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A message from the president

Photo by Jim Høyer,
University of Copenhagen

It’s now been nearly half a year since
I took over as president of the EMS. It’s
been a busy time, with lots of new chal-
lenges, and I admit that there are many
aspects of the EMS that were new to
me and with which I have had to be-
come acquainted. During my time as
president, I have met and interacted
with many research mathematicians
and administrative staff from all over
Europe who work for the EMS in one

capacity or another. It has been truly incredible to see the enthu-
siasm with which all these people contribute to and support the
EMS; our society would not be what it is without them. I would, in
particular, like to highlight the work that is being done in all the
EMS standing committees.1 As part of becoming better acquainted
with the EMS I have participated in the meetings of several of the
committees already and plan to visit them all by the end of the
year. It has been a great experience to see all the important work
being done and I want to take this opportunity to make sure that
we at EMS acknowledge the great efforts invested by the many
committee members.

This spring the EMS elected the first group of 30 members of
its new European Mathematical Society Young Academy EMYA.2
I participated in their first meeting and I am looking forward to
seeing how they will contribute to and benefit from EMS in the
future. I have high expectations for the Academy. The next deadline
for nominations by full and institutional members of the EMS is
31 July 2023.3 Members are elected for four years and EMYA will
eventually have approximately 120 members.

The preparations are well under way for the 9th European
Congress of Mathematics in Seville in July 2024.4 Please save the
date and join us in Seville. The call for hosting the 10th ECM has
been published with a deadline of 30 June 2023.5

The long-term EMS Digest editor Mireille Chaleyat-Maurel has
decided to retire; we are very grateful for all the great work Mireille
has done. We are in the process of remodelling the digest and
hope to be able to present it in a new form before too long.

We are also working on our membership database with im-
proved accessibility options, and we hope to be able to present it
this fall.

Finally, while EMS has a very strong base of corporate member
societies, it is my hope that the EMS can grow its base of individual
members. In order for EMS to become a strong united voice for
mathematicians across Europe we need continued support and
hard work from individuals. We are therefore beginning a cam-
paign to enlist more members. Most of you reading this message
are, I hope, individual members of EMS. Please encourage your
colleagues to join us.

Moreover, if you are not already following the EMS online I en-
courage you to please join me in following the EMS on social media:
Twitter,6 Facebook,7 LinkedIn,8 and (new!) Mastodon.9

I hope you will enjoy reading this issue of the EMS Magazine. It
is available online and we hope that most members are happy ac-
cessing it in this way. It would save the EMS a substantial amount
of money if we do not have to mail a lot of hardcopies of the
magazine.

Jan Philip Solovej
President of the EMS

1 https://euromathsoc.org/committees
2 https://preview.euromathsoc.org/EMYA-list2023
3 https://directus.backend.euromathsoc.org/assets/b8a93363-9e3d-490a-a4b2-85cacb1f3633
4 https://www.ecm2024sevilla.com
5 https://directus.backend.euromathsoc.org/assets/20411eba-4d85-4ca8-81d2-5c517fd0fa9f
6 https://twitter.com/euromathsoc
7 https://www.facebook.com/EuroMathSoc
8 https://www.linkedin.com/company/european-mathematical-society
9 https://mathstodon.xyz/@euromathsoc
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A new paradigm for artificial intelligence based on
group equivariant non-expansive operators

Alessandra Micheletti

The recent frantic surge of machine learning and, more broadly, of
artificial intelligence (AI) brings to light old and new open issues,
and among them, the so-called eXplainable artificial intelligence
(XAI) – AI that humans can understand – as opposed to black-
box learning systems where even their designers cannot explain
AI decisions. One of the major XAI questions is how to design
transparent learning systems that incorporate prior knowledge.
These topics are becoming more relevant and pervasive as AI
systems become more unfathomable and entangled with human
factors. Recently a new paradigm for XAI has been introduced in
literature, based on group equivariant non-expansive operators
(GENEOs), which are able to inject prior knowledge in a learning
system. Hence, the use of GENEOs dramatically reduces the number
of unknown parameters to be identified and the size of the related
training set, providing both computational advantages and an
increased degree of interpretability of the results. Here we will
illustrate the main characteristics of GENEOs and the encouraging
results already obtained on a couple of industrial case studies.

1 Introduction

The use of techniques and architectures of artificial intelligence
(AI) is becoming more and more pervasive in a wide range of
applications, starting from automation or quality control in industry,
to self-driving vehicles, crime surveillance, health monitoring and
many others.

As the Oxford Dictionary states, by AI one means the theory and
development of computer systems able to perform tasks normally
requiring human intelligence, such as visual perception, speech
recognition, decision-making, and translation between languages.
Such systems are quite often based on machine or deep learning
techniques, that is, on different types of neural networks, with
many layers and thus with a huge number of unknown parameters,
which need to be identified on the basis of a training set of data.
Even if in many applications AI and deep learning prove to be very
effective, two main problems often arise: the limited availability of
data in some applications, which prevents the scientists to define
a sufficiently large training set, and the ‘black-box’ nature of deep

learning systems, having as a consequence that even its designers
cannot explain AI decisions.

Equivariant operators are proving to be increasingly important
in deep learning, in order to make neural networks more trans-
parent and interpretable [2–4,10,20,21,27,28]. The use of such
operators corresponds to the rising interest in the so-called “explain-
able machine learning” [8,14,23], which looks for methods and
techniques that can be understood by humans. In accordance with
this line of research, group equivariant non-expansive operators
(GENEOs) have been recently proposed as elementary components
for building new kinds of neural networks [5, 6, 11]. Their use is
grounded in topological data analysis (TDA) and guarantees good
mathematical properties, such as compactness, convexity, and fi-
nite approximability, under suitable assumptions on the space of
data and by choosing appropriate topologies. Furthermore, GE-
NEOs allow to shift the attention from the data to the observers
who process them, and to incorporate the properties of invariance
and simplification that characterize those observers. The basic idea
is that we are not usually interested in data, but in approximating
the experts’ opinion in presence of the given data [12].

More formally, a GENEO is a functional operator that transforms
data into other data. By definition, it is assumed to commute with
the action of given groups of transformations (equivariance) and to
make the distance between data decrease (non-expansivity). The
groups represent the transformations that preserve the “shape”
of our data, while the non-expansivity condition means that the
operator must simplify the data metric structure. Both equivariance
and non-expansivity are important: while equivariance reduces
the computational complexity by expressing the equivalence of
data, non-expansivity guarantees that the space of GENEOs can be
finitely approximated, under suitable assumptions. The key point
for the use of GENEOs is the possibility of focusing on them in
the search for optimal components of neural networks, instead of
exploring the infinite-dimensional spaces of all possible operators.
The relatively small dimension of the spaces of GENEOs – and their
good geometric and topological properties – open the way to a new
kind of “geometric knowledge engineering for deep learning,”
which can allow us to drastically reduce the number of involved
parameters and to increase the transparency of neural networks,
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by inserting information in the agents that are responsible for data
processing.

In this paper we will introduce GENEOs and their main math-
ematical properties and we will show the quite promising results
already obtained by their application to two different industrial
problems, namely, protein pocket detection and maintenance of
electric power lines.

Let us remark that, in rapidly evolving scientific fields like arti-
ficial intelligence, which claims for new ideas and mathematical
instruments, it is crucial to establish a strict interaction and col-
laboration between academic mathematical research and industry,
in order to focus on the most important mathematical problems
that must be addressed to produce technological innovation. Such
industry-academia interactions are fostered since many years by
the European Consortium for Mathematics in Industry (ECMI)1,
with its many initiatives, and in particular with its biannual con-
ference, whose next edition2 will be held in Wrocław (Poland) on
June 26–30, 2023.

2 GENEOs as models for observers

Observers can be often seen as functional operators, transforming
data into other data. This happens, for example, when we blur an
image by a convolution, or when we summarize data by descriptive
statistics. However, observers are far from being entities that merely
change functions into other functions. They do that in a compatible
way with respect to some group of transformations, i.e., they
commute with these transformations. For example, the operator
associating to each regular function f ∶ ℝn → ℝ its Laplacian Δf
commutes with all Euclidean isometries of ℝn. More precisely, we
say that this operator is equivariant with respect to the group of
isometries.

Another important property of observers should also be consid-
ered: they are endowed with some kind of regularity. A particularly
important regularity property is non-expansivity. That means that
the distance between the input data is not smaller than the dis-
tance between the output functions. This type of regularity is
frequently found in applications, since usually operators are re-
quired to simplify the metric structure of data. We can obviously
imagine particular applications where this condition is violated
locally, but the usual long term purpose of data processing is to
converge to an interpretation, i.e., a representation that is much
simpler and meaningful than the original data. As a consequence, it
is reasonable to assume that the operators representing observers,
as well as their iterated composition, are non-expansive. This as-
sumption is not only useful for simplifying the analysis of data,
but it is also fundamental in the proof that the space of group

1 https://ecmiindmath.org
2 https://ecmi2023.org

equivariant non-expansive operators is compact (and hence finitely
approximable), provided that the space of data is compact with
respect to a suitable topology [5].

2.1 Basic definitions and properties of GENEO spaces
Let us now formalize the concept of group-equivariant non-ex-
pansive operator, as was introduced in [5].

We assume that a space Φ of functions from a set X to ℝk is
given, together with a group G of transformations of X, such that
if φ ∈ Φ and g ∈ G, then φ ∘ g ∈ Φ. We call the pair (Φ,G) per-
ception pair. We also assume that Φ is endowed with the topology
induced by the L∞-distance DΦ(φ1,φ2) = ‖φ1 −φ2‖∞, φ1,φ2 ∈
Φ. Let us assume that another perception pair (Ψ, H) is given,
with Ψ endowed with the topology induced by the analogous
L∞-distance DΨ, and let us fix a homomorphism T ∶ G → H.

Definition 1. A map F ∶ Φ → Ψ is called a group equivariant
non-expansive operator (GENEO) if the following conditions are
satisfied:
1. F(φ ∘ g) = F(φ) ∘ T(g) for any φ ∈ Φ and any g ∈ G

(equivariance);
2. ‖F(φ) − F(φ′)‖∞ ≤ ‖φ− φ′‖∞ for any φ,φ′ ∈ Φ

(non-expansivity).

If we denote by Fall the space of all GENEOs between (Φ,G)
and (Ψ,H) and endow it with the metric

DGENEO(F1, F2) = sup
φ∈Φ

‖F1(φ) − F2(φ)‖∞, F1, F2 ∈ Fall,

the following main properties of spaces of GENEOs hold true (see
[5] for the proofs).

Theorem 2. If Φ and Ψ are compact, then Fall is compact with
respect to the topology induced by the metric DGENEO.

Corollary 3. IfΦ and Ψ are compact with respect to the∞-metrics
DΦ and DΨ, respectively, then for any ε > 0 the space Fall can be
ε-approximated by a finite set.

Theorem 4. If Ψ is convex, then Fall is convex.

Theorem 2 and Corollary 3 guarantee that if the spaces of data
are compact, then also the space of GENEOs is compact, and can
then be well approximated by a finite number of representatives,
thereby reducing the complexity of the problem. Theorem 4 implies
that if the space of data is also convex, then any convex combina-
tion of GENEOs is still a GENEO. Thus, when both compactness and
convexity hold, we have an easy instrument to generate any ele-
ment of Fall starting from a finite number of operators. Additionally,
the convexity of Fall ensures that each strictly convex cost function
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in the space of the observers admits a unique minimum, and thus
the problem of finding the ‘optimal observer’ can be solved.

3 Application to protein pockets detection: GENEOnet

We used GENEOs to build GENEOnet [7], a geometrical machine-
learning method able to detect pockets on the surface of proteins.
Protein pockets detection is a key problem in the context of drug
development, since the ability to identify only a small number
of sites on the surface of a molecule that are good candidates
to become binding sites allows a scientist to restrict the action
of virtual screening procedures, thus saving both computational
resources and time, and fostering the speed up of the subsequent
phases of the process. This research is still ongoing, in collaboration
with the Italian pharmaceutical company Dompé Farmaceutici.

This problem is particularly suitable to be treated with GENEOs,
since, on the one hand, there is some important empirical chemical-
physical knowledge that cannot be embedded in the usual machine
learning techniques, but can be injected in a GENEO architecture,
and, on the other hand, the problem enjoys a natural invariance
property: indeed, if we rotate or translate a protein, its pockets
will undergo the same transformation, coherently with the entire
protein. This clearly implies that pocket detection is equivariant
with respect to the group of spatial isometries.

For this application we used a subset of more than 10,000
protein-ligand complexes extracted from the PDBbind v2020 data-
set [19]. Input data was discretized by surrounding each molecule
by a cubic bounded region divided into a 3D grid of voxels. In
this way the data are modelled as bounded functions from the
Euclidean space ℝ3 to ℝd. We chose d = 8, that is, the number
of distinct geometrical, chemical and physical potential fields that
we computed on each molecule and took into account for the
analysis. The potentials are here called ‘channels’, imitating the
nomenclature used in image analysis (see [7] for further details on
the specific channels).

3.1 The GENEOnet model
The input data are fed to a first layer of GENEOs chosen from
a set of parametric families of operators, each one parametrized
by one single shape parameter σi, i = 1,…, 8. These families were
designed in order to include the a priori knowledge of the experts
of medicinal chemistry in the equivariance properties of the GE-
NEOs. We opted for convolutional operators, whose properties
can be completely determined by the nature of their convolution
kernels. Moreover, by making the i-th kernel dependent on only
one shape parameter σi, we have direct control on the action of
each operator. We mainly used Gaussian kernels or kernels having
shapes of spheres or of spherical crowns, assuming alternatively
positive and negative values in different parts of the interior of the

sphere or crown, and zero outside. In this way we could detect
both spherical voids close to the protein that are surrounded by
protein atoms and the change of sign of the measured potentials,
since protein cavities which show high gradients of the values of
the measured potentials are the most promising to become binding
sites. The shape parameter σi of each kernel was connected with
the radius of the sphere or spherical crown, or with the standard
deviation of the Gaussian.

All the chosen operators share a common feature: their kernels
are defined through rotationally-invariant functions. This fact, to-
gether with the properties of convolution, guarantees that the cor-
responding GENEOs satisfy the key requirement to be equivariant
with respect to the group of isometries of ℝ3.

In the second step, these operators are combined through
a convex combination with weights α1,…,αd such that αi ∈ [0,1]
for all i and ∑d

i=1 αi = 1. We then obtain a composite operator
Fα(⋅) = ∑d

i=1 αiFi(⋅) whose output is normalized to a function ψ
from ℝ3 to [0, 1]. Here ψ(x) can be interpreted as the probability
that a point x ∈ℝ3 belongs to a pocket. Finally, given a probability
threshold θ ∈ [0, 1], we get the different pockets returned by the
model by taking the connected components of the superlevel set
{ψ ≥ θ} ⊆ ℝ3. The entire model pipeline is depicted in Figure 1.

ϕ1Channel 1

ϕ2Channel 2

...

ϕ7Channel 7

ϕ8Channel 8

F1

σ1

F2

σ2

...

F7

σ7

F8

σ8

ψ1

ψ2

...

ψ7

ψ8

Σ ψ

θ

ψ̂

τ

l 0.8

k

α
1

α
2

α7

α 8

GENEO

layer
Convex

combination
Threshold Evaluation

Input Output Operation

Figure 1. Model workflow. The input channels φ1,…,φ8 are fed to the
GENEOs F1,…, F8 that depend on the shape parameters σ1,…,σ8; this
first layer returns the intermediate outputs ψ1,…,ψ8. Then with these
outputs one forms a convex combination with weights α1,…,α8 to get
the final result ψ. To obtain pockets, a thresholding operation with
a parameter θ is applied to ψ, producing the binary function ψ̂, which
finally can be compared to the ground truth τ through the accuracy
function.

A discretization into voxels similar to the one adopted for the
molecules has been applied also to the GENEOs, which have thus
been expressed as discrete convolutional operators. The choice
of convolutional operators allowed us to exploit the efficient im-
plementation of discrete convolution, reducing the computational
costs.
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3.2 Parameter identification
The model that was described so far, as shown in Figure 1, has
a total of 17 parameters (σi, i = 1,…, 8, αj, j = 1,…, 8 and θ). The
codes were written using both C and Python. The fact that the
model only employs convolutional operators and linear combina-
tions thereof allowed us to set up an optimization pipeline quite
similar to a 3D convolutional neural network (CNN), but with two
fundamental differences. First, our model has a really tiny set of
parameters, if compared to a classical CNN: we estimated that a re-
cent method called DeepSite [15], which implements a classical 3D
CNN for pocket detection, has 844529 parameters; DeepPocket [1],
an even newer approach that uses a 3D CNN to rescore fPocket [18]
predictions, has 665 122 parameters. Second, the convolutional
kernels of the GENEOs are not learned entry by entry as in classical
CNNs, since in this way equivariance would not be preserved at
each iteration; instead, at each step the kernels are recomputed
from the shape parameters that are updated during the optimiza-
tion. Finally, the estimated values of the parameters αj, j = 1,…, 8,
can be interpreted as weights giving the relative importance of
each considered channel to the final pocket detection.

In order to identify the unknown parameters, we have to opti-
mize a cost function that evaluates the goodness of our predictions.
If we denote by ψ̂ the output of the model after thresholding, then
we must compare ψ̂ to the ground truth represented by the binary
function τ, which takes the value 1 in those voxels occupied by
the ligand and 0 in the other voxels. We adopted the following
accuracy function that needs to be maximized:

l(ψ̂, τ) = |ψ̂ ∧ τ| + k ⋅ |(1− ψ̂) ∧ (1− τ)|
|τ| + k ⋅ |1− τ| ∈ [0, 1].

Here ψ̂ ∧ τ denotes the minimum between the two functions, | ⋅ |
denotes the volume of the set where the function equals 1 and 1
denotes the constant function equal to 1. Note that the function
l(ψ̂, τ) is well defined, since all our functions are defined only on
a (voxelized) compact cubic region surrounding the molecule. The
hyperparameter k ranges in [0, 1], and when k = 1, the accuracy
function is simply the fraction of correctly labelled voxels out of the
total. We choose k < 1, which allows to balance the two terms
of the sum in the numerator to obtain more and slightly bigger
pockets. In particular, we empirically found that values of k in the
interval [0.01,0.05] give similar and good results, all characterized
by a rather small number of pockets of suitable size.

Eventually, pockets are found as the connected components of
the thresholded output of the model. In this way we get an array
where voxels located in a pocket are labelled with the successive
number of the connected component they belong to, while they
are labelled with 0 if they do not belong to a pocket. Actually, this
representation is not very informative, since in the applications of
pocket detection in medicinal chemistry it is desirable to compute
also the druggability of the identified cavities, that is, a ranking of
the pockets on the basis of their fitness to host a ligand.

To assign a score to each pocket, we went back to the output
of the model before the thresholding, that is, to the function ψ(x),
which was interpreted as the probability that a voxel x belongs to
a pocket. The score of a pocket was then computed as the average
value of ψ taken only over the voxels belonging to the pocket,
rescaled by a factor proportional to the volume of the pocket so
as to avoid giving too high scores to very small pockets. Eventually,
the final output of the model consists in a list of pockets, given as
the coordinates of their voxels, and the corresponding scores.

Figure 2 displays an example of results of GENEOnet applied
to the protein 2QWE. The picture shows a relevant aspect of
GENEOnet: the depicted protein is made up of four symmetrical
units so that the true pocket is replicated four times. GENEOnet
correctly outputs, among the others, four symmetrical pockets
that receive high scores. This happens thanks to equivariance, be-
cause the results of the model on identical units are the same, with
position and orientation coherently adjusted.

Figure 2. Model predictions for protein 7WIY. Left: the global view of the
prediction, where different pockets are depicted in different colors and
are labelled with their scores. Right: a zoomed view of the pocket
containing the ligand.

3.3 Comparison between GENEOnet and other methods
We compared the results of GENEOnet with a set of other recent
methods for protein pocket detection based on machine learning
techniques. Since the output of such methods can be different
from our output, both in terms of the discretization strategy and
of the objective function to be optimized, we decided to base our
comparison on the scores given by the different methods to the
cavities. In this way we can perform a comparison based on the
ability of the model to assign the highest scores to pockets that
match the true ones. Given our dataset of proteins, having only
one ligand, and thus one ‘true pocket’ each, we can compute the
fraction of proteins whose true pocket is hit by the predicted one
with highest score, by the one with second highest score, and
so on. We say that a predicted pocket A hits the true pocket B if
A has the greatest overlap with B. If no predicted pocket has an
intersection with the true one, we say that the method failed on
that protein. Finally, we computed the cumulative sum of these
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fractions; in this way we get a curve where the i-th point represents
the fraction of proteins whose true pocket has been recognized
within the first i highest scored predicted pockets.

In the following we will denote by Hj the proportion of correct
recognitions, i.e.,

Hj =
#(proteins whose true pocket is hit by the jth top ranked)

#(proteins) ,

and by Tj the corresponding cumulative quantities, i.e.,

Tj =
#(proteins whose true pocket is hit within the jth top ranked)

#(proteins)

=
j

∑
i=1

Hi.

In this way different methods can be compared directly: if a model
has a cumulative curve that stands above all the others, then
that model is definitely better. We chose to use this approach
to compare our model with the following other state-of-the-art
methods:
1. fPocket [16]: a fast geometrical method that employs a detec-

tion algorithm based on alpha-spheres.
2. P2RANK [18]: a model that uses random forests to make pre-

dictions on a cloud of points evenly sampled on the solvent
accessible surface.

3. DeepPocket [1]: a method that performs a re-scoring of fPocket
cavities by means of 3D CNNs.

4. Caviar [22]: a model that uses a novel approach to the classical
technique of points enclosure.

5. SiteMap [13]: a model that clusterizes site points based on
surface distance and how well they are sheltered from the
solvent.

6. CavVis [24]: a model that uses Gaussian surfaces to predict
pockets based on a visibility criterion.
The results are reported in Figure 3, which demonstrates that

GENEOnet has a better performance than all the other methods
considered in the comparison.

4 SCENE-net: application of GENEOs to LiDAR scans
segmentation for maintenance of electric power plants

In Portugal, the maintenance and inspection of the energy transmis-
sion system is based on LiDAR point clouds. Low-flying helicopters
are deployed to scan the environment from a bird-eye view (BEV)
perspective and store the results in a 3D point cloud format for fur-
ther processing by maintenance personnel. This results in detailed
large-scale point clouds with high point density, no sparsity and no
object occlusion. The captured 3D scenes are quite extensive and
mostly composed of arboreal/rural areas, with the transmission
line making a small percentage of the LiDAR scans. As a result,
maintenance specialists spend the majority of their time manually

Figure 3. Comparison results. The top figure shows a bar chart of the
proportions of correct recognition Hj for the different methods, while the
bottom figure shows the corresponding cumulative frequency curves.

sectioning and labelling 3D data in order to focus on 3D scenes
that encompass the transmission line, for later inspection, to avoid
collisions with the vegetation that may cause fires. In order to accel-
erate this task, we applied GENEOs to the detection of power-line
supporting towers and produced a semantic segmentation. These
metal structures serve as points of reference for the location of
the electrical network. By doing so, the laborious task of manually
searching and sectioning the 3D scenes that contain parts of the
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Figure 4. Visualization of TS40K raw point cloud with colored labels.

transmission network can be automated, which grants a significant
speed-up to the whole procedure. This research is still going on
and is performed in collaboration with the CNET Center for New
Energy Technologies SA, of the company EDP, the main electric
energy provider in Portugal.

We considered a dataset provided by EDP, using 40 000 km
of rural and forest terrain labelled with 22 classes, culminating in
2823 samples describing the transmission system, named TS40K
(see Figure 4). Withal, the provided point clouds exhibit noisy labels
and are mainly composed of non-relevant classes for our problem,
such as the ground. Power-line supporting towers make up less
than 1% of the overall point clouds, which makes noisy labelling
a major issue for the segmentation task. For instance, patches of
ground incorrectly classified as tower amount to roughly 40% of
tower 3D points.

One plausible way to approach our problem would be to
employ state-of-the-art methods with respect to 3D semantic seg-
mentation. However, most proposals [9,26,29] do not account for
the existence of ground, as it is usually removed to boost efficiency
in urban settings, and this is not possible in rural scenes, due to
their irregular terrain. Moreover, the high point density combined
with the severe class imbalance and noisy labelling in TS40K are
sure to affect the performance of these models in real scenarios.

We then built an architecture called SCENE-net, based on
GENEOs [17], whose equivariance properties encode prior knowl-
edge on the objects of interest (such as geometrical characteristics
of towers) and embed them into a model still based on convolu-
tional kernels, similarly to the previous application.

Note that also for this problem there is a piece of information
that can be injected in a learning system based on GENEOs, ex-
ploiting the equivariance property. In fact, the shape of the towers
could easily be recognized by a human being, but should be learned
by a ‘blind’ machine-learning system. Therefore, also in this case
study, the knowledge injection in the GENEO network results in
a simplified and thus more interpretable model.

4.1 SCENE-net: the model
The pipeline used for SCENE-net is quite similar to the one of
GENEOnet, used for protein pocket detection. A schematic repre-
sentation is reported in Figure 5.

Figure 5. Pipeline of SCENE-net: an input point cloud 𝒫 is voxelized and
a measurement φ is applied. This representation then is fed to a GENEO
layer, where each G𝜗i

i separately convolves the input. A GENEO observer
ℋ is then achieved by a convex combination of the operators in the
GENEO layer. The function ℳ transforms the analysis of the observer into
the probability of belonging to a tower. Lastly, a threshold operation is
applied to classify the voxels. Note that this final step occurs after training
is completed.

The input is a point cloud denoted by𝒫∈ℝN×(3+d), whereN is
the number of points and 3+d is the number of spatial coordinates
and of any point-wise recorded features, such as colors, labels,
normal vectors, etc. The cloud 𝒫 is first discretized, using a 3D
regular grid, or voxel discretization of the considered scene, and
then fed to a layer of GENEOs G𝜗i

i (GENEO layer), each chosen from
a parametric family of operators, and defined by a set of trainable
shape parameters 𝜗i, i = 1,…,n. Such GENEOs are employed as
kernels for convolutional operators. The output of the GENEO layer
is then combined into another GENEO ℋ obtained by a convex
combination of the G𝜗i

i , with weights λ1,…,λn:

ℋ(x) =
n

∑
i=1

λiG
𝜗i
i (x), λi ∈ [0, 1],

n

∑
i=1

λi = 1,

where x is a point of the discretization grid. Because of the prop-
erties of GENEOs recalled in Section 2.1, ℋ is still a GENEO that
can be interpreted as an ‘expert’ observer, and the estimated value
of each coefficient λi represents the contribution given to the ex-
pert observer by the ‘naive observer’ G𝜗i

i . The parameters λi grant
then our model its intrinsic interpretability. They are learned during
training and represent the importance of each G𝜗i

i , and, by exten-
sion, the importance of their encoded properties, in modelling the
ground truth.

Next, we transform the observer’s analysis into the probability
ℳ(x) that x belongs to a supporting tower, as follows:

ℳ(x) = (tanh(ℋ(x)))+.

Negative signals in ℋ(x) represent patterns that do not exhibit
the sought-out geometrical properties. Conversely, positive values
quantify their presence. Therefore, tanh compresses the observer’s
value distribution into [−1, 1], and a rectified linear unit (ReLU) is
then applied to enforce a zero probability to negative signals.
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Lastly, a probability threshold τ ∈ [0, 1] is defined and applied
to ℳ to detect the points of the discretization grid that lie on the
towers:

ℳ̃ = {x ∈ grid ∣ ℳ(x) ≥ τ}.

In order to recognize the main geometrical characteristics of
towers, we used three different kernels for the GENEOs G𝜗i

i :
• A cylindrical kernel, with main axis orthogonal to the plane
of the ground. The corresponding GENEO is thus equivariant
under rotations around a vertical axis and is able to identify
vertical structures which are much higher than the surrounding
landscape, as towers are.

• A cone-cylinder kernel, formed by a cylinder with a cone on
the top. The corresponding GENEO is still equivariant under
rotations around a vertical axis and is able to distinguish towers
from trees, because of the typical shape formed by power lines
stemming from the top of the towers.

• A sphere with negative values in its interior, able to detect
bushes and tree crowns and to assign them a negative weight.

4.2 Parameter identification
The unknown parameters 𝜗i,λi, i = 1, 2, 3 of the model are identi-
fied by solving the optimization problem

min
𝜗,λ

𝔼[ℒ(𝜗,λ,X)] such that 𝜗i ≥ 0, ∀i,

λT1 = 1,

λi ≥ 0, ∀i.

Here the loss ℒ is defined by

ℒ(𝜗,λ,X) = fw(α, ε, y)(ℳ𝜗,λ(X) − y)2,

where ℳ𝜗,λ(X) is the estimated probability that the voxel X lies
on a tower, y is the ground truth probability that voxel X lies on
a tower (computed as the proportion of LiDAR scanned points lying
in voxel X whose labels belong to a tower) and fw is a weight as
proposed in [25] to mitigate data imbalance. The hyperparameter
α emphasizes the weighting scheme, whereas ε is a small positive
number which ensures that the weights of the samples are positive
(see [17,25] for more details).

Like in the previous case study, the Adam algorithmwas applied
to solve the optimization problem.

4.3 SCENE-net results and comparison with other methods
In order to limit the unbalanced nature of the dataset in the training
phase, the entire TS40K dataset has been sectioned into 2823
subsets, each cropped around one different supporting tower. The
samples have then been randomly split into a training set (80% of
the total), a validation set (20% of the total), and a test set (10%
of the total).

The results of SCENE-net have been compared with those of
a convolutional neural network (CNN) applied to the same data. The
following metrics have been used to compare the two methods:
• Precision = (# true positive)/(# true positive + # false positive).
This index tells us from all voxels predicted positively, what
percentage did the model classify correctly.

• Recall = (# true positive)/(# true positive + # false negative). This
index provides the percentage of voxels lying on a tower that
were correctly classified.

• Intersection over union (IoU) = (# true positive)/(# true positive
+ # false negative + # false positive). This index measures the
overlap between the prediction and the ground truth, over the
total volume they occupy.

The results are reported in Table 1.

Method Precision Recall IoU
CNN 0.44 (±0.07) 0.26 (±0.02) 0.53
SCENE-net 0.68 (±0.08) 0.16 (±0.05) 0.58

Table 1. Comparison metrics between SCENE-net and CNN on TS40K.

Quantitatively, using SCENE-net we observe a lift in Precision
of 24%, and of 5% in IoU, and a drop of 10% in Recall. The lower
Recall of SCENE-Net is due to noisy labels in the ground truth. As
shown in Figure 6, the ground surrounding supporting towers as
well as power lines are often mislabeled as tower.

Additionally, from Figure 7 we note that the performance of
SCENE-net is comparable to that of CNN when we change the
classification threshold τ in the model pipeline, but SCENE-net
has in total 11 parameters to be identified, while CNN has about
103 unknown parameters and therefore needs to be trained with
a much bigger training set.

(a) TS40K sample (b) SCENE-Net (c) Baseline CNN

true positive false negative false positive

Figure 6. For the TS40K sample shown in (a), SCENE-Net accurately
detects the body of the power grid tower (b), while a comparable CNN
has a large false positive area in the vegetation (c). Our model is
interpretable with 11 trainable geometric parameters, whereas the CNN
has a total of 2190 parameters. Note that the ground around the towers
and the lines above are mislabeled as towers in the ground truth.
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Figure 7. Precision–Recall curve for SCENE-Net and the CNN benchmark,
with changing detection threshold. Although our model SCENE-Net has
two orders of magnitude less parameters than the CNN, it attains
a comparable area under the P–R curve.
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On the dynamics of dilute gases

English translation of the paper “Sur la dynamique des gaz dilués”
published in La Gazette des Mathématiciens, Number G174, October 2022

Thierry Bodineau, Isabelle Gallagher, Laure Saint-Raymond and Sergio Simonella

The evolution of a gas can be described by different mathematical
models depending on the scale of observation. A natural question,
raised by Hilbert in his sixth problem, is whether these models
provide mutually consistent predictions. In particular, for rarefied
gases, it is expected that the equations of the kinetic theory of
gases can be obtained from molecular dynamics governed by the
fundamental principles of mechanics. In the case of hard sphere
gases, Lanford (1975) has shown that the Boltzmann equation
does indeed appear as a law of large numbers in the low density
limit, at least for very short times. The aim of this paper is to present
recent advances in the understanding of this limiting process.

1 A statistical approach to dilute gas dynamics

1.1 The physical model: A dilute gas of hard spheres
Although at the time Boltzmann published his famous paper [8]
the atomic theory was still rejected by some scientists, it was al-
ready well established that matter is composed of atoms, which
are the elementary constituents of all solids, liquids and gases. The
particularity of gases is that the volume occupied by their atoms
is negligible as compared to the total volume occupied by the
gas, and there are therefore very few constraints on the atoms’
geometric arrangement: they are thus very loosely bound and al-
most independent. Neglecting the internal structure of the atoms,
their possible organization into molecules, and the effect of long-
range interactions, a gas can be represented as a system formed
by a large number of particles that move in a straight line and
occasionally collide with each other, resulting in an almost instanta-
neous scattering. The simplest example of such a model consists in
assuming that the particles are small identical spheres, of diameter
ε ≪ 1 and mass 1, interacting only by contact (Figure 1). We refer
to this as a gas of hard spheres. This microscopic description of
a gas is explicit, but very difficult to use in practice because the
number of particles is extremely large, their size is tiny and their
collisions are very sensitive to small shifts (Figure 2). This model is
therefore not efficient for making theoretical predictions. A natural
question is whether one can extract, from such a complex system,
less precise but more stable models suitable for applications, such

as kinetic or fluid models. This question was formalized by Hilbert
at the International Congress of Mathematicians in 1900, in his
sixth problem:

Boltzmann’s work on the principles of mechanics suggests
the problem of developing mathematically the limiting
processes, there merely indicated, which lead from the
atomistic view to the laws of motion of continua.

The Boltzmann equation, mentioned by Hilbert and described in
more detail below, expresses that the particle distribution evolves
under the combined effect of free transport and collisions. For
these two effects to be of the same order of magnitude, a sim-
ple calculation shows that, in dimension d ≥ 2, the number of
particles N and their diameter ε must satisfy the scaling relation
Nεd−1 = O(1), called low density scaling [14]. Indeed, the regime
described by the Boltzmann equation is such that the mean free
path, i.e., the average distance traveled by a particle moving in
a straight line between two collisions, is of order 1. Thus, a typical
particle should go through a tube of volume O(εd−1) between
two collisions, and on average, this tube should cross one of the
N− 1 other particles. Note that, in this regime, the total volume
occupied by the particles at a given time is proportional to Nεd

and is therefore negligible compared to the total volume occupied
by the gas. We speak then of a dilute gas.

1.2 Three levels of averaging
Henceforth, it is assumed that the particle system evolves in the
unit domain with periodic boundary conditions 𝕋d = [0, 1]d. We
consider that the N particles are identical: this is the exchange-
ability assumption. The state of the system can be represented by
a measure in the phase space 𝕋d ×ℝd called empirical measure,

1
N

N

∑
i=1

δx−xiδv−vi,

where δx is the Dirac mass at x = 0. This measure is completely
symmetric (i.e., invariant under permutation of the indices of the
particles) because of the exchangeability assumption. This first aver-
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Hard sphere dynamics:

dxεk
dt

= vεk ,
dvεk
dt

= 0

as long as

|xεk(t) − xεk′(t)| > ε, 1 ≤ k ≠ k′ ≤ N

vε
′

i = vεi − ((vεi − vεj ) ⋅ω)ω,

vε
′

j = vεj + ((vεi − vεj ) ⋅ω)ω

Figure 1. At time t, the system of hard spheres is described by the positions (xεk(t))k≤N and the
velocities (vεk(t))k≤N of the centers of gravity of the particles. The spheres move in a straight
line and when two of them touch, they are scattered according to elastic reflection laws.

Case 1: transport and collision (the velocities are scattered)

Case 2: free transport (the particles do not collide)

Figure 2. The particles are very small (of diameter ε ≪ 1) and the
dynamics is very sensitive to small spatial shifts. In the first case depicted
above, two particles with initial positions x1, x2 and velocities v1, v2
collide and are scattered. In the second case, after shifting the position
of the first particle by a distance O(ε), they no longer collide and each
particle keeps moving in a straight line. Thus, a perturbation of order ε
of the initial conditions can lead to very different trajectories.

aging is however not sufficient to obtain a robust description of the
dynamics when N is large, because of the instabilities mentioned in
the previous section (Figure 2) which lead to a strong dependence
of the particle trajectories on ε.

We will therefore introduce a second averaging, with respect
to the initial configurations; from a physical point of view, this
averaging is natural since only fragmentary information on the ini-
tial configuration is available. We therefore assume that the initial
data (XN,VN) = (xi, vi)1≤ i≤N are independent random variables,
identically distributed according to a distribution f 0 = f 0(x, v). This

assumption must be slightly corrected to account for particle exclu-
sion: |xi − xj| > ε for i ≠ j. This statistical framework is called the
canonical setting. It is a simple framework allowing us to establish
rigorous foundations for the kinetic theory, i.e., to characterize, in
the large N asymptotics, the average dynamics and more precisely
the evolution equation governing the distribution f(t,x, v) at time t
of a typical particle.

In this paper, our aim is to go beyond this averaged dynam-
ics, and to describe in a precise way the correlations that appear
dynamically inside the gas. Fixing a priori the number N of parti-
cles induces additional correlations, so to circumvent them, we
introduce a third level of averaging by assuming that N is also
a random variable, and that only its average με = ε−(d−1) is deter-
mined (according to the low density scaling). To define a system
of initially independent (modulo exclusion) identically distributed
hard spheres according to f 0, we introduce the grand canonical
measure as follows: the probability density of finding N particles
of coordinates (xi, vi)i≤N is given by

1
𝒵ε

μN
ε

N!

N

∏
i=1

f 0(xi, vi)∏
i≠ j

1|xi−xj|> ε for N = 0, 1, 2,…, (1.1)

where the constant 𝒵ε is the normalization factor of the probability
measure. We will assume in the following that the function f 0

is Lipschitz continuous, with a Gaussian decay in velocity. The
corresponding probability and expectation will be denoted by ℙε

and 𝔼ε.

1.3 A statistical approach
Once the initial random configuration (N, (xε0i , vε0i )1≤ i≤N) is cho-
sen, the hard sphere dynamics evolves deterministically (according
to the hard sphere equations shown in Figure 1), and we seek to
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understand the statistical behavior of the empirical measure

πε
t (x, v) ≔

1
με

N

∑
i=1

δx−xεi (t)δv−vεi (t) (1.2)

and its evolution in time.

A law of large numbers
The first step is to determine the law of large numbers, that is,
the limiting distribution of a typical particle when με → ∞. In the
case of N identically distributed independent variables (ηi)1≤ i≤N

of expectation 𝔼(η), the law of large numbers implies in particular
that the mean converges in probability to the expectation:

1
N

N

∑
i=1

ηi −−−→
N→∞

𝔼(η).

One can easily show the following convergence in probability:

⟨πε
0,h⟩ ≔

1
με

N

∑
i=1

h(xε0i , vε0i ) −−−→
με→∞

∫ f 0h(x, v)dxdv,

under the grand canonical measure. The difficulty is to under-
stand whether the initial quasi-independence propagates in time
so that there exists a function f = f(t, x, v) such that the following
convergence in probability holds:

⟨πε
t ,h⟩ −−−→

με→∞
∫ f(t, x, v)h(x, v)dxdv (1.3)

under the grand canonical measure (1.1) over the initial configu-
rations. The most important result proving this convergence was
obtained by Lanford [16]: he showed that f evolves according to
a deterministic equation, namely the Boltzmann equation. This
result will be explained in Section 2.2.

A central limit theorem
The approximation (1.3) of the empirical measure neglects two
types of errors. The first is the presence of correction terms that con-
verge to 0 when με →+∞. The second is related to the probability,
which must tend to zero, of configurations for which this conver-
gence does not occur. A classical problem in statistical physics is to
quantify more precisely these errors, by studying the fluctuations,
i.e., the deviations between the empirical measure and its expec-
tation. In the case of N independent and identically distributed
variables (ηi)1≤ i≤N, the central limit theorem implies that the fluc-
tuations are of order O(1/√N), and the following convergence in
law holds true:

√N( 1
N

N

∑
i=1

ηi −𝔼(η))
(law)
−−−→
N→∞

𝒩(0,Var(η)),

where𝒩(0,Var(η)) is the normal law of variance Var(η)=𝔼((η−
𝔼(η))2). In particular, at this scale, we find some randomness. In-
vestigating the same fluctuation regime for the dynamics of hard
sphere gases consists in considering the fluctuation field ζ ε

t defined

by duality, namely,

⟨ζ εt ,h⟩ ≔ √με(⟨πε
t ,h⟩ − 𝔼ε(⟨πε

t ,h⟩)), (1.4)

where h is a continuous function, and 𝔼ε the expectation with
respect to the grand canonical measure. At time 0, one can easily
show that, under the grand-canonical measure, the fluctuation
field ζ ε

0 converges in the low density limit to a Gaussian field ζ 0
with covariance

𝔼(ζ0(h)ζ0(g)) = ∫ f 0(z)h(z)g(z)dz.

A series of recent works [4–7] has allowed to characterize the
fluctuation field (1.4) and to obtain a stochastic evolution equa-
tion governing the limit process. These results are presented in
Section 3.3.

On large deviations
The last question generally studied in a classical probabilistic ap-
proach is that of the quantification of rare events, i.e., the estima-
tion of the probability of observing an atypical behavior (which
deviates macroscopically from the mean). For independent and
identically distributed random variables, this probability is exponen-
tially small, and it is therefore natural to study the asymptotics

I(m) ≔ lim
δ→0

lim
N→∞

− 1
N
logℙ(| 1

N

N

∑
i=1

ηi −m| < δ) withm≠𝔼(η).

The limit I(m) is called the large deviation functional and can be
expressed as the Legendre transform of the log-Laplace transform
ℝ∋ u↦ log𝔼(exp(uη)). To generalize this statement to correlated
variables in a gas of hard spheres, it is necessary to compute the
log-Laplace transform of the empirical measure on deterministic
trajectories, which requires extremely precise control of the dynam-
ical correlations. Note that, at time 0, under the grand canonical
measure, one can show that, for any δ > 0,

lim
δ→0

lim
με→∞

− 1
με

logℙε(d(πε
0,φ

0) ≤ δ)

= H(φ0| f 0) ≔ ∫(φ0 log
φ0

f 0
− (φ0 − f 0))dxdv,

where d is a distance on the space of measures. The dynamical
cumulant method introduced in [4,6] is a key tool for computing
the exponential moments of the hard sphere distribution, thus
obtaining the dynamical equivalent of this result in short time. We
give an overview of these techniques in Section 3.

2 Typical behavior: A law of large numbers

2.1 Boltzmann’s amazing intuition
The equation that rules the typical evolution of a gas of hard spheres
was heuristically proposed by Boltzmann [8] about a century before
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its rigorous derivation by Lanford [16], as the “limit” of the particle
system when με → +∞. Boltzmann’s revolutionary idea was to
write an evolution equation for the probability density f = f(t, x, v)
giving the proportion of particles at position x with velocity v at
time t. In the absence of collisions, and in an unbounded domain,
this density f would be transported along the physical trajectories
x(t) = x(0) + vt, which means that f(t, x, v) = f 0(x− vt, v). The
challenge is to take into account the statistical effect of collisions.
As long as the size of the particles is negligible, one can consider
that these collisions are pointwise in both t and x. Boltzmann
proposed a quite intuitive counting:
• the number of particles of velocity v increases when a particle
of velocity v ′ collides with a particle of velocity v ′1, and takes
the velocity v (Figure 1 and (2.2));

• the number of particles of velocity v decreases when a parti-
cle of velocity v collides with a particle of velocity v1, and is
deflected to another velocity.

The probability of these jumps in velocity is described by a transition
rate, called the collision cross section. For interactions between
hard spheres, it is given by ((v − v1) ⋅ ω)+, where v − v1 is the
relative velocity of the colliding particles, and ω is the deflection
vector, uniformly distributed in the unit sphere 𝕊d−1 ⊂ ℝd.

The fundamental assumption of Boltzmann’s theory is that,
in a rarefied gas, the correlations between two colliding particles
must be very small. Therefore, the joint probability of having two
pre-colliding particles of velocities v and v1 at position x at time t
should be well approximated by the product f(t,x,v)f(t,x,v1). This
independence property is called the molecular chaos hypothesis.
The Boltzmann equation then reads

∂t f+ v ⋅ ∇x f⏟⏟⏟
transport

= C( f, f)⏟⏟⏟
collision

, (2.1)

where

C( f, f)(t, x, v) = ∬[f(t, x, v′)f(t, x, v′1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
gain term

− f(t, x, v)f(t, x, v1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
loss term

]

× ((v− v1) ⋅ω)+⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
cross section

dv1 dω,

with the scattering rules

v′ = v− ((v− v1) ⋅ω)ω, v′1 = v1 + ((v− v1) ⋅ω)ω (2.2)

being analogous to those introduced in Figure 1, with the important
difference that ω is now a random vector chosen uniformly in the
unit sphere 𝕊d−1: indeed, the relative position of the colliding
particles disappeared in the limit ε → 0. As a result, the Boltzmann
equation is singular because it involves a product of densities at
a single point x.

Boltzmann’s idea of reducing the Hamiltonian dynamics de-
scribing atomic behavior to a kinetic equation was revolutionary
and paved the way to the description of non-equilibrium phenom-
ena by mesoscopic equations. However, the Boltzmann equation

(2.1) was first strongly criticized because it seems to violate some
fundamental physical principles. It actually predicts an irreversible
evolution in time: it has a Lyapunov functional, called entropy, de-
fined by S(t) ≔−∬ f log f(t,x,v)dxdv, such that d

dt S(t) ≥ 0, with
equality if and only if the gas is in thermodynamic equilibrium. The
Boltzmann equation thus provides a quantitative formulation of
the second principle of thermodynamics. But at first glance, this
irreversibility seems incompatible with the fact that the dynamics
of hard spheres is governed by a Hamiltonian system, i.e., a system
of ordinary differential equations that is completely reversible in
time. Soon after Boltzmann postulated his equation, these two
different behaviors were considered, by Loschmidt, as a paradox
and an obstruction to Boltzmann’s theory. A fully satisfactory math-
ematical explanation of this question remained elusive for almost
a century, until the role of probabilities was precisely identified: the
underlying dynamics is reversible, but the description that is given
of this dynamics is only partial and is therefore not reversible.

2.2 Typical behavior: Lanford’s theorem
Lanford’s result [16] shows in which sense the Boltzmann equation
(2.1) is a good approximation of the hard sphere dynamics. It can
be stated as follows (this is not exactly the original formulation;
see in particular Section 2.4 below for comments).

Theorem 2.1 (Lanford). In the low density limit (με → ∞ with
μεεd−1 = 1), the empirical measure πε

t defined by (1.2) concen-
trates on the solution of the Boltzmann equation (2.1): for any
bounded and continuous function h,

∀δ > 0, lim
με→∞

ℙε(|⟨πε
t ,h⟩ − ∫ f(t, x, v)h(x, v)dxdv| ≥ δ) = 0,

on a time interval [0, TL] that depends only on the initial distribu-
tion f 0.

The time of validity TL of the approximation is found to be
a fraction of the average time between two successive collisions
for a typical particle. This time is large enough for the microscopic
system to undergo a large number of collisions (of the order of με),
but (much) too small to see phenomena such as relaxation to (lo-
cal) thermodynamic equilibrium, and in particular hydrodynamic
regimes. Physically, we do not expect this time to be critical, in
the sense that the dynamics would change in nature afterwards.
In fact, in practice, Boltzmann’s equation is used in many appli-
cations (such as spacecraft reentrance calculations) without time
restrictions. However, it is important to note that a time restric-
tion might not be only technical: from a mathematical point of
view, one cannot exclude that the Boltzmann equation presents
singularities (typically spatial concentrations that would prevent
the collision term from making sense, and that would also locally
contradict the low density assumption). At present, the problem of
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extending Lanford’s convergence result to longer times still faces
serious obstacles.

2.3 Heuristics of Lanford’s proof
Let us informally explain how the Boltzmann equation (2.1) can
be predicted from the dynamics of the particles. The goal is to
transport via the dynamics the initial grand canonical measure (1.1)
and then to project this measure at time t onto the 1-particle phase
space. We thus define by duality the density F ε1(t, x, v) of a typical
particle with respect to a test function h by

∫ Fε1(t, x, v)h(x, v)dxdv ≔ 𝔼ε(⟨πε
t ,h⟩). (2.3)

Theorem 2.1 states that F ε
1 converges to the solution to the Boltz-

mann equation f in the low density limit. So let h be a regular and
bounded function on 𝕋d ×ℝd and consider the evolution of the
empirical measure during a short time interval [t, t+ δ]. Separating
the different contributions according to the number of collisions,
we can write
1
δ
(𝔼ε[⟨πε

t+δ,h⟩] − 𝔼ε[⟨πε
t ,h⟩])

= 1
δ
𝔼ε[

1
με

∑
j

no collision

(h(zεj (t+ δ)) − h(zεj (t)))]

+ 1
δ
𝔼ε[

1
2με

∑
(i, j)

one collision

(h(zεi (t+ δ)) + h(zεj (t+ δ))

− h(zεi (t)) − h(zεj (t)))]
+⋯. (2.4)

To simplify, z εi (t) denotes the coordinates (xεi (t), vεi (t)) of the
i-th particle at time t. Since the left-hand side of (2.4) formally
converges when δ → 0 to the time derivative of 𝔼ε[⟨πε

t ,h⟩], we
will analyze the limit δ → 0 of the first two terms in the right-hand
side of (2.4), which should lead to a transport term and a collision
term as in (2.1). We will also explain why the remainder terms,
involving two or more collisions in the short time interval δ, tend
to 0 with δ (showing that they are of order δ).

Since the particles move in a straight line and at constant
speed in the absence of collisions, if the distribution F ε1 is sufficiently
regular, the definition (2.3) of F ε1 formally implies that, when δ tends
to 0, the first term in the right-hand side of (2.4) is asymptotically
equal to

∫ Fε1(t, z)v ⋅ ∇xh(z)dz = −∫(v ⋅ ∇xFε1(t, z))h(z)dz.

The transport term in (2.1) is thus well obtained in the limit. Let us
now consider the second term in the right-hand side of (2.4). Two
particles of configurations (x1, v1) and (x2, v2) at time t collide at
a later time τ ≤ t+ δ if there exists ω ∈ 𝕊d−1 such that

x1 − x2 + (τ− t)(v1 − v2) = −εω. (2.5)

This implies that their relative position must belong to a tube of
length δ|v1 − v2| and width ε oriented in the v1 − v2 direction.
The Lebesgue measure of this set is of the order δεd−1|v2 − v1| =
O(δεd−1) (neglecting large velocities). More generally, a sequence
of k− 1 collisions between k particles imposes k− 1 constraints
of the previous form, and this event can be shown to have proba-
bility less than (δεd−1)k−1 = (δμ−1

ε )k−1 (again neglecting large
velocities). Since there are, on average, μk

ε ways to choose these
k colliding particles, we deduce that the occurrence of k− 1 colli-
sions in (2.4) has a probability of order δ k−1με. This explains why
the probability of having k ≥ 3 colliding particles can be estimated
by O(δ2) and thus can be neglected in (2.4).

It remains to examine more closely the collision term involving
two particles in (2.4), in order to obtain the collision operator C(f, f)
of the Boltzmann equation (2.1). This term involves the two-particle
correlation function F ε

2 . For any k ≥ 1, we define

∫ Fεk (t, Zk)hk(Zk)dZk

= 𝔼ε(
1
μk
ε

∑
(i1,…, ik)

hk(zεi1(t),…, zεik(t))), (2.6)

where i1,…, ik are all distinct and Zk = (xi, vi)1≤ i≤ k. We can then
show that, in the limit δ → 0,

∂tFε1 + v ⋅ ∇xFε1⏟⏟⏟⏟⏟
transport

= Cε(Fε2)⏟⏟⏟
collision

at distance ε

, (2.7)

where

Cε(Fε2)(t, x, v)

= ∬[Fε2(t, x, v′, x+ εω, v′1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
gain term

− Fε2(t, x, v, x− εω, v1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
loss term

]

× ((v− v1) ⋅ω)+⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
cross section

dv1 dω.

The key step in closing the equation is themolecular chaos assump-
tion postulated by Boltzmann, which states that the pre-collisional
particles remain independently distributed at all times so that, with
the convention (2.5) fixing the sign of ω, we have

Fε2(t, z1, z2) ≃ Fε1(t, z1)Fε1(t, z2) if (v1 − v2) ⋅ω > 0. (2.8)

When the diameter ε of the spheres tends to 0, the coordinates x1
and x2 coincide and the scattering parameterω becomes a random
parameter. Assuming that F ε1 converges, its limit must satisfy the
Boltzmann equation (2.1).

Establishing the factorization (2.8) rigorously uses a different
strategy, elaborated by Lanford [16], then completed and improved
over the years: see themonographs [10,11,25]. In the last few years,
several quantitative convergence results have been established,
and the proofs have been extended to the case of somewhat
more general domains, potentials with compact support, or with
super-exponential decay at infinity: see [1,12,13,17,21,22].
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F ε2(t, x1, v1, x2, v2) ≃ F ε1(t, x1, v1)F
ε
1(t, x2, v2) F ε2(t, x1, v1, x2, v2) ≄ F ε1(t, x1, v1)F

ε
1(t, x2, v2)

Figure 3. In the left figure, particles 1 and 2 will meet in the future; with high probability, they did
not collide in the past and we expect the correlation function F ε2 to factorize in the με → ∞ limit.
In the figure on the right, the coordinates of the particles belong to the bad set ℬε

2, which means
that they most likely met in the past. In this case, microscopic correlations have been dynamically
constructed and the factorization (2.8) should not be valid.

2.4 On the irreversibility
In this section, we will show that the answer to the irreversibility
paradox lies in the molecular chaos hypothesis (2.8), which is valid
only for specific configurations.

In fact, the notion of convergence that appears in the state-
ment of Theorem 2.1 differs from the one used in Lanford’s proof:
Theorem 2.1 states the convergence of the ⟨πε

t , h⟩ observables,
i.e., the convergence in the sense of measures, since the test func-
tion h must be continuous. This convergence is rather weak and
is not sufficient to ensure the stability of the collision term in the
Boltzmann equation because this term involves traces. In the proof
of Lanford’s theorem, we consider all k-particle correlation func-
tions F ε

k defined by (2.6) and show that, when με → ∞, each of
these correlation functions converges uniformly outside a set ℬε

k of
negligible measure. Thus, the proof uses a much stronger notion
of convergence than that stated in Theorem 2.1. Moreover, the
set ℬε

k of bad microscopic configurations (t, Zk) (on which F εk does
not converge) is somehow transverse to the set of pre-collisional
configurations (as can be seen in Figure 3; two particles in ℬε

2

tend to move away from each other so that they are unlikely to
collide). The convergence defect is therefore not an obstacle to
taking bounds in the collision term (correlation functions are only
evaluated there in pre-collisional configurations). However, these
singular sets ℬε

k encode important information about the dynam-
ical correlations: by neglecting them, it is no longer possible to
go back in time and reconstruct the backward dynamics. Thus, by
discarding the microscopic information encoded in ℬε

k, one can
only obtain an irreversible kinetic picture that is far from describing
the full microscopic dynamics.

3 Fluctuations and large deviations

3.1 Corrections to the chaos assumption
Returning to equation (2.7) on F ε

1 , we can see that, apart from the
small spatial shifts of the collision term, the deviations of the Boltz-
mann dynamics are due to the factorization defect F ε

2 − F ε
1 ⊗ F ε1 ,

a geometric interpretation of which is given below.
Let us first describe the geometric representation of F ε

1 . We look
at the history of particle 1⋆ located at position x1⋆ with velocity
v1⋆ at time t, in order to characterize all initial configurations that
contribute to F ε1(t, x1⋆, v1⋆). The particle 1⋆ performs a uniform
rectilinear motion x1⋆(t ′) = x1⋆ − v1⋆(t− t ′) until it collides with
another particle, called particle 1, at a time t1 < t. This collision
can be of two types: either a physical collision (with deflection), or
a mathematical artifact arising from the loss term in equation (2.7)

t

t1

t2

t4

t3

0

a1 = 1⋆

a2 = 1

a3 = 1⋆

a4 = 3

1⋆

1⋆

4 3 1 2

Figure 4. The history of the particle 1⋆ can be encoded in a tree a,
say of size n, whose root is indexed by 1⋆. The pseudotrajectory is
then prescribed by the collision parameters (ti, vi,ωi)1≤ i≤n.
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1⋆
2⋆

Fε
2 = +

1⋆ 2⋆

≁

Figure 5. F ε2 trees are classified into two categories: those involving an (external) collision
between the 1⋆ and 2⋆ trees, and others for which the particles in the 1⋆ tree are always
at least ε away from those in the 2⋆ tree (which we denote by ≁).

(the particles touch but are not deflected). From then on, to under-
stand the history of particle 1⋆, we need to trace the history of both
particles 1⋆ and 1 before time t1. From time t1 on, both particles
perform uniform rectilinear motions until one of them collides with
a new particle 2 at time t2 < t1, and so on, until time 0. Note that,
between the times of collision with new particles, the particles can
collide with each other: this will be called recollision. The history of
the particle 1⋆ can be encoded using a rooted tree awhose vertices
correspond to the different collisions that took place in the history
of 1⋆ and are indexed by the parameters of these collisions. An ex-
ample is shown in Figure 4. The root of the tree a is indexed by 1⋆.
If n is the total number of collisions, and 0< tn <⋯< t1 < t are the
times of the collisions, one can order the particles so that, at time
ti, 1 ≤ i ≤ n, the collision occurs between the i-th particle and the
j-th particle, where j∈ {1⋆, 1,…, i− 1} (necessarily, j= 1⋆ at time
t1). Then the branching of the tree a associated with the i-th col-
lision is indexed by the relation ai = j, where j ∈ {1⋆, 1,…, i− 1},
together with the collision parameters (ti, vi,ωi)1≤ i≤n, where ωi is
the deflection vector. The tensor product F ε

1 ⊗ F ε
1 is then described

by two independent collision trees, with roots 1⋆ and 2⋆, and
respectively n1 and n2 branches.

Now consider the second-order correlation function: F ε
2 can be

described by a collision graph constructed from two collision trees
with roots 1⋆ and 2⋆, and n1 + n2 branches. The main difference
with F ε

1 ⊗ F ε1 is that the particles in the 1⋆ and 2⋆ trees may inter-
act. We can thus decompose the trees constituting F ε2 into two
categories: those such that there is at least one collision involving
a particle from each tree (such a recollision will be called external),
and the others (Figure 5).

Note, however, that two collision-free trees do not correspond
to independent trees, precisely because of the dynamical exclusion
condition. This exclusion condition can itself be decomposed as
11⋆ ≁2⋆ = 1− 11⋆ ∼2⋆ (Figure 6), where 11⋆ ∼2⋆ means that there
is an overlap at some point between a particle from the 1⋆ tree
and a particle from the 2⋆ tree. This decomposition is a pure
mathematical artifact, and the 1⋆ ∼ 2⋆ overlap condition does not
affect the dynamics (the overlapping particles are not deflected).

1*

classificationF2.pdf

Figure 7 Among the pseudoynamics describing F
"
2 , we separate those having a recollision between

trees 1⇤ and 2⇤, and those where particles from tree 1⇤ and particles from tree 2⇤ remain at a
distance greater than ", which will be denoted by /
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15 Dynamics of perfect gases
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Remark 2.4. Note that in the limit the deflection parameter !i decouples completely from

the positions. We therefore have a kind of stochastic dynamics, combining free transport and

a random jump process in the velocity space (as described by Kac in [6]). This dynamical

randomness breaks the deterministic reversibility.

3. CORRELATIONS AND FLUCTUATIONS
3.1. What is missing at leading order?
Going back to the equation (2.2) on F

"
1 , one can see that up to the small spatial

shifts in the collision term (Enskog corrections to the Boltzmann equation), deviations from
the Boltzmann dynamics are due to the defect of factorization F

"
2 � F

"
1 ⌦ F

"
1 , the so-called

second order cumulant. In terms of our geometric interpretation, this corresponds to pseu-
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Figure 6. Decomposition of the dynamical exclusion condition.
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2*

-

Figure 7. The second-order cumulant corresponds to the occurrence
of at least one external recollision or an overlap.

Let us now define the second-order rescaled cumulant

f ε2 ≔ με(Fε2 − Fε1 ⊗ Fε1). (3.1)

The previous discussion indicates that this cumulant is represented
by trees that are coupled by external collisions or overlaps (Figure 7).
In view of definition (3.1) and the discussion in Section 2.3 giving
an O(t/με) estimate of the Lebesgue measure of configurations
giving rise to a collision, one can expect f ε2 to be uniformly bounded
in L1 and therefore to have a limit f2 in the sense of the measures.
One can prove in addition that f2 corresponds to trees with exactly
one external recollision or overlap on [0, t]: any other interaction
between the trees gives rise to additional smallness and is therefore
negligible.
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Remark 3.1. The initial measure does not factorize exactly (F ε,0
2 ≠

F ε,01 ⊗ F ε,0
1 ) because of the static exclusion condition. Thus, the

initial data also induce a small contribution to f ε2 , but this con-
tribution is significantly smaller than the dynamical correlations
(by a factor ε).

3.2 The cumulant generating function
For a Gaussian process, the first two correlation functions F ε

1 and F
ε
2

determine completely all other k-particle correlation functions F ε
k ,

but in general, part of the information is encoded in the cumulants
of higher order (k ≥ 3)

f εk (t, Zk) ≔ μk−1
ε

k

∑
ℓ=1

∑
σ∈𝒫ℓ

k

(−1)ℓ−1(ℓ− 1)!
ℓ

∏
i=1

Fε|σi|(t, Zσi),

where 𝒫ℓ
k is the set of partitions of {1,…, k} into ℓ parts with σ =

{σ1,…,σℓ}, |σi| being the cardinality of the set σi and Zσi =(zj)j∈σi .
Each cumulant encodes finer and finer correlations. Contrary to the
correlation functions (F ε

k ), the cumulants (f εk ) do not duplicate the
information which is already encoded at lower orders. From a geo-
metric point of view, we can extend the analysis of the previous
section and show that the cumulant f εk of order k can be repre-
sented by k trees that are completely connected either by external
collisions, or by overlaps (Figure 8). These dynamical correlations
can be classified by a signed graph with k vertices representing the
different trees, coding tree collisions (the corresponding edges take
a + sign) and overlaps (the corresponding edges take a − sign).
We can then systematically extract a minimally connected graph T
by identifying k− 1 “aggregations” of tree collisions or overlaps.
We then expect f εk to decompose into a sum of 2k−1kk−2 terms,
where the factor kk−2 is the number of trees with k numbered
vertices (from Cayley’s formula). For each given signed minimally
connected graph, the collision/overlap conditions correspond to
k − 1 independent constraints on the configuration z1⋆,…, zk⋆
at time t. Therefore, neglecting the issue of large velocities, this
contribution to the cumulant f εk has a Lebesgue measure of size
O((t/με)k−1), and we derive the estimate

‖f εk ‖L1 ≤ μk−1
ε Ck × 2k−1kk−2 × (t/με)k−1 ≤ k!C(Ct)k−1. (3.2)

1⋆
2⋆

f ε
5 = μ4

ε ×

3⋆ 4⋆ 5⋆

Figure 8. The cumulant of order k corresponds to trees with roots
in 1⋆,…, k⋆ that are completely connected by external collisions
or overlaps.

A geometric argument similar to the one developed in Lanford’s
proof and recalled in the analysis of the second-order cumulant
above shows that f εk converges to a limiting cumulant fk and that
only graphs with exactly k− 1 external collisions or overlaps (and
no cycles) contribute in the limit.

Note further that a classical and rather simple calculation (based
on the series expansions of the exponential and logarithm) shows
that the cumulants are nothing but the coefficients of the series
expansion of the exponential moment:

ℐεt (h) ≔
1
με

log𝔼ε[exp(με⟨πε
t ,h⟩)]

=
∞

∑
k=1

1
k!

∫ f εk (t, Zk)
k

∏
i=1

(eh(zi) − 1)dZk. (3.3)

The quantity ℐεt (h) is called the cumulant generating function.
Estimate (3.2) provides the analyticity of ℐεt (h) in short time as
a function of eh, and this uniformly with respect to ε (sufficiently
small). The limit ℐt of ℐεt can then be determined as a series in terms
of the limiting cumulants fk,

ℐt(h) =
∞

∑
k=1

1
k!

∫ fk(t, Zk)
k

∏
i=1

(eh(zi) − 1)dZk.

In a suitable functional setting [5], it can be shown that this func-
tional satisfies a Hamilton–Jacobi equation

∂tℐt(h) = ∫dz
∂ℐt(h)
∂h

v ⋅ ∇xh+ℋ(∂ℐt(h)
∂h

,h)

with initial condition ℐ(0, h) = ∫ dz f 0(eh − 1) and Hamiltonian
ℋ given by

ℋ(φ,h) ≔ 1
2
∫φ(z1)φ(z2)(eΔh − 1)dμ(z1, z2,ω), (3.4)

whereΔh(z1,z2,ω)= h(z ′1)+ h(z ′2)− h(z1)− h(z2). We use here
notation (2.2) for the pre-collisional velocities and the definition

dμ(z1, z2,ω) ≔ δx1−x2((v1 − v2) ⋅ω)+ dωdv1 dv2 dx1.

The successive derivatives of this functional being precisely the limit
cumulants fk, the successive derivatives of the Hamilton–Jacobi
equation provide the evolution equations of these cumulants: for
example, differentiating this equation once produces the Boltz-
mann equation, differentiating it twice produces the equation of
the covariance described in the next paragraph.

3.3 Fluctuations
The control of the cumulant generating function allows in particular
to obtain the convergence of the fluctuation field defined in (1.4)
and thus to analyze the dynamical fluctuations over a time T⋆

of the same order of magnitude as the convergence time TL of
Theorem 2.1.
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Theorem 3.2 (Bodineau, Gallagher, Saint-Raymond, Simonella [5]).
The fluctuation field ζ ε

t converges, in the low density limit and
on a time interval [0, T⋆], towards a process ζ t, solution to the
fluctuating Boltzmann equation

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪
⎩

dζt = ℒt ζt dt⏟⏟⏟
linearized Boltzmann operator

+ dηt⏟
Gaussian noise

,

ℒth = − v ⋅ ∇xh⏟⏟⏟⏟⏟⏟⏟⏟⏟
transport

+ C( ft,h) + C(h, ft)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
linearized collision operator

,
(3.5)

where ft is the solution at time t to the Boltzmann equation (2.1)
with initial data f 0, and dηt is a centered Gaussian noise delta-
correlated in t, x with covariance

Covt(h1,h2) =
1
2
∫dz1 dz2 dω((v2 − v1) ⋅ω)+δx2−x1

f(t, z1)f(t, z2)Δh1Δh2(z1, z2,ω),

where Δh(z1, z2,ω) = h(z ′1) + h(z ′2) − h(z1) − h(z2).

The limiting process (3.5) was conjectured by Spohn in [25],
and this reference also presents a large panorama on the theory
of fluctuations in physics. In the context of dynamics with random
collisions, a similar result is shown by Rezakhanlou in [24]. In the
deterministic setting, the noise obtained in the limit is a conse-
quence of the asymptotically unstable structure of the microscopic
dynamics (Figure 2) combined with the randomness of the initial
data at small scales.

3.4 Large deviations
The strength of the cumulant generating function becomes really
apparent at the level of large deviations, i.e., for very improba-
ble trajectories that are at a “distance” O(1) from the averaged
dynamics: roughly speaking, we can show that the probability of
observing an empirical distribution close to the density φ(t, x, v)
during the time interval [0, T] decays exponentially fast with a rate
quantified by a functional ℱ[0,T] which evaluates the cost of this
deviation in the low density asymptotics

ℙε(πε
t ≃ φt,∀t ≤ T) ∼ exp(−μεℱ[0,T](φ)). (3.6)

The proximity between πε and φ is measured in the weak topology
on the Skorokhod space of measure-valued functions. A precise
formulation of (3.6) and a proof can be found in [6]. The result
of [6] can be summarized as follows: for a class of functions φ in
a neighborhood of the solution to the Boltzmann equation, there
exists a time interval [0, T⋆] where the asymptotic (3.6) is char-
acterized by a functional ℱ[0,T⋆] obtained by a certain Legendre
transform of the Hamiltonianℋ defined by (3.4). This functional is
identical to the one conjectured in [9,24], by analogy with stochas-
tic collision models of Kac type [2,15,18,23]. Let us also note that
the limiting SPDE (3.5) could be predicted by the same analogy

with Kac’s model for which collisions are modeled by a Markov
process [19,20]. Thus, the statistical analysis of the fluctuations and
large deviations of the empirical measure confirms the robustness
of Boltzmann’s intuition (cf. Section 2.1): even on exponentially
small scales, the behavior of the empirical measure of a hard sphere
gas is identical to that of a model of particles with random colli-
sions depending only on the local density. This does not contradict
the Hamiltonian structure of the microscopic dynamics. Memory
effects persist, but they are encoded in ways that are “transverse”
to the empirical measure (or at different spatial scales).

4 Conclusion

Over a short time, Lanford’s theorem states the convergence of
the empirical measure of a hard sphere gas to the solution to the
Boltzmann equation (Theorem 2.1). This result is completed by
the analysis of fluctuations (Theorem 3.2) and large deviations
(Section 3.4) of the empirical measure. These stochastic corrections
are proved on times of the same order of magnitude as Lanford’s
theorem.

The strategy of the proof consists in tracking how the random-
ness of the initial measure is transported by the dynamics of hard
spheres and how the instability of this dynamics transfers, in the
low density asymptotics, the initial randomness into a dynamical
white noise (space/time). The convergence time is limited because
the current proof gives only rough estimates of the dynamical cor-
relations, obtained by considering that collisions only destroy the
initial chaos by forming larger and larger aggregates of correlated
particles. An important step to progress in the mathematical under-
standing of these models would be to show that the disorder is not
simply the result of the initial data, but that it can be regenerated
by the mixing properties of the dynamics.

A more favorable framework for controlling long time evolution
is to consider an initial measure obtained as a perturbation of an
equilibrium measure. The stationarity of the equilibrium measure
then becomes a key tool to control dynamical correlations. The
simplest case consists in perturbing only one particle, which shall
be called the tagged particle, and to study its evolution over time.
In [3], it is established that this particle follows a Brownian motion
for large times. Another case where we know how to use the
invariant measure is the study of the fluctuation field at equilibrium.
In a series of recent works [5,7], Theorem 3.2 has been generalized
to arbitrarily large, and even slightly divergent, kinetic times. This
allows in particular to derive the fluctuating hydrodynamic Stokes–
Fourier equations.

Acknowledgements. The EMS Magazine thanks La Gazette des
Mathématiciens for authorization to republish this text, which is an
English translation of the paper entitled “Sur la dynamique des gaz

EMS MAGAZINE 128 (2023) 21



dilués” and published in [La Gazette des Mathématiciens, Number
G174, October 2022]. The main part of the text is extracted from
an article published in the ICM 2022 proceedings.

The authors warmly thank Stéphane Baseilhac for his attentive
proofreading and his numerous suggestions. They are also grateful
to J.-B. Bru and M. Gellrich Pedra for the English translation of the
original paper.

References

[1] N. Ayi, From Newton’s law to the linear Boltzmann equation
without cut-off. Comm. Math. Phys. 350, 1219–1274 (2017)

[2] G. Basile, D. Benedetto, L. Bertini and C. Orrieri, Large deviations
for Kac-like walks. J. Stat. Phys. 184, Paper No. 10 (2021)

[3] T. Bodineau, I. Gallagher and L. Saint-Raymond, The Brownian
motion as the limit of a deterministic system of hard-spheres. Invent.
Math. 203, 493–553 (2016)

[4] T. Bodineau, I. Gallagher, L. Saint-Raymond and S. Simonella,
Fluctuation theory in the Boltzmann–Grad limit. J. Stat. Phys. 180,
873–895 (2020)

[5] T. Bodineau, I. Gallagher, L. Saint-Raymond and S. Simonella,
Long-time derivation at equilibrium of the fluctuating Boltzmann
equation, preprint, arXiv:2201.04514 (2022)

[6] T. Bodineau, I. Gallagher, L. Saint-Raymond and S. Simonella,
Statistical dynamics of a hard sphere gas: Fluctuating Boltzmann
equation and large deviations, preprint, arXiv:2008.10403; to
appear in Ann. Math. (2023)

[7] T. Bodineau, I. Gallagher, L. Saint-Raymond and S. Simonella, Long-
time correlations for a hard-sphere gas at equilibrium, preprint,
arXiv:2012.03813; to appear in Comm. Pure and Appl. Math.
(2023)

[8] L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter
Gasmolecülen. Wien. Ber. 66, 275–370 (1872)

[9] F. Bouchet, Is the Boltzmann equation reversible? A large devia-
tion perspective on the irreversibility paradox. J. Stat. Phys. 181,
515–550 (2020)

[10] C. Cercignani, V. I. Gerasimenko and D. Y. Petrina, Many-particle
dynamics and kinetic equations. Mathematics and its Applications
420, Kluwer Academic Publishers Group, Dordrecht (1997)

[11] C. Cercignani, R. Illner and M. Pulvirenti, The mathematical theory
of dilute gases. Applied Mathematical Sciences 106, Springer,
New York (1994)

[12] T. Dolmaire, About Lanford’s theorem in the half-space with
specular reflection. Kinet. Relat. Models 16, 207–268 (2023)

[13] I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to
Boltzmann: Hard spheres and short-range potentials. Zurich
Lectures in Advanced Mathematics, EMS, Zürich (2013)

[14] H. Grad, Principles of the kinetic theory of gases. Handbuch der
Physik 12, Thermodynamik der Gase, Springer, Berlin, 205–294
(1958)

[15] D. Heydecker, Large deviations of Kac’s conservative particle system
and energy non-conserving solutions to the Boltzmann equation:
A counterexample to the predicted rate function, preprint, arXiv:
2103.14550 (2021)

[16] O. E. Lanford, III, Time evolution of large classical systems. In
Dynamical systems, theory and applications (Rencontres, Battelle
Res. Inst., Seattle, 1974), Lecture Notes in Phys. 38, Springer, Berlin,
1–111 (1975)

[17] C. Le Bihan, Boltzmann–Grad limit of a hard sphere system in a box
with isotropic boundary conditions. Discrete Contin. Dyn. Syst. 42,
1903–1932 (2022)

[18] C. Léonard, On large deviations for particle systems associated with
spatially homogeneous Boltzmann type equations. Probab. Theory
Related Fields 101, 1–44 (1995)

[19] J. Logan and M. Kac, Fluctuations and the Boltzmann equation. I.
Phys. Rev. A 13, 458–470 (1976)

[20] S. Meleard, Convergence of the fluctuations for interacting diffu-
sions with jumps associated with Boltzmann equations. Stochastics
Stochastics Rep. 63, 195–225 (1998)

[21] M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the
Boltzmann equation for short range potentials. Rev. Math. Phys. 26,
Article ID 1450001 (2014)

[22] M. Pulvirenti and S. Simonella, The Boltzmann–Grad limit of a hard
sphere system: Analysis of the correlation error. Invent. Math. 207,
1135–1237 (2017)

[23] F. Rezakhanlou, Large deviations from a kinetic limit. Ann. Probab.
26, 1259–1340 (1998)

[24] F. Rezakhanlou, Kinetic limits for interacting particle systems.
In Entropy methods for the Boltzmann equation, Lecture Notes
in Math. 1916, Springer, Berlin, 71–105 (2008)

[25] H. Spohn, Large scale dynamics of interacting particles. Texts and
Monographs in Physics, Springer, Berlin (2012)

Thierry Bodineau is CNRS researcher working at Laboratoire
A. Grothendieck, IHÉS. His research focuses on the probabilistic study
of interacting particle systems.

thierry.bodineau@ihes.fr

Isabelle Gallagher is professor in mathematics at Université Paris Cité
and École Normale Supérieure de Paris. Her research focuses on the
analysis of partial differential equations. She is currently director of
the Fondation Sciences Mathématiques de Paris.

gallagher@math.ens.fr

Laure Saint-Raymond is professor at IHÉS. She is working in the field
of partial differential equations, at the interface between mathematics
and fluid mechanics, with a special focus on multiscale problems.

laure@ihes.fr

Sergio Simonella is professor at the Mathematics Institute of Sapienza
University of Rome. He is interested in problems of kinetic theory of gases
at the boundary between PDEs and statistical mechanics.

sergio.simonella@uniroma1.it

22 EMS MAGAZINE 128 (2023)

https://arxiv.org/abs/2201.04514
https://arxiv.org/abs/2008.10403
https://arxiv.org/abs/2012.03813
https://arxiv.org/abs/2103.14550
mailto:thierry.bodineau@ihes.fr
mailto:gallagher@math.ens.fr
mailto:laure@ihes.fr
mailto:sergio.simonella@uniroma1.it


Stable homotopy groups

Guozhen Wang and Zhouli Xu

1 Introduction

Homotopy theory studies homotopy invariants of topological
spaces, i.e., invariants that are stable under continuous deforma-
tions. The fundamental problem is to understand the classification
of continuous maps between spaces under homotopy.

In most situations, the spaces of interest are cellular, i.e., the
spaces built from spheres in various dimensions. In this sense,
spheres are the basic building blocks of spaces, and we would like
to understand homotopy classes of maps from spheres to general
spaces. By taking concatenation of maps, the homotopy classes of
based maps from the n-sphere Sn to a space X form a group for
n ≥ 1, which is called the n-th homotopy group of X. When n ≥ 2,
there are different ways to concatenate maps and the resulting
homotopy groups are commutative.

When X is a simply connected finite CW complex, Serre [41]
proved that all homotopy groups of X are finitely generated abelian
groups. So we can localize at a fixed prime p when studying these
groups, and once we understand the p-local parts for all p, the
structures of the original groups can be recovered.

In this article, we give a survey of the stable part of the ho-
motopy groups of spheres. We will first recall the notion of stable
homotopy, and then discuss an interpretation in terms of the
framed cobordism and an application to the classification of exotic
spheres. In the last part we discuss some methods for computing
these stable homotopy groups.

2 Stabilization of homotopy groups

One basic operation in homotopy theory is the suspension. For
a pointed space X, its (reduced) suspension ΣX is defined to be the
smash product of X with S1, i.e., the quotient space X× S1/X∨ S1.
Roughly speaking, the effect of the suspension operation is to
increase the dimension of all cells (other than the based point) of
X by one. For example, Σ Sn ≅ Sn+1. The suspension operation
is functorial, so we have a suspension homomorphism πn(X) →
πn+1(ΣX). The celebrated Freudenthal suspension theorem says
that it is an isomorphism when X is sufficiently connected:

Theorem 1 (Freudenthal [16]). If X is n-connected, then the sus-
pension homomorphism πk(X) → πk+1(ΣX) is an isomorphism
for k ≤ 2n.

In particular, the groups πn+k(ΣnX) depend only on k when n is
sufficiently large, and we define this group to be the k-th stable ho-
motopy group of X, denoted by πs

k(X). In contrast to the unstable
homotopy groups, the stable homotopy groups form a general-
ized homology theory. This fact makes stable computations much
simpler than those in the unstable cases.

The stabilization process can be categorified. We can define
the (infinity) category of finite spectra by formally inverting the
suspension functor on the category of finite CW complexes. The
category of spectra is then defined as the ind-category of finite
spectra. (See Lurie [27, Section 9] for details.) From the definition
it follows that, for any space X, there is an associated suspension
spectrum Σ∞X. The stable homotopy group πs

k(X) is the group of
homotopy classes of maps from Σ∞Sk to Σ∞X in the category of
spectra.

The computation of the stable homotopy groups of the sphere
spectrum Σ∞S0 has a long history. It is easy to see that the group
πs
n(S0) is trivial for n < 0, and πs

0(S0) ≅ ℤ by the Hopf degree the-
orem. Using geometric methods, works of Hopf [19], Freudenthal
[16], Whitehead [57], Pontryagin [36] and Rokhlin [39] determined
πs
n(S0) for n≤ 3. Serre started the study of homotopy groups using

algebraic machinery. In [40] Serre computed the homology of iter-
ated loop spaces using the Serre spectral sequence and determined
πs
n(S0) for n < 9. Toda [48] introduced the method of secondary

compositions, the Toda brackets. By studying the EHP sequence
with the composition method, Toda determined πs

n(S0) for n≤ 19.
The introduction of the stable homotopy category by Spanier–

Whitehead [44] and Boardman [9] brought to light the analogy
between homotopy theory and homological algebra. Adams [1] in-
troduced the Adams spectral sequence, which can be thought of as
the descent spectral sequence using the Eilenberg–MacLane spec-
trum as a cover for the sphere spectrum. Other covers, such as using
the complex cobordism spectrum, give a more general Adams–
Novikov spectral sequence. May [29], Barratt–Mahowald–Tangora
[7], Bruner [12], Nakamura [34], Tangora [47], Aubry [4] and Ravenel
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[38] studied the Adams (and the Adams–Novikov) spectral sequence
using techniques such as the May spectral sequence, the Massey
product, Toda brackets, power operations, and the chromatic spec-
tral sequence, etc., and determined πs

n(S0) up to n = 45 at the
prime 2, up to n= 108 for p= 3, and up to n= 999 for p = 5. See
also [54] for a survey of classical methods. Recently, Isaksen [21]
and Isaksen–Wang–Xu [22, 23] made progress by using motivic
methods, extending the knowledge of the p = 2 component of
πs
n(S0) up to n = 90.

3 Framed cobordism

The Pontryagin–Thom construction gives a geometric interpretation
of the homotopy groups of spheres.

Suppose we have a smooth map f ∶ Sn+k → Sn. Take a generic
point x0 ∈ Sn. Then the pre-image f−1(x0) is a k-dimensional sub-
manifold of Sn. Moreover, the normal bundle of f−1(x0) is the
pull-back of the normal bundle of x0 in Sn, so it is a trivial bundle
and has a preferred trivialization. Pontryagin showed that πn+k(Sn)
is isomorphic to the group of cobordism classes consisting of k-
dimensional submanifolds of Sn+k equipped with a framing on the
normal bundle.

The Pontryagin–Thom construction can be stabilized. The spe-
cial case of the Freudenthal suspension theorem for spheres can
be deduced from the Whitney embedding theorem. Once the
background space is of sufficiently large dimension, the cobor-
dism classification of k-manifolds becomes independent of the
embedding. In particular, we have:

Theorem 2 (Pontryagin [36]). The stable homotopy groups of
spheres classify the cobordism classes of manifolds equipped with
framings of their stable normal bundles.

For simplicity, manifolds with framings of their stable normal
bundles will be referred to as framed manifolds (to be distinguished
from manifolds with framings on their tangent bundles).

Using Pontryagin’s theorem, one can see immediately that
πn(Sn) ≅ ℤ for n ≥ 1. Using the knowledge of π1(SO(n)) and the
classification of 1-manifolds, one can show that π3(S2) ≅ ℤ and
πn+1(Sn) ≅ ℤ/2 for n ≥ 3, generated by the Hopf map (i.e., the
attaching map in ℂP2) and its suspensions.

The geometric computation of the second stable homotopy
group of spheres is more subtle. One has to take care of the fram-
ings on the normal bundle of surfaces. Given such a surface and
an essential loop on it, the obstruction to filling the loop and
extending the framing is an element in π1(SO) ≅ ℤ/2 (where
SO = colimn SO(n)). It turns out this obstruction is quadratic in
the mod 2 homology class of the loop, and the obstruction for
the framed surface to be a boundary is the Arf invariant of this

quadratic form. It follows that πs
2(S0) ≅ ℤ/2. See [36] for detailed

arguments.
There is a special class of framed manifolds, consisting of those

whose underlying manifolds are the standard spheres. Since all
framings on the sphere Sk can be classified by the group πk(SO),
we have the J-homomorphism

J ∶ πk(SO) → πs
k(S0)

introduced by Whitehead [56]. The image of J was computed by
Adams [3] in terms of the Adams conjecture, which was later
proved by Quillen [37] and Sullivan [46]:

Theorem 3. The image of the J-homomorphism is a direct sum-
mand of πs

n(S0), and is cyclic for all n.
• If n ≡ 0 or 1 mod 8, the image of J has order 2.
• If n = 4k− 1, the order of the image of J is the denominator

of B2k/(4k), where B2k is the Bernoulli number.
• In all other cases the image of J is trivial.

Recall that the Bernoulli number is defined by the generating
function

x
ex − 1

= ∑
Bkxk

k!
.

By the von Staudt–Clausen theorem, it follows that the order of
πs
k(S0) is unbounded as k increases. The following is a list of some

Bernoulli numbers:

k 2 4 6 8 10 12 14 16 18

Bk
1
6 − 1

30
1
42 − 1

30
5
66 − 691

2730
7
6 − 3617

510
43867
798

4 Exotic spheres

The classification of manifolds with the homotopy type of the
sphere is a long-standing problem in topology, starting with
Poincaré’s famous conjecture on simply connected 3-manifolds.
By works of Smale [42], Freedman [15] and Perelman [35], all ho-
motopy spheres are homeomorphic to the standard sphere. For
the smooth classification, in dimension 2 and 3, any manifold has
a unique smooth structure, according to work by Moise [31]. In
dimension 4, it is still unknown if there exist exotic 4-spheres. In
dimension ≥ 5, we can classify exotic spheres by Kervaire–Milnor
theory in terms of stable homotopy groups of spheres.

For n ≥ 5, we let Θn be the set of smooth structures on the
spheres. (By the h-cobordism theorem of Smale [43], this is the same
as the classification of h-cobordism classes of homotopy spheres.)
It forms an abelian group under connected sum. Kervaire–Milnor
[26] introduced a two-step strategy to study Θn. First we classify
the homotopy spheres up to framed cobordism, and then classify
the homotopy spheres that bound framed manifolds.
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One can prove that all homotopy spheres admit stable framings,
and the choices of the different framings are cosets by the image
of J. So we get a homomorphism

Θn → πs
n(S0)/ Im(J).

One needs to understand the kernel and the cokernel of this map.
We let Θbp

n denote the kernel, which consists of the homotopy
spheres that bound framed manifolds.

The study of the cokernel amounts to the following:

Question 4. What is the obstruction for a framed cobordism class
to have a homotopy sphere as a representative?

This question can be studied with the surgery theory, intro-
duced by Milnor [30]. Suppose X is an n-manifold. A surgery on
X is to first remove from X an embedded Dk × Sn−k, and then
to fill its boundary Sk−1 × Sn−k along the other direction with
Sk−1 × Dn−k+1. When X is framed, one needs to pay additional
care to extend the framing. The operation of surgery is exactly what
happens to the level set of a Morse function when crossing a critical
point. So preforming surgery does not change the cobordism class
and in fact generates the equivalence relation of cobordism.

For a framed n-manifold, one can perform suitable surgeries to
kill all homotopy groups below the middle dimension. By Poincaré
duality, in odd dimensions we would end up with a homotopy
sphere. For n even, the intersection form in the middle-dimensional
cohomology enters the scene. If n = 4k, then the obstruction to
killing the middle cohomology is the signature of the intersection
form. Since our manifold has trivial stable normal bundle, by Hirze-
bruch’s signature theorem, this obstruction vanishes and we end
with a homotopy sphere. In the case when n = 4k+ 2, similar to
the situation in dimension 2, we can define a quadratic form on the
modulo 2 cohomology, and the obstruction to getting a homotopy
sphere via surgery is its Arf invariant. This is called the Kervaire invari-
ant, originally introduced by Kervaire [25] to construct topological
manifolds that admit no smooth structures. In summary, a framed
cobordism class of dimension n = 4k + 2 contains a homotopy
sphere if and only if its Kervaire invariant is trivial.

To understand the structure of Θbp
n , we start with a homotopy

sphere which bounds a framed (n+ 1)-manifold X. Then again
we try to do surgery on X to make it contractible. If this can be
achieved, then by the h-cobordism theorem, the boundary will be
the standard sphere when n ≥ 5. As before we can kill homotopy
classes below the middle dimension, and for n+ 1 odd there are
no obstructions, so Θbp

n = 0. When n+ 1 = 4k, the obstruction
to killing the middle dimension is the signature of the intersection
form, which can be any multiple of 8 using the plumbing construc-
tion. There is another operation we can perform, namely, taking the
connected sum with a framed manifold whose boundary is a stan-
dard sphere. The boundaries of these objects are classified by the
kernel of the J-homomorphism. Using Theorem 3 and Hirzebruch’s

signature theorem, the effect of this operation is fully understood.
Finally, if n + 1 = 4k + 2, then the obstruction for the middle-
dimensional surgery is the Kervaire invariant, which can take any
value in ℤ/2. Again we can alter X by taking the connected sum
with a closed framed manifold, so this obstruction either becomes
trivial, or does not depend on the existence of a closed framed
(n+ 1)-manifold of Kervaire invariant 1. In summary:

Theorem 5 (Kervaire and Milnor [26]). Let n ≥ 5.
• When n ≠ 2 mod 4, there is an exact sequence

0 → Θbp
n → Θn → πn/J → 0.

• When n = 2 mod 4, there is an exact sequence

0 → Θbp
n → Θn → πn/J

Φ
−→ ℤ/2 → Θbp

n−1 → 0.

• If n is even, then Θbp
n = 0.

• If n = 4k− 1, then

Θbp
n ≅ ℤ/22k−2(22k−1 − 1)ck,

where ck is the numerator of 4B2k/k.
Here Φ is the Kervaire invariant and B2k is the Bernoulli number.

Together with the knowledge of the stable homotopy groups
of spheres, we can partially answer the question: In which dimen-
sions does the sphere have a unique smooth structure? Based on
Serre’s computations [40] and Toda’s computations [48], Kervaire
and Milnor found that S5, S6, S12 have a unique smooth struc-
ture. Isaksen’s computation [21] implies that S56 also has a unique
smooth structure. The last sphere we know of that has a unique
smooth structure is S61, by work of Wang–Xu [55]. This solves the
problem in all odd dimensions.

Theorem 6. S1, S3, S5 and S61 are the only odd-dimensional
spheres with a unique smooth structure.

In even dimensions, by Behrens–Hill–Hopkins–Mahowald [8],
the only spheres below dimension 140 which have unique smooth
structures are S2, S6, S12, S56 and perhaps S4. Based on the above
results, we have following conjecture:

Conjecture 7. If Sn has a unique smooth structure, then either
n ≤ 6, or n = 12, 56, 61.

5 The Adams spectral sequence

A basic homotopy invariant is cohomology. Maps inducing non-
trivial homomorphisms on cohomology are not homotopic to
constant maps. To get finer invariants, we consider cohomology
operations.
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Cohomology operations are natural transformations of coho-
mology theories. To understand stable homotopy, we usually con-
sider stable cohomology operations, i.e., the ones commuting with
the suspension. The Bockstein homomorphism is such a stable oper-
ation. More generally, the Steenrod reduced power operation (see
Steenrod–Epstein [45]), which arises from the Spanier–Whitehead
dual of the diagonal map, turns out to be stable. Since (ordinary)
cohomology theories are represented by the Eilenberg–MacLane
spectra, the stable cohomology operations can be classified by the
cohomology of these objects, which was computed by Cartan [13].

Theorem 8. The stable cohomology operations on mod p co-
homology form a graded associative algebra 𝒜∗ generated by
the Steenrod squares Sqi for p = 2, and by the Steenrod reduced
powers P i and the Bockstein β for p odd. They satisfy the Adem
relations, which for p = 2 are

Sq i ∘ Sq j = ∑
0≤ k≤ n

2

(j− k− 1
i− 2k

)Sq i+ j−k ∘ Sqk

when 0 < i < 2j.

The algebra 𝒜∗ is called the Steenrod algebra.
One can use these cohomology operations to detect non-trivial

maps that induce trivial homomorphisms in cohomology. For exam-
ple, consider the Hopf map η ∶ S3 → S2 and its mapping cone, i.e.,
the complex projective plane ℂP2. The Steenrod square Sq2 acts
non-trivially on the mod 2 cohomology of ℂP2, and consequently
η represents a non-trivial stable class in πs

1(S0).
In general, if there is a map f ∶ X → Y that induces the trivial

map on mod p cohomology, then we have a short exact sequence

0 → H∗−1(X) → H∗(Cf) → H∗(Y) → 0.

Here C f is the mapping cone of f and we abbreviate H∗( ⋅ ; 𝔽p)
by H∗( ⋅ ). These cohomology operations act on every term, so
this is a short exact sequence of 𝒜∗-modules, and therefore it
corresponds to an element in Ext1𝒜∗(H∗(Y),H∗−1(X)).

More generally, suppose a map f ∶ X → Y can be written as the
composition of a sequence of maps

X = X0
f1
−→ X1

f2
−→ ⋯

fn−1

−−→ Xn−1
fn
−→ Xn = Y (1)

such that each fi induces a trivial map on mod p cohomology.
Then we have an element in Ext1𝒜∗(H∗(Xi+1),H∗−1(Xi)) for each
i, and composing them together gives an element in Extn𝒜∗(H∗(Y),
H∗−n(X)). In contrast to the n = 1 case, the decomposition of f
is not necessarily unique, and in general different decompositions
yield different classes in the group Extn𝒜∗(H∗(Y),H∗−n(X)). How-
ever, we will see below that we do get an invariant by taking the
cosets by certain subgroups of Extn𝒜∗(H∗(Y),H∗−n(X)) (which
are hit by some Adams differentials).

The method of the Adams spectral sequence introduced by
Adams [1] is in some sense taking the universal example of the

above decomposition. For a spectrum Y, an Adams tower is a se-
quence of maps ⋯ → Y2 → Y1 → Y such that each map induces
a trivial homomorphism in mod p cohomology, with its cofiber
being homotopy equivalent to a wedge sum of (suspensions of)
Eilenberg–MacLane spectra. The spectral sequence associated to
an Adams tower is called the Adams spectral sequence. Adams
towers always exist, and different towers for the same Y always
induce the same spectral sequence from the E2-page. Moreover,
the Adams E2-page is the Ext groups over the Steenrod algebra.

Theorem 9 (Adams [1]). Suppose X and Y are finite spectra. Then
we have the Adams spectral sequence

Es,t2 = Exts𝒜∗(H∗(Y),H∗− t(X)) ⇒ [Σt−sX,Y]∧p

which converges to the p-completion of homotopy classes of maps
from X to Y.

For general spectra that are not necessarily finite, we still have
the Adams spectral sequence, but the convergence issue is more
subtle. See Bousfield [10] for details.

We say an element f ∈ [Σ∗X,Y] has Adams filtration ≥ n if it
factors through Yn in an Adams tower. Then this Adams tower gives
a decomposition of f in the form (1). The corresponding element in
Extn𝒜∗(H∗(Y),H∗(X)) is the element detecting f in the E∞-page
of the Adams spectral sequence. (Here we adopt the convention
that 0 ∈ Extn𝒜∗(H∗(Y),H∗(X)) “detects” elements with Adams
filtration ≥ n+ 1.)

If X and Y are both the sphere spectrum, then the composition
induces a ring structure on πs

∗(S0), which is commutative (in the
graded sense). In this case, the Adams spectral sequence is multi-
plicative. The multiplication on the E2-page is the Yoneda product
on Ext groups, which also turns out to be commutative (in the
graded sense).

Let us give some examples of elements in πs
∗(S0) with low

Adams filtrations.
The identity map is essentially the only class with Adams filtra-

tion 0. For Adams filtration 1, note that Ext1𝒜∗(𝔽p,𝔽p) is generated
by the indecomposable elements in 𝒜∗, which turns out to be the
vector space with basis {Sq2i for i = 0, 1,…} at the prime 2. We
denote by hi the class that corresponds to Sq2i.

The multiplication by 2 map is detected by h0 in the Adams
E2-page. The previous example regarding the Hopf map tells us
that η is detected by h1. Furthermore, the attaching maps in pro-
jective planes over the quaternions and octonions give us elements
ν∈ πs

3(S0) and σ∈ πs
7(S0) that are detected by h2 and h3, respec-

tively. We cannot produce more examples along this way because
there are no more division algebras over the real numbers. In fact,
Adams [2] proved that all the hi’s for i ≥ 4 do not survive in the
Adams spectral sequence, and consequently there are no more
Hopf invariant one classes. As a consequence, S1, S3, S7 are the
only spheres that have a trivial tangent bundle.
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By computations of Adams [2], Ext2𝒜∗(𝔽2, 𝔽2) is spanned by
elements of the form hihj under the relations hihi+1 = 0. Among
these classes are the Kervaire classes h2i . By Browder’s theorem [11],
the Kervaire invariant for framed manifolds is trivial in dimensions
other than 2n − 2, and the existence of framed (2n − 2)-manifold
with Kervaire invariant one is equivalent to the statement that h2n−1

survives in the Adams spectral sequence.
By the existence of η, ν and σ, we deduce that there exist

Kervaire-invariant one manifolds in dimensions 2, 6 and 14. In fact,
one can take manifolds S1 × S1, S3 × S3 and S7 × S7 with suitable
framings. Mahowald–Tangora [28] and Barratt–Jones–Mahowald
[6] proved (see also Xu [58]) that the elements h24 and h25 survive
in the Adams spectral sequence. Using equivariant methods, Hill–
Hopkins–Ravenel [18] proved that for n ≥ 7, h2n all support non-
trivial differentials, and consequently the last dimension where
there could exist a Kervaire-invariant one manifold is 126.

6 Motivic homotopy theory

In general, it is hard to determine differentials and hidden exten-
sions in the Adams spectral sequence. Various techniques are used,
but none of them can solve all the problems. This phenomenon is
described as the Mahowald uncertainty principle; see [24] for more
details. Nevertheless, one of the most recent technique involves
motivic homotopy theory and it turns out to be very effective.

The original motivation for developing motivic homotopy the-
ory in Morel [32] and Morel–Voevodsky [33] is to construct a homo-
topy theory in the world of algebraic varieties. From the perspective
of topologists whose main focus is classical homotopy theory, mo-
tivic homotopy theory is obtained by adding new objects in the
world of topological spaces.

In classical homotopy theory, simplices are the basic building
blocks. The classical homotopy category is equivalent to the cate-
gory of simplicial sets, i.e., presheaves over simplices. In general,
a category of presheaves can be viewed as the category freely
generated from certain building blocks. The motivic category is
constructed by first formally adding smooth varieties along with
simplices as basic building blocks. In contrast to simplices, smooth
varieties are not “independent”, in the sense that two varieties can
be glued together to form a new one. To incorporate these rela-
tions, we consider simplicial sheaves (under certain Grothendieck
topology, the most fruitful one being the Nisnevich topology) over
the category of smooth varieties, instead of just presheaves. Finally,
we invert 𝔸1-homotopy equivalences to get the motivic homotopy
category. See Morel–Voevodsky [33] for details of this construction.

An interesting fact in the motivic world is that there are two
kinds of spheres, the simplicial sphere S1,0 and the multiplicative
group S1,1 = 𝔾m (the sheaf represented by the punctured affine
line). Taking the smash product of these objects, we obtain motivic
spheres S i, j, where the first index i indicates the dimension and the

second index j is the motivic weight. They are analogs of represen-
tation spheres in equivariant homotopy theory. To construct the
stable motivic homotopy category, we mimic the construction in
the equivariant setting, inverting suspensions with respect to both
kinds of spheres. Analogously, we can define the notion of stable
motivic homotopy groups, and as a result there are two gradings.

Now suppose we work with the base field ℂ. These two kinds
of spheres are related by an element τ constructed as follows.
At a prime p, for any n, we take a pn-th root of unity, which
induces a map S0,0 → S1,1, representing an element in πs

0,0(S1,1)
of order pn. So it is the image of some element τn ∈πs

1,0(S1,1;ℤ/pn)
under the Bockstein homomorphism. When we take a compatible
system of pn-th roots of unity for all n, then the resulting τn’s are
compatible, and we define τ to be the limit of τn in πs

1,0(S1,1;ℤp),
which can be viewed as a self-map of the p-completed sphere
of degree (0,−1). Intuitively, τ can be regarded as the Bockstein
pre-image of the infinitesimal generator of the multiplicative group.
See Hu–Kriz–Ormsby [20] for more details.

By works of Voevodsky [49–52], as in the classical case, we can
define motivic cohomology, motivic Steenrod algebra and motivic
Adams spectral sequence. Over ℂ, the coefficient ring of mod p
motivic cohomology is a polynomial ring 𝔽p[τ] generated by τ. The
motivic Steenrod algebra 𝒜∗,∗

mot is generated by a motivic analog
of the Steenrod reduced powers, satisfying a motivic analog of the
Adem relations.

There is a Betti realization functor from the motivic homotopy
category to the classical homotopy category, induced by the func-
tor sending a complex analytic variety over ℂ to its underlying
topological space. Under the Betti realization, the map τ becomes
an equivalence and the two kinds of motivic spheres become clas-
sically equivalent. Moreover, Dugger–Isaksen [14] proved that the
τ-inverted motivic Adams spectral sequence for the motivic sphere
recovers the classical Adams spectral sequence for the classical
sphere. So intuitively we find that (after p-completion) the classical
homotopy theory is the τ-inverted motivic homotopy theory.

From a computational perspective, we can view τ as a defor-
mation parameter of the motivic deformation. The generic fiber is
the world of classical homotopy theory. Gheorghe–Wang–Xu [17]
discovered that the special fiber lands in the algebraic world:

Theorem 10 (Gheorghe, Wang and Xu [17]). Let S0,0/τ be the
cofiber of τ. The category of cellular S0,0/τ-modules in the stable
motivic homotopy category over ℂ is equivalent to the derived
category of BP∗BP-comodules as stable ∞-categories.

The latter algebraic category can be further identified with the
derived category of quasi-coherent sheaves over the moduli stack
of p-completed formal groups.

In particular, the Adams spectral sequence in the category of
S0,0/τ-modules is also algebraic in nature. In fact, we have the
following:
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Theorem 11 (Gheorghe, Wang and Xu [17]). The motivic Adams
spectral sequence for S0,0/τ is isomorphic to the algebraic Novikov
spectral sequence.

Recall that the algebraic Novikov spectral sequence computes
the Ext groups of BP∗BP-comodules using the filtration by powers
of the augmentation ideal of BP∗. The structure of the algebraic
Novikov spectral sequence can be determined effectively with
a computer using a minimal resolution. See Wang [53] for an
algorithm of this computation.

So in principle we can get information on the special fiber of
the motivic deformation as far as we wish. To get information on
the classical homotopy theory, we try to propagate the information
from the special fiber to the generic fiber of this motivic deforma-
tion. In practice, we use the τ-Bockstein spectral sequence. We
have a square of four spectral sequences:

Ext∗,∗,∗A∗,∗
mot

(𝔽p,𝔽p[τ])[τ]

Algebraic τ-Bockstein SS

t|
Motivic Adams SS

!)
Ext∗,∗,∗A∗,∗

mot
(𝔽p[τ],𝔽p[τ])

Motivic Adams SS

#+

π∗,∗S0,0/τ[τ]

τ-Bockstein SS

u}
π∗,∗S0,0

One notes that the algebraic τ-Bockstein spectral sequence is equiv-
alent to themotivic analog of the classical Cartan–Eilenberg spectral
sequence, and the τ-Bockstein spectral sequence is equivalent to
the motivic analog of the classical Adams–Novikov spectral se-
quence. Hence, our theorem links these classical objects through
motivic theory and we are able to compare data obtained from
different classical perspectives.

Remark 12. In Bachmann–Kong–Wang–Xu [5], the above motivic
square over ℂ is extended to one over a general base field. In
general, we replace the τ-adic tower by the Whitehead–Postnikov
tower with respect to the Chow t-structure. Consequently, the
motivic Adams spectral sequences of these layers are different, but
they are still algebraic.

As an illustration of the method, we compute the first few
Adams differentials in stem 15. By Theorem 11 and computer
output, there is a motivic Adams differential d2(h4) = h0h23 for
S0,0/τ. By comparison using the map S0,0 → S0,0/τ, we find that
in the motivic Adams spectral sequence for S0,0, h4 must support
a non-zero differential of length at most 2. The only possibility is
that d2(h4) = h0h23 also holds for S0,0. By inverting τ, we arrive
at the same differential for the classical Adams spectral sequence
for the sphere. The differential d3(h0h4) = h0d0 can be proved
similarly. In fact, all non-zero differentials up to stem 45 can be

computed in this way, with very few exceptions. See the appendix
of Gheorghe–Wang–Xu [17] for more details.
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Gene Calabi at 100 – Memorable encounters with Eugenio Calabi

Jean-Pierre Bourguignon and Balázs Szendrői

It is rare indeed to be able to celebrate the centenary of a living
legend. The last time this happened in mathematics may have been
the 100th birthday of Leopold Vietoris in 1991; the spring of 2023
brings up the centenary of Eugenio Calabi. Born in Milan on 11 May
1923, he has lived in the United States since an early age. He com-
pleted a PhD at Princeton University in 1950. Following temporary
positions, he was appointed to a professorship at the University
of Minnesota, and finally settled at the University of Pennsylvania
in 1964, where he held for several decades the Thomas A. Scott
Professorship of Mathematics. He is Commander of the Order of
Merit of the Italian Republic. We wish to celebrate the occasion
by collecting personal reminiscences of encounters with Eugenio
Calabi.

Jerry Kazdan
University of Pennsylvania

I first met Gene in Fall 1962, when I was a grad student at the
Courant Institute of Mathematics at New York University. A group
of us, mainly students of Lipman Bers, often met on Fridays for
lunch with Bers: “Children’s Lunch.” Gene was visiting New York
and had dropped in to visit Bers. He was directed to the restaurant.
He overflowed with mathematics, a pleasure to see.

We next met at the January 1966 Annual Meeting of the AMS.
He immediately began telling me about Kähler manifolds and his
conjecture concerning what are now called Calabi–Yau manifolds.
This was a bit technical. I confess that I did not follow everything
and did not appreciate the depth of the ideas he revealed.

That Fall I moved to the University of Pennsylvania. Gene had
moved there in 1964 from the University of Minnesota. I had the
pleasure of frequent personal interaction. His amazing geometric
insight was a gift. He had a deep intuitive sense of what was
important and interesting. He always shared his ideas generously.
Often he came to my office and began explaining some of his
recent thoughts at the blackboard (this sometimes bewildered
undergraduates who might have happened to be there for my
office hours).

It was refreshing to see Gene’s original views on many things.
When driving with him, those in the car were perplexed at the

sometimes circuitous routes he chose. When asked, Gene said that
he was minimizing the number of traffic lights. Someone suggested
calling these “Calabi geodesics.” The name fit.

Blaine Lawson
Stony Brook University

Eugenio Calabi has certainly been one of the most original geo-
meters of the twentieth century. As a graduate student in the late
1960s, I was fortunate to witness him delivering an early address on
one of his deep and beautiful results concerning minimal 2-spheres
in the Euclidean n-sphere. That day is one I will never forget!

At that time, I thought I had a sufficient result for my thesis.
I had mentioned it to several people on the faculty and had written
it up. It said that a non-compact holomorphic curve of constant
curvature in complex projective n-space ℙn(ℂ) (with its standard
metric) had to have curvature 1

k for an integer 1 ≤ k ≤ n, and
would be locally congruent to a specific rational normal curve in
the linear subspace ℙk(ℂ) ⊂ ℙn(ℂ). This generalized to spaces of
all dimensions. Early on that day, my advisor, Bob Osserman, men-
tioned this to Calabi, who told him that, unfortunately, that result
was part of his thesis. You can imagine my chagrin. Nevertheless,
I went to his colloquium that afternoon, and for me it was one of
the most beautiful and exciting lectures I had ever heard. I was so
inspired, I threw away my old work and wrote my thesis on minimal
surfaces in the sphere. Since that time, I have had many conversa-
tions with Gene. They have always been fascinating and actually
wondrous (that is, the part from him to me). Over time, I realized
how generous he has always been to young mathematicians.

Nigel Hitchin
University of Oxford

Thirty years ago, I spoke at a conference in Pisa for Eugenio Calabi’s
70th birthday. It is remarkable that today we can celebrate his
achievements over a much greater span of time.

My first encounter with him was when I was a postdoc at the
Institute for Advanced Study in 1972. One of the first invitations
to give a seminar in nearby universities was at Penn. I spoke about
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positive scalar curvature obstructions, and he was generous in his
comments and advice. I was very much aware of bigger issues
in differential geometry at the time as Shing-Tung Yau was also
at the Institute and we frequently discussed whether the Calabi
conjecture was true or false.

The most direct impact that Calabi had on my work was his
paper [4], which gave constructions of complete Ricci-flat Kähler
manifolds. I had learned of some 2-dimensional examples from
Gary Gibbons and Stephen Hawking in Cambridge and also through
the work of Penrose in Oxford, but this paper opened up a new
world independent of any relativity connections. It is difficult to
appreciate that only a few years earlier there were absolutely no
examples or existence proofs for complete non-flat manifolds with
zero Ricci tensor. The paper also introduced the word “hyperkähler”
to describe the differential geometry which previously went under
various names associated to the quaternions. It was an inspired
choice emphasizing that one should view these manifolds as pos-
sessing many Kähler structures and not be led astray by trying to
define quaternionic coordinates. It was a language which pointed
the way to further discoveries and in particular our hyperkähler
quotient construction.

It would be a long task to list the papers of Calabi which foresaw
future developments, even those which have influenced my own
work. I wish him well on this his 100th birthday.

Jean-Pierre Bourguignon
Institut des Hautes Études Scientifiques

The first time I met Eugenio Calabi was in 1972 in Oberwolfach dur-
ing one of the biennial meetings Differentialgeometrie im Großen
organised for many years by Martin Barner, Wilhelm Klingenberg
and Chern Shiing Shen. Eugenio attended these sessions regularly;
he had been there already in 1962 and 1969. That year, he gave
Bures-sur-Yvette as address, so I may have met him already at IHÉS
where I had started to attend the Thom seminar.

It is precisely in 1969 that, in a groundbreaking article [3], Eu-
genio discusses for the first time global properties of groups of
diffeomorphisms preserving a symplectic structure. At that time,
global symplectic geometry was still in its infancy. He introduces
a very ingenious tool, often called the Calabi morphism. Very re-
cently, the beautiful result establishing the non-simplicity of the
group of homeomorphisms of the 2-sphere preserving the volume
uses an extension of the Calabi morphism to the continuous con-
text, showing the remarkable actuality and power of ideas Eugenio
introduced more than 50 years ago.

Eugenio also visited Paris many times, lecturing at the Differen-
tial Geometry seminar led by Marcel Berger. And, early on in my
life as a mathematician, Berger informed me of the importance of
the Calabi conjecture, in particular in relation with the existence of
metrics with vanishing Ricci curvature, an intriguing case connected
to special holonomy groups. This is why, in 1972–1973, Yau Shing

Tung and I, both of us assistant professors in Stony Brook, tried
hard to find obstructions to the existence of such metrics on K3
surfaces. There was a good reason for us to fail since, as is now
well known, Yau proved the Calabi conjecture in 1976, opening
the way to the epoch-making ‘Calabi–Yau’ metrics. This led me to
a number of exchanges with Eugenio as the various follow-ups of
the solution of the Calabi conjecture occupied me for quite some
time. Through these contacts, l could appreciate his kindness as
well as his exceptional capacity to use all kinds of tools to address
geometric questions, often creating very innovative approaches.

Getting involved in the publication of Eugenio’s Complete
Works [8] was therefore for me a natural gesture to pay back
a little for all what I owe to him.

Dear Eugenio, happy 100th birthday and my best thanks for
the inspiration and the support!

Eugenio Calabi with Shiing-Shen Chern in Oberwolfach in 1976
(©Dirk Ferus)

Simon Salamon
King’s College London

If the exact dates of most of my encounters with Eugenio Calabi
are vague, I can pinpoint with precision one day that I spent in his
company. This was Monday 30 March 1981, when he had invited
me to give a seminar at the University of Pennsylvania. I must have
left Union Station in DC early in the morning, and President Ronald
Reagan was to joke some hours later (quoting W. C. Fields) about
rather being in Philadelphia. My talk was around lunchtime, and
I recall being shocked by the setup: two blackboards on opposite
walls with a long table at right angles stretching between them.
The audience sat on both sides of the table, possibly eating sand-
wich lunches, whilst any speaker (without advanced practice) was
forced to move to and fro between the boards. My talk went well
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enough, though I am not sure I succeeded in rousing Calabi, who
had assumed his characteristic pose with eyes shut in the middle
of the table (though Jim Eells had warned me not to underestimate
his perceptive powers in the lecture room.) About the time I was
speaking, Reagan was addressing union representatives (no doubt
with eyes wide open) in the Washington Hilton. What happened
next is well documented, also in movie form. As his team emerged
from a side entrance of the hotel, John Hinckley Jr fired six .22
calibre pistol shots. The first was to disable press secretary James
Brady for life, and others were injured. The last bullet ricocheted
and (as was soon to become apparent) punctured the President’s
lung. News of the shooting probably reached us around 3pm and
immediately put a stop to any mathematics. I recall a frantic search
for a transistor radio, which was installed in Calabi’s office and be-
came a focal point for colleagues, many of whom will have recalled
events in Dallas almost two decades before. But within a couple
of hours, it was clear that Reagan was out of danger, though sub-
sequent details revealed how lucky he had been. The rest of the
day is a blur, but I do remember Calabi walking me to the station,
probably anxious to resume serious scientific discussion. We waited
together on the concourse, where I picked up a late edition of the
Philadelphia Daily News with a stark 300 point headline “REAGAN
SHOT; IS ALERT, STABLE” – it remains in my office as a reminder
of Calabi, not Reagan. Despite the drama of that ultimately tragic
day, my overriding recollection is of my host’s kindness, which was
to provide a model of how to treat a visiting speaker.

I am sure that the mathematics I learnt from Eugenio in Phil-
adelphia and on other precious occasions (whether it related to
special holonomy, minimal surfaces, twistor spaces, non-Kähler
geometry, or Cayley numbers) had a significant influence on my
subsequent work. I was especially proud to be present with Calabi
at the first joint international meeting of the AMS and UMI in Pisa
in 2002, at which Vestislav Apostolov and I conceived of our paper
that helped develop closer links between Calabi–Yau spaces and
metrics with holonomy G2.

Claude LeBrun
Stony Brook University

I am delighted to have been recently assured by close mutual friends
that Gene Calabi remains intellectually active, in good health, and
in excellent spirits, even as he embarks on the second century of
his remarkable life. Calabi’s work has had an overwhelming impact
on my own career, but a large contingent of the geometers of my
generation would no doubt say much the same thing. However,
I have also had the good fortune to have gotten to know Gene
personally, to have had many delightful and informative conversa-
tions with him, and to have been able to become a member of his
large circle of friends.

Although I first met Gene in Italy in 1980, when I was straight
out of graduate school, it was not until half-a-dozen years later

that I had a truly life-altering encounter with him. This happened
during a brief visit to the University of California at San Diego,
where I’d gone to run a few questions past Rick Schoen. Suddenly,
Gene materialized in Rick’s office, and immediately launched into
an extensive lecture on extremal Kähler metrics. I soon realized that
I would need to carefully read Gene’s groundbreaking papers on
the subject, because my own work on anti-self-dual 4-manifolds
had recently led me into the realm of scalar-flat Kähler metrics,
which represented one tiny piece of Gene’s grand vision. Over the
following decades, I had the pleasure of discussing related areas
of differential geometry with Gene many times, sometimes at Uni-
versity of Pennsylvania, sometimes at Stony Brook, and sometimes
at conferences held at other universities. His beneficent influence
on my life has continued to exert itself in many ways – directly
through ideas, of course, but also indirectly, through mathem-
aticians whose research directions have been molded by Gene’s
mathematical taste.

I last saw Gene in person in 2019, a few months before the
pandemic. The director of the Simons Center for Geometry and
Physics proposed that a filmed interview with Calabi would be of
great interest to both mathematicians and theoretical physicists,
and I had the good fortune to then be asked to go conduct the
interview in Philadelphia. The resulting documentary [7], entitled
Quintessentially Science Fiction, aims to capture Gene’s charm and
intelligence. The title, incidentally, comes from a comment that
Gene made during the interview regarding the nature of mathem-
atics: we invent imaginary worlds, and scientists only decide long
afterwards whether any of these places might actually make good
homes for genuine scientific theories. That’s vintage Gene. Simple,
terse, and perhaps a little cryptic; but definitely worth pondering
at length!

Gene, I’ve said it before, but, on this very happy occasion, let
me say it again: Your visionary ideas have made our world a richer
and more interesting place. Thank you for your ideas, thank you
for your kindness, and, above all, thank you for your friendship!

Fabrizio Catanese
University of Bayreuth

I had a few friendly encounters with Eugenio Calabi, first when he
was visiting the Scuola Normale Superiore of Pisa as a guest of the
late Edoardo Vesentini, and, later on, as I had the honour to be
invited as a speaker at the conferences held in Italy in honour of
some of his birthdays. On these occasions, I had the opportunity of
talking to him, and to get to know about his real and mathematical
life through Italy and then in the USA.

He looked to me like an old-fashioned gentleman, a species
of mathematician in danger of extinction. Yet, his eyes and quiet
speech were sparkling of a deep intellectual life. I did not dare to
ask him many mathematical questions, even if at a certain point
I had been quite involved with some of his constructions. For me,
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Calabi was like a grandfather, since I regarded him as a teacher
of Edoardo Vesentini, one of my teachers who introduced me to
differential geometry back in 1970–71.

Making difficult things simple and finding elegant solutions has
been the great talent of Eugenio Calabi. In the words of Vesentini:
“Amidst intimidating theories and theorems which were tormenting
me, came the simple explanations by Calabi: everything seemed
just straightforward linear algebra, and easy calculations with
matrices were yielding the desired curvature results.” I later read
their paper [10] myself, I loved it, and I fully agree with Vesentini’s
statement: explicit calculations are easily understood, and concrete
mathematics will live longer than awe-generating abstract theories.

Wolfgang Ziller
University of Pennsylvania

Some of my fondest and most important experiences at Penn were
my mathematical interactions with Gene Calabi. He would often
come by at my office when arriving by train and would explain to
me what he was thinking about in the shower that morning. It
was always fascinating and I was able to ask him questions about
what I was working on. His insight into what the core of a problem
was, and his ability of coming up with relevant examples always
amazed me.

Let me tell one of my favourite stories. In 1982, I was teaching
a course on closed geodesics and asked Gene over tea about
a conjecture of Poincaré, which states that for a metric on S2

with positive curvature any shortest closed geodesic is simple. He
thought about it for 5–10 minutes and told me the problem was
very subtle. On a bi-equilateral triangle (which can be blown up
to a convex surface) there are two closed geodesics of the same
length, one simple and one with a self intersection. Thus the answer
is no in the non-smooth limit. He was intrigued by the question.
A year later he told me how to prove the positive answer in the
smooth case by modifying the Birkhoff curve shortening process
to 1-cycles, not just simple curves, a technique that foreshadowed
developments that are much more recent. He only published the
result 10 years later [9] together with a graduate student at the
time, Jianguo Cao.

A second example is his discovery, more or less at the same time,
of the grim reaper for the curve shortening flow of closed curves
on the plane, again over tea at Penn (it is not well known that
he discovered, and named, this example). It is the unique simple
ancient solution of the flow, foreshadowing that this is a crucial
property for the flow, only understood much later. His influence
on me and many others was through mathematical conversations,
with observations that often became crucial in later developments.
His love for mathematics (but not for writing papers) was obvious
to everyone. Happy Birthday Gene!

Eugenio Calabi with Xiuxiong Chen at IHÉS, 2007 (© Jean-François Dars)

Xiuxiong Chen
Stony Brook University

Shortly after I arrived at the University of Pennsylvania to pursue
my PhD studies, I ran into Prof. Eugenio Calabi. Following a brief
introduction, he started to explain something that he believed or
hoped I would find interesting. Little did I know that this would
become our routine for the ensuing years.

Prof. Calabi would pen his explanations or thoughts on what-
ever was available in hand or at hand, be it an envelope or a napkin,
or a blackboard in a nearby classroom. We would talk hours and
end often in his office, but also in the mail room and in the hall-
ways. I would take home those envelopes and napkins (regrettably
many of them got lost during our many moves), but most of the
time I would jot down on my notepad what he wrote or said, or
occasionally my own musings.

Prof. Calabi would ask me to repeat what he said or what
I heard the next time we met without consulting any notes. As he
explained, “it wouldn’t become yours until it’s imprinted in your
memory”. Though not an immediate embracer, it didn’t take too
long for me to appreciate that advice. Now I am a fervent adherent
of the doctrine, and I have been passing it on to my own students.

Ludmil Katzarkov
University of Miami

I met Gene Calabi for the first time in September 1990. His class
immediately impressed me: he introduced me to special metrics
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and multiplier ideal sheaves; later I wrote papers on these subjects.
Gene also introduced me to Shing-Tung Yau.

I have had many discussions with Gene on European history –
his knowledge of the subject was spectacular.

Gene was also my ride to Princeton. He regularly drove me from
University of Pennsylvania to IAS to attend a course on harmonic
maps to buildings by Richard Schoen. Later, I used the knowledge
acquired in the proof of the Shafarevich conjecture. With the ex-
ception of his adventurous Italian driving style (the Honda Civic
felt more like a Ferrari), these were memorable drives – really
unforgettable scientific, intellectual and cultural experiences.

Happy 100th birthday Gene! Thank you very much for teaching
me so many things, in particular that mathematics can be a subject
for gentlemen.

Antonella Grassi
University of Pennsylvania and Università di Bologna

When I started on a tenure-track position at the University of
Pennsylvania, Eugenio Calabi had just retired. More precisely, he had
to retire, having reached the age of 70, the mandatory retirement
age at the time. Colleagues were saying that he was the last person
to whom the mandate applied, and commented on the irony of
it, as Gene did not show any sign of slowing down. He never said
a word about this, and he continued his activities as usual. This
was typical of Eugenio: quiet, understated, reserved, dignified, and
at the same time determined.

I was quite intimidated when he asked me to tell him about the
interest of the physics community in certain mathematical objects,
whose properties he described in impeccable formal Italian; with
a shy smirk he eventually used the words Calabi–Yau. He told me
how Yau and he, and others, met on a Christmas day at New
York University, to discuss Yau’s proof of his conjecture (Giuliana,
Eugenio’s wife, later commented that Eugenio’s profession is to
create problems for others to solve). Years later, when Yau came
to Penn to deliver the Rademacher Lecture in 1999, I spent time
with both of them together.

Over the years I grew very fond of Eugenio. He likes mathem-
atics, but above all, from our conversations his passion emerged
for justice, art, music and dedication to his family. He told me very
proudly of the social accomplishments of his sister the journalist,
who had moved back to Italy. He was careful never to mention
her name, as in a riddle, and he was delighted when I eventually
figured out which important public figure she was (Tullia went by
her husband’s last name). He would tell me about the current math
question he had come up with, then he would give me practical
advice for an Italian in the United States. He also shared his very
useful method to walk safely on a narrow busy road in the Italian
Alps. The last time we spoke in person, after he gave a seminar
on the occasion of his 95th birthday, shortly before I moved to
the Università di Bologna, he shared humorous, but as always

Eugenio Calabi with Shing-Tung Yau at École Polytechnique in 2007
(© Jean-François Dars)

humble, reflections on his career. He then went on to talk about
his “nipotini,” with an affection that warms the heart.

One winter, years before, I had returned to the Department
with short hair. The difference must have been so drastic that
several colleagues did not recognize me. Eugenio, after the ever
polite and warm greetings, commented that Giuliana had also cut
her hair short after the birth of their first child. Ovvio!

Claudio Arezzo
The Abdus Salam International Centre for Theoretical Physics

Calabi’s work has had a huge impact on my education and re-
search for the depth and beauty of his results, and for the elegance
and simplicity in which he wrote, and spoke about, them. It is
well known that his work on the existence of Kähler metrics with
prescribed Ricci curvature has changed algebraic and differential
geometry, as well as mathematical physics, forever. Three other
themes of his work that I find as important are holomorphic iso-
metric immersions of Kähler manifolds [1], minimal surfaces in
spheres [2] and extremal Kähler metrics [5,6], representing Calabi’s
proposal for a “best metric” on the largest possible space of Kähler
manifolds. While these papers in particular have attracted a large
amount of attention, the most fundamental existence question
remains unanswered.

I want to stress especially the beauty of the presentation Calabi
uses in his papers. It is a pure joy to read his works; I still remem-
ber with great nostalgia the many nights in the library studying
the paper [4], which became famous as “Calabi’s Ansatz” … He
manages to teach the reader not just about the specific topic, but
also how to choose a good problem and how a good idea is born,
without tricks or intimidation. I cannot think of a better example of
what Plato meant when stating in the Republic that “… the object
of education is to teach us to love beauty”.
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F. William Lawvere (1937–2023): A lifelong struggle for the unity of mathematics

Anders Kock

Francis William Lawvere was one of the most influential figures in
the late 20th century and up till now, because of his drive to unify
and simplify mathematics, by sharpening the tools of category
theory. The following is an attempt of describing some of the
milestones and visions in this process.

1 Continuum physics

Lawvere was born in February 1937, as son of a farmer in Muncie,
Indiana. He studied physics at the University of Indiana, and there
soon felt the need for more useable and explicit foundations for the
reasoning employed, in particular in continuum physics. He was in
Indiana a student of Clifford Truesdell, the founder of the Springer
journal “Archive for Rational Mechanics and Analysis,” who had
a similar foundational agenda. L. saw already at this time the need
for a category-theoretic approach. One first step was to achieve
a “categorical dynamics” (some of which was materialized in the
late 1960s). A crucial step was his category-theoretic formulation
of the formation of function spaces, in terms of universal properties
(adjoint functors): Cartesian closed categories.

Truesdell personally contacted Eilenberg to facilitate L.’s en-
trance into Columbia as Eilenberg’s Ph.D. student 1960–63 – with
a break 1961–63, where L. went to California, to learn more set
theory and logic from experts in the fields (Tarski, Scott and others).
In the California period, L. finished his (Columbia) Ph.D. thesis on
functorial semantics of algebraic theories, where in particular the
notion of algebraic theory was given in a presentation-free way.

2 The Category of Sets

For L. himself, a turning point in his general search for useable and
teachable foundations for mathematics was the year 1963–64 as
an assistant professor at Reed College in Oregon. In an extensive
interview with L., conducted in 2007 by Maria Manuel Clementino
and Jorge Picado in Braga (Portugal) [2], L. says:

F. William Lawvere, Braga, March 2007
(©M.M. Clementino and J. Picado)

At Reed I was instructed that the first year of calculus should
concentrate on foundations, formulas there being taught in
the second year. Therefore […] I spent several preparatory
weeks trying to devise a calculus course based on Zermelo–
Fraenkel (ZF) set theory. However, a sober assessment showed
that there are far too many layers of definitions, concealing
differentiation and integration from the cumulative hierarchy,
to be able to get through those layers in a year. The category
structure of Cantor’s structureless sets seemed both simpler
and closer. Thus, the elementary theory of the category of
sets arose from a purely practical educational need.

Many of L.’s mathematical achievements (notions, construc-
tions and theorems) result from efforts to improve the teaching of
calculus and of engineering mathematics, and led him to conclude
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F. W. Lawvere, A. Heller, R. Lavendhomme (in the back) and A. Carboni at CT99, Coimbra, Portugal
(©M.M. Clementino and J. Picado)

that a workable foundation for mathematics, even for a calculus
course, cannot be formulated in terms of x∈ y (membership), as in
ZF, say, but can be formulated in terms of the notion of mappings
f ∶ A → B (and their composition). L. says, in the Braga interview
[2] 2007:

Philosophically, it may be said that these developments
supported the thesis that even in set theory and elemen-
tary mathematics it was also true as has long been felt in
advanced algebra and topology, namely that the substance of
mathematics resides not in Substance, as it is made to seem
when ∈ is the irreducible predicate, but in Form, as is clear
when the guiding notion is isomorphism-invariant structure,
as defined, for example, by universal mapping properties. As
in algebra and topology, here again the concrete technical
machinery for the precise expression and efficient handling of
these ideas is provided by the Eilenberg–Mac Lane theory of
categories, functors and natural transformations.

After the year at Reed College, L. went to Zürich, where he
was visiting in 1964–66 at Beno Eckmann’s Forschungsinstitut für
Mathematik. Eckmann had succeeded in attracting several category
theorists to participate. Notably, the concept of monad (“triple”),
and its relationships to algebraic theories and homology were
elaborated (as documented in [3]).

From Zürich, it was possible to attend seminars at the nearby
Oberwolfach in South Germany. Here, L. met Peter Gabriel and
learned from him aspects of Grothendieck’s approach to geometry,
as expounded in SGA4 [1].

3 Grothendieck

Grothendieck’s work had a fundamental influence on L.’s later
work. They first met each other at the ICM in Nice (1970), where
they both were invited lecturers. L. had here publicly disagreed with
Grothendieck in a separate lecture on his “Survival” movement.

In 1973, they were both visiting Buffalo. L. says in the Braga
interview:

I vividly remember his tutoring me on basic insights of alge-
braic geometry, such as “points have automorphisms.” In
1981 I visited him in his stone hut, in the middle of a lavender
field in the south of France, to ask his opinion of a project
[…]. My last meeting was at the same place in 1989 (Aurelio
Carboni drove me there from Milano): he was clearly glad to
see me but would not speak, the result of a religious vow; he
wrote on paper that he was also forbidden to discuss math-
ematics, though quickly his mathematical soul triumphed,
leaving me with some precious mathematical notes.

4 Categorical dynamics and synthetic differential geometry

In most of 1967, L. was assistant professor at the University of
Chicago. L. here began to apply Grothendieck’s topos theory in an
advanced lecture series, centering around the problem of simplified
foundations of continuum mechanics, inspired by Truesdell’s and
Noll’s axiomatizations. The series was attended by Mac Lane, Jean
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Lecturing in Coimbra, Portugal, March 1997 (©M. Sobral)

Bénabou, Eduardo Dubuc and others, including the present author,
who was at that time finishing a thesis, under L.’s supervision. The
particular contribution which came out of the seminar was not yet
a full-fledged categorical dynamics, but a kinematic basis for it:
the idea of having the tangent bundle construction representable,
T(M) = MD for a postulated “infinitesimal” object D (utilizing the
Cartesian closed structure of the postulated category of spaces).
An aspect of this “kinematic” line of thought was later developed
by several people as a more full-fledged “synthetic differential
geometry.”

The wisdom from algebraic geometry, which was at the basis of
this development in categorical dynamics, could also be imported
and applied in standard smooth differential geometry; L. uses
an algebraic theory (in the sense of his 1963 thesis), namely the
theory whose n-ary operations are the smooth functions ℝn → ℝ
– a theory, for which it is crucial not to ask for a presentation in
terms of generators and relations.

5 Elementary toposes, algebraic geometry and logic

L. returned to the Forschungsinstitut in Zürich in 1968–69. At this
time, he had become more convinced that toposes were involved
not only as a background for categorical dynamics, but also for
notions from set theory and logic: boolean-valued models, and
forcing (as in Cohen’s work (1963) on the continuum hypothesis).
In the Braga interview, he says:

That these apparently totally different toposes, involving
infinitesimal motion and advanced logic, could be part of
the same simple axiomatic theory, was a promise in my 1967
Chicago course. It only became reality after my second stay at
the Forschungsinstitut in Zürich, Switzerland 1968–69, during
which I discovered the nature of the power set functor in
toposes as a result of investigating the problem of expressing
in elementary terms the operation of forming the associated
sheaf, and after 1969–1970 […] through my collaboration
with Myles Tierney.

This collaboration took place in Halifax (Canada): In 1969, L.
had obtained the prestigious Killam professorship at Dalhousie
University in Halifax, and was in that context allowed to invite
a dozen collaborators (among them Tierney), likewise supported
by Killam. This meant that during 1969–1971 Dalhousie became
a lively place; mathematically, in particular, the notion of elementary
topos gradually crystallized here. Significantly, L. had organized
that a preprint version of (exposé I–IV) of SGA4 [1] was handed out
to the participants of his seminar (SGA4 is Artin, Grothendieck and
Verdier’s “Théorie des Topos et Cohomologie Etale des Schémas,”
not officially published until 1972).

However, in 1971, the dream team at Dalhousie was dispersed;
the university administration refused to renew the contract with L.,
due to his political activities in protesting against the Vietnam
war and against the War Measures Act proclaimed by Trudeau,
suspending civil liberties under the pretext of danger of terrorism.
(But in 1995, Dalhousie hosted the celebration of 50 years of
category theory, with participation of L.)
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A conference organized by L., on the eve of his stay in Halifax in
1971, carries the significant title: “Toposes, Algebraic Geometry and
Logic,” and the proceedings from this conference were published
in 1972 [6].

After leaving Halifax in 1971, L. became visiting professor in
Aarhus (Denmark) 1971–72, and in Perugia (Italy) 1972–73. These
were years where the new insights in topos theory, brought about
in Halifax, were consolidated and disseminated more widely. Also,
after finally settling 1973 in Buffalo (US), L. maintained close con-
tacts, in the form of shorter and longer stays, with his European
friends and collaborators; this includes a year 1980–81 at IHÉS
(Paris).

The toposes that we studied in Halifax and later, were in par-
ticular “gros toposes” (like the topos of simplicial sets), in contrast
to the “petit toposes” (like the topos of sheaves on a topological
space). This was a distinction made in SGA4, IV.4.10. This distinc-
tion was for L. one of the inputs of the study of the category of
toposes, i.e., toposes in their functorial inter-relationship. Such
studies were developed by many researchers, and documented
in many mathematical monographs, articles, and in conferences
(with or without proceedings). L. was very active in participating in
conferences, often as invited keynote speaker; he was less active
in getting the wealth of his ideas and visions down in written form.
For instance, his seminal talks in Chicago in 1967 on categorical
dynamics were not available in written form until in 1978, in the
proceedings of a protracted “Open House” summer meeting in
Aarhus, on “Topos Theoretic Methods in Geometry” [5].

In 1982, L. (together with his Buffalo colleague Steve Scha-
nuel) organized a conference in Buffalo, “Categories in Continuum
Physics,” with participation also of many key researchers in con-
tinuum physics, like Truesdell and Noll. Three of the articles in the
proceedings (published in [8]) deal with the problem of foundations
of thermodynamics.

L. was in 1977 in the Scientific Steering Committee of the im-
portant and large summer meeting in Durham, “Applications of
Sheaves” [4], which marked a breakthrough in exploiting the rela-
tive simplicity of toposes in the conceptualization of mathematical
and physical theories. L. gave a talk in Durham on “categories in
the foundations of thermodynamics,” of which, however, I have
not been able to find a written account. There does, on the other
hand, exist accounts of a talk (with a lively debate) given by L.
at this conference, with the title “The Logic of Mathematics,”
where L. stated his view on the philosophy and development of
mathematics. I include it here, since an obituary of L. would be
incomplete, if it did not reflect the uncompromising character of
his political/philosophical life and work:

In this Durham debate, L. says in the beginning of the talk
(according to my notes and memory):

Mathematics is the science of space forms and quantita-
tive relationships. What is the purpose of mathematics?

Its purpose is to clarify this relationship in order to act as
a basis of unity of people in solving problems (not math-
ematical problems) in the struggle for production, and in
the conscientiousness of this struggle, which is scientific
experimentation.

Already at this early stage of the talk came an interrupting
question (possibly rhetoric) from a member of the audience: “What
is the purpose of production?” L. thought for quite some time
before answering: “To bring you here!”

Later on in the talk, L. stated:

The purpose of the logic of mathematics; to clarify and
simplify the learning, use and development of mathematics.
[…] In a dialectical way: there is also a counterpurpose:
to obscure, complicate and prevent the learning, use and
development of mathematics. In particular, to freeze the
development by promoting instead: thinking about forcing
everything into a preconceived framework […]. Both of these
purposes are fighting with each other inside each of us. […]
Often the counterpurpose wins over the purpose. This is
because the counterpurpose is in the interest of the ruling
class. This is a thing which has changed drastically over the
last 100 years. The interest of the monopoly capitalist class is
against the development of production.

6 Axiomatic cohesion

This is not the place to give (nor would I be able to give) a complete
survey of all the aspects of L.’s mathematical and philosophical
work. Just some further key-words: probability, categorical logic,
indexed/fibered categories, metric spaces as enriched categories,
linguistics, extensive vs. intensive quantities, category of physical
quantities, Grassmann, axiomatic cohesion.

The idea of axiomatic cohesion, as introduced by L. 2007 [7],
has in particular led to recent new developments.

The following is a quotation from this 2007 publication:

An explicit science of cohesion is needed to account for
the varied background models for dynamical mathematical
theories. Such a science needs to be sufficiently expressive to
explain how these backgrounds are so different from other
mathematical categories, and also different from one another,
and yet so united that they can be mutually transformed.
An everyday example of such mutual transformation is the
weatherman’s application of the finite element method
(which can be viewed as analysis in a combinatorial topos)
to equations of continuum thermomechanics (which can
be viewed as analysis in a smooth topos, where smooth
functions and distributions live).
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F. W. Lawvere with the author at Cafe Odeon, Zürich, Fall of 1966
(©A. Kock)

The basis for this axiomatic science of cohesion is a string of
four functors

p! ⊣ p∗ ⊣ p∗ ⊣ p!,

each one in the string left adjoint to the next one. An example of
such a string is familiar in topology: p! associating to a (sufficiently
nice) space its set of connected components, p∗ associating to
a set the discrete space structure on that set, p∗ associating to
a space its set of points, and finally p! associating to a set the
codiscrete space structure on that set. In the category of toposes,
properties of such strings formulate many of the distinctions asked
for in the above quotation.

Only some of the many the ideas that L. launched have reached
written, let alone published, form, but exist only in the form of
seeds in minds and notes of people who have been around.

Probably, many fruitful plants will emerge in the future from
these seeds. The germination of the seeds would be enhanced if
they were more accessible in some archive. Some activity in creating
such archives is taking place, notably in www.acsu.buffalo.edu/
~wlawvere.
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“My sincere condolences”

After the death of Henri Poincaré (July–December 1912)

Laurent Rollet

Science has lost the greatest mathematician of the century
[…]; but I have lost my dearest friend (27 years of continuous,
charming relations), who had always been extremely indul-
gent and kind to me! I have also lost the best and greatest
supporter of a scientific organisation that I had created with
so much effort. You know, moreover, that 15 of his most
important memoirs were published in the Rendiconti [del
Circolo Matematico di Palermo], among them that of 1894
(On the equations of mathematical physics), which is con-
sidered a classic, immortal work of this great genius. The first
one (from 1888) was in the form of a letter addressed to me.
And the last one… alas! was a farewell!

So said the mathematician Giovanni Battista Guccia (1855–1914)
to Louise Poincaré, the mathematician’s widow, on 18 September
1912 [16]. Henri Poincaré died on 17 July 1912 of an embolism
following a bladder operation. He had clearly been declining for
months, even going so far as to mention his ‘decrepitude’ in a letter
to the mathematician Edgar Odell Lovett [28].

For weeks, the French and foreign press emphatically recalled
the memory of the man who was a ‘poet of the infinite’ (Jules
Clarétie), a ‘modest Titan’ (Ernest La Jeunesse) or the ‘consulting
brain of human science’ (Paul Painlevé). These public sources follow
a highly codified rhetoric, and their analysis allows us to observe
the mechanisms involved in building Poincaré’s scientific and cul-
tural heritage [22]. The more intimate sources, such as letters of
condolence, provide an overview of the family, friendship, social,
scientific and professional networks in which Henri Poincaré was
involved, as well as networks of scientific filiation.

The Archives Henri Poincaré in Nancy have been publishing
Henri Poincaré’s scientific, administrative, and private correspond-
ence for many years and are therefore mainly interested in the direct
epistolary exchanges between the mathematician-philosopher and
various correspondents.1 This undertaking sheds light on the de-
velopment of his scientific work and opens biographical horizons

1 The volumes published are devoted to correspondence between Poincaré
and Gösta Mittag-Leffler [13], correspondence with physicists [26],
correspondence with astronomers, engineers and geodesists [27] and

that still need to be explored.2 In addition to these direct sources,
there are indirect ones in which Poincaré’s personality and activity
are mentioned, sometimes in a very meaningful way. The Archives
possess a file of letters of condolence collected by his descend-
ants from July to December 1912. They contain many clues about
unsuspected networks of sociability and allow us to analyse the
mechanisms involved in the early building of his posterity.

This article will present a first exploration of this largely unpub-
lished corpus. It will be organised in three sections. The first part
will briefly present the nature of this corpus and the authors of
the letters it contains. Then a second part will give an overview of
its content by concentrating on three subjects: firstly, the tributes
and condolences, focusing on the most personal and less formal
passages; secondly, the expressions of thanks sent by several math-
ematicians; and finally, the events organised in honour of Poincaré
following his death.

1 Presentation of the corpus and the correspondents

After Poincaré’s death, his wife and some other family members
kept a record of the expressions of sympathy they had received.
This file was kept by the family’s descendants and has never been
used until now; it was put in a folder labelled “1912. Letters of con-
dolence kept after sorting. March 1955,” which seems to indicate
that it was compiled in the wake of the celebrations of the centen-
ary of Poincaré’s birth [3].3 This corpus contains a total of 38 letters:
32 were addressed to his wife Louise Poincaré (1857–1934) [21],

youthful correspondence [23]. The forthcoming volumes are devoted
to correspondence with mathematicians [15] and family, private and
administrative correspondence [24]. This correspondence is gradually
being put online at http://henripoincare.fr/s/accueil/page/accueil

2 It is important to point out that the two most recent biographies of
Poincaré published by Jeremy Gray [7] and Ferdinand Verhulst [25] only
focus on his scientific work, leaving out part of his intimate, family, and
personal life.

3 The collection has been digitized by the Archives Henri Poincaré and all
the letters will be published in volume 5 of the Poincaré correspondence
[24].
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Figure 1. Death announcement of Henri Poincaré (©Archives Henri Poincaré)

two to his son Léon, two to his future son-in-law Léon Daum4 and
two to the physicist Lucien Poincaré, the mathematician’s cousin
and brother of Raymond Poincaré, the President of the French
Republic.

The history of the building of this file is difficult to determine. It
is conceivable that the family received much more than 38 letters
of condolence after Poincaré’s death, so this collection probably
represents only a portion of the letters received after 17 July 1912.

4 Henri Poincaré and Louise Poulain d’Andecy had three daughters and
one son. Jeanne Poincaré (1887–1975) married Léon Daum (1887–1966)
in 1913. A graduate of the École Polytechnique, a mining engineer and
heir to a family of Nancy crystal makers, he had a brilliant career as an
industrial administrator and was even president of the European Coal
and Steel Community from 1952 to 1953. Yvonne Poincaré (1889–1939)
remained single and lived all her life at her mother’s side. Henriette
Poincaré (1891–1970) married Edmond Burnier (1890–?) in 1921; the
couple had four children and divorced in Annecy in 1955. Finally, Léon
Poincaré followed in his father’s footsteps at the École Polytechnique
(class of 1913), joined the engineering corps and ended his career as an
Air Force engineer. He married Emma Motte in 1920 and had a child,
François Poincaré (1920–2012).

Although small, its main interest lies in the fact that it allows us to
discover new connections between Poincaré and other actors. And
it turns out that many of the letters contained in this collection
show correspondents for whom no trace of epistolary exchanges
was available until now. The table below gives a broad overview
of the authors of the letters along with biographical information.5

If we look at the places where the letters were sent from, we
can see that a large proportion were sent from France (22 letters),
with Germany in second place (5), followed by the United States
(3), Japan (2) and Argentina (2). Such a geographical distribution is
obviously not representative of the influence of Poincaré’s thought
in 1912, but it opens new ways for thinking about the building
of his posterity. It is worth mentioning that many correspondents
listed here were trained, like Poincaré, at the École Polytechnique.

5 In bold the names of correspondents for whom there are no known
epistolary exchanges with Poincaré.

42 EMS MAGAZINE 128 (2023)



Identity of
correspondents

Place of dispatch of
the letter

Brief biographical information

L. Barthélémy Spincourt (France) Partially illegible signature. It was probably a female cousin of Henri Poincaré’s mother, Eugénie
(1830–1897).

Marie Bonaparte
(1882–1962)

Paris (France) She was the daughter of the geographer and patron Roland Bonaparte (1858–1924), Princess of
Greece, a friend of Poincaré and the introducer of psychoanalysis in France. Poincaré was a regular
visitor to her salon at the end of his life.

Élie Cartan
(1869–1951)

Paris (France) Mathematician, trained at the École Normale Supérieure. In 1912, he had just been appointed
professor at the Sorbonne.

Clément Colson Paris (France) Poincaré’s classmate at the École Polytechnique, engineer, specialist in political economy and
member of the French Conseil d’État.

Victor Crémieu
(1872–1935)

Rodié (France) French physicist trained at the Sorbonne. He had presented a doctoral dissertation under the
supervision of Gabriel Lippmann [4] and Poincaré was the author of the report on this dissertation.
Crémieu’s work had been at the centre of a controversy concerning the interpretation of Henry
Augustus Rowland’s experiment on the magnetic effects of a charged rotating disk. Poincaré had for
a time sided with Crémieu against the interpretation of Harold Pender [8]. This episode is
documented by a correspondence between Poincaré and Crémieu [26].

Maurice d’Ocagne
(1862–1936)

Etretat (France) Engineer and mathematician trained at the École Polytechnique (class of 1880). He is at the origin of
an original method for the graphical solution of algebraic equations using scaled diagrams, called
nomography.

Henri Deslandres
(1853–1948)

Paris (France) Engineer, military officer, and astronomer, trained at the École Polytechnique (class of 1872), where
he probably met Poincaré for the first time. Deslandres was the director of the Meudon Observatory
at the time of Poincaré’s death. Deslandres and Poincaré were members of the Bureau des
Longitudes.

Jane Dieulafoy
(1851–1916)

Montgiscard
(France)

Archaeologist, novelist, journalist, and photographer. She was the wife of Marcel Dieulafoy
(1844–1920), a mining engineer trained at the École Polytechnique (class of 1863) and at the École
des Mines de Paris. He became a well-known archaeologist and a member of the Académie des
Inscriptions et Belles Lettres. The tone of the letter reveals a certain closeness with the Poincaré
family.

The director or
a teacher at the
École alsacienne

Paris (France) Illegible signature. He wrote a letter of comfort to Poincaré’s son, Léon, which suggests that Léon
had done part of his secondary education at that school.

Francis Foullioux Égletons-les-Roses
(France)

A Bachelor of Science, who declares himself to be a “modest pupil of the late Master”.

Tsuruichi Hayashi
(1873–1935)

Sendai (Japan) Professor of mathematics at Tōhoku Imperial University in Sendai, founder in 1911 of the Tôhoku
Mathematical Journal [9] and translator of the Japanese edition of Science and Hypothesis in 1909.

Felix Klein
(1849–1925)

Hahnenklee
(Germany)

Mathematician, professor at the University of Göttingen.

Johann Robert Lenz Paris (France) Lenz was probably a woodcarver who held the position of administrator-treasurer of the Université
populaire du Faubourg Saint-Antoine in Paris. This institution published a journal, Les cahiers de
l’Université populaire. Its editor was the anarchist sociologist Henri Dagan (1870–1912). Poincaré,
who figured, like his two cousins Raymond and Lucien, among the subscribers of this journal, had
given at least two lectures within this institution, one on chance and one on wireless telegraphy.

Max Lenz
(1850–1932)

Berlin (Germany) Historian, rector of the Friedrich-Wilhelms-Universität Berlin.

Xavier Léon Combault-Pontault
(France)

Philosopher, founder of the Revue de métaphysique et de morale and of the Société française de
philosophie. Poincaré was asked, along with Henri Bergson and Émile Boutroux, his brother-in-law,
to be one of the leading authors for the launch of the journal in 1893. During his career, Poincaré
published about twenty articles in this journal. He was also a member of the Société française de
philosophie. Xavier Leon’s family was close to Poincaré’s; they met during summer holidays at
Houlgate in Normandy. This relationship is documented by a fairly long correspondence [24].
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Identity of
correspondents

Place of dispatch of
the letter

Brief biographical information

Paul Lévy
(1886–1971)

Paris (France) Mathematician, trained at the École Polytechnique (class of 1904). On 24 November 1911, he had
presented a doctoral dissertation on integro-differential equations defining line functions before
a jury composed of Émile Picard, Jacques Hadamard and Henri Poincaré (Poincaré wrote the report
on the dissertation).

Edgar Odell Lovett
(1871–1957)

Houston (United
States)

American mathematician, founder and first president of the Rice Institute of Houston. He had invited
Poincaré to participate in the inauguration of this institution in 1912 – without success, due to
Poincaré’s precarious state of health.

Juraj Majcen
(1875–1924)

Zagreb (Croatia) Croatian mathematician, professor at the University of Zagreb

Camilo Meyer
(1854–1918)

Buenos Aires
(Argentina)

Mathematician and physicist born in Verdun. Meyer emigrated to Argentina in 1895 where he
became a professor of mathematical physics at the University of Buenos Aires. Meyer was also
a close childhood friend of Poincaré.

P. Millon Sauvagnat (France) Millon seemed close to the anthropologist and sociologist Gustave Le Bon (1841–1931). Le Bon was
the director of the book collection Bibliothèque de Philosophie Scientifique published by Flammarion;
it was on his initiative that Poincaré had published in this collection his well-known philosophical
books, such as La Science et l’Hypothèse. Poincaré was quite close to Le Bon and regularly
participated in the social dinners he organized.

Hantarō Nagaoka
(1865–1950)

Tokyo (Japan) Professor of physics at the University of Tokyo. He had participated in the first International Congress
of Physics in Paris in 1900.

Heike Kammerlingh
Onnes (1853–1926)

Leiden
(Netherlands)

Professor of experimental physics at Leiden University.

Max Planck
(1858–1947)

Berlin (Germany) Professor of physics at the University of Berlin.

Henri Salomon
(1861–?)

Paris (France) Teacher of history and geography of Poincaré’s son, Léon, at the Lycée Henri IV in Paris.

Ludwig Schlesinger
(1864–1933)

Giessen (Germany) German mathematician, professor at the University of Giessen.

S. Frankfurter Vienna (Austria) The letter mentions a meeting in Vienna with Poincaré. One of Poincaré’s last trips abroad seems to
have taken place in Vienna in May 1912, on the occasion of a celebration of the Friends of the
Gymnasium.

Ernest Vessiot
(1865–1952)

Paris (France) Mathematician trained at the École Normale Supérieure. In 1912 he was a lecturer at the Sorbonne.
He was also an examinateur d’admission at the École Polytechnique where his student was
Poincaré’s son, Léon. The latter would enter the École Polytechnique in 1913.

Victorine Nancy (France) No last name. The deferential tone suggests that it may have been an employee who had been in
the service of the Poincaré family in Nancy.

Jean Vassilas-Vitalis Athens (Greece) Professor at the Military School of Athens. He was a member of the Société mathématique de France
since 1899.

Alexander Wilkens
(1881–1968)

Kiel (Germany) Astronomer at the Kiel Observatory in 1912. He later became director of the Breslau Observatory
and then of the Munich Observatory.

Emily Wilson, born
Newcomb
(1869–1948)

New York (United
States)

Daughter of the mathematician Simon Newcomb (1835–1909), a correspondent of Henri Poincaré.
Emily Wilson was both a psychologist and a photographer. She was the wife of Francis Asbury
Wilson (1861–1943), an illustrator who worked on advertisements for the R. J. Reynolds tobacco
company. She seemed close to the Poincaré family, which she had obviously met at the Congress of
Mathematicians in Rome in 1908, when Poincaré had fallen seriously ill.

Paul Xardel
(1854–1933)

Rupt-sur-Moselle
(France)

Childhood friend of Poincaré – his father was a colleague of Poincaré’s father at the Faculty of
Medicine of Nancy –, a military officer trained at the Military School of Saint-Cyr. In 1912 he was
a colonel in the infantry. We owe him an autobiographical testimony long remained unpublished on
his friendship with Poincaré [29].
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2 An overview of the corpus

2.1 Tributes and condolences
On 18 July, an unidentified teacher from the École alsacienne6
wrote to Poincaré’s son, Léon, to offer his condolences. Léon had
obviously done part of his studies there before joining the special
mathematics class at the Lycée Henri IV. He wrote to him: “I pity
you with all my heart and would like to be able to tell you so in
person. Keep alive in your soul the memory of the great scholar,
the man of such integrity that was your father: he will hover over
your existence, beneficent, comforting.” The mathematician Ernest
Vessiot showed the same concern for Léon Poincaré in August by
writing to his mother. After expressing his sorrow at the death of
the man who had become his colleague after his appointment to
the Sorbonne in 1910, he was careful to let her know that he was
ready to postpone the examinations her son had to take as part of
the entrance exam to the École Polytechnique.

Other personal testimonies are addressed to the family by voices
close to Poincaré. Thus Paul Xardel, his childhood friend, wrote
to Louise Poincaré on 18 July: “If I were not so far from Paris,
I would have liked to join Henri’s friends and admirers tomorrow,
who will come in droves to attest to the greatness of the loss you
have just suffered, you and your children and with you France and
the Universe. I am perhaps the oldest of his friends and, among
his oldest admirers, who have always proclaimed his genius and
predicted his glory. His genius will be celebrated by his followers
and his pupils, and his glory is immortal. I would have liked piously
to praise his heart, his loyalty to the friends of his childhood and
youth, and I would have mourned with you the one you understood
and helped so well.” Likewise, Marie Bonaparte, who wrote in July:
“He was – as you know better than anyone – not only the greatest
thinker, the most powerful genius of our time – but also a deep
and incomparable heart; and having been close to him remains the
precious memory of a whole life.”

The same testimony comes from Jane Dieulafoy, who appar-
ently was an intimate of the family: “For me, I will always have
the memory of the great mind who seemed to know and under-
stand everything, even the secret of being kind and attentive to the
thoughts of those who, compared with him, were only ignorant
and puny.” (21 July). Or this testimony from a cousin from Poin-
caré’s maternal branch, Madame Barthélémy, who prays for the
salvation of his soul: “I pray for you with all my heart, as well as for
this beautiful soul. Perhaps, however, it hardly needs it. It seems to
me that God must have received him as his child and that Henri
is now in infinite happiness, knowing everything, understanding
everything, immersed in beauty, in the eternal and shadowless
goodness to which we ourselves will perhaps go one day.” (22
November 1912).

6 The École alsacienne was founded in Paris after the Franco–Prussian War
of 1870. It was a renowned private institution. It still exists today.

Perhaps just as moving, Francis Fouillioux, a Bachelor of Science
and former student of the “Master,” wrote to his widow: “I am
only a humble student, a modest pupil of the late Master whom
you mourn. I mourned him with you because he was for me the
personified glorification of human intelligence. He loved Science
and was a philosopher: I owe him the best and greatest joys that
a miserable life has allowed me to know.” (undated).

On the side of the scientists, the tributes are just as poignant,
sometimes tinged with shyness. This is the case of the physicist
Victor Crémieu, a student of Poincaré, who did not dare to write
to his widow and sent his condolences to another member of
the family, perhaps Lucien Poincaré. He evoked the almost filial
relationship he had with him, remembering his doctoral dissertation
and the scientific controversy that pitted him against Harold Pender:
“It is only this morning that I learnt the distressing news of the death
of the man I call my scientific father, and for whom I have always
had feelings of filial affection. Intellectually I owe him everything,
and morally a lot. It is simply out of discretion that since I have
been living in the country, I stopped keeping in touch with him.”
(20 July).

The next day, the astronomer Henri Deslandres wrote to Louise
Poincaré and painted a scientific and moral portrait of the man he
had worked with at the Bureau des Longitudes for many years:
“Your husband was exceptional in terms of both his moral and
scientific values. He was truly good and an honest man, in the
broadest sense of the word; he inspired admiration, esteem and
affection in all those who approached him. I had him as a neighbour
for ten years at the Bureau des Longitudes, and I was able to
appreciate him well. When a scientific difficulty arose, it was always
to him that one turned, and if the solution was possible, he gave it
at once. In matters of elections, he knew how to rise above party
or chapel interests, and his opinion and his vote were dictated by
justice alone or by a broad spirit of conciliation.”

Other scientists evoked the memory of their meeting with
Poincaré at various events. For example, the Dutch physicist Heike
Kammerlingh Onnes, referring to the great Solvay Congress of 1911
in Brussels: “I will never forget the great honour I had to sit next
to Mr Poincaré at the Brussels Council. Who would have thought
then that we would so soon experience the loss of his genius.
The kindness that the great scientist showed me with his well-
known gentleness will remain a beautiful memory for the rest of
my life.” (27 August). Max Planck, who also attended the congress,
recalled his meeting with Poincaré and his daughter (probably
Jeanne Poincaré): “Although your husband was known and familiar
to me for years in his wisdom, it was only last autumn in Brussels,
when I had the honour of making his and your daughter’s personal
acquaintance, that I had an idea of what you, dearest Madam,
have lost in him. He did not work for time, but for eternity, and he
lives on in the memory of all those who had the good fortune to
approach him.”
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Max Lenz, historian and rector of the University of Berlin, re-
called Poincaré’s lecture on new mechanics in October 1910 at
the institution’s centenary celebrations [18]: “It touches me all the
more painfully today, on behalf of my colleagues, Madam, to have
to express our deep participation in the indescribably great loss
that you personally have suffered […]. His name, which will last
as long as the theorems with which he enriched the mathematical
sciences, will always find a place of veneration at the University of
Berlin.”

Finally, in a long letter dated 9 August, the mathematician Felix
Klein evoked the memory of his one-time rival in the 1880s over
the naming of Fuchsian functions:

Please count me among those who are most directly affected
by the death of your husband and who best understand how
much science and his family have lost in him.
It is more than thirty years since I encountered your husband
and witnessed, so to speak, from week to week, the rise of
his mathematical genius. As for me, I quickly collapsed under
the weight of the work I had to do and was never able to
reach the level of productivity I used to have. He, on the other
hand, went from triumph to triumph, working out in a fast
and victorious race what the rest of us considered a distant
goal, namely full validity in the field of applications in addition
to all the achievements in the field of pure mathematics. It is
now an abrupt end!
I do not know how long your husband suffered, but I have
read and re-read with pensive interest the words with which
he begins his last publication in the Rendiconti di Palermo.
The rest of us also have enough reason to reflect on the
passage of time.7 I myself have had to take a leave of absence
since New Year’s Day and I have been living here in a sanat-
orium ever since. The many unfinished projects that I have
undertaken with others over the years have the advantage
that I can devote myself to them in detail. Thus, the courses
on the theory of automorphic functions, which I started 30
years ago with my brother on the icosahedron and which
Rob. Fricke, from Braunschweig, and myself have recently
completed have been published.8 I assume that your husband

7 In this article, devoted to “A new theorem of geometry” linked to the
periodic solutions of the three-body problem, Poincaré wrote: “I have
never presented to the public such an unfinished work; I therefore believe
it necessary to explain in a few words the reasons which determined me
to publish it, and first of all those which had engaged me to undertake
it […]. It seems that under these conditions I should refrain from any
publication until I have resolved the question; but after the useless efforts
I have made over many months, it seemed to me that the wisest thing
to do was to let the problem mature, resting on it for a few years; this
would be very good if I were sure of being able to take it up again one
day; but at my age I cannot answer for it.” [19, p. 375]

8 [6]

received the delivery and that he was pleased to learn of
the conclusion that our common field of work owes to the
research of the younger generations.

2.2 Expressions of gratitude
Three letters – written by Maurice d’Ocagne, Élie Cartan and Paul
Lévy – show the role played by Poincaré in supporting their careers.
They were all addressed to Poincaré’s widow.

Maurice d’Ocagne, who was eight years younger than Poin-
caré, spoke, on 18 July, of his gratitude for the latter’s action in his
favour when he was appointed professor of geometry at the École
Polytechnique in 1912. He was also glad to have benefited from
the mathematician’s support when he first applied for membership
of the Académie des Sciences (although he was not elected until
1922). Poincaré and d’Ocagne had been in contact for several dec-
ades in various mathematical spheres, notably within the Société
Mathématique de France and at the École Polytechnique, where
d’Ocagne had been appointed as a répétiteur in 1893.

It was with a painful shock that I learned the awful news for
which nothing had prepared me, and it was with a heart
gripped by poignant emotion that I had the honour of
addressing you a first telegram of condolences, regretting that
distance did not allow me to express to you my feelings in
person.
For some thirty years I had the honour of enjoying the
kindly friendship of your illustrious husband. There were
so many occasions on which he gave me testimony of this
that I cannot recall them all here. I will never forget the part
he played in my appointment as a professor at the École
Polytechnique, nor the encouragement he gave to my first
attempt at becoming a candidate for the Institute. The fact
that I received his vote on this occasion will remain one of
the most precious honours of my scientific career. But what
I want to remember most of all today is the cordial welcome
I was always assured of from him and the camaraderie with
which he tried to reduce the enormous intellectual distance
between him and me.

On the same day, Élie Cartan, who had been from 1904 to
1909 professor of differential and integral calculus at the Fac-
ulty of Sciences of the University of Nancy [14] and then lecturer
at the Sorbonne until 1912, claimed to owe his appointment to
a professorship to Poincaré’s benevolence:

To the general consternation produced by the news of Henri
Poincaré’s death, to the grief felt by those who had the
privilege of seeing and approaching the master, is added for
me a more poignant pain. Perhaps the last act of his life as
a professor and scholar was to come to the Sorbonne to read
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for me the report he had just made on my work. We will
take pride, my family and I, in never forgetting him. It is my
bitter regret to think that I will never be able to express my
gratitude to him. The thanks that I could not give him, allow
me, Madam, to give it to you and to your children.

Finally, on 9 August, the mathematician Paul Lévy recalled Poin-
caré’s warm welcome when he submitted his doctoral dissertation
to him in 1911 [10], even going so far as to advise him to defend
it earlier than he had hoped. Lévy’s family was in acquaintance
with Poincaré’s since the time when Levy’s father, Lucien, was
a colleague of Poincaré at the École Polytechnique.

On learning of the loss that French science had just suffered
in the person of Monsieur Poincaré, I did not dare at first
to write to you to tell you how much I was sharing in your
grief. The number of those who knew and admired the great
scientist who has just passed away is so great that it seemed
to me that they could not all let you know individually how
much this misfortune affected them.
However, I had reason to tell you how grateful I was to
Monsieur Poincaré. More than a year ago, I came to him with
a thesis that I asked him to read, and I will never forget how
kindly he received me. He immediately started reading this
work, and it is to him that I owe the fact that I was able to
defend my thesis much earlier than I had hoped, and I also
owe him advice which was invaluable for the future and
whose significance I appreciate more and more.
It was on receiving the letter of announcement sent to me,
and even more on seeing in your letter to my mother your
sympathy on the occasion of the mourning which has just
affected us in our turn by the loss of my father, Mr. Lucien
Lévy,9 that I decided to offer you the expression of my very
respectful sympathy.

2.3 Two commemorations and a missed opportunity
On 30 December 1912, the Japanese physicist Hantarō Nagaoka
wrote to Henri Poincaré’s cousin Lucien. A physicist trained at the
École Normale Supérieure, Lucien Poincaré was then Director of
Higher Education at the Ministry of Public Instruction. In 1912,
Nagaoka was at the Imperial University of Tokyo and he had re-

9 Lucien Lévy (1854–1912) died on 2 August. Trained at the École Polytech-
nique (class of 1872), he had been in contact with Henri Poincaré, who
was a member of the following class. For a while he was a professor of
higher mathematics at the Lycée Henri IV, and then became head of the
Collège Sainte-Barbe in Paris. In 1890 he was appointed as an examin-
ateur d’admission at the École Polytechnique, a position he held until
1910. During the last two years of his life, he was to be an examinateur
de sortie in mechanics [2].

Figure 2. Postcard distributed on the occasion of the Newton Festival at
the Imperial University of Tokyo in 1912 (©Archives Henri Poincaré)

ceived international recognition for his work on magnetostriction,
earthquake wave propagation, electromagnetic wave transmission
and, above all, atomic theory. In 1904, he had developed a plan-
etary model of the atom based on an analogy with the planet
Saturn, and some of his predictions had been confirmed by Ernest
Rutherford in 1911. Nagaoka studied at the University of Tokyo and
then in Europe, in Berlin, Munich and Vienna. He had participated
in the first International Congress of Physics in Paris, during which
he had undoubtedly been able to listen to and meet Lucien and
Henri Poincaré. A theoretician and experimenter, he was also to
become the first president of the Imperial University of Osaka and
president of the Imperial Academy in 1939 [20].

In his letter to Lucien Poincaré, Nagaoka told him that the
science students at the University of Tokyo had decided to organ-
ise a commemoration in Poincaré’s honour as part of an annual
celebration, the Newton-Sai: “I have the pleasure of making you
the following communication. The students in mathematics, as-
tronomy and physics at the Tokyo Imperial University hold every
year what they call Newton-Sai (literally translated, celebration
in honour of Newton) on the birthday of Newton. The object of
the assembly is simply to celebrate the deeds of great men in the
domain of science, in which they are interested. This year they
had to lament the death of your cousin, and they have prepared
the endorsed postal card with the likeness of the illustrious dead
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for private circulation. It gives simple proof how he was admired
and how his death was lamented in the Far East.” He enclosed the
postcard that was distributed on that occasion.

Another example of a commemorative event appears in a cor-
respondence between the Franco-Argentine physicist Camilo Meyer
and Poincaré’s widow. Born in Verdun, Camilo Meyer was a child-
hood companion of Poincaré in Nancy [5]. Both had been pupils
at the city’s high school and Meyer apparently came regularly to
the Poincaré’s home. He was even a patient of Poincaré’s father,
Émile Poincaré, who had a well-known medical practice in the city.
After obtaining a degree from the Faculty of Science in Nancy, he
apparently obtained a doctorate in Law. He moved to Argentina in
1895. Between 1910 and 1915 he taught a free course in math-
ematical physics at the University of Buenos Aires, based on the
courses given by Poincaré at the Sorbonne. He was responsible
for the first presentation of quantum theory in Argentina [12,17].
The long letter he wrote to Louise Poincaré on 1 November 1912
gives an account of the action he took to honour the memory of
his childhood friend by delivering, as early as 1 August 1912, a eu-
logy on the career and work of Poincaré at the Sociedad Científica
Argentina of which he was an active member [11].

Madam,
Although I am a stranger to you, I believe I am authorised by
my long-standing relationship with the illustrious scientist,
whom the intellectual universe has been mourning for three
months, to send you a copy of the lecture which the Argen-
tine Scientific Society requested of me as soon as the terrible
news reached us.
This homage, paid to the memory of the great scientist, was
for me the fulfilment of a duty all the sweeter because, in
seeking to revive the departed genius and to describe his
gigantic work, I saw him again in my heart as I had always
known him: an excellent comrade, modest, kind to everyone,
and seeming to forget with each person the abyss that his
unequalled genius opened up between his superhuman
intelligence and the mind of ordinary mortals.
I saw him again as a high-school companion, then as a fellow
student, in those family gatherings at his home in rue de
Serre in Nancy; I saw again his father the physician, my phys-
ician, also so kind, so helpful. These imperishable memories
sustained me in the difficult task that was imposed on me,
3500 leagues away from Paris, only a few days after the tele-
graph had informed us of the catastrophe; although we were
unaware of the details at the time, I was able, in a memorable
meeting of the Scientific Society, in the midst of the general
mourning of my colleagues, to condense in a talk all that
I personally knew of the life and colossal work of my former
comrade.
I still do not know whether in other scientific centres similar
ceremonies inspired by grief and admiration were organised

with such promptness and ardour. In any case, I am proud to
think that in this country, where I have lived for so many years,
this unexpected death, which necessarily produced general
consternation, was able to arouse an echo and provoke
a demonstration of mourning for which I was the humble and
unworthy spokesman.
Would it be an abuse of your indulgence, Madam, to ask
you timidly for the slightest souvenir of the man with whom
I was already a close friend more than forty years ago? whom
I followed step by step in his triumphal march, and whose
works form the main element of my library?
We were only a few days apart in age; despite a separation
dating back a long time, I still had the resource of writing
to him sometimes, and he always replied to me despite an
overwhelming daily workload. You would not believe how
happy I would be to possess any object, the most insignificant
of all, which had belonged to him: it seems to me that
I would thus find less bitter the few years left to me to live.
Please excuse my boldness, which is great, and this long letter,
and accept, Madam, my highest regards.

C. Meyer
Professor of Mathematical Physics at the Faculty of
Sciences of Buenos Aires
Calle Independencia 1241, November 1912

A third example of an epistolary exchange allows us to docu-
ment precisely an episode at the end of Poincaré’s life. In 1912, he
exchanged several letters with the American mathematician Edgar
Odell Lovett. The latter wanted to invite him to give a lecture at the
inauguration of the Rice Institute in Houston, which was to take
place from 10 to 12 October 1912. Poincaré declined the invitation
to travel because of his health and died in July. He had nevertheless
promised to send the manuscript of an article to be published in
the proceedings of this event. Consequently, Lovett wrote to Louise
Poincaré on 4 September 1912 to ask if her husband had had time
to write the manuscript before his death.

As you will recall, the Trustees of the Rice Institute had done
themselves the honour of inviting your late distinguished
husband, Professor Henri Poincaré, to lecture at the formal
opening ceremonies to be held October tenth, eleventh,
and twelfth. He feared that his health would not permit
him to make the long journey to Houston, but expressed
his willingness, on our repeating the invitation, to send us
a manuscript in October for publication in the proceedings of
our first academic festival.
It has occurred to me that you may find such a manuscript
among his papers. If this should be the case, we should be
most happy to receive it. In this event we should of course
expect to pay to the estate the honorarium which had been
proposed.
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Louise Poincaré replied to Lovett by saying that she had found
no trace of any manuscript and that her husband was probably
planning to write it during the summer holidays. Émile Borel, who
had been Poincaré’s student and a close colleague, was part of the
French delegation to the inauguration of the Rice Institute and gave
a poignant account of his last exchanges with him on that occasion:
“When Henri Poincaré was invited by President Edgar Odell Lovett
to deliver an address at this scientific celebration, his acceptance
was conditional on the state of his health. A few months later,
he finally declined the invitation, promising, however, to send his
lecture in writing. I cannot remember without emotion the last
conversation I had with him on that subject. I was still hoping that
his decision was not final; but, after giving me some friendly advice
about my lectures and the journey, he told me with what deep
regret he had to give up the thought of ever visiting the United
States again, and I felt, for the first time, how serious was the
condition which justified his refusal. A few weeks afterward he
was gone.” [1]

3 Conclusion

As stated above, this corpus of carefully preserved letters makes it
possible to discover new facets of Henri Poincaré’s relationships
with family, friends, social and professional contacts. It also provides
an opportunity to analyse the processes transforming his work into
a heritage in France and abroad; in this respect, the episodes of
commemoration in Argentina and Japan are particularly enlight-
ening. Finally, and above all, these new or poorly documented
networks of relations open interesting biographical perspectives
insofar as they offer the possibility of discovering both actors who
were important to Poincaré and others for whom Poincaré him-
self was important. Such a source makes it possible to re-discover
a personality who was not only a mathematician and a scientist,
but also a social actor and a leading intellectual.
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Mathematics at the Deutsches Museum: On-site, digital, and to go

Katja Rasch and Mareike Wöhler

1 Challenge: An abstract science as an exhibition topic

Even the earliest plans for the Deutsches Museum, founded in
1903, included rooms for mathematics. In 1906 the first mathe-
matics exhibition opened in Munich in the former building of the
Bavarian National Museum located on Maximilianstraße (today:
Museum Fünf Kontinente). In a museum the great challenge to
the exhibition makers was, and still is, to identify the topics of
mathematics that can be communicated well, as well as to present
them to the visitors. Over the decades and with increasing expe-
rience, the focus and the way of communication have changed.
When the Deutsches Museum was founded, it did not yet have
any collections the curators could base the exhibition on. Thus,
for the planning of all exhibitions, “lists of desired objects” were
prepared by referents. For the mathematics section this was done
by Walther von Dyck (1856–1934), mathematician and co-founder
of the museum. Based on these wish lists, the collection was first es-
tablished. The museum received considerable support from various
donations and the production of replicas by well-known manufac-
turers of mathematical instruments and models. After 10 years,
the collection of “Mathematische Instrumente, Analoggeräte und
-rechner” already counted 500 items. Today it includes more than
4600 objects.

2 Mathematics is fun: The new permanent exhibition
“Mathematics”

In July 2022, after nine years of preparation, the Deutsches Mu-
seum’s new permanent exhibition “Mathematics” opened (Fig-
ure 1).1 Its concept was developed by computer scientist Anja
Teuner, who was curator of Computer Science and Mathematics
from 2011 to 2018. The hands-on stations, which performed well
in the former mathematics exhibition at the Deutsches Museum,
the “Mathematisches Kabinett,” were planned to be placed in
a larger context and enriched with historical mathematical instru-

1More insights on https://www.deutsches-museum.de/museumsinsel/
ausstellung/mathematik.

Figure 1. Glimpse into the new permanent exhibition “Mathematics”
of the Deutsches Museum. Picture credits: Deutsches Museum /
Hubert Czech.

ments and models. The intention was to create an exhibition that
would satisfy mathematics and at the same time would offer fun,
but also provide a place for exhibit lovers to experience and enjoy
mathematics.

The exhibition that finally emerged focuses on visualizations of
popular geometrical objects and phenomena. A playful approach
to mathematics was deliberately chosen – from the descriptive to
the abstract. The focus is not on the exhibition objects as such, but
rather on active participation, trying things out, and experiencing
mathematical structures on one’s own. By these means, mathemat-
ics becomes accessible not only for the experienced, but also for
the younger visitors and all other interested people. In doing so, the
exhibition reduces not only the immense breadth of mathematics,
but also the extreme distance that its concepts and ideas have
taken from everyday life and vividness. Von Dyck, the first cura-
tor of mathematics at the Deutsches Museum, stated as early as
1925: “To present the essence, content, and aims of mathematical
research in its entirety cannot be the task of a museum.”2

2“Wesen, Inhalt und Ziele der mathematischen Forschung in ihrer
Gesamtheit vor Augen zu führen, kann nicht Aufgabe eines Museums
sein.” [4, p. 192] (translated from German by K. Rasch)
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The Mathematics exhibition is based on the formula

games+ exhibits+ applications = fun to the power of three.

The basic elements here are cubes which appear throughout the
exhibition in the thematic areas of Introduction, Dimension, Per-
spective, and Symmetry. “Hanging” cubes contain key information
as well as polyhedral interactive media stations, while cube-shaped
experiment tables are spread throughout the exhibition. In this
way, the interactive concept is placed in a geometric frame of ref-
erence, which is complemented by historical exhibits and insights
into the practical applications of mathematics. A wide variety of
games helps visitors to understand mathematical ways of think-
ing in a playful way, and richly illustrated exhibition texts reveal
how such thinking is put into practice, for example in everyday life
or in architecture. Particularly striking exhibits include a wooden
pantograph from 1782 for reducing silhouettes, gold-plated multi-
purpose dividers from 1586, or finely crafted drawing instruments
from 1775 made of silver.

From form to formula and back: mathematics makes every-
thing easier – even if a sequence of numbers, letters and symbols
may not suggest this at first glance. For example, a shark’s dorsal
fin, a triangle in music, and a house gable are just triangles from
a mathematical point of view. All triangles have certain common
characteristics. These generally valid characteristics then help to
create, to comprehend, to describe new items, buildings or tech-
nologies. Mathematics – ancient Greek: the “art of learning” – is
thus not taught as a fine art, but quite simply as an important
aspect of our everyday lives.

3 Gyroid, catenoid, onduloid: Mathematical models
on the Deutsches Museum Digital portal

A relatively short and striking equation:

sin x cos y+ sin y cos z+ sin z cos x = 0.

But what does it describe? One recognizes that it contains x, y and
z and perhaps assumes that a mathematical surface could hide
behind the equation. To solve the mystery of what this surface
looks like, computer software is used today that makes the surface
visible on a screen – or a section of the surface is created using
3-D printing. It can then be inspected from all sides, such as the
model of a spherical section of the gyroid3 (Figure 2), which was
made of purple colored plastic. This model was purchased for the
new mathematics exhibition. Once you hold it in your hand, you
can imagine more easily that two labyrinths have been interwoven
into each other.

3 Inv. No. 2018-285, https://digital.deutsches-museum.de/en/digital-
catalogue/collection-object/2018-285

Figure 2. The mathematical models object group on the Deutsches
Museum Digital portal, with preview image of the gyroid, IMAGINARY,
Berlin 2018 (Design: Oliver Labs), Deutsches Museum, Inv. No. 2018-285.
Picture credits: Deutsches Museum / Konrad Rainer.

Already in the 19th century, there was the wish to visualize
mathematical surfaces. At that time, there were no means of digital
representation available. People began to construct models of
surfaces. Only sections were made, however, since some surfaces
extend to infinity. Von Dyck established a collection which was
supplemented and expanded over the years and now comprises
more than 250 models. Some of them can already be studied in
object datasets with high-resolution photos on the online portal
Deutsches Museum Digital4 in the section “Discover” by clicking
on the photo of the gyroid; many more will be added.

The collection of the Deutsches Museum does not only com-
prise classic models made of plaster, whose prototypes were cre-
ated in modeling cabinets at universities and were offered for sale
in extensive catalogues, such as a catenoid5 (Figure 3, left) that
entered the collection as early as 1906. The museum also preserves
fascinating models made of paper or cardboard that change their
shape by applying slight pressure, for example an ellipsoid made
of 30 cardboard circles6 (Figure 3, middle).

There are also thread and rod models preserved, for exam-
ple a thread model for the visualization of a hyperboloid of one
sheet by its generatrices7 (Figure 3, right), which was produced
by the Verlagshandlung Martin Schilling in Halle (Saale) around
1900 based on a design by the mathematician Alexander von Brill
(1842–1935) [1].

Probably worldwide unique are the “women’s tights models”
that came to the museum in 2011. The series consists of 42 models,

4 https://digital.deutsches-museum.de/en
5 Inv. No. 6449T1, https://digital.deutsches-museum.de/en/digital-
catalogue/collection-object/6449T1

6 Inv. No. 6437, https://digital.deutsches-museum.de/en/digital-catalogue/
collection-object/6437

7 Inv. No. 6483, https://digital.deutsches-museum.de/en/digital-catalogue/
collection-object/6483
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Figure 3. Left: Plaster model of a catenoid, Verlagshandlung Martin Schilling, Halle (Saale) c. 1900, Deutsches Museum, Inv. No. 6449T1. Middle: Cardboard
model of an ellipsoid, Verlagshandlung Martin Schilling, Halle (Saale) c. 1900, Deutsches Museum, Inv. No. 6437. Right: Thread model of a hyperboloid of
one sheet, Verlagshandlung Martin Schilling, Halle (Saale) c. 1900, Deutsches Museum, Inv. No. 6483. Picture credits: Deutsches Museum / Konrad Rainer.

each of which represents a section of a minimal surface. As the
sections are extended to infinity in the three spatial dimensions,
a surface is obtained that does not intersect itself and divides the
space into two congruent labyrinths. Some of these surfaces are
used to describe the geometrical arrangement of atoms in particular
crystal structures. All the models were laboriously handcrafted from
metal wire and women’s tights by the crystallographer Elke Koch in
the late 1980s, for example a minimal surface model with a metal
base8 (Figure 4, left).

Especially difficult to realize are locations in which a surface ta-
pers off to a point. For these singularities, older models had to use
supports – as for example this model of a Plücker complex surface
(Figure 4, middle). It is made by using painted elements of a lead
alloy fixed on a wooden plate. These days, modern manufacturing
techniques such as 3-D printing or laser-in-glass technology are
used for such complex shapes. The glass models made by math-
ematician and designer Oliver Labs, such as an Endrass surface9
(Figure 4, right), really glow by their bottom illumination.

It is also planned to integrate the mathematical models of the
Deutsches Museum into the Digital Archive of Mathematical Mod-
els (DAMM), which until now only shows models from university
collections.10

8 Inv. No. 2012-987T38, https://digital.deutsches-museum.de/en/digital-
catalogue/collection-object/2012-987T38

9 Inv. No. 2018-365T4, https://digital.deutsches-museum.de/en/digital-
catalogue/collection-object/2018-365T4

10 https://mathematical-models.org/en

4 Proportional dividers and universal scales: Mathematical
instruments on the Deutsches Museum Digital portal

Not only the mathematical models, but all objects of the collec-
tion of “Mathematische Instrumente, Analoggeräte und -rechner”
are to be successively put online on the Deutsches Museum Dig-
ital portal.11 Already today, many scientific instruments such as
dividers, slide rules, and planimeters can be studied in detail there
with object data, descriptive texts, and object photos that can be
enlarged. The latter can be downloaded directly and used under
the CC BY-SA 4.0 license. The object data records were enriched
with norm data from the Gemeinsame Normdatei (GND) of the
Deutsche Nationalbibliothek (for persons and corporate bodies),
and with GeoNames (for places), as well as specialist literature,
historical sources on instruments, and patents from the German
Patent Information System (DEPATISnet). In this way, it is possi-
ble to access linked information on several levels if one wants to
know more precisely. In addition, the conversion of the object
data into the LIDO XML format (developed for the exchange of
metadata) will enable the connection to a future national research
data infrastructure.

The manufacturers of historical instruments from the early mod-
ern period in particular are sometimes more difficult to determine
than onemight assume at first glance. This fact is shown by the case

11 https://digital.deutsches-museum.de/en/digital-catalogue/hitlist/
?filterCollection=true&filterArchive=false&collection[name]=
Mathematische%20Instrumente,%20Analogger%C3%A4te%20und
%20-rechner&collection[value]=415
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Figure 4. Left: Minimal surface model with metal base, Elke Koch, Universität Marburg, Marburg c. 1986, Deutsches Museum, Inv. No. 2012-987T38.
Middle: Model of a Plücker complex surface, Johann Eigel Sohn, Cologne c. 1880, Deutsches Museum, Inv. No. 39143. Right: Laser-in-glass model of an
Endrass surface, Oliver Labs, Ingelheim 2018 (Design: Stephan Endraß), Deutsches Museum, Inv. No. 2018-365T4. Picture credits: Deutsches Museum /
Konrad Rainer.

of a pair of proportional dividers12 (also: reduction compass) made
of gilded copper alloy, probably before 1616 by the clockmaker
Heinrich Stolle (Figure 5, left) [7]. His principal Thomas Ferdinand
Teuffel von Zeilberg was previously thought to be the manufacturer.
In difficult cases, in addition to knowledge of Latin, so-called his-
torical auxiliary sciences such as heraldry help just as much as the
investigation of the object biography and the acquisition history of
objects in the archives of the DeutschesMuseum, for example in the
files of the administrative archives [5]. The search for comparative
instruments in other digital object catalogues of museums, such as
the catalogues of the British Museum and the Science Museum in
London13, or the catalogues of the Germanisches Nationalmuseum
in Nuremberg14 often supports dating and localization of objects.
It also makes it possible to assess whether an instrument is singular
or whether it was made often – with individual variations or in
machine serial production, depending on the century.

Also from a mathematical point of view, the exploiting of ob-
jects and their comprehensive explanation for a publication in the
digital domain are challenging for museums: A pair of proportional
dividers15 (Figure 5, middle) made in Augsburg in 1586 allows

12 Inv. No. 10505, https://digital.deutsches-museum.de/en/digital-catalogue/
collection-object/10505

13 https://collection.sciencemuseumgroup.org.uk and
https://www.britishmuseum.org/collection

14 https://objektkatalog.gnm.de/recherche
15 Inv. No. 64022, https://digital.deutsches-museum.de/en/digital-catalogue/
collection-object/64022

geometric operations such as the transfer of line segments as well
as the division, multiplication, and transformation of line segments,
areas, and bodies as an analog computer [6].

The question of processed materials – such as ivory and their
plastic surrogates developed since the beginning of the 20th cen-
tury – is relevant for understanding the objects in terms of their
manufacture, users, and contexts of use. However, the materials
used do not only determine the price of the object at the time of
purchase. Ethical questions about colonial loot and the decimation
of animal species also play an increasing role in museum discourse
for restitutions and with regard to the resources remaining to
humanity in the future. (See the catalogue of the correspondent
exhibition in the Humboldt Forum [3].) An example of this thematic
complex from the mathematical instruments collection is a univer-
sal scale16 made in England at the beginning of the 20th century
(Figure 5, right).

5 Exhibition to go: The new math catalogue

The catalogue accompanying the new permanent exhibition, en-
titled “Mathematik – Vom Anschaulichen zum Abstrakten,” was
recently published by the museum’s own publishing house [2]. The
visual approach to mathematics taken in the exhibition is continued
here. At the same time, exhibit lovers can enjoy a wide range of

16 Inv. No. 1980-182T3, https://digital.deutsches-museum.de/en/digital-
catalogue/collection-object/1980-182T3
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Figure 5. Left: Adjustable proportional dividers, Heinrich Stolle (?), Prague before 1616, Deutsches Museum, Inv. No. 10505. Middle: Adjustable
proportional dividers, Christoph II Schissler, Augsburg 1586, Deutsches Museum, Inv. No. 64022. Right: Universal scale made of ivory, Technical
Manufacturing Corporation, England 1905, Deutsches Museum, Inv. No. 1980-182T3. Picture credits: Deutsches Museum / Konrad Rainer.

finely crafted drawing instruments, delicate surface models and
precise mathematical instruments. In addition, numerous essays
and thematic pages illuminate the diversity – and beauty – of math-
ematics from different angles, thus complementing the exhibition.
Many models, dividers and other types of instruments can be stud-
ied in these more profound texts and in the catalogue section
and can be compared with one’s own prior knowledge or other
collections.

In addition to interested readers of the catalogue, we are look-
ing forward to welcome expert visitors to the new permanent
exhibition. The new museum app also provides relevant back-
ground information in advance and, if desired, accompanies you
in a relaxing manner through the exhibitions.17
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Ascending peaks of knowledge

Jan Overney

Located on the picturesque shores of Lake Geneva, the freshly
inaugurated Bernoulli Center for Fundamental Studies at the École
Polytechnique Fédérale de Lausanne (EPFL) hopes to become a bea-
con for the advancement of fundamental research in mathematics,
theoretical physics, and theoretical computer science.

November 11, 2022 was a big day at EPFL’s new Bernoulli Center
for Fundamental Studies. The ceremonial cutting of the ribbon that
took place under blue skies and the bucolic harmony of an alphorn
choir symbolically ended a brief but intense period of renewal. It
was a fresh start for a center with two intense decades of scientific
advancement to look back on, in new facilities, building on a solid
foundation and many lessons learned.

Undergraduates, PhD students, post-docs, faculty members,
and researchers from EPFL and surrounding universities filled the
lecture hall at the EPFL Rolex Learning Center. On the agenda: a se-
ries of keynote lectures from a star-studded, international speaker
panel, including Maryna Viazovska, EPFL’s very own Fields Medal-
ist, Abel Prize laureate Avi Wigderson from Princeton’s Institute
of Advanced Study, Nobel Prize laureate Duncan Haldane from
Princeton University, and Fields medalist Hugo Duminil-Copin from
the neighboring University of Geneva.

It was a day dedicated to celebrating science, understanding,
and excellence. From the opening remarks in the morning to the
panel discussion in the late afternoon, there was palpable excite-
ment about the new center’s role in bringing together researchers
with different backgrounds to meet, learn from each other, and
dream up new collaborations. Pushing at the boundaries of knowl-
edge and betting on the “unreasonable effectiveness of theoretical
studies” to inspire, fascinate, and, with a bit of luck, spawn a whole
new field of scientific discovery.

A proven model of scientific advancement

This model of scientific advancement – creating a venue for the
great and aspiring scientific minds of the day to congregate – has
a fertile history to look back on, epitomized by the Bernoulli family,

an eminent dynasty of Swiss scientists. Bathed in an academic
milieu, constantly in touch with leading thinkers of their time,
the Bernoullis made major contributions to mathematics, physics,
mechanics, and other areas of basic science. Jacob derived the
law of large numbers in probability theory, Johann developed the
calculus of variations, and Daniel discovered the Bernoulli principle
in fluid mechanics, to name just a few.

Founded as the Centre Interdisciplinaire Bernoulli (CIB) by Pro-
fessors Tudor Ratiu and Gérard Ben Arous, the center was born
of the desire to bolster the reputation of the engineering-focused
school in the theoretical sciences. “The key event that paved the
way for the CIB was the fusion of the basic science departments of
EPFL and the University of Lausanne. To raise the level of theoretical
sciences at EPFL, I had the idea to form a research center focusing
on mathematics, physics, and chemistry,” recalls Ben Arous. He
then set out to develop a center inspired by the Institut des Hautes
Études Scientifiques (IHÉS) in Paris.

When the Centre Interdisciplinaire Bernoulli opened, it did so
with a reduced scope compared to its ambitious aspirations, serv-
ing primarily as a visitors center for mathematicians. Nonetheless,
it filled an important gap for theoretical mathematicians, explains
Nicolas Monod, who directed the center from 2014 to 2021. “The-
oreticians don’t have labs or experimental facilities such as the
CERN’s Large Hadron Collider. That’s why having what I like to call
a Large Brain Collider is so essential. If you are a student, you prob-
ably won’t spontaneously call up a famous researcher for a chat.
But if you can collide with that researcher in front of a blackboard
with a strong cup of tea, they might ask you what you are currently
thinking about, and the magic can happen.”

Under Monod, the Bernoulli Center’s attractive force grew to
the point that, for the first time, EPFL became closely associated
with Fields medalists. “Every living Fields medalist visited EPFL.
Abel Prize winners came to give lectures. Wolf Prize recipients
and Nobel laureates participated in the center’s activities. There
was a constant stream of decorated scientists coming to campus,
learning to appreciate the surroundings, and, perhaps, hopefully,
envisioning a career here,” says Monod.

Hosting over 500 visitors per year every year before the pan-
demic and with hundreds of applications coming in from research-

56 EMS MAGAZINE 128 (2023) — DOI 10.4171/MAG/131



Figure 1. Cutting the ribbon at the new Bernoulli Center for Fundamental Studies. From left to right: Martin Vetterli,
Anna Fontcuberta i Morral, Duncan Haldane (Nobel Prize ’16), Emmanuel Abbé, Maryna Viazovska (Fields Medal ’22),
Hugo Duminil-Copin (Fields Medal ’22), João Penedones, Philippe Michel, Martin Hairer (Fields Medal ’14),
Avi Wigderson (Abel Prize ’21). © EPFL 2022

Figure 2. The new building of the Bernoulli Center for Fundamental
Studies. © EPFL 2022

ers interested in participating in semester projects and shorter
workshops, the Centre Interdisciplinaire Bernoulli firmly solidified
its position on the map in fundamental mathematics. Despite that,
with the many competing needs for space on campus and the
disruptions caused by the COVID pandemic, the Bernoulli Center
was briefly suspended in 2021 due to a lack of dedicated facilities.

Reaching for new heights

The Bernoulli Center’s second incarnation, this time as the Bernoulli
Center for Fundamental Studies, was the fruit of a grassroots effort
by an interdisciplinary group of theoretical researchers at EPFL that
had formed around Emmanuel Abbé. Holding the Chair of Math-
ematical Data Science, straddling the divide between theoretical
mathematics and computer science, Abbé was cut out for the job
ahead. His career had been shaped by time spent in similar centers,
including the Simons Institute for the Theory of Computing at the
University of California, Berkeley, and the IAS at Princeton. “Our
goal was to be inclusive and ambitious, and in about six months,
we had put together a project backed by around 50 researchers
on campus.”

At least in spirit, the new center is a continuation of its prede-
cessor, despite its expanded scope covering theoretical physics and
computer science in addition to mathematics. “At the new center’s
core is an expanded program, building on three pillars. The first,
the scientific program, involves semester-long research projects in
which experts from around the world are invited to work with the
local scientific community, picking up where the former center left
off,” explains Abbé.

“The second pillar strengthens interactions across campus and
neighboring institutions by offering a forum for theoretical re-
searchers from different backgrounds to meet, run seminars and
collaboration groups, and host other activities.”
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“Finally, the third pillar reaches out to young talents – high
school students and undergraduates hungry for challenges beyond
the scope of their standard curriculum. This program includes a local
mathematics competition for bachelor students, a new computer
science class for high school students, public lectures, and more.”

The fresh start was also an opportunity to revise the center’s
governance. “To be inclusive and sustainable in the long run, we set
up an executive committee representing all three areas of research
and overlapping directors with four-year term limits. An internal
scientific advisory committee will be charged with curating the
center’s short-term scientific programs. Meanwhile, an external
scientific committee comprising eminent scientists from around the
world will support the selection of long-term research programs,
underwriting the high quality of the proposed research programs,”
says Abbé.

The new Bernoulli Center takes shape

The new center kicked off its activities well in advance of its Novem-
ber 11 inauguration. A Bernoulli Month on “Modern Trends in
Combinatorial Optimization,” organized by Friedrich Eisenbrand,
who heads EPFL’s Chair of Discrete Optimization, and Ola Svensson,
from EPFL’s Theory of Computation Laboratory, brought around
100 international PhD students to campus and featured workshops
that attracted leading researchers from the world’s most com-
petitive institutions. Its success bodes well for the new center’s
future.

“The summer school was an excellent opportunity to raise the
knowledge and skill of our own EPFL PhD students to the next
level and let them compare themselves to international peers,” says
Eisenbrand. Many international participants reached out to Eisen-
brand and Svensson, enquiring about the possibility of spending
more time at EPFL for a project or even PhD studies. “It’s through
these types of activities that we can still increase the prestige and
the research performance of our school,” he says.

“I’m very confident in the new Bernoulli Center’s ability to
attract people from around the world, in part due to the high
quality of local researchers.”

With the official inauguration of the new facilities, the center
has entered a new defining phase. “There is a strong feeling of
achievement after this first intermediate step. We had to clear
many hurdles to get here. But now the real work begins, with
much higher expectations,” says Philippe Michel, member of the
center’s executive committee and head of EPFL’s Chair of Analytic
Number Theory.

The mood is optimistic, even from Ben Arous’s vantage point in
the United States: “I’m very confident in the new Bernoulli Center’s
ability to attract people from around the world, in part due to the
high quality of local researchers.” Martin Hairer, head of EPFL’s
Chair of Probability and Partial Differential Equations, echoes his

The EPFL Bernoulli Center: key dates

2002 Founding of the Centre Interdisciplinaire
Bernoulli (CIB) by Gérard Ben Arous and
Tudor Ratiu

2002–2014 Direction of the center by Tudor Ratiu
2014–2021 Direction of the center by Nicolas Monod
2021 Suspension of the CIB
2021 Reincarnation as the Bernoulli Center for

Fundamental Studies. Direction of the center
by Emmanuel Abbé

2023 Addition of Martin Hairer to the center’s
governance

sentiment: “The center has a great location, making it easy to
attract great mathematicians to the area.” Add to that the potential
for new partnerships with the neighboring University of Geneva,
the SwissMAP Research Station in the nearby Diablerets mountain
resort, and the Forschungsinstitut für Mathematik (FIM) at ETH in
Zurich.

Future outlook

The inauguration celebrations presented a research center that
is off to a strong start. And, says Emmanuel Abbé, the center’s
current director, the chemistry is right: “All executive committee
members get along amazingly well, with everyone pulling in the
same direction.” His vision: to grow the center through applica-
tions from the outside world, making it a major European meeting
point for fundamental researchers. Getting there, he predicts, will
depend on consistently selecting high-quality research programs.
“Excellence will always prime over cross-disciplinarity,” Abbé says.

Ultimately, the center’s impact will reach beyond EPFL. The
global scientific community will gain a uniquely positioned cen-
ter dedicated to the interface between mathematics, theoretical
physics, and computer science. Local researchers will benefit as
the center of gravity of theoretical research in Switzerland moves
closer to Western Switzerland. And the local youth get a learning
accelerator, allowing them to broaden their horizons, potentially
catapulting them up to higher echelons of fundamental research.

Come join us

As physicist and Nobel Prize laureate Duncan Haldane put it in his
keynote lecture during the inaugural festivities, it takes a lot of
luck to stumble upon something that could potentially become
a great discovery. Luck alone is, however, rarely enough. It takes
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Figure 3. Aerial view of the EPFL campus with Lake Geneva and the Alps in the background. © EPFL 2022

preparedness – deep knowledge – to recognize something unusual
for what it is. And finally, it takes a firm commitment to pursue the
problem and have the result accepted by the scientific community.

You can cultivate preparedness and commitment. Luck is far
more difficult to summon up. By bringing together great minds
from a variety of academic, geographic, and personal backgrounds
to collectively contemplate the fundamental challenges of our time,
the Bernoulli Center is doing its part to increase the odds of that
chance encounter, that serendipitous conversation, that, if correctly
nurtured, could blossom into something truly remarkable.

Jan Overney is a Swiss freelance science and technology writer with
a background in physics and over ten years of experience in academic
and industrial marketing and communication.

jan.overney@gmail.com
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The integration of OEIS links in zbMATH Open

Dariush Ehsani, Matteo Petrera and Olaf Teschke

The transition towards an Open Data Platform enabled zbMATH
Open to build a network of open resources. Important components
in the evolving information system are mathematical research data,
which are of quite heterogeneous nature. For their interlinking,
zbMATH Open provides Application Programming Interface (API)
solutions to offer mathematical research data to the community.
Among other APIs recently implemented at zbMATH Open, the so-
called Links API is aimed to document interconnections between
our database and external platforms which display mathematical
literature indexed at zbMATH Open. The Digital Library of Math-
ematical Functions (DLMF) has been our first partner and their
data have been integrated in our database in 2021. Recently we
interlinked with the second platform, the Online Encyclopedia of
Integer Sequences (OEIS), a renowned digital database of number
sequences that cites a lot of mathematical literature, especially
from number theory and graph theory. The purpose of this short
contribution is to announce and discuss the links to OEIS data in
zbMATH Open.

1 Introduction

As outlined in [3,4], zbMATH Open1 is currently transformed into
an information system that connects a broad variety of resources
relevant for mathematics research, facilitated by the new opportu-
nities provided in the framework of Open Access and Open Data.
Mathematical Research Data are an essential additional informa-
tion layer in such a network. Our commitment, in addition to being
diversified on various development fronts, always aims to be ex-
haustive and publicly accessible, thus offering a complete, easily
usable and open service. Our ultimate goal is to consolidate zb-
MATH Open as a solid reference point and a modern research tool
for the entire scientific community.

Recently we developed Application Programming Interface
(API) solutions to facilitate and optimize the open access to our
mathematical research data. We already documented some of our

1 https://zbmath.org

APIs in previous publications, see, e.g., [5,6]. At present we have
three distinct APIs, an Open Archives Initiative Protocol for Meta-
data Harvesting (OAI-PMH) API,2 designed to harvest the entire
zbMATH Open dataset or some specific subsets of it, a Represen-
tational State Transfer (REST) API,3 still in the staging phase, and
the so-called Links API,4 designed to document the interconnec-
tions between zbMATH Open and external digital platforms with
mathematical contents.

The motivation behind the implementation of APIs at zbMATH
Open is twofold. On the one hand, we want to provide the commu-
nity with machine-readable tools to benefit from the open access
of our data. On the other hand, we wish to expose and document
the dynamic interactions between our data and those coming from
other digital resources used by the community.

Among the potential users of our API endpoints are
1. bibliographic consumers (e.g., MathOverflow, Wikimedia) dis-

playing references to scientific publications;
2. aggregators (e.g., research data infrastructures, Semantic-

Scholar) extracting data;
3. archives (e.g., research/software digital archives) storing flows

of data;
4. search engines (e.g., Google) implementing the OpenSearch

standard;
5. researchers consulting literature for research purposes.

In this short note we announce the integration into the Links
API of our second partner, the Online Encyclopedia of Integer
Sequences (OEIS). In Section 2 we briefly discuss the main purpose
and functionalities of this API. Section 3 will be focused on the role
of the OEIS in our database. The concluding Section 4 is devoted
to a discussion of future perspectives.

2 https://oai.zbmath.org
3 https://donald.zentralblatt-math.org/zbmath-api-test/docs
4 https://donald.zentralblatt-math.org/linksapi-test/links_api
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2 The Links API

The Links API has been developed between 2021 and 2022 to doc-
ument the interconnections (more specifically, the links) between
zbMATH Open and external platforms (called partners) which dis-
play and use mathematical bibliographic data (see Figure 1). As
a matter of fact, there exist several well-established digital ser-
vices serving the mathematical community which cite documents
indexed in our database. Among such platforms we mention Math-
Overflow,5 the Online Encyclopedia of Integer Sequences,6 the
Digital Library of Mathematical Functions7 and arXiv.8 In addition
to having retrieved the bibliographic data of the matched docu-
ments from the platforms themselves, we have considered making
the links to these digital resources directly accessible from our web
page. We take this as a valid support for anyone using zbMATH
Open for research purposes. All of this has been made possible
thanks to the implementation of the Links API.

Figure 1. zbMATH Open interconnected with external platforms.

The current partners of the Links API are:
1. The Digital Library of Mathematical Functions (DLMF); the DLMF

is a well-established web resource that enlarges and digitally
translates the classical “Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables,”9 edited by
M. Abramowitz and I. A. Stegun in 1964. The DLMF presents its
contents in 36 chapters, and the bibliography currently consists
of almost 2,800 references,10 of which about 75% directly link
to zbMATH Open.11 For more details about the integration of
the DLMF data into zbMATH Open we refer to [1,5].

5 https://mathoverflow.net
6 https://oeis.org
7 https://dlmf.nist.gov
8 https://arxiv.org
9 https://zbmath.org/0171.38503
10 https://dlmf.nist.gov/bib
11 The remaining 25% of publications not linked to zbMATH Open refers to
documents not indexed in the zbMATH Open database.

2. The Online Encyclopedia of Integer Sequences (OEIS); the OEIS
is an online database of sequences of numbers. Please see
Section 3.
The datasets coming from our partners are automatically up-

dated in our database every six months. In the future we plan
to integrate into the Links API our already existing datasets for
MathOverflow and arXiv.

2.1 Response body and endpoints of the Links API
The JSON response body of the Links API is modeled on the Scholix
metadata schema.12 The models used to pack the data are explicitly
reported in the API web interface. Scholix is a well-established
framework to exchange information between data and literature
links. The architecture of the schema is designed to allow for bulk
exchange of link information, which contains all necessary data to
keep track of bibliographic parameters identifying scholarly links.

The current version of the API offers twelve endpoints (seven
GET routes, one DELETE route, two POST routes, one PATCH route
and one PUT route):
• GET /link. It retrieves links for given zbMATH objects.
• DELETE /link/item. It deletes a link from the database.
• POST /link/item. It creates a new link related to a zbMATH
object.

• GET /link/item. It checks relations between a given link and
a given zbMATH object.

• PATCH /link/item. It edits an existing link.
• GET /link/item/{doc_id}. It retrieves links for a given zb-
MATH object.

• GET /partner. It retrieves data of a given zbMATH partner.
• PUT /partner. It edits data of a given zbMATH partner.
• POST /partner. It creates a new partner related to zbMATH.
• GET /source. It produces a list of all links of a given zbMATH
partner.

• GET /statistics/msc. It shows the occurrence of primary
MSC codes13 (2-digit level) of zbMATH objects in the set of
links of a given partner.

• GET /statistics/year. It shows the occurrence of years
of publication of zbMATH objects in the set of links of a given
partner.

These allow a diversified and targeted search thanks to the use of
appropriate filters.

In Figure 2 we see an example of an excerpt of the JSON
response body. It corresponds to the output coming from the search
with input field author=Levine in the endpoint GET /link. As
a result, it turns out that in the OEIS sequence A104246,14 called

12 http://www.scholix.org/schema/3-0
13Mathematics Subject Classification scheme 2020, https://msc2020.org
14 https://oeis.org/A104246
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“Minimal number of tetrahedral numbers (A000292(k) = k(k+ 1)
(k+ 2)/6) needed to sum to n,” has a document whose author
is N. Levine among its references. This document is indexed as
Zbl 0083.04002.

2.2 Usage
The Links API represents a tool that can be used in various ways,
both from machines and humans. Here, we present some instances
where a user of either a given partner or zbMATH Open can benefit
from the service:
• A DLMF/OEIS user can easily access all bibliographic resources
indexed at zbMATH Open relating to a specific topic of interest
(e.g., a special function in the DLMF, a sequence in the OEIS).

• A researcher interested in a publication indexed at zbMATH
Open can use our API to verify if and possibly where that publi-
cation is cited in DLMF/OEIS. A search of this type can also be di-
versified thanks to the filters that our routes offer. For example,
one might be interested in identifying which DLMF/OEIS links
are related to a particular Mathematical Subject Classification
(MSC) code or a particular author.

• A researcher more interested in the history of mathematics can
use the Links API to trace the bibliography related to a cer-
tain topic covered in DLMF/OEIS and observe the historical
development of the topic itself in terms of the literature related
to it.
Last but not least, thanks to the Links API, we are offering

a new service directly visible at our public web site. Precisely, we
are displaying all URLs linking a given document to the external
web page of the corresponding partner (see Figure 3).

At present, we are displaying 6,312 links from zbMATH Open to
the DLMF and 67,436 links from zbMATH Open to the OEIS. From
these numbers we can therefore conclude that, as a byproduct,
we are also increasing the visibility of our partners.

3 OEIS references in zbMATH Open

3.1 Some OEIS figures
The OEIS is an online database of sequences of numbers and most
people use it to get information about a particular number se-
quence. It was launched online in November 2010, based on the
book “A Handbook of Integer Sequences” by N. J. A. Sloane pub-
lished in 1973.15 This digital platform is very well maintained,16
daily updated and currently contains over 358,000 sequences. The
entry for each sequence gives among other metadata, the begin-
ning of the sequence, its name or description, formulas, references
to books and articles where the sequence has appeared.

15 https://zbmath.org/0286.10001
16 https://oeis.org/wiki/Welcome

Figure 2. The JSON response body of GET /link with author=Levine
and the corresponding document at zbMATH Open.

Figure 3. A book reviewed in zbMATH Open and linked to both the DLMF
and the OEIS (as well as to a MathOverflow thread and mathematical
software packages).
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Figure 4. Distribution of primary 2-digit MSC codes (top ten) in the
DLMF bibliography.

Figure 5. Distribution of primary 2-digit MSC codes (top ten) in the
OEIS bibliography.

This last piece of data is what allowed us to match all biblio-
graphic references in the OEIS with those in our database, thus
constructing a dataset of all documents indexed at zbMATH Open
cited by the OEIS. It turned out that there exist almost 60,000
references in OEIS matched to about 14,000 documents indexed
in zbMATH Open (excluding the original printed version of Sloane’s
handbook which is, naturally, cited additionally for the majority of
sequences). As a comparison, only about 2,000 documents (out of
about 2,800) cited by the DLMF are indexed at zbMATH Open. As
the figures indicate, the distribution is quite skewed: Several (38,
as of January 1, 2023) publications are referenced in OEIS more
than 100 times, while almost half (6567) documents have been
cited just once in OEIS. A first analysis of their chronological and
thematic distribution is given in the next section.

It is worthmentioning that the OEIS is very popular, and not only
within themathematical community, thanks to their commitment to
disseminate the fascination and the ubiquity of number sequences.
They are visible also on Facebook17 and YouTube.18

3.2 Analysis of available data
Based on our current DLMF/OEIS dataset, it is possible to draw
a simple statistical analysis about the documents referenced by our
partners. In fact, the two statistics routes of the Links API show the

17 https://www.facebook.com/OEISF
18 https://www.youtube.com/watch?v=LCWglXljevY

Figure 6. Distribution of years of publication (top ten) in the
DLMF bibliography.

Figure 7. Distribution of years of publication (top ten) in the
OEIS bibliography.

distribution of both primary MSC codes (2-digit level) and years of
publication of the references for a given partner.

As one may expect, the most frequent cited primary MSC codes
for DLMF and OEIS are 33 (Special functions) and 11 (Number
theory), respectively. Even though this result is not at all surprising,
this confirms the consistency over time of the MSC assignment to
documents. In Figures 4 and 5 we can see the distribution of the
10 most frequently cited primary MSC codes from DLMF and OEIS,
respectively.

A similar analysis provides information about the most frequent
years of publication of cited references. This analysis is summarized
in Figures 6 and 7. From the comparison of data between DLMF
and OEIS it may be argued that OEIS seems to pay more attention
than DLMF to more recent publications (2010–2020).

4 Concluding remarks

The interlinking of research data resources like DLMF and OEIS pro-
vides an additional information layer which enables navigation and
analysis beyond the classical publications. Both platforms where
a somewhat natural starting point for interlinking, due to their
relevance, widespread use, and ample literature references. But
the ecosystem of mathematical research data is much more diverse
and granular, as discussed earlier in this column [2]. The interlinking
of further resources will continue, but may not always as straight-
forward. For example, the L-functions and modular forms database
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(LMFDB),19 is a highly relevant and widely used database in number
theory and algebraic geometry, but does not come along naturally
with references to the literature. Vice versa, identifying its objects
(e.g., modular forms, varieties, or representations) in the literature
is something that is currently beyond the reach of automatization,
so the only hope is that LMFDB entries are properly referenced
when used (which is increasingly, but not systematically, the case).
Further mathematical research data resources are currently stan-
dardized and integrated within the MaRDI initiative,20 supported
within the German National Research Data Infrastructure (NFDI)
framework.

On the other hand, interlinking with zbMATH Open is clearly
only a first step: In an ideal world one would, e.g., like to have an
integrated formula search that would include full texts as well as
functions or sequences. This is currently far from becoming reality
due to a variety of issues, such as copyright restrictions for full
texts, heterogeneous formats, or the lack of semantic information.
Technical progress will surely help to overcome some obstacles, but
the mathematical community can also support this by a variety of
activities, e.g., by further voluntary engagement in the platforms,
or appropriately referencing research data in publications. By in-
terlinking the platforms, we hope to increase the awareness of
the mathematical community of these services, and hopefully also
motivate a further engagement.

19 https://www.lmfdb.org
20 https://www.mardi4nfdi.de
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ICMI column

Núria Planas

The ICMI Database Project:
Mathematics curricula all over the world

The term curriculum has its roots in the ancient Roman culture
and in the classical Latin verb currere, whose closer meaning in
modern English could be ‘to run.’ The running or race metaphor is
certainly inspiring. It suggests many ideas, from that of competition
with those most rapid winning the race, to that of movement with
learners, teachers, families and curriculum developers experiencing
together the running. A certain meaning of currere can thus expand
the educational experience of the curriculum beyond the syllabus,
the course, the materials or the objectives of teaching and learning.
Currere is not then the race to be won, but rather the race or path
to be run. In the context of mathematics education and conceived
broadly, currere can be viewed as a collaborative move towards
the progressive understanding and learning of mathematical con-
cepts and structures to be used in practice. For this to happen,
educational systems all over the world need to select and interpret
mathematical and pedagogical contents, human, symbolic and
material resources…, which is far from trivial.

In 2011, the International Commission on Mathematical In-
struction (ICMI) launched the Database Project.1 The ultimate goal
of this project is to build and update a database of the mathematics
curricula at different levels of instruction over the world. Across
the pre-tertiary stages, most mathematics curricula are largely reg-
ulated under country policies, whereas at the tertiary stage these
curricula are often decided at the more local level of each particular
university. The future consideration of university curricula, including
mathematics in courses for prospective mathematics teachers, will
need a multi-case approach within countries, differently from the
common single-case approach for pre-tertiary curricula. At present,
pre-tertiary mathematics curricula of 37 countries listed in alphabet-
ical order from Argentina to United Kingdom are documented. The
collection of data for each entry is organized through summaries –
provided by country representatives – and links to institutional local
webpages with curricular texts and guidelines. With the valuable
support of the country representatives, this information remains

1 https://www.mathunion.org/icmi/activities/icmi-database-project

updated over time and, when possible, expanded. Currere is, of
course, more than links to curricular texts and guidelines. Nonethe-
less, as we learn about these data, we learn about mathematics
curriculum too.

Two more related accounts of the strong interest of ICMI in
issues of curricula are (1) the concluded ICMI Study 24, ‘School
mathematics curriculum reforms: Challenges, changes and oppor-
tunities’ (for the discussion document, the study conference, and
the conference proceedings, visit the website2), and (2) the forth-
coming Springer volume, ‘Mathematics curriculum reforms around
the world: The 24th ICMI Study’,3 edited by Yoshinori Shimizu
(Japan) and Renuka Vithal (South Africa). The ICMI Study 24 and
the Database Project both adopt a defining cross-cultural lens in
the approach to the mathematics curriculum. Considering these
ICMI projects and their particular similarity in this regard, we may
wonder: Why is the collection and presentation of cross-cultural
curricular data important for mathematics education? I will next ar-
gue that it is important for two reasons at least, and I will illustrate
these for the specific case of the Database Project.

A first reason is that collecting and presenting cross-cultural
curricular data is important in order to learn from and through di-
versity. The Database Project reflects and represents an enormous
diversity of curricula – and curricular cultures – covering mathe-
matical contents that exist with respect to both student age and
country variation. Representations of diversity are always important,
because they allow us to foresee and discuss alternatives other
than those initially imagined. If mathematics teachers, curriculum
developers, stakeholders and researchers have the opportunity to
situate their perspectives on curricula in relation to other perspec-
tives in a larger context, they also have the opportunity to learn
by contrast and perhaps infer some common lessons. A second
reason is that collecting and presenting cross-cultural curricular
data is important in order to understand the cultural nature of the
mathematics curriculum, and likewise any other subject curricu-
lum. The mathematics curriculum is cultural, not only because it
is produced within institutionalized sites, but also because beliefs,

2 http://www.human.tsukuba.ac.jp/~icmi24
3 https://www.springer.com/series/6351
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values and unwritten rules mediate decisions about what to design,
teach, learn and assess, and by whom.

Notwithstanding the foregoing, the collection and presentation
of cross-cultural curricular data is indeed challenging. Again, I will
argue that it is challenging for two reasons at least, which I will il-
lustrate for the singular case of the Database Project. A first reason,
especially present in this project, is the language for communica-
tion of curricular data. While some countries have English as one
of the languages of their curricular texts, hence links to webpages
in English are possible, these are exceptions. English summaries,
prepared in collaboration with the country representatives, precede
texts in the respective official languages. It is still feasible, however,
that country-based teams consulting the Database Project may
have some people who know one or two more languages other
than those official in their context. When this is not the case, there
can be other options. A Spanish team has easy linguistic access to
the data from Argentina, Colombia, Costa Rica, Cuba, Paraguay,
Peru…, although there may be different meanings attached to
the same words in use across countries. The Spanish word eval-
uación is a clear example, with some countries using the word
in institutional documents to express a focus on assessment of
learning and some others to involve rating and performance of
programs and educators. A second reason that makes the cross-
cultural nature of the Database Project challenging is the necessary
caution and concern over the course of any comparison or as-
sociation. Cultural and societal differences between Eastern and
Western approaches to pedagogy, mathematics and mathematics
education, for instance, cannot be disregarded in the cross-reading
of some entries like those from France and China. As said above,
a common language at the level of words and sentences does not
imply common interpretations.

Be it a challenge, a strength or both, the very conception of
the Database Project makes it an ongoing project that is never
complete, because of continuous expansion and updating. This is
a ‘match’ with currere itself. The mathematics curriculum is also
an ongoing project, never finalized regardless of the country. Any
set of decisions, texts and actions is alive. It is regularly assessed
and it will be revised after some years for redesign and, hopefully,
improvement and adjustment to societal changes and to newer
research findings.

If you are interested in adding to the Database Project, or if
you have comments about some of its entries, please let me know
at nuria.planas@uab.cat. I would love to hear from you! You may
have experience of other projects, either ongoing or completed,

that share some common challenges with the Database initiative.
Just this past December, Tomás Recio sent written reflections gained
over the course of his participation in European projects with re-
searchers from different countries, all considered as belonging to
Western traditions, who mentioned rather different aspects of one
curricular mathematical content but named them the same. That
message from Tomás resonated with my current participation in
a mathematics education research and developmental project with
colleagues in England and Germany. When I talk about the Thales
theorem as a curricular content in the secondary school mathe-
matics in Spain, I will support my talk with the drawing of two
lines in a plane, two segments in one of them, some parallels… to
conclude around a proportionality between ratios. If it is my col-
league in Germany, for instance, who talks about Thales theorem
in her context of secondary school mathematics, she will support
her talk with the drawing of a circumference, three distinct points
on it with two of them representing the extremes of a diameter…
to conclude around the creation of a triangle with a right angle.
Thales, born in the wealthy Greek Miletus, is definitely credited
with more than two theorems, all beautiful and basic in geometry
education. But then again, the Database Project is for connecting
and making meaning of mathematical curricular choices that are
cultural.

Acknowledgements. This ICMI column is an expanded version of
the text published in the ICMI Newsletter – December 2022.4 I have
introduced ideas from an email by Tomás Recio after his reading
of the text in that Newsletter. My heartfelt thanks to Tomás.

Núria Planas is professor of mathematics education at Autonomous
University of Barcelona, Spain, and honorary research fellow at the
Department of Education at the University of Oxford. Her research and
publications focus on multilingual mathematics learning and teaching,
language use in mathematics classrooms, and sociocultural theories of
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4 https://www.mathunion.org/icmi/icmi-newsletter-december-2022#on-
page-6

66 EMS MAGAZINE 128 (2023)

mailto:nuria.planas@uab.cat
mailto:nuria.planas@uab.cat
https://www.mathunion.org/icmi/icmi-newsletter-december-2022#on-page-6
https://www.mathunion.org/icmi/icmi-newsletter-december-2022#on-page-6


ERME column

regularly presented by Jason Cooper and Frode Rønning

In this issue, with a contribution by
Mario Sánchez Aguilar, Linda Marie Ahl, Morten Misfeldt and Boris Koichu

CERME Thematic Working Groups

We continue the initiative of introducing the CERME working
groups, which we began in the September 2017 issue, focusing
on ways in which European research in the field of mathematics
education may be interesting or relevant for people working in
pure and applied mathematics. Our aim is to enrich the ERME com-
munity with new participants, who may benefit from hearing about
research methods and findings and contribute to future CERMEs.

Introducing CERME Thematic Working Group 23 –
Implementation of Research Findings in Mathematics Education

Mario Sánchez Aguilar, Linda Marie Ahl, Morten Misfeldt and
Boris Koichu

Over five decades, the field of mathematics education research has
generated a wealth of innovations aimed at improving the teaching
and learning of mathematics. However, while mathematics educa-
tion research has produced solid findings related to fundamental
phenomena in teaching and learning mathematics (see Dreyfus [2]
for an overview of solid findings published on the pages of the EMS
Newsletter), has constructed elaborate theoretical frameworks to
investigate and analyze teaching and learning, and has developed
rich and consistent suggestions for didactic design, the effect of
all these on teaching on a large scale has nevertheless been weak.
How the innovations that work well in a research laboratory could
be applied in practice remains an open and challenging problem
to solve. Addressing this problem, Thematic Working Group 23
“Implementation of Research Findings in Mathematics Education”
(TWG23) is a forum dedicated to presenting and discussing studies
focused on elucidating the enablers and general conditions that
favor or inhibit the implementation in practice of research findings
and innovations generated in our research field.

There are obvious reasons for focusing on implementation
and implementability in mathematics education. Indeed, many re-
searchers and practitioners have identified issues related to scaling
up and making work and results of mathematics education re-

search available to a larger audience. Even though these issues are
omnipresent in mathematics teaching, they are rarely addressed as
a stand-alone issue. This disparity was the outset of establishing
TWG23 in 2017. Hence TWG23 elevates covert concerns about
mathematics education research as being “usable” and “making
a difference in practice” to a more overt phenomenon named
“implementation.”

The papers presented in TWG23 illustrate experiences of imple-
mentation of research findings in practice – either small or large
scale – where the object of the implementation and the implemen-
tation process are clearly identified. For instance, there are studies
informing how particular treatments, interventions, or didactic de-
signs work in different contexts and with different populations.
Likewise, theoretical papers addressing diverse characterizations
of implementation in mathematics education have been presented.
Overall, the discussions in the group have evolved around the ques-
tion: how can we bring the accumulated research knowledge into
practice?

We posit that the work of the TWG23 is relevant to the readers
of the EMS Magazine – particularly those mathematicians involved
in tertiary mathematics education and in projects aimed at en-
hancing teaching mathematics at school level – because of the
difficulties that students, including high-achievers, experience in
moving from secondary to tertiary education. Such a transition
has been identified as a major issue for mathematics departments
across Europe and their students (Koichu–Pinto [5]), and described
as an educational crisis (Gregorio et al. [3]). This situation suggests
a reconsideration and reform of both school and university math-
ematics teaching practices. Familiarity with research findings on
implementation of educational innovations, and even participation
in mathematics education implementation research, may be instru-
mental for mathematics departments and university mathematics
teachers interested in improving their students’ educational experi-
ences. The interest in implementing innovations in mathematics
teaching at the tertiary level, and reporting the results in mathemat-
ics didactic journals, can be seen in an ongoing systematic review
of the field of implementation research. (The systematic review
is done in the project Implementation research as an emerging
field of mathematics education, financed by the Swedish Research
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Council.) Preliminary results show that the studies that address the
tertiary level are few, but that most have been written in recent
years, which we interpret as increased interest.

Evolution of TWG23

TWG23 is one of the newest thematic working groups of the
CERME congress. Its first appearance was at the CERME10 congress
(2017), led by Uffe Thomas Jankvist (Aarhus University, Denmark),
Mario Sánchez Aguilar (National Polytechnic Institute, Mexico),
Jonas Bergman Ärlebäck (Linköping University, Sweden) and Kjersti
Wæge (Norwegian University of Science and Technology, Norway).
At CERME10, the working group undertook initial attempts to
make sense of “implementation” as a phenomenon. In the call for
papers for TWG23 at CERME10, the construct “implementation
research” was considered rather broadly, as systematic exploration
of different kinds of didactical design, from task design, lesson
design, teaching modules, and courses, to the design of entire
programs at all educational levels. Furthermore, “implementation
research” was inclusively operationalized as research on aspects of
developmental projects, intervention projects, as well as research
on aspects of the development and use of educational media (e.g.,
textbooks, software, and computer-enhanced learning platforms).
Fourteen papers and one poster were presented in TWG23 at
CERME10. Most of them reported on small-scale studies addressing
aspects of how adapted research results and findings can inform
practices in schools or other educational settings.

For CERME11, held in 2019, the focus of TWG23 drifted from
discussing particular small-scale projects to an effort to articulate
what implementation research in mathematics education actually
is or can be. Twelve papers and two posters were presented and
served as a basis for theorizing implementation research. At this
point in the development of the TWG, several bibliographical ref-
erences were put forward for clarifying and organizing the key
notions related to implementation research in mathematics educa-
tion. In particular, the work of Rogers [6] on diffusion of innovations,
of Century and Cassata [1] on conceptualizing implementation of
innovations, and of Stein et al. [7] on stages of implementation
were brought to the center of the discussion. A first collective at-
tempt within TWG23 to formulate a chain of definitions of the key
concepts of “innovation,” “implementation” and “implementation
research in mathematics education” was undertaken. At the end
of this collective discussion, the group formulated the following
definition:

Implementation is a change-oriented process of adapting and
enacting a particular resource (e.g., an idea, a tool, an innova-
tion, a framework, a theory, an action plan, a curriculum, a policy)
that occurs in partnership of two communities, a community of
the resource proponents (CRP) and a community of the resource
adapters (CRA). These communities differ but can intersect. At the

beginning of the process, the CRP has the ultimate agency over the
resource. The process of adapting a resource by CRA includes some
of the following: (1) constructing an agency over the resource, (2)
changes in ways of communicating, and (3) changes in practice.
Accordingly, implementation research in mathematics education
is research that focuses on aspects of implementation, as specified
above, in the context of mathematics education.

After the CERME11 congress, Uffe Thomas Jankvist and Jonas
Bergman Ärlebäck left their positions as TWG23 leaders, being re-
placed by Ana Kuzle (University of Potsdam, Germany) and Morten
Misfeldt (by this time affiliated to Aalborg University, Denmark).
Two editorial projects related to TWG23 and led by some of its
members emerged. First, a new research journal entitled Implemen-
tation and Replication Studies in Mathematics Education (IRME)
was established; Uffe Thomas Jankvist, Mario Sánchez Aguilar,
Morten Misfeldt, and Boris Koichu assumed the positions of the
editors. IRME focuses on implementation and replication research
that communicates and investigates initiatives aiming to improve
the teaching and learning of mathematics by using knowledge
from mathematics education research and by re-implementing it
in new contexts. Second, the thematic issue “Implementation and
implementability of mathematics education research” in the re-
search journal ZDM – Mathematics Education was conceived, with
Boris Koichu, Mario Sánchez Aguilar, and Morten Misfeldt as guest
editors [4].

The most recent meeting of TWG23 took place in the online
congress CERME12 (2022). At this stage, Ana Kuzle and Kjersti
Wæge stepped down from their positions as group leaders and
were replaced by Boris Koichu (Weizmann Institute of Science,
Israel) and Rikke Maagaard Gregersen (Aarhus University, Denmark).
Rikke Maagaard Gregersen participated in the planning of TWG23
at CERME12, but was unable to participate in the congress so that
Linda Marie Ahl (Uppsala University, Sweden) stepped in. The focus
of the group’s discussions was broadened and deepened at this
online meeting, thus reflecting the fact that the participants of the
TWG have gained more experience in implementation research.
Notably, the occurrence of papers on large-scale projects increased
significantly, which paved the way for broad and deep discussions.
TWG23 at CERME12 received 18 contributions (15 papers and
three posters). The contributions were organized in five thematic
categories:
• Implementation of problem-solving and problem-posing ap-
proaches.

• Implementation of teaching models and teachers’ perspectives
on implementation.

• Conditions for sustainable implementations.
• Diagnostics tasks, instructional sequences, and curriculum de-
sign.

• Implementation of programming, computational thinking, and
other digital technologies.
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Recent discussions in TWG23

The most recent discussions within TWG23 focused on issues of
scale and upscaling, particularly on the purposes that small-scale
and large-scale implementation-related studies can attain under
a theoretical umbrella of implementation research. There has also
been a focus on the conceptualization of “stakeholder” and how
this notion can be used to refine different types of analysis of imple-
mentation projects. Another recent discussion has been related to
the notion of “change” in implementation research, and the need
for theories of change that could be used to design, understand,
and evaluate implementations.

In connection to scale and upscaling, the participants of TWG23
at CERME12 reinforced the need for both small-scale and large-
scale studies because they play different roles in the accumulation
of knowledge about implementation in mathematics education.
The group pointed out the need to further discuss the strategies re-
quired to make decisions about which types of studies can provide
the most useful information for different parts of the implementa-
tion process. Also, it is necessary to further clarify the concept of
“stakeholders” and progress our knowledge base for involving more
stakeholders, including mathematics teachers, mathematicians and
mathematics education researchers in implementation projects.
In relation to “change,” the TWG23 participants at CERME12
agreed that the tension between “intended change” and “achieved
change” in an implementation project is a delicate question of in-
terest for our research field. We thus see a continuing need to
discuss the question of how program theory and theory of change
can be used to design, understand, and evaluate implementations.

These discussions about the notions of scale, stakeholder, and
change will hopefully continue when TWG23 meets again at
CERME13 in Budapest in 2023. We are expecting to have rich
discussions in this new meeting of the TWG23 which could allow
us to further develop key notions of implementation research and
broaden our knowledge about the factors that influence the im-
plementation of educational innovations based on mathematics
education research. We invite everyone with an interest in imple-
mentation research to contribute their ideas to this vibrant and
continually developing thematic working group.
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Book reviews

Eugenio Calabi – Collected Works by Jean-Pierre Bourguignon,
Xiuxiong Chen and Simon Donaldson (Eds.)

Reviewed by Joel Fine

Eugenio Calabi is a hugely important
figure in modern differential geometry,
whose ideas have strongly influenced
the field for over 70 years and count-
ing. This volume brings together nearly
every paper he wrote, together with
a collection of commentaries and
personal reminiscences on his career.

Of course, putting Calabi’s papers
in a single volume was always going
to be a good idea, but what raises this
collection to an even higher level is the

accompanying commentaries. They are written by mathematicians
who are experts in the areas that Calabi revolutionised, but just
as importantly who also know the man himself. They give skilful
surveys of several of the topics which Calabi worked on. They
also contain some beautiful anecdotes which bring the telling of
Calabi’s work to life.

The human side of mathematics is, naturally, completely absent
from research texts; and yet, the doing of mathematical research
is deeply intertwined with personal interaction. For example, I was
fascinated to learn from Claude LeBrun’s commentary about an
exchange between Calabi and Louis Nirenberg. “I am telling you,
and repeat after me:” said Nirenberg, “One can’t prove existence
theorems without a priori estimates.” In this single quote, one
can see the genesis of modern Kähler geometry! Reading about
moments like these, and there are several in the commentaries,
was an absolute delight.

The mathematical content of the commentaries is also exem-
plary. Like most mortals who are interested in Calabi’s work, I only
knew one of the areas he worked in in any detail (for my part, ca-
nonical metrics in Kähler geometry). It was fabulous to be guided
through Calabi’s contributions in other fields. To be frank, holding
the collected works of a mathematician of the stature of Calabi

is quite intimidating. Without the commentaries, it might have
been difficult to start reading papers on less familiar topics. Even
though Calabi writes with ease and elegance, an outsider to a field
might not know where to start or how the papers relate to each
other. The commentaries, however, make it simple. They summar-
ise Calabi’s results and put them in context. They are a beautiful
invitation to read the papers themselves, and not just the more
familiar ones. In my case, I spent several happy hours learning
about affine differential geometry, something that would certainly
never have happened if I had not picked up this volume.

The commentaries also put Calabi’s work in historical context.
In reading them, one thing that shines out above all else is how
Calabi’s mathematics was frequently many years ahead of its time.
His approach to canonical metrics in Kähler geometry, beginning
in the 1950s, gave birth to an entire field of research that is per-
haps more active today than at any point previously. Some of the
questions Calabi asked about Kähler metrics are only now begin-
ning to be fully understood. Indeed, as LeBrun writes “[…] Gene’s
visionary early work truly seems like a piece of twenty-first century
mathematics that somehow landed in the middle of the twentieth
century.” Another example of Calabi’s pioneering style is his notion
of weak subsolution for linear elliptic partial differential equations
which, in the words of Lawson, “presages modern viscosity theory
more than twenty years before its emergence as a major branch
of analysis.”

Alongside these theoretical paradigm shifts, Calabi also spe-
cialised in the construction of examples. Again, the commentaries
help put these examples in context. For instance, in joint work with
Beno Eckmann, Calabi found the first examples of compact simply-
connected complex manifolds which are not algebraic; as Lawson
says, this was a transformational result at the time. I was also sur-
prised to learn that Calabi was the first person to build hyperkähler
manifolds; indeed, as Bourguignon, Chen and Donaldson point
out, he was the first person to consider them at all.

The collected works of Eugenio Calabi are worthy of a place on
the bookshelf of any person with a serious interest in differential
geometry. Having said that, mine hasn’t made it back on to the
bookshelf since I opened it!

70 EMS MAGAZINE 128 (2023)



Jean-Pierre Bourguignon, Xiuxiong Chen and Simon Donaldson (Eds.),
Eugenio Calabi – Collected Works. With contributions by Shing-Tung Yau,
Blaine Lawson, Marcel Berger and Claude LeBrun. Springer, 2020,
843 pages, Hardback ISBN 978-3-662-62133-2, eBook ISBN
978-3-662-62134-9.

Joel Fine is professor of mathematics at the Université libre de Bruxelles,
Belgium. He works on differential geometry and geometric analysis.
His research interests include symplectic topology, Einstein metrics,
negative curvature and, in previous times, Kähler geometry. Outside of
mathematics, he runs, climbs and plays the bouzouki.

joel.fine@ulb.be

DOI 10.4171/MAG/146

Topological Methods in Hydrodynamics
by Vladimir I. Arnold and Boris A. Khesin

Reviewed by Daniel Peralta-Salas

Applied Mathematical Sciences

Vladimir I. Arnold
Boris A. Khesin

Topological 
Methods in 
Hydrodynamics
Second Edition

The theoretical study of fluid flows is
a vast area of research that involves
many different mathematical disciplines,
ranging from the theory of partial differ-
ential equations to dynamical systems
and differential geometry. More than
250 years after their formulation, the
Euler equations (which describe an
ideal incompressible fluid) and their
viscid counterpart, the Navier–Stokes
equations (introduced independently by
Claude-Louis Navier and Gabriel Stokes

during the first half of the 19th century) still contain a wealth of fun-
damental open problems. While there are numerous and excellent
monographs focusing on the analytic aspects of the equations that
govern fluid motions, until recently one can hardly find textbooks
on the geometric and topological aspects of fluid flows (which are
very rich and significant for understanding hydrodynamics). In 1998
this important gap was filled by the first edition of the book “Topo-
logical Methods in Hydrodynamics” by V. I. Arnold and B. Khesin.
It is difficult to overestimate the impact this monograph had on
those mathematicians who are interested in understanding the
equations of fluid mechanics from a geometric viewpoint, as it pro-
vides a comprehensive introduction to most of the more remarkable
achievements in the area. This includes Arnold’s geodesic formula-
tion of the Euler equations, the structure of steady Euler flows, the
topological interpretation of helicity and other asymptotic invari-
ants, the effects of the curvature of the group of volume-preserving

diffeomorphisms on hydrodynamic instabilities or the fast dynamo
problem. More than twenty years later this important book has
seen its second edition, the most remarkable novelty being the
addition of a very valuable fifty-page appendix that introduces the
most significant developments in the area since the publication of
the first edition of the book.

Arnold and Khesin’s book is the only monograph that presents
a thorough introduction to topological fluid mechanics, a young
area of research that flourished after the foundational works of
Arnold and Moffatt in the 1960’s. The interest in the topological
and geometric aspects of fluid dynamics probably dates back to
Lord Kelvin, who developed an atomic theory in which atoms were
understood as knotted vortex tubes in the ether and showed that
vorticity is transported by the fluid field in the context of ideal flows,
thus implying the preservation of all the vortex structures. In mod-
ern times, topological hydrodynamics was considerably developed
after the works of Arnold and Moffatt. Arnold realized that the
Euler equations of hydrodynamics can be understood as geodesic
motions on the infinite-dimensional group of volume-preserving
diffeomorphisms and Moffatt unveiled the connection between he-
licity and the entangledness and knottedness of the fluid. The book
under review covers a vast panorama of developments and results
in the area, and is an indispensable reference for any researcher
interested in fluid mechanics from the geometric, topological or
Hamiltonian perspectives. It is impossible to summarize the con-
tents of this book in a few lines, so next I aim to present its chapters,
highlighting some landmarks that are introduced in each chapter
(paying the price of losing many other interesting results in this
short presentation):

Chapter I. Group and Hamiltonian structures of fluid dynamics.
This chapter is mainly focused on the study of the Euler equations
of ideal fluids from the viewpoints of group theory and Hamiltonian
mechanics. A significant part is devoted to developing Arnold’s
theory relating the Euler equations with the geometry of the infinite-
dimensional Lie group of volume-preserving diffeomorphisms of
the fluid flow domain. In an important article published in 1966
Arnold showed that the dynamics of an ideal fluid flow can be
described by the geodesics on the aforementioned Lie group en-
dowed with the right-invariant metric given by the kinetic energy.
This chapter provides a detailed presentation of this result and
how it fits within the general framework of the Euler–Poincaré
equations for Hamiltonian systems on Lie groups whose action is
(right-)invariant, other remarkable examples being the dynamics of
the rigid body or the KdV equation. Using this geometric formula-
tion, Ebin and Marsden proved in 1970 the local-in-time existence
of solutions to the Euler equations on compact manifolds, both in
Sobolev and Hölder classes. The chapter also deals with conserved
quantities of the Euler equations (mainly the Casimirs of the adjoint
action of the group of volume-preserving diffeomorphisms) and
the group setting of ideal magnetohydrodynamics.
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Chapter II. Topology of steady fluid flows. This chapter is con-
cerned with the stationary solutions of the Euler equations. It
presents in a very detailed way two gems proved by Arnold in the
mid 1960s. The first one, nowadays known as Arnold’s structure
theorem, describes the topological and dynamical structure of an-
alytic 3D fluid steady states in bounded domains whose Bernoulli
function is not constant. Under these assumptions, this theorem
shows that the Euler flows exhibit the same properties as integrable
Hamiltonian systems with two degrees of freedom on an energy
hypersurface: presence of subdomains covered by invariant tori or
invariant cylinders supporting dynamics that is conjugate to a linear
one. In the context of 2D steady states, the second result presented
here is Arnold’s stability theorem, which provides a sufficient con-
dition for a planar stationary solution to be Lyapunov stable with
respect to the L2-norm of the vorticity. This remarkable result ex-
ploits a new variational characterization of steady states discovered
by Arnold (in terms of the critical points of the energy functional
on the coadjoint orbits of the group of volume-preserving diffeo-
morphisms) and the Hamiltonian formulation. The topology of the
famous Arnold–Beltrami–Childress (ABC) flows, properties of the
linearized Euler equations, and Nadirashvili’s surprising construc-
tion of wandering solutions to the 2D Euler equations on annular
regions are also discussed.

Chapter III. Topological properties of magnetic and vorticity fields.
In this chapter the authors review several results on the topology
of solenoidal fields and how it affects energy relaxation in physical
processes, such as ideal MHD evolution. This topology is described
using functionals on the space of vorticity fields, most of them
of “asymptotic type,” which means that the functional is defined
using a knot invariant, the integral curves of the field and suitable
averages. The chapter presents the helicity functional and its topo-
logical interpretation in terms of the linking number discovered
by Moffatt in 1969, as well as the connection with the asymp-
totic linking number introduced by Arnold in 1973. Arnold proved
a beautiful theorem asserting that these two apparently very dif-
ferent quantities (the former defined using the Riemannian metric
and differential forms, and the latter using the flow of the field
and a limit process) coincide, thus extending Moffatt’s topologi-
cal interpretation to arbitrary solenoidal fields. Other remarkable
theorems covered in this chapter include lower bounds on energy
under ideal relaxation using the helicity and Freedman–He’s asymp-
totic crossing number, and Freedman’s remarkable proof of the
Sakharov–Zeldovich energy minimization conjecture.

Chapter IV. Differential geometry of diffeomorphism groups. This
chapter deals with the geometry (from a Riemannian viewpoint) of
the infinite-dimensional group of volume-preserving diffeomor-
phisms, endowed with the right-invariant metric given by the
L2-norm of the velocity field. It pays special attention to the curva-
ture of the group and how it is related to instabilities of the Euler

dynamics. Under suitable assumptions, the curvature of the group
of volume-preserving diffeomorphisms is negative along many di-
rections, which in view of the geodesic nature of the Euler flow
on that group leads to exponential separation of the Lagrangian
trajectories of the fluid. An appealing consequence of this claim is
that the weather forecast becomes unreliable after a sufficiently
long time, a striking consequence of the Riemannian geometry of
the diffeomorphism group! Other interesting studies, such as the
existence of conjugate points on the aforementioned Lie group,
Shnirelman’s description of the diameter of the diffeomorphism
group, and Brenier’s theory of generalized flows are also discussed.

Chapter V. Kinematic fast dynamo problems. This chapter deals
with the equation describing the evolution of magnetic fields
in magnetohydrodynamics, i.e., the kinematic dynamo equation.
When the fluid is a perfect conductor, the magnetic diffusivity is
zero and the magnetic field is transported by the velocity-field flow;
in the general case the diffusivity appears as a diffusion term of
heat type. The chapter describes several results on the existence of
fast dynamos (both for the dissipative and non-dissipative models),
which are solenoidal fields that give rise to exponential growth in
time of the L2-norm of the magnetic field. This includes a thorough
presentation of the connections between the exponential dynamo
growth and the Lyapunov exponents, the topological entropy and
homoclinic intersections of the velocity field. The authors also
present some discrete models (mainly area-preserving diffeomor-
phisms on surfaces) of fast dynamos, highlighting a very detailed
discussion of Arnold’s cat map (a paradigmatic model of an Anosov
diffeomorphism on the 2-torus). The antidynamo theorem proved
by Cowling and some of its generalizations are also discussed.

Chapter VI. Dynamical systems with hydrodynamic background.
The final chapter of the first edition of the book is a survey of various
partial differential equations that can be studied from the group-
theoretic viewpoint presented in Chapter I, i.e., as geodesics of an
infinite-dimensional Lie group of symmetries endowed with a right-
invariant metric. This includes the KdV equation (related to the
Virasoro group), the equations of gas dynamics and compressible
fluids, and the filament and nonlinear 1D Schrödinger equations.
While the material covered in this chapter is not directly related
to the Euler or Navier–Stokes equations, it is very valuable in the
sense that it shows the power of the general framework of geodesic
motions on Lie groups for studying the evolution of some PDEs.

Appendix. Recent developments in topological hydrodynamics.
This chapter is the main new addition to the second edition of
Arnold–Khesin’s book. It contains an update of the new develop-
ments in the area of topological fluid mechanics since 1999 (so we
can strictly speak about XXI century mathematics). The material
covered by this chapter is huge, so necessarily not very detailed,
but with a vast number of references and indications that certainly
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help the reader to find further results on each subject. The chapter
summarizes new remarkable achievements in all the topics of previ-
ous chapters, a non-exhaustive list including: the recently obtained
classification of Casimirs for 2D and 3D vorticities, the extension of
Arnold’s geodesic framework to the context of weak solutions of
the Euler equations (exhibiting vortex sheets), the realization theo-
rems for knotted vortex lines and tubes in Beltrami flows, a KAM
type approach to study ergodicity and mixing properties of the
Euler flow, and the connection between problems of optimal mass
transport and the evolution of ideal fluids.

Overall Arnold and Khesin’s book is a beautiful and extensive
introduction to fluid mechanics from a geometric viewpoint. It is
a pleasure to read and each chapter contains very valuable material
not only for those mathematicians working with the equations of
hydrodynamics, but for any researcher interested in the connec-
tions between analysis, geometry and topology. I am sure that any
professional mathematician can find food for thought in some of
the gems that are presented in this monograph. Certainly this was
my case as a graduate student in Madrid twenty years ago.

Vladimir I. Arnold and Boris A. Khesin, Topological Methods in
Hydrodynamics. Second edition, Applied Mathematical Sciences 125,
Springer, 2021, 475 pages, Hardback ISBN 978-3-030-74277-5, eBook
ISBN 978-3-030-74278-2.

Daniel Peralta-Salas is a senior scientific researcher at the Institute of
Mathematical Sciences in Madrid and chair of the group “Differential
Geometry and Geometric Mechanics.” His research lines concern the
connections and interplay between dynamical systems, partial differential
equations and differential geometry. This includes different topics in
geometric and topological hydrodynamics.
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The Story of Proof by John Stillwell

Reviewed by Adhemar Bultheel

Technically, we could reduce the essence
of mathematics to the derivation of new
theorems from previous knowledge in
a coherent and logical way. There has
been a tremendous shift in what and how
things are proved. The Elements of Euclid
had an elementary geometric axiomatic
system allowing to give visually attrac-
tive proofs. Twenty-three centuries later
Turing machines and the incompleteness

theorems of Gödel had abstract proofs about what could be ob-
tained within a logic system. With this evolution in mind, Stillwell
sketches the history of mathematics and how the foundations of
proofs, i.e., the axiomatic systems, were sharpened. There is def-
initely mutual influence of the formalisms and techniques used
in the proofs and the emergence of new disciplines like algebra,
calculus, topology, graphs, and others. Therefore, describing the
history of what is proved and how it is proved, is just a history
of mathematics itself, with proof as the binding tissue and that is
what Stillwell does in this book.

The 16 chapters are essentially chronologically organized, but
this is not a classic history book, with data and bios of mathe-
maticians, and it is not the usual popularizing mathematics book
either. For obvious reasons many proofs are included when not
too complicated. The title is well chosen, it is an entertaining story
being told.

The Pythagoras theorem was long known before Pythagoras. In
the Western world as a geometric construction, while for Chinese
and Indians, it was more computational and arithmetical (a set
of Pythagorean triples). Euclid’s Elements was the first attempt
to formalize the knowledge of his time with an axiomatic system
and formal geometric proofs. This remained a standard for many
centuries, until a complete geometric axiomatic system was set up
in Hilbert’s time. Along with the invention of perspective, projective
geometry was the first to raise doubts about the parallel axiom.

When the Muslims introduced algebra, new techniques be-
came available, and algebraic equations described polynomials and
geometric curves. In search of the roots of polynomials, complex
numbers became a natural extension of the number system, and
with a modification of the computational rules of addition and mul-
tiplication came also the generalization to algebraic structures like
fields, rings, and vector spaces. The latter with a strong geometric
interpretation, which naturally leads to the algebraic geometry of
Fermat and Descartes.

The computation of tangents, length of a curve, area of a sur-
face, or volumes, involved infinite sums and limits, which made the
introduction of calculus necessary. With the controversy whether
or not computing with infinitesimals is allowed, people started to
rethink the notion of real numbers and other aspects of number
theory like finite number fields, and the use of complex functions in
number theory. Calculus also allowed to define continuity, enabling
the mean value theorem and the fundamental theorem of algebra.

But geometry was not forgotten. Spherical geometry was
not new, but removing the parallel axiom allowed, for example,
hyperbolic geometry, and calculus also allowed differential and
Riemannian geometry. Riemann also proposed to see algebraic
curves as (Riemann) surfaces. Surfaces with cuts and holes can be
modelled with graphs and the invariants are studied in topology.
Tilings and graphs initiate excursions in group and knot theory.

As all these tools became available, attention converged on set
theory, introducing notions of countability and ordinal numbers,
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which eventually resulted in sound axiomatic systems for numbers,
geometry and set theory, including a foundation of induction proofs
which had been used before on an intuitive basis. Also, just picking
an infinite set of elements requires in certain situations the axiom
of choice or equivalent assumptions like well ordering, or Zorn’s
lemma, with an important impact on numbers, analysis, graphs,
measures, algebra, and sets.

With this level of abstraction and excavation of the very foun-
dations of mathematics, wondering what is indisputably true and
what not, the formalization of the logic used in the proofs became
a natural step to take. Starting with Boolean algebra, the computa-
tions with propositions and predicates became mechanical so that
a machine could do it. But are these formal systems complete? Will
it be possible to prove every true theorem in this system? And if
a machine can do it, will the machine find out whether the theorem
is true or false after a finite number of operations? Disappointing
negative answers came in the 20th century from Gödel and Turing.

This illustrates that there is a strong interaction between the
way mathematics evolved, and the way things are proved. Stillwell
does include many proofs. In the earlier chapters, they are very
simple, but towards the end, where abstraction has taken over,
they require some mathematical maturity. Another tool that is used
a number of times are mathematical models, not only when it
comes to abstract formalities at the end, but also in the beginning
in connection with non-Euclidean geometry, complex numbers,
etc.

The first half of the book is certainly readable with some basic
mathematical knowledge, but towards the end, it requires a reader
that is really interested in the foundations to appreciate the dis-
cussion. Proof is essential in mathematics because it is not only
important to know what is true and what not, but also why it is
true. What and why mathematical statements are true has evolved
considerably over the centuries. That we arrived at the current
state of mathematics is not a coincidence. There is some logical,
natural evolution, and that being clearly explained is what even
professional mathematicians will appreciate in this entertaining
story book.

John Stillwell, The Story of Proof. Logic and the History of Mathematics.
Princeton University Press, 2022, 458 pages, Hardback
ISBN 978-0-691-23436-5, ebook ISBN 978-0-691-23437-3.
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The main focus in this memoir is on Laplacians on both 
weighted graphs and weighted metric graphs. Let us em-
phasize that we consider infinite locally finite graphs and 
do not make any further geometric assumptions. Where-
as the existing literature usually treats these two types of 
Laplacian operators separately, we approach them in a 
uniform manner in the present work and put particular 
emphasis on the relationship between them. One of our 
main conceptual messages is that these two settings 
should be regarded as complementary (rather than oppo-
site) and exactly their interplay leads to important further 
insight on both sides. Our central goal is twofold. First of 
all, we explore the relationships between these two ob-
jects by comparing their basic spectral (self-adjointness, 
spectral gap, etc.), parabolic (Markovian uniqueness, 
recurrence, stochastic completeness, etc.), and metric 
(quasi isometries, intrinsic metrics, etc.) properties. In 
turn, we exploit these connections either to prove new 
results for Laplacians on metric graphs or to provide new 
proofs and perspective on the recent progress in weight-
ed graph Laplacians. We also demonstrate our findings 
by considering several important classes of graphs (Cay-
ley graphs, tessellations, and antitrees).
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Quaternions are non-commutative generalizations of the complex numbers, invented by 
William Rowan Hamilton in 1843. Their number-theoretical aspects were first investigated 
by Rudolf Lipschitz in the 1880s, and, in a streamlined form, by Adolf Hurwitz in 1896.

This book contains an English translation of his 1919 textbook on this topic as well as his 
famous 1-2-3-4 theorem on composition algebras. In addition, the reader can find commen-
taries that shed historical light on the development of this number theory of quaternions, 
for example, the classical preparatory works (of Fermat, Euler, Lagrange and Gauss to name 
but a few), the different notions of quaternion integers in the works of Lipschitz and Hur-
witz, analogies to the theory of algebraic numbers, and the further development (including 
Dickson’s work in particular).

This book provides a self-contained introduction to optimal transport, and it is intended as a 
starting point for any researcher who wants to enter into this beautiful subject.

The presentation focuses on the essential topics of the theory: Kantorovich duality, existence 
and uniqueness of optimal transport maps, Wasserstein distances, the JKO scheme, Otto’s 
calculus, and Wasserstein gradient flows. At the end, a presentation of some selected appli-
cations of optimal transport is given.
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based on decorrelation estimates.
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Leçons sur l’homologie et le groupe fondamental
P. GUillot (Université de strasBoUrG, France)
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ISBN 978-2-85629-965-4
2022 – 334 pages – Hardcover. 17 × 24 – Public*: 60 € – Members*: 42 €

Cet ouvrage reproduit, en les complétant, des notes de cours donnés par l’auteur en M1 et en 
M2 à l’université de Strasbourg en topologie algébrique. Après des préliminaires concernant 
l’homotopie, le groupe fondamental, les catégories et les foncteurs, on y aborde l’homologie 
des complexes simpliciaux puis des espaces topologiques généraux. Les applications clas-
siques sont traitées (théorème de Brouwer, théorème de la boule chevelue, caractéristique 
d’Euler des solides platoniciens...) et on donne une introduction à la dualité de Poincaré. 
Dans une troisième partie plus avancée, l’algèbre homologique est étudiée plus en profon-

deur, avant que la théorie des faisceaux ne soit développée. Le cours se conclut sur la démonstration du difficile théorème 
dû à Georges de Rham qui fait le lien entre homologie et formes différentielles. Le cours s’adresse aux élèves de M1, et 
suppose simplement une connaissance des espaces métriques, ainsi que le bagage algébrique usuel vu en licence. 
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New titles iN the
Cours spéCialisés of frenCh MatheMatiCal soCiety

The series Cours Spécialisés [Specialized Courses] is dedicated to lecture notes for graduate  
students or young researchers. It covers all fields of mathematics. (issn 1284-6090)
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