidarity with the people of Ukraine and
especially our Ukrainian colleagues, but at the same time must
continue to strive for the unity of the international mathematical
community. He described the measures that have been taken so
far, including the suspension of the EMS membership of the Euler
Institute and the decision not to cooperate with Russian govern-
mental organisations. Further possible steps were discussed, but
as well as being politically sensitive, there are also many significant
technical and legal complications here, considering the EMS’s own
regulations and its obligations under Finnish law.

The meeting closed with warm thanks to our Slovenian col-
leagues for once again hosting a major EMS event, following the
ECM in 2021 in Portorož, with great accomplishment and kindness.

10 https://eudml.org/
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Anthony Bonato, Toronto  
Metropolitan University
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Surveys different areas in graph searching and 
highlights many fascinating topics intersecting 
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LOST IN THE MATH MUSEUM
A Survival Story
Colin Adams, Williams College
Anneli Lax New Mathematical Library, Vol. 55

From the twisted imagination of best-selling 
author Colin Adams comes this tale of sixteen-
year-old Kallie trying to escape death at the hands 
of the exhibits in a mathematics museum. Kallie 
crosses paths with Carl Gauss, Bertrand Russell, 
Sophie Germain, G.H. Hardy, and John von 
Neumann, as she tries to save herself, her dad, 
and his colleague Maria from the deadly Hairy 
Ball theorem, the harrowing Hilbert Hotel, the 
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problem every day and 12 beautiful math images!

Problems run the gamut from arithmetic through 
graduate level math. Some of the most tricky 
problems require only middle school math applied 
cleverly. With word problems, math puns, and 
interesting math definitions added into the mix, 
this calendar will intrigue you for the whole year.
Aug 2022 16pp  
9781470471071 Calendar €18.00 

THE TILING BOOK
An Introduction to the 
Mathematical Theory of Tilings
Colin Adams, Williams College
Covers the necessary background on tilings and 
then delves into a variety of fascinating topics in 
the field, including symmetry groups, random 
tilings, aperiodic tilings, and quasicrystals. 
Although primarily focused on tilings of the 
Euclidean plane, the book also covers tilings of the 
sphere, hyperbolic plane, and Euclidean 3-space.
Sep 2022 295pp  
9781470468972 Hardback €64.00 
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Tel: +44 (0)20 7240 0856
Fax: +44 (0)20 7379 0609
Email: info@eurospan.co.uk

Free delivery at eurospanbookstore.com/ams

CUSTOMER SERVICES:
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Email: eurospan@turpin-distribution.com
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European Mathematical Society – EMS – Publishing House GmbH 
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The Physics and Mathematics of Elliott Lieb 
The 90th Anniversary Volume I & II

Edited by  
Rupert L. Frank (LMU München)  
Ari Laptev (Imperial College London) 
Mathieu Lewin (Université Paris-Dauphine) 
Robert Seiringer (IST Austria)

isbn 978-3-98547-019-8. eisbn 978-3-98547-519-3 
2022. Hardcover. Two volumes. 1372 pages. € 179.00*

These two volumes are dedicated to Elliott Lieb on the 
occasion of his 90th birthday. They celebrate his fundamental 
contributions to the fields of mathematics, physics and chemistry.

Around 50 chapters give an extensive account of Lieb’s impact 
on a very broad range of topics and the resulting subsequent 
developments. Many contributions are of an expository character 
and are accessible to a non-expert audience of researchers in 
mathematics, physics and chemistry.

A non-exhaustive list of topics covered includes the problem 
of stability of matter, quantum many-body systems, density 
functional theory, topics in statistical mechanics, entropy 
inequalities and matrix analysis, functional inequalities and  
sharp constants.
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