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Abstract. The aim of this workshop was to convene experts for fostering
the discussion and the development of innovative approaches in insurance and
financial mathematics. New challenges like price instability, huge insurance
claims and climate change are affecting the markets, while at the same time
the possibility of using large volumes of data and continuously increasing
computer power as well as recently developed mathematical methods offer
new opportunities for modelling and risk assessment. Here we present an
overview of these recent developments by providing the abstracts of the talks
that were given during the week, together with a brief summary of the covered
topics.

Mathematics Subject Classification (2020): 60, 62, 90, 91, 93.

Introduction by the Organizers

The last years have been a challenging period for financial and insurance mar-
kets. While stock markets experienced unexpected large price jumps, insurance
and reinsurance companies suffered huge claims, but at the same time had the
opportunity to use large volumes of data for their modelling, and the continu-
ously increasing level of computer power gives rise to new approaches to make use
of them. The impact of climate change poses a further challenge to both fields,
and the consideration of sustainable investment policies and strategies becomes
increasingly important.

This workshop brought together leading experts in all these fields to foster
the discussion and the development of new and innovative approaches. In the
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following, we will provide the abstracts of the talks that were given during the
week, and start with a brief summary of the covered topics.

Ralf Korn started with formulating stochastic control problems in the context
of sustainable finance, and Peter Tankov gave an account of mean-field approaches
for the decarbonization of financial markets. Emanuela Rosazza Gianin and Sil-
vana Pesenti presented new results on consistency and robustness of dynamic risk
measures, and on the application side for insurers. Filip Lindskog presented multi-
period approaches for the valuation of liabilities, and Michael Schmutz gave an
update of the current view on risk measures from the regulatory perspective of
Switzerland. Concerning challenges in life insurance, Peter Hieber talked about an
approach to give policyholders more control in participating life contracts, Griselda
Deelstra showed some new insights when combining financial and mortality risks,
and Damir Filipovic presented a new flexible non-parametric data-driven approach
to model long-term interest rates, which is an important challenge for life insurers
facing long-tailed risks. Stéphane Loisel gave an account on how classical actuarial
techniques may be used for the analysis of insurance risks prone to climate change,
which was nicely complemented with a presentation of Valérie Chavez-Demoulin
on techniques in the statistics of extremes when dealing with non-stationary situa-
tions like the one due to climate change. Johanna Ziegel and Pierre-Olivier Goffard
then presented some recent advances on certain aspects of statistical methodology.
There were several interesting contributions on model uncertainty in the context
of optimal investment, with talks by Frank Riedel, Nicole Bäuerle, Mogens Stef-
fensen and Katharina Oberpriller. Multivariate portfolio choice via quantiles was
discussed by Carole Bernard. Christa Cuchiero showed how to use polynomial
processes to model the capital distribution curves of financial markets, and, also
along the lines of stochastic portfolio theory in the spirit of R. Fernholz, Josef
Teichmann talked about ergodic robust maximization of asymptotic growth with
stochastic factor processes. Extending classical mathematical finance concepts in
other directions, Thilo Meyer-Brandis introduced cooperation in arbitrage the-
ory, Irene Klein dealt with large financial markets and Cosimo Munari considered
the case of frictions. Finally, Eckhard Platen gave an update of his alternative
benchmark approach to financial modelling. On a conceptual side, Berenice Anne
Neumann talked about Markovian randomized equilibria in general Dynkin games,
Gudmund Pammer presented new results on stretched Brownian motion, Brandon
Garcia Flores presented a new approach to use techniques from optimal transport
for the identification of optimal reinsurance treaties, and Sigrid Källblad showed
how to use optimal transport for adapted distance between the laws of SDEs.
Furthermore, Monique Jeanblanc shaded new light on shrinked semimartingales,
Anna Aksamit studied multi-action options under information delay, while Clau-
dia Ceci and Alessandra Cretarola presented results on reinsurance using backward
SDEs an dynamic contagion models. David Criens presented results on controlled
mean field SPDEs, and Caroline Hillairet gave an account of recent advances in
the study of Hawkes processes, which are relevant for instance in the insurance of
cyber risk.
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The week was very stimulating, with many scientific and social interactions of
participants and seeds of new ideas and approaches, many of which will be pursued
in the time to come.

Acknowledgement: The MFO and the workshop organizers would like to thank
the Simons Foundation for supporting Eckhard Platen in the “Simons Visiting
Professors” program at the MFO.
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Abstracts

Optimal Portfolios with Sustainable Assets – Aspects for Life Insurers

Ralf Korn

(joint work with A. Nurkanovic)

The talk has been based on [4]. With the task to transform our society to a
more environmental-friendly and fair one, the interest in investing in sustainable
assets has increased. Even more, potential customers have to be asked about their
interest in sustainable investment before they enter a pension contract. Hence,
the provider has to be prepared to offer suitable investment opportunities.

For various reasons, life insurers have already decided to invest in sustainable
assets as part of their actuarial reserve fund. We therefore provide a new frame-
work for optimal portfolio decisions of a life insurer and suggest new modeling
approaches for the evolution of the demand for sustainable assets, for the hedging
of the risk of sustainability rating changes and for the evolution of asset prices
depending on their sustainability rating. While solving various portfolio problems
under sustainability constraints explicitly and suggesting further research topics,
we take a particular look at the role of the actuarial reserve fund and the annual
declaration of its return.

We thus consider a portfolio optimization problem with asset price dynamics
B(t), Si(t), i = 1, ..., d, t ∈ [0, T ] (where B(t) denotes the evolution of the money
market account, S(t) is the vector of stock price processes) and square integrable,
progressively measurable portfolio processes π(t), t ∈ [0, T ]. As new ingredients,
our framework for sustainable investment contains

• the dynamics D(t) of the cumulative demand of the customers for sustain-
able investments expressed in percent of their invested sum,

• the dynamics of sustainability ratings Ri(t) of the different assets,
• and their possible influence on the dynamics of the asset prices.

The portfolio problem with a sustainability constraint has the form

maxπ(.)∈A(x)E (U (Xπ(T )))(1)

such that R(t) ≥ D(t) ∀t ∈ [0, T ](2)

For the special choice of U(x) = ln(x) we can solve this problem in an explicit
way and demonstrate various affects of the presence of the sustainability constraint.
In particular, we highlight the special situation of a life insurer that is able to use
its actuarial reserve fund as an asset

• with a sustainability rating and a constant rate of return for a full year,
• that can be rebuilt with respect to its sustainability rating over a one-year

time span,
• and that can possibly be used as the basis for an insurance product against

the threat of a sustainability rating downgrade.
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As in current models the sustainability constraint leads to an optimal solution
that is worse than an unconstrained optimal solution, a natural task is to provide
a framework such that it will also be optimal to (mainly) include sustainable assets
in the portfolio. Political decisions such as a special taxation on fossile resources
based products or the promotion of sustainable production methods can lead to
a different potential of future dividends of the corresponding companies and thus
motivates the suggestion of new stock price models with a rating- or a demand-
dependent drift that itself can depend on the sustainability rating. A possible
form can be

dS(t) = S(t)
[
(b+ λ(D̂ −D(t)))dt + σdW (t)

]
,(3)

dD(t) = δ
(
D̂ −D(t)

)
dt+ σ

√
D(t)(1 −D(t))dWD(t)(4)

with the two Brownian motions W (t) and WD(t) possibly being correlated. I.e.
we are using a Jacobi process (see [2] or [1] for its properties) for modeling the
demand fluctuations over time. Considering a simple portfolio problem with a
money market account and just this one stock, the optimal portfolio process can
be shown to be given as

(5) π(t) =
1

1 − γ

b+ λ(D̂ −D(t)) − r

σ2

for the case of U(x) = xγ/γ for γ < 1, γ 6= 0 if the two Brownian motions are
independent. In the dependent case, we will obtain a further term that depends
on D(t). A proof for this and the explicit form of the optimal portfolio in this case
is current work and will be presented soon.

Further model and conceptual challenges in the area of optimal investment with
sustainable assets for life insurers can be found in [4].
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Decarbonization of financial markets: a mean-field game approach

Peter Tankov

(joint work with P. Lavigne)

Decarbonization of industry is an essential ingredient for a successful environ-
mental transition, and the financial sector has a key role to play in meeting the
financing needs of green companies and directing the funds away from brown,
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carbon intensive projects. The amount of assets invested in climate-aware funds
increased more than two-fold in each year between 2018 and 2021, reaching USD
408 billion at the end of 2021, and several authors aimed to quantify the impact
of these additional funding flows on the emission reductions in the real economy.
Such impact can be achieved only if green-minded investors target a sufficiently
large proportion of companies [1], and the environmental performance of each com-
pany depends on factors which are not directly controlled by investors, such as the
general economic situation, financial health of the company, and future climate
policies. The decarbonization of a financial market is therefore the result of inter-
action of a large number of companies, operating in an uncertain environment, and
should be modeled as a dynamic stochastic game with a large number of players.

Here we develop a dynamic model for the decarbonization of a large financial
market, arising from an equilibrium dynamics involving companies and investors,
and built using the analytical framework of mean-field games. Mean-field games,
introduced in [3] and [4] provide a rigorous way to pass to the limit of a continuum
of agents in stochastic dynamic games with a large number of identical agents
and symmetric interactions. In the limit, the representative agent interacts with
the average density of the other agents (the mean field) rather than with each
individual agent. This limiting argument simplifies the problem, leading to explicit
solutions or efficient numerical methods for computing the equilibrium dynamics.

The key ingredient of our framework is the notion of mean-field financial market,
which describes a large financial market with a continuum of small firms, where
the performance of each firm is driven by idiosyncratic noise and a finite number
of market-wide risk factors (common noise). We assume that the investors in this
market are ’large’ meaning that in every investor’s portfolio the idiosyncratic risk
of small firms is completely diversified, and the portfolio value depends only on
market-wide risk factors. Consequently, and consistently with the classical finance
theories, only market-wide risk factors are priced, and the stochastic discount
factor depends only on the common noise and the ’mean-field’.

We then consider a mean-field market where shares of a continuum of carbon-
emitting firms are traded. Each firm determines its dynamic stochastic emission
schedule based on its own information and on the market-wide risk factors and
market-wide decarbonization dynamics, rather than on the individual decisions of
each other small firm, which it cannot observe. To fix its emission level, each firm
optimizes a criterion depending on its financial and environmental performance.
The financial performance is measured by the market value of the firm’s shares and
therefore depends on the stochastic discount factor, introducing an interaction be-
tween the firms. The environmental performance is measured by carbon emissions,
which are penalized in the optimization functional of the firm. The strength of
this emission penalty is stochastic, reflecting the uncertainty of climate transition
risk. This “stochastic carbon penalty” is a key feature of our model, allowing us to
analyze the impact of climate policy uncertainty on market decarbonization and
asset prices in a diffusion setting. We show that higher uncertainty about future
climate policies and transition risks creates incentive for all companies to emit
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more carbon and leads to higher share prices and higher spreads between share
prices of carbon efficient and carbon intensive companies, confirming the findings
of [2] in a more realistic setting with stochastic emission schedules.

The second key ingredient of our model is the interaction between two large
investors (or two classes of investors), with different views about the future: while
the regular investor uses the real-world measure, the green-minded investor uses
an alternative measure, which may, for example, overweight the probability of
some environmental policies, making the costs of climate transition more mate-
rial. In the presence of such green-minded investors, all companies will reduce
their emissions and pay lower dividends, leading to lower share prices. However,
carbon intensive companies are affected much stronger than climate-friendly car-
bon efficient companies. This pressure on share prices, in turn, spurs the polluting
companies to decrease their emissions.

We summarize the interaction channels and the structure of the game of the
present article in figure 1 below. The interaction goes as follows:

• On the one hand, given a stochastic discount factor ξ, the firms choose
optimal emissions ψ, driving their economic values V ;

• On the other hand, the investors i ∈ {r, g} optimize their wealth W i
T

depending on their greenness;
• All the players (the firms and the investors) are coupled through the ter-

minal market clearing condition: the wealth of the investors equals the
economic value of the firms.

Firm’s problem

sup
ψ
J [ξ](ψ)

Investor’s problem

sup
WT

U i[ξ](WT ), i ∈ {r, g}
Market Clearing

E[VT |F0
T ] = W r

T +W g
T

Emissions ψ and firm value V Wealth WT

Stochastic discount factor ξ Stochastic discount factor ξ

Figure 1. Structure of the game.

We rigorously prove the existence and uniqueness of the mean-field game Nash
equilibrium for the contunuum of firms interacting through market prices of their
shares, providing a robust solution to the stochastic “decarbonization game” in
a competitive environment. The equilibrium is materialized by the equilibrium
stochastic discount factor, which can be used to compute share prices and emission
strategies for each firm. We then develop a convergent numerical algorithm to
compute the equilibrium and use it to study the impact of climate transition risk
and green investors on the market decarbonization dynamics and share prices.
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Fully-dynamic risk measures: horizon risk, time-consistency, and

relations with BSDEs and BSVIEs

Emanuela Rosazza Gianin

(joint work with Giulia Di Nunno)

In a dynamic framework, we identify a new concept associated with the risk of as-
sessing the financial exposure by a measure that is not adequate to the actual time
horizon of the position. This will be called horizon risk. We clarify that dynamic
risk measures are subject to horizon risk, so we propose to use the fully-dynamic
version. To quantify horizon risk, we introduce h-longevity as an indicator. We
investigate these notions together with other properties of risk measures as nor-
malization, restriction property, and different formulations of time-consistency.
We also consider these concepts for fully-dynamic risk measures generated by
backward stochastic differential equations (BSDEs), backward stochastic Volterra
integral equations (BSVIEs), and families of these. In particular, both for BSDEs
and for BSVIEs, we show that h-longevity, restriction and the different formula-
tions of time-consistency can be obtained under suitable conditions on the driver
of the BSDE/BSVIE. Within this study, we provide new results for BSVIEs such
as a converse comparison theorem and the dual representation of the associated
risk measures.

Finally, inspired by the recent literature on cash-subadditive risk measures, we
analyze - in full generality and in the framework of (families of) BSDEs - the
case where cash-additivity of fully-dynamic risk measures is dropped. An example
based on the generalized entropic risk measure (and the corresponding BSDE) will
be also provided.
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Uncertainty Propagation and Dynamic Robust Risk Measures

Silvana M. Pesenti

(joint work with Marlon R. Moresco, Mélina Mailhot)

As uncertainty prevents perfect information from being attained, decision makers
are confronted with the consequences of their risk assessments made under par-
tial information. Incorporating model misspecification and Knightian uncertainty
into dynamic decision making, thus robustifying one’s decisions, has been studied
in various fields, including economics [10, 15], mathematical finance [4, 12], and
risk management [1]. Many circumstances require sequential decisions, where risk
assessments are made over a finite time horizon and are based on the flow of in-
formation. Importantly, these decisions need to be time-consistent and account
for the propagation of uncertainty. As uncertainty may change over time, we con-
sider the dynamic risk of the entire processes rather than the total losses amount
at terminal time. While the theory of time-consistent dynamic risk measures is
growing [13, 6, 2, 9, 7, 3, 8], the time evolution of uncertainty is little explored.

In this work, we propose an axiomatic framework for quantifying uncertainty of
discrete-time stochastic processes. Specifically, we introduce dynamic uncertainty
sets consisting of a family of time-t uncertainty sets. Each time-t uncertainty set is
a set of Ft-measurable random variables summarising the uncertainty of the entire
stochastic process at time t. The dynamic uncertainty sets may vary with each
stochastic process, as the uncertainty of two processes may differ, even if they share
the same law. That is, a time-t uncertainty set is a map Xt:T 7→ ut(Xt:T ) ⊂ L∞

t

for any bounded discrete process X . This general framework includes, to the
authors knowledge, all uncertainty sets encountered in the literature, from moment
constraints, f -divergences, semi-norms, and the popular (adapted) Wasserstein
distance.

Equipped with a dynamic risk measure represented by a family of one-step
risk measures {ρt}t∈T and a dynamic uncertainty set {ut}t∈T , we define dynamic
robust risk measures as sequences of conditional robust risk measures by taking
the supremum of all risks in the uncertainty set. Mathematically, a time-t robust
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risk measure takes the form

Rt:T (Xt+1:T ) = ess sup{ρt(Y ) : Y ∈ ut+1(Xt+1:T )},

for all discrete bounded process Xt+1:T from time t+1 to T . In this procedure, the
first step is to summarise the uncertainty and information of the process Xt+1:T

into a set of (t+ 1)-measurable random variables, the uncertainty set. The second
step is to evaluate the risk of each of the candidate random variables and choose
the largest.

This work proceeds by studying conditions on the dynamic uncertainty set that
lead to well-known properties of dynamic robust risk measures such as convexity
and coherence. To guarantee that the conditions are not overly strong, we seek
not only sufficient conditions but also necessary ones. However, two different
uncertainty sets can induce the same dynamic robust risk measure, and in fact,
for each uncertainty set that satisfies a sufficient condition for a property of interest
on the robust risk measure, one can find another uncertainty set that also satisfy
it. Therefore, we introduce the dynamic consolidated uncertainty set {Ut}t∈T ,
which is the union of all uncertainty sets that agree on the dynamic robust risk
measurement. We show that this consolidated uncertainty set also induces the
same robust risk measure and can be written as

Ut+1(Xt+1:T ) =
{
Y ∈ L∞

t+1 : ρt(Y ) ≤ Ru
t:T (Xt+1:T )

}
.

Theorem 1 in the pre-print [11] connects the properties in the consolidated uncer-
tainty set with the axioms of the dynamic robust risk measure.

Crucial to the dynamical framework are notions of time-consistencies, of which
many have been introduced and studied in the literature. The most common is
strong time-consistency, leading to a dynamic programming principle [6, 14, 5].
While the majority of works assume normalisation of the dynamic risk measures,
in a robust setting, uncertainty does generally not lead to normalisation. Indeed,
an important subject of debate is whether the value of zero – or more generally
an Ft−1-measurable random variable – contains uncertainty – at time t. We find
that uncertainty sets induced by the f -divergence are normalised, while those gen-
erated by the Wasserstein distance or norms are not. Consequently, we introduce
the new concept of non-normalised time-consistency to account for non-normalised
uncertainty sets. We also work with weaker notions of time-consistency, such as
rejection and weak time-consistency. We discuss time-consistency of the uncer-
tainty sets, and show, in Theorem 2, that they are equivalent to the notions of
time consistency in the robust risk measure. Figure 1 and Proposition 5 in the
pre-print [11] summarise the relationship between the most common notions of
time-consistencies.

One of the manuscript’s key theorem generalises results from the seminal works
of [6, 14]. Specifically, we show that a dynamic robust risk measure is strong or
non-normalised time-consistent if and only if it admits a recursive representation
of one-step robust risk measures. Furthermore, these one-step robust risk mea-
sures are characterised by dynamic uncertainty sets which possess the property of
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static. Static uncertainty sets arise in one-period settings and do not contain fu-
ture information. Thus, we show that it is enough to consider the simpler subclass
of static uncertainty sets when working with time-consistent dynamic robust risk
measures. That is:

Theorem 4 (Recursive Relation). A (normalised) dynamic robust risk measure
R is non-normalised (strong) time-consistent if and only if there exists a static
(and normalised) uncertainty set uς := {uςt}t∈T such that

Rt,T (Xt+1:T ) = Ru
ς

t

(
Yt+1 +Ru

ς

t+1

(
Yt+2 +Ru

ς

t+2

(
Yt+3 + . . .+Ru

ς

T−1(YT ) . . .
)))

,

where Yt := Xt −Ru
ς

t (0) for all t ∈ T .
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Valuation of liability cash flows subject to capital requirements

Filip Lindskog

(joint work with N. Engler, H. Engsner, K. Lindensjö and J. Thøgersen)

I present two closely related approaches to valuation of liability cash flows moti-
vated by current regulatory frameworks for the insurance industry.

In the first part I study market-consistent valuation of liability cash flows mo-
tivated by current regulatory frameworks for the insurance industry. The value
assigned to an insurance liability is the consequence of (1) considering a hypothet-
ical transfer of an insurance company’s liabilities, and financial assets intended
to hedge these liabilities, to an empty corporate entity, and (2) considering the
circumstances under which a capital provider would want to achieve and maintain
ownership of this corporate entity given limited liability for the owner and that
capital requirements have to be met at any time for continued ownership. I focus
on the consequences of the capital provider assessing the value of continued own-
ership in terms of a least favorable expectation of future dividends, meaning that
I consider expectations with respect to probability measures in a set of equiva-
lent martingale measures. I present natural conditions on the set of probability
measures that imply that the value of a liability cash flow is given in terms of a
solution to a backward recursion. This part of my talk is based on joint work with
H. Engsner, K. Lindensjö and J. Thøgersen in [2] and [3].

The approach presented in the first part is attractive because it provides a
general framework for market-consistent valuation of liability cash flows, taking
repeated capital requirements and limit liability into account. However, it typi-
cally gives rise to computational challenges when accurate numerical estimates are
required. The second part considers a specialized setting, yet sufficiently general
for a wide range of applications, aiming for computational tractability.

This approach is motivated by computational challenges arising in multi-period
valuation in insurance. Aggregate insurance liability cashflows typically corre-
spond to stochastic payments several years into the future. However, insurance
regulation requires that capital requirements are computed for a one-year horizon,
by considering cashflows during the year and end-of-year liability values. This
implies that liability values must be computed recursively, backwards in time,
starting from the year of the most distant liability payments. Solving such back-
ward recursions with paper and pen is rarely possible, and numerical solutions
give rise to major computational challenges. The aim of the presented approach is
to provide explicit and easily computable expressions for multi-period valuations
that appear as limit objects for a sequence of multi-period models that converge in
terms of conditional weak convergence. Such convergence appears naturally if one
considers large insurance portfolios such that the liability cashflows, appropriately
centered and scaled, converge weakly as the size of the portfolio tends to infinity.
This part of my talk is based on joint work with N. Engler in [1].
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The risk margin and market risks

Michael Schmutz

(joint work with Christoph Möhr, Laurent Dudok de Wit)

The risk-based solvency frameworks Solvency II in Europe and the Swiss Sol-
vency Test (SST) assess the capitalisation of insurance companies based on a risk
evaluation over a one-year interval. The one-year horizon signifies that insurance
companies, even in the case of long-term multi-year insurance contracts, basically
only have to maintain capital at the regulatory required level of protection for one
year. For the further settlement of the contracts, the risk margin (market value
margin in the SST) should allow in later years to finance the capital necessary for
the regulatory required level of protection or to raise this capital if required.

The risk margin thus plays a fundamental role in these frameworks. In practi-
cal implementations, it is often calculated via the sum of the multiplication of a
cost of capital rate with the suitably discounted future expected capital require-
ments. The cost of capital rate represents the premium above the risk-free interest
that an investor would demand from the insurance company for covering the cor-
responding risks. In a recent article [1], the risk margin and, in particular, the
cost of capital rate are discussed in the context of an economic triangle of poli-
cyholders, shareholders, and regulator. The article uses well-established valuation
procedures for illiquid balance sheet items and assumes that the insurance claims
are nonhedgeable and independent of the financial market. In view of the in real-
ity often present and sometimes substantial dependencies of insurance claims on
financial market risks, we examine here somehow “the opposite”. Namely, the
dependency of the cost of capital rate on risks in traded financial assets. We focus
here only on these risks and ignore further components, such as a potentially con-
siderable illiquidity premium. Using substantial simplifications, we subsequently
analytically discuss the fundamental influence of market risks on the cost of cap-
ital rate. Our aproach combines the practitioner’s perspective with insights from
Platen’s benchmark approach to quantitative finance, cf. e.g. [5].

More concretely, we analyse the cost of capital from an investor’s perspective.
Let T denote the time at which all contracts have been settled and assume for
simplicity that this date just falls at the end of a year. The capital realized at
T is denoted by C̃T (i.e. value of assets − value of liabilities). The investor can

exercise its limited liability put option if C̃T < 0. Thus, the investor may price
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C̃+
T at time t = T − 1 using “risk-neutral valuation”, i.e.

Ct = EQ

(
BtC̃

+
T

BT

∣∣∣Ft
)
,

where Q is a suitable “risk-neutral” valuation measure, (Bt)t≥0 represents the
risk-free cash account, and a+ = max(0, a) for a ∈ R. Clearly, to prevent solvency
problems, Ct ≥ SCRt should hold for the regulatory required solvency capital
SCRt.

For simplicity, we consider from now on a Continuous Financial Market (CFM),

cf. [5], with additional assumptions. The risky tradeables ((Sjt )t≥0)dj=1 therefore
satisfy

dSjt = Sjt a
j
tdt+ Sjt

d∑

k=1

bj,kt dW k
t ,

with ((W 1
t , . . . ,W

d
t )t) a d-dimensional standard Brownian Motion, ((ajt )t) a suit-

able “drift”, and ((bj,kt )t) a suitable volatility with respect to the k-th source of

market risk. For simplicity, let ((bj,kt )t)
d
j,k=1 be invertible for each t, with inverse

matrix ((b̄j,kt )t). For more detail, see e.g. [5, Chapter 10].
The numéraire-, or growth-optimal, portfolio ((S∗

t )t), whose existence is as-
sumed here, results from an “admissible trading strategy” in the chosen CFM
and satisfies a number of interesting properties through which it can be defined
differently but, under appropriate assumptions, equivalently. In particular, for
any value process ((Sδt )t) of an “admissible trading strategy” with the same ini-

tial value as ((S∗
t )t), the process ((Ŝδt )t) = ((Sδt /S

∗
t )t) is a supermartingale, i.e.

Ŝδs ≥ EP(Ŝδt |Fs) for all s ≤ t. For general background, see e.g. [5] or [4] for a kind
of fundamental theorem that links the existence of this portfolio with an Absence
of Arbitrage concept in an equivalent way. However, note that, according to the
assumptions made on the existence of Q, we are working within classical option
pricing theory as it is e.g. also often used (in an extended form) for life insurance
contracts. It turns out, see e.g. [5], that the numéraire portfolio S∗ in our CFM
can be represented by the following SDE:

dS∗
t = S∗

t (rt + |θt|2)dt+ S∗
t |θt|dWt ,

i.e. S∗
t = exp(

∫ t
0 (rs + |θs|2)ds +

∫ t
0 |θs|dWs − 1

2

∫ t
0 |θs|2ds) , for S∗

0 = 1, where
(rt) stands for the short-rate of the risk-free cash account, and (Wt), given by

dWt = 1
|θt|

∑d
k=1 θ

k
t dW

k
t , is itself a (real-world, one-dimensional) standard Brow-

nian motion by Lévy’s characterization theorem. Here, |θt| stands for the “Total

Market Price of Risk” given by |θt| =

√∑d
k=1(θkt )2 and θkt =

∑d
j=1(ajt − rt)b̄

k,j
t .

We assume in the above CFM that the density process (Zt) is given by

Zt =
dQ

dP |Ft

=
Bt
S∗
t

,
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and that it is a true P-martingale. The investor’s view of the value Ct can then
be reformulated via the generalized Bayes rule to give

EP

(
S∗
t C̃

+
T

S∗
T

∣∣∣Ft
)

= EP


 C̃+

T

exp
(∫ T

t
(rs + |θs|2)ds+

∫ T
t
|θs|dWs − 1

2

∫ T
t
|θs|2ds

)
∣∣∣Ft


.

Thus, |θt| should have a link to the cost of capital rate. The cost of capital
rate is typically taken as a constant rate of return above risk-free interest. For a
Risk Return analysis on Multiple-Factor Beta Models, we refer e.g. to [3]. For a
representation of the cost of capital rate based on the quotient of a conditional real-
world and a risk-neutral expectation, we refer to [2]. The advantage of the following
approach is that it leads to very explicit expressions with clear dependencies on
parameters of the underlying financial market.

Unfortunately, C̃+
T is often too complicated for an analytical approach to the

cost of capital rate. To gain insights into basic mechanisms, we assume, again very
simplistically, that C̃+

T can be approximated by an Itô-process of the following form

dC̃+
t = µtC̃

+
t dt+ σtC̃

+
t dW̃t ,

for suitable drift and volatility processes µ and σ, where (W̃t) also stands for a real-

world standard Brownian motion and where for the covariation [W, W̃ ]t =
∫ t
0 ρsds

shall hold for a suitable process ρ. Itô -Calculus yields

d

(
C̃+
t

S∗
t

)
=
C̃+
t

S∗
t

(µt − rt − σt|θt|ρt)dt+
C̃+
t

S∗
t

σtdW̃t −
C̃+
t

S∗
t

|θt|dWt .

We use this to approximate
C̃+

T

S∗
T

very roughly from t = T − 1 to T :

C̃+
T

S∗
T

≈ C̃+
t

S∗
t

(1 + (µt − (rt + σt|θt|ρt))∆t) +
C̃+
t

S∗
t

σt
√

∆tZ̃ − C̃+
t

S∗
t

|θt|
√

∆tZ ,

where ∆t = 1, Z̃ and Z are standard normally distributed random variables
independent of Ft, and all other terms are Ft-measurable. With 1 + x ≈ exp(x)
one approximatively obtains

Ct = EP

(
S∗
t C̃

+
T

S∗
T

∣∣∣Ft
)

≈
EP

(
C̃+
T |Ft

)

1 + rt + σt|θt|ρt
.

This provides a concrete link to classical Discounted Cash-Flow valuation methods
from corporate finance, making σt|θt|ρt a concrete candidate for the cost of capital
rate under the imposed assumptions. (This would then have to be supplemented by
additional components such as an illiquidity premium.) The observation suggests,
among other things, that market risks on a specific balance sheet can have a
substantial impact on the cost of capital rate, with the covariation playing a major
role, along with the volatility σt of the capital and, of course, the total market price
of risk |θt|. The concrete form of this representation paves the way for relating the
cost of capital rate to concrete models for financial markets.
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Insurer’s management discretion: Self-hedging participating

life insurance

Peter Hieber

(joint work with Karim Barigou)

The performance of participating life insurance contracts depends on an underly-
ing investment portfolio. For the policyholder, risks are limited as the insurance
provider assures a minimum return. If the underlying portfolio performs well, the
policyholder participates in its return.

The majority of scientific articles on participating life insurance assumes an
exogenously given investment strategy for the underlying asset portfolio. This,
however, strongly simplifies reality as the insurance provider has full control over
the investment strategy of the underlying investment portfolio. He may adapt the
portfolio’s risk over time, for example contingent on the value of liabilities or asset-
liability ratios. In this talk, we depart from the assumption of exogenously given
investment strategies and consider more general endogenous investment strategies
that adapt dynamically to market developments. The talk has three parts:

(1) Existing literature: We review approaches in the literature on endogenous
strategies that are mostly based on the assumption of a complete financial
market where all financial risks can be fully hedged. Examples include
[2], [4], [3]. [3] transform the non-standard valuation problem into a fixed-
point problem using the martingale method, which requires the evaluation
of conditional expectations of highly path-dependent payoffs. They then
use the Least-square Monte-Carlo (LSMC) approach to approximate such
conditional expectations. [2] considers perfect hedging of a participating
contract and derived a numerical method for the valuation. However,
in both cases ([2], [3]), the focus is on the valuation problem and the
determination of the optimal underlying hedging strategy remains an open
research question.

(2) Solution in an incomplete market setting: As participating contracts in-
vest for long time horizons, a more realistic assumption is that financial
risks cannot be fully hedged. We discuss an objective function that min-
imizes the hedging risk and determine the corresponding optimal invest-
ment strategy. The financial model we consider is a Vasicek-Black-Scholes
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model where interest rates are modelled stochastically by a Vasicek model.
We consider a multi-period participating contract with an annual guaran-
tee, a product that is very common in central Europe (Belgium, Germany,
Switzerland). The implementation follows the neural network approach
introduced in [1]. For special cases, we obtain closed form solutions for
the optimal investment strategies that serve as a benachmark for our nu-
merical results (see also [5]).

(3) Comparison to the complete market case: As a last step, we link our re-
sults to the complete market case and the results existing in the literature
([2], [4]). We specifically point at the resulting optimal hedging strategies.
We stress the importance of endogenous investment strategies and their
effect on the risk management of participating life insurance contracts.
More specifically, we compare the solvency risks and contract values of
participating life insurance contracts if investment strategies are (A) ex-
ogenously given and (B) chosen endogenously.
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Hybrid life insurance valuation based on a new standard deviation

premium principle in a stochastic interest rate framework

Griselda Deelstra

(joint work with Oussama Belhouari, Pierre Devolder)

In this talk, we focus on the pricing of a class of hybrid life insurance products,
which are dependent on both mortality and financial risks, and this in a stochastic
interest rate framework.

Assuming a complete, arbitrage-free financial market, the valuation of future
(purely) financial cash-flows can be based upon risk-neutral expectations and is
related to the existence of hedging strategies. In insurance, the calculation of
premiums is based on best estimate values and safety loadings, assuming that
the law of large numbers can be applied by pooling independent contracts. Of
course, in finance, markets appear in practice very often to be incomplete, whereas
insurance risks are not always perfectly diversifiable (for instance by the presence
of longevity risks or catastrophic risks).
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Moreover, as hybrid life insurance contracts depend on both financial and insur-
ance risks, defining a fair valuation of hybrid contracts requires a hybrid valuation
principle combining the notions of financial and actuarial valuation. Different prin-
ciples have been proposed in the literature in order to price these hybrid products
(see, e.g., [5], [6], [1], [3], [2] and many others). In order to be consistent with the
financial market, the concept of market-consistency is used in the literature, see
e.g. [4] or [6]; whilst to be consistent with the actuarial market, the concept of
actuarial-consistency has been introduced, see e.g. [2].

Focusing on the pricing of hybrid products in the presence of stochastic interest
rates, we first conduct a profound study of the axioms that a valuation operator
should verify in the presence of stochastic interest rates (see e.g. [1]) and we study
both the market-consistency and actuarial-consistency properties. In particular,
we present a generalized standard deviation premium principle in a stochastic
interest rate framework, and discuss its integration in different valuation operators
suggested in the literature, namely by [5], [6] and [3]. We illustrate our methods
with a classical application in life insurance, namely a pure endowment with profit.
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Shrinking the term structure

Damir Filipović

(joint work with Markus Pelger and Ye Ye)

We develop a conditional factor model for the term structure of Treasury bonds,
which unifies non-parametric curve estimation with cross-sectional asset pricing.
Our factors are investable portfolios and estimated with cross-sectional ridge re-
gressions. They correspond to the optimal non-parametric basis functions that
span the discount curve and are based on economic first principles. Cash flows
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are covariances, which fully explain the factor exposure of coupon bonds. Empiri-
cally, we show that four factors explain the discount bond excess return curve and
term structure premium, which depends on the market complexity measured by
the time-varying importance of higher order factors. The fourth term structure
factor capturing complex shapes of the term structure premium is a hedge for bad
economic times and pays off during recessions.

Concretely, we denote by dt(x) the price at date t of a discount bond with time
to maturity x [years]. The excess return over t − 1 to t of this discount bond is
then given by

rt(x) =
dt(x)

dt−1(x+ ∆t)
− 1

dt−1(∆t)
,

where ∆t denotes the time [in years] between business days t− 1 and t. The goal
of this project is to estimate and study the empirical properties of the unobserved
discount bond excess return curve rt : [0,∞) → R. What is observed at any t
are Mt coupon bond securities with prices Pt,i, cash flows Ct,ij at cash flow dates

0 < x1 < · · · < xN , and their excess returns Rbond
t,i =

Pt,i+Ct−1,ii+1

Pt−1,i
− 1

dt−1(∆t)
. By

the absence of arbitrage, we know that a coupon bond is a portfolio of discount
bonds. Formally, we obtain

Rbond
t = Zt−1rt(x)︸ ︷︷ ︸

fundamental returns

+ ǫt︸︷︷︸
return errors

where we define the normalized discounted cash flows Zt−1,ij :=
Ct−1,ij+1dt−1(xj+∆t)

Pt−1,i
,

and we denote by f(x) := (f(x1), . . . , f(xn))⊤ the array of function values queried
at x = (x1, . . . , xN )⊤, for any function f .

We estimate rt by solving the following regularized optimization problem

(1) min
rt∈Hα

{
1

Mt

∥∥Rbond
t − Zt−1rt(x)

∥∥2
2

︸ ︷︷ ︸
return error

+ λ ‖rt‖2Hα︸ ︷︷ ︸
smoothness

,

}
.

We choose the regularization penalty by awarding smoothness of rt. Smoothness
of the return curve is motivated by economic principles, it puts limits to excessive
returns of investments such as the butterfly trade rt(x−∆)−2rt(x)+ rt(x+∆) ≈
r′′t (x)∆2. Our hypothesis space Hα therefore consists of twice weakly differentiable
functions satisfying the natural boundary conditions rt(0) = 0 and limx→∞ r′t(x) =
0, and finite weighted Sobolev type norm

‖rt‖2Hα
:=

∫ ∞

0

r′′t (x)2eαx dx.

We prove that Hα is a reproducing kernel Hilbert space with kernel k given
in closed form. Problem (1) is a kernel ridge regression with unique solution r̂t
in Hα, which is spanned by the N kernel basis functions k(x1, ·), . . . , k(xN , ·).
We orthonormalize the basis functions as follows. We show that the kernel matrix
Kij := k(xi, xj) is invertible, and thus admits spectral decomposition K = V SV ⊤,
with eigenvectors V = [v1| · · · |vN ], and strictly positive eigenvalues s1 ≥ · · · ≥
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sN > 0. We obtain the orthonormal system of functions in Hα given by u =
(u1, . . . , uN )⊤ := S−1/2V ⊤k(·,x).

After this transformation we obtain the following result.

Theorem 1 (Conditional Factor Model Representation). The unique solution r̂t
to (1) can be represented as factor model

(2) r̂t(·) = u(·)⊤F̂t,
where the factors F̂t are unique solution to the cross-sectional ridge regression

min
Ft∈RN

{
1

Mt

∥∥Rbond
t − βbond

t−1 Ft
∥∥2
2

+ λ ‖Ft‖22
}
,

where the conditional loadings βbond
t−1 are given in terms of the normalized dis-

counted cash flows (bond characteristics) Zt−1 by

βbond
t−1 := Zt−1V S

1/2.

The factors F̂t are given in closed form by

F̂t = ωt−1R
bond
t ,

which are the excess returns of traded bond portfolios with portfolio weights

ωt−1 :=
(
βbond
t−1

⊤
βbond
t−1 + λMtIN

)−1

βbond
t−1

⊤
.

In summary, this is a flexible non-parametric data-driven approach, the smooth-
ness penalty λ > 0 and maturity weight α > 0 are selected empirically by
cross-validation. We perform an extensive empirical analysis on a large sample
of daily U.S. Treasury bond returns ranging from June 1961 to December 2020.
In particular, we shrink the term structure and study low-dimensional approxi-
mations of the N -factor model (2), and empirically show that the first n factors
describe the data accurately well, for n = 4. The paper is available at SSRN:
https://ssrn.com/abstract=4182649, which contains an extensive list of refer-
ences.

Climate change, insurance mathematics and optimal prevention

Stèphane Loisel

(joint work with H. Albrecher, C. Constantinescu, R. Gauchon, D. Kortschak,
P. Ribereau, J.L. Rullière, J. Trufin)

In this blackboard talk, we start by describing the various impacts of climate
change on the insurance industry. We present some theoretical results that demon-
strate that quantitative risk management of uncertain and potentially worsening
risks is completely different in presence of climate change. We also show the im-
pact of the level of access to information of insurance risk managers on their ability
to keep the insurance business safe enough. In presence of full uncertainty, with-
out any possibility to adjust premium, we use our previous results obtained by
Albrecher and Constantinescu to show that increasing capital requirements is not
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enough to make the ruin probability decrease to zero, and that there is a positive
probability to be ruined anyway. Besides, the asymptotic rate of decay towards
this positive probability level with respect to the initial capital is much slower
than usually as well. In the opposite case, assuming that one is “magically” able
to adjust instantaneously income premium rate to the worsened risk level, in the
regular variation case, we use results obtained with Kortschak and Ribereau to
study the effect of claim size distribution worsening. We consider two approaches:
either the shape or the scale parameter changes over time. Comparing the two
approaches, we note that when risks initially have infinite variance, a change in
the scale parameter may have more impact than a change in the shape parame-
ter. We also note that the company may cease its business due to climate change
for several reasonns, including ruin, insolvency or mass lapse due to the rise of
insurance premium to an unacceptable level. We then present recent works and
works in progress to propose a risk management partial solution to this problem.
We believe that one key ingredient is risk prevention. We briefly present some
results of our recent works with Gauchon, Rullière and Trufin and explain the dif-
ferences between our optimal prevention problem and classical optimal reinsurance
problems. We highlight some results and explain in particular that the optimal
prevention level does not depend on the initial surplus level in presence of one sin-
gle kind of claims, while it depends on the initial surplus when there are two kinds
of claims and when prevention only has some effect on one of them. We mention
some work in process with Minier and Mamode Khan about prevention with INAR
and BINAR processes. Following discussions during this Oberwolfach workshop,
some concrete future collaborations have been started with Hansjoerg Albrecher
on risk models in presence of climate change, as well as with Michael Schmutz
on insurance regulation of long-term risk and short-term bias. In Oberwolfach
discussions, we also planted the seed for other future collaborations, notably with
Valérie Chavez-Demoulin on climate change risk for hailstorm risk management
and with Caroline Hillairet on prevention and thinning.
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Extreme value theory in a changing world

Valérie Chavez-Demoulin

(joint work with Linda Mhalla)

The past few decades have seen extreme climate events affecting all regions of the
world with catastrophic impacts on human society. Extreme value theory is the
field of statistics dedicated to the study of events with low occurrence frequencies
and large amplitudes. Such events are necessarily rare in relation to the bulk of
a population, which makes them hard to model and difficult to predict. Classical
methods of extreme value theory are based on the assumption that the data are in-
dependent and identically distributed (iid) or at least stationary and, in this case,
the classical approaches rely on theoretical foundations that are well established
and understood. In practice the iid or stationarity assumptions are generally vio-
lated, the nature of the series being non-stationary or depending on covariates. In
this talk I have reviewed extreme value theory in the univariate and multivariate
settings and under non-stationarity, attempting, in this case, to capture different
sorts of dependence when estimating risk measures. Part of the work I presented
contributes to the development of flexible frameworks for taking into account the
effect of covariates on the (tail) dependence structure between two variables. In
the context of multivariate extremes, we develop in [1] flexible, semi-parametric
method for the estimation of non-stationary multivariate Pickands dependence
functions. Related works in multivariate extremes, allowing extremal dependence
structures that may vary with covariates are [2] and [3]. A new field of interest
and very much linked to the understanding of effect of covariates is causality. The
study of causality for extremes is in its infancy. Examples of related work are [4],
who defined recursive max-linear models on directed acyclic graphs, [5], who define
a causal tail coefficient capturing asymmetries in the extremal dependence between
two random variables, [6], who use multivariate generalized Pareto distributions to
study probabilities of necessary and sufficient causation as defined in the counter-
factual theory of Pearl, and [7], who construct a causal inference method for tail
quantities relying on Kolmogorov complexity of extreme conditional quantiles. [8]
review the related basic probability schemes, inference techniques, and statistical
hypotheses for extreme event attribution. In preparation, we are currently writing
a Chapter about causality of extremes in a book entitled “Handbook on Statistics
of Extremes”.

Part of my presentation was related to a book entitled “Risk Revealed: Caution-
ary Tales, Understanding and Communication” I co-authored with Paul Embrechts
and Marius Hofert, which will appear in 2024 in Cambridge University Press.
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Isotonic distributional regression

Johanna Ziegel

(joint work with Sebastian Arnold, Tilmann Gneiting, Alexander Henzi,
Gian-Reto Kleger, Eva-Maria Walz)

Isotonic distributional regression (IDR) is a nonparametric distributional regres-
sion approach under a monotonicity constraint [9]. It has found application as a
generic method for uncertainty quantification [12], in statistical postprocessing of
weather forecasts [9, 11], and it is an integral part of distributional single index
models [7, 2]. In this abstract, the construction and main properties of IDR are re-
viewed and it is explained how IDR can be generalized from empirical distributions
to arbitrary distributions yielding isotonic conditional laws.

Assume that the covariate X takes values in a partially ordered space (X ,≤),
and the outcome Y is real-valued. The main assumption of IDR is that when the
covariate X increases, we expect an increase of the outcome Y . Mathematically,
we assume that x ≤ x′ for x, x′ ∈ X implies L(Y | X = x) �st L(Y | X = x′),
where L(Y | X = x) denotes the conditional distribution of Y given X = x and
�st denotes the usual stochastic order.

For given data pairs (xi, yi)
n
i=1 with (xi, yi) ∈ X × R, the IDR estimator is

defined as the vector F̂ = (F̂i)
n
i=1 = (F̂Y |X=xi

)ni=1 of cumulative distribution
functions (cdfs) that satisfies

(1) F̂ = arg min
(F1,...,Fn)

n∑

ℓ=1

CRPS(Fℓ, yℓ),

where the minimum is taken over all vectors of cdfs (F1, . . . , Fn) that satisfy Fi �st

Fj whenever xi ≤ xj . Here, the continuous ranked probability score (CRPS) is
defined as

CRPS(F, y) =

∫

R

(F (z) − 1{y ≤ z})2 dz

for a cdf F and y ∈ R.
The optimization problem at (1) has a unique solution that can be stated explic-

itly as a min-max formula. It turns out that for each y ∈ R, F̂1(y), . . . , F̂n(y) is the
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antitonic least-squares regression of the binary outcomes 1{y1 ≤ y}, . . . ,1{yn ≤ y}
[3]. Furthermore, the IDR solution is universal in the sense that the same solu-
tion arises when replacing the CRPS in (1) by any quantile- or threshold-weighted
CRPS [6]. IDR can be efficiently computed using the pool adjacent violators
(PAV) algorithm for each threshold y ∈ {y1, . . . , yn} if there is a total order on the
covariate space X . For partial orders, the solution can be obtained as a quadratic
programming problem for each y ∈ {y1, . . . , yn}. There is an R package and a
Python implementation available [8]. The IDR solution is defined at observed co-
variate values only but predictions at new covariate values can be readily obtained
by suitable interpolation techniques.

Statistical consistency results for IDR can be found in [5] for ordinal covariates,
in [10] for real-valued covariates, and in [9] for vector-valued covariates. Further-
more, in [7, 2], the authors show that even if the partial is estimated from the
data, consistency still holds.

Suppose that a vector (X,Y ) ∈ X × R has distribution (1/n)
∑n
i=1 δ(xi,yi).

Then, IDR provides an approximation to the joint distribution of (X,Y ) such
that all conditional distributions of Y given X are ordered with respect to the
stochastic order. It is a natural question to ask if such an isotonic approximation
can be constructed starting with any distribution for (X,Y ), where we assume
that (X,Y ) are defined on the probability space (Ω,F ,P). The answer is positiv
as shown in [1], where the solution is termed the isotonic conditional law of Y given
X . The isotonic conditional law of Y given X is constructed as the conditional
law of Y given the σ-lattice generated by X .

More precisely, a σ-lattice C ⊆ F is a system of sets that contains ∅,Ω and is
closed under countable unions and countable intersections. A random variable Z
is C-measurable if {Z > a} ∈ C for all a ∈ R. The conditional expectation E(Z | C)
with respect to the σ-lattice C can be defined as the L2-projection of Z onto the
closed convex cone of C-measurable random variables [4]. The conditional law
L(Y | C) of Z with respect to C is then a Markov kernel from (Ω,F) to (R,B(R))
such that ω 7→ L(Z | C)(ω, (a,∞)) is a version of E(1{Z > a} | C) for any a ∈ R.
Furthermore, let U be the collection of all upper sets in (X ,≤). It is a σ-lattice,
and a function f : X → R is increasing if and only f is U-measurable, that is,
{f > a} ∈ U for all a ∈ R. Finally, for an ordered metric space (X , d,≤), the
σ-lattice generated by X is defined as

A(X) = {X−1(B) | B ∈ B(X ) ∩ U}.

IDR is the isotonic conditional law of Y given X if the joint distribution of (X,Y )
has finite support. Isotonic conditional laws can also be identified as CRPS mini-
mizers in a suitable sense [1].
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Approximate Bayesian Computation for Insurance and Finance

Pierre-Olivier Goffard

(joint work with Patrick Laub)

Approximate Bayesian Computation (ABC) is a statistical learning technique to
calibrate and select models by comparing observed data to simulated data. This
technique bypasses the use of the likelihood and requires only the ability to gener-
ate synthetic data from the models of interest. We apply ABC to fit and compare
insurance loss models using aggregated data. The talk is based on the work Goffard
and Laub [3].

Over a fixed time period, an insurance company experiences a random number
of claims called the claim frequency, and each claim requires the payment of a
randomly sized compensation called the claim severity. The two could be associ-
ated in an equivalent way with a policyholder, a group of policyholders or even
an entire nonlife insurance portfolio. The claim frequency is a counting random
variable while the claim sizes are non-negative continuous random variables. Let
us say that the claim frequency and the claim severity distributions are specified
by the parameters θfreq and θsev respectively, with θ = (θfreq; θsev). For each time
s = 1, . . . , t the number of claims ns and the claim sizes us := (us,1, us,2, . . . , us,ns

)
are distributed as

ns ∼ pN (n|θfreq) and (us|ns) ∼ fU (u|n, θsev).

Fitting these distributions is key for claim management purposes. For instance,
it allows one to estimate the expected cost of claims and set the premium rate
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accordingly. The mixed nature of claim data, with a discrete and a continuous
component, has lead to two different claim modelling strategies. The first strategy
is to handle the claim frequency and the claim severity separately, see for instance
[1]. The second approach gathers the two constituents in a compound model
for which data in aggregated form suffices. We take the later approach as we
assume that the claim count and amounts {(n1, u1), . . . , (nt, ut)} are unobservable.
Instead, we only have access to some real-valued summaries of the claim data at
each time, denoted by

(1) xs = Ψ(ns, us), s = 1, . . . , t.

Standard actuarial practice uses the aggregated claim sizes, defined as Ψ(n, u) =∑n
i=1 ui, and assumes that the claim frequency is Poisson distributed while the

severities are governed by a gamma distribution, we refer to the works of [4].

A Bayesian approach to estimating θ would be to treat θ as a random variable
and find (or approximate) the posterior distribution π(θ|x). Bayes’ theorem tells
us that

(2) π(θ|x) ∝ p(x|θ)π(θ),

where p(x|θ) is the likelihood and π(θ) is the prior distribution. The prior repre-
sents our beliefs about θ before seeing any of the observations and is informed by
our domain-specific expertise. The posterior distribution is a very valuable piece
of information that gathers our knowledge over the parameters. A point estimate

θ̂ may be derived by taking the mean or mode of the posterior. For an overview
on Bayesian statistics, we refer to the book of [2].

The posterior distribution (2) rarely admits a closed-form expression, so it is ap-
proximated by an empirical distribution of samples from π(θ|x). Posterior samples
are typically obtained using Markov Chain Monte Carlo (MCMC), yet a require-
ment for MCMC sampling is the ability to evaluate (at least up to a constant) the
likelihood function p(x|θ). When considering the definition of x in (1), we can see
that there is little hope of finding an expression for the likelihood function even
in simple cases (e.g. when the claim sizes are i.i.d.). If the claim sizes are not
i.i.d. or if the number of claims influences their amount, then the chance that a
tractable likelihood for x exists is extremely low. Even when a simple expression
for the likelihood exists, it can be prohibitively difficult to compute (such as in a
big data regime), and so a likelihood-free approach can be beneficial.

We advertise here a likelihood-free estimation method known as approximate
Bayesian computation (ABC). This technique has attracted a lot of attention
recently due to its wide range of applicability and its intuitive underlying princi-
ple. One resorts to ABC when the model at hand is too complicated to write the
likelihood function but still simple enough to generate artificial data. Given some
observations x, the basic principle consists in iterating the following steps:

(1) generate a potential parameter from the prior distribution θ̃ ∼ π(θ);

(2) simulate ‘fake data’ x̃ from the likelihood (x̃|θ̃) ∼ p(x|θ);
(3) if D(x, x̃) ≤ ǫ, where ǫ > 0 is small, then store θ̃,
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where D(·, ·) denotes a distance measure and ǫ is an acceptance threshold. The al-
gorithm provides us with a sample of θ’s whose distribution is close to the posterior
distribution π(θ|x).

The basic ABC algorithm outlined above is, arguably, the simplest method of
all types of statistical inference in terms of conceptual difficulty. At the same
time, this simple method is perhaps the most difficult form of inference in terms
of computational cost. We must use a modified form of this basic regime to
minimize (though not eliminate) the gigantic computational costs of ABC. ABC is
a somewhat young field (like machine learning), and the methodology of ABC and
the other likelihood-free algorithms are currently the subject of intense research.
As such, there are many variations of ABC which are under investigation, and
there is no ironclad consensus on which variation of the ABC algorithm is the
best. For a comprehensive overview on ABC, we refer to the monograph of [7]; in
finance and insurance, ABC has been considered in the context of operational risk
management by [5] and for reserving purposes by [6].

References

[1] Edward W. Frees. Frequency and severity models. In Edward W. Frees, Richard A. Derrig,
and Glenn Meyers, editors, Predictive Modeling Applications In Actuarial Science, pages
138–164. Cambridge University Press.

[2] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B
Rubin. Bayesian Data Analysis. Chapman and Hall/CRC, 2013.

[3] Pierre-Olivier Goffard and Patrick J. Laub. Approximate bayesian computations to fit and
compare insurance loss models. Insurance: Mathematics and Economics, 100:350–371, 2021.

[4] Bent Jørgensen and Marta C. Paes De Souza. Fitting Tweedie’s compound Poisson model
to insurance claims data. Scandinavian Actuarial Journal, 1994(1):69–93, jan 1994.

[5] Gareth Peters and Scott Sisson. Bayesian inference, Monte Carlo sampling and operational
risk. Journal of Operational Risk, 1(3), 2006.
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Sharing Model Uncertainty

Frank Riedel

(joint work with Chiaki Hara, Sujoy Mukerji, Jean-Marc Tallon)

Uncertainty, as opposed to risk, is a major concern in today’s societies. Be it
financial markets during the 2007-2009 crisis, policy makers when a new virus
emerged, or farmers hit by climate change - in all situations, decision makers
faced and face uncertainties that cannot be easily quantified probabilistically. It is
therefore of crucial importance to understand whether and how economic institu-
tions can deal with and possibly hedge against this uncertainty. In this paper, we
study this question in the framework of identifiable environments in which (Knigh-
tian) uncertainty is resolved ex post, at least partially, when sufficient amounts of
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data have been collected, and agents exhibit smooth ambiguity-averse preferences
([17]), a setting that that has recently been axiomatized by [11]. Identifiability is
a necessary condition for statistical learning to occur. We thus put ourselves in a
framework where such perfect learning is possible, in principle. In experiments, we
could think of an Ellsberg experiment in which the composition of urns is revealed
after the experiment. In statistics, ergodic environments suffice for identifiability.
In real life, perfect identification is not always achievable, of course. However, in
the case of financial markets, e.g., the past volatility of a stock price is very well
known ex post. A virus, to take another example, is understood much better aa
couple of years after its first appearance. Even in climate change, it might be
possible to state after a sufficiently long time that average temperature, e.g., has
risen by at least one or two degrees. Our study thus sheds also light on the issue
of learning under ambiguity, a notoriously difficult task so far.

In identifiable environments, agents can make their consumption plans contin-
gent on models, thus allowing to make ex post insurance payments that depend
on a certain probabilistic model being true. The farmer, to take up an example
from above, can thus write an insurance contract on a temperature change of a
certain amount being true after thirty years or so. This possibility allows to study
uncertainty sharing in much more detail and to obtain more results than in general
models in which uncertainty is not identifiable.

We are thus able to study models with aggregate uncertainty, in contrast to
much of the literature on risk and uncertainty sharing that has focused on the
simpler case of no aggregate uncertainty so far. We are able to identify the en-
vironments in which a representative agent of smooth ambiguity type exists. In
such settings, we can compute quite explicitly the efficient uncertainty sharing
rules and study how consumption shares vary with different uncertainty scenarios,
depending on the respective individuals’ risk and ambiguity aversion relative to
society’s risk and ambiguity aversion.

We investigate consequences of ambiguous model uncertainty on efficient al-
locations in an exchange economy, and departing from the literature, allow for
ambiguous aggregate risk and heterogeneously ambiguity averse consumers. A
model – a statistical view of the world, comprising of parameters and distinc-
tive mechanisms– implies a specific probabilistic forecast about the states of the
world. Furthermore, the parameters and mechanisms driving a model may be
estimated and identified on the basis of objective data. However, at the point of
decision-making, the data relevant to identifying the model is still missing. Hence,
consumers are unsure what would be the appropriate probability measure to apply
to evaluate consumption contingent on a state space Ω and keep in consideration a
set P of alternative probabilistic laws. Importantly, because models are identified,
the usual assumption that consumption plans are contingent on events in the state
space now means that they can be made effectively contingent on models too.

We study the case where consumers in the economy are heterogeneously am-
biguity averse with smooth ambiguity preferences [17]. Our primary focus lies in
those economies that admit a representative consumer who is also of the smooth
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ambiguity type. This setting offers valuable and precise insights into efficient
sharing rules and the characteristics of the representative consumer. Another ad-
vantage of the setting is that the insights obtained, initially assuming that P is
point-identified, robustly extend to the case where models are only set-identified.
When aggregate risk is unambiguous we show, quite generally, that ambiguity
aversion makes no difference to the qualitative nature of efficient allocations: they
are comonotone just as under expected utility. An economy with a smooth am-
biguity averse representative consumer is characterized by consumers who exhibit
linear risk tolerance with the same marginal risk tolerance. When aggregate risk
is ambiguous, efficient sharing rules systematically deviate from the linearity that
would arise under expected utility. The deviations –which make the slope and
intercept of the linear rule model-contingent– arise to allow the more ambiguity
averse consumers to have smoother expected utility across models.

Macro-finance models that study effects of ambiguity aversion consider single
consumer economies with ambiguous aggregate risk. We show if we introduce het-
erogeneous ambiguity aversion the nature of the representative consumer can be
very different from what is widely assumed in the literature. For instance, even
if individual consumers have constant relative ambiguity aversion, the represen-
tative consumer is shown to have decreasing relative ambiguity aversion. Such a
representative consumer makes for more compelling asset-pricing predictions than
one based on homogeneous ambiguity aversion.

Related literature. Efficient risk-sharing in expected-utility economies was first
studied by [4], further refined for the HARA class of utility functions by [25], [5]
and [14] among others. Under ambiguity, [8] extended the comonotonicity result
obtained under expected utility to Choquet expected utility with common capacity.
[3], [22] and [12] further studied the case in which aggregate endowment is non-
risky and preferences are more general than Choquet-expected-utility preferences
(including, for the two latter references, the smooth ambiguity model). [23] and
[9] characterized properties of efficient risk-sharing when the aggregate endowment
is risky but not ambiguous. [2] extends some of these results to cases where
agents have possibly heterogeneous, non-convex ambiguity sensitive preferences.
[24] proves that, under HARA with common risk tolerance, a two-fund theorem
holds for maxmin-expected-utility economies (and hence efficient allocations are
comonotonic). To the best of our knowledge, no paper has studied risk-sharing
with ambiguous aggregate endowments and heterogeneous ambiguity aversion.
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Optimal investment in ambiguous financial markets with learning

Nicole Bäuerle

(joint work with Antje Mahayni)

We investigate the effects of model ambiguity preferences on optimal investment
decisions in a multi asset Black Scholes market. Since the seminal paper by [5],
we know that decision makers may have a non-neutral attitude towards model
ambiguity. As a result, preferences are decomposed into risk preferences (based on
known probabilities) and preferences concerning the degree of uncertainty about
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the (unknown) model parameters and are evaluated separately. This is in particu-
lar relevant for portfolio optimization problems. [4] suggests that model ambiguity
is at least as prominent as risk in making investment decisions.

There are different ways to incorporate model ambiguity in decision making. In
our setting, model ambiguity refers to the drift uncertainty in the dynamics of asset
prices and we apply the smooth ambiguity approach of [7] to deal with it. The
risk in asset prices itself is evaluated by a utility function applied to the terminal
wealth. Thus, the expected utility is itself a random variable (determined by the
prior distribution of the drift parameters) which is evaluated by a second utility
function (ambiguity function) capturing the model ambiguity. As in [1] we assume
that both the risk aversion and ambiguity aversion of the investor are described by
(CRRA) power functions. While [1] consider pre-commitment strategies, we take
into account for the possibility that the investor is able to gradually learn about
the drift by observing the asset price movements. Using duality results we are able
to solve the problem analytically. To the best of our knowledge this has not yet
been achieved before in our setting. Further, based on our theoretical results, we
are able to shed light on the impact and consequences of ambiguity preferences.

The underlying financial market consists of d stocks and one riskless bond
(for simplicity assumed to be identical to 1), defined on a filtered probability
space (Ω,F , (Ft),P) with finite time horizon T > 0. The price process S =
(S1(t), . . . , Sd(t))t∈[0,T ] of the d stocks will for i = 1, . . . , d be given by

(1) dSi(t) = Si(t)
[
µidt+

d∑

j=1

σijdWj(t)
]

= Si(t)
[ d∑

j=1

σijdYj(t)
]
,

where W = (W1(t), . . . ,Wd(t))
⊤
t∈[0,T ] is a d-dimensional Brownian motion, µi ∈

R, σij ∈ R+, i, j = 1, . . . , d and σ = (σij) is regular. We further set

Y (t) := W (t) + Θt, Θ⊤ := σ−1µ, µ := (µ1, . . . , µd),

where Θ denotes the market price per unit of risk. We further assume that µ is
not known and thus a random variable. This implies that the market price of risk
Θ is also not known to the investor. However, she has a prior knowledge about Θ
in form of a prior distribution P on Rd.

Due to the self-financing condition, trading strategies π = (π1, . . . , πd) are d-
dimensional stochastic processes, where πk(t) describes the amount invested in the
k-th stock at time t ∈ [0, T ]. Strategies π should be FY -progressively measurable
(which is the filtration generated by Y or equivalently S). This means that the
agent is able to learn the right market price of risk. The associated wealth process
denoted by (Xπ

t )t∈[0,T ] is given by

(2) dXπ
t =

d∑

k=1

πk(t)
dSk(t)

Sk(t)
= π(t)σdY (t)

with initial capital x0 ∈ R. In what follows let u(x) = 1
αx

α, α < 1, α 6= 0.
The investor aims to maximize her expected utility of terminal wealth. First

we assume that the investor is ambiguity-neutral w.r.t. the unknown parameter
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and consider

(3) V (x0) = sup
π

∫
Eϑ[u(Xπ

T )]P(dϑ)

where the supremum is taken over all FY -adapted strategies π for which the
stochastic integral and the expectations are defined and Xπ

T ≥ 0. We denote this
set by A. Eϑ is the conditional expectation, given Θ = ϑ. This problem is the
well-known Bayesian adaptive portfolio problem. We summarize its solution in
the following theorem ([6, 8]) (where ‖ · ‖ is the usual Euclidean norm):

Theorem 1. The maximal expected utility attained in (3) is given by

(4) V (x0) =
xα0
α

(∫

Rd

( ∫
exp

(
z · ϑ− 1

2
‖ϑ‖2T

)
P(dϑ)

)γ
ϕT (z)dz

)1/γ

, x0 > 0

where γ = 1/(1 − α), ϕT is the density of the d-dimensional normal distribution
N (0, T I) (I being the identity matrix). The optimal fractions invested in the stocks
are also given by an explicit formula.

Now we are interested in an investor who takes model ambiguity into account,
i.e. instead of (3) we consider for v(x) = 1

λ x
λ, λ < 1, λ 6= 0 the problem ([1])

sup
π∈A

v−1

∫
v ◦ u−1Eϑ[u(Xπ

T )]P(dϑ) = sup
π∈A

(∫
(Eϑ[(Xπ

T )α])λ/α P(dϑ)

)1/λ

(5)

This means that model ambiguity, represented by an uncertain market price of
risk, is evaluated with a second utility function v which is here of the same form
but with possibly different parameter. In case α > 0 problem (5) is equivalent to

(6) sup
π∈A

(
E

[(
EΘ[(Xπ

T )α]
)λ/α])α/λ

,

Here we restrict to the case that λ > α > 0 and define p := λ/α > 1. The
economic interpretation is that the agent is ambiguity-loving (the ambiguity-averse
case is similar). By using the Lp norm ‖ · ‖p we can write problem (6) as

(7) sup
π∈A

‖EΘ[(Xπ
T )α]‖p

where the norm is w.r.t. Θ. It is well-known that the Lp norm has the following
dual representation for a r.v. X ≥ 0, where 1/p + 1/q = 1 (see e.g. [9]):

Lemma 1. If p := λ/α > 1 we obtain for non-negative X ∈ Lp

(8) ‖X‖p = sup
{∫

XdQ :
∥∥∥dQ
dP

∥∥∥
q
≤ 1
}
.

where on the right-hand side of (8) the supremum is taken over all measures Q

(not necessarily probability measures) which are absolutely continuous w.r.t. P and
satisfy the constraint. Moreover, an optimal measure Q∗ exists.

In what follows define the set of measures Q as the set of measures which
satisfy the constraints in (8). This gives immediately rise to the following solution
algorithm for our problem:
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Theorem 2. In the model of this subsection we have

sup
π∈A

sup
Q∈Q

∫
Eϑ[(Xπ

T )α]Q(dϑ) = sup
Q∈Q

sup
π∈A

∫
Eϑ[(Xπ

T )α]Q(dϑ) =

∫
Eϑ[(Xπ∗

T )α]Q∗(dϑ).

After normalizing Q, the inner optimization problem is exactly the Bayesian port-
folio problem with distribution Q̃ := Q/Q(R) for the unknown parameter. So
solving (6) boils down to solving the classical Bayesian portfolio problem first with
value given in Theorem 1 and then in a second step finding the optimal prior dis-
tribution implied by Q∗ which is obtained from the outer optimization problem.
The optimal strategy π∗ is then the one in Theorem 1 with P replaced by Q∗.

An approach like this may be generalized to situations where uncertainty and
ambiguity are measured by other means (see e.g. [3]). The extended abstract is
based on [2].

References

[1] A.G. Balter, A. Mahayni, N. Schweizer Time-consistency of optimal investment under
smooth ambiguity, European Journal of Operational Research, 293 (2021), 643–657.
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[3] N. Bäuerle, U. Rieder Markov decision processes under ambiguity, Banach Center Publica-
tions, 122 (2020), 25–39.

[4] Z. Chen, L. Epstein Ambiguity, risk, and asset returns in continuous time, Econometrica,
70 (2002), 1403–1443.

[5] D. Ellsberg Risk, ambiguity, and the Savage axioms, The quarterly journal of economics,
75 (1961), 643-669.

[6] I. Karatzas, X. Zhao Bayesian adaptive portfolio optimization. In: Option pricing, interest
rates and risk management (2001), 632–669.

[7] P. Klibanoff, M. Marinacci, S. Mukerji A smooth model of decision making under ambiguity,
Econometrica, 73 (2005), 1849–1892.
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Investment under Uncertain Preferences

Mogens Steffensen

(joint work with S. Desmettre and J. Søe)

We consider classes of dynamic decision problems where an investor maximizes
utility but faces random preferences. We consider three versions of the problem.

In one version, the investor optimizes expected utility where the expectation
is taken with respect to both financial and preference uncertainty. That is based
on Steffensen and Søe (2023). We formalize a consumption–investment–insurance
problem with the distinction of a state-dependent relative risk aversion. The state
dependence refers to the state of the finite state Markov chain that also formalizes
insurable risks such as health and lifetime uncertainty. We derive and analyze the
implicit solution to the problem and compare it with special cases in the literature.
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Two other versions are based on certainty equivalents. We tackle the time-
consistency issues arising from that formulation by applying the equilibrium theory
approach.

In one version, the investor learns nothing about his preferences as time passes.
That is based on Desmettre and Steffensen (2023). We provide the proper defi-
nitions and prove a rigorous verification theorem. We complete the calculations
for the cases of power and exponential utility. For power utility, we illustrate
in a numerical example, that the equilibrium stock proportion is independent of
wealth, but decreasing in time, which we also supplement by a theoretical discus-
sion. For exponential utility, the usual constant absolute risk aversion is replaced
by its expectation.

The main results of Desmettre and Steffensen (2023) are gathered in the fol-
lowing verification theorem and corollary. Definitions and proofs can be found in
Desmettre and Steffensen (2023). We model the parameter of a utility function
γ as a real-valued random variable. Examples are the constant (known) relative
and absolute risk aversions that are replaced by random variables. We form an
optimization problem based on the idea to maximize the certainty equivalent of
terminal wealth w.r.t. a random risk aversion in an equilibrium sense, i.e. we want
to maximize the reward functional

(1) Jπ(t, x) :=

∫
(uγ)−1 (Et,x[uγ(Xπ(T ))]) dΓ(γ) ,

where Γ is the Cumulative Distribution Function (CDF) of γ, and we integrate over
the support of the corresponding CDF. Moreover, we assume that the dependence
of the utility function u. on γ ∼ Γ is such that the integral in (1) is always well-
defined. Note that now we decorate the utility function by subscript γ to highlight
its dependence on risk aversion.

We now first formalize the equilibrium problem and then characterize its solu-
tion in a verification theorem. We introduce

yπ,γ (t, x) := Et,x [uγ (Xπ (T ))] ,(2)

such that the objective of the investor is to maximize the reward functional

Jπ (t, x) :=

∫
(uγ)−1 (yπ,γ (t, x)) dΓ (γ)(3)

in a given sense.

Theorem 1 (Verification Theorem). Assume that there exist functions U ∈ C1,2,
Y γ ∈ C1,2 for all γ, such that

Ut(t, x) = inf
π

{
− (r + π (α− r))xUx(t, x) − 0.5π2x2σ2Uxx(t, x) +Ht(t, x)

+ (r + π(α− r))xHx(t, x) + 0.5π2x2σ2Hxx(t, x)

−
∫
ιγ(Y γ(t, x))(Y γt (t, x)

+ (r + π(α− r)x)Y γ
x (t, x) + 0.5σ2π2x2Y γxx(t, x)) dΓ(γ)

}
,

(4)
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and

Y γt (t, x) = −(r + π̂(α− r))xY γ
x (t, x) − 0.5σ2π̂2x2Y γxx(t, x) ,(5)

where H(t, x) =
∫

(uγ)−1(Y γ(t, x))dΓ(γ) ∈ C1,2 and

π̂ = arg inf
π

{
− (r + π (α− r))xUx(t, x) − 0.5π2x2σ2Uxx(t, x) +Ht(t, x)

+ (r + π(α − r))xHx(t, x) + 0.5π2x2σ2Hxx(t, x)

−
∫
ιγ(Y γ(t, x))(Y γt (t, x)

+ (r + π(α − r)x)Y γx (t, x) + 0.5σ2π2x2Y γxx(t, x)) dΓ(γ)
}
,

(6)

with boundary conditions

U(T, x) = x, and Y γ(T, x) = uγ(x) for all γ .(7)

Furthermore assume that U, H, and Y γ for all γ, belong to the space L2(X π̂).
Then π̂ is an equilibrium control, and we have that

V (t, x) = U(t, x) ,(8)

yπ̂,γ(t, x) = Y γ(t, x) for all γ .(9)

For the special form of H given by

H(t, x) =

∫
(uγ)−1(Y γ(t, x)) dΓ(γ)

we obtain as an immediate consequence:

Corollary 1. From the pseudo HJB (4) we obtain by using

H(t, x) =

∫
(uγ)−1(Y γ(t, x)) dΓ(γ) ,

Ht(t, x) =

∫
ιγ(Y γ(t, x))Y γt (t, x) dΓ(γ) ,

Hx(t, x) =

∫
ιγ(Y γ(t, x))Y γx (t, x) dΓ(γ) ,

Hxx(t, x) =

∫
ιγ(Y γ(t, x))Y γxx(t, x) dΓ(γ) +

∫
(ιγ)′(Y γ(t, x))(Y γx (t, x))2 dΓ(γ) ,

the following form:

Ut(t, x) = inf
π

{
− (r + π(α− r))xUx(t, x) − 0.5σ2π2x2Uxx(t, x)

+ 0.5σ2π2x2
∫

(ιγ)′(Y γ(t, x))(Y γx (t, x))2 dΓ(γ)
}
.

(10)

In this formulation, the non-linearity arising within the time-inconsistent control
problem is clearly visible, cf. [1, Section 16.2].
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Risk aversion is an observed stochastic process in another version (work in
progress, new results). That version can, e.g., be motivated by preferences that
directly depend on the state of health. We introduce the notion of preferences
concerning preference risk and find a case where the investor invests as if the
(conditional) expected risk aversion were realized.
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Reduced-form framework under model uncertainty

Katharina Oberpriller

(joint work with Francesca Biagini, Andrea Mazzon)

The talk is based on [3],[4] and [5]. In this talk we introduce a reduced-form
framework for multiple ordered default times under model uncertainty and study
some applications in insurance and finance. To this purpose we define a sublinear
conditional operator with respect to a family of probability measures possibly
mutually singular to each other in presence of multiple ordered default times. In
this way we extend the classical literature on credit risk in presence of multiple
defaults, see for example [11], [12], [13] and [17] to the case of a setting where
many different probability models can be taken into account.
Over the last years, several different approaches have been developed in order to
establish such robust settings which are independent of the underlying probability
distribution, see among others [1], [7], [8], [9], [10], [15], [16], [19], [20], [22], [23],
[24] and [25]. However, the above results hold only on the canonical space endowed
with the natural filtration. In credit risk and insurance modeling it is fundamental
to model multiple random events occurring as a surprise, such as defaults in a
network of financial institutions or the loss occurrences of a portfolio of policy
holders. This requires to consider filtrations with a dependence structure. Such
a problem is mentioned in [2] and solved for an initial enlarged filtration. In [6]
they define a sublinear conditional operator with respect to a filtration which is
progressively enlarged by one random time.

In this paper we extend the approach in [6] and define a sublinear conditional
operator with respect to a filtration progressively enlarged by multiple ordered
stopping times. Such an extension is connected to several additional technical
challenges with respect to the construction in [6].

First, we cannot consider default times in all generality, but we need to focus
on a family of ordered stopping times. In particular, we work in the setting of
the top-down model for increasing default times introduced in [11], in order to
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model the loss of CDOs, as a generalization to the well known Cox model in
[18]. More specifically, we start with a reference filtration F and define a family
of ordered stopping times τ1, ..., τN , in a similar way as done in [11]. We then
progressively enlarge F with the filtrations Hn generated by (1{τn≤t})t≥0, n =

1, ..., N , and define G(n) := F ∨ H1 ∨ ... ∨ Hn, n = 1, ..., N . In our case, we
construct τ1 < ... < τN in such a way that τ̃n := τn − τn−1 is independent of
Hn−1
t for any n = 2, ..., N, t ≥ 0 conditionally on F∞. In particular, the intensities

of the stopping times are driven by F-adapted stochastic processes which may
be used to model dependence structures driven by common risk factors and also
contagion effects. We first address the problem of computing G(N)-conditional
expectations of a given random variable under one given prior in terms of a sum of
F-conditional expectations depending on how many defaults have happened before
time t. This is also a new contribution to the literature on ordered multiple default
times in the classical case, i.e., in presence of only one probability measure. For
an analogous result following the density approach for modeling successive default
times, we refer to [12]. The main technical issue in our setting is to compute
conditional expectations when a strictly positive number of defaults, but not all
the N defaults, have happened. Already under a fixed prior the results for multiple
ordered default times are not a trivial extension of the ones in a single default
setting.

We then use this representation to define the sublinear conditional operator
ẼN under model uncertainty with respect to the progressively enlarged filtration
G(N). As in [6], our definition makes use of the sublinear conditional operator
introduced by Nutz and van Handel in [21] with respect to F. To this purpose we
assume that F is given by the canonical filtration. In particular, we show that our
construction is consistent with the ones in [21] in presence of no default and in [6]
for N = 1, respectively. The main technical challenge is to prove a weak dynamic
programming principle for the operator as done in [6] for the single default set-
ting, as it requires to exchange the order of integration between the operator and
expectations under a given prior. We then use the conditional sublinear operator
to evaluate credit portfolio derivatives under model uncertainty. In particular, we
focus on the valuation of the so called i-th to default contingent claims CCT(i), for
i = 1, ..., N . Moreover, we discuss if the valuation of such financial or insurance
products with the sublinear conditional operator corresponds to a sensitive pricing
rule. As done in [6] for the single default case, we can establish a relation between
the sublinear conditional operator and the superhedging problem in a multiple de-
fault setting for a generic payment streams under given conditions. Furthermore,
we show that the sublinear conditional operator can be used to price a contingent
claim such that the extended market allows no arbitrage of the first kind under
model uncertainty as in [7]. This result requires assumptions about the trading
strategies which are, however, not restrictive in an insurance setting. By modeling
the intensity processes as an affine process under uncertainty, introduced for ex-
ample in [14] and [3], the valuation of several relevant payoffs can be numerically
computed by solving non-linear PDEs.
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Multivariate Portfolio Choice via Quantiles

Carole Bernard

(joint work with Andrea Perchiazzo, Steven Vanduffel)

The talk was organized as follows. First, I recalled the quantile approach of [8]
for an agent maximizing a one-dimensional objective function that is law-invariant
and non-decreasing. The quantile approach builds on the concept of cost-efficiency
originally proposed by [5, 6] and further discussed in [1]. Then I related the
multivariate portfolio choice (see (1) below) to a risk sharing problem (see (3)
hereafter) as studied e.g., by [3] in the context of a multivariate expected utility
setting. We then show how the quantile approach used for univariate optimal
portfolio choice can be also useful to solve the multivariate portfolio choice as
in (1) below. To do so, we use the concept of multivariate cost-efficiency ([2]).
Finally, two examples are fully solved: the optimization of a sum of expected
CRRA utility functions and the infconvolution of the Range Value-at-Risk (RVaR).
For this latter example, we make use of the explicit results of [7] and show that
the portfolio problem that minimizes the sum of d RVaRs can be rewritten as
a portfolio that maximizes a one-dimensional objective function, i.e., a distorted
expectation. Furthermore, this problem has been explicitly solved in [4] and [9].

Specifically, we assume a frictionless and arbitrage-free financial market living
on a probability space (Ω,F ,P) where Ω is a non-empty sample space, F is the σ-
algebra generated by Ω and P denotes the probability measure on Ω. We consider
a fixed investment horizon T > 0 without intermediate consumption in which a
final payoff XT received at time T has an initial price given as E [ξTXT ] where ξT
is the pricing kernel, agreed by all agents, with positive density on R+ \ {0}. Let
V (·) be a multivariate law-invariant objective function. We consider the problem

(1) sup
(X1,X2,...,Xd)∈A

V (X1, X2, . . . , Xd) ,

where A =
{

(X1, X2, . . . , Xd) ∈ K s.t. E
[
ξT
∑d

i=1Xi

]
= w0

}
, K is the set of ran-

dom d-vector and w0 > 0 denotes the total budget that must be allocated in d
dimensions. The goal is to optimize a multivariate law-invariant objective function
V (·) over a set of admissible (X1, . . . , Xd) ∈ A such that the total budget w0 is
allocated.
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We assume that the objective function V (·) is law-invariant (that is, if two vec-
tors (X1, . . . , Xd) and (Y1, . . . , Yd) are equal in distribution, then V (X1, . . . , Xd) =
V (Y1, . . . , Yd)). Furthermore, we assume that V (·) is strictly increasing in at least
one of the dimensions. Without loss of generality, we can thus assume that for
any constant a ∈ R+ \ {0}, V (X1 + a,X2, . . . , Xd) > V (X1, X2, . . . , Xd). Finally,
we assume that the general portfolio problem (see (1)) is well-posed in that there
exists an optimal multivariate portfolio (X⋆

1 , . . . , X
⋆
d ) leading to a maximum finite

value for V (X1, . . . , Xd).
To solve the general multivariate portfolio problem in (1), we first solve a mul-

tivariate risk sharing problem in the absence of a financial market that we then
use to provide the solution to (1).

Let S be a random variable. Define the risk sharing of S as the following set of
random vectors associated to S

(2) Ad(S) :=

{
(X1, X2, . . . , Xd) ∈ K :

d∑

i=1

Xi = S

}
.

The optimal multivariate risk sharing associated to the total risk S solves

(3) sup
(X1,X2,...,Xd)∈Ad(S)

V (X1, . . . , Xd).

Denote by

(Y1(S), . . . , Yd(S))

a solution to (3). In the context of the additive multivariate utility function, i.e.,

where V (X1, . . . , Xd) is of the form V (X1, . . . , Xd) =
∑d

i=1 Ui (Xi) in which Ui
for i = 1, . . . , d are univariate exponential utility functions or univariate CRRA
(Constant Relative Risk Aversion) utility functions, the multivariate risk sharing
problem (3) can easily be solved explicitly. In the case of an objective function
based on quantile risk measures (e.g., RVaR), a solution for the multivariate risk
sharing problem is found in [7].
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Polynomial interacting particle systems and non-linear SPDEs for

capital distribution curves

Christa Cuchiero

(joint work with Florian Huber)

The stability of the capital distribution curves over time, as shown in Figure 1,
can be seen as a universal phenomenon in finance. By this we here mean a robust

Figure 1. Capital distribution curves: 1926 - 2016, source [4]

empirical feature that holds universally across different markets, asset classes and
in particular over time. Each of the above curves depicts the relative market
capitalization in ranked order of the major US markets’ stocks on a log-log scale
from 1926 to 2016. The relative market capitalization or market weight is defined
as the percentage of the market capitalization of a fixed company, i.e., the number
of outstanding shares times the current price of one share, with respect to the
capitalization of the whole market. The striking feature of these curves is their
remarkably stable shape over the last century. Although the market weights of
each company fluctuate stochastically the shape of the capital distribution curves
differs (in first order) over the years only by the number of stocks present in
the considered market. This fundamental observation was the starting point for
R. Fernholz to develop stochastic portfolio theory about 20 years ago, see [1].

On the mathematical side of financial modeling we also encounter universal
structures, such as the interplay of potentially infinitely many factors as well as
mean field interactions and limits. Universal model classes that are able to capture
these phenomena and appear throughout in mathematical finance, but also in
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other fields like population genetics and physics, are (infinite dimensional) affine
and polynomial processes.

One goal of this work is to combine mathematical with financial universality
and to model the capital distribution curves via polynomial processes, which have
empirically proved to provide a very good fit to these curves.

More precisely, we extend volatility stabilized market models, a particular class
of polynomial models introduced by Fernholz et al [2], by allowing for a common
noise term such that the models remains polynomial. Indeed, we consider the
following model for the N individual market capitalizations

dSi(t) = β

N∑

j=1

Sj(t)dt+
√
α

√√√√Si(t)

N∑

j=1

Sj(t)dW
i
t +

√
(N − α)Si(t)dW

0
t ,

where α ≥ 0, β ≥ α
2 and W i for i ∈ {1, . . . , N} are the idiosyncratic Brownian

motions and W 0 the common one. The introduction of this common noise term
permits to overcome the absence of correlation between the individual stocks in
the original model of [2].

Inspired by M. Shkolnikov [5] who studied large volatility stabilized markets,
we then analyze the limit as N → ∞. To do so we rescale time, i.e. let time go
slower as we add particles, and consider X(t) := S(t/N)

dXi(t) =
β

N

N∑

j=1

Xj(t)dt+

√
α

N

√
Xi(t)

√√√√
N∑

j=1

Xj(t)dW
i
t +

√
1 − α

N
Xi(t)dW

0
t .

Taking formal limits and denoting the typical particle in the limit by Y then yields

dY (t) = βE[Y (t)|σ(W 0)]dt+
√
αY (t)E[Y (t)|σ(W 0)]dWt + Y (t)dW 0

t .(1)

for some Brownian motion W independent of W 0, and where σ(W 0) denotes the
sigma-algebra generated by W 0. To make this rigorous we consider, as usual for
McKean-Vlasov equations, the particles’ empirical probability measure on path
space, i.e.

ρN :=
1

N

N∑

i=1

δXi

and its “mean-field limit” (ρNt )t∈[0,T ] → (ρt)t∈[0,T ] in C([0, T ];M1(R+)), where
T > 0 denotes some finite time and M1(R+) probability measures over R+ with
finite first moment, i.e.

M1(R+) = {µ ∈M(R+)|
∫

R+

xµ(dx) =: 〈x, µ〉 <∞},

equipped with the Wasserstein-1 distance. Then, we show that the limit ρ, which
is the unique solution of a degenerate, non-linear SPDE, corresponds to the con-
ditional law of the typical particle Y , i.e. ρ = L(Y (·)|σ(W 0)). and 〈ρt, idx〉 =
E[Y (t)|σ(W 0)]. Indeed, our two main results read as follows:
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Theorem 1. Under minor conditions on the initial values of the particle system,
each convergent subsequence of (ρN· )N∈N converges a.s. in C([0, T ],M1(R+)) to
the unique probabilistically strong, analytically weak, M1(R+)-valued solution ρ of
the non-linear SPDE

dρt = (
α

2
〈ρt, idx〉∂2x(xρt) +

1

2
∂2x(x2ρt) − β〈ρt, idx〉∂xρt)dt− ∂x(xρt)dW

0
t .(2)

Theorem 2. Consider (1) with 0 < Y (0) ∈ L2(Ω), independent of W 0, and let ρ
be the unique solution of (2) with ρ0 = L(Y (0)).

• Then, any solution to (1) satisfies ρ = L(Y (·)|σ(W 0)) as well as

E[Y (t)|σ(W 0)] = 〈ρt, idx〉 = 〈ρ0, idx〉 exp((β − 1

2
)t+W 0

t ) =: S(t).

• The two-dimensional process (Y,E[Y (t)|σ(W 0)]) =: (Y, S) is a polynomial
diffusion on R2

++ which is unique in law. Its dynamics are given by

dY (t) = βS(t)dt+
√
α
√
Y (t)S(t)dWt + Y (t)dW 0

t

dS(t) = βS(t)dt+ S(t)dW 0
t , S0 = 〈ρ0, idx〉.

One of the mathematical subtleties of these results lies in the uniqueness proof
which involves fine estimates with respect to weighted Sobolev norms. This unique-
ness result then also allows us to conclude uniqueness in law of the polynomial
process (Y,E

[
Y |σ(W 0)

]
) which was open so far.

Let us remark that behind the intriguing polynomial property of (Y,E[Y (t)|
σ(W 0)]) is a generic structure. Indeed, consider (for simplicity) a one-dimensional
conditional McKean-Vlasov SDE of the form

dZt = b(Zt,E[Z1
t |σ(W 0)], . . . ,E[Zkt |σ(W 0)])dt

+
√
c(Zt,E[Z1

t |σ(W 0)], . . . ,E[Zkt |σ(W 0)])dWt

+ c0(Zt,E[Z1
t |σ(W 0)], . . . ,E[Zkt |σ(W 0)])dW 0

t , 0 ≤ t ≤ T.

Then, if c is quadratic in the first variable and b and c0 are affine in the first
variable, the conditional moments become a k-dimensional autonomous standard
Itô-SDE driven by W 0. Provided that a (pathwise) unique solution exists for this
SDE, its components then correspond to the conditional moments E[Zi|σ(W 0)] for
i = 1, . . . , k. From the theory of time-inhomogeneous polynomial processes (see
[3]), one should then be able to deduce existence and uniqueness for a large class
of conditional McKean-Vlasov SDEs beyond the standard conditions of Lipschitz
continuity and uniform ellipticity. Proving this conjecture rigorously is subject of
ongoing work.
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Ergodic robust maximization of asymptotic growth with stochastic

factor processes

Josef Teichmann

(joint work with David Itkin, Martin Larsson, Benedikt Koch)

We consider a robust asymptotic growth problem under model uncertainty in the
presence of stochastic factors. We fix two inputs representing the instantaneous
covariance for the asset price process X , which depends on an additional stochastic
factor process Y , as well as the invariant density of X together with Y . The
stochastic factor process Y has continuous trajectories, but is not even required
to be a semimartingale. Our setup allows for drift uncertainty in X and model
uncertainty for the local dynamics of Y . There are several interpretation of Y : it
could model stochastic covariance as it often happens in Finance, but it could also
be a numerical model for uncertainty of the instantanous covariance function for
X .

This work builds upon a recent paper of Kardaras & Robertson (AAP 2022),
where the authors consider an analogous problem, however, without the additional
stochastic factor process. Under suitable, quite weak assumptions we are able to
characterize the robust optimal trading strategy and the robust optimal growth
rate. The optimal strategy is shown to be functionally generated and, remarkably,
does not depend on the factor process Y . We also construct a worst case model for
the functionally generated strategy thereby fully solving the min-max problem.

Our result provides a comprehensive answer to a question proposed by Fernholz
in 2002. We also show that the optimal strategy remains optimal even in the more
restricted case where Y is a semimartingale and the joint covariation structure of
X and Y is prescribed.

Our results are obtained using a combination of techniques from partial differ-
ential equations, calculus of variations, and generalized Dirichlet forms.

Collective Arbitrage and the Value of Cooperation

Thilo Meyer-Brandis

(joint work with Francesca Biagini, Alessandro Doldi, Jean-Pierre Fouque,
Marco Frittelli)

The theory developed in this paper aims at expanding the classical Arbitrage
Pricing Theory to a setting where N agents are investing in stochastic security
markets and are allowed to cooperate through suitable exchanges. More precisely,
we suppose that each agent is allowed to invest in a subset of the available assets
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(X1, . . . , XJ), for a given J ∈ N, and in a common riskless asset. Note that we
do not exclude that such subset coincides with the full set (X1, . . . , XJ). The
novel notions of Collective Arbitrage and Collective Super-replication, are based
on the possibility that the N agents may additionally enter in a zero-sum risk
exchange mechanism, where no money is injected or taken out of the overall system.
Cooperation and the multi-dimensional aspect are the key features of Collective
Arbitrage and Collective Super-replication. In this setting agents not only may
invest in their respective market but may additionally cooperate to improve their
positions by taking advantage of the risk exchanges. In the case of one single
agent, the theory reduces to the classical one. There is an extensive literature
in recent years on variations around the concept of one-agent No Arbitrage or
No Free Lunch and we refer to the books Delbaen Schaermayer (2006) [5] and
Föllmer and Schied (2014) [6], and references therein, for a detailed overview of
the topic. Departing from this stream of literature, the main aim of this paper
is to understand the consequences of the cooperation between several agents in
relation to Arbitrage and Super-replication.

Before moving into the details of our new setup, we briefly summarize the
classical one-agent situation. Let a filtered probability space (Ω,F ,F, P ), with
F = {Ft}t∈T , T = {1, . . . , T } be given, and denote by X = (X1, . . . , XJ) the
J adapted stochastic processes representing the prices of J securities. The set
of admissible trading strategies is denoted by H and let K be the set of time-T
stochastic integral of H ∈ H with respect to X . The set K represents all the
possible terminal time-T payoffs available in the market from admissible trading
strategies and having zero initial cost.

An arbitrage opportunity is an admissible trading strategy H ∈ H, having
zero initial cost and producing a non negative final payoff k ∈ K, being strictly
positive with positive probability. Equivalently, we have no arbitrage in this setting
if the only non negative element in K is P -a.s. equal to 0, or more formally
K ∩ L0

+(Ω,F , P ) = {0}.
In this paper, we generalize the setting to multiple agents that might cooperate

with each other. This leads to the new concepts of Collective Arbitrage and
Collective Super-replication which we shortly describe in the following.

Collective Arbitrage. Since each agent i = 1, . . . , N is allowed to invest only in
a subset of the available assets (X1, . . . , XJ), we define, similarly to the notion of
the set K, the market Ki of agent i, that is the space of all the possible time-T
payoffs that agent i can obtain by using admissible trading strategies in his/her
allowed investments and having zero initial cost.

Inspired by [4] we consider the set of all zero-sum risk exchanges

Y0 =

{
Y ∈ (L0(Ω,F , P ))N |

N∑

i=1

Y i = 0 P -a.s.

}
,

and the set Y of possible/allowed exchanges

Y ⊆ Y0 such that 0 ∈ Y.
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We stress that even if the overall sum is P -a.s. equal to 0, each components Y i

of Y ∈ Y is in general a random variable. If Y i is positive on some event, agent i
is receiving, on that event, from the collection of the other agents some (positive)
amount of cash. So Y ∈ Y represents the amount that the agents may exchange
among themselves with the requirement that the overall amount distributed is
equal to zero.
A Collective Arbitrage is a vector (k1, . . . , kN ), where ki ∈ Ki for each i, and a
vector Y = (Y 1, . . . , Y N ) ∈ Y such that

ki + Y i ≥ 0, P -a.s. for all i ∈ {1, . . . , N},
and

P (kj + Y j > 0) > 0 for at least one j ∈ {1, . . . , N}.
One may immediately notice that if N = 1, then Y ∈ Y must be equal to 0 and

thus a Collective Arbitrage reduces to a Classical Arbitrage.
However, for N ≥ 2, in a Collective Arbitrage, agents are entangled by the vector
of exchanges Y ∈ Y: this additional possible cooperation may create a Collective
Arbitrage even if there is No Arbitrage for each single agent.

We study the implications of the assumption of No Collective Arbitrage with
respect to the set Y, which we denote in short by NCA(Y). We also write NAi

for the No Arbitrage condition (in the classical sense) for agent i in market Ki and
NA for the No Arbitrage condition (in the classical sense) in the global market
K.

It is easy to verify that under very reasonable conditions the following implica-
tions hold

NA ⇒ NCA(Y) ⇒ NAi ∀i ∈ {1, . . . , N},
but none of the reverse implication holds true in general. We show that the
strongest condition NA is equivalent to NCA(Y) for the “largest”choice Y = Y0,
while the weakest condition, NAi ∀i, is equivalent to NCA(Y) for the “small-
est”choice Y = Y0 ∩ (L0(Ω,F0, P ))N . The latter space actually consists of zero-
sum deterministic vectors, when F0 is the trivial sigma algebra. However, for
general sets Y the notions of NCA(Y) give rise to new concepts.

We analyse the conditions under which a new type of Fundamental Theorem
of Asset Pricing holds, that we label Collective FTAP (CFTAP). Differently from
the classical version, the CFTAP depends of course on the properties of the set
of exchanges Y, and so we provide several versions of such a theorem. On the
technical side, in the classical case the NA condition implies that the set (K −
L0
+(Ω,F , P )) is closed in probability. This property is paramount to prove the

FTAP and the dual representation of the super-replication price. Analogously, in
our collective setting we need to show the closedness in probability of the analogue
set denoted by KY . We show such closure under some specific assumptions on
the set Y and under the assumption of NCA(Y).

The key novel feature in the CFTAP is that equivalent martingale measures have
to be replaced by vectors (Q1, . . . , QN) of equivalent martingale measures, one for
each agent and theirs corresponding market, fulfilling in addition the polarity
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property

(1)

N∑

i=1

EQi [Y i] ≤ 0 , ∀Y ∈ Y.

We stress that the findings of this paper take particularly tractable, yet informative
and meaningful forms in a finite probability space setup. Indeed, the fact that
the agents are allowed to cooperate and the assumption of NCA(Y) has several
consequences also in the pricing of contingent claims. This is particularly evident
in the super-replication of N contingent claims.

Collective Super-replication. We consider the problem of N agents each super-
replicating a contingent claim gi, i = 1, . . . , N , which is a F -measurable random
variable. We set g = (g1, . . . , gN ). As an immediate extension of the classical
super-replication price, we first introduce the overall super-replication price

ρN+ (g) := inf

{
N∑

i=1

mi | ∃ki ∈ Ki,m ∈ RN s.t. mi + ki ≥ gi ∀i
}
.

If we use ρi,+(gi) for the classical super-replication of the single claim gi, we may
easily recognize that

(2) ρN+ (g) =

N∑

i=1

ρi,+(gi).

In the spirit of Systemic Risk Measures with random allocations in [2], we introduce
the Collective super-replication of the N claims g = (g1, . . . , gN ) as

ρY+(g) := inf

{
N∑

i=1

mi | ∃ki ∈ Ki,m ∈ RN , Y ∈ Y s.t. mi + ki + Y i ≥ gi ∀i
}
,

and show that under NCA(Y) the definition is well posed. The functional ρY+(g)

and ρN+ (g) both represent the minimal total amount needed to super-replicate

simultaneously all claims (g1, ..., gN). For the Collective super-replication price
ρY+(g) we allow an additional exchange among the agents, as described by Y.

As 0 ∈ Y, we clearly have ρY+ ≤ ρN+ . Thus Collective super-replication is less
expensive than classical super-replication: cooperation helps to reduce the cost of
super-replication and (ρN+ (g)− ρY+(g)) ≥ 0 is the value of cooperation with respect
to g.

Under the NCA(Y) assumption and using the closure of the set KY , we prove
the following version of the pricing-hedging duality

(3) ρY+(g) = sup
Q∈MY

N∑

i=1

EQi [gi],

where MY is the set of vectors of martingale measures satisfying the polarity

condition (1). When problem (3) admits an optimum Q̂ = (Q̂1, . . . , Q̂N ), which
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clearly will depend on Y, we derive the following formula
(4)

ρY+(g) =

N∑

i=1

inf
{
m ∈ R | ∃ki ∈ Ki, Y

i with EQ̂i [Y
i] = 0 s.t. m+ ki + Y i ≥ gi

}
.

Note that in (4), (Y 1, . . . , Y N ) is not required to belong to Y, but every Y i must
have zero cost under each component of the endogenously determined pricing

vector Q̂. This is a strong fairness property associated to the value ρY+(g). Indeed,
each term in the summation on the RHS of (4) is the individual super-replication
price of the claim gi under the assumption that the agent i is “pricing”using the

pricing functional assigned by Q̂i, so that both ki and Y i have zero value under

Q̂i. Thus the interpretation of ρY+(g) is twofold:

(i) ρY+(g) is the super-replication of the N claims (g1, . . . , gN) when agents
are allowed to exchange scenario dependent amounts under the condition

that the overall exchanges
∑N
i=1 Y

i is equal to 0;

(ii) ρY+(g) is the sum of the individual super-replication price of each claim gi

under the assumption that each agent is using the pricing measure Q̂i.

This fairness aspect is discussed in the spirit of [3] and [1].
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Some thoughts on large financial markets under model uncertainty

(discrete time)

Irene Klein

(joint work with Christa Cuchiero, Thorsten Schmidt)

All the ideas in the talk are based on joint work in progress with Christa Cuchiero
and Thorsten Schmidt. Theorems 2 and 3 below currently are in the state of
well-founded conjectures. The proofs still have to be made precise with all details.

We present some ideas for large financial markets in discrete time under model
uncertainty. We consider a classical model of a large financial market (LFM) on
a sequence of probability spaces as in Kabanov and Kramkov (1994) [3]. For
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each n ≥ 1, the ”small” market n in the sequence is defined as follows. Let
(Ωn,Fn, (Fn

t )t=0,1,...,Tn
) be a filtered measure space defined as in Bouchard and

Nutz (2015) [1]. As there, let Pn be a convex set of probability measures on

(Ωn,Fn). The risky assets are d(n) Borel-measurable stocks Snt = (Sn,1t , ..., S
n,d(n)
t ) :

Ωnt → Rd(n), where, for each t = 0, 1, . . . , Tn the set Ωnt is defined as in [1], i.e., the
t-fold Cartesian product of a Polish space Ωn1 and Ωn0 is a singleton. Let Hn be the
set of all predictable Rd(n)-valued processes on (Ωn,Fn, (Fn

t )t=0,1,...,Tn
). Then, a

portfolio in market n with strategy Hn ∈ Hn is given by

Xn
t := (Hn · Sn)t =

d(n)∑

k=1

t∑

u=1

Hn,k
u (Sn,ku − Sn,ku−1), t = 1, . . . Tn,

where Xn
0 = 0. Now we give the definition of a LFM under model uncertainty.

Definition 1. A large financial market under model uncertainty is a sequence of
small markets n as given above with d(n) risky stocks in discrete time and time
horizons Tn <∞.

As usual in the theory of large financial markets, we will assume that each small
market n satisfies no arbitrage (NA) where we use the robust NA condition of [1]:

Definition 2. The market n satisfies the condition NA(Pn) if for all Hn ∈ Hn

(Hn · Sn)Tn
≥ 0 Pn-q.s. implies (Hn · Sn)Tn

= 0 Pn-q.s.
In the above definition q.s. stands for quasi surely. A property is said to hold

Pn-q.s. if it holds outside a polar set A′ for Pn, that is, a set A′ such that A′ ⊂ A
for some A ∈ Fn with Pn(A) = 0 for all Pn ∈ Pn.

Let us recall the connection to martingale measures from [1]. On market n we
define the following set Qn of probability measures. (Note that, as Pn is a convex
set by assumption, also Qn is convex).

Definition 3.

Qn = {Qn ≪ Pn : Qn is a martingale measure for Sn,k, k = 1, . . . , d(n)},
where Qn ≪ Pn means that for Qn ∈ Qn there exists Pn ∈ Pn such that Qn ≪
Pn.

As a consequence of the NA assumption on each small market n the following
existence of martingale measures hold:

Theorem 1 (FTAP (Bouchard, Nutz 2015)). The following are equivalent:

(1) NA(Pn) holds.
(2) For all Pn ∈ Pn there exists Qn ∈ Qn such that Pn ≪ Qn.
(3) Pn and Qn have the same polar sets.

We suggest now to define a notion of asymptotic arbitrage with model uncer-
tainty on the large financial market. We will adapt here the concept of asymptotic
arbitrage of first kind (AA1) as of [3]. Observe that this kind of asymptotic ar-
bitrage is, if all Ωn coincide, equivalent to the concept unbounded profit with
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bounded risk defined in Karatzas and Kardaras (2007) [5]. Note that this is a par-
ticularly important arbitrage property due to its connection to the growth optimal
portfolio of Eckhard Platen.

Definition 4. We say that the robust large financial market has an asymptotic
arbitrage of first kind (AA1(Pn)) if the following holds: there exists a subsequence
of markets nk and a sequence of portfolios Xk = (Hnk · Snk) and a sequence of
positive real numbers εk → 0 such that

(1) for all k ≥ 1 and all t = 0, 1, . . . , T (nk), Xk
t ≥ −εk Pnk-q.s.

(2) there exists a sequence (P k)k≥1 with P k ∈ Pnk such that

P k(Xk
T (nk)

≥ α) ≥ α,

for some α > 0 and all k ≥ 1.

We say that no asymptotic arbitrage of first kind (NAA1(Pn)) is satisfied if the
above does not exists.

We can now suggest the following fundamental theorem of asset pricing under
model uncertainty for large financial markets in discrete time. Observe that it
looks very similar to Theorem 1 but now on the large financial market.

Theorem 2 (A (conjectured) FTAP under model uncertainty). NAA1(Pn) ⇔ for
each sequence (Pn)n≥1 with Pn ∈ Pn, for all n, there exists a sequence (Qn)n≥1

with Qn ∈ Qn, for all n, such that (Pn) ⊳ (Qn).

Note that (Pn) ⊳ (Qn) basically is the generalization of absolute continuity of
measures to a sequences of measures and means that for each sequence An ∈ Fn

with Qn(An) → 0 for n→ ∞ we have that Pn(An) → 0 for n→ ∞.

Some ideas for the proof of Theorem 2: work in progress

Similarly as in [4] the idea is to find a generalized quantitative version of the
Halmos-Savage Theorem. Here we suggest a version for convex sets of probability
measures, see Theorem 3 below. With the help of this result it is quite standard
to get Theorem 2 by using the superreplication of [1] which fits perfectly to the
current setting. On the way we use the following characterization of NAA1 under
model uncertainty which we can prove with all details.

Lemma 1. NAA1(Pn) ⇔ ∀ε > 0 ∃δ > 0 such that ∀n ≥ 1 and ∀An ∈ Fn such
that ∃Pn ∈ Pn with Pn(An) ≥ ε there ∃Qn ∈ Qn with Qn(An) ≥ δ.

So, if our conjectured Theorem 3 below can be proved in the given form, the
proof of Theorem 2 is done. Let us now formulate the conjectured Theorem 3,
i.e., the quantitative Halmos–Savage–type result for convex sets of probability
measures we are aiming at.

Theorem 3 (Conjecture: Quantitative Halmos-Savage Theorem for convex sets
of probability measures). Let P and Q be a convex sets of probability measures on
(Ω,F) such that Q ≪ P. For fixed ε > 0 and δ > 0 the following statement is
true: Assume that for each A ∈ F such that there exists P ∈ P with P (A) ≥ ε
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there exists Q ∈ Q such that Q(A) ≥ δ. Then for each P ∈ P there exists Q ∈ Q
such that for each A ∈ F with P (A) ≥ 2ε we have that Q(A) ≥ εδ

2 .

Note that Q ≪ P in the statement of the theorem means that for every Q ∈ Q
there exists P ∈ P such that Q≪ P .

Ideas for the Proof of Theorem 3. As a technical tool for the proof we will define
a convex set Dε,P : fix P ∈ P and ε > 0. Define

Dε,P = {h ∈
⋂

P ′∈P

L∞(P ′) : 0 ≤ h ≤ 1 P − q.s. and EP [h] ≥ 2ε}.

The assumption of Theorem 3 will lead to the following inequality:

inf
h∈Dε,P

sup
Q∈Q

EQ[h] ≥ εδ.

Now by finding appropriate dual locally convex topological vector spaces (E,E′)
and using a general Banach-Alaoglu-Bourbaki Theorem we think to be able to show
that the convex set Dε,P ⊂ E′ is σ(E′, E)-compact. Then we aim at applying a
Minmax Theorem as in Sion (1958) [6] to the given bilinear functional with a
continuity property with respect to the chosen topology to get that:

sup
Q∈Q

inf
h∈Dε,P

EQ[h] ≥ εδ.

With this the statement of Theorem 3 follows. �
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Fundamental theorem of asset pricing with acceptable risk in markets

with frictions

Cosimo Munari

We revisited the problem of market-consistent valuation of insurance liabilities
from a financial economics perspective. The challenge is to define a range of
prices at which an insurance company that has access to an outstanding financial
market and is subject to a regulatory capital adequacy regime should be prepared
to buy/sell a contract outside of the financial market. Our proposal was to call
a price market consistent with acceptable risk (MCP) if there exists no portfolio
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of traded assets that can be bought/sold at a lower/higher price in the market
and that super/sub-replicates the contract’s payoff at an acceptable level of risk
as prescribed by the regulatory solvency test. In the spirit of classical arbitrage
pricing theory, the main goal was to provide a characterization of MCPs by way of
special stochastic discount factors, called (strictly) consistent price deflators, that
have to be chosen to respect market frictions as well as to be consistent with the
regulator’s solvency test. The presentation unfolded as follows:

• Formalization of the financial market and the capital adequacy test.
• Definition of MCPs.
• Primal characterization of MCPs based on super/sub-replication prices.
• Definition of (scalable) good deals as generalizations of arbitrage oppor-

tunities.
• Definition of (strictly) consistent price deflators as generalizations of sto-

chastic discount factors.
• Extension of the fundamental theorem of asset pricing: The market is free

of scalable good deals if and only if there exists a strictly consistent price
deflator.

• Dual characterization of MCPs based on strictly consistent price deflators.
• Examples of price deflators that are strictly consistent with respect to

Expected Shortfall and expectiles.

A number of future challenges was mentioned at the end, including at least:

• Extension to multi-period models.
• Extension to settings without a dominating probability.
• Characterization of optimal hedging portfolios/strategies with acceptable

risk.
• Comparison with market-consistent valuation rules used in practice (best

estimate of insurance liabilities plus risk margin).

We believe that the last point is especially pressing to bridge the gap between
theory and practice and should ideally contribute to the ongoing discussion on the
broad topic “valuation” in insurance regulation.

This work is related to the literature on good deal pricing. The goal there is to
restrict the interval of arbitrage-free prices by discarding some “extreme” stochas-
tic discount factors and the main problem is that of identifying, by way of an
inverted fundamental theorem of asset pricing, the corresponding pricing bounds,
the so-called good deal bounds. We refer, e.g., to:

• Arai, T., & Fukasawa, M. (2014). Convex risk measures for good deal
bounds. Math Financ, 24(3), 464-484.

• Bernardo, A.E., & Ledoit, O. (2000). Gain, loss, and asset pricing. J Polit
Econ, 108(1), 144-172.

• Carr, P., Geman, H., & Madan, D. (2001). Pricing and hedging in incom-
plete markets. J Financ Econ, 62(1), 131-167.

• Černý, A. (2003). Generalised Sharpe ratios and asset pricing in incom-
plete markets. Rev Financ, 7(2), 191-233.
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• Černý, A., & Hodges, S. (2002). The theory of good-deal pricing in fi-
nancial markets. In Mathematical Finance – Bachelier Congress 2000 (pp.
175-202). Springer, Berlin, Heidelberg.

• Cherny, A. (2008). Pricing with coherent risk. Theor Probab Appl, 52(3),
389-415.

• Cochrane, J.H., & Saa-Requejo, J. (2000). Beyond arbitrage: Good-deal
asset price bounds in incomplete markets. J Polit Econ, 108(1), 79-119.

• Jaschke, S., & Küchler, U. (2001). Coherent risk measures and good-deal
bounds. Financ Stoch, 5(2), 181-200.

• Staum, J. (2004). Fundamental theorems of asset pricing for good deal
bounds. Math Financ, 14(2), 141-161.

Apart from the general motivation, the key difference with our results is that the
bulk of this literature focuses on frictionless markets and the only versions of the
fundamental theorem of asset pricing involve, in our language, only consistent,
instead of strictly consistent, price deflators. In particular, these versions cannot
be used to characterize MCPs in dual terms.

Benchmark-Neutral Pricing for Entropy-Maximizing Dynamics

Eckhard Platen

The paper applies the benchmark approach to the modeling, pricing, and hedging
of long-term contingent claims involving the growth optimal portfolio (GOP) of a
large stock market. It employs the entropy-maximizing dynamics of the GOP of
the stocks for modeling. Instead of risk-neutral or real-world pricing, the paper
proposes the method of benchmark-neutral pricing, where it uses the GOP of the
stocks as numéraire and the respective new benchmark-neutral pricing measure
for taking conditional expectations. Under the entropy-maximizing dynamics of
the GOP for stocks, the benchmark-neutral pricing measure turns out to be an
equivalent probability measure. The risk-neutral pricing measure does not rep-
resent a probability measure. Consequently, benchmark-neutral pricing provides
the minimal possible prices and hedges, whereas risk-neutral pricing becomes more
expensive than necessary. The implementation of benchmark-neutral pricing and
hedging is demonstrated. It is shown that the minimal possible prices, which
benchmark-neutral pricing provides, can be significantly lower for long-term con-
tingent claims than the respective risk-neutral ones.

The paper makes the following three key assumptions:
A1: The GOP exists.
A2: The normalized GOP forms a stationary scalar diffusion and its volatility is
a function of its value.
A3: The market maximizes the relative entropy of the stationary density of the
normalized GOP.

The first assumption is about the existence of the GOP and represents an
intuitive and easily verifiable no-arbitrage condition because [4] have shown that
the existence of the GOP is equivalent to their No Unbounded Profit with Bounded
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Risk (NUPBR) condition. This no-arbitrage condition is weaker than the NFLVR
condition of [1].

The maximization of the relative entropy is known to be equivalent to the
minimization of the information rate; see [5]. Consequently, the resulting entropy-
maximizing market dynamics does not leave any room for exploitable information
and charaterizes the undisturbed market dynamics.

Conservation laws simplify in many areas the undisturbed dynamics of complex
dynamical systems. According to [6], the maximization of a Lagrangian in the
presence of Lie-group symmetries leads to the identification of conservation laws
for the resulting model dynamics. The entropy-maximizing stationary dynamics
of the normalized GOP turn out to have Lie-group symmetries and emerge as
those of a time-transformed square root process, with conserved dimension four,
and conserved logarithmic mean zero.

The modeling is performed on a filtered probability space (Ω,F ,F , P ), satisfy-
ing the usual conditions. We consider d + 1, d ∈ {1, 2, ...} adapted, nonnegative
assets, denoted by S0

t , S
1
t , ..., S

d
t , which we call the d primary security accounts,

where all dividends or interests are reinvested. We interpret the d primary security
accounts S1

t , ..., S
d
t as stocks, which are here denominated in units of the savings

account S0
t = 1. Furthermore, we assume for the investment universe given by

the d stocks that a continuous growth optimal portfolio (GOP) S∗
t , the stock GOP,

exists. Every primary security account S̃jt =
Sj
t

S∗
t

, j ∈ {1, ..., d}, when denominated

in the stock GOP, forms a right-continuous, integrable (P,F)-local martingale.
The stochastic differential equation (SDE) for the continuous stock GOP S∗

t is
assumed to be of the form

dS∗
t

S∗
t

= λ∗t dt+ θt(θtdt+ dWt)

for t ∈ [0,∞) with S∗
0 > 0. We extend the above market formed by the d stocks

by adding the savings account S0
t as an additional primary security account. In

line with Theorem 7.1 in [3], the GOP S∗∗
t of the extended market satisfies the

SDE

dS∗∗
t

S∗∗
t

=
λ∗t + (θt)

2

θt
(
λ∗t + (θt)

2

θt
dt+ dWt)

for t ∈ [0,∞) and S∗∗
0 = 1. For a replicable contingent claim HT ≥ 0 with maturity

T the real world pricing formula

Ht = S∗∗
t EP (

HT

S∗∗
T

|Ft)

describes its unique fair price Ht at time t ∈ [0, T ], see [2]. Other pricing rules are
possible but do never provide lower prices. The numéraire for real-world pricing
is the GOP S∗∗

t of the extended market, which is, in reality, a highly leveraged
portfolio and difficult to construct. Therefore, a change of numéraire is suggested
that uses the strictly positive stock GOP S∗

t as numéraire. The Radon-Nikodym
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derivative

ΛS∗(t) =
dQS∗

dP
|Ft

=

S∗
t

S∗∗
t

S∗
0

S∗∗
0

characterizes the respective benchmark-neutral pricing measure QS∗ . For the
entropy-maximizing dynamics, the Radon-Nikodym derivative ΛS∗(t) is shown
to be a true (P,F)-martingale and QS∗ to be an equivalent probability measure.
We call the new pricing method benchmark-neutral pricing, which uses the stock
GOP S∗

t as numéraire and the benchmark-neutral pricing measure QS∗ as pricing
measure. One obtains directly the benchmark-neutral pricing formula

Ht = S∗
tE

QS∗ (
HT

S∗
T

|Ft)

for t ∈ [0, T ]. The process W 0 = {W 0
t , t ∈ [0,∞)}, satisfying the SDE

dW 0
t = σS∗(t)dt + dWt

for t ∈ [0,∞) with W 0
0 = 0, is under QS∗ a Brownian motion. This result is of

practical importance because it allows one to use the stock GOP as numéraire for
pricing and hedging. Under benchmark-neutral pricing there is no need to estimate
λ∗t because this drift parameter becomes absorbed in the measure transformation.

Hedging under the benchmark-neutral pricing measure can be performed anal-
ogously as shown in [2] under the real world probability measure P , and can also
be extended for non-replicable contingent claims.

When using a total return stock index as proxy for the stock GOP, it has been
shown for zero-coupon bonds that long-term hedging over many decades can be
accurately performed with very small hedge errors. These findings give access to
new production methods for life insurance, pension, climate, and other long-term
contracts that use the stock index as numéraire.

Since the risk-neutral pricing measure turns out to be not an equivalent prob-
ability measure under the entropy-maximizing dynamics, formally applied risk-
neutral prices and hedges can become considerably more expensive than the mini-
mal possible ones, which can be obtained via benchmark-neutral pricing and hedg-
ing.

References

[1] F. Delbaen and W. Schachermayer. The fundamental theorem of asset pricing for unbounded
stochastic processes. 312:215–250, 1998.

[2] K. Du and E. Platen. Benchmarked risk minimization. 26(3):617–637, 2016.
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Markovian randomized equilibria for general Markovian Dynkin

games in discrete time

Berenice Anne Neumann

(joint work with Sören Christensen, Kristoffer Lindensjö)

In discrete time Dynkin games each player i ∈ {1, 2} chooses a stopping time τi
in order to maximize her expected reward

E

[
F iτiI{τi<τj} +Giτj I{τj<τi} +Hi

τiI{τi=τj}

]
,

where j = 3−i and F i, Gi, Hi are integrable discrete time processes (with a suitable
interpretation of Hi

n for n = ∞). In the case that F 1 ≤ H1 ≤ G1 and F 2 ≤ H2 ≤
G2 these games are well-understood. Under suitable integrability assumptions
existence and characterization of Nash equilibria have been established [2, 3, 4].
However, the situation becomes more involved if we drop the assumption F 1 ≤
H1 ≤ G1 and F 2 ≤ H2 ≤ G2. First of all it is now necessary to consider mixed
strategies [5]. Moreover, also using this class of strategies there are simple examples
without a Nash equilibrium [6]. In general, only the existence of ǫ-equilibria can
be established [7, 8].

In this talk we restricted our attention to discrete time Markovian Dynkin games.
In this setting (Xn)n∈N is a homogeneous Markov process with state space E and
the reward of player i reads

Ex
[
ατifi(Xτi)I{τi<τj} + ατjgi(Xτj )I{τj<τi} + ατihi(Xτi)I{τi=τj<∞}

]
,

where j = 3 − i, α is the discount factor satisfying 0 < α < 1 and fi, gi, hi : E →
R, i = 1, 2, are measurable functions satisfying an integrability assumption. In
the talk we motivated that Markovian randomized stopping times are a natural
class of randomized stopping times for these games. These Markovian randomized
stopping times are stopping times, where at each time step n the player stops with
a certain probability that only depends on the current state Xn of the underlying
Markov process. Relying on this type of strategies we provide an explicit charac-
terization and verification result of Wald-Bellman type. This result then allows us
to construct equilibria in certain classes of zero-sum and symmetric games and to
obtain necessary and sufficient conditions for the non-existence of pure strategy
equilibria in zero-sum games. Moreover, we establish the existence of an equi-
librium in Markovian randomized stopping times for general games whenever the
state space of the underlying Markov chain is countable.
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Stretched Brownian motion: Analysis of a fixed-point scheme

Gudmund Pammer

(joint work with Beatrice Acciaio, Antonio Marini)

A central challenge in the theory of mathematical finance is the pricing of financial
derivatives. In the classical theory this question is closely tied to the notion of
martingale measures: Let (Ω,F , (Ft)t≥0,P) be a stochastic basis and S = (St)t≥0

be the (Ft)t≥0-adapted asset-price process. Under the no-arbitrage assumption,
that is, we exclude the possibility of making profit without risk, the task of pricing
a financial derivative Φ boils down to finding an equivalent martingale measure
Q. An equivalent martingale measure is simply a measure equivalent to P under
which S is a martingale.

However, the true dynamics of the market, including the stochastic basis and the
asset-price process, are unknown. Rather than directly specifying a model, we can
extract information on the pricing measure Q from market data. The cornerstone
of this approach is the famous observation by Breeden–Litzenberger [3], which
culminates in the fitting problem (FP) in mathematical finance: The task is to find
a stochastic basis supporting a martingale S = (St)t≥0 that adheres to prescribed
marginal constraints St ∼ µt for t ∈ I derived from market observations. Here
(µt)t∈I are one-dimensional marginals that are derived from market observations
at a given time index set I ⊆ R+. Building on the Bass solution to the Skorokhod
embedding problem and optimal transport, Backhoff, Beiglbock, Huesmann, and
Kallblad [1] propose a solution to (FP) for the two-marginal problem, i.e., with
constraints on two specific time-points I = {0, 1}. The stretched Brownian motion
M∗ is the unique-in-law optimizer of

sup {E[M1 ·B1] : M solves (FP)} ,
where B is some Brownian motion. Notably rich in structure, this process is an Ito
diffusion and a continuous, strong Markov martingale that emulates the behaviour
of Brownian motion locally.

Following a similar approach, Conze and Henry-Labordere [2] recently intro-
duced a novel alternative to the local volatility model. This model, rooted in an
extension of the Bass construction, is efficiently computable through a fixed-point
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scheme. The goal is to find a fixed point of the map

A : CDF → CDF: F 7→ Fµ0 ◦
(
γ1 ∗ F−1

µ1
(γ1 ∗ F )

)
,

where F is a cumulative distribution function (CDF), Fµ denotes the CDF of µ
and γ1 a normal distribution with variance 1. When α is a distribution whose
CDF F̂ is a fixed-point, then the process M̂ = (M̂)t≥0, determined by

M̂t := E[T (B1)|Bt] = (γ1−t ∗ F−1
µ1

(γ1 ∗ F̂ ))(Bt),

solves (FP).
In this work, we explore the intricate relationship between the fixed-point

scheme and the stretched Brownian motion, revealing that in law M̂ = M∗. Fur-
thermore, we give a precise criterion for the existence of a fixed-point and demon-
strate its convergence. This study unveils that solving the fixed-point equation
provides a highly efficient alternative to computing stretched Brownian motion.
In particular, when µ0 is concentrated on finitely many points, the fixed-point
scheme exhibits linear convergence.
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On random reinsurance contracts and optimal transport

Brandon Garcia Flores

(joint work with Beatrice Acciaio, Hansjörg Albrecher)

Building upon the concept of random reinsurance treaties from [3] and [4], we
establish a general framework for the study of optimal reinsurance problems. Tra-
ditionally, an optimal reinsurance problem consists in minimizing a risk measure
P defined on a set of functions. The minimization is subject to the solution be-
ing in a set of constraints S, which usually relates to demands set by either the
cedent or the reinsurer. In this generality, one can hardly show the existence of
any contract and is therefore restricted to deal with specific instances of the prob-
lem. The introduction of random reinsurance treaties is then reminiscent to the
Monge-Kantorovich formulation of optimal transport (OT) which is used as a way
of convexifying the problem, thus ensuring the existence of optimal solutions.

A random reinsurance treaty η is a probability measure in Rn × Rn supported
in the set {(x, y) ∈ Rn × Rn | 0 ≤ yi ≤ xi, i = 1, . . . , n} and such that π1#η = µ,
where µ is the distribution of the original claims. Here, π1 : Rn × R → Rn is the
projection in the first coordinate and π1# denotes the push-forward map induced
by π1. Denoting by X the original portfolio of claims, contracts of this kind can
be simply seen as the joint distribution of X and the final risk exposure of the
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reinsurer, which now is not necessarily determined by X in a functional way. By
means of standard OT methods, one can easily prove the following:

Theorem 1. Let M denote the space of random reinsurance treaties endowed
with the weak topology induced by bounded continuous functions. If P : M → R

is lower semi-continuous and S is closed, then an optimal reinsurance contract η∗

exists.

While existence is guaranteed under relatively mild assumptions, one is then
faced with the identification of optimal contracts. The rest of our work addresses
this matter by using the idea of (local) linearization, a concept widely used in the
are of optimization.

Assuming that the set of constraints is given as

S = {η ∈ M | G(η) ≤ 0}
for a lower semi-continuous function G = (g1, . . . , gm) : M → Rm, one of the main
results of our work is the following:

Theorem 2. Let η∗ be an optimal reinsurance contract and assume there exist
continuous functions pη∗ : Rn+ × Rn+ → R and gη∗ : Rn+ × Rn+ → Rm such that

lim
t→0+

P((1 − t)η∗ + tϑ) − P(η∗)

t
=

∫

Rn
+×Rn

+

pη∗(x, y)(ϑ − η∗)(dx, dy)

and

lim
t→0+

G((1 − t)η∗ + tϑ) − G(η∗)

t
=

∫

Rn
+×Rn

+

gη∗(x, y)(ϑ − η∗)(dx, dy)

for every ϑ ∈ M. Moreover, assume that the partial minimization function,

m(x) = inf
y∈[0,x]

rpη∗(x, y) + λ · gη∗(x, y)

is measurable for every r ∈ R+ and λ ∈ Rm+ . Then, there exist r∗ ∈ R+ and
λ∗ ∈ Rm+ such that λ∗ · G(η∗) = 0 and

η∗
(
{(x, y) ∈ AR | y ∈ argmint∈[0,x]r

∗pη∗(x, t) + λ∗ · gη∗(x, t)}
)

= 1.

If G is constant or there exists ϑ ∈ M such that

G(η∗) +

∫

Rn
+×Rn

+

gη∗(x, y)(ϑ− η∗)(dx, dy) < 0,

then r∗ can be taken to be equal to 1.

This theorem thus identifies the support of optimal reinsurance contracts rela-
tive to the functions pη∗ and gη∗ , and λ∗, all of which depend on η∗. However, in
several common applications, pη∗ and gη∗ depend on the optimal contract through
a (finite) set of parameters. Together with λ∗, one can then treat this set of
parameters as variables and optimize over them, thus reducing the problem to a
finite dimensional optimization problem, for which several techniques can be used.
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One example that prominently falls into this category is when the risk measure is
given by

P(η) = f

(∫

Rn
+

p1(x, y) η(dx, dy), . . . ,

∫

Rn
+

pℓ(x, y) η(dx, dy)

)

subject to the constraints G = (g1, . . . , gm) given by

gi(η) = hi

(∫

Rn
+

qi,1(x, y) η(dx, dy), . . . ,

∫

Rn
+

qi,ℓi(x, y) η(dx, dy)

)

where all the pi’s and qi,j ’s are continuous functions and f and the hi’s are dif-
ferentiable. This type of risk measure includes, but is not limited to the cases
where one would like to minimize the expectation, variance, skewness, coefficient
of variation, etc. of the total retained amount subject on constraints depending
on similar measures. Several of the optimal reinsurance problems that fall un-
der this umbrella are treated in [1] and [5]. Adapting for non-continuities and
differentiability, the techniques can be slightly generalized to deal with distortion
risk measures, such as those dealt with in [2], which shows the generality of our
approach.

Throughout the previous discussion, it was imperative that the set S was de-
scribed by a finite set of inequalities. The final portion of our study then relaxes
the requirement for S to be finitely representable by inequalities. Still inspired by
the idea of local linearization, we make the following assumptions:

(1) If η∗ ∈ S is an optimal reinsurance contract, then for every η ∈ S and
0 ≤ t ≤ 1, we have

P(η∗) ≤ P((1 − t)η∗ + tη).

(2) For every η ∈ S, dP(η; ·) exists for every direction in S−η and is given as an
integral operator, i.e., there exists a measurable function pη : Rn×Rn → R

such that for every ϑ ∈ S,

dP(η;ϑ− η) =

∫
pη(x, y)(ϑ − η)(dx, dy)

These two assumptions jointly imply that
∫
pη∗(x, y) η∗(dx, dy) = min

η∈S

∫
pη∗(x, y) η(dx, dy).

Letting qη∗ denote the function on Rn × Rn such that qη∗(x, y) = ∞ on the
complement AR and otherwise being equal to pη∗ , the previous equation can be
stated as

(1)

∫
qη∗(x, y) η∗(dx, dy) = min

ν∈π2(S)
C(µ, ν),

where

(2) C(µ, ν) = min
η∈Π(µ,ν)∩S

∫
qη∗(x, y) η(dx, dy),
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and Π(µ, ν) is the set of couplings between µ and ν. Equations (1) and (2) mean
that the optimal contract satisfies a double minimization property, where the inner
minimum is a constrained optimal transport problem. We conclude our work by
showing how, by taking a point of view inspired by this OT approach, we are
enabled to use tools from the area to provide novel solutions to old and new
optimal reinsurance problems.
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Adapted Wasserstein distance between the laws of SDEs

Sigrid Källblad

(joint work with Julio Backhoff-Veraguas, Ben Robinson)

In applications where filtrations and the flow of information play a key role, the
concepts of weak convergence and Wasserstein distances have proven to be insuf-
ficient for specifying convergence and distances between stochastic processes. For
instance, neither usual stochastic optimisation problems (such as optimal stop-
ping or utility maximisation) nor Doob–Meyer decompositions behave continu-
ously with respect to these topologies. Over the last decades, several approaches
have been proposed to overcome these shortcomings; we focus here on one such
notion, namely the so-called adapted Wasserstein distance.

We refer to [1, 2, 3, 6] for more on the motivation and history of adapted
distances and the closely related concepts of causal and bi-causal couplings.

Specifically, in this talk we study the adapted Wasserstein distance between the
laws of solutions of one-dimensional Markovian SDEs when the space of continuous
functions is equipped with the Lp-metric. We address this problem by embedding
it into a class of bi-causal optimal transport problems featuring a specific type of
cost function. Imposing fairly general conditions on the (Markovian) coefficients
of the SDEs, we will discuss methods and results which can be summarised as
follows:

(i) characterisation of the coupling attaining the infimum for a class of bi-
causal optimal transport problems including the adapted Wasserstein dis-
tance;

(ii) a time-discretisation method allowing derivation of most continuous-time
statements from their more elementary discrete-time counterparts;
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(iii) a stability result for optimisers to some bi-causal optimal transport prob-
lems;

(iv) a result stating that the topology induced by the adapted Wasserstein
distance coincides with several topologies (including the weak topology)
when restricting to SDEs whose coefficients belong to an equicontinuous
family;

(v) examples illustrating what to expect for path-dependent SDEs and in
higher dimensions.

At a conceptual level, we connect two hitherto unrelated objects: the synchro-
nous coupling of SDEs, which is the coupling arising when letting a single Wiener
process drive two SDEs; and the Knothe–Rosenblatt rearrangement, which is a
celebrated discrete-time adapted coupling that preserves the lexicographical or-
der. In particular, we provide an optimality property for the Knothe–Rosenblatt
rearrangement which extends earlier results of [4, 7]. We then make use of this
result to argue that in a certain sense, the synchronous coupling is the continuous-
time counterpart of the Knothe–Rosenblatt rearrangement.

Concerning the contributions (i) and (iv) above, similar statements have been
made in the pioneering work of Bion-Nadal and Talay [5] for the problem of op-
timally controlling the correlation between SDEs with smooth coefficients. We
here show that the bi-causal optimal transport problem, for general cost functions
and between laws of possibly path-dependent SDEs, admits such a control refor-
mulation. A posteriori, it is thus clear that (i) and (iv) were established for the
adapted Wasserstein distance and smooth coefficients already in [5]. Our results
in this direction can be understood as using probabilistic methods to generalise
their findings to more general cost functions and SDEs.
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Shrinkage of semimartingales

Monique Jeanblanc

(joint work with Tomasz R. Bielecki, Jacek Jakubowski, Pavel V. Gapeev and
Mariusz Niewkeglowski)

In this talk we study projections of semi-martingales on various filtrations, under
specific assumptions. More precisely, F and G being two filtrations with F ⊂ G,
and Y G being a G-semimartingale, we define the optional projection of Y G as
Yt = E[Y G

t |Ft], ∀t ≥ 0 which is an F-semimartingale under some conditions (see
[7]) and we find some relationships between the decomposition of Y G and Y .

1. A simple case

Let ϑG be a G-adapted bounded process. It is well known that

E[

∫ t

0

ϑGs ds|Ft] = Mt +

∫ t

0

ϑsds

where M is an F-martingale and ϑs = E[ϑGs |Fs]. (See, e.g., [5, lemma 8.3])
The goal is to identify M in terms of the ϑG and one specific martingale which

satisfy predictable representation property (PRP) on F.
Assume for example that F is a Brownian filtration generated by W . In that

case PRP holds, i.e., for any F-martingale M there exists an F-predictable process

ψ such that Mt = M0 +
∫ t
0
ψsdWs.

For any F-adapted bounded process ϕ one has, using tower property in the first
equality

E[

∫ t

0

ϑGs ds

∫ t

0

ϕsdWs] = E[E[

∫ t

0

ϑGs ds |Ft]
∫ t

0

ϕsdWs]

= E[

∫ t

0

ϑsds

∫ t

0

ϕsdWs] + E[Mt

∫ t

0

ϕsdWs]

hence

E[

∫ t

0

ϑGs ds

∫ t

0

ϕsdWs] − E[

∫ t

0

ϑsds

∫ t

0

ϕsdWs]

= E[Mt

∫ t

0

ϕsdWs] = E[

∫ t

0

ψsϕsds]

To proceed, we need to apply integration by parts to the product of G-semimartin-
gales

∫ ·

0
ϑGs ds and

∫ ·

0
ϕsdWs (if

∫ ·

0
ϕsdWs is a G-semimartingale!) which leads to

E[

∫ t

0

ϑGs ds

∫ t

0

ϕsdWs] = E[

∫ t

0

ϑGs

(∫ s

0

ϕudWu

)
ds] + E[

∫ t

0

ϕs

(∫ s

0

ϑGudu

)
dWs]
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We now assume that there exists a G-adapted process αG such that W is a G-
semimartingale with decomposition

Wt = WG
t +

∫ t

0

αG
s ds

where WG is a G-Brownian motion, then

E[

∫ t

0

ϕs

(∫ s

0

ϑGudu

)
dWs] = E[

∫ t

0

ϕs

(∫ s

0

ϑGudu

)
αG
s ds]

(See some conditions in [1, Ch 4 and 5]).
Using tower property in the second equality

E[

∫ t

0

ϑGs ds

∫ t

0

ϕsdWs] = E[

∫ t

0

ϑGs

(∫ s

0

ϕudWu

)
ds] + E[

∫ t

0

ϕs

(∫ s

0

ϑGudu

)
αG
s ds]

= E[

∫ t

0

ϑs

(∫ s

0

ϕudWu

)
ds] + E[

∫ t

0

ϕs

(∫ s

0

ϑGudu

)
αG
s ds]

we get (one has to check carefully that all local martingales that appear are true
martingales) noting that

E[

∫ t

0

ϑsds

∫ t

0

ϕsdWs] = E[

∫ t

0

ϑs

(∫ s

0

ϕudWu

)
ds]

E[

∫ t

0

ψsϕsds] = E[

∫ t

0

ϕs

(∫ s

0

ϑGudu

)
αG
s ds]

and this being true for any ϕ, this yields

ψs = E[αs

∫ s

0

ϑGudu|Fs] .

Remarks: If ϑG is F- adapted M = 0 and ϑG = ϑ. This can be recover from

ψs = E[αG
s

∫ s

0

ϑGudu|Fs] =

∫ s

0

ϑudu E[αG
s |Fs] = 0

since E[αG
s |Fs] = 0.

This can be easily extended to the case where F has a process (may be multi-
dimensional or having jumps) which enjoy PRP for example if F is generated by a
pair (W, µ̃) where W is a Brownian motion independent of a compensated marked
point process µ̃.
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2. Martingales

Let F be a filtration, M an F-martingale (possibly multidimensional, or with
jumps) enjoying PRP.

Let G be a filtration larger than F which enjoy PRP with respect to MG where
MG is a (possibly multidimensional or with jumps) G-martingale such that any
G-martingale Y G has a decomposition as

Y G
t =

∫ t

0

ψG
s dM

G
s

We note with a superscript G processes that are G-adapted as Y G.
Our goal is to find the decomposition of the F-martingale Yt = E[Y G

t |Ft] =∫ t
0
ψsdMs.
The r.v. Yt is characterized by

E[Y G
t

∫ t

0

ϕsdMs] = E[Yt

∫ t

0

ϕsdMs]

for any ϕ ∈ F.
In the one hand, using tower property

E[Y G
t

∫ t

0

ϕsdMs] = E[Yt

∫ t

0

ϕsdMs] = E[

∫ t

0

ψsϕsd〈M〉s] .

To compute using integration by parts E[Y G
t

∫ t
0 ϕsdMs], we need to assume that

M is a G-semimartingale with decomposition

Mt =

∫ t

0

βG
s dM

G
s +

∫ t

0

αG
s d〈MG〉s .

This yields

E[Y G
t

∫ t

0

ϕsdMs] = E[

∫ t

0

Y G
s ϕsdMs]+E[

∫ t

0

(∫ s

0

ϕudMu

)
dY G

s ]+E[〈Y G,

∫ ·

0

ϕsdMs〉t]

where in the first integral in the righthand side M is a G-semimartingale as well as
in the bracket and the second term is null. We compute the two remaining parts
using that the local martingales are true martingales, this can proved by means of
Burkolder Davis Gundy.

E[

∫ t

0

Y G
s ϕsdMs] = E[

∫ t

0

Y G
s ϕsα

G
s d〈MG〉s]

and

E[〈Y G ,

∫ ·

0

ϕsdMs〉t] = E[

∫ t

0

ϕsψ
G
s β

G
s d〈MG〉s]

E[

∫ t

0

ψsϕsd〈M〉s] = E[

∫ t

0

ϕs
(
Y G
s α

G
s + ψG

s β
G
s

)
d〈MG〉s]

hence

ψs =
E[
(
Y G
s α

G
s + ψG

s β
G
s

)
d〈MG〉s|Fs]

d〈M〉s



New Challenges in the Interplay between Finance and Insurance 2617

and, since d〈M〉 = (βG)2d〈MG〉

ψs = E[
Y G
s α

G
s + ψG

s β
G
s

(βG)2s
|Fs]

See [3, 4] for details.

3. Semimartingales

It is well known, from [7], that if X is a G-semimartingale and is F-adapted where
F ⊂ G, then X is an F-semimartingale.

Note that if the G-special semimartingale decomposes as X = M +A and is F-
adapted, it may happen that M and A are not F-adapted (see [7] or [2]). However,
in our case X can be decomposed in both filtrations as (ℓ being a truncation
function)

Xt = X0 +Xc,G
t +

∫ t

0

∫

E

ℓ(x)(µ(dt, dx) − νG(dt, dx)) +BG
t (ℓ) = MG

t +BG
t (ℓ)

Xt = X0 +Xc,F
t +

∫ t

0

∫

E

ℓ(x)(µ(dt, dx) − νF(dt, dx)) +BF
t (ℓ) = MF

t +BF
t (ℓ)

where B is a predictable process with finite variation. The process B is the first
characteristic, the second characteristic is 〈X〉, the third characteristic is ν.

There exists a G-predictable, locally integrable increasing process, say AG, pre-
dictable processes bG, cG and a transition kernel K such that

BG = bG ·AG, CG = cG ·AG, νG(dt, dx) = KG
t (dx)dAG

t .

We assume that

AG
t =

∫ t

0

aGudu,

where aG is a G progressively measurable process. Then it can be shown (see [6])
that the F- characteristic triple of X is given as

dBF =

∫ ·

0

o,F(bGs a
G)sds, CF = CG, νF(dt, dx) =

(
KG
t (dx)aGt dt

)p,F

where o,FZ is the F-projection of Z and Up,F is the dual predictable projection of
U (see, e,g, [1]).
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Robust duality for multi-action options with information delay

Anna Aksamit

(joint work with Ivan Guo, Shidan Liu, Zhou Zhou)

We establish pricing–hedging duality under model uncertainty for multi-action op-
tions. Multi-action options form a class of contracts whose pay-off depends on the
actions taken by a buyer of such contract. As an example we may consider Amer-
ican options, baskets of American options with constraints on execution times, or
swing options.

We thus generalize the duality obtained in [2] to the case of exotic options
that allow the buyer to choose some action from an action space, countable or
uncountable, at each time step in the setup of [3]. Our ideas, however, go beyond
that model and can be applied in various frameworks – including dominated setup.

We solve above problem by introducing an enlarged canonical space in order
to reformulate the superhedging problem for such exotic options as a problem for
European options. Then in a discrete time market with the presence of finitely
many statically traded liquid options, we prove the pricing-hedging duality for
such exotic options as well as the European pricing-hedging duality in the enlarged
space. For the sake of simplicity we focus on the case without statically traded
options in what follows.

Consider the discrete-time model introduced in [3]. Fix a time horizon N ∈ N,
and let T := {0, 1, . . . , N} be the time periods in this model. Let Ω0 = {ω0} be a
singleton and Ω1 be a Polish space. For each k ∈ {1, . . . , N}, define Ωk := Ω0×Ωk1
as the k-fold Cartesian product. For each k, define Gk := B(Ωk) and let Fk be its
universal completion. In particular, we see that G0 is trivial and denote Ω := ΩN ,
F := FN and F = (Fk)k.

Consider a market with d ∈ N financial assets that can be traded dynamically
without transaction costs. We model the dynamically traded assets by an Rd-
valued process S = (St)t∈T such that St is Gt-measurable for t ∈ T. For an

F-predictable, Rd-valued process H , the terminal wealth of the hedging portfolio
is given by (H ◦ S)N =

∑
j,kH

j
k(Sjk − Sjk−1).

Model uncertainty is expressed via the family of possible models P which is
constructed in the following manner. For a given k ∈ {0, . . . , N − 1} and ω ∈ Ωk,
we have a non-empty convex set Pk,k+1(ω) ⊆ P(Ω1) of probability measures,
representing the set of all possible models for the (k + 1)-th period, given the state
ω at time k. We assume that for each k ∈ {0, . . . , N}, graph(Pk,k+1) ⊆ Ωk×P(Ω1)
is analytic. We can then introduce the set P ⊆ P(Ω) of possible models for the
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multi-period market up to time N by

P := {P0,1 ⊗ P1,2 ⊗ · · · ⊗ PN−1,N : Pk,k+1(·) ∈ Pk,k+1(·)} .
Let A be the space of actions at each time and introduce C := AN+1 to be

the collection of all possible plans, equipped with the Borel σ-algebra B(C) and
a canonical filtration (Fc

k)0≤k≤N . In such set-up we are interested in the action

dependent pay-off function Φ : Ω × C → R, and its superhedging price given by

π(Φ) := inf {x : ∃H ∈ H, s.t., x+ (H(·, c) ◦ S)N ≥ Φ(·, c) P-q.s.,∀c ∈ C}
and define the set of dynamic trading strategies

H :=
{
H : Ω × C × T → Rd | H(·, ·, k + 1) =: Hk+1(·, ·) is Fk ⊗Fc

k-measurable
}
.

Our main theorem states the duality result where dual representation of this
superhedging price is established:

Theorem 1. Suppose that the no arbitrage condition NA(P) holds, and let Φ :
Ω × C → R be upper semianalytic. Then, one has

π(Φ) = sup
Q∈M

sup
χ∈D

EQ [Φχ] .

In the above theorem set D consists of all feasible action plans χ : Ω × T → A
such that χ(·, k) is Fk-measurable for each k. Set D generalizes the set of stopping
times to a multi-action set-up. Set M denotes the set of martingale measures for
a process S on Ω, and is given by

M =
{
Q ∈ P(Ω) : Q <<< P and EQ[∆Sk | Fk−1] = 0, ∀k = 1, . . . , N

}
.

To prove Theorem 1, we apply the idea of space enlargement motivated by [2],
which enables to view multi-action option as an European option on the space
Ω × C. Crucial argument is re-establishing dynamic programming principle based
on Jankov-von Neumann analytic selection theorem. Since our framework allows
for uncountable action space this argument becomes significantly more involved.

We complement our duality result with the study of the superhedging price of
a multi-action option in the case of information delay. More precisely we cover
the case where the seller of the option does not possess perfect information about
the actions taken by the buyer, and is able to observe them with a delay. This
framework takes into account this different type of uncertainty. The resulting du-
ality for the superhedging price with information delay πdel(Φ) takes the following
form:

πdel(Φ) = sup
Q∈M

sup
χ∈Dant

EQ [Φχ] ,

where, instead of previously appearing set of adapted feasible action plans D, we
have the set of the anticipating feasible action plans Dant. The dual side can be
interpreted as the price which may be achieved by the buyer able to look into the
future. Looking into the future feature is present here as information delay puts
more constraints on the superhedging side.



2620 Oberwolfach Report 44/2023

References

[1] A. Aksamit, I. Guo, S. Liu, and Z. Zhou, Robust duality for multi-action options under with
information delay, preprint arXiv:2111.14502, (2023).
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Optimal reinsurance via BSDEs in a partially observable model with

jump clusters

Claudia Ceci

(joint work with Matteo Brachetta, Giorgia Callegaro, Carlo Sgarra)

Optimal reinsurance problems have attracted special attention during the past few
years and they have been investigated in many different model settings. Insurance
companies can hardly deal with all the different sources of risk in the real world,
so they hedge against at least part of them, by re-insuring with other institutions.
A reinsurance agreement allows the primary insurer to transfer part of the risk to
another company and it is well known that this is an effective tool in risk manage-
ment. Moreover, the subscription of such contracts is required by some financial
regulators, see e.g. the Directive Solvency II in the European Union. Large part
of the existing literature focuses mainly on classical reinsurance contracts such as
the proportional and the excess-of-loss, which were extensively investigated under
a variety of optimization criteria, e.g. ruin probability minimization, dividend op-
timization and expected utility maximization. Here we are interested in the latter
approach (see Irgens and Paulsen [12], Mania and Santacroce [15], Brachetta and
Ceci [3] and references therein). Some of the classical papers devoted to the sub-
ject assume a diffusive dynamics for the surplus process, while the more recent
literature considers surplus processes including jumps.

The pioneering risk model with jumps in non-life insurance is the classical
Cramér-Lundberg model, where the claims arrival process is a Poisson process
with constant intensity. This assumption implies that the instantaneous probabil-
ity that an accident occurs is always constant, which is in a way too restrictive
in the real world, as already motivated by Grandell [10]. In recent years, many
authors made a great effort to go beyond the classical model formulation. For
example, Cox processes were employed to introduce a stochastic intensity for the
claims arrival process, see e.g. Albrecher and Asmussen [1], Bjork and Grandell [2],
Embrechts et al. [9]. Moreover, other authors introduced Hawkes processes in or-
der to capture the self-exciting property of the insurance risk model in presence of
catastrophic events. Hawkes processes were introduced by Hawkes [11] to describe
geological phenomena with clustering features like earthquakes. Hawkes processes
with general kernels are not Markov processes: they can eventually include long-
range dependence, while Hawkes processes with exponential kernel exhibit the
appealing property that the couple process-intensity is Markovian.
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Dassios and Zhao [7] proposed a model which combines the two approaches
by introducing a Cox process with shot noise intensity and a Hawkes process
with exponential kernel for describing the claim arrival dynamics. Recently Cao,
Landriault and Li [5] investigated the optimal reinsurance-investment problem in
the model setting proposed by Dassios and Zhao [7] with a reward function of
mean-variance type.

A different line of research related to the optimal-reinsurance investment prob-
lem focuses on the possibility that the insurer does not have access to all the
information when choosing the reinsurance strategy. As a matter of fact, only the
claims arrival and the corresponding disbursements are observable. In this case we
need to solve a stochastic optimization problem under partial information. Liang
and Bayraktar [14] were the first to introduce a partial information framework
in optimal reinsurance problems. They consider the optimal reinsurance and in-
vestment problem in an unobservable Markov-modulated compound Poisson risk
model, where the intensity and jump size distribution are not known, but have to
be inferred from the observations of claim arrivals. Ceci, Colaneri and Cretarola
[6] derive risk-minimizing investment strategies when information available to in-
vestors is restricted and they provide optimal hedging strategies for unit-linked
life insurance contracts. Jang, Kim and Lee [13] present a systematic compari-
son between optimal reinsurance strategies in complete and partial information
framework and quantify the information value in a diffusion setting.

More recently, Brachetta and Ceci [4] investigate the optimal reinsurance prob-
lem under the criterion of maximizing the expected exponential utility of terminal
wealth when the insurance company has restricted information on the loss process
in a model with claim arrival intensity and claim sizes distribution affected by an
unobservable environmental stochastic factor.

In the present paper we investigate the optimal reinsurance strategy for a risk
model with jump clustering properties in a partial information setting. The risk
model is similar to that proposed by Dassios and Zhao [7] and it includes two differ-
ent jump processes driving the claims arrivals: one process with constant intensity
describing the exogenous jumps and another with stochastic intensity representing
the endogenous jumps, that exhibits self-exciting features. The externally-excited
component represents catastrophic events, which generate claims clustering in-
creasing the claim arrival intensity. The endogenous part allows us to capture the
clustering effect due to self-exciting features. That is, when an accident occurs, it
increases the likelihood of such events. The insurance company has only partial
information at disposal, more precisely the insurer can only observe the cumu-
lative claims process. The externally-excited component of the intensity is not
observable and the insurer needs to estimate the stochastic intensity by solving a
filtering problem. Our approach is substantially different from that of Cao et Al.
[5] in several respects: firstly, we work in a partial information setting; secondly,
the intensity of the self-excited claims arrival exhibits a slight more general depen-
dence on the claims severity; finally, we maximize an exponential utility function
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instead of following a mean-variance criterion. In a partially observable frame-
work, our goal is to characterize the value process and the optimal strategy. The
optimal stochastic control problem in our case turns out to be infinite dimensional
and the characterization of the optimal strategy cannot be performed by solving
a Hamilton-Jacobi-Bellman equation, but via a BSDE approach.

A difficulty naturally arises when dealing with Hawkes processes: the intensity
of the jumps is not bounded a priori, although a non-explosive condition holds.
Hence we are not able to exploit some relevant bounds, which are usually required
to prove a verification theorem and results on existence and uniqueness of the
solution for the related BSDE. Nevertheless, we are going to show that the optimal
stochastic control problem has a solution, which admits a characterization in terms
of a unique solution to a suitable BSDE.

Our paper aims to contribute in different directions to the literature on opti-
mal reinsurance problems: first, we provide a rigorous and formal construction of
the dynamic contagion model. Second, we study the filtering problem associated
to our model, providing a characterization of the filter process in terms of the
Kushner-Stratonovich equation and the Zakai equation as well. To the best of our
knowledge, this problem has not been addressed insofar in the existing literature.
We refer to Dassios and Jang [8] for a similar problem without the self-exciting
component. Third, we solve the optimal reinsurance problem under the expected
utility criterion.

We remark that our study differs from Brachetta and Ceci [4] in many key
aspects. The risk model is substantially different, requires a strong effort to be
rigorously constructed and the study of a new filtering problem. What is more,
a crucial assumption in Brachetta and Ceci [4] is the boundedness of the claims
arrival intensity, which is not satisfied in our case, thus leading to additional tech-
nicalities in most of the proofs. This is what happens, for example, when one
needs to prove existence and uniqueness of the solution of the BSDE. Moreover,
we perform the optimization over a class of admissible contracts, instead of max-
imizing over the retention level. This feature allows us to cover a larger class of
problems. Finally, we do not require the existence of an optimal control for the
derivation of the BSDE, hence the general presentation turns out to be different.

The paper is organized as follows. In Section 1 we are going to introduce the
risk model and to specify what information is available to the insurer. A rigorous
mathematical construction is provided, based on a measure change approach, nec-
essary to develop the following analysis in full details. In Section 2 the filtering
problem is investigated in order to reduce the optimal stochastic control problem
to a complete information setting. The stochastic differential equation satisfied
by the filter is obtained, by exploiting both the Kushner-Stratonovich and the
Zakai approaches. In Section 3 the optimal stochastic control problem is formu-
lated, while in Section 4 a characterization of the value process associated with
the optimal stochastic control problem is illustrated. Due to the infinite dimen-
sion of the filter, the approach based on the Hamilton-Jacobi-Bellman equation
cannot be exploited, so the value process is characterized as the unique solution
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of a BSDE. In Section 5 the optimal reinsurance strategy is investigated under
general assumptions and some relevant cases are discussed.
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Utility maximization for reinsurance policies in a dynamic contagion

claim model

Alessandra Cretarola

(joint work with Claudia Ceci)

Optimal reinsurance and optimal investment problems for various risk models
have gained a lot of interest in the actuarial literature in recent years. Thanks
to the development of effective strategies, insurers can reduce potential claim risk
(insurance risk) and optimize capital investments. Indeed, acquiring reinsurance
serves as a safeguard for insurers against unfavorable claim experiences, while
investing also enables insurers to diversify risks and potentially achieve higher
returns on the cash flows within their insurance portfolio. Within the extensive
body of literature devoted to risk theory, a classical task is to deal with optimal
risk control and optimal asset allocation for an insurance company. Mainly in the
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case of classical reinsurance contracts such as the proportional and the excess-of-
loss, different decision criteria have been adopted in the study of these problems
e.g. ruin probability minimization, dividend optimization and expected utility
maximization. Here, we focus on the latter approach (see Irgens and Paulsen [9],
Mania and Santacroce [10], Brachetta and Ceci [4] and references therein). Earlier
seminal papers on the topic adopt a diffusive dynamics for the surplus process,
whereas more recent literature explores surplus processes that incorporate jumps.

The first risk model specification incorporating jumps in non-life insurance is
represented by the classical Cramér-Lundberg model, in which the claims arrival
process follows a Poisson process with a constant intensity. Since it is an as-
sumption which is seriously violated in a large number of insurance contexts (e.g.,
climate risks), many researchers have suggested to employ a stochastic intensity
for the claim arrival dynamics. For instance, clustering features due to exogenous
(externally-excited) factors, such as earthquakes, flood, and hurricanes, might be
captured using a Cox process, see e.g. Albrecher and Asmussen [1], Bjork and
Grandell [2], Embrechts et al. [7]. Moreover, clustering effects due to endogenous
(self-excited) factors, such as aggressive driving habits and poor health conditions,
can be effectively described by a Hawkes process, see e.g. Hawkes [8]. Dassios and
Zhao [6] introduced a dynamic contagion model by generalizing both the Cox
process with shot noise intensity and the Hawkes process.

In recent years, Cao, Landriault and Li [5] analyzed the optimal reinsurance-
investment problem for the compound dynamic contagion process introduced by
Dassios and Zhao [6] via the time-consistent mean–variance criterion. Brachetta
et al. [3] very recently investigated the optimal reinsurance strategy for a risk
model with jump clustering features similar to that proposed by Dassios and Zhao
[6] under partial information.

In this work, we study the optimal reinsurance problem via expected utility
maximization in the risk model with jump clustering properties introduced in
Brachetta et al. [3] under full information for general reinsurance contracts. Note
that, the problem considered in Brachetta et al. [3] is the same but analyzed in
a partial information setting. The study of the problem in the case of complete
information is not addressed in the literature, and furthermore, it could allow for
comparative analyses in a more tractable context than that of partial information.
We discuss two different methodologies: the classical stochastic control approach
based on the Hamilton-Jacobi-Bellman equation and a backward stochastic dif-
ferential equation approach. It is important to stress that proving the existence
of a classical solution to the Hamilton-Jacobi-Bellman equation corresponding to
the optimal stochastic control problem under investigation is challenging due to
its inherent complexity. This difficulty stems from the equation’s nature as a
partial integro-differential equation, compounded by an optimization component
embedded within the associated integro-differential operator. This motivated the
application of an alternative approach based on backward stochastic differential
equations. It is worth noting that the resulting backward stochastic differential
equation, whose unique solution characterizes the value process, differs from that
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studied in Brachetta et al. [3], due to the presence of an additional jump compo-
nent.

The paper, still in progress, is organized as follows. Firstly, we introduce the
mathematical framework including the dynamic contagion process. Then, we for-
mally introduce the problem under investigation, which involves the controlled
surplus process and the objective function. Afterwards, we discuss the Hamilton-
Jacobi-Bellman approach in order to solve the resulting optimal stochastic control
problem and represent the value process as the unique solution of a suitable back-
ward stochastic differential equation. We also characterize the optimal strategy for
a general reinsurance premium and provide more explicit results in some relevant
cases. Currently, we are performing a comparison analysis, which should underline
the risk due to the self-exciting component.
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Set-Valued Propagation of Chaos for Controlled Mean Field SPDEs

David Criens

The area of controlled McKean–Vlasov dynamics, also known as mean field control,
has rapidly developed in the past years More recently, there is also increasing
interest in infinite dimensional systems, see, e.g., [1, 6] for equations appearing in
financial mathematics. We also refer to the recent paper [2], where the authors
investigate controlled mean field stochastic PDEs (SPDEs) for which they establish
well-posedness of the state equation, the dynamic programming principle and a
Bellman equation.

Mean field dynamics are typically motivated by particle approximations (related
to propagation of chaos). It is an important task to make the heuristic motivation
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rigorous. For finite dimensional frameworks, a suitable limit theory was developed
in the seminal paper [8].

In this talk, we discuss recent results established in the paper [3] for an infinite
dimensional variational SPDE framework as initiated by Pardoux [9] and Krylov–
Rozovskii [7]. To reduce the technical level of the talk, we consider a specific
interacting systems of controlled porous media equations of the form

dY kt =
[
∆(|Y kt |q−2Y kt ) +

1

n

n∑

i=1

(Y kt − Y it ) +

∫
c(f)mk(t, df)

]
dt+ σdW k

t ,

Y k0 = x,

with q ≥ 2 and k = 1, . . . , n. Here, m1,m2, . . . ,mn denote kernel that model the
control variables, and W 1, . . . ,Wn are independent cylindrical Brownian motions.
This corresponds to a relaxed control framework in the spirit of [4, 5].

Let Rn(x) be the set of joint empirical distributions of such particles together
with their controls (latter are captured via mk(t, df)dt in a suitable space of Radon
measures). The associated set of mean field limits is denoted by R0(x). It consists
of probability measures supported on the set of laws of (Y,m(t, df)dt), where Y
solves a controlled McKean–Vlasov equation of the form

dYt =
[
∆(|Yt|q−2Yt) + (Yt − E[Yt]) +

∫
c(f)m(t, df)

]
dt+ σdWt Y0 = x.

For this setting, we discuss two types of results. Conceptually, the first one is
probabilistic and deals with the convergence of the controlled particle systems,
while the second one sheds light on the mean field limits from a stochastic optimal
control perspective.

The probabilistic result states that the sets Rn(x) and R0(x) are nonempty
and compact (in a suitable Wasserstein space) and that

Rn(x) → R0(x)

in the Hausdorff metric topology. This result is considered as set-valued propaga-
tion of chaos. Indeed, when the sets Rn(xn) and R0(x0) are singletons, we recover
a classical formulation of the propagation of chaos property. To the best of our
knowledge, the concept and formulation of set-valued propagation of chaos has not
appeared in the literature before.

The optimal control result states that the value functions associated with Rn(x)
and R0(x) converge to each other (uniformly on compacts in their initial values x),
i.e., (

x 7→ sup
P∈Rn(x)

EP
[
ψ
])

→
(
x 7→ sup

P∈R0(x)

EP
[
ψ
])

compactly, for any continuous input function ψ on the suitable Wasserstein space
that is of certain growth. As a consequence, one also obtains limit theorems
in the spirit of the seminal work [8]. Namely, it follows that all accumulation
points of sequences of n-state nearly optimal controls maximize the mean field
value function, and that any optimal mean field control can be approximated by
a sequence of n-state nearly optimal controls.
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The talk is concluded with the open problem to relax some weak monotonicity
conditions from [3]. This problem appears to be challenging due to the non-local
structure of McKean–Vlasov equations.
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Hawkes processes, Malliavin calculus and application to financial and

actuarial derivatives

Caroline Hillairet

(joint work with Anthony Réveillac, Mathieu Rosenbaum)

In this talk, we are interested in the evaluation of financial or actuarial derivatives
whose payoff depends on a cumulative loss (Lt)

Lt :=

Nt∑

i=1

Xi, t ∈ [0, T ]

where N := (Nt)t∈[0,T ] is a counting process (jumping at time (τi)i∈N∗) that
represents the claims arrival (frequency component) and the (Xi)i∈N∗ (iid random
variables) are the claims sizes (severity component).

In the classical Cramer-Lundberg model, N is assumed to be a Poisson process,
meaning that inter-arrivals (τi− τi−1) are assumed to be iid (with exponential dis-
tribution). Nevertheless, self-exciting and contagion effects have been highlighted
such as for example in credit risk and in cyber risk, in favor of modeling the claims
arrivals by a Hawkes process, that is adapted to model aftershocks of claims. A
(linear) Hawkes process H is characterized by its stochastic intensity λ(t) fully
specified by the process H itself, namely

λ(t) := λ0(t) +

∫

(0,t)

Φ(t− s)dHs = λ0(t) +
∑

τn<t

Φ(t− τn) t ∈ [0, T ],
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where Φ is the (deterministic) excitation kernel and λ0 is the (deterministic) base-
line intensity (hereafter taken as a constant µ). The main contribution is to derive
an explicit closed form pricing formula for contracts with underlying a cumulative
loss indexed by a Hawkes process.

From the probabilistic point of view, we consider a payoff of the form KTh(LT )
where (Kt) and (Lt) are two loss processes indexed by the same Hawkes. This
quantity is at the core for determining the premium of a large class of insur-
ance derivatives or risk management instruments : reinsurance contracts (such as
Stop-Loss contracts), or credit derivatives (such as tranches of Collaterized Debt
Obligations), or computation of the expected shortfall of contingent claims. It can
be expressed as

∫
(0,T ] ZtdHtF where Z is a predictable process and F := h(LT )

is a functional of the Hawkes process. In the case where the counting process is
a Poisson process (or a Cox process), Malliavin calculus enables one to transform
this quantity. More precisely, if H = N is an homogeneous Poisson process with
intensity µ > 0 (in other words the self-exciting kernel Φ is put to 0), the Malliavin
integration by parts formula (Mecke formula, see [7]) allows us to derive that

(1) E

[∫

(0,T ]

ZtdNtF

]
= µ

∫ T

0

E
[
ZtF ◦ ǫ+t

]
dt,

where the notation F ◦ ǫ+t denotes the functional on the Poisson space where a
deterministic jump is added to the paths of N at time t. This expression turns
out to be particularly interesting from an actuarial point of view since adding a
jump at some time t corresponds to realising a stress test by adding artificially a
claim at time t. Naturally, in case of a Poisson process, the additional jump at
some time t only impacts the payoff of the contract by adding a new claim in the
contract but it does not impact the dynamic of the counting process N .

We provide a generalization of Equation (1) in case the counting process is
a Hawkes process H . The main ingredient consists in using a representation of
a Hawkes process known as the “Poisson imbedding” (related to the “Thinning
Algorithm”, see [5]) in terms of a Poisson measure N on [0, T ]×R+ to which the
Malliavin integration by parts formula can be applied.

(2)

{
Ht =

∫
(0,t]

∫
R+

1{θ≤λs}N(ds, dθ),

λt = µ+
∫
(0,t) Φ(t− u)dHu.

As the adjunction of a jump at a given time impacts the dynamic of the Hawkes
process, we refer to the obtained expression more to an ”expansion” rather than
an ”integration by parts formula” for the Hawkes process, as it involves what
we name ”shifted Hawkes processes” Hvn,...,v1 for which jumps at deterministic
times 0 < vn < · · · < v1 are added to the process accordingly to the self-exciting
kernel Φ. To illustrate this, a one shift Hawkes process at time v in (0, T ) can be
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expressed as follows




Hv
t = 1[0,v)(t)Ht + 1[v,T ](t)

(
Hv
v− + 1 +

∫

(v,t]

∫

R+

1{θ≤λv
s}
N(ds, dθ)

)

λvt = 1(0,v](t)λt + 1(v,T ](t)

(
µv,1(t) +

∫

(v,t)

Φ(t− u)dHv
u

)
,

µv,1(t) := µ+
∫
(0,v]

Φ(t− u)dHv
u = µ+

∫
(0,v)

Φ(t− u)dHu + Φ(t− v).

The main result is the following expansion formula (see [2]): Assuming Z a
bounded F-predictable process, F a bounded FT -measurable random variable and
‖Φ‖1 < 1. Then

E

[
F

∫

[0,T ]

ZtdHt

]
= µ

∫ T

0

E [ZvF
v] dv

+µ

+∞∑

n=2

∫ T

0

∫ v1

0

· · ·
∫ vn−1

0

n∏

i=2

Φ(vi−1 − vi)E
[
Zvn,...,v2v1 F vn,...,v1

]
dvn · · · dv1.

The first term µ
∫ T
0
E [ZvF

v] dv corresponds to the formula for a Poisson process
(setting the self-exciting kernel Φ at zero). The sum in the second term can be
interpreted as a correcting term due to the self-exciting property of the counting
process H . The shifted processes Hvn,...,v1 appearing in the form of the premium
are of the same complexity than the original Hawkes process H . However, they
exhibit deterministic jumps at some times v1, . . . , vn which are weighted by corre-
lation factors of the form Φ(vi− vi−1). We benefit from this formulation to derive
a lower and an upper bound respectively for the quantity E[KTh(LT )]: by control-
ling the different types of jumps of the shifted Hawkes process, one can perform
bounds that are more accurate than those available so far.

As an extension (still assuming ‖Φ‖1 < 1), we indicate how this methodology
combining Poisson imbedding and Malliavin calculus, can be used to provide new
results on Hawkes processes such as

• Explicit “Pseudo-Chaotic” expansion (see [3])

HT =
+∞∑

k=1

∫

Xk

1

k!
ck(x1, . . . , xk)N(dx1) · · ·N(dxk),

{
c1(x1) = 1{θ1≤µ},

ck(x1, . . . , xk) = Dk−1
(x1,x2,...,xk−1)

1{θk≤λtk
}

where X := [0, T ] × R+; x := (t, θ); dx = dθdt and D is the Malliavin
derivative (DxF ) := F ◦ ǫ+x − F .

• Explicit correlation of a general Hawkes process (see [4]). For s ≤ t

Cov(Hs, Ht) = µ

∫
s

0

(
1 +

∫
v

0

Ψ(w)dw

)(
1 +

∫
s

v

Ψ(y − v)dy

)(
1 +

∫
t

v

Ψ(y − v)dy

)
dv,
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where Ψ :=
∑+∞
n=1 Φn and Φn are the iterated convolution of the excitation

kernel Φ1 := Φ, Φn(t) :=
∫ t
0 Φ(t− s)Φn−1(s)ds, t ∈ R+, n ∈ N∗.

• Quantitative TCL (see [1]). “Berry Esseen” bounds Central Limit The-

orems for the compound Hawkes process LT :=
∑HT

i=1Xi (with Xi iid and
independent of H) using Malliavin-Stein method (as in Nourdin Pecatti
[6])

dW

(
LT −m

∫ T
0
λsds√

T
,G

)
≤ CΦ,ν√

T
, ∀T > 0, G ∼ N (0, σ2),

with m = E(X) and σ2 = µE(X2)
1−||Φ||1

.
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[1] C. Hillairet, L. Huang, M. Khabou, A. Réveillac.The Malliavin-Stein method for Hawkes
functionals, ALEA, (2022)
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Université de Lausanne
Quartier UNIL-Chamberonne
Bâtiment Anthropole
1015 Lausanne
SWITZERLAND

Dr. An Chen

Fakultät für Mathematik und
Wirtschaftswissenschaften
Universität Ulm
89069 Ulm
GERMANY

Dr. Queensley Chidimma

Chukwudum

University of Uyo
Department of Insurance and Risk
Management,
No 1 Ikpa road
Uyo Akwa Ibom State
NIGERIA



2632 Oberwolfach Report 44/2023

Prof. Dr. Alessandra Cretarola

Dipartimento di Matematica e
Informatica
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SWITZERLAND

Prof. Dr. Michèle Vanmaele
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Abstract. Cluster algebras, invented by Sergey Fomin and Andrei Zele-
vinsky around the year 2000, are commutative algebras endowed with a rich
combinatorial structure. Fomin–Zelevinsky’s original motivations came from
Lie theory but in the past two decades, cluster algebras have had strikingly
fruitful interactions with a large array of other subjects including Poisson
geometry, discrete dynamical systems, (higher) Teichmüller spaces, commu-
tative and non-commutative algebraic geometry, representation theory, . . . .
In this Arbeitsgemeinschaft, we have focused on 1) basic definitions and theo-
rems, 2) cluster structures on algebraic varieties and 3) the recent connection
between cluster algebras and symplectic topology, with its recent application
to the construction of cluster structures on braid varieties.

Mathematics Subject Classification (2020): 13F60, 53D10, 57K33.

Introduction by the Organizers

The Arbeitsgemeinschaft Cluster Algebras, organised by Roger Casals, Bernhard
Keller and Lauren Williams, attracted excellent researchers of various backgrounds
from all over the world, including many graduate students and postdocs. It was
organized with 48 on-site and 12 online participants. As usual for an Arbeitsge-
meinschaft, the organisers had provided a detailed program and had distributed
the talks to the participants. We had a total of 16 talks of one hour each with
ample time for discussion and additional sessions for recaps, questions and an-
swers, discussions and software demonstrations from eight to ten in the evenings.
On Wednesday afternoon, we made an excursion to St. Roman and on Thursday
evening, Andreas Thom moderated the discussion and vote on the next Arbeits-
gemeinschaft in this series.



2638 Oberwolfach Report 45/2023

In this Arbeitsgemeinschaft, we focused on three main subjects:

A. the basic theory of cluster algebras (5 talks)
B. the most important classical examples of cluster structures on varieties (5

talks) and
C. the recent interaction between cluster algebras and symplectic topology

and its application to the construction of cluster structures on braid vari-
eties (6 talks).

The talks in part A were devoted to the definition and first examples of cluster
algebras, the classification of the cluster-finite cluster algebras (parametrized by
the finite root systems), the basic techniques for constructing cluster structures
on (homogeneous) coordinate algebras of varieties with the example of the Grass-
mannian, additional notions and results on cluster combinatorics and the family
of cluster algebras constructed from marked surfaces.

Part B started with a talk on more advanced techniques for constructing cluster
structures on varieties followed by talks on the combinatorics of plabic graphs and
the associated positroid cells, on webs and the cluster structure on the Grassman-
nian of 3-dimensional subspaces, on double Bruhat cells and generalizations and
finally on Fock–Goncharov’s cluster ensembles, which provide a more symmetric,
geometric framework for the whole theory.

Part C focused on developments in symplectic geometry that have either used
cluster algebras or been used to study them. In particular, this last series of
lectures aimed at developing the intuitions and techniques from symplectic ge-
ometry (following Casals, Weng, Pascaleff–Tonkonog, Gao–Shen–Weng, . . . ) and
the microlocal theory of sheaves (Kashiwara–Schapira, . . . ) to complement the
more algebraic and combinatorial methods often used to study cluster algebras.
On the one hand, these lectures explained new results in the study of Lagrangian
surfaces, including the detection of infinitely many Lagrangian fillings, via tech-
niques from cluster algebras (after Casals–Gao and Casals–Weng). On the other,
the combinatorics of weaves were also presented from their original symplectic
geometric viewpoint and then applied to prove new results in the study of cluster
algebras. To wit, the lectures showed that the coordinate rings of braid varieties,
which arise as certain moduli of Lagrangian fillings and generalize Richardson
varieties, are indeed cluster algebras (after Casals–Gorsky–Gorsky–Simental and
Casals–Gorsky–Gorsky–Le–Shen–Simental). For lack of time, we did not cover the
alternative, more combinatorial construction of such cluster structures on braid
varieties due to Galashin–Lam–Sherman-Bennett–Speyer.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

A1–Introduction to cluster algebras : Definition and first examples

Théo Pinet

The principal references for this note are the pioneering work of Fomin–Zelevinsky
[1, 3], their book [4] and Keller’s paper [5]. The main goal of the note is to introduce
the notion of cluster algebra associated to a valued/ice quiver and to illustrate this
notion on examples, with in particular the example of the homogeneous coordinate
algebra of the Grassmannian of planes in (n+3)-dimensional space. Informally, the
cluster algebra associated to a quiver Q with n vertices is a subalgebra of the field

of rational functions F = Q(x1, . . . , xn) whose generators, the cluster variables,
are grouped in clusters of size n and are constructed recursively, starting from the
initial seed (Q, (x1, . . . , xn)), using mutations. Let us now make this more precise.

Given a good quiver Q = (Q0, Q1, s, t) (i.e. a finite directed graph with no loops
or 2-cycles) and a vertex k ∈ Q0, we define another good quiver µk(Q) from Q by

(1) adding an arrow i→ j for all paths of the form i→ k → j in Q,

(2) inverting all arrows of the form i→ k and k → j in Q, and

(3) removing all 2-cycles created from steps (1) and (2).

The good quiver µk(Q) is called the mutation of Q at k. Note that µk(µk(Q)) = Q.
For example, mutating the Markov quiver QM below at vertex 1, gives us a quiver
isomorphic to QM . We thus say that the mutation class of QM is {QM}.

QM =
2 3

1
µ1

2 3

1

≃ QM

Figure 1. Example of quiver mutation with the Markov quiver QM .

Fix n ∈ Z≥0. A seed is a pair (Q, u) with Q a good quiver having n vertices and
with u = (u1, . . . , un) ∈ Fn a sequence satisfying F = Q(u1, . . . , un). Starting from
a seed (Q, u) and a vertex k ∈ Q0, the mutated seed µk(Q, u) in direction k is

µk(Q, u) = (µk(Q), u′)

where u′ = (u1, . . . , uk−1, u
′
k, uk+1, . . . , un) with u′k given by the exchange relation

(1) uku
′
k =

∏

α∈Q1

t(α)=k

us(α) +
∏

α∈Q1

s(α)=k

ut(α).

Fix now a good quiver Q with n vertices. A cluster associated to Q is a sequence
u′ ∈ Fn occuring in a seed (Q′, u′) that is linked to the initial seed (Q, (x1, . . . , xn))
by a finite sequence of mutations. We call cluster variables the components of the
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clusters associated to Q and define the cluster algebra AQ corresponding to Q as
the subalgebra of F generated by all cluster variables. In other words,

AQ = Q[cluster variables associated to Q] ⊆ F.

Most cluster algebras, like the one associated to the Markov quiver, have infinitely
many cluster variables. These algebras can thus be quite hard to describe explicitly.
However, their complexity is somewhat limited by the theorem below, which is one
of the most remarkable results proven during the early study of cluster algebras.

Theorem 1 (Laurent phenomenon, [1, 2]). Fix u′ = (u′1, . . . , u
′
n) a cluster of AQ.

Then, the cluster variables of AQ all live inside the ring Z[(u′1)±1, . . . , (u′n)±1].

In particular, the cluster algebra AQ is contained in the algebra Q⊗ZUQ where

UQ =
⋂

u′=(u′
1,...,u

′
n)

cluster of AQ

Z[(u′1)±1, . . . , (u′n)±1]

is the upper cluster algebra corresponding to Q. Note nevertheless that AQ 6= UQ
in general since, for Q = QM the Markov quiver, the Laurent polynomial

f(x1, x2, x3) =
x21 + x22 + x23
x1x2x3

belongs to UQ, but not to AQ (see e.g. [4]).
Now, let us add frozen nodes {n+1, . . . ,m} (with m ≥ n) to our good quiver Q

in order to obtain an iced quiver of type (n,m). These frozen vertices can connect
to the original (i.e. unfrozen) vertices of our quiver Q in any way that do not create
2-cycles, but cannot be connected to another frozen vertex. Here is an example:

2 3

14 5

Figure 2. Example of iced quiver with 2 frozen nodes (indicated
with a box) and an unfrozen part equal to the Markov quiver.

Given an iced quiver Q, we can define a cluster algebra AQ exactly as above from
the initial seed (Q, (x1, . . . , xm)) by mutating at unfrozen vertices {1, . . . , n} (and
at these vertices only). In this situation, the variables xn+1, . . . , xm belong to all
clusters of AQ and are called coefficients (instead of cluster variables). This slight
generalization allows us to state the result below, again due to Fomin–Zelevinsky.

Theorem 2 ([2]). Let X be a rational quasi-affine irreducible m-dimensional com-
plex variety such that dimX = m. Fix moreover Q an iced quiver of type (n,m).
Suppose given functions ϕv and ϕxi

in the coordinate ring C[X ] for all choices of
cluster variables v of AQ and all n < i ≤ m. Suppose also that

(i) these functions altogether generate the coordinate ring C[X ] and that
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(ii) the map sending a cluster variable or a coefficient to the associated function
sends exchange relations in AQ to equalities in C[X ].

Then, the latter map extends to an algebra isomorphism C⊗Q AQ ≃ C[X ].

When the conditions in the above theorem are satisfied, we say that the coordi-
nate ring C[X ] carries a cluster structure of type Q with initial seed {ϕxi

}mi=1. For
an example of such a situation, fix m = n+3 with n ≥ 1 and denote by A the alge-
bra of polynomial functions on the cone over the Grassmannian Gr2,m(C) of planes
in Cm. Then, A is generated by the Plücker coordinates xij (with 1 ≤ i < j ≤ m)
which are subject to the Plücker relations

(2) xikxjℓ = xijxkℓ + xiℓxjk

whenever 1 ≤ i < j < k < ℓ ≤ m. Let now P be a m-gon with a fixed triangulation
T . Then a well-known procedure (see e.g. [2, 4]) produces an iced quiver Q of type
(n,m) from P and T . Here is an example with m = 6:

1

2

3

4

5

6

16

56

45

15

35

13

34

12

23

Figure 3. Iced quiver Q associated to hexagon P with triangu-
lation T . Sides of P (diagonals of T ) give frozen (resp. unfrozen)
nodes, while arrows are obtained by turning in a counter-clockwise
manner inside the triangles bounded by T (see e.g. [4]).

Theorem 3 ([2, 4]). The algebra A carries a cluster structure with type the iced
quiver Q above and with cluster variables (coefficients) the Plücker coordinates xij
associated to diagonals (resp. sides) of P . Also, the clusters of A are the n-tuples
of diagonals of P forming a triangulation and the exchange relations for the cluster
algebra A (see (1)) are exactly the Plücker relations (2).

Let us at last finish this note by recalling that iced quivers of type (n,m) are in
bijection with integral m× n matrices with skew-symmetric n× n top submatrix.
Using this bijection, we can define the notion of matrix mutation which can in turn
be generalized to the setting of integral m×n matrices having skew-symmetrizable
n× n top submatrix. This then leads to mutation for valued iced quivers [4, 5].
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A2–Classification of cluster-finite cluster algebras

Kaveh Mousavand

This talk was a summary of the seminal work of Fomin and Zelevinsky [1] on
the classification of those cluster algebras which admit only finitely many clusters.
Such algebras are traditionally called of “finite type”, and they are treated up to
a suitable notion of isomorphism for cluster algebras. Before we recall the main
ingredients and state the results, let us remark that there are other notions of
finiteness in the study of cluster algebras (e.g. finite mutation type, or finitely
generated cluster algebras, etc.) that are different from the problem considered
in the talk. Also, we observe that in some textbooks, a commutative algebra
is said to be of finite type if it is a quotient of a polynomial algebra in finitely
many indeterminates. Unfortunately, this notion is different from the finiteness
phenomenon treated in [1]. That is, there are examples of cluster algebras which
are finite type as commutative algebras, but they admit infinitely many clusters
(For instance, the coordinate algebras of maximal unipotent subgroups in [5], or
any finitely generated cluster algebra with infinitely many clusters.). To avoid
any confusion caused by the discrepancy in terminology, henceforth we adopt a
less ambiguous term proposed by Benrhard Keller– one of the organizers of this
Arbeitsgemeinschaft– and say that a cluster algebra is cluster-finite if it admits
only finitely many clusters.

1. Notations, main ingredients and background

Here we only recall some standard terminology and notations that allow us to
articulate the main problem and results. For detailed study of root systems, we
refer to [4]. Moreover, all the required materials from cluster algebras that are
used below can be found in [1].

Throughout, let Φ denote a finite irreducible crystallographic root system in the
Euclidean space Rn. It is known that, up to isometry and simultaneous rescaling
of the vectors, Φ is uniquely determined by its Cartan matrix CΦ, to which one
can associate a unique Dynking graph. In particular, the Dynkin graphs of all
finite irreducible crystallographic root systems are often denoted by An (n ≥ 1),
Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, F4, or G2 (for details, see
[2] and [4]). For Φ, and a fixed simple system ∆ in Φ, by Φ+ we denote the
set of positive roots. Furthermore, the set of almost positive roots is defined as
Φ≥−1 := Φ+ ∪−∆, where −∆ := {−α|α ∈ ∆}.

Now, we briefly recall the main ingredients of the most general construction of
cluster algebras, as in [1]. Let P be a semifield, and by F denote the field of rational
functions in n indeterminates with cooeficients in ZP. This will be the ambient
field containing the cluster algebra A of rank n, described below. Every seed in
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F is a triple Σ = (x, p,B), where x is called a cluster, consisting of n elements in
F . These elements are known as the cluster variables and form a free generating
set for a field extension over the field of fractions of ZP in F . Moreover, the
coefficient p = (p±x )x∈x is a 2-tuple of elements in P satisfying the normalization

condition p+x ⊕ p−x = 1. Here, ⊕ denotes the auxiliary addition in the semifield
P. Finally, B = (bxy)x,y∈x denotes a sign-skew-symmetric matrix whose rows and
columns are indexed by the cluster variables in x. Namely, for all x, y ∈ x, either
bxy = byx = 0, or else bxybyx < 0. Through the explicit formulas in section 1 of [1],
one can mutate the seed Σ = (x, p,B) in all n directions, that is, to simultaneously
mutate the cluster x, the coefficient p, as well as the matrix B.

Starting from an initial seed Σ, perform all possible mutations on Σ, and then
iterate this procedure at every output obtained in each step. This iteration may
terminate after only finitely many steps, that is, we get no new seeds after a finite
number of mutations, or else one can mutate and produce infinitely many different
seeds. Let S denote the set of all seeds in F obtained via all possible iterations of
mutations starting from Σ. By X and P , respectively denote the set of all cluster
variables and the set of all coefficients in the seeds belonging to S. Let Z[P ] denote
the subring of F generated by P . Then, the normalized cluster algebra A is the
Z[P ]-subalgebra of F generated by X . As shown in [1], A can be studied up to
strong isomorphism of cluster algebras. More precisely, over a fixed semifield P, if
F and F ′ are two ambient fields as above, and A ⊂ F and A′ ⊂ F ′ are two cluster
algebras, then A and A′ are strongly isomorphic if there exists a Z[P ]-algebra
isomorphism between F and F ′ which additionally transports any seed in F to F ′.
Such an isomorphism induces an algebra isomorphism between A and A′ which
preserves the cluster structure. We remark that, even over a fixed semifield, an
arbitrary Z[P ]-algebra isomorphism between two cluster algebras is not necessarily
a strong isomorphism. In fact, there exist Z[P ]-algebras which admit two different
cluster structures that are not strongly isomorphic (for explicit examples, see [3]).

2. Main results

Before we state the first theorem, let us recall that for an arbitrary n× n integer
square matrix B = (bij), the Cartan counterpart of B, which we denote by CB =
(cij), is defined by putting cij := 2, if i = j, and cij := −|bij|, otherwise. Observe
that CB is not necessarily a Cartan matrix, but it is a generalized Cartan matrix.
Now, we are ready to state the first main result. Throughout, we use the notations
and terminology introduced above.

Theorem 1. Fomin-Zelevinsky [1]: Let Σ = (x, p,B) be a seed in F such that
bxybxz ≥ 0, for all x, y and z in x. If the Cartan counterpart of B is the Cartan
matrix CΦ of a finite root system Φ, then A is cluster-finite. Conversely, up to
strong isomorphism, every cluster-finite cluster algebra is of the above form, that
is, it admits a seed with the aforementioned properties.

By the preceding theorem, if the cluster algebra A of rank n is cluster-finite, a
unique finite root system Φ in Rn is associated to A. Consequently, A is called
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of type Φ, and has the corresponding Dynkin graph with n vertices. For a more
detailed treatment of cluster-finite cluster algebras from this viewpoint, see [2].

The second main result is the following theorem which gives equivalent charac-
terizations of cluster-finite cluster algebras, and further describes the connection
between their cluster variables and certain roots in the corresponding root system.

Theorem 2. Fomin-Zelevinsky [1]: For any cluster algebra A, the following are
equivalent:

(1) A is cluster-finite;
(2) A admits finitely many cluster variables, that is, X is a finite set;
(3) In every seed Σ = (x, p,B) in S, we have |bxybyx| ≤ 3, for all x, y ∈ x.

That being the case, let Φ be the root system of A and x0 = (x1, · · · , xn) the
initial cluster. Then, there is a unique bijection between the almost positive roots
in Φ and the cluster variables in X , expressed in terms of x0. More precisely, if
∆ = {α1, · · · , αn} is a simple system in Φ, for each α ∈ Φ≥−1, the corresponding

cluster variable is x[α] =
Pα(x0)

xα , where Pα(x0) is a polynomial over ZP in terms of
cluster variables in x0 and has a non-zero constant term, and xα is the monomial
defined as xα = xc11 · · ·xcnn , where α = c1α1+· · ·+cnαn. In particular, x[−αi] = xi.

We end with some remarks on the above theorem and the more recent results on
the cluster-finite cluster algebras obtained after their original treatment in [1].

First, observe that the implication (1) → (2) in the preceding theorem follows
from the definition, but the converse is far from trivial. In particular, a finite set
of cluster variables could a priori appear in infinitely many clusters that belong to
different seeds in S. However, the above theorem says this never happens. Second,
note that part (3) gives an explicit condition in terms of entries of the matrices
of each seed. However, we remark that one should verify this condition for all
seeds in S to conclude that A is cluster-finite. In fact, there are cluster algebras
which are not cluster-finite, but they admit a seed which satisfies condition (3).
Third, with regard to the correspondence between the almost positive roots and
the cluster variables of cluster-finite cluster algebras, we remark that an elegant
construction is given by Keller [7], where one can begin from the initial cluster
variables and through a concrete knitting algorithm recover the aforementioned
bijection between the almost positive roots and all cluster variables. Finally, we
note that some other conceptual characterizations of cluster-finite cluster algebras
have been achieved after their first appearance in [1]. In particular, in [6] it is
shown that a cluster algebra A is cluster-finite if and only if the set of cluster
monomials forms an additive basis for A.
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A3–The cluster structure of the Grassmannian coordinate algebra

Liana Heuberger

One of the first examples where a coordinate ring admits a cluster algebra structure
in a non-trivial way arises in the case of the affine cone over the Grassmannian.
During the proof of this result, we encounter a fundamental tool in cluster algebra
theory: the celebrated starfish lemma. This talk showcases the power of the lemma
by applying it to a familiar, yet nontrivial context.

The Grassmannian of a-subspaces of a b-dimensional C-vector space is one of
the first projective varieties one encounters in geometry beyond projective spaces
themselves. Its homogeneous coordinate ring, also known as the Plücker ring has
been extensively studied and is known to be generated by Plücker coordinates. Ex-
pressing this ring in terms of SLa(C)-invariant polynomials allows us to understand
the Plücker coordinates as a× a minors of an a× b matrix.

There exist two known constructions of the cluster algebra structure of this
ring, the first of which appeared in the work of Scott [1]. Scott chooses a seed
whose cluster variables are themselves Plücker coordinates, and such that the one-
step mutation at each variable yields a cluster variable which is again a Plücker
coordinate. The combinatorial setup of this method, involving alternating strand
diagrams, is less self-contained than that of the alternative construction of Fomin,
Williams and Zelevinsky [2], whose proof we chose to present throughout this talk.

The seed chosen in [2] is formed of distinguished Plücker coordinates whose
respective Young tableaux are rectangles. More precisely, one can associate a
Plücker coordinate to any sub-rectangle of an a × (b − a) rectangle in a unique
way, and we choose this set of coordinates as the seed of our cluster algebra. The
frozen variables correspond to those coordinates with consecutive indices, while
the remainder are cluster variables.

The proof involves a double inclusion: one has to prove that each mutation
of this distinguished seed remains in the Plücker ring (as opposed to its fraction
field), and conversely that every Plücker coordinate is generated by a subsequent
mutation.

The first implication relies on the starfish lemma, which roughly guarantees
that if one starts from a polynomial seed whose one-step mutations produce poly-
nomial cluster variables, then the same holds for all subsequent mutations. For
this distinguished seed, we no longer obtain Plücker coordinates after one-step mu-
tations, yet we are still able to control the behaviour of the new cluster variables:
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this achieved by combining well-known Plücker relations between the variables of
the distinguished seed, and the exchange relations of the mutations. We show that
the one-step cluster variables are indeed polynomial, thereby concluding the first
half of the proof.

For the second implication, Fomin, Williams and Zelevinsky have an inductive
approach via the Muir embedding. More specifically, one can embed rectangular
quivers of smaller size inside a fixed rectangular quiver and use the inductive
hypothesis to obtain some (but not all) Plücker coordinates. They then use cyclic
shifts, shown to be mutations of the distinguished seed, to obtain the outstanding
coordinates and the proof concludes.
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C1–Introduction to Lagrangian fillings

Yu Pan

Symplectic and contact geometry, rooted from classical mechanics, has experienced
a rapid development in the last forty years. It mainly concerns manifolds with ad-
ditional geometrical structures called symplectic and contact manifolds and special
knots and surfaces in them called Legendrian knots and exact Lagrangian fillings.

A symplectic manifold is an even dimensional manifold with a non-degenerate
closed 2-form. An example is the cotangent space R4 = T ∗R2, ω = dp1 ∧ dq1 +
dp2 ∧ dq2. Note that this symplectic manifold is also exact, i.e., ω = dλ (in the
example λ = −q1dp1 − q2dp2). An odd dimensional counterpart is called contact
manifold, which is an odd dimensional manifold with a contact structure given by
the kernel of a 1-form α such that α ∧ dαn 6= 0. An example of a 3-dimensional
contact manifold is R3

std = (R3, ker α) where α = dz − ydx. Darboux theorem
shows that every symplectic (contact) manifold locally are the same. Therefore it
is more interesting to explore the global geometrical (i.e., topological) properties
of symplectic/contact manifolds.

For similar reason as the one for knots and surfaces being essential in low di-
mensional topology, it is also important to consider special knots and surfaces in
contact and symplectic manifolds that cooperate well with the additional geomet-
rical structures. These knots and surfaces are called Legendrian knots and exact
Lagrangian surfaces.

In particular, a Legendrian knot Λ ∈ R3
std in (R3, ker α) is a knot in R3 such

that α vanishes on it. An important way to visualize it is through front projection
ΠF : R3 → R2

xz. Note that we do not loose information in the front projection
of a Legendrian knot Λ since the y-coordinate can be recovered through y = dz

dx
(since the 1-form α vanishes on Λ). One can see the example of front projections
of an unknot and a trefoil in Figure 1. As a generalization of the trefoil, the (−1)
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closure of a positive braid β is sketched in the Figure 1 (c). This will be the main
example of Legendrian links we will focus on in the latter C-lectures.

Figure 1. Front projections of unknot (a), trefoil (b) and (−1)-
closure of positive braid β (c).

An exact Lagrangian filling L of Λ ∈ R3
std in (R4, ω = dλ) is an embedded

surface L bounded by Λ such that λ|TL is exact. The exact Lagrangian condition
imposes strong rigidity on exact Lagrangian fillings. One evidence is that once a
Legendrian knot has an exact Lagrangian filling, then the genus of the filling is
fixed (differently compared with topological fillings, in which case the genus can
increase freely), which is the 4-ball genus of the knot.

An essential question in symplectic geometry is that given a Legendrian knot
in R3

std, how many exact Lagrangian fillings does it have in R4. Currently, the
only known case is the maximum Thurston-Bennequin number (max-tb) unknot.
By Eliashberg and Polterovich, the max-tb unknot has a unique exact Lagrangian
filling. Note that the max tb condition is a necessary condition for a Legendrian
to bound an exact Lagrangian filling. For the next easiest example, which is the
Legendrian max-tb trefoil, which is also the (−1)-closure of a positive (2, 5) braid,
we introduce a way to build exact Lagrangian fillings of it through concatenating
elementary blocks together. The construction gives 5 exact Lagrangian fillings that
are smoothly isotopic but are not Hamiltonian isotopic. This will match with the
A2 cluster structure will introduce in latter lectures for the positive (2, 3) braid.

As to other Legendrians, Casals and Gao in 2020 showed that (−1) closure of
positive (m,n+m) braids (which is a topological (m,n)-torus link), for n ≥ 3,m ≥
6 or (m,n) = (4.4), (4, 5), (5, 5), all have infinitely many exact Lagrangian fillings.
This is essentially because of the fact that the positive (m,n) braid correspond to
some cluster algebra of infinite type.

The goal of the C-lectures is to build connection of “the space of exact La-
grangian fillings of the Legendrian (−1)-closure of a positive braid β” with a
cluster algebra so that we can use the cluster algebra structure to understand
the geometrical space better. In particular, each exact Lagrangian filling has an
L-compressing disk system that corresponds to a quiver. The Lagrangian surgery
operation that changes one exact Lagrangian filling to another corresponds to a
mutation.
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A4–More Cluster Combinatorics: g-vectors, c-vectors, F -polynomials

Merik Niemeyer

The goal of this talk was to deepen our understanding of cluster combinatorics
by introducing c- and g-vectors, as well as F -polynomials. These come from a
certain choice for the frozen part of the quiver, but contain enough information
to reconstruct both the cluster variables and the y-variables of any cluster algebra
associated to an ice quiver with the same mutable part. Moreover, we looked at
some tropical dualities due to Nakanishi-Zelevinsky, which establish remarkable
connections between c- and g-vectors. The talk largely followed Keller’s survey
paper [3].

1. Preparation

In the previous talks we have seen quivers and their corresponding exchange matri-
ces, as well as ice quivers, which contain some frozen nodes, and can be described
by extended exchange matrices. If the cluster variables of the initial seed are
x1, ..., xn, and the frozen variables are xn+1, . . . , xm, every cluster variable will be
a Laurent polynomial in x1, . . . , xn with coefficients in Z[xn+1, . . . , xm]. In order
to phrase some of the results in the language of our reference material, let us
slightly change perspective and set

yj =

m∏

i=n+1

x
bij
i ∈ Trop(xn+1, . . . , xm) ,

for 1 ≤ j ≤ n, where Trop(xn+1, . . . , xm) denotes a certain tropical semifield.
These y-variables follow a ’tropical’ mutation rule and capture how the frozen
nodes are attached to the mutable nodes of the quiver. Therefore instead of keeping
track of the extended exchange matrix and the cluster variables as we mutate, we
can take the (principal part of the) exchange matrix, the cluster variables and the
y-variables. This data constitutes a seed. Now, pick a vertex t0 of the labeled
n-regular tree Tn, assign the initial seed to it, and then assign the seed mutated
according to the edge labelling to the neighbouring vertices. Inductively, we obtain
the seed pattern.

2. c-vectors, g-vectors and F -polynomials

2.1. Definitions. Let Q be a quiver (without frozen nodes), with nodes labelled
1, ..., n. We first add frozen nodes in a particular way:

Definition 1. The principal extension Qpr of Q is the quiver obtained from Q by
adding nodes i′ for 1 ≤ i ≤ n and arrows i′ → i.
The cluster algebra with principal coefficients associated to Q is the cluster algebra
associated to Qpr.
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Let B be the exchange matrix of Q, then the extended exchange matrix of Qpr

is given by

B̃ =

(
B

Idn

)
.

This mutates according to the rules of matrix mutation, and thus we assign a
matrix B̃(t) to every vertex t ∈ Tn, which has the form

B̃(t) =

(
B(t)
C(t)

)
.

Definition 2. The matrix C(t) is the matrix of c-vectors, its columns are the
c-vectors cj(t), 1 ≤ j ≤ n.

Theorem 3. Every c-vector is non-zero and its entries are either all non-negative
or all non-positive.

This appeared implicitly as a conjecture in [1] and was proved in full generality
in [2].

Next, we define F -polynomials: Recall again, that every cluster variable xj(t),
for 1 ≤ j ≤ n and t ∈ Tn, is a Laurent polynomial in the initial cluster variables,
with coefficients in Z[x′1, ..., x

′
n], where x′i denotes the (frozen) variable associated

to the node i′.

Definition 4. Let 1 ≤ j ≤ n and t ∈ Tn. The F -polynomial Fj(t) ∈ Z[x′1, ..., x
′
n]

is obtained by specializing xj(t) to x1 = ... = xn = 1.

In the original paper [1], Fomin and Zelevinsky prove that any F -polynomial is
a ratio of two polynomials with positive integer coefficients, which implies that it
can be evaluated in any semifield (we now know that every F -polynomial is in fact
a polynomial with positive integer coefficients [2]). Moreover, they conjectured
the following theorem, which is equivalent to the sign property of c-vectors given
above.

Theorem 5. Every F -polynomial has constant term 1.

The final object we need to introduce are the g-vectors, which we obtain by
endowing the Laurent ring Z[x±1

1 , ..., x±1
n , x′1, ..., x

′
n] with the following Zn-grading:

deg(xi) = ei,

deg(x′i) = −Bei,
for 1 ≤ i ≤ n, where ei denotes the i-th standard vector. Fomin and Zelevinsky
proved that any cluster variable xj(t) is homogeneous with respect to this grading,
allowing us to define:

Definition 6. Let t ∈ Tn, 1 ≤ j ≤ n. The g-vector gj(t) is defined as

gj(t) = deg(xj(t)) .

The g-vectors are the columns of the matrix of g-vectors, denoted G(t).
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Again, we have a theorem which is equivalent to the two we gave previously:

Theorem 7. The g-vectors are sign-coherent, meaning that for any t ∈ Tn every
row of the matrix G(t) is non-zero and either has only non-negative or only non-
positive entries.

As we had seen in previous talks, the cluster variables and entries of the ex-
change matrix are obtained recursively from the initial data via mutation. Conse-
quently, one can deduce recursive formulas for all the above objects, and we gave
an idea of how to do that.

2.2. Separation formulas. With all of this in place, we can reobtain both cluster
and y-variables. These formulas are due to Fomin-Zelevinsky [1].

Theorem 8. Let t ∈ Tn, P any (coefficient) semifield, and F = Q(P)(x1, . . . , xn)
the ambient field.

(a) yj(t) = y
c1j(t)
1 · · · ycnj(t)

n
∏n

i=1 Fi(t)|P(y1, . . . , yn)bij(t),

(b) xj(t) = x
g1j(t)
1 · · ·xgnj(t)

n
Fj(t)|F (ŷ1,...,ŷn)
Fj(t)|P(y1,...,yn)

, where ŷj = yj
∏n

i=1 x
bij
i .

Let us stress that this allows us to compute the cluster variables and coefficients
for any cluster algebra just using the data obtained from the corresponding cluster
algebra with principal coefficients.

3. Tropical dualities

Finally, we saw some tropical dualities, due to Nakanishi and Zelevinsky [4], which
relate c- and g-vectors in various ways. To state these, we need to upgrade our
notation slightly. We write C(B, t0, t) for the matrix of c-vectors obtained by
starting with the exchange matrix B at t0 ∈ Tn and mutating to t, and analogously
for the matrix of g-vectors.

Theorem 9. Let B be a skew-symmetrizable exchange matrix, t0, t ∈ Tn. Then:

(a) G(B, t0, t)
T = C(−BT , t0, t)

−1,
(b) C(B, t0, t) = C(−B(t), t, t0)−1,
(c) G(B, t0, t) = G(−B(t), t, t0)−1.

The c-vectors appearing in formula (a) belong to the Langlands-dual quiver
which is obtained by replacing the exchange matrix B with −BT .

In the last five minutes of the talk, we defined the notion of maximal green
and reddening mutation sequences, notions which were further discussed in the
evening session.
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A5–Cluster algebras from surfaces

Kayla Wright

Endowing mathematical objects with a cluster structure boomed after the axiom-
atization of cluster algebras by Fomin and Zelevnisky in the early 2000’s. In this
talk, we will explain how to endow a topological marked surface (S,M) with a clus-
ter structure. Namely, we take a Riemannian orientable surface S with nonempty
boundary and a finite set of marked points M on the boundary of S such that
each boundary component contains at least one marked point. We triangulate
(S,M) by drawing arcs between the marked points so that they are maximally
non-crossing up to isotopy relative to the boundary. For example, if we take S
to be a hexagon and M to be its 6 vertices, we triangulate S by drawing three
non-crossing diagonals.

With this topological set up, we see beautiful bijections between arcs and clus-
ter variables, triangulations and clusters, and skein relations and cluster muta-
tion. This story can be further enhanced when incorporating the geometry of
Teichmüller theory. Namely, if we look at the space of certain hyperbolic metrics
on (S,M) and properly define lengths of geodesics on the surface, we are able to see
a cluster structure on Teichmüller space, denoted T (S,M). More specifically, if we
fix a metric in Teichmüller space and a choice of small circle around each marked
point m ∈M , we can define the length of a geodesic between marked points m,m′

on (S,M) as the signed distance between the circles around m and m′. These
small circles are called horocycles and the choice of horocycle at each marked

point gives the data of decorated ˜T (S,M). We coordinatize this decorated ver-
sion of Teichmüller space with Penner coordinates, also known as λ-lengths, which
are an exponential version of the above defined length. These λ-lengths satisfy
Ptolemy’s Theorem which is the geometric version of the skein relations from the
topological set-up. Altogether, this means that decorated Teichmüller space has
a cluster structure, wheres cluster variables are in bijection with geodesics and
cluster mutation is given by this hyperbolic version of Ptolemy’s Theorem.

C2–Fronts and Lagrangian fillings of Legendrian links

Agniva Roy

The references for this talk are Section 4 of [1], and Sections 2 and 7 of [2].

1. Demazure weave fillings of positive braid closures

Definition 1 (Demazure Product). Given a positive braid word β, the Demazure
product of β, denoted δ(β), is the braid that corresponds to quotienting out the
braid word using the relations σ2

i = σi, and also braid relations.
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Figure 1. The figure is courtesy of the authors of [1].

Example. Given the word σ2
1σ

2
2 representing a 3-stranded braid, the Demazure

product is the braid σ1σ2.

In this section we describe an algebraic procedure that takes as input a positive
braid β and outputs the braid corresponding to δ(β), the Demazure product of β.
We will encode the braid purely by its crossings, as follows, and the three allowable
moves will be braid commutations, pinching a crossing and a braid move, as shown
in Figure 1.

A positive braid will be represented by encoding each Artin generator by a
colour; thus an N -stranded braid with Demazure product w0 will need N − 1
colours. Then, the algorithm to build a Demazure weave proceeds by using com-
mutations, braid moves and pinch moves to eliminate all powers of generators till
we are left with just the Demazure product. Typically, we will use the moves to
isolate the Demazure product on one side and then use pinch and braid moves
successively to remove the powers of generators one by one.

The result of this procedure is called the Demazure weave. In Section 2, we
will show how this algebraic procedure builds an exact Lagrangian filling for the
(−1)-closure of the braid βδ(β).

Example. We give an example, see Figure 1, of the procedure using a 3-stranded
braid β = σ1σ

2
2σ

2
1σ2. This example will not see any commuting relations being

used. In this picture, we use blue to represent σ1 and red for σ2. The Demazure
product of β is δ(β) = σ1σ2σ1.

We will interpret these diagrams as being properly embedded in a 2-disk, and
call them N -graphs.

2. Legendrian surfaces from weaves

Given an N -graph G on D2, one can construct an immersed surface in R × D2,
which is the front projection of a Legendrian surface Λ(G) in J1(D2) by weaving
as follows. The objective is to create an immersed surface that projects to D2,
whose singularities are encoded by the N -graph:

• start with N sheets over D2

• for every (i, i+ 1)-edge, introduce a line A2
1-singularities between the cor-

responding two sheets
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Figure 2. At level (1), we see the Demazure product on the
left. At levels (2) and (3) respectively, we see the blue and red
generators on the right being pinched so that at the end, we are
left with δ(β).

• for every hexavalent vertex, introduce an A3
1-singularity between the cor-

responding triple of consecutive sheets
• for every trivalent vertex, introduce a D−

4 -singularity between the corre-
sponding two sheets

(i+1,i+2)

1
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i+1

N

(i,i+1)

(i,i+1) (i,i+1)

...
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...
...

(i,i+1)

1
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N
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1
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i+1
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i+2

(i,i+1)

(i,i+1)

(i,i+1)

(i+1,i+2)

(i+1,i+2)

Figure 3. The weaving of singularities of fronts along the edges
of the N -graph (courtesy of Roger Casals and Eric Zaslow). Glu-
ing these local models according to the N -graph Γ yields the weave
Λ(Γ).

Some topological properties of the resulting surface: Λ(G) is anN -fold branched
cover over D2 simply branched over the trivalent vertices of G.

(1) Euler characteristic – χ(Λ(G)) = Nχ(D2) − v(G) where v is the number
of trivalent vertices

(2) 1-cycles correspond to Y-trees. This is indicated in Figure 4.
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Figure 4. An I-tree corresponds to a cycle in the Legendrian
surface, called an I-cycle.

Definition 2. An N -graph is called free if the corresponding Legendrian weave
has no Reeb chords.

The Demazure weaves built in Section 1 are free, hence the projection from R5

to R4 is embedded, as the only double points that could show up are due to Reeb
chords. Also, by construction, the surfaces in R4 are exact Lagrangian, hence this
procedure now produces an exact Lagrangian filling of the (-1)-closure of βδ(β)
for any positive braid word β.

3. Quivers from Weaves

Associated to a Demazure weave, we can build a quiver that encodes the 1-cycles on
the graph and their pairwise intersections. Further, there is a mutation operation
one can do on the 1-cycles that show up in the weave to create another exact
Lagrangian filling for the same braid, which may or may not be equivalent (up
to Hamiltonian isotopy) to the previous one. We show how to do this in case
of 2-weaves, i.e. weaves corresponding to 2-graphs, i.e. with only one colour.
Firstly, given any 2-graph, encode all the I-trees as vertices on the quiver. Then,
add arrows from every cycle to cycles that share a vertex with them, with arrows
going from a cycle to one that is counter-clockwise of them.

Example. Consider the trefoil knot T (2, 3). It is the (−1)-closure of the braid
σ5
1 , which we can consider to be βδ(β) for β = σ4. We can see two I-cycles in the

Demazure weave, and can build the A2-quiver from them as shown in Figure 5.
Mutating at an I-cycle corresponds to a local I −H move.
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Figure 5. The Demazure weave and its mutation along the cycle
denoted by 2, for the trefoil T (2, 3). These correspond to distinct
exact Lagrangian fillings of the trefoil knot.

B1–Techniques for constructing cluster structures on varieties

Colin Krawchuk

In recent years, cluster structures have been discovered on the coordinate rings of
many varieties, including open positroid varieties [8, 9, 4], double Bott-Samelson
varieties [10] and braid varieties [5, 2]. The presence of a cluster structure has
important implications for the geometry of an algebraic variety, including the
existence of canonical linearly independent sets of regular functions.

It is therefore natural to ask how one might determine if a given variety inherits
a cluster algebra structure. Identifying such a structure involves constructing an
initial seed of regular functions, showing each cluster variable in the associated
algebra is indeed a regular function, and showing that the cluster variables generate
the coordinate ring of the variety. While there is no general method for this
procedure, we recount several useful techniques that have been successfully applied
to construct cluster structures on varieties.

One of the most useful criteria for showing that the cluster variables arising
from a candidate seed are regular functions is the Starfish Lemma:

Lemma 1. [1, Starfish Lemma] Let R = C[X ] be the coordinate ring of an
irreducible normal affine complex algebraic variety X . Let (Q, x̃) be seed of rank
n in C(X) with x̃ = (x1, . . . , xm) for n ≤ m whose variables lie in R such that

(1) the cluster variables in x̃ are pairwise coprime,
(2) for each cluster variable xk ∈ x̃, the seed mutation µk replaces xk with an

element x′k that lies in R and is coprime to xk.

Then A(Q, x̃) ⊂ R.

The proof of the Starfish lemma relies on Hartogs’ principle (showing that
a function on X which is regular outside a subset of codimension 2 is regular
everywhere). Under the conditions of the lemma, this property is satisfied not just
for cluster variables but for elements of the upper cluster algebra of A(Q, x̃).

To demonstrate the converse, that the cluster variables generate the coordinate
ring of the variety, a frequent strategy is to first show that A(Q, x̃) coincides with
its upper cluster algebra. There are several reasons why this approach is beneficial.
Often it is easier to show that regular functions on the variety are generated by
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elements of the upper cluster algebra than arbitrary cluster variables. Moreover,
if we wish to apply the Starfish Lemma then this equality must hold in order for
A(Q, x̃) to be a cluster structure on C[X ]. On the other hand, cluster algebras
that do not equal their upper cluster algebra are often unwieldy, and it can be
challenging to show containment in these cases.

For these reasons, criteria for A(Q, x̃) to be equal to its upper cluster algebra
have been introduced by several authors. In [6] Muller introduced the class of
locally acyclic cluster algebras, which admit a finite cover by certain simpler cluster
algebras (called acyclic cluster localisations). A consequence of this definition is
that any local property of acyclic cluster algebras is true of locally acyclic cluster
algebras. In particular, we have the following useful result:

Theorem 2. [6] If a cluster algebra is locally acyclic, then it coincides with its
upper cluster algebra.

Any locally acyclic cluster algebra A also inherits a covering of Spec(A) by open
subvarieties corresponding to cluster localisations. In [7] Muller and Speyer refined
this idea by defining Louise cluster algebras that have the additional property
that the cluster localisations associated to this covering satisfy a Mayer-Vietores
decomposition of cluster algebras. As an application, they showed the following:

Theorem 3. [7] Cluster algebras associated to Postnikov diagrams in the disk are
Louise.

Unfortunately, the definition of locally acyclic cluster algebras does not suggest a
method to check whether a given cluster algebra possesses this property. However,
if the quiver of a seed (Q, x̃) belongs to a class of quivers called Banff quivers,
then the corresponding cluster algebra A(Q, x̃) is locally acyclic [6]. Moreover, a
recursive algorithm is given in [6] for checking if a quiver is indeed Banff. Similarly,
the class of sink-recurrent quivers is defined in [5] and seeds with sink-recurrent
quivers are shown to give rise to locally acyclic cluster algebras. Notably, this
fact was used by the authors to prove that cluster algebras arising from 3D-Plabic
graphs are locally acyclic.

A final strategy for showing that A coincides with its upper cluster algebra
relies on quasi-homorphisms between cluster algebras in the sense of Fraser [3].
In particular, if the elements of a generating set for the upper cluster algebra
belong to either A or a quasi-equivalent cluster algebra, then A coincides with its
upper cluster algebra. This approach was taken in [2] where it is shown that cyclic
rotations of braid words induce quasi-cluster transformations.
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B2–Combinatorics of plabic graphs

Peter Spacek

We introduced plabic graphs : planar, bicolored graphs properly embedded into the
closed disk with b (uncolored) vertices on the boundary. (Loops and multiple edges
are allowed.) We also defined move-equivalence of plabic graphs, i.e. two graphs
are move-equivalent if they are related by the square move (exchanging colors
on a square with alternatingly colored vertices), the creative/destructive move
(inserting a colored vertex on an edge or removing a bivalent vertex), and finally
the (de)construction move (merging two vertices of the same color connected by
an edge or splitting a colored vertex into two connected by an edge).

We then discussed how to construct a quiver associated to a given plabic graph:
a vertex for each face (if a face borders the boundary of the disk, the correspond-
ing vertex is frozen), and an arrow between vertices for each edge of the plabic
graph with a white vertex on the left and a black on the right (cancel out any
2-cycles arising from this). We noted that the square move leads to mutation of
the associated quiver, as long as every two consecutive faces bordering the square
are distinct.

Next, we related plabic graph to combinatorial objects that appeared before: we
showed how to construct a plabic graph from a triangulation of a polygon and from
(double) wiring diagrams. We quickly discussed how the quiver of a triangulation
coincides with the quiver of the plabic graph arising from a triangulation, and
mentioned that the same holds for (double) wiring diagrams.

We then defined reduced plabic graphs : namely, plabic graphs that are not move-
equivalent to a plabic graph containing the “forbidden configurations”, namely the
hollow digon (two vertices with two edges connecting them), and an internal leaf
connected to a trivalent vertex of the other color that is not move-equivalent to
a bivalent vertex. To obtain a more direct characterization, we introduced trip
permutations : a trip is a path through the plabic graph following the “rules of the
road”, turning to the right at black and to the left at white vertices; trips either
start and end at a boundary vertex, or are round trips in the interior; the trip
permutation (associated to a plabic graph G) is the permutation πG of b elements
that sends i to j if the trip in G starting at i ends at j.
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We mentioned that move-equivalent plabic graphs have the same trip permuta-
tions, and that in reduced plabic graphs a fixed point i of the permutation implies
that the component connected to the boundary vertex i is move-equivalent to a
lollipop. This led to the definition of decorated trip permutations of reduced plabic
graph: each fixed point i of the trip permutation of the reduced plabic graph is
decorated with i or i if the lollipop attached to i is white resp. black. This al-
lowed us to state the fundamental theorem of reduced plabic graphs : two reduced
plabic graphs are move-equivalent if and only if their decorated trip permutations
coincide. This in particular led to the observation that reduced plabic graphs are
exactly those plabic graphs with a given trip permutation that have the minimal
number of faces.

We continued by discussing the relation between reducedness and normalcy: a
normal plabic graph is a bipartite plabic graph with trivalent white vertices and
only black vertices connected to the boundary vertices. We say that a plabic graph
has a bad feature if it contains either a round trip, a essential self-intersection (a
trip that pass through the same edge twice), or a bad double crossing (two trips
both crossing two given edges in the same order). We then stated the theorem
that a normal plabic graph is reduced if and only if it contains no bad features.
Afterwards, we sketched an algorithm that uses move-equivalences to turn a plabic
graph into a normal plabic graph (or results into a non-reduced plabic graph),
allowing the previous theorem to be applied to general plabic graphs. We also
mentioned the existence of the resonance property to check reducedness.

Finally, we defined source and target face labelings of reduced plabic graphs: a
face is labeled by the set of those i such that the trips starting (resp. ending) at i
have the given face to the left of the trip. (This works due to the fact that trips in
a reduced plabic graph bisect the disk.) We mentioned that the labels of the faces
of a given reduced plabic graph all have the same cardinality. Finally, we defined
the positroid associated to a reduced plabic graph given by the face labels of the
boundary faces.

The main reference for this talk was Chapter 7 of [1]. The seminal reference for
plabic graphs is [2].
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C3–Constructible sheaves on Legendrian knots

Yoon Jae Nho

Given a Legendrian knot Λ ⊂ R3, one can construct a D−-stack R(Λ) which
is a Legendrian isotopy invariant of Λ. If Λ is a positive braid knot, this stack
can be identified with the open Bott-Samelson variety associated with β. One
interpretation of R(Λ) is that it is the “moduli” of exact Lagrangian fillings of
Λ. Indeed, an exact Lagrangian filling L of Λ gives rise to an open toric chart
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(C∗)b1(L) of R(Λ), which can be verified by direct calculation in the case of free
Legendrian weaves, using the machinery of [3].

Building R(Λ) is a two-step process. First, one considers the category of con-
structible sheaves on R2

x,y supported on Λ. These categories admit combinatorial
descriptions, but they are not Legendrian isotopy invariants. Then, one can fur-
ther restrict to sheaves with singular support on Λ. The theorem of GKS[4] then
states that the category of such sheaves is indeed Legendrian isotopy invariant.
Then, we can further restrict to “microlocal rank 1” sheaves with singular support
on Λ with vanishing stalks at y = −∞. The moduli of such sheaves then yield
R(Λ).

As a concrete example, in the case Λ = Λβ for the (−1)-closure of a positive
braid-knot β with reduced word expression β = si1 ...sin , where si is the trans-
position of the ith strand with the i + 1th strand, one can show that the moduli
R(Λβ) is given by the moduli of tuples of complete flags (F1, ..., Fn+1) with rela-
tive position conditions Fj ∼sij

Fj+1, and Fn+1 = F1, which is indeed the open

Bott-Samelson variety.
In this talk, we address the first part of the problem. Given a (regular cell

refinement) of stratification induced by the front-projection of Λ on R2
x,y, we in-

troduce the notion of constructible sheaves, i.e. sheaves whose restriction to each
stratum are locally constant sheaves. Then, we compute constructible sheaves
supported on the local model for the arc, the cusp and the crossing. We then use
the local-to-global principle to express constructible sheaves supported on more
general Legendrian knots as functors from the poset category induced by the strat-
ification to the category of k-modules.
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B3–Webs and Gr(3, n)

Emine Yıldırım

The goal of this talk to understand the cluster algebra structure in the homoge-

neous coordinate ring of Grassmannian C[Ĝr(3, n)] of 3-planes in Cn from Fomin-
Pylyvaskyy perspective using Kuberberg’s web basis. We mainly follow the fol-
lowing references: [4] and [1, Section 9.1]. We start the talk by explaining the
definition of a tensor diagram. Then, we show how a tensor diagram encodes an
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element in the homogeneous coordinate ring of Grassmannian. Fomin and Pyly-
vaskyy show that if a tensor diagram is a planar tree, then the corresponding web
invariant is a cluster or coefficient variable. We give a complete example of the
cluster algebra structure in the case of n = 6. The cluster algebra for Gr(3, 6) is
of Dynkin type D4; it has 22 cluster variables - six of which are frozen variables.
Since Plücker coordinates are cluster variables, we have 20 Plücker cluster vari-
ables and two non-Plücker cluster variables in this case. We explicitly compute
these two non-Plücker cluster variables using skein relations.

A tensor diagram is called a web if it is planar. Non-elliptic webs give rise to
web invariants which form a linear basis in the ring of invariants. Let us now state
some of Fomin-Pylyvaskyy’s conjectures.

Conjectures.

(1) The set of cluster (and coefficient) variables coincide with the set of inde-
composable arborizable web invariants.

(2) Two cluster variables lie in the same cluster if and only if they are com-
patible web invariants.

(3) If n ≥ 9, there are infinitely many indecomposable non-arborizable web
invariants.

Fomin-Pylyvaskyy [4] verify these conjectures in the finite type examples:

Gr(2, n+ 3) Gr(3, 6) Gr(3, 7) Gr(3, 8)
An D4 E6 E8

Note that this talk is a restrictive setting of Fomin-Pylyvaskyy paper - keep in
mind the theorems and conjectures we mention in this abstract can be stated in
a more general set up for SL(V ) invariant rings that is Fomin-Pylyvaskyy’s main
object in their paper [4]. Furthermore, C. Fraser [1] proves that for the cluster
algebra in the homogeneous coordinate ring of Grassmannian Gr(3, 9):

(1) Every cluster variable is an indecomposable arborizable web invariant.
(2) Every cluster monomial is a web invariant.
(3) There are infinitely many indecomposable non-arborizable web invariants.

These results are strong evidences for the validity of the conjectures. Finally,
we would like to mention that webs may seem similar to dimers; [2] is a reference
to see how they are related. Also, we refer curious audience to the paper [3] for
further reading and a general view on this topic.
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C4–Microsupport and Legendrian fronts

Laurent Côté

Summary. Given Legendrian Λ in the cosphere bundle of R2, one can associate
to it a variety M(Λ) whose properties carry useful information about Λ. This
variety is defined as the moduli space of objects of the category of constructible
sheaves microsupported along Λ. The purpose of this talk was to introduce the
notions which enter into this construction.

1. Microsupport of sheaves

Conventions 1. Throughout this report, all sheaves are implicitly assumed to
be constructible (with perfect stalks) and valued in the dg derived category of
chain complexes over C. All functors are implicitly derived. All stratifications are
assumed to be Whitney. Finally, for consistency with some of the literature (e.g.
[3]) we work throughout in the real analytic category.

Let M be a manifold. Fix a stratification S on M and a point x ∈M . Let Sx

be the stratum containing x. A function f : Op(x) → R is said to be stratified
Morse at x ∈ M if either (a) f |Sx

is non-critical at x or (b) f |Sx
has a Morse

critical points at x and dfx(τ) 6= 0 for any τ ⊂ TxM which is equal to a limit of
tangent vectors of a larger stratum Y > Sx.

Construction-Definition 2. Given F ∈ sh(M), fix x ∈ M and a function
f : Op(x)→ R such that f(x) = 0. Fix ǫ, δ > 0 and set

M(x,f,ǫ,δ)(F) := cone
(
F(Bǫ(x) ∩ f−1(−∞, δ))→ F(Bǫ(x) ∩ f−1(−∞,−δ))

)

If f is stratified Morse at x ∈ M , then it can be shown that M(x,f,ǫ,δ)(F)
stabilizes as ǫ, δ → 0. In fact, the output only depends on (x, dfx) ∈ T ∗

xM .

Definition 3. For (x, ξ) ∈ S∗
xM and f stratified Morse at x ∈ M , we define the

Morse group M(x,ξ)(F) := M(x,f,ǫ,δ)(F) for ǫ, δ small enough.

A covector (x, ξ) ∈ S∗M is said to be characteristic if M(x,ξ)(F) 6= 0. Note
that this notion depends on the stratification S.

The characteristic covectors correspond precisely to the (co)directions along
which the restriction map of F is non-trivial. This suggests that the set of char-
acteristic co-vectors is a useful invariant of F .

Definition 4 (Microsupport). The microsupport (or singular support) of F is the
set

(1) SS(F) := {(x, ξ) ∈ S∗M | (x, ξ) is characteristic }.
While the notion of a characteristic vector depends on the stratification, it

can be shown that the microsupport does not depend on this choice. In fact, the
microsupport can be defined without choosing a stratification and appealing to the
theory of stratified Morse functions; see [2, Sec. 5.1]. However, the Morse-theoretic
viewpoint is useful for intuition and computations.
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Figure 1. Here the vertical arrow is the front of a Legendrian
arc Λ ⊂ S∗R2. The “hair” specifies a unique lift of the front.

2. The category ShΛ(M)

Let Λ ⊂ S∗M be a Legendrian.

Definition 5. We let shΛ(M) ⊂ sh(M) be the full subcategory on objects whose
microsupport is contained in Λ.

To get a handle on this definition, let us suppose that π(Λ) ⊂ M is a front.
Then we can consider the category of sheaves shS(M) constructible with respect
to any stratification S containing the front. According to the exit-path definition
of a constructible sheaf, this is the same thing as a module over the exist path
category. In other words, a constructible sheaf is the data of a stalk on each
stratum and restriction maps from lower dimensional strata to higher dimensional
strata.

The microsupport condition picks out a full subcategory shΛ(M) ⊂ shS(M) by
forcing some of the restriction maps to be isomorphisms. This is illustrated in the
following example.

Example. Suppose that Λ is a lift of the front drawn in Figure 2. Then the cate-
gory of sheaves constructible with respect to the induced stratification is equivalent

to the category of representations of the quiver (• α←− • β−→ •). However, for a con-
structible sheaf to lie in shΛ(D2), it must have the property that the restriction
map corresponding to β is an isomorphism: indeed, the failure of this map to be
an isomorphism would be witnessed by a point in the microsupport. But by defi-
nition of shΛ(D2), the microsupport of F in S∗,−D2 is empty (the “hair” points
in the + direction). We conclude that the category shΛ(D2) is equivalent to the
category of representations of the A2 quiver.

The great virtue of the category shΛ(M), as opposed to shS(M), is that it is
an invariant of Λ. This is the content of the following theorem:

Theorem 6 (Fundamental theorem [1] (Guillermou–Kashiwara–Schapira)). A
Legendrian isotopy Λ Λ′ ⊂ S∗M induces an equivalence of categories

shΛ(M)→ shΛ′(M).

In general, shΛ(M) can be very complicated. However, when M = R2, then the
front projection of a Legendrian generically only has cusps and crossings. Hence
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Figure 2. The front projection of a trefoil

the study of shΛ(R2) can be reduced to local models. The simplest local model
was computed in Example 2; the other two (cusp and crossing) were also computed
in the talk. See [3, Sec. 3.3].

3. The moduli space of rank 1 objects

In order to access the category shΛ(M), it is often useful to consider categorical
invariants associated to it. The main class of invariants which were discussed in
the talk are so-called “moduli spaces” of objects.

Definition 7. Suppose Λ ⊂ S∗M is connected. The microlocal rank of F ∈
shΛ(M) is the rank of M(x,ξ)(F) for any (x, ξ) ∈ Λ.

Theorem 8 ([5] Toën–Vaquié). There exists a “derived stack” Mr(Λ) whose
points are in bijection with isomorphism classes of objects of shΛ(M) having mi-
crolocal rank r.

This theorem is an abstract result valid for categories satisfying a certain finite-
ness assumption. Our standing assumption that constructible sheaves have perfect
stalks is essential in order to appeal to it.

For many Legendrians which arise in practice, the output of this theorem (a
priori a derived stack) is an ordinary variety which can be explicitly described.

Example. In the talk, we explicitly computed the moduli space of rank 1 objects
where Λ is the (lift of the) front drawn in Figure 3. The answer is as follows. We
first consider the moduli space

M̃1(Λ) := {(ℓ0, . . . , ℓ4) ∈Mat2×5(C) | ℓi ∈ Mat2×1(C), ℓi ⋔ ℓi+1, i ∈ Z/5}

Then the moduli space of rank 1 objects is the quotient

M1(Λ) = M̃1(Λ)/(GL2(C)×Diag5(C)).

One can also consider a framed variant

M1
fr(Λ) = M̃1(Λ)/GL2(C).

The main idea for performing such computations is to restrict ourselves to local
models, for which (as explained above) the category of microlocal sheaves is fully
understood. We refer to [3, Sec. 6] and [4, Sec. 3] for related computations.
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B4–Double Bruhat cells and generalisations

Matthew Pressland

1. Double Bruhat cells

One of the earliest results equipping the coordinate ring of an algebraic variety
with a cluster algebra structure is due to Berenstein, Fomin and Zelevinsky [2],
who achieve this for double Bruhat cells. Before describing their construction, we
give the necessary set-up and definitions.

Fix a connected, simply connected, semisimple algebraic group G over C, with
opposite Borel subgroups B+ and B−. This determines a maximal torus T =
B+ ∩ B−

∼= (C×)n, a Weyl group W = NormG(T )/T , and a Dynkin diagram ∆.
The Weyl group is generated by n simple reflections si, for i ∈ ∆0.

Each node i ∈ ∆0 determines a homomorphism ϕi : SL2(C)→ G, taking upper
triangular matrices into B+ and lower triangular matrices into B−. We may lift
W to a subset (but not a subgroup) of G by identifying si with s̄i = ϕi

(
0 −1
1 0

)
,

and a general element w = si1 · · · siℓ with s̄i1 · · · s̄iℓ , where the expression for w
as a product of simple reflections is chosen to be reduced, i.e. of minimal length
ℓ = ℓ(w). Viewing W as a subset of G in this way, we obtain a pair of Bruhat
decompositions

G =
⋃

u∈W

B+uB+ =
⋃

v∈W

B−vB−.

Definition 1. A double Bruhat cell is Gu
v := B+uB+ ∩B−vB−, for u, v ∈ W .

To describe a cluster algebra structure on the coordinate ring C[Gu
v ], we restrict

for simplicity to the case that the Dynkin diagram ∆ is simply-laced, that is, of
type A, D or E. This will allow us to describe the initial seed via a quiver, rather
than a more general valued quiver or skew-symmetrisable matrix. We will also
deviate from the original presentation in [2], and using instead a description of
this seed derived from work of Shen and Weng [7], which we will return to shortly.

Definition 2. Given u, v ∈ W , consider a trapezium with its upper edge cut into
ℓ(u) segments, and lower edge cut into ℓ(v) segments. A triangulation of (u, v) is
a choice of reduced expression for each of u and v, together with a decomposition
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1

2

3

s3

⊖

s2

⊖

s1

⊖

s2

⊕

s1

⊕

s3

⊕

s2

⊕

Figure 1. A triangulation of (u, v), with the associated string
diagram overlaid, for G = SL4(C), so ∆ = A3 (shown left), with
u = s3s2s1 and v = s2s1s3s2. Closed strings are shown in green,
and open strings in blue.

of the trapezium into triangles such that exactly one edge of each triangle lies on
the upper or lower edge of the trapezium. See Figure 1 for an example.

Given a triangulation of (u, v), we label the segments on the upper and lower edges
via the chosen reduced expressions of u and v, reading from left to right. This
labels exactly one edge of each triangle by a simple reflection, and hence induces a
labelling of the triangles. A triangulation of (u, v) determines a string diagram in
the following way. Draw n = |∆0| strands through the trapezium, indexed by the
nodes of the Dynkin diagram. In a triangle labelled by si, cut strand i, and label
the cut by ⊕ if the labelled edge of the triangle is on the bottom of the trapezium,
and by ⊖ if the labelled edge is on the top. This process cuts the strands into
strings, which can be either closed (incident with two cuts), or open (incident with
at most one cut). Again, an example is shown in Figure 1.

Definition 3. The (ice) quiver Q(t) of a triangulation t of (u, v) has as vertices
the strings of the associated string diagram, with open strings frozen. At each cut,
we see one of the following configurations in the quiver, depending on the sign.

⊕ ⊖

Here the solid arrow connects the two strings from strand i meeting at the cut,
and we draw a pair of dashed arrows as shown for each string passing through the
triangle containing the cut and lying on a strand j with i and j joined by an edge
of ∆. These dashed arrows are interpreted as ‘half-arrows’: in the final quiver, two
half-arrows in the same direction add together to form a full (solid) arrow, while
those in opposite directions cancel out. This process produces a natural collection
of half-arrows between frozen vertices, but these play no role in defining the cluster
algebra. See Figure 2 for the quiver associated to the triangulation in Figure 1.
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1

2

3

⊕ ⊖

⊕

⊕

⊖

⊖

⊕

⊕

⊖ ⊕

Figure 2. Constructing the quiver of the triangulation in Fig-
ure 1; the initial construction involving half-arrows (left), and the
final quiver (right). Mutable vertices are green, and frozen ver-
tices are blue.

Theorem 4 (Berenstein–Fomin–Zelevinsky [2]). Let u, v ∈W , let t be a triangula-
tion of (u, v), and let A (t) be the cluster algebra associated to Q(t), with invertible
frozen variables. Then there is an isomorphism

A (t)
∼→ C[Gu

v ]

sending the initial cluster variables to generalised minors.

Strictly speaking, the original result from [2] gives an isomorphism with the
upper cluster algebra U (t) associated to Q(t). However, Muller and Speyer [6]
show that this cluster algebra is locally acyclic, and hence A (t) = U (t).

We do not give the general definition of generalised minors here, but note that
in type A, where G = SLn+1(C), they are ordinary matrix minors. There is an
explicit combinatorial recipe for computing which minors are the images of the
initial cluster variables under the isomorphism of Theorem 4. For our running
example, the result is

D1
3 D4

1

D12
23 D14

12

D123
134 D124

123

D1
1

D12
24 D14

13

D124
134

where DI
J denotes the minor on rows I and columns J .

2. Double Bott–Samelson varieties

Recall that the braid group Br(∆) is defined similarly to the Coxeter group of ∆
(which is isomorphic to W ), but excluding the relations s2i = e. A positive braid is
an element of Br(∆) expressible as a word in the letters si, i ∈ ∆0 (in contrast to a
general braid, in which the letters s−1

i may be necessary). Given u, v ∈ Br(∆), one
can define a triangulation exactly as in Definition 2, replacing ‘reduced expression’
by ‘positive braid word’. Given such a triangulation t, construct the associated

string diagram as before, but viewing u and v as elements of Br(∆̃), for ∆̃ the

associated affine diagram. Let Q̃(t) be the associated quiver, which differs from
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0

1

2

3

s3

⊖

s2

⊖

s1

⊖

s2

⊕

s1

⊕

s3

⊕

s2

⊕

∗

∗

Figure 3. A triangulation of positive braid words (u, v), with the
associated ‘affine’ string diagram overlaid (left), and a schematic
of the associated quiver (right). To obtain the actual quiver, the
two vertices labelled by ∗ should be identified.

Q(t) by adding a single frozen vertex, corresponding to the single open string

labelled by the extending vertex of ∆̃, and its incident arrows. An example is
given in Figure 3; while this reuses the reduced expressions for elements of W
from the previous example, we emphasise that the general construction applies to
arbitrary positive braid words.

The cluster algebra Ã (t) with invertible frozen variables associated to Q̃(t) also
turns out to have a geometric interpretation.

Definition 5 (Shen–Weng [7]). Let u = si1 · · · siℓ and v = sj1 · · · sjm be positive
braids. Then the double Bott–Samelson variety BSu

v consists of tuples of flags
(x0B+, . . . , xℓB+, y0B−, . . . , ymB−) ∈ G\

(
(G/B+)ℓ × (G/B−)m

)
(that is, each

tuple is considered up to the left action of G on the product of flag varieties)
subject to the conditions that

(1) x−1
k−1xk ∈ B+sikB+ for k = 1, . . . , ℓ,

(2) y−1
k yk−1 ∈ B−sjkB− for k = 1, . . . ,m,

(3) x−1
0 y0 ∈ B+B− and x−1

ℓ ym ∈ B+B−.

Letting U± denote the unipotent radicals of B±, the decorated Bott–Samelson

variety B̂Su
v consists of those tuples

(x0U+, x1B+, . . . , xℓB+, y0B−, . . . , ym−1B−, ymU−)

in G\
(
G/U+ × (G/B+)ℓ−1 × (G/B−)m−1 × G/U−

)
which map to points of BSu

v

under the natural projection.

Shen and Weng [7] show that both of these varieties depend, up to isomorphism,
only on the positive braids u and v, and not on the choice of braid words.

Theorem 6 (Shen–Weng [7]). Let u and v be positive braids and let t be a trian-
gulation of (u, v). Then there is an isomorphism

Ã (t)
∼→ C[B̂Su

v ].

Remark 7. The ordinary Bott–Samelson variety BSw associated to w ∈ W was
introduced [1] to provide a desingularisation of the Schubert variety BwB/B. Dou-
ble Bott–Samelson varieties are special cases of braid varieties, and so Theorem 6
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is an important precursor to the general result that all such varieties carry cluster
algebra structures [3, 4, 5].
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C5–Cluster algebras and symplectic topology: Microlocal holonomies

and the Bott-Samelson case

Mikhail Gorsky

This talk concerns a point of view on cluster algebra structures on coordinate
rings of certain affine algebraic varieties by means of symplectic geometry. Several
families of varieties appearing in talks B1 – B4, such as open positroid varieties,
double Bruhat cells, and double Bott-Samelson cells, can be described as moduli
spaces of decorated microlocal rank-1 constructible sheaves on R2 supported on
front projections of Legendrian links in R3 with the standard contact structure
ξst. This perspective connects talks from series A and B with the framework of
series C.

Consider a positive braid β with the Demazure product w0 ∈ Sn. The Leg-
endrian (−1)-closure of the braid represented by β is a Legendrian link Λβ in
(R3, ξst). If β = ∆β′ for some positive braid β′, where ∆ is the half-twist, the
link Λβ is Legendrian isotopic to the rainbow closure of β′, as considered in [7,
Section 6.5]. With a Legendrian link Λ taken with a collection of marked points T
one can naturally associate a moduli stack M(Λ, T ) of decorated microlocal rank-
1 constructible sheaves on R2 whose support is contained in the front projection
of Λ. It turns out that for (Λβ, T ) with T containing at least one marked point
per link component, M(Λ, T ) is in fact a smooth affine algebraic variety: it can
be realized, up to a torus factor, as a braid variety X(β) in type A which will be
discussed in more detail in talk C6. The smoothness of braid varieties follows from
work of Escobar [3].

Shen and Weng in [8] and in a joint work with Gao [5] introduced several
versions of double Bott-Samelson (BS) varieties associated with pairs of positive
braid words. In particular, half-decorated double BS varieties for pairs (e, β′)
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were proved in [5] to be isomorphic to M(Λ∆β′ , T ) for T having precisely one
marked point per strand of ∆β′. For decorated double BS varieties, a cluster
A-structure was defined in [8] in terms of generalized minors. This was done
by extending standard approaches to cluster structures on double Bruhat cells
via amalgamation techniques of Fock-Goncharov [4]. This algebra structure was
translated to the symplectic framework in [5], where M(Λ∆β′ , T ) was interpreted as
the augmentation variety of the link Λ∆β′ . An undecorated variant of M(Λ∆β′ , T ),
denoted by M1(Λ∆β′ , T ), is also isomorphic to a variant of a double BS variety,
depending on the choice of T . The latter was proved in [8] to admit a cluster
X -structure, also known as a cluster Poisson structure, forming a cluster ensemble
(as defined in talk B5) with M(Λ∆β′ , T ) interpreted as a (half-)decorated double
BS variety.

From the point of view of symplectic geometry, results of [5, 8] indicated the
existence of cluster A- and X -structures on moduli spaces of microlocal rank-1
sheaves associated with Legendrian links, but the construction presented in these
works was fairly unsatisfactory. In the talk, a “symplectic” construction of cluster
A-structures on M(Λ∆β′ , T ) and of cluster X -structures on M1(Λ∆β′ , T ) (the
latter improving on earlier work [6]) was presented. This construction is due to
Casals and Weng [1] who used technology of weaves introduced by Casals and
Zaslow [2]. Weaves are certain coloured graphs representing Lagrangian fillings of
Legendrian links, as explained in talk C2. The main result presented at the talk
is the following.

Theorem 1. [1] For a positive braid β′ and a collection T of marked points on
Λ∆β′ with at least one point per component, the pair

(M(Λ∆β′ , T ),M1(Λ∆β′ , T ))

forms a cluster ensemble, where the initial seeds of (M(Λ∆β′ , T ) andM1(Λ∆β′ , T ))
are described in terms of an exact embedded Lagrangian filling L of Λ∆β′ described
via a certain explicit weave.

The construction and a sketch of the proof were presented. Cluster A-variables
are indexed by certain relative cycles η ∈ H1(L\T,Λ\T ) and can be interpreted as
so-called microlocal merodromies, which intuitively give parallel transport along
η, while X -variables are indexed by absolute cycles in γ ∈ H1(L) and can be
interpreted as microlocal monodromies along γ. The language of weaves not only
provided a symplectic interpretation of cluster algebra structures on the sheaf
moduli spaces, but also allowed to simplify some of the proofs, compared to those
in [8].
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C6–Cluster structures on braid varieties

Tonie Scroggin

Given a braid word β we may define an algebraic variety called a braide variety.
In this talk we show that the coordinate ring of regular functions on any braid
variety is a cluster algebra. By defining Lusztig cycles, intersections and functions
on the Lusztig cycles we are able tio produce a quiver and cluster variables which
constitutes the seed of the cluster algebra C[χ(β)]

Introduction to Cluster Ensembles and the Fock-Goncharov

duality conjectures

Geoffrey Janssens

A geometric counterpart of Fomin-Zelevinsky’s cluster algebras was introduced by
Fock and Goncharov [2, 3] in which ”seed tori” are glued together along cluster
transformations, which are certain distinguished birational maps, to produce clus-
ter varieties. These varieties come in pairs and form a so-called cluster ensemble.

In this talk we start by introducing the above concepts following the histori-
cal reference [3]. Secondely we explain the geometric gains of cluster ensembles.
Hereby we emphasize the importance of some recent works, such as Gross-Hacking-
Keel-Kontsevich [4, 5] and Argüz-Bousseau [1]. Finally, we give a brief introduction
to Fock-Goncharov’s duality conjectures. The recurrent example used during the
talk is the one of (higher) Teichmüller theory. Indeed, cluster varieties have deep
connections with several areas of mathematics, in particular in the study of the
moduli space of local systems on topological surfaces [3].

1. Introduction to Cluster ensembles

In earlier talks cluster algebras associated to quivers with frozen vertices have been
introduced and the translation to cluster algebras with coefficients was mentioned.
For this talk we consider the general setting. In other words, let (P,⊕, ·) be some
semi-field and (x,y, B) a labeled seed with B a skew-symmetrizable n×n matrix.
In particular, y ∈ Pn and the coordinates of x = (x1, . . . , xn) form a free generating
set, over Q[P], of a given field F of rational functions in n variables.
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In order to associate an algebraic variety to every seed obtained from (x,y, B)
by mutation a coordinate-free point of view is more natural. More precisely, a
seed can be viewed as the data ~i = (Λ, I, F, E,D) where

• Λ is a lattice of rank n (i.e. Λ ∼= Zn) equipped with a skew-symmetric
Q-bilinear form (·, ·),
• I an index set with F ⊂ I the frozen indices,
• E = {ei} is a basis of Λ and D = (di) the multipliers. In particular, in

the skew-symmetric case di = 1 for all i.

Forming the matrix (ǫi,j := dj(ei, ej))i,j recovers the transpose of the mutation
matrix considered in the previous talks. However, with the above notion of a seed,
mutation at some k ∈ I \ F is defined as Y -seed mutation. The usual cluster
mutation is found by considering the dual lattice Λ∗ = hom(Λ,Z) with dual basis
{e∗i }. More precisely one needs Λ◦ = span{fi := d−1

i ei}.
Now with the seed ~i, via Λ and Λ◦, one can naturally associate tori:

X~i = spec k[Λ] = hom(Λ,Gm)

and similarly A~i = spec k[Λ◦]. These tori are called the seed X -torus, respectively

seed A-torus. If~i′ = µk(~i) is another seed obtained by mutating at k ∈ I \F , then
there are birational morphisms

µX
k : X~i → X~i′ and µA

k : A~i → A~i′

connecting the associated tori. It is usual to define these morphisms explicitly by
pullback formulas at level of characters which mimic Y and X−cluster mutation.
Using these maps one can glue all the tori in order to obtain a scheme structure
on

⋃
~iX~i and also on

⋃
~iA~i. For algebraic geometrical (complete) details we refer

to [4, Proposition 2.4]. By doing so one obtains the tuple (X ,A) called the cluster
ensemble and which was introduced by Fock-Goncharov. As was pointed out, A
is an honest variety, i.e. it is separated. However, in general X is not seperated.

Subsequently we explained that considering global regular functions on A one
recovers the upper cluster algebra which by the Laurent phenomenon contains the
cluster algebra. At level of the X -variety the global regular functions yield the
so-called Poisson cluster algebra. However the Laurent phenomenon doesn’t hold
in this case.

2. The geometric structure and duality phenomenons

The name Poisson cluster algebras refers to the fact that the X -variety has a
Poisson structure. More precisely, using the bilinear form (·, ·) one writes down
an explicit Poisson structure on each torus X~i, which moreover is invariant under
mutation. In particular it induces a Poisson structure on X . On his turn the torus
A~i carries a mutation well-behaved closed 2-form Ω which induces a symplectic
structure on A.

These structures are connected to each other. To be more precise one needs to
introduce a crucial map connecting the both varieties. To start one defines the
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skew-symmetrizable form [ei, ej ] = dj(ei, ej) and subsequentely considers the map

Λ→ Λ◦ : v 7→
∑

j

[v, ej ]fj .

Associated is the morphism of seed tori

A~i = spec k[Λ◦]→ X~i = spec k[Λ].

These maps behave well with mutaton and hence one obtains a morphism

p : A → X
called the assembly map which, crucially, is monomial and positive. A reassuring
fact now is that the symplectic structure on p(A~i) induced by Ω coincides with
the symplectic structure given by the restriction of the Poisson structure on X~i.

The interplay however doesn’t stop there and in the talk a glimpse was given of
two deeper connections between the both varieties, both of a duality nature. For
the first one needs an alternate description of cluster varieties by Gross-Hacking-
Keel [4] using log Calabi-Yau varieties. In brief, they have shown that X is up to
codimension 2 a blow-up of some concrete toric variety. In particular, besides the
Fock-Goncharov dual variety A of X , one can associate the mirror dual of the log
Calabi-Yau variety (constructed in the framework of the Gross-Siebert program).
It was recentely proven by Argüz-Bousseau [1] that the mirror to the X cluster
variety is a degeneration of the A cluster variety and vice versa.

A second attractive conjectural duality between X and A is given by the Fock-
Goncharov duality conjectures. During the talk we presented a short intuitive
tropical path to the statement. This required to make the birational morphisms
µX
k and µA

k explicit in terms of the coordinate functions zei . With a slight abuse
of notation, they are given by

(
µX
k

)∗
: zv 7→ zv(1 + zek)−(v,ek)(

µA
k

)∗
: zγ 7→ zγ(1 + z(ek,·))−γ(ek)

where v ∈ Λ and γ ∈ Λ◦. Thus, the gluing maps are substraction-free. A won-
derful by-product of this is that one can take P-points for any semi-field P. Now
choosing for P the tropical integers Ztr = (Z,+ max), a direct computation yields
an intriguing phenomena. Namely, denoting Atr for the Ztr-points of A, the mor-

phism µAtr

k is up to a change of ek to −ek and of ǫij to −ǫji given by the same
formula as µX

k on Λ. In other words, µX
k is the tropicalization of the Laglands

dual µ
A∨(Ztr)
k . The Fock-Goncharov duality conjecture states that the duality is

far more reaching. For example the basis conjecture predicts that Γ(X∨,OX∨) has
a basis indexed naturally by Atr and vice-versa.

To finish the talk, we mentioned that in [4] the authors showed that the original
Fock-Goncharov conjecture do not hold without certain positivity assumptions.
Nevertheless, they suggest that some formal version of the conjecture should hold.
In their seminal work Gross-Hacking-Keel-Kontsevich [5] proved the formal Fock-
Goncharov conjecture, as well as the original Fock-Goncharov conjecture with the
necessary positivity assumptions.
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8, place Aurélie Nemours
75013 Paris Cedex 13
FRANCE

Laurent Côté
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Abstract. The first historical encounter with Poisson-type algebras is with
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structure. Poisson brackets led to other algebraic structures, and the notion of
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Introduction by the Organizers

Poisson algebras emerged naturally in the framework of Hamiltonian mechanics
and the field developed rapidly following the advent of mathematical physics.
Nowadays Poisson algebras play a central role in a wide range of areas in mathe-
matics and physics, such as Poisson manifolds, algebraic geometry, operads, quan-
tization theory, quantum groups, classical and quantum mechanics. A variety of
related algebraic structures, the so-called Poisson-type algebras, gained popular-
ity in recent years: these include Novikov-Poisson algebras, commutative pre-Lie
algebras or the recently introduced transposed Poisson algebras, to name but a
few. The purpose of this meeting was to bring together experts in various fields
revolving around Poisson algebras, to discuss new approaches to open problems
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in the area and to initiate new research work. Discussions and talks were focused
into the following directions:

• Poisson-type structures: Several talks considered the different Poisson-
type structures existing in the literature. Guo’s talk reported on the study
of operads encoding algebraic structures with replicated copies of opera-
tions satisfying various compatibility conditions among these copies and
explained the relations of the compatibility conditions with Koszul duality
and Manin products. Admissible operads of various types have been dis-
cussed in the talk of Dzhumadil’daev. Burde presented various results and
open conjectures concerning the existence of post-Lie algebra structures
on a pair of Lie algebras over a fixed vectors space, emphasising the cases
where either of the two Lie algebras is abelian, nilpotent, solvable, sim-
ple, semisimple, reductive, complete or perfect. The talk of Zusmanovich,
considered the problem of whether an extension of the contact bracket (a
natural generalisation of Poisson bracket) on the tensor product from the
bracket on the factors is possible. Transposed Poisson algebras have been
recently introduced as a dual notion of Poisson algebras, by exchanging
the roles of the two multiplications in the Leibniz rule defining a Poisson
algebra. The mini-workshop featured several talks which discussed the rich
structure of transposed Poisson algebras. Bai presented a bialgebra the-
ory for transposed Poisson algebras. Khrypchenko discussed transposed
Poisson structures on Lie incidence algebras and Fernandez Ouaridi’s talk
focused on the simple transposed Poisson algebras.

• Poisson algebras and superalgebras: Another important part of the
mini-workshop consisted of talks related to the study of certain specific
classes of Poisson (super)algebras. Sierra reported on the study of the
Poisson ideal structure of the symmetric algebras of the Virasoro alge-
bra and the Witt algebra of algebraic vector fields on C∗ and various
other related Lie algebras. The talk of Yakimova highlighted the use of
the symmetrisation map for obtaining various new explicit formulas for
the generators of the Feigin-Frenkel center. Launois discussed algorithmic
methods to study Poisson derivations of a semiclassical limit of a fam-
ily of quantum second Weyl algebras. Agore presented certain universal
objects for Poisson algebras and highlighted several applications of these
constructions to the description of the automorphism group of a given
Poisson algebra and to the classification of gradings by an abelian group.
The talk of Siciliano gave an overview of the known results about solvable
(truncated) symmetric Poisson algebras and their derived lengths as well
as some open questions on these topics. The Gerstenhaber bracket on
the Hochschild cohomology of a certain subalgebra of the Weyl algebra
and its connection to the Virasoro Lie algebra have been highlighted by
Lopes. Usefi’s talk focused on the characterization of Lie superalgebras
whose enveloping algebras satisfy a non-matrix polynomial identity.
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Abstracts

Universal constructions for Poisson algebras. Applications

Ana Agore

(joint work with Gigel Militaru)

We introduce and study some universal objects for Poisson algebras and high-
light their main applications having as sourse of inspiration the previous work of
Sweedler [15], Manin [11] and Tambara [13] for Hopf algebra (co)actions on as-
sociative algebras. From a categorical point of view, the existence of universal
objects with a certain property, for a given category C can shed some light on
the structure of the category C itself. In particular, the existence and description
of universal objects (groups or ”group like objects” such as Lie groups, algebraic
groups, Hopf algebras, groupoids or quantum groupoids, etc.) which act or coact
on a fixed object O in a certain category C has often various applications in many
areas of mathematics. An elementary but illuminating example is the following:
let O be a given object in a certain category C and consider the category ActGrO
of all groups that act on O, i.e. the objects in ActGrO are pairs (G, ϕ) consist-
ing of a discrete group G and a morphism of groups ϕ : G → AutC(O), where
AutC(O) denotes the automorphisms group of the object O in C. Then the cat-
egory ActGrO has a final object, namely

(
AutC(O), Id

)
. Now, if we replace the

discrete groups that act on the fixed object O in C, by some other ”groups like
objects” from a certain more sophisticated category D (for instance, Lie groups,
algebraic groups, Hopf algebras, etc.) which (co)act on O and if moreover we
ask the (co)action to preserve the algebraic, differential or topological structures
which might exist on O, then things become very complicated. Indeed, the first
obstacle we encounter is the fact that AutC(O) might not be an object inside the
category D anymore. However, even in this complicated situation, it is possible
for the above result to remain valid but, however, the construction of the final
object will be far more complicated. Furthermore, it is to expect that, if it exists,
this final object will contain important information on the entire automorphisms
group of the object O. To the best of our knowledge, the first result in this di-
rection was proved by Sweelder [15, Theorem 7.0.4] in the case where C is the
category of associative algebras and D is the category of bialgebras: if A is a fixed
associative algebra then the category of all bialgebras H that act on A (i.e. A
is an H-module algebra) has a final object M(A), called by Sweedler the univer-
sal measuring bialgebra of A. The dual situation of coactions of bialgebras on a
fixed algebra A, was first considered in the case when C is the category of graded
algebras by Manin [11] for reasons related to non-commutative geometry, and in
the general case by Tambara [13]. If A is an associative algebra, necessarily finite
dimensional this time around, then the category of all bialgebras that coact on A
(i.e. A is an H-comodule algebra) has an initial object a(A). Furthermore, the
usual automorphisms group AutAlg(A) of A is indeed recovered as the group of
all invertible group-like elements of the finite dual a(A)o [12, Theorem 2.1] and
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a(A)o is just Sweedler’s final object in the category of all bialgebras that act on
A [13, Remark 1.3]. The two results above remains valid if we take the category
of Hopf algebras instead of bialgebras: in particular, the Hopf envelope of a(A),
denoted by aut(A), is called in non-commutative geometry the non-commutative
symmetry group of A [14] and its description is a very complicated matter. The
existence and description of these universal (co)acting bialgebras/Hopf algebras
has been considered recently in [1] in the context of Ω-algebras. The duality be-
tween Sweedler’s and Manin-Tambara’s objects has been extended to this general
setting and necessary and sufficient conditions for the existence of the universal
coacting bialgebras/Hopf algebras, which roughly explains the need for assuming
finite-dimensionality in Manin-Tambara’s constructions, are given. Furthermore,
universal coacting objects for Poisson algebras have also been considered in [2] but
from a different perspective, leading to entirely different constructions. We only
point out that in [2], the universal coacting object considered is actually a Poisson
Hopf algebra. For more background on the importance and the applications of
universal bialgebras/Hopf algebras in various areas of mathematics, we refer to
[3, 5, 6, 7, 9, 10].

The key object of our work, namely the universal algebra of two Poisson algebras
P and Q, is a pair

(
P(P, Q), η

)
consisting of a commutative algebra A := P(P, Q)

and a Poisson algebra homomorphism η : Q → P ⊗ P(P, Q) satisfying a certain
universal property. If P is finite-dimensional, then the universal algebra P(P, Q)
of P and Q exists and we provide an explicit construction of it. This result has two
important consequences: for a fixed Poisson P -module U there exists a canonical
functor U ⊗ − : AM → QPM from the category of usual A-modules (i.e. repre-
sentations of the associative algebra A) to the category of Poisson Q-modules (i.e.
Poisson representations of Q) and moreover, if U is finite-dimensional this functor
has a left adjoint. Secondly, if V is an A-module, then there exists a canonical
functor −⊗V : PPM → QPM connecting the categories of Poisson modules over
P and Q and, furthermore, if V is finite-dimensional then the aforementioned
functor has a left adjoint. These results provide answers, at the level of Poisson
algebras, to the following general problem:

If O1 and O2 are two mathematical objects (not necessary in the same category), is
it possible to construct ”canonical functors” between the representation categories
Rep(O1) and Rep(O2) of the two objects?

Three more applications of our constructions are considered. For a Poisson algebra
P of dimension n, we denote P(P ) := P(P, P ) and we construct P(P ) as the quo-
tient of the polynomial algebra k[Xij | i, j = 1, · · · , n] through an ideal generated
by 2n3 non-homogeneous polynomials of degree ≤ 2. P(P ) has a canonical bialge-
bra structure and, moreover, P(P ) is the initial object of the category CoactBialgP
of all commutative bialgebras coacting on P and, for this reason, we call it the
universal coacting bialgebra of P . As in the case of Lie [4] or associative algebras
[12], the universal bialgebra P(P ) has two important applications, which provide
the theoretical answer for Poisson algebras, of the following open questions:
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(1) Describe explicitly the automorphisms group of a given Poisson algebra P ;
(2) Describe and classify all G-gradings on P for a given abelian group G.

More precisely, we prove that there exists an isomorphism of groups between the
group of all Poisson automorphisms of P and the group of all invertible group-like
elements of the finite dual P(P )o. The second application is given is the following:
for an abelian group G, all G-gradings on a finite dimensional Poisson algebra P
are described and classified in terms of bialgebra homomorphisms P(P ) → k[G].
By taking Takeuchi’s commutative Hopf envelope of P(P ), we obtain that the
category CoactHopfP of all commutative Hopf algebras coacting on P has an
initial object H(P ). It is reasonable to hope that H(P ) will play the role of a
non-commutative symmetry group of the Poisson algebra P . This expectation is
based on the fact that the concept of Poisson H-comodule algebra which we are
dealing with, is the algebraic counterpart of the action of an algebraic groups on
an affine Poisson variety [8, Example 2.20].
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A bialgebra theory for transposed Poisson algebras

Chengming Bai

(joint work with Guilai Liu)

Transposed Poisson algebras are the dual notion of Poisson algebras by exchanging
the roles of two binary operations in the Leibniz rule defining the Poisson algebras.
The approach for Poisson bialgebras characterized by Manin triples with respect to
the invariant bilinear forms on both the commutative associative algebras and the
Lie algebras is not available for giving a bialgebra theory for transposed Poisson
algebras. Alternatively, we consider Manin triples with respect to the commu-
tative 2-cocycles on the Lie algebras instead. Explicitly, we first introduce the
notion of anti-pre-Lie bialgebras as the equivalent structure of Manin triples of Lie
algebras with respect to the commutative 2-cocycles since anti-pre-Lie algebras are
regarded as the underlying algebraic structures of Lie algebras with nondegener-
ate commutative 2-cocycles. Then we introduce the notion of anti-pre-Lie-Poisson
bialgebras, characterized by Manin triples of transposed Poisson algebras with re-
spect to the bilinear forms which are invariant on the commutative associative
algebras and commutative 2-cocycles on the Lie algebras, giving a bialgebra the-
ory for transposed Poisson algebras. They are commutative and cocommutative
infinitesimal bialgebras and anti-pre-Lie bialgebras satisfying certain compatible
conditions. Finally the coboundary cases and the related structures such as ana-
logues of the classical Yang-Baxter equation and O-operators are studied.

Pre-Lie and Post-Lie Algebra Structures

Dietrich Burde

(joint work with Karel Dekimpe)

Post-Lie algebras and post-Lie algebra structures are an important generalization
of left-symmetric algebras, also called pre-Lie algebras, and left-symmetric algebra
structures on Lie algebras, which arise in many areas of algebra and geometry [1],
such as left-invariant affine structures on Lie groups, affine crystallographic groups,
simply transitive affine actions on Lie groups, convex homogeneous cones, faithful
linear representations of Lie algebras, operad theory and several other areas.

In this talk we present several results and open conjectures concerning the existence
of post-Lie algebra structures on a pair of Lie algebras (g, n) over a fixed vector
space V . In particular we are interested in cases, where either g or n has one
of the following properties: it is abelian, nilpotent, solvable, simple, semisimple,
reductive, complete or perfect. We may assume here that the algebras, if possible,
do not belong to several classes simultaneously, to avoid an unnecessary overlap.

Over the last years we have obtained already several results on the existence of
post-Lie algebra structures, see [2, 3, 4, 5]. The methods use the theory of Rota-
Baxter operators, decomposition theory, cohomology theory and several other
tools.
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In a recent paper [6], we proved the following rigidity result.

Theorem. Let (g, n) be a pair of Lie algebras, where g is semisimple and n

is arbitrary. Suppose that (g, n) admits a post-Lie algebra structure. Then n is
isomorphic to g.

We will give a sketch of the proof. It uses several non-trivial results about de-
compositions of reductive Lie groups and Lie algebras by Onishchik. The result
shows that the condition of g being semisimple is very strong. A similar result for
n being semisimple does not hold.

Proposition. Let n be a semisimple Lie algebra. Then there exists a solvable
non-nilpotent Lie algebra g, such that (g, n) is a pair of Lie algebras admitting a
post-Lie algebra structure.

Currently we are working on the generalization of the results for the semisimple
case to the case of perfect Lie algebras. Here a Lie algebra L is called perfect, if
[L,L] = L. A typical example of a perfect Lie algebra, which is not semisimple, is
the Lie algebra sln(C)⋉V (n), where V (n) is the natural irreducible representation
of sln(C). We have the following conjecture.

Conjecture. Let (g, n) be a pair of Lie algebras, where g = sln(C) ⋉ V (n) and n

is nilpotent. Then there is no post-Lie algebra structure on (g, n).

This would be the first step to a more general conjecture, which is as follows.

Conjecture. Let (g, n) be a pair of Lie algebras, where g is perfect non-semisimple,
and n is nilpotent. Then there is no post-Lie algebra structure on (g, n).

We have proved the second conjecture for the case, where g is semisimple. However,
the case of perfect Lie algebras is much more complicated.

A further question is about the case where g is perfect and n is simple or semisim-
ple. Using a classification of perfect Lie algebras of dimension n ≤ 8 over C, we
proved the following result.

Proposition. Let (g, n) be a pair of Lie algebras, where g is perfect non-semisimple,
and n = sl3(C). Then there is no post-Lie algebra structure on (g, n).

We conjecture that the same conclusion holds for any semisimple Lie algebra n,
and not only for sl3(C).
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Lie-Jordan elements and q-admissible operads

Askar Dzhumadil’daev

Notations: K be a field of characteristic p ≥ 0; Mag = K[x1, x2, . . .] free Magma,
i.e., an algebra of non-commutative non-associative polynomials with generators
x1, x2, . . . ; Mag(n) is multi-linear part of free magma of degree n + 1; Tk and
Tnpk are sets of planar and non-planar binary trees with k + 1 leaves, T = ∪k≥0Tk
and Tnp = ∪k≥0T

np
k ; T , T np, Tk, T np

k are linear spans of T,Tnp,Tk,T
np
k ; Tqk set

of planar binary trees whose i-th inner vertex is colored by qi ∈ K, 1 ≤ i ≤
k, where q = (q1, q2, . . . , ); similar notations for Tq

k ,T
np,q
k ,Tq,Tnp,q, etc. Then

τq(ω)(a, b) = ω(a, b) + qω(b, a) corresponds to q-commutator of algebra (A,ω), We
endow T by structure of algebra under bucket product st = s ∨ t.

We introduce equivalency relation on non-planar trees: two such trees are equiva-
lent if one can be obtained from the second one by permuting of branches. Take
as representative of a non-planar tree a tree such that for any inner vertex its left
sub-branch is no more than right-sub-branch. We identify an equivalency class
with a representative and we can assume that Tnpn ∈ Tn.

Space of operations on free magma has a base generated by planar binary rooted
trees. To construct elements of free magma one should label its leaves by elements
of magma and inner vertices by multiplication of magma and correspond to each
inner vertex products of its sons. Then an element obtained at a root is a product
of leaf elements. For a tree, t denotes by |t| its number of inner vertices. We obtain
commutative monoid denoted G1, under composition

τqτq′ = (1 + q q′)τ q+q′

1+qq′

It has unit τ0 and the group of invertible elements is isomorphic to {q ∈ K|q2 6= 1}.
There are two kinds of extensions of coloring maps for any n. First way, all inner

vertices are changed by q-commutator and τq : Tn → T(q)
n is defined in natural

way. The second way, we numerate somehow inner vertices and each i-th inner
vertex has its own color, say qi, and in this case we have to consider τq : Tn → Tq

n,
where q = (q1, q2, . . .) is a sequence of colors. It is clear that the first case is a
particular case of the second one: take q = (q, q, . . .). Let

Gn = G1 × · · · ×G1
∼= Kn

be commutative monoid generated by coloring maps τq, where q = (q1, q2, . . .).

Let

Mn = {α = (α1, . . . , αn)|α2
i = 1}
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and
M = ∪n≥1Mn.

Say that α ∈ Mn has (l+, l−)-type if numbers of components of α are equal to +1
and −1 are l+ and l− respectively. Then l+ + l− = n. Let

M (l+,l−)
n = {α ∈ Mn | type(α) = (l+, l−)}.

For α ∈ Mn, t ∈ Tn set
tα = ταt.

We call tα Lie-Jordan element of type α. Let T np,(l+,l−)
n be subspace of T np

n gen-

erated by trees tα, where α ∈ M
(l+,l−)
n . For X ∈ Tn say that X is Lie-Jordan

element of ±-type (l+, l−), or shortly homogeneous LJ-element, if X is a linear

combination of elements constructed by trees t ∈ T np,(l+,l−)
n .

Well known that space of (n + 1)-ary operations on Mag can be generated by
planar rooted trees with n inner vertices and Tn can be selected as a base.

Theorem. Set of Lie-Jordan elements tα, where α ∈ Mn and t ∈ Tnpn , forms
base of the space of n-ary operations on Mag. In particular, dim Mag(n) =
2n(2n− 1)!!.

Theorem. The following conditions are equivalent

• X is Lie-Jordan element of type α ∈ Mn.
• ταX = 2nX
• τβX = 0, for any β ∈ Mn,β 6= α.

In particular, the following conditions are equivalent

• X ∈ Mag(n) is Lie element
• ταX = 2nX, where α = (−1,−1, . . . ,−1) ∈ Mn

• τβX = 0, for any β 6= (−1,−1, . . . ,−1).,β ∈ Mn

and the following conditions are also equivalent

• X ∈ Mag(n) is Jordan element
• ταX = 2nX, where α = (1, 1, . . . , 1) ∈ Mn

• τβX = 0, for any β 6= (1, 1, . . . , 1),β ∈ Mn

Let V = 〈f1, . . . , fk〉 be an operad of algebras generated by polynomial identities
f1 = 0, . . . , fk = 0. Call an algebra A = (A, ·) q-admissible V-algebra and denote
by VAdm(q) class of such algebras, if A under q-commutator A(q) = (A, ·q) became
V-algebra.

Theorem. Let q2 6= 1. Then VAdm(q) forms a variety of algebras, namely, variety

generated by polynomial identities f
(−q)
1 = 0, . . . , f

(−q)
k = 0. As categories, vari-

eties V and VAdm(q) are isomorphic. Dimensions sequence of multi-linear parts
of dV,n = dimV(n) are not changed,

dV,n = dV(q),n.

If fi, 1 ≤ i ≤ s, are homogeneous Lie-Jordan polynomials, then

V(q) = 〈f1, . . . , fs, f (−q)
s+1 , . . . , f

(−q)
k 〉.
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If all fi, 1 ≤ i ≤ k, are homogeneous Lie-Jordan polynomials, then

V(q) = V .

An algebra with the following polynomial identities is called reverse-associative,
anti-reverse-associative, and weak Leibniz, respectively:

a(bc) = (cb)a,

(a(bc) = −(cb)a,

[a, b]c = 2(a(bc) − b(ac)), a[b, c] = 2((ab)c− (ac)b)

Applications of our results for these classes of algebras are given below.

Results on reverse-associative and anti-reverse-associative operads

Theorem. Reverse-associative and anti-reverse-associative operads have the fol-
lowing properties.

(a) Operads Revas and Arevas are Koszul.
(b) Any anti-reverse-associative algebra is associative-admissible and Lie-ad-

missible.
(c) Revas! = Arevas.
(d) Revas = 〈{t1, [t2, t3]}, [t1, {t2, t3}]〉.
(e) Arevas = 〈[t1, [t2, t3]], {t1, {t2, t3}}〉.
(f) Plus-colored trees generate a base of free reverse-associative operad. In

particular,

Revas(n) = Com+(n) ⊕ Com−(n), n > 1.

(g) Minus-colored trees generate a base of free anti-reverse-associative operad.
In particular,

Arevas(n) = Com±(n) ⊕ Com∓(n), n > 1,

(h) dim Arevas(n) = dim Revas(n) = 2(2n− 1)!!, n > 1,

dim Arevas(1) = dim Revas(1) = 1.

(i) Arevas = ComNil2 ⋆AcomNil2, where

ComNil2 = 〈t1t2 − t2t1, (t1t2)t3〉,
AcomNil2 = 〈t1t2 + t2t1, (t1t2)t3〉.

(j) Multipliaction table in free reverse-associative algebra Frevas(X) generated
by elements X = {x1, x2, . . . , xn} can be defined by

xixj = xi • xj + xi ◦ xj ,
xiu = xi • u+ + xi ◦ u−,

uxj = u+ • xj + u− ◦ xj ,
uv = u+ • v+ + u− ◦ v−,

where u, v ∈ Frevas(X)2, 1 ≤ i, j ≤ n.
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(k) Multipliaction table in free anti-reverse-associative algebra Farevas(X) gen-
erated by elements X = {x1, x2, . . . , xn} can be constructed as in reverse-
associative case,

xixj = xi • xj + xi ◦ xj ,
xiu = xi • u− + xi ◦ u+,

uxj = u− • xj + u+ ◦ xj ,
uv = u− • v− + u+ ◦ v+,

for any u, v ∈ Farevas(X)2, 1 ≤ i, j ≤ n.

Results on associative-admissible operad

Recall that Non-Anti-Commutative Lie operad Lie♭ is generated by Jacobi identity
jac = 0, reverse-associative identity

revas(t1, t2, t3) = t1(t2t3) − (t3t2)t1 = 0,

and the identity

t1(t2t3 + t3t2) = 0.

Left-Leibniz and right-Leibniz operads are defined by identities

llei = 0 and rlei = 0

respectively, where

llei = (t1t2)t3 − t1(t2t3) + t2(t1t3),

rlei = t1(t2t3) − (t1t2)t3 + (t1t3)t2.

So, two-sided Leibniz operad Lei is defined by left- and right-Leibniz identities

Lei = 〈llei, rlei〉.

Theorem. Associative-admissible operad has the following properties.

(a) Lie♭ = Lei.
(b) dim Lie♭(n) = (n− 1)!, if n 6= 2 and = 2, if n = 2.
(c) Operads AsAdm and Lie♭ are Koszul.
(d) AsAdm! = Lie♭.
(e) AsAdm = AsCom ⋆Acom.
(f) Dimensions of multi-linear parts of associative-admissible operad dn =

dim AsAdm(n) can be found by the following recurrence relations

dn =

n−1∑

k=1

k!Fk+2Bn−1,k(d1, d2, . . . , dn−k), n > 1,

d1 = 1,

where Fn are Fibonacci numbers and Bn,k(x1, . . . , xn−k+1) are Bell poly-
nomials.
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Theorem. Let p be prime. Dimensions dn = dim AsAdm(n) of multi-linear part
of associative-admissible operad satisfy the following congruences

dp−1 ≡
{

1(mod p), if p 6= 3,
−1 if p = 3,

dp ≡
{

1(mod p), if p 6= 2,
0 if p = 2,

dp+1 ≡ 2(mod p),

dp+2 ≡ 10(mod p).

Results on weak Leibniz operad

Let us define left-weak Leibniz and right-weak-Leibniz polynomials by

lwlei = [t1, t2]t3 − 2t1(t2t3) + 2t2(t1t3),

rwlei = t1[t2, t3] − 2(t1t2)t3 + 2(t1t3)t2.

Let Lwlei = 〈lwlei〉 and Rwlei = 〈rwlei〉 are Left-weak-Leibniz and Right-weak-
Leibniz operads, So, two-sided weak-Leibniz operad Wlei is defined by

Wlei = 〈lwlei, rwlei〉.

Let I be some finite set of integers, εi ∈ K, for any i ∈ I. Let L(I, ε) be infinite-
dimensional algebra with base {ei|i ∈ Z} and multiplication

ei · ej = (i − j)ei+j +
∑

k∈I

εkei+j+k.

Theorem.

• Wlei! = Wlei.
• Weak Leibniz operad is not Koszul.
• Any weak Leibniz algebra is associative-admissible. Any weak Leibniz al-
gebra is two-sided Alia, if p 6= 3. In particular, any weak Leibniz algebra
is Lie-admissible, if p 6= 3.

• There exist weak Leibniz algebras that are not Leibniz.
• The algebra L(I, ε) is a simple weak Leibniz algebra for any I and εi ∈
K, i ∈ I.
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Results on Associative-admissible and Lie-admissible operad

Let AsLieAdm be operad representing associative-admissible and Lie-admissible
algebras, i.e. algebras with the following identities

{t1, {t2, t3}} = {{t1, t2}, t3},
[[t1, t2], t3] + [[t2, t3], t1] + [[t1, t2], t3] = 0.

Let AsCom be operad for associative and commutative algebras,

t1(t2t3) = (t1t2)t3, t1t2 = t2t1.

Let

aslia′ = rwlei − lwlei,

aslia(t1, t2, t3) = aslia′(t1, t2, t3)+2〈t3, t1, t2〉= [t1, [t2, t3]]−2(〈t2, t1, t3〉−〈t3, t1, t2〉).
In other words,

aslia′ = aslia′(t1, t2, t3) = [t1, [t2, t3]] + 2(arevas(t2, t3, t1) − arevas(t3, t2, t1)) =

[t1, [t2, t3]] + 2(t2(t3t1) − t3(t2t1) − (t1t2)t3 + (t1t3)t2).

Theorem. The operad AsLieAdm has the following properties.

• The operad AsLieAdm is Koszul.
• AsLieAdm = 〈aslia〉, if p 6= 3.
• AsLieAdm = AsCom ⋆ Lie.
• AsLieAdm! = 〈revas, lwlei or rwlei〉.
• d!n = dim AsLieAdm!(n) = (n− 1)! + 1.

• Poincare series f !
AsLieAdm(x) =

∑
i≥1 d

!
i
xi

i! = −1 + ex − x− ln(1 − x)

• dn = dim AsLieAdm(n) =
∑n−1
k=1 (−1)kλkBn−1,k(d1, d2, . . . , dn−k), where

λk =

k∑

s=1

(−1)ss!Bk,s(1! + 1, 2! + 1, . . . , i! + 1, . . . , (k − s + 1)! + 1).

Simple transposed Poisson algebras and Jordan superalgebras

Amir Fernández Ouaridi

Transposed Poisson algebras (TPAs, for short) were introduced as a dual class of
the Poisson algebras in the sense that the roles of the two multiplications in the
Leibniz rule are swapped [1]. Precisely, we have the identity

2x ◦ {y, z} = {x ◦ y, z} + {y, x ◦ z} .
This identity can be realized as the left multiplication of the associative commuta-
tive algebra is a 1

2 -derivation of the Lie algebra. These derivations of Lie algebras
are well-studied (for example, see [4]). The interest on this class has increased
rapidly in the last four years (see [2] and the references therein). Some known
facts about TPAs include the closure undertaking tensor products, the Koszul
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self-duality as an operad or the correspondence with weak Leibniz algebras by de-
polarization. TPAs coincide with commutative Gelfand-Dorfman algebras [1, 6].
In this talk, we will discuss about simple transposed Poisson algebra. For a further
read on the topic of simple TPAs, we refer to the paper of the author [3].

Recall that an ideal of a Poisson-type algebra is a proper subspace such that it is
simultaneously an ideal of both multiplications. Kantor [5] introduced an invert-
ible way to construct a Jordan superalgebra from a Poisson algebra (the Kantor
double), this construction preserves the simplicity in both directions, so a clas-
sification of the complex simple finite-dimensional Poisson algebras was obtained
from the classification of simple Jordan superalgebras.

Our first approach to the problem of classifying simple TPAs took us to the study
of the Kantor double of a TPA. It turns out that, as in the Poisson case, the Kan-
tor double of a TPA is a Jordan superalgebra. Hence, TPAs are Jordan brackets.
This motivates the following open question.

Question. Characterize the subclass of Jordan brackets that arise from TPAs.
Are these Jordan algebras special?

The construction of simple TPA from simple Jordan superalgebras is partially
possible. Indeed, we proved that a TPA is simple with perfect associative part if
and only if its Kantor double is simple. Although we can not construct all the
simple TPAs, a straightforward check of the inverse Kantor double of a complex
simple finite-dimensional Jordan superalgebras shows that none of them produce
non-trivial TPAs. In other words, there are no complex simple finite-dimensional
TPAs with perfect associative part.

This result was improved, thanks to the next key result: over an arbitrary field
and for any dimension, a TPA is simple if and only if its Lie bracket is simple. It
is worth to point out that this result is also valid for the super case. The main
idea to prove this fact is the introduction of the notion of a transposed quasi-ideal
(see [3] for details).

As a consequence of the cited result, any complex simple finite-dimensional TPA is
trivial. This is thanks to a result of Filippov, who showed that every simple com-
plex finite-dimensional Lie algebra has trivial 1

2 -derivations [4]. However, there are
simple finite-dimensional TPAs over fields of characteristic p > 2. This motivates
the following question.

Question. Classify the finite-dimensional TPAs.

Another consequence is that any TPA with simple associative part has either
abelian Lie part or simple Lie part. An example of a TPA with both multiplications
being simple was presented by A. Dzhumadildayev on the field of formal series
during the mini-workshop. This motives the following question:

Question. Is there any finite-dimensional simple TPA with both multiplications
being simple?
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Compatible structures of operads by polarization, Koszul duality, and

Manin products

Li Guo

(joint work with Xing Gao, Huhu Zhang)

Traditionally, a compatible structure is usually referring to a linearly compatible
structure, where a vector space is equipped with two identical copies of operations
in a given algebraic structure (Lie algebra, for example) so that the sums of these
two copies of operations still yield the same algebraic structure. Together with
several other algebraic compatible structures, they have been widely studied in
mathematics and mathematical physics.

The first instance of linearly compatible structures appeared in the pioneering
work [9] of Magri on bi-Hamiltonian systems, in which a Poisson algebra has two
linearly compatible Poisson (Lie) brackets. Such a structure was abstracted to
the notion of a bi-Hamiltonian algebra and was studied in the context of operads
and Koszul duality [3]. Compatible Lie algebras have been studied in connection
with integrable systems, classical Yang-Baxter equation, loop algebras and elliptic
theta functions [5, 6, 7, 10]. In [2], quantum bi-Hamiltonian systems were built on
linearly compatible associative algebras [11, 12].

Other algebraic structures with multiple copies of operations related by various
compatibility conditions have appeared in recent studies in broad areas.

For example, a multiple pre-Lie algebra emerged in the remarkable work of Bruned,
Hairer and Zambotti [1, 4] on algebraic renormalization of regularity structures.
Matching Rota-Baxter algebras appeared in the algebraic study of Voterra in-
tegral equations [8, 15]. These structures can be broadly grouped into linearly
compatible, matching, and totally compatible structures.

General studied of such structures using operads have been carried out with various
restrictions [13, 14]. This talk presents some recent progress aiming at giving a
unified approach to these various structures that can be applied to an arbitrary
operad. We first introduce the notion of polarization in operads, leading to the
notion of linearly compatible operads. Refining the polarization by the process of
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taking foliation, we obtain a general notion of matching type operads including
those that have appeared. When we make all matching compatibilities of a given
operad equal, we obtain the totally compatible operad of this operad.

For unary/binary quadratic operads, we prove that the linear compatibility and
the total compatibility are in Koszul dual to each other, and there is a Koszul
self-duality among the matching compatibilities. For binary quadratic operads,
these three compatible operads can also be obtained by Manin products. For a
finitely generated binary quadratic Koszul operad, we prove that the three types
of compatible operads are also Koszul.

Back to the Poisson algebra origin of this study, natural questions arise, such as

(1) Study the transpose bi-Hamiltonian algebra?
(2) What should be the algebraic structure when the Poisson bracket in a

Poisson algebra is replaced by any of the compatible Lie algebras, with
the bi-Hamiltonian system or a bi-Hamiltonian algebra as a special case?

(3) The same question can be asked for the transposed Poisson algebra.
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Transposed Poisson structures on Lie incidence algebras

Mykola Khrypchenko

(joint work with Ivan Kaygorodov)

A transposed Poisson algebra [1] is a triple (L, ·, [·, ·]) consisting of a vector space
L with two bilinear operations · and [·, ·], such that

(1) (L, ·) is a commutative associative algebra;
(2) (L, [·, ·]) is a Lie algebra;
(3) the “transposed” Leibniz law holds: 2z · [x, y] = [z · x, y] + [x, z · y] for all

x, y, z ∈ L.

A transposed Poisson algebra structure on a Lie algebra (L, [·, ·]) is a (commutative
associative) multiplication · on L such that (L, ·, [·, ·]) is a transposed Poisson
algebra.

A transposed Poisson structure · on (L, [·, ·]) is said to be of Poisson type if it is
at the same time a usual Poisson structure on L. It was proved in [1] that this
happens if and only if

x · [y, z] = [x · y, z] = 0

for all x, y, z ∈ L. Another class of transposed Poisson structures that can be
defined on any Lie algebra (L, [·, ·]) is as follows. Fix c ∈ Z([L,L]) and consider
the following mutation of the product [·, ·]:

a ·c b = [[a, c], b] = [a, [c, b]].

Then ·c is a transposed Poisson structure on L called mutational.

Given two binary operations ·1 and ·2 on a vector space V , their sum ∗ is defined
by

a ∗ b = a ·1 b + a ·2 b.
We say that ·1 and ·2 are orthogonal, if

V ·1 V ⊆ Ann(V, ·2) and V ·2 V ⊆ Ann(V, ·1).

In this case ∗ defined above is called the orthogonal sum of ·1 and ·2.

Clearly, the sum ∗ of two transposed Poisson structures ·1 and ·2 on (L, [·, ·]) is
commutative and satisfies the transposed Leibniz law. If ·1 and ·2 are orthogonal,
then ∗ is also associative, so we get the following.

Proposition. The orthogonal sum of two transposed Poisson structures on a Lie
algebra L is a transposed Poisson structure on L.

Observe that any mutational transposed Poisson structure on a Lie algebra L is
orthogonal to any transposed Poisson structure of Poisson type on L.

Corollary. The (orthogonal) sum of a mutational transposed Poisson structure on
L and a transposed Poisson structure of Poisson type on L is a transposed Poisson
structure on L.
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Let X be a finite poset and K a field. Recall that the incidence algebra I(X,K)
of X over K (see [3]) is the associative K-algebra with basis {exy | x ≤ y} and
multiplication is given by

exyeuv =

{
exv, y = u,

0, y 6= u,

for all x ≤ y and u ≤ v in X . Given f ∈ I(X,K), we write f =
∑
x≤y f(x, y)exy,

where f(x, y) ∈ K. Let us denote ex := exx, and for arbitrary Y ⊆ X put
eY :=

∑
y∈Y ey. Then eY is an idempotent and eY eZ = eY ∩Z , in particular,

exey = 0 for x 6= y. Notice that δ := eX is the identity element of I(X,K).

We consider I(X,K) as a Lie algebra under the commutator product [f, g] =
fg − gf . If X is connected, then one can easily prove that

Z(I(X,K)) = 〈δ〉 and [I(X,K), I(X,K)] = 〈exy | x < y〉.
Moreover,

Z([I(X,K), I(X,K)]) = 〈exy | Min(X) ∋ x < y ∈ Max(X)〉.
Diagonal elements of I(X,K) are f ∈ I(X,K) with f(x, y) = 0 for x 6= y. They
form a commutative subalgebra D(X,K) of I(X,K) with basis {ex | x ∈ X}. As
a vector space,

I(X,K) = D(X,K) ⊕ [I(X,K), I(X,K)].

Thus, each f ∈ I(X,K) is uniquely written as f = fD + fJ with fD ∈ D(X,K)
and fJ ∈ [I(X,K), I(X,K)]. Observe that Z(I(X,K)) ⊆ D(X,K).

In this talk, we describe transposed Poisson structures on (I(X,K), [·, ·]), where
X is a finite connected poset and K is a field of characteristic zero. It is obvious
that any transposed Poisson structure of Poisson type on I(X,K) is of the form

ex · ey = µ(x, y)δ

for some µ : X2 → K with µ(x, y) = µ(y, x), where the associativity of the product
is equivalent to

µ(x, y)
∑

v∈X

µ(z, v) = µ(y, z)
∑

v∈X

µ(x, v).

Observe that we write only non-trivial products here.

Each ν ∈ Z([I(X,K), I(X,K)]) defines the mutational structure whose non-trivial
products are:

ex · ey = ey · ex =





ν(x, y)exy, Min(X) ∋ x < y ∈ Max(X),

−∑
x<v∈Max(X) ν(x, v)exv, x = y ∈ Min(X),

−∑
Min(X)∋u<x ν(u, x)eux, x = y ∈ Max(X).

The definition of the third structure requires some preparation. We say that a pair
(x, y) of elements of X is extreme, if x < y is a maximal chain in X and there is
no cycle in X containing x and y. Denote X2

e = {(x, y) ∈ X2 | (x, y) is extreme}.
We set sgnu0

(x, y) := 1, if there is a path starting at u0 and ending at (x, y).
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Otherwise there is a path starting at u0 and ending at (y, x), in which case set
sgnu0

(x, y) := −1. Given (x, y) ∈ X2
e and u, v ∈ X , we say that u and v are on

the same side with respect to (x, y), if there is a path from u to v that does not
have (x, y) and (y, x) as edges. Otherwise u and v are said to be on the opposite
sides with respect to (x, y). Fix u0 ∈ X . For any (x, y) ∈ X2

e denote

Vxy = {v ∈ X | u0 and v are on the opposite sides with respect to (x, y)}.
An arbitrary λ : X2

e → K determines the λ-structure on I(X,K) as follows:

ex · exy = exy · ex = −exy · ey = −ey · exy = λ(x, y)exy , (x, y) ∈ X2
e ,

ex · ey = ey · ex =





sgnu0
(x, y)λ(x, y)eVxy

, (x, y) ∈ X2
e ,

−∑
(x,v)∈X2

e
sgnu0

(x, v)λ(x, v)eVxv
, x = y ∈ Min(X),

−∑
(u,x)∈X2

e
sgnu0

(u, x)λ(u, x)eVux
, x = y ∈ Max(X).

Lemma. Any λ-structure · is a transposed Poisson structure on I(X,K) orthog-
onal to any structure of Poisson type.

Lemma The sum of any mutational structure and any λ-structure is a transposed
Poisson structure on I(X,K).

The following theorem is the main result of our talk [2].

Theorem. A binary operation · on I(X,K) is a transposed Poisson algebra struc-
ture on I(X,K) if and only if · is the sum of a structure of Poisson type, a muta-
tional structure and a λ-structure.
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Poisson derivations of a semiclassical limit of a family of quantum

second Weyl algebras

Stéphane Launois

(joint work with Isaac Oppong)

In [1], we studied deformations Aα,β of the second Weyl algebra and computed
their derivations. In this talk, we identify the semiclassical limits Aα,β of these
deformations and compute their Poisson derivations. Our results show that the
first Hochschild cohomology group HH1(Aα,β) is isomorphic to the first Poisson
cohomology group HP1(Aα,β).
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Gerstenhaber algebra structure on Hochschild cohomology

Samuel A. Lopes

(joint work with Andrea Solotar)

The Hochschild cohomology HH
•(A) of an associative algebra A encodes many non-

trivial properties and features of the algebra, including crucial information about
its deformations. In [2], Gerstenhaber constructed two operations on HH

•(A): the
cup product and a (graded) Lie bracket. Together, they form what is now called
a Gerstenhaber algebra structure on HH

•(A). In general, a Gerstenhaber algebra
is just a graded Poisson algebra of degree −1. Another example is the exterior
algebra Λ•g of a Lie algebra g or, more generally, Λ•

RL, for a Lie–Rinehart algebra
(R,L).

The Lie bracket on HH
•(A) is easily defined on the bar resolution, but in general

it is quite difficult to compute from a minimal resolution of A. Nevertheless, the
graded Lie algebra structure of HH

•(A) can be quite interesting; in particular,

HH
•(A) is a Lie module for the Lie algebra HH

1(A) of outer derivations of A.

We will compute the Gerstenhaber bracket on HH
•(A) in case A = Ah is the

subalgebra of the Weyl algebra A1 = F{x, y}/〈[y, x] = 1〉 generated by x and
h(x)y, for an arbitrary polynomial h(x) over a field F of characteristic 0. In this

case, HH1(Ah) is related to the Virasoro Lie algebra and we will show that the Lie
module HH

•(Ah) is related to the intermediate series modules for the Virasoro Lie
algebra. This is the result of joint work with Andrea Solotar [4].

Some questions: A Gerstenhaber algebra is a Batalin–Vilkovisky algebra (BV
algebra, for short) if the Lie bracket coming from the Gerstenhaber algebra is
induced by a degree −1 operator ∆ with ∆2 = 0. Thus,

[a, b] = (−1)|a|∆(ab) − (−1)|a|∆(a)b − a∆(b) + a∆(1)b.

BV structures appeared in mathematical physics in connection with the quan-
tization of gauge theories but it is interesting in general to determine when a
Gerstenhaber algebra is a BV algebra.

(1) In particular, when is HH
•(A) a BV algebra?

(2) The former question has a positive answer in case A is a twisted Calabi–
Yau algebra with a semisimple Nakayama automorphism [3]. The algebras
Ah were shown in [4] to be twisted Calabi–Yau, although the Nakayama
automorphism is not in general semisimple. Are there BV structures in
HH

•(Ah) when the Nakayama automorphism of Ah is not semisimple?
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(3) One can look at Poisson analogues of the above setting via semiclassical
limit and try to answer similar questions (see also [1]).
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Solvability of symmetric Poisson algebras

Salvatore Siciliano

Let P be a Poisson algebra over a field F. We recall that P is said to satisfy
a nontrivial Poisson identity (or that P is a Poisson PI algebra) if there exists
a nonzero element in the free Poisson algebra of countable rank which vanishes
under any substitution in P (see e.g. [2]). A basic theory of Poisson PI algebras
was carried out by Farkas [2, 3], and further developments on this theory were next
considered by several authors. In particular, in [6], Mishchenko, Petrogradsky, and
Regev developed the theory of so called codimension growth in characteristic zero,
and proved that the tensor product of Poisson PI algebras is a Poisson PI algebra.

Now, let L be a Lie algebra over F and {Un| n ≥ 0} the canonical filtration of
its universal enveloping algebra U(L). Set U−1 = 0 and consider the symmetric
algebra S(L) = gr(U(L)) = ⊕∞

n=0Un/Un−1, which we identify with the polynomial
ring F[x1, x2, . . .], where x1, x2, . . . is an F-basis of L (cf [1, §2.3]). By linearity and
the Leibniz rule, the Lie bracket [·, ·] of L can be uniquely extended to a Poisson
bracket {·, ·} of S(L) so that this algebra becomes a Poisson algebra, called the
symmetric Poisson algebra of L. Moreover, when F has characteristic p > 0, the
Poisson bracket of S(L) naturally induces the structure of a Poisson algebra on
the factor algebra s(L) = S(L)/I, where I is the ideal generated by the elements
xp with x ∈ L. We will refer to s(L) as the truncated symmetric Poisson algebra
of L.

Poisson identities of symmetric Poisson algebras of Lie algebras were first studied
by Kostant [4], Shestakov [8], and Farkas [2, 3]. In particular, in [3] Farkas proved
that, in characteristic zero, S(L) satisfies a nontrivial Poisson identity if and only
if L contains an abelian subalgebra of finite codimension. Some years later, in [5],
Giambruno and Petrogradsky extended Farkas’ result to arbitrary characteristic
and, moreover, established when the truncated symmetric Poisson algebra of a
restricted Lie algebra satisfies a nontrivial multilinear Poisson identity.

More recently, in [7], Monteiro Alves and Petrogradsky investigated the Lie iden-
tities of S(L) and s(L). In particular, they determined necessary and sufficient
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conditions on L such that S(L) and s(L) are Lie nilpotent, studied the Lie nilpo-
tence class of s(L) and, in characteristic p 6= 2, established when S(L) and s(L)
are solvable. On the other hand, the harder problem of the solvability of S(L) and
s(L) in characteristic 2 remained unsettled and a related conjecture formulated.
Afterwards, in [11] a corrected version of that conjecture was proved, thereby
completing the classification. Further developments of these topics have been also
carried out in [9, 10].

The aim of this talk is to present an overview of the known results about solv-
able (truncated) symmetric Poisson algebras and their derived lengths. We first
recall some theorems about the Lie structure of ordinary and restricted enveloping
algebras, which originally motivated the present subject. Next, we summarize re-
sults on the existence of nontrivial Poisson identities in symmetric and truncated
symmetric Poisson algebras. Finally, we consider Lie nilpotence and solvability
of these Poisson algebras and discuss some results concerning the derived lengths
and the Lie nilpotence classes.

Some open questions on these topics are the following:

Problem 1. Let L be a Lie algebra over a field of characteristic p > 0 such that
s(L) is Lie nilpotent. It is shown in [7] that the Lie nilpotence class and the strong
Lie nilpotency class of s(L) are the same, provided p ≥ 5. Is this true also in
characteristics p = 2, 3?

Problem 2. Let L be a Lie algebra over a field of characteristic p > 2 such
that s(L) is solvable. Do the derived length and the strong derived length of s(L)
coincide?

Note that the derived lengths of a truncated symmetric Poisson algebra can be
actually different in characteristic 2 (see [9, Remark 4.4]).
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The Poisson spectrum of the symmetric algebra of the

Virasoro algebra

Susan J. Sierra

(joint work with Alexey Petukhov)

Let G be a connected algebraic group over C with Lie algebra g, and consider
the coadjoint action of G on g∗. This is a beautiful classical topic, with profound
connections to areas from geometric representation theory to combinatorics to
physics. Algebraic geometry tells us that coadjoint orbits in g∗ correspond to
G-invariant radical ideals in the symmetric algebra S(g).

As is well known, S(g) is a Poisson algebra under the Kostant-Kirillov bracket:

{f, g} =
∑

i,j

∂f

∂ei

∂f

∂ej
[ei, ej ]

where {ei} is a basis of g. A basic fact is that I is G-invariant if and only if I is
Poisson.

Thus to compute the closure of the coadjoint orbit of χ ∈ g∗, let mχ be the kernel
of the evaluation morphism

evχ : S(g) → C,

and let P (χ) be the Poisson core of mχ: the maximal Poisson ideal contained in
mχ. By definition, an ideal of the form P (χ) is called Poisson primitive; by a
slight abuse of notation, we refer to P (χ) as the Poisson core of χ. The closure of
the coadjoint orbit of χ is defined by P (χ):

(1) G · χ = V (P (χ)) := {ν ∈ g∗ | evν(P (χ)) = 0},
and so χ, ν ∈ g∗ are in the same G-orbit if and only if P (χ) = P (ν). In the case of
algebraic Lie algebras over C or R, coadjoint orbits are symplectic leaves for the
respective Poisson structure.

We investigate how this theory extends to the Witt algebra W = C[t, t−1]∂t of
algebraic vector fields on C×, and to its central extension the Virasoro algebra
Vir = C[t, t−1]∂t ⊕ Cz, with Lie bracket given by

[f∂t, g∂t] = (fg′ − f ′g)∂t + Res0(f ′g′′ − g′f ′′)z, z is central.

(We also consider some important Lie subalgebras of W .) These infinite-dimension-
al Lie algebras, of fundamental importance in representation theory and in physics,
have no adjoint group [3], but one can still study the Poisson cores of maximal
ideals, and more generally the Poisson ideal structure of S(W ) and S(Vir). Mo-
tivated by (1), we will say that functions χ, ν ∈ Vir∗ or in W ∗ are in the same
pseudo-orbit if P (χ) = P (ν). These (coadjoint) pseudo-orbits can be considered
as algebraic symplectic leaves in Vir∗ or W ∗.

Taking the discussion above as our guide, we focus on prime Poisson ideals and
Poisson primitive ideals of S(Vir) and S(W ). Important questions here, which for
brevity we ask here only for Vir, include:
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• Given χ ∈ Vir∗, can we compute the Poisson core P (χ) and the pseudo-
orbit of χ? When is P (χ) nontrivial?

• How can we understand prime Poisson ideals of S(Vir)? Can we parame-
terise them in a reasonable fashion, ideally in a way which gives us further
information about the ideal? How does one distinguish Poisson primitive
ideals from other prime Poisson ideals?

• It is known, see [4, Corollary 5.1], that S(Vir) satisfies the ascending chain
condition on prime Poisson ideals. The augmentation ideal of S(Vir), that
is, the ideal generated by Vir ⊂ S(Vir), is clearly a maximal Poisson ideal.
What are the others? Conversely, does any nontrivial prime Poisson ideal
have finite height?

• Do prime Poisson ideals induce any reasonable algebraic geometry on the
uncountable-dimensional vector space Vir∗?

We answer all of these questions, almost completely working out the structure of
the Poisson spectra of S(Vir) and S(W ).

Let us begin by discussing the idea of algebraic geometry on Vir∗. A priori,
this seems intractable as Vir∗ is an uncountable-dimensional affine space; little
interesting can be said about S(a) where a is a countable-dimensional abelian Lie
algebra. However, Vir and W are extremely noncommutative and so Poisson ideals
in their symmetric algebras are very large: in particular, by a result of Iyudu and
the second author [1, Theorem 1.3], if I is a nontrivial Poisson ideal of S(W )
(respectively, a non-centrally generated Poisson ideal of S(Vir)), then S(W )/I
(respectively, S(Vir)/I) has polynomial growth. This suggests that a Poisson
primitive ideal, and more generally a prime Poisson ideal, might correspond to a
finite-dimensional algebraic subvariety of Vir∗, which we could investigate using
tools from affine algebraic geometry. We will see that this is indeed the case.

From the discussion above, it is important to characterise which functions χ ∈ Vir∗

have nontrivial Poisson cores. Strikingly, we show that such χ must vanish on the
central element z. Further, the induced function χ ∈ W ∗ is given by evaluating
local behaviour on a proper (that is, finite) subscheme of C×. We have:

Theorem. Let χ ∈ Vir∗. The following are equivalent:

(1) The Poisson core of χ is nontrivial: that is, P (χ) % (z − χ(z)).
(2) χ(z) = 0 and the induced function χ ∈ W ∗ is a linear combination of

functions of the form

f∂t 7→ α0f(x) + . . . + αnf
(n)(x)

where x ∈ C× and α0, . . . , αn ∈ C.
(3) The isotropy subalgebra Virχ of χ has finite codimension in Vir.

We call functions χ ∈ Vir∗ satisfying the equivalent conditions of Theorem local
functions as by condition (2) they are defined by local data.

Motivated by condition (3) of Theorem , we investigate subalgebras of Vir of finite
codimension. We prove:
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Theorem. Let k ⊆ Vir be a subalgebra of finite codimension. Then there is f ∈
C[t, t−1] \ {0} so that k ⊇ Cz + fC[t, t−1]∂t. In particular, any finite codimension
subalgebra of Vir contains z.

As an immediate corollary of Theorem, we show:

Corollary. If 0 6= ζ ∈ C, then S(Vir)/(z − ζ) is Poisson simple: it has no
nontrivial Poisson ideals.

We then study the pseudo-orbits of local functions on Vir, W , and related Lie
algebras; we describe our results here for Vir only. If χ ∈ Vir∗ is local, then by
combining Theorem and [1, Theorem 1.3] S(Vir)/P (χ) has polynomial growth
and we thus expect the pseudo-orbit of χ to be finite-dimensional. We show that
pseudo-orbits of local functions in Vir∗ are in fact orbits of a finite-dimensional
solvable algebraic (Lie) group acting on an affine variety which maps injectively
to Vir∗, and we describe these orbits explicitly. This allows us to completely
determine the pseudo-orbit of an arbitrary local function in Vir∗ and thus also
determine the Poisson primitive ideals of S(Vir). We also classify maximal Poisson
ideals in S(Vir): they are the augmentation ideal, the ideals (z − ζ) for ζ ∈ C×,
and the defining ideals of all but one of the two-dimensional pseudo-orbits.

Through this analysis, we obtain a nice combinatorial description of pseudo-orbits
in W ∗: pseudo-orbits of local functions on W , and thus Poisson primitive ideals of
S(W ), correspond to a choice of a partition λ and a point in an open subvariety of
a finite-dimensional affine space Ak, where k can be calculated from λ. We further
expand this correspondence to obtain a parameterisation of all prime Poisson ideals
of S(W ) and S(Vir). We also study the related Lie algebra W≥−1 = C[t]∂t, and
prove that Poisson primitive and prime Poisson ideals of S(W≥−1) are induced by
restriction from S(W ).

Our understanding of prime Poisson ideals allows us to determine exactly which
prime Poisson ideals of S(Vir) obey the Poisson Dixmier-Moeglin equivalence,
which generalises the characterisation of primitive ideals in enveloping algebras of
finite-dimensional Lie algebras due to Dixmier and Moeglin. The central question
is when a Poisson primitive ideal of S(Vir) is Poisson locally closed: that is, locally
closed in the Zariski topology on Poisson primitive ideals. (If dim g < ∞ then a
prime Poisson ideal of S(g) is Poisson primitive if and only if it is Poisson locally
closed [2, Theorem 2].) We show that (z) is the only Poisson primitive ideal of
S(Vir) which is not Poisson locally closed. We further prove that S(W ) has no
nonzero prime Poisson ideals of finite height.
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Non-matrix polynomial identities on enveloping algebras

Hamid Usefi

(joint work with David Riley, Jeff Bergen)

A variety of associative algebras over a field F is called non-matrix if it does not
contain M2(F), the algebra of 2× 2 matrices over F. A polynomial identity (PI) is
called non-matrix if M2(F) does not satisfy this identity. Latyshev in his attempt
to solve the Specht problem proved that any non-matrix variety generated by a
finitely generated algebra over a field of characteristic zero is finitely based [9].
The complete solution of the Specht problem in the case of characteristic zero is
given by Kemer [7].

Although several counterexamples are found for the Specht problem in the positive
characteristic [1], the development in this area has lead to some interesting results.
Kemer has investigated the relation between PI-algebras and nil algebras. Amitsur
[2] had already proved that the Jacobson radical of a relatively-free algebra of
countable rank is nil. Restricting to non-matrix varieties, Kemer [6] proved that
the Jacobson radical of a relatively-free algebra of a non-matrix variety over a field
of positive characteristic is nil of bounded index. These varieties have been further
studied in [5, 6] and recently generalized for alternative and Jordan algebras in
[14].

Enveloping algebras satisfying polynomial identities were first considered by Laty-
shev [10] by proving that the universal enveloping algebra of a Lie algebra L over
a field of characteristic zero satisfies a PI if and only if L is abelian. Latyshev’s
result was extended to positive characteristic by Bahturin [4]. Passman [11] and
Petrogradsky [13] considered the analogous problem for restricted Lie algebras.

Let A = A0 ⊕ A1 be a vector space decomposition of a non-associative algebra
over a field F of characteristic not 2. We say that this is a Z2-grading of A if
AiAj ⊆ Ai+j , for every i, j ∈ Z2 with the understanding that the addition i + j is
mod 2. The components A0 and A1 are called even and odd parts of A, respectively.
Note that A0 is a subalgebra of A. One can associate a Lie super-bracket to A by
defining (x, y) = xy − (−1)ijyx for every x ∈ Ai and y ∈ Aj . If A is associative,
then for any x ∈ Ai, y ∈ Aj and z ∈ A the following identities hold:

(1) (x, y) = −(−1)ij(y, x),
(2) (x, (y, z)) = ((x, y), z) + (−1)ij(y, (x, z)).

The above identities are the defining relations of Lie superalgebras. Furthermore,
A can be viewed as a Lie algebra by the usual Lie bracket [u, v] = uv − vu. The
bracket of a Lie superalgebra L = L0 ⊕ L1 is denoted by ( , ). We denote the
enveloping algebra of L by U(L). Lie superalgebras whose enveloping algebras
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satisfy a PI were characterized by Bahturin [3] and Petrogradsky [12]. In this talk
we characterize Lie superalgebras whose enveloping algebras satisfy a non-matrix
PI. Our first main result is as follows.

Theorem. Let L = L0 ⊕ L1 be a Lie superalgebra over a field of characteristic
p > 2. The following conditions are equivalent:

(1) U(L) satisfies a non-matrix PI.
(2) U(L) satisfies a PI, L0 is abelian, and there exists a subspace M of L1 of

codimension at most 1 such that (L0, L1) ⊆ M and (M,L1) = 0.
(3) The commutator ideal of U(L) is nil of bounded index.
(4) U(L) satisfies a PI of the form ([x, y]z)p

m

= 0, for some m.

The equivalence of (1) and (4) is well known to hold for all algebras: it follows
easily from standard PI-theory. The deeper fact that (1) and (3) are equivalent
follows from the structure theory of PI algebras. We emphasize that the term Lie
solvable is used with respect to the usual Lie bracket [ , ].

Theorem Let L = L0 ⊕ L1 be a Lie superalgebra over a field of characteristic
not 2. Then U(L) is Lie solvable if and only if (L,L) is finite-dimensional, L0 is
abelian, and there exists a subspace M of L1 of codimension at most 1 such that
(L0, L1) ⊆ M and (M,L1) = 0.

Kemer [8] proved that an algebra R over a field of characteristic zero satisfies a
non-matrix PI if and only if R is Lie solvable. The following is now easily deduced
from Theorem.

Corollary. Let L = L0 ⊕ L1 be a Lie superalgebra over a field of characteristic
zero. The following conditions are equivalent:

(1) U(L) satisfies a non-matrix PI.
(2) U(L) is Lie solvable.
(3) (L,L) is finite-dimensional, L0 is abelian, and there exists a subspace M

of L1 of codimension at most 1 such that (L0, L1) ⊆ M and (M,L1) = 0.

The adjoint representation of L is given by ad x : L → L, ad x(y) = (y, x), for all
x, y ∈ L. The notion of restricted Lie superalgebras can be easily formulated as
follows.

Definition. A Lie superalgebra L = L0⊕L1 over a field F of characteristic p ≥ 3
is called restricted, if there is a pth power map L0 → L0, denoted as [p], satisfying

(a) (αx)
[p]

= αpx[p], for all x ∈ L0 and α ∈ F,
(b) (y, x[p]) = (y,p x), for all x ∈ L0 and y ∈ L,

(c) (x + y)
[p]

= x[p] + y[p] +
∑p−1
i=1 si(x, y), for all x, y ∈ L0 where isi is the

coefficient of λi−1 in (ad (λx + y))p−1(x).

In short, a restricted Lie superalgebra is a Lie superalgebra whose even subalgebra
is a restricted Lie algebra and the odd part is a restricted module by the adjoint
action of the even subalgebra. For example, every Z2-graded associative algebra
inherits a restricted Lie superalgebra structure.
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Let L be a restricted Lie superalgebra over a field F of characteristic p ≥ 3.
We denote the enveloping algebra of L by u(L). Restricted Lie superalgebras
whose enveloping algebras satisfy a polynomial identity have been characterized
by Petrogradsky [12].

Theorem. Let L = L0 ⊕ L1 be a restricted Lie superalgebra over a perfect field
and denote by M the subspace spanned by all y ∈ L1 such that (y, y) is p-nilpotent.
The following statements are equivalent:

(1) u(L) satisfies a non-matrix PI.
(2) The commutator ideal of u(L) is nil of bounded index.
(3) u(L) satisfies a PI, (L0, L0) is p-nilpotent, dimL1/M ≤ 1, (M,L1) is

p-nilpotent, and (L1, L0) ⊆ M .

We show that (3) implies (2) over any field. However, given that u(L) satisfies
a non-matrix PI, the restriction on the field is necessary to be able to show that
dimL1/M ≤ 1. We show that over a non-perfect field there exists a restricted Lie
superalgebra L = L0⊕L1 such that dimL1 = 2, u(L) is Lie solvable and yet (y, y)
is not p-nilpotent, for every y ∈ L1. This is in complete contrast with Theorem .
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Symmetrisation and the Feigin–Frenkel centre

Oksana Yakimova

Let g be a complex reductive Lie algebra. The Feigin–Frenkel centre z(ĝ) ⊂
U(t−1g[t−1]) is a remarkable commutative subalgebra. Its structure is described
by a theorem of Feigin and Frenkel (1992), if ℓ = rk g and τ = −∂t, then
z(ĝ) = C[τk(Si) | k > 0, 1 6 i 6 ℓ], where the generators τk(Si) are algebraically
independent.

The classical counterpart of z(ĝ) is the Poisson-commutative subalgebra of g[t]-
invariants in S(g[t, t−1])/(g[t]) ∼= S(t−1g[t−1]), which is a polynomial ring with
infinitely many generators according to a direct generalisation of a Räıs–Tauvel
theorem (1992). Unlike the finite-dimensional case, no natural isomorphism be-
tween S(t−1g[t−1])g[t] and z(ĝ) is known. Explicit formulas for the elements Si
appeared first in type A [1, 2] and were extended to all classical types in [3]. In
[4], it is shown that for all classical Lie algebras, the symmetrisation map ̟ can
produce generators of z(ĝ). Note that ̟ is a homomorphism of g[t−1]-modules
and it behaves well with respect to taking various limits.

One of the tools in [4] is a certain map m: Sk(g) → Λ2g⊗ Sk−3(g). Let F [−1] ∈
Sk(gt−1) be obtained from F ∈ Sk(g)g by the canonical isomorphism gt−1 ∼= g.
Then ̟(F [−1]) ∈ z(ĝ) if and only if m(F ) = 0. More generally, if H ∈ Sk(g)g is
such that

m
d(H) = m(md−1(H)) ∈ S(g) for all 1 ≤ d < k/2,

then there is a way to produce an element of z(ĝ) corresponding to H .

For each classical g, there is a generating set {Hi | 1 6 i 6 ℓ} ⊂ S(g)g such that
m(Hk) ∈ CHj with j < k for each k. In types A and C, we are using the coefficients
∆k of the characteristic polynomial, for g = son, we work with coefficients Φ2k of
det(In − q(Fij))

−1.

In type An−1, m(∆k) = (n−k+2)(n−k+1)
k(k−1) ∆k−2; in type Cn, we have

m(∆2k) =
(2n− 2k + 3)(2n− 2k + 2)

2k(2k − 1)
∆2k−2;

and finally for g = son, we have m(Φ2k) = (n+2k−3)(n+2k−2)
2k(2k−1) Φ2k−2. This leads to

the following sets of Segal–Sugawara vectors {Si | 1 ≤ i ≤ ℓ} [4]:

{Sk−1 = ̟(∆k[−1]) +
∑

1≤r<(k−1)/2

(
n− k + 2r

2r

)
̟(τ2r∆k−2r[−1])·1 | 2 ≤ k ≤ n}

in type An−1;

{Sk = ̟(∆2k[−1]) +
∑

1≤r<k

(
2n−2k+2r+1

2r

)
̟(τ2r∆2k−2r[−1])·1 | 1 ≤ k ≤ n}

in type Cn;
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{Sk = ̟(Φ2k[−1]) +
∑

1≤r<k

(
n + 2k − 2

2r

)
̟(τ2rΦ2k−2r [−1])·1 | 1 ≤ k < ℓ}

for son with n = 2ℓ− 1 with the addition of Sℓ = ̟(Pf[−1]) for son with n = 2ℓ.

The advantage of our method is that it reduces questions about elements of z(ĝ) to
questions on the structure of S(g)g in a type-free way. For example, it is possible
to deal with type G2 by hand [4]. It is quite probable, that other exceptional
types can be handled on a computer. Conjecturally, each exceptional Lie algebra
possesses a set {Hk | 1 ≤ k ≤ ℓ} of generating symmetric invariants such that for
each k there is i with m(Hk) ∈ CHi.
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Contact brackets and other structures on the tensor product

Pasha Zusmanovich

The purpose of this report is once more to call attention to an elementary and,
in some cases, very effective technique of computing various kinds of structures
on tensor products. Such problems often can be reduced to the simultaneous
evaluation of kernels of several tensor product maps, i.e., maps of the form S⊗T ,
where S and T are linear operators on the respective spaces of linear maps. Using
the fact that

(1) Ker(S ⊗ T ) = Ker(S) ⊗ ∗ + ∗ ⊗Ker(S),

the question reduces to evaluation of the intersection of several linear spaces having
the form as on the right-hand side of (1), for various operators S and T . The
intersection of two such spaces satisfies the distributivity, and so can be handled
effectively, due to the following elementary linear algebraic lemma:

Lemma ([4, Lemma 1.1]). Let U1, U2 be subspaces of a vector space U , and
V1, V2 be subspaces of a vector space V . Then

(U1⊗V +U⊗V1)∩(U2⊗V +U⊗V2) = (U1∩U2)⊗V +U1⊗V2+U2⊗V1+U⊗(V1∩V2).

This technique was used for the first time in [4] to derive some formulas for the
low degree cohomology of current Lie algebras, i.e., Lie algebras of the form L⊗A,
where L is a Lie algebra, and A is an associative commutative algebra. The paper
[5] contains further results about such cohomology, as well as about Poisson and
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Hom-Lie structures on current and related Lie algebras. The last our result in
this direction is in [6], which answers a recent question from [2] about extension
of contact bracket on the tensor product from the bracket on the factors.

Recall that the contact bracket on a commutative associative algebra A with unit
is a bilinear map [ · , · ] : A×A → A such that

[ab, c] = [a, c]b + [b, c]a + [c, 1]ab

for any a, b, c ∈ A. Contact brackets are an obvious generalization of Poisson
brackets, the latter being contact brackets satisfying [A, 1] = 0. It was asked in [2]
whether, given contact brackets on two algebras A and B, is it always possible to
extend them to the tensor product A⊗B? In [6], using some general formulas for
the space of contact brackets on some particular classes of algebras, a procedure
was devised for constructing examples showing that such extension is not always
possible.

This linear algebraic method is sometimes very effective, but its applicability is
severely limited by the fact that no statement similar to Lemma is true for inter-
section of three or more spaces. The proper contexts of Lemma might be criteria
for distributivity of a set of subspaces of a vector space (for an exposition, see, for
example, [3, Chap. 1, §7]) and, more speculatively, the “four subspaces problem”
of Gelfand–Ponomarev, [1].
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Introduction by the Organizers

The mini-workshop Felix Klein’s Foreign Students: Opening Up the Way for Trans-
national Mathematics, organised by Danuta Ciesielska (Warsaw) and Renate To-
bies (Jena), aimed to investigate (extending existing analyses of the topic) the
influence of Felix Klein on the development of mathematics (especially number
theory, algebra, geometry, analysis, and applications of mathematics in scientific
and technical fields as well as in mathematics education) in countries other than
Germany.
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The idea for this international collaborative project came from Danuta Ciesiel-
ska, who for several years has been researching (together with two Polish col-
leagues) how Polish mathematicians studied in Göttingen with Klein and Hilbert,
resulting in a recently published Polish monograph [1].

The mini-workshop Felix Klein’s Foreign Students: Opening Up the Way for
Transnational Mathematics joined together 17 researchers from different coun-
tries, familiar not only with their own mathematical traditions, but also with the
development of national identities as well as political and cultural histories of the
various regions.

Previous research showed that Klein did not have to “court” students from
abroad throughout his career. Rather, they were sent to him from Scandinavian
countries, from Italy, France, Great Britain, America, the Netherlands, Russia,
Switzerland, Austria-Hungary, Greece, etc. We now have a good overview of
Klein’s first international students and we also have a good analysis of all the
women who studied under Klein (from 1893).

The mini-workshop aimed to examine the causes of Klein’s international success.
Before the workshop, we had arrived at the following hypotheses, partially based
on ([3]):

(1) Klein deliberately aimed to found a mathematical school as early as 1872.
In a letter to Gaston Darboux, Klein spoke of recreating a “school of geo-
metrical production” as he had come to know it under Alfred Clebsch, who
had just died. This was later to be considered as “a style of mathematical
life that promised colossal successes for the future” ([2]).

(2) This goal required that Klein readily share his own ideas and seek to
advance them through cooperative work, but now, unlike Clebsch, on an
international level – increasingly incorporating new methods into his prac-
tice.

(3) Klein’s early efforts to become acquainted with various mathematical
schools at home and abroad led to good personal contacts with mathe-
maticians of numerous countries, who recommended their own students to
Klein. Even when Klein was still in Erlangen in the early 1870s, Sophus
Lie recommended Scandinavian students to go to Klein because they would
be encouraged there (which would not happen if they went to Berlin).

In order to test these hypotheses, it was necessary to look deeper into the sources,
especially into the protocol books containing handwritten records of the talks given
at Klein’s seminars from 1872 to 1912. These 29 volumes are available online:

• https://www.uni-math.gwdg.de/aufzeichnungen/klein-scans/klein/
• https://page.mi.fu-berlin.de/moritz/klein/

In the case of (b) an attempt has been made to identify the complete names of the
presenters. There are numerous errors, however, especially with foreign persons.
Therefore, we also want to correct the sources with the help of our experts in the
future. In addition to Klein himself, the speakers in the seminars were his students
or distinguished visitors, many of them foreigners.
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During the workshop the state of current knowledge about students with dif-
ferent languages, ethnicities and traditions at Klein’s various career stations, es-
pecially in Göttingen, were discussed. Participants investigated the similarities
and differences between them, while trying to identify all foreign participants in
Klein’s seminars and analyzing their contributions. Because of that, it was possible
to achieve a better understanding of the socio-geographic profiles of the students
coming to Klein, their own professional development and their subsequent impact
on mathematics and mathematical life in their homelands.

The work on the records of the foreign participants in Klein’s seminars allowed
for addressing more detailed questions about these participants, including the
following:

• Why did they want to work with Klein?
• What was their mathematical preparation before they arrived?
• What topics did Klein assign to them for their own seminar presentation?
• How did Klein further encourage them to work on these or related topics?
• Did this encouragement lead them to creating results of their own in the

field?
• Were their results published, e.g. in the Mathematische Annalen (which

was edited by Klein)?
• Were they later involved in other projects of Klein (e.g. Encyklopädie der
mathematischen Wissenschaften mit Einschluss ihrer Anwendungen)?

The mini-workshop also addressed some questions of a general character, in
particular these:

• To what extent did Klein influence (directly or indirectly) persons who
later achieved outstanding results in individual mathematical fields?

• In what ways did former students of Klein impact the organisation of
mathematical life in their homelands (university education, publishing,
mathematical societies)?
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Abstracts

Founding a School for Mathematical Production – processed and

open issues

Renate Tobies

The starting point of the presentation was Klein’s network of people. The breadth
of the network is explained above all by Klein’s vision of creating a school of
mathematical production. Connected to this was the empowerment and the urge
to lead young talents to their own creative results. The prominent Berlin math-
ematician Leopold Kronecker believed that mathematicians did not need to form
a (scientific) school and that collaborative work would hinder progress in the field.
Klein, in contrast, aspired to reproduce Alfred Clebsch’s model and thus to create
“a school of geometric production”. Klein followed Clebsch’s program of “uniting
people from different fields of work”. He created connections between different
areas of mathematics (geometry, algebra, function theory, number theory), and
made connections between mathematics and its neighboring disciplines. His gen-
eral way of working was based on his approach to mathematical research, which
required cooperation.

Klein tested out as many colleagues and students as possible for their potential
as collaborators, among them foreign colleagues and students. This presentation
provided an overview of Klein’s foreign students, and named their contexts of work
as well as interesting open questions. In order to conduct a detailed and thorough
analysis of Klein’s impact on later developments, this introductory lecture also
aimed to explain basic sources, including errors contained therein (online available
audience lists of Klein’s lecture courses, participants in the research seminars,
the Appendix to Klein’s Collected Mathematical Papers, vol. 3; the Poggendorff
Bio-Bibliographical Hand Dictionary, etc.).

We also gave an overview about when and why foreign students studied with
Klein. The success of these studies was discussed by means of examples. On the
one hand, consideration was given to the insights gained with the revised Klein
biography ([1]), and the recently published book on Klein and Georg Pick ([2]).
On the other hand, we also looked into further seminars and minutes of Klein’s
seminars in order to classify some foreign students about whom we still know too
little (students from Hungary, Russia, etc.).

The list of more than 300 people (including two female mathematicians from
St. Petersburg) who donated money for the portrait of Felix Klein painted by
Max Liebermann was shown. This reveals connections between Klein and other
mathematicians as far away as India, Australia and Japan. Some of the examples
were used to show what other sources can be consulted to explain the respective
person and their mathematical results.

Finally, we highlighted the special role of Klein’s interdisciplinary research sem-
inars, which he was able to establish in Göttingen. Klein succeeded in getting
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Hilbert appointed on 1 April 1895 and immediately involved him in the lead-
ership of his own seminar, in which the focus was on approximation analysis.
In the following semesters, Klein held further joint seminars with Hilbert on
number theory, function theory, and mechanics. With the appointment of other
younger colleagues, also for applied mathematics, physics, astronomy, statistics,
Klein also involved them in the management of his seminars. Examples show how
far-reaching Klein’s international impact was in these areas (some lesser-known
examples: William F. Baker (2015) developed a design tool for plane trusses using
an extended Airy stress function based on Klein and Wieghardt (1905); Timo-
shenko’s beam theory; Kármán’s vortex street; the Painlevé-Klein problem in the
theory of friction). The name Technomathematik is just over twenty years old;
it was created in Kaiserslautern in 1979 by Helmut Neunzert (*1936) for a new
study program intended to merge mathematics and technology. Neunzert recently
confirmed that he was inspired to do so by Felix Klein’s combination of pure and
applied mathematics.
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Felix Klein vs. Henri Poincaré, 1881–82: On the Birth of the Theory

of Automorphic Functions

David E. Rowe

Between June 1881 and September 1882 Klein und Poincaré exchanged letters
that led to their competition to find and prove general uniformization theorems
in complex analysis. These letters were first published in 1923 by Mittag Leffler
in Volume 39 of Acta Mathematica (see [7], pp. 111–133). In that same year,
Klein also published them with commentary in [5], pp. 577–621; see further [6],
pp. 334–381. As a famous topic in the careers of both men, one can find many
discussions about it, not only in the standard biographies [2] and [9], but also in
more technical historical studies such as [8] and [1]. The present account mainly
aims to add some further contextualization by drawing on the four letters Brunel
sent to Poincaré during June and July 1881 when he was studying under Klein in
Leipzig.

Georges Brunel (1856–1900) entered the École normale in 1877. After gradua-
tion in 1880, he spent the academic year 1880–81 in Leipzig working under Felix
Klein. In his first letter to Poincaré, Brunel introduced himself as a “comrade”,
i.e. fellow normalien of Paul Appell and Émile Picard, though both were older
than he. In 1884 Brunel obtained the chair for pure mathematics in Bordeaux.
His predecessor was Jules Hoüel, a leading authority on non-Euclidean geometry,
having in 1867 translated works by Lobachevsky and Bolyai.
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Brunel had already spent a good deal of time in Leipzig before he wrote to
Poincaré, and this stay abroad had not been easy for him. Still, he felt a deep
urge to serve his country, while behaving properly as a guest in a foreign land. As
he explained to Poincaré, he hoped to learn what German mathematicians had
to teach the French. This view was promoted by Charles Hermite, who urged
his pupils to follow the new currents of research pursued on the other side of the
Rhine.

Klein’s seminar during the winter semester 1880/81 dealt with various topics in
geometry and complex function theory. Adolf Hurwitz and Walther Dyck, two of
his most important German students, both attended. Along with Brunel, others
came from foreign countries: Giuseppe Veronese, then an assistant under Luigi
Cremona in Rome, and Washington Irving Stringham, a student of J.J. Sylvester
at Johns Hopkins University. Shortly before Christmas 1880, Brunel spoke about
Riemann’s approach to the genus of surfaces and its role in algebraic curve theory.
Klein assigned him this topic as well as some relevant literature with which to
prepare his talk.

In January 1881, Brunel spoke for the second time on a related topic: Rie-
mann’s theory of Abelian functions and Enrico Betti’s generalization to higher
dimensions. Brunel also discussed the pioneering topological studies undertaken
by the Göttingen physicist and mathematician Johann Benedict Listing. This re-
flects Klein’s longstanding fascination with this older tradition. In fact, Betti and
Riemann first met in Göttingen, though their friendship grew far closer during
Riemann’s final years when he spent much of his time in Pisa and elsewhere in
northern Italy.

During the summer semester of 1881, Klein’s lectures moved deeply into Rie-
mann’s theory of functions of a single complex variable. Nearly all the talks in his
seminar dealt with topics closely tied to this course. The one striking exception was
Brunel’s presentation of Cantor’s new theory of point sets. This included a proof
that the algebraic numbers constitute a countable subset within the uncountable
infinity of real numbers. Besides works by Cantor, Brunel also discussed papers by
several other German authors, including J. Lüroth, E. Netto, and E Jürgens. He
also treated Liouville’s classical method for constructing transcendental numbers
which, following Cantor’s theorem, form an uncountably infinite set. This was thus
a second new field of research that had not yet made inroads into France, showing
that Brunel was well prepared to act as an early envoy for recent mathematics
in Germany. To a certain extent, he actually took up this role. On returning to
France, Brunel published a review of Klein’s booklet Ueber Riemanns Theorie der
Algebraischen Functionen und ihrer Integrale (republished in [5], pp. 479–573).

Already in his second letter to Poincaré, written on 19 June 1881, Klein in-
formed him that Brunel had been studying in Leipzig. He advised him further
that Brunel would be able to give Poincaré details about Klein’s research pro-
gram. In his seminar, Klein vented his anger over the fact that Poincaré had
ignored the published literature:
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. . . [Klein] complained that the “young French” didn’t know what
had been published in Germany; he said that in France one proba-
bly didn’t know that the Mathematische Annalen existed (to which
I [Brunel] could only have replied that, in Berlin itself, this Journal
was considered to be problematic), that one didn’t read Crelle’s
Journal (where did you read Fuchs’s work?), etc., etc.

Klein was especially angry that Poincaré had honored Lazarus Fuchs, whose work
had helped inspire his own:

I protest against the name Fuchsian functions. The fundamental
idea belongs to Riemann, and the credit for applying Riemann’s
idea belongs to Schwarz. . . . Later, I myself worked in this direc-
tion and . . . I presented some results which are the basis of Mr.
Poincaré’s work. As for Mr. Fuchs, who once wanted to deal with
similar questions, he only succeeded in this: in showing us that he
understood absolutely nothing about them.

In March 1882, after Klein published a note in Mathematische Annalen rejecting
the names Poincaré had introduced, Mittag Leffler wrote him: “But certainly Mr.
Klein is right in saying you are wrong to call your functions Fuchsian and Kleinian
functions. They must be named Poincaré functions. It’s the only name that’s fair
and reasonable.”
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[2] J. Gray, Henri Poincaré: A Scientific Biography. Princeton: Princeton University Press,
2013.

[3] F. Klein, Ueber die sogenannte Nicht-euklidische Geometrie. Nachrichten der Königlichen
Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 1871:
419–433.
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Mathematicians Connected with the Czech Lands as Klein’s Students

and Collaborators

Martina Bečvářová

From the second half of the 19th century, the most talented and outstanding Ger-
man and Czech mathematicians from the University in Prague, later from the
German University in Prague or German Technical University in Prague went
abroad thanks to government scholarships or other funds. Czech mathematicians
travelled mainly to Italy, France or Germany because of many political and cul-
tural reasons, German mathematicians travelled mainly to Germany. Both of
them, they studied in the most prestigious mathematical centres of the period,
at Berlin, Göttingen, Hamburg, Leipzig, Munich, Paris, Strasbourg, Milano, and
Rome.

What were their main goals and professional interests to travel abroad? They
tried to expand the horizons of their mathematical knowledge and establish con-
tacts with the best experts from the famous European mathematical centres. They
were interested in new, modern and promising mathematical topics that were miss-
ing or not given enough attention at the University in Prague. They wanted to
be more involved in the latest mathematical trends and methods and to get in
touch with the newest mathematical ideas. They wanted to publish their first sci-
entific works in world-renowned and respected journals and their first monographs
in internationally known publishing houses. They aspired to obtain doctorates
at leading European universities and, after returning home, to achieve a better
career, i.e. to habilitate and later become full professors at schools in their home-
land. They also wanted to recognize the most advanced education methods and
get them to universities and polytechnics in the Czech lands.

What were their typical activities during their study stay abroad? This de-
pended on at what stage in their career they got the opportunity to study abroad.
Regular students visited some special lectures or seminars. Graduates of basic
studies participated in more advanced seminars as passive visitors or active lec-
turers. They prepared their dissertations and broadened their horizons for the
doctoral process. Both used libraries where new monographs, journals or the-
sis were. They wrote their first articles and discussed their topics, ideas or first
scientific results. They participated in the life of mathematical communities (pro-
fessional as well as social) and it was very important part of their stays. Many
of them became later a member of the Deutsche Mathematiker-Vereinigung and
promoted German mathematics and culture.

Based on archival sources deposited in the Czech Republic, Germany and Italy,
we discovered only 12 mathematicians connected with the Czech lands who studied
or worked under the influence of Felix Klein (1849–1925) at the Polytechnic in
Munich in the 1870s, at the University in Leipzig in the 1880s and at the University
in Göttingen in the early 20th century as his regular students, or prepared their
doctoral thesis, or passed their doctoral procedures and took active participation
in his special mathematical seminars, published their first mathematical results
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thanks to his helps or inspirations or collaborated with him during all their lives
as good mathematicians and personal friends.

Only one of them was a Czech mathematician [Ludv́ık Kraus (1857–1884)],
the others were German mathematicians [Anton Puchta (1851–1903), Karl Bobek
(1855–1899), Seligmann Kantor (1857–1903), Georg Alexander Pick (1859–1942),
Wilhelm Weiss (1859–1904), Emil Waelsch (1863–1927), Joseph Grünwald (1876–
1911), Georg Hamel (1877–1954), Ernst Fanta (1878–1939), Lothar Schrutka (1881–
1945) and Paul Georg Funk (1886–1969)]. Nine of them connected a greater or
lesser part of their lives, pedagogical or professional activities with Prague uni-
versities (the Czech University, the German University, the German Technical
University; Puchta, Kantor, Kraus, Bobek, Pick, Waelsch, Weiss, Grünwald and
Funk). Four of them connected part of their lives with the German Technical Uni-
versity in Brno (Waelsch, Hamel, Fanta and Schrutka). Five of them went abroad
after a shorter or longer career in the Czech lands (Puchta, Hamel, Fanta, Schrutka
and Funk), one completely resigned from his academic career after a short period
of his pedagogical activities (Kantor). For detailed information on their personal
life, academic career, teaching and other activities see [1, 2, 3].

Three of them were for one academic year Klein’s regular students (Hamel,
Schrutka and Funk). Five of them started their doctoral procedure with Klein’s
help or inspirations at the University in Prague, Leipzig or Erlangen (Puchta,
Kantor, Bobek, Waelsch and Weiss). Only Kantor was unsuccessful, and that
for formal and not for professional reasons. Three of them completed a study
stay with Klein before starting their regular habilitation procedures at their Alma
Mater in Prague or Vienna (Kraus, Grünwald and Fanta). Only one of them after
a successful habilitation at the German University in Prague completed a study
stay at Klein as his equal colleague (Pick).

Especially important moments for the professional growth of young mathemati-
cians from the Czech lands were their participation in Klein’s special mathematical
seminars, where he himself, his guests, doctoral students or the best university stu-
dents presented the latest results of their research or reported on newly published
articles. The essential source on the history of Klein’s seminars are the so-called
Sämtliche Protokolle 1872–1912, i.e. Klein’s seminar protocol-books which are
online available [6]. Twenty-nine books provide interesting information on Klein’s
seminars from the summer semester 1872 until the summer semester 1912. The
names of the lecturers, the titles and abstracts of the lectures written by the lec-
turers themselves (1 or more pages) and the lists of participants can be found
there. Thanks to these records, we know that ten mathematicians connected with
the Czech lands lectured at Klein’s seminars from 1876 until 1912, one took part
in the seminars without any lecture (Kantor). Only Schrutka apparently did not
participate in Klein’s seminars. Our participants presented 30 lectures in the Ger-
man language. Their topics were analysis (10), geometry (8), algebra and theory
of numbers (6), mechanics (3), instruments (2) and other (1).
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Name Place Time Nr. Topic
Puchta Anton Munich WS 1876/1877 – 9 Geo, Al, An

SS 1877/1878
Kraus Ludv́ık Munich WS 1878/1879 – 7 Geo, Al, An

WS 1879/1880
Bobek Karl Leipzig WS 1881/1882 – 2 An

SS 1881/1882
Pick Georg Alexandr Leipzig WS 1883/1884 – 5 An

SS 1883/1884
Waelsch Emil Leipzig SS 1884/1885 1 Al, Geo
Weiss Wilhelm Leipzig SS 1884/1885 1 Geo
Grünwald Josef Göttingen WS 1899/1900 1 Mech
Hamel Georg Göttingen SS 1899/1900 – 2 Instr, Mech

WS 1900/1901
Fanta Ernst Göttingen WS 1901/1902 1 Instr, Mech
Funk Georg Paul Göttingen WS 1911/1912 1 An

Geo – geometry, Al – algebra, An – analysis, Mech – mechanics,

Instr – instruments

The mathematicians from the Czech lands as others wrote abstracts of their lec-
tures (usually from 1 to 5 pages in 1870s, from 2 to 15 pages in 1880s, from 4 to 23
pages later). Pick’s abstracts were long, perfect, inspiring and beautifully written
with full references. Hamel’s abstracts were the same, with interesting pictures,
but almost unreadable. For more information on the seminars, see [4, 6].

Mathematicians from the Czech lands thanks to Klein’s help published some of
their results in the journal Mathematische Annalen which covered a wide spectrum
of mathematics and was published from 1869 until 1919 by Teubner (in Leipzig),
since 1920 by Springer (in Berlin). Klein was its redactor from 1876 until 1924
and influenced its content and focus. Six German mathematicians from the Czech
lands published their first articles in this journal with Klein’s support; they were
devoted to number mathematical branches. The articles are online available [7].

Name Nr. Time Notes
Kantor Seligmann 3 1879–1882 geometry, configurations
Bobek Karl 2 1884,1887 elliptic functions,

geometry of curves
Pick Georg Alexandr 16 1883–1915 transformations,

algebraic geometry, number theory,
special functions, functional spaces

Weiss Wilhelm 1 1887 geometry
Hamel Georg 10 1903–1935 special functions, geometry,

ordinary differential equations
Schrutka Lothar 2 1912, 1941 number theory
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It should be emphasized that Klein had a significant influence on Pick, who
brought modern mathematics at the German University in Prague and, thanks to
his almost half-century-long pedagogical work at that school, raised a new gener-
ation of Prague German mathematicians (as for example K. Löwner, H. Löwig,
A. Winternitz, W. Fröhlich, O. Varga). For more information, see [1, 4, 5]. Pick’s,
Hamel’s, Kantor’s and Funk’s results are widely known, contemporary recognized
and still cited. The other mathematicians who studied with Klein had only a local
influence in the Czech lands (teaching, creating textbooks, training technicians,
etc.) for many reasons (political, religious, economic, health, personal etc.).

Mathematicians from the Czech lands were in corresponding touch with Ger-
man mathematicians, i.e. with Klein too. Their correspondence is a great resource
for better understanding the depth of their cooperation, Klein’s professional in-
fluences, personal assistances and helps. The correspondence of mathematicians
from the Czech lands has been partly preserved in Germany. Unfortunately, we do
not know anything about the correspondence of mathematicians from Germany.
For many historical reasons, it was not preserved in the Czech archives after the
World War II.

Sender Addressee Nr. Time Notes
Puchta A. Klein F. 7 1878–1886 a
Puchta A. Cantor M. 4 1882–1883 b
Kraus L. Klein F. 1 1879 a
Pick G. A. Klein F. 131 1884–1898 a
Pick G. A. Hilbert D. 2 1885, 1900 c
Pick G. A. Hurwitz A. 1 1893 d
Pick G. A. Schwarzschild K. 1 1914 e
Pick G. A. Gordan P. 1 1892 f
Pick G. A. von Kraus C. 12 1908–1913 e
Kantor S. Klein F. 1 1884 a
Bobek K. Klein F. 2 1880, 1884 a
Waelsch E. Klein F. 3 1889–1890 a
Hamel G. Klein F. 3 1908–1922 a
Küpper K. Klein F. 3 1889 a

a – Nachlass Felix Klein, Göttingen, b – Nachlass Moritz Cantor, Heidelberg,

c – Nachlass David Hilbert, Göttingen, d – Mathematiker-Archiv, Göttingen,

e – Nachlass Karl Schwarzschild, Göttingen, f – Universitätsbibliothek,

Erlangen-Nürnberg – Bayerische Staatsbibliothek, Munich.
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at the German University in Prague from 1882 until 1945]. Praha: Nakladatelstv́ı Karolinum,
2016.
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Mellen Woodman Haskell in Göttingen and Leipzig

Henning Heller

Mellen Woodman Haskell (1863–1948) was among the first American students of
Felix Klein. The Harvard graduate and later professor at Berkeley stayed in Leipzig
and Göttingen from October 1885 until June 1889. Unfortunately, no first-hand
sources remain from Haskell’s formative years. Using civil, school, and university
archives, this presentation sheds some light on Haskell’s family background and
education, his study years in Leipzig and Göttingen, his participation at Klein’s
seminars, and the circumstances of his PhD examination.

1. Family background and early life

Haskell was born on 17 March 1863 in Salem, Massachusetts, as the first child of
the clergyman Augustus Mellen Haskell (1832–1893) from the village of Poland,
Maine, and Catherine Woodman (1827–1866) from the neighboring town of New
Gloucester [1]. The young parents lived in Salem from the year of their marriage,
1861, until the birth of their second son, Augustus Storey Haskell (1866–1949) [2].
In that year, the family moved to Manchester, New Hampshire, where Augustus
found a new post, but tragically, Catherine died only months later of tuberculosis.
Augustus remarried one year later with Anna Johnson (1826–1909) from Salem.
In 1870, the family settled to West Roxbury, today a suburb of Boston, which
remained their long-lasting home. In 1873, Mellen entered the Roxbury Latin
School at the age of 10, three years younger than his peers. He even skipped
a year and was admitted to Harvard College at the incredibly young age of 15
years, but decided to repeat his last year at school [3]. Haskell entered Harvard
College in 1879 and studied mathematics at Harvard University from 1883 to 1885.
He was awarded the Parker Fellowship to pursue a PhD degree in Germany.

2. Studying in Leipzig and Göttingen

Haskell matriculated in Leipzig in winter 1885/86 to study under the supervision
Felix Klein, but did not take any courses there (he probably learned German in-
stead) [4]. When Klein moved to Göttingen for the next summer term, Haskell
came with him. In Göttingen, Klein delivered an advanced mathematical lec-
ture series that followed his own research interests [5]. During the span of seven
semesters, Klein lectured on algebra (S86–W86/87), elliptic modular functions
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(S86), hyperelliptic functions (S87–W87/88), and abelian functions (S88–S89). In
all but the last semester, also a seminar was held. Haskell was by far the most
active student of this lecture cycle as he visited (in one case: probably) all lecture
courses and seminars [6]. Additionally, he was co-responsible for the production
of lecture notes in three lectures courses. During these years, a number of mathe-
maticians, which were later influential for the setup of the mathematical research
community in the United States, arrived in Göttingen. These include the German
postgraduates Oskar Bolza and Heinrich Maschke, the American postgraduate
F.N. Cole, and the American PhD students H.D. Thompson, W.F. Osgood, H.S.
White, H.W. Tyler, and Maxime Bôcher [7]. Haskell was perhaps the only peer
who personally met all of these figures, but as no personal communication remains,
it is hard to estimate his status and influence.

3. Presentations

Haskell held four presentations in Klein’s seminars, all of them during his first three
semesters in Göttingen [8]. (He later participated at the seminars without present-
ing himself.) His first presentation concerned the explicit calculation of a degree-4
resolvent of the octahedral equation. This resolvent stems from a subgroup relation
S3 ⊂ S4, while Klein in his Lectures on the Icosahedron [9] only considered a chain
of resolvents stemming from the subnormal series S4⊲A4⊲C4⊲C2⊲{1}. Haskell’s
presentation thus filled a small gap in Klein’s book. Although mathematically un-
spectacular, Haskell’s consideration can be understood as a preparation to Klein’s
resolvents of his icosahedral equation, which likewise stem from non-normal sub-
group relations (D5 ⊂ A5 and A4 ⊂ A5, respectively). In this sense Haskell did
his share to “complete” the heuristics of Klein’s geometrical approach to solving
equations. Haskell’s other three presentations concerned a recent publication of
Lazarus Fuchs, and two “work-in-progress” presentations on his PhD thesis.

4. PhD examination

The content of Haskell’s PhD dissertation – On the multiple covering of the plane
belonging to the curve λ3µ + µ3ν + ν3λ = 0 in the projective sense – was already
considered in [11], so I focus on some new biographical insights [12]. In his review,
Klein emphasized the difficulty of Haskell’s subject, and praised that Haskell over-
came them “with extraordinary diligence in a thoroughly satisfactory manner”.
He also noted “a number of individual investigations that claim independent im-
portance”. Haskell was thus accepted for his oral examination in mathematics and
physics (as he had to choose a second subject), which took place on 6 June 1888.
Unfortunately, Haskell did not pass the physics examination by Woldemar Voigt.
Haskell was allowed to repeat the examination 6 months later, but decided to take
his time and only repeated on 18 June 1889. He passed this second examination
(again by Klein and Voigt), and two weeks later returned to the United States.
From the steamboat “Aller”, he thanked Klein for his support, and concluded
about his study time in Göttingen:
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I have finally learned what it means to work. It is a hard thing to
learn, but I hope it sticks with me. [13]
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[6] Hörerverzeichnisse der Vorlesungen F. Kleins. 1871–1920, Nachlass Felix Klein (Cod. Ms.
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Birkhäuser/Springer Nature Switzerland, 2021.

[11] D.E. Rowe, “Klein, Mittag-Leffler, and the Klein-Poincaré Correspondence of 1881–1882”
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Klein ohne Klein: Studentship at a distance in Chicago (1893-1910)

Nicolas Michel

Some ten years into his tenure as the first head of the mathematics department at
the University of Chicago, E. H. Moore paid the following tribute to Felix Klein:1

Certainly in the domain of mathematics, German scholars in gen-
eral and yourself in particular have played, by way of example

and counsel and direct and indirect inspiration, quite the
leading role in the development of creative mathematics in this
country, and on behalf of my colleagues here I wish to express our
most grateful recognition and appreciation of our profound debt.

Despite only visiting the United States twice in his life, Klein seemingly exerted
a lasting and multi-faceted influence on the shaping of American mathematics
at the turn of the 20th century. But what were the modalities of this ‘direct and
indirect’ influence? In their landmark account of the development of the American

1Letter from Moore to Klein, dated March 23rd 1904, Klein Nachlass X, NSUB, Göttingen,
cited in [2, p. 324]. Emphasis mine.
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mathematical community, Parshall and Rowe stress the importance of Klein’s
participation to the 1893 Chicago World Fair and his ensuing public lectures in
Evanston, and map out the ways in which American students picked up on research
themes en vogue in Germany and made them their own. In this paper, I elected
to focus on another dimension of this ‘influence’, namely the fostering of a certain
collegial and scientific culture at the University of Chicago modelled after and
adapted from that which Klein had developed in Göttingen.

Indeed, we now know that an account of mathematics in Klein’s Göttingen
cannot be complete without an assessment of its culture of oral and informal
conversations (whether at a professor’s personal home or during Spaziergängen),
of its seminar life full of intensity and competition, as well as of its mathematical
library where visitors, students, and faculties would frequently meet and interact
[1]. This paper, along similar lines, seeks to provide elements of a ‘thick description’
of the oral culture at the Mathematics Department in Chicago and to trace its
inception back to Klein’s Göttingen.

In fact, a first step in that direction had already been taken during a previous
Oberwolfach meeting, centered around the figure of Oswald Veblen–a towering fig-
ure in the history of American mathematics who initially studied in the Moore-led
department at Chicago. In this meeting, three other scholars and I collectively
transcribed and analyzed a notebook written by Veblen as he studied in Chicago,
and more specifically as he attended Moore’s 1901 seminar on the foundations
of geometry [3]. One outcome of this project was to highlight the rich interplay
between seminar life, research activities, and the fostering of graduate students to
which this notebook bore witness. Both Moore and Veblen would make key con-
tributions to axiomatics and geometry in the wake of this seminar; contributions
in which they both highlight this seminar as a site of collaborative and productive
learning. What’s more, we find the same pattern whereby seminars and dialogues
between students and professors lead to important contributions by both groups
amongst other students of Moore’s and (at a later stage) of Veblen himself, who
reproduced this social organization of mathematical life.

To better understand the origins of this form of mathematical life, one must look
at another one of the three professors who initially constituted the Mathematics
Department at the University of Chicago upon its creation in 1893: namely, Oskar
Bolza. In his 1936 autobiography Aus meinem Leben, Bolza describes his own
experience as a student in Germany looking to obtain a doctorate and to go into
a mathematical career of his own. Upon meeting with leading mathematicians in
Berlin, where experts in his subjects of choice resided, he was faced with scholars
who had no interest nor desire to engage meaningfully with a young scholar-to-
be. Neither Kronecker nor Weierstrass helped him design an appropriate research
question for a dissertation, nor did they advise him as to how to work on said
question: they would simply wait for him to bring a manuscript of sufficient quality
to them, and then examine him.

Discouraged by this experience, Bolza then travelled to Göttingen, initially to
work with Schwarz. In so doing, he encountered Klein and discovered an entirely
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different model for scholarly conduct. Klein would not only propose research ques-
tions and provide mathematical advice; he would also foster constant dialogue with
and amongst students, meet weekly with them, and help insert them into German
academia. Not all aspects of this practice were enjoyed by Bolza, however: after
spending two semesters in 1886-1887 within this intense and dynamic community,
he despaired to keep up with Klein’s masterful weaving of so many mathematical
concepts and intuitions and lost faith in his own ability as a researcher.

Bolza’s research output would only rarely interact with the central themes of
Klein’s own mathematical product. Yet, he regarded the latter as the person
who influenced him the most after Weierstrass. I contend that this influence
mostly lies in the shaping of this model for scholarly conduct. Evidence to this
idea can be adduced by considering the archives of the Mathematics Department
under Moore’s and his successor’s (G. A. Bliss) leadership; sources which now
are preserved at the Hanna Holborn Gray Special Collections Research Center in
Chicago.

One such set of sources is a collection of letters sent to Bliss by dozens of
former students of Bolza’s, at Chicago. These letters, written in celebration of
the 50th anniversary of Bolza’s doctorate, all point to a mathematician’s lasting
commitment to many of the epistemic virtues which characterized Klein’s tenure at
Göttingen. Recollections of Bolza’s availability and of the regular conversations he
held with students at his own house and of his active stance towards the fostering of
graduate students and the selection of appropriate research questions, for instance,
feature heavily in these letters. Interestingly enough, however, the elitism that
dominated mathematical conversations in Göttingen seems mostly absent from
these students’ experience–perhaps a remnant of Bolza’s own anxieties regarding
the overwhelming effects of genius.

Moreover, these letters provide a rich description of Bolza’s much-appreciated
teaching practices, including his constant reliance on historical exposition to mo-
tivate the study of a given subject-matter, to distinguish between ancient and
modern (i.e., fit for graduate research) approaches to said subject, and to consti-
tute a canon of classical texts whose knowledge he expected of students. Further
evidence to flesh out this description can be found in the many notebooks written
by students of Bolza’s seminars, also preserved at the University of Chicago, as
well as in the publications of Bolza and his best students (include Bliss himself).
All those pedagogical traits can be profitably compared with the rich portrait of
Klein as a teacher and a historian of mathematics which Renate Tobies has built
over the years [4].

Together, these historical elements point to another sense in which Chicago
mathematicians can be regarded as Klein’s students at a distance, through the
intermediary of Bolza’s reproduction of a Göttingen-inspired figure of the mathe-
matician as scholar, as teacher, and as researcher.
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Klein’s influence in Britain

June Barrow-Green

In 1873 Klein made the first of several visits to Britain travelling in both Scotland
and England. On the invitation of Henry Smith, the leading English number theo-
rist and geometer, he attended the annual British Association for the Advancement
of Science meeting which that year was held in Bradford, with Smith as President
of the Mathematics & Physics section. It was at this meeting that Klein first met
Arthur Cayley, William Clifford and James Clerk Maxwell, as well as the Irish as-
tronomer Robert Stawell Ball. Clifford and Maxwell would die in 1879 but Klein’s
association with Cayley was enduring. Both Smith and Cayley sent postgraduate
students to Klein including Arthur Buchheim, Arthur Berry, and Grace Chisholm.
Another student who travelled from Britain to Göttingen during Klein’s tenure
was Horatio Carslaw who went there to study with Sommerfeld. Among the other
British mathematicians who one way or another encountered Klein in their youth
were the Cambridge educated mathematicians Henry Frederick Baker, Augustus
Love and Edmund Taylor Whittaker.

Klein’s reflections on his 1873 visit, as revealed in letters to Sophus Lie, give
valuable insights into his interactions with the British mathematical community.1

For example, not only did Klein find Sylvester to be more brilliant than Cayley,
but he found “everyone in London” to be “generally of the same opinion” [1,
p.148]. On that first visit, as well as on others, Klein travelled with the Scottish
mathematician (later orientalist and Old Testament scholar) William Robertson
Smith whom he had originally met in Bonn in 1867 (when Smith was studying
with Plücker), and with whom he had cemented a friendship when they were both
in Göttingen in 1869 [2].

Klein’s first British student was Arthur Buchheim (1859–1888) who in 1881 made
three presentations on Abelian integrals in Klein’s seminar in Leipzig. Buchheim
had been a student of Henry Smith’s at Oxford and Smith thought extremely
highly of him. However, when Buchheim returned from Germany, rather than
continue at Oxford he made his career as a schoolmaster. In his obituary of Buch-
heim, Sylvester attributed Buchheim’s refusal to apply for a vacant Fellowship at
Oxford, despite being “strongly pressed by the authorities to do so”, to Buchheim’s
sojourn with Klein having put him too much out of “the style of ordinary English
University Examinations” [3]. Thus, it would appear that Buchheim did not think

1Several extracts from this correspondence are reproduced in [1].
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he would pass the New College Fellowship examination while Smith thought that
he would.

Klein’s contacts with Cayley, and later with Andrew Russell Forsyth, who 1895
succeeded Cayley in the Sadleirian chair at Cambridge and whom Klein visited
often, resulted in several postgraduate students going to Göttingen. Arthur Berry
(1862–1929), who later worked in elliptic functions and differential equations, and
became known for his History of Astronomy (1898), had been Senior Wrangler2

in 1885, and went to study with Klein in 1887, giving a seminar on ‘Differential
Invariants’. Later Berry himself would encourage female students, such as Hilda
Hudson (1881–1965) and Lorna Swain (1891–1936), to continue their studies in
Germany.

The fulsome remarks in praise of Klein by Henry Frederick Baker (1866–1956)
in the preface of his book Abel’s Theorem and the Allied Theory of Theta Func-
tions (1897), appear to be the only surviving evidence of Baker’s meetings with
Klein. Nevertheless, they make clear Klein’s influence on Baker’s mathematical
thought. In addition, Baker published several papers in Mathematische Annalen
(in English) in the 1890s, his choice of publication presumably deriving from his
time in Göttingen. It also seems likely that the idea for Baker’s geometry seminar
(known colloquially as Baker’s ‘tea party’) in Cambridge, which began in 1914
(with Baker’s accession to the Lowndean chair) and which was the first, and for a
long time the only, seminar in Britain, can be traced back to Göttingen [4].

Both Augustus Love (1863–1940) and Edmund Taylor Whittaker (1873–1956)
spent time with Klein when he visited England, and they both wrote articles
for Klein’s Encyklopädie. In addition, in 1887 Love was commissioned by Klein to
write an article on English work on vortex motion [5], and later Klein arranged for
the translation of Love’s text on elasticity into German [6]. Klein also arranged
for the translation into German of Horace Lamb’s text on hydrodynamics [7], both
translations appearing in 1907.

With regard to translations, Klein’s influence extended in the opposite direction
too, with the translation of his own works into English. As well as his well-known
Lectures on the Ikosahedron and the Solutions of Equations of the Fifth Degree
(1888) which was enthusiastically reviewed by Cayley, there was his On Riemann’s
Theory of Algebraic functions and their Integrals (1893), the translation of which
was done by Frances Hardcastle (1866–1941), a Cambridge student who completed
the work while she was in the United States at Bryn Mawr, and published it at
her own expense.

A number of British female students attended Klein’s seminars in the 1890s, the
most notable of whom was Grace Chisholm who studied for her PhD under Klein
and in 1895 achieved the distinction of being the first woman anywhere to be
awarded a traditional PhD in mathematics [8], [9].3 Isabel Maddison, who was

2The Senior Wrangler is the top student in the Cambridge Mathematica Tripos.
3Chisholm was the subject of Elisabeth Mühlhausen’s talk [10].
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a contemporary of Chisholm’s at Girton College in Cambridge,4 subsequently went
to Bryn Mawr to work under the direction of Charlotte Scott (a student of Cay-
ley’s) before studying with Klein and Hilbert in Göttingen during 1893/4. She
was followed there by Ada Johnson (who had surpasssed all the men in Part II
of the Cambridge Mathematical Tripos in 1894), in 1895/1896. (Rather curiously,
all attempts to ascertain Johnson’s area of research have so far failed. She re-
turned to Cambridge where she was an Associate at Newnham College until 1908
but then drops out of sight.) A later visitor to Göttingen was Lorna Swain who,
encouraged by Berry, went there just before the outbreak of the First World War
but had to return to England in haste when war was declared. Swain would go
back to Göttingen in the late 1920s to work with Ludwig Prandtl.

Another British traveller to Göttingen was Charles Tweedie (1868–1925) who in
1891 studied under both Klein and Schwarz [12]. Tweedie was unusual in that he
had not been an undergraduate at Cambridge but at Edinburgh where one of his
teachers was P. G. Tait whom Klein had met on his first visit to Britain. Tweedie
made his career in Edinburgh and became best known for his work in history of
mathematics, notably biographies of Colin Maclaurin and James Stirling, having
earlier published papers in geometry and combinatorics.

That Klein was very well known in Britain is evident from the recognition he
received. He was made a Fellow of the Royal Society of London in 1885 and in
1912 was awarded the Copley Medal, the Society’s most prestigious award. He is
the only foreign mathematician to have been awarded the London Mathematical
Society’s most important prize, the De Morgan medal (1893), and in 1897 the
University of Cambridge awarded him an honorary doctorate.

From the above it is evident that Klein had many direct connections to members
of the British mathematical community. Further research is required to establish
more precisely the extent to which Klein can be said to have had an influence on
them, both with respect to their mathematical development and with respect to
their careers.
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From Naples to Pavia, passing from Göttingen. The scientific

trajectory of Ernesto Pascal and his relationship with Felix Klein

Maria Giulia Lugaresi

The Italian mathematician Ernesto Pascal (1865-1940), born in Naples in 1865,
completed his primary and secondary education in his hometown. Attracted by the
mathematical teachings of Nicola Trudi, Emanuele Fergola, Achille Sannia and,
most of all, Giuseppe Battaglini, he graduated in mathematics at the University
of Naples in 1887. Soon after his degree, Pascal obtained a training scholarship for
the academic year 1887-88 at the University of Pisa, where he had the opportunity
to attend the lessons of Enrico Betti, Ulisse Dini, Luigi Bianchi and the young Vito
Volterra. In the next academic year Pascal, encouraged by Eugenio Beltrami –
who at that time was Professor at the University of Pavia – decided to go to the
University of Göttingen to improve his studies.

From November 1888 to August 1889 Pascal was in Göttingen where he could
meet and study with Hermann Amandus Schwarz and, most of all, Felix Klein,
who contributed to orient Pascal’s research towards Sigma abelian functions. Soon
after his return to Italy, Pascal was appointed “Extraordinary Professor”(1890-95)
and then “Full Professor”(1895-1907) at the University of Pavia, after the death
of Felice Casorati. In 1907 Pascal was called at the University of Naples, where
he remained until his retirement in 1935. He kept the chair of Higher Analysis,
in 1910 he moved to the chair of Complementary Algebra and maintained for
assignment the chair of Higher Analysis. In the same year he became editor in
chief of the journal “Giornale di Matematiche di Battaglini”, replacing Alfredo
Capelli. Pascal died in Naples in 1940.

The main episodes of Pascal’s academic life and his scientific trajectory of re-
search can be better understood through the reading of the letters he wrote during
all his professional life. As of 1889, Pascal was in correspondence with Klein. The
Göttingen State and University Library preserved eleven manuscripts (ten letters
and one draft) that Pascal sent to Klein between October 1889 and August 1913
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([12]). The correspondence, even if composed only by eleven manuscripts, offers
useful pieces to enrich Pascal’s academic life. The correspondence began soon after
Pascal’s return to Italy. The letters proved Pascal’s positive memory of his German
experience. He recalled with enthusiasm, but also with nostalgy his stimulating
meetings with Klein. The Italian mathematician took part in Klein’s course in
Summer Semester 1889, that were devoted to the theory of Abelian functions.

During his stay in Göttingen Pascal met and could work with many German
and foreign mathematicians who came to Göttingen to study under Klein. In the
letters to Klein Pascal referred to some of these mathematicians with whom he
remained in touch after his return to Italy. Among the mathematicians who were
in Göttingen in the same period he quoted Heinrich Burkhardt, Henry White,
Mellen Woodman Haskell. Klein presented the research of his students in the
sessions of the Göttingen Academy of Science. The first results of Pascal’s stud-
ies about Abelian sigma functions appeared in two short articles, presented by
Klein, and were published in the volume of 1889 of the “Nachrichten von der K.
Gesellschaft der Wissenschaften und der Georg-Augusts-Universität”: Zur The-
orie der ungeraden Abel’schen Sigmafunctionen (pp. 416-423); Zur Theorie der
geraden sigma-Funktionen (pp. 547-553). The two articles were republished in
a longer version in the volume 18 of the Annali of Brioschi in 1889 ([3]; [4]).

Between 1889 and 1895 Pascal’s research dealt with Abelian, hyperelliptic and
elliptic functions. This wide field of research was developed by Pascal taking inspi-
ration from Klein’s lectures and publications and gave birth to seven articles that
appeared in the volumes 17-19 of the Annali of Brioschi ([3]; [4];[5];[6];[7];[8];[9]).
Other influences of Klein can be found in Pascal’s works about sigma elliptical
functions, that were published in 1895 ([10]).

The correspondence with Klein was interrupted between March 1895 and Feb-
ruary 1901. In this period Pascal’s research continued, but his publications were
mainly oriented towards handbooks for university teaching. Many monographs,
prepared for his university courses, appeared between 1895 and 1897, first in a
litographic version and then they were printed in paperback size by the editor
Hoepli in Milan: Esercizi e note critiche di calcolo infinitesimale (1895); Teoria
delle funzioni ellittiche (1896); I determinanti: teoria ed applicazione con tutte le
più recenti ricerche (1897); Calcolo delle variazioni e calcolo delle differenze finite
(1897); Repertorio di matematiche superiori (1897-1900, 2 volumes). Some years
later these books were translated into German by the mathematicians Hermann
Leitzmann and Adolf Schepp. These translations contributed to spread Pascal’s
works outside Italy. The main mathematical handbooks of Pascal had also a Pol-
ish translation thanks to the editorial work of the Polish mathematician Samuel
Dickstein.

The Repertorio constituted an excellent contribution to a significant assessment
of nineteenth-century mathematical production. It responded to the way in which
studies were organised in Germany, providing an overall vision of a single disci-
pline (analysis or geometry), in opposition to the extremely sectorial approach of
Germany. Themes related to the development and the teaching of mathematics
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were particularly important for Pascal. In Naples he gave a great stimulus to
the teaching of mathematics thanks to the creation of mathematical seminars and
laboratories, the so-called “mathematical cabinets” (gabinetti scientifici). Pas-
cal treasured his German experience when he decided to realise in Naples these
scientific places and he talked about them in a letter to Klein (1913, August 14th).

In my paper I will give an overview of the content of Pascal’s letters preserved
in Klein’s archive in Göttingen in order to reconstruct the development of Pascal’s
research following suit Klein. The letters represented also a proof of Pascal’s
devotion and respect for Klein. The Italian mathematician strongly supported
two scientific and celebrating ventures in Naples: a prize for summarising Klein’s
results about hyperelliptic and Abelian functions and the appointment of Klein as
a foreign member of the Royal Academy of Sciences of Naples.
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Wilhelm Wirtinger (1865–1945) and his publications on Abelian

functions, in particular theta functions

Peter Ullrich

Even though Wilhelm Wirtinger himself saw a strong cultural, in particular sci-
entific, connection between the German-speaking parts of the Austro-Hungarian
Empire and the Deutsche Reich, which had been formed between 1867 and 1871
under Prussian leadership, he can be counted among Klein’s “foreign students”:
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In 1866 Austria and Prussia fought the Seven Weeks’ War – which also had the
consequence that Göttingen became a Prussian university –.

Wilhelm Wirtinger was born on July 19, 1865 in Ybbs at the Danube where
his father was chief physician at a predecessor of the Vienna psychatric clinic.
At school Wilhelm was almost exclusively interested in mathematics and physics.
Already as schoolboy he studied original works of Isaac Newton (1642/43–1727),
Leonhard Euler (1707–1783), Carl Neumann (1832–1925) and others including
texts on Abelian functions. During his studies of mathematics and physics at the
University of Vienna from 1884 until 1887 he seems to have been mainly under the
influence of Emil Weyr (1848–1894): Even before his doctorate, he published two
papers [9], [10] which belong to synthetic geometry as the latter’s research area.
Also the topic of his doctoral thesis, on a cubic involution in the plane, comes from
this part of mathematics.

After having taken his doctorate on December 23, 1887, Wirtinger received
a scholarship from the Todesco foundation which enabled him to spend the winter
semester 1888/89 in Berlin where he attended lectures with Lazarus Fuchs (1833–
1902), Leopold Kronecker (1823–1891), and Karl Weierstraß (1815–1897). Even
though he obviously was quite familiar with the standards of rigor as introduced
by Weierstraß, it was the following summer semester 1889 in Göttingen that had
the most decisive influence on his scientific career: He attended the last part of
Felix Klein’s (1849–1925) lecture courses on Abelian functions and then delved
into research on this topic: Starting already in Göttingen and continuing after
his return to Vienna, he published several notes [11], [12], [13], [14] on Kummer
surfaces of genus 3 and the Abelian functions and theta series associated to them.
Even more, as one learns from his letter to Klein dated December 28, 1892, he
worked on the theory of general theta series already at that time. Klein had
designed this topic for the prize question of the Beneke foundation for 1895 which
was administered by the Philosphical Faculty at the University of Göttingen. On
the basis of his book [16], which is connected to his articles [15], [17], Wirtinger
received the prize.

This immediately helped his academic career: After his return to Vienna,
Wirtinger had completed his habilitation at the University of Vienna in 1890
and had received the position of assistant to Emanuel Czuber (1851–1925) at the
Polytechnic of Vienna. Following the announcement of his winning the prize of
the Beneke foundation in 1895, he was appointed extraordinary professor at the
University of Innsbruck. One year later, there he was promoted to an ordinary
professorship. In 1903 he followed a call as an ordinary professor at the University
of Vienna.

There he became the supervisor or at least a reviewer for almost all impor-
tant mathematicians who received their doctorates at the University of Vienna
between 1905 and 1930. Johann Radon (1887–1956), who had been one of these

students, has called him “der größte Mathematiker Österreichs” (= “Austria’s
greatest mathematician”) [6]. Wirtinger retired in 1935 and died on January 16,
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1945, also in Ybbs at the Danube. (For further information on Wirtinger’s life see
[1], [2], [5], [8].)

Wirtinger not only published original research on Abelian functions, but also
invested a lot of time and energy in publication projects that Klein had initiated:
He was one of the co-editors of the three-part volume 2 on analysis of the “En-
cyklopädie der mathematischen Wissenschaften”, wrote its article on algebraic
functions and their integrals [18], provided templates for its article on elliptic
functions, which appeared in 1913, and co-authored, together with Adolf Krazer
(1858–1926), its article on Abelian functions and general theta functions [3]. Ad-
ditionally, together with Max Noether (1844–1921), he edited the supplements to
Riemann’s collected works [4].

Within the period between 1901 and 1920, when these text were published, lies
Wirtinger’s “unfruchtbares Jahrzehnt” (= “barren decade”) between 1909 and
1919 when he published no original results of research at all. One reason for this
could be problems with the publications for the “Encyklopädie” project. But he
also suffered severe blows of fate within his family: His eldest son died in an
accident in 1912, his youngest son died in action during the First World War in
1915. And, naturally, the circumstances of this war and its consequences will have
reduced his ability to conduct scientific research.

In a handwritten autobiography from 1939, Wirtinger states that it was the
task of writing an article “Klein und die Mathematik der letzten fünfzig Jahre” (=
“Klein and the mathematics of the last fifty years”) [19] on the occasion of Klein’s
seventieth birthday in 1919 that brought him back to mathematical productivity.
However, it is remarkable that from this time onwards, Abelian functions and
theta series were no longer the focus of his research, cf. e. g., [7].

References

[1] A. Dick: In Ybbs geboren – in Ybbs gestorben, in Chr. Binder (ed.): Tagungsband des I. Ös-
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Klein’s Göttingen seminars on hydrodynamics (1903-1904, 1907-1908,

1908) and the development of the notion of applied mathematics until

Richard von Mises (1883-1953) in the 1920s

Reinhard Siegmund-Schultze

Our most important source about Felix Klein’s seminars–which stretched over
about 40 years and took place in several universities (Göttingen, Leipzig, Munich)–
is Renate Tobies’ biography of Klein of 2019/20 [1]. Of the three seminars on
hydrodynamics between 1903 and 1908, the one in the winter semester 1907/08
has been analysed in detail by Michael Eckert [2]. The same author has devoted an
English monograph to the history of the turbulence problem which pervades much
of the three hydrodynamics seminars [3]. Eckert and Tobies show that the seminar
talks cannot be completely understood without considering the Göttingen context
in general, in particular Klein’s lectures on hydrodynamics and handwritten notes,
both kept at the Manuscript Division (Handschriftenabteilung) in Göttingen.

In my talk I stressed the need to look at the talks which were given parallel to
the seminars at the Göttingen Mathematical Society (Mathematische Gesellschaft)
as well. This Society was also basically run by Klein from 1892. Of the talks one
finds abstracts of varying length published in the Jahresbericht of the DMV. At
the Gesellschaft, Klein usually reported about his seminars. In addition, talks
by established mathematicians, physicists and engineers visiting or resident in
Göttingen were presented there, including talks on applied topics. The hydrody-
namics seminar talks were predominantly given by students. They treated basic
topics such as Boussinesq’s theory of fluids [4], the separation of the stream from
the wall (Theodor von Kármán) and of vortices from the stream (Hiemenz, Koch,
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Fuhrmann), and Heinrich Blasius’ discussion of turbulence [5]. Blasius was one of
the first students of Ludwig Prandtl. Blasius’ discussion of the difference between
onsetting and fully developed turbulence in his seminars in January and February
1908 was taken over in 1916 by Prandtl. Other groundbreaking new ideas such as
the Hungarian Gyözö Zemplén’s theory of shock waves (1904), Prandtl’s boundary
layer (1904), and the Hungarian von Kármán’s vortex street (1911) were reserved
for talks at the Mathematische Gesellschaft and for parallel publications. Carl
Runge and Prandtl, who from 1904 were directors of Göttingen’s Institute for Ap-
plied Mathematics and Mechanics [6], preferred the venue of the Mathematische
Gesellschaft for their presentations. They were absent as speakers at the three
hydrodynamics seminars, although—according to Klein—were co-organizers and
probably present at the seminars in 1907 and 1908.

A third effort, which completes the picture of applied mathematics and me-
chanics research done in Göttingen at the time, is Klein’s Encyclopaedia of Math-
ematical Sciences. Here the Austrian Richard von Mises (1883-1953), who, at
the time of the hydrodynamics seminars, was assistant to Georg Hamel at the
German Technical University of Brünn, came into play. He had an intense cor-
respondence with Klein and his assistant Conrad Müller between 1907 and 1912
which accompanied his article in the Encyclopaedia “Dynamical Problems of Me-
chanical Engineering” [7]. The correspondence shows Klein’s high expectations for
the young engineer and mathematician von Mises, who never presented a talk at
the seminars and would later in the 1920s become the director of the institute for
applied mathematics in Berlin. The correspondence also shows Klein’s keen inter-
est even in specific, technical applications such as Otto Schlick’s patent (1894) for
a gyroscope to prevent ship lurching. On this patent the future theoretical physi-
cist Paul Ehrenfest had reported in Klein’s seminar in 1902. Klein persuaded von
Mises to include another invention with a similar purpose (Frahm’s water tanks)
in his article.

Klein passed on von Mises’ critical remarks about another Encyclopaedia arti-
cle to the author von Kármán (Strength of materials in mechanical engineering).
In this episode, as in some others, the spirit of collaboration and competition be-
comes palpable which was typical of the Göttingen atmosphere both in pure and
applied mathematics. In my talk I quoted some remarks from the autobiographical
memoirs (1936) of Hans Lorenz (1865-1940) which were critical of Klein’s alleged
dictatorial ways of running the seminars [8]. Lorenz, who was originally consid-
ered by many as being able to imbue engineering and technical physics with a new
level of mathematical sophistication, had been appointed by Klein in 1900. But
disappointed by his lack of willingness to cooperate, Klein managed to replace him
by Prandtl in 1904. Von Mises’ scathing review of the insufficient mathematical
treatment in Lorenz’s turbine theory of 1906 may have endeared the 24 year old
von Mises to Klein. However, the later development of both Lorenz and von Mises
shows a certain frustration with some Göttingen tendencies at domination and to-
wards “nostrification” (make them ours) of results obtained outside the Göttingen
environment, a feeling which the two scientific engineers shared.
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Nevertheless, von Mises remained a staunch admirer of Klein and devoted an
article to him on his 75th birthday in his new Journal for Applied Mathematics and
Mechanics (ZAMM ) in 1924. In a public dispute (1927) with Richard Courant,
Klein’s successor as an organizer in Göttingen, von Mises claimed that the realiza-
tion of Klein’s efforts was being more loyally pursued in Berlin than in Göttingen
[9].
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On the impact of Felix Klein on his students and their successors.

Austro–Polish stories

Danuta Ciesielska

In the period from 1874 to 1912, more than 50 Poles studied mathematics with
Klein in Munich, Leipzig and Göttingen. Between 1885 and 1911, 40 Poles or
Polish students from Russia attended Klein’s lectures, courses and seminars, in-
cluding 14 men and women who gave lectures in Klein’s seminars [11]. In this
report I will focus on some of these people, works and future results.

The very first Poles, in total 12, studied with Klein in Munich. In Leipzig only
two Poles attended Klein’s courses and in Göttingen at least 43 Polish young stu-
dents or scholars participated in Klein’s lectures or seminars, 14 of them presented
19 talks during Klein’s seminars [11]. Future physicist Józef Wierusz-Kowalski
(1866–1927, Joseph von Kowalski, Josef de Kowalski) was the first who presented
talk [11].

Many Poles who were former Klein’s students did not work at universities until
1918 but some were professors at those universities that operated in Austria with
Polish as a language of instruction: the universities in Kraków and Lwów, and
the Lwów Technical School. Some became professors of University of Warsaw
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(opened by German Governor in 1915), Warsaw Polytechnic (1915) and Polish
Free University in Warsaw (Wolna Wszechnica Polska). When Poland regained
independence in 1918, the universities in Poznań and in Vilnius completed the list.
Here I focuse on those Klein’s students who worked in Kraków or Lwów before
1918, in land ruled by Austria.

The only Pole to appear in Klein’s Vorlesungen über die Entwicklung der Mathe-
matik im 19. Jahrhundert, vol. 2 (Berlin 1927) is Kazimierz Żorawski (1866–1953).

Żorawski, from Żórawski noble family, studied in Warsaw and next with Sophus
Lie in Leipzig (1889/90; 1890), where he was inspired to write his doctoral thesis
(1891). From the winter semester of 1890/91 to the winter semester of 1891/92 he
studied with Klein in Göttingen. He presented a paper on the Grünwald–Letnikov
derivatives of fractional order in Klein’s seminar in June 1891 [11]. In the summer
semester of 1891 seminar took place between 14 May and 8 July 1891. In the meet-
ings participated 12 people, and the talks were presented by Ernst Ritter (PhD
1891 in Göttingen under Klein, moved to the USA), Friedrich Schilling (PhD 1893
in Göttingen under Klein, Achen, Karlsruhe, Dantzing, president DMV), James
Harrington Boyd (PhD 1892 in Princeton, professor at Macalester College, reader
at Chicago), Eduard Burr von Vlek (PhD 1893 in Göttingen under Klein, professor
at the University of Wisconsin Madison, now a chair of mathematics here holds
his name) and Kazimierz Żorawski. The notes from this meetings are in volume
10, 120–179.

In his contribution Żorawski presented basic information about the derivative
of fractional order. The very first attempt to derivatives of fractional order are due
to Euler and Liouville. The formal definitions were proposed by German mathe-
matician from Prague Anton Karl Grünwald (1838–1920) and by Russian math-
ematician Aleksey Vasilyevich Letnikov (1837–1888). Grünwald in 1867 posed
a definition [10]. Letnikov in his master thesis in 1868 proposed a similar defini-
tion [3] which was later elaborated by Pavel Alekseevich Nekrasov (1853–1924).

Żorawski in his talk presented short history of an investigation and recall defini-

tions, among them Grünwald’s: [Dpf(x)]xu = 1
Γ(−p)

∫ x

u

f(z)
(x−z)p dz, next he focused

on interesting examples. Later Żorawski published only one paper on the similar
topic. It was an article in Polish about derivatives of infinitely large order [14].
Nevertheless, he was very active as a scholar and in academic policy. His scientific
results include applications of Lie groups in geometry and the theory of differential
equations and mechanics. Some of the results of Żorawski’s research were obtained
again later, published and attributed to other mathematicians. Żorawski’s works
were highly appreciated by Lie, Élie Cartan, and Klein. He published more than
60 scientific papers in German, French, Polish and Czech, he also contributed in
history and wrote textbooks.

Żorawski was a dean of faculty, rector, a director in Ministry of Education in
Poland but in my opinion the most interesting is his role as a Chair of Kretkowski’s
Fund. A very rich nobleman and a mathematician W ladys law Kretkowski (1840–
1910) donated in his last will the huge fortune for abroad studies in mathematics
(1911–1919), for extra lectures and seminars, library, and a chair of application of
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mathematics in Kraków. Thanks to this donations 11 young mathematicians went
abroad for undergraduated studies, and three of them studied in Göttingen: Fran-
ciszek W lodarski (1889–1944), W ladys law Ślebodziński (1884–1972), Stanis law
Ruziewicz (1889–1941), for more information see [1].

In the winter semester 11 people took part in the meetings of seminars, some of
the previous participants had left, but some started participation. Among them
were Poles: Stanis law Kȩpiński from Kraków and Boles law M lodziejowski from
Moscow. Kȩpiński spent two years in Göttingen (1891–1893) and participated
in Klein’s seminar with a lecture (see [11], vol. 11). He started studies at the
Jagiellonian University where he obtained doctorate; his thesis concerned partial
differential equations. In Göttingen Kȩpiński studied with: SS 1891 – Schwarz,
Klein, Burkhardt, WS 1891/1892 – Klein, Burkhardt and SS 1891/1892 – Klein,
Weber, and Burkhardt. He wrote extensive reports from this studies (Archive of
the Jagiellonian University), fragments of them were published in [1] and [2]. In
1894 he obtained vienam legendi from the Jagiellonian University and worked in
Kraków for a year. Next he continued his academic and scientific career at Lwów
Polytechnic, he was elected a rector and member of Galizian (province od Austria)
parliament in 1903. Four Kȩpiński’s letter to Klein are the only letters sent by
Polish scientists to him [5].

The second part of contribution deals with the influence of Klein and Lie re-
search on the group of symmetries on the second generation of his former stu-
dents. The concept of the abstract topological group is connected with Hilbert’s
fifth problem. In 1900 in Paris Hilbert asked if it was possible to have “Lie’s
Begriff der kontinuierlichen Transformationsgruppe ohne die Annahme der Differ-
entzbarkierait der di Gruppe deffnireden Functionen” [Lie’s concept of the contin-
uous transformation group without the assumption of the differenceability of the
functions defined in the group] (see: [4], p. 269). It started a new concept of group
in Euclidean space but without transformation. That idea finally lead to the for-
mal definition of topological group. In 1925 Franciszek Leja (1885–1979) and Otto
Schreier (1901–1929) independently presented it in their reports [7], [12] and two
years later in papers [8], [9], [13]. This amazing, almost mystic, coincidence is one
of dozens in the history of mathematical research, but here there is no doubt that
both heroes was influenced by the ancestor, including Felix Klein. A former stu-
dent of University of Lwów, Leja worked on his dissertation on invariants of partial
differential equations under mentioned before Żorawski. Leja’s later research on
the application of Lie groups to differential equations led him to a definition of
the abstract topological group as group and topological space at the same time,
such that the group operation: product and inverse map are continuous. An Aus-
trian Otto Schreier was a doctoral student of Philipp Furtwängler (1869–1940),
who was Klein’s doctoral student in Göttingen. Schreier was working on abstract
algebra and this led him to the definition of abstract topological group; moreover,
he proved that it must be abelian.
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Figure 1. Members of Mathematical Society in Göttingen, 1895.
SUB Göttingen, 2 Sammlung Voit: Gruppenbild 4. Sitting
(from left): Eduard Göttingp, Ernst Schering, Henrich Weber,
Woldemar Voigt, Eduard Riecke and Wilhelm Schur. Stand-
ing (from left): Ernst Harald Schützp, Ernst Rittert, Hen-
rich Burkhardtt, Ludwig Harald Schützp, Ignatz Robert Schütz,
Julius von Braun, Georg Bohlmann, Erich Prümmp, Rudolf
Schmidtp, Wilhelm Felgentraeger, Otto Blumenthalt, Stanis law
To l loczkot, Sophus Marxsent, Adolf Jost, Maximilian August Toe-
pler, Teophil Friesendorft, Dychhoff, Wilhelm Loreyt. p – studied
with Klein, t – presented talk at Klein’s seminar.

I wish to thank Bärbel Mund from SUB Göttingen for kind permisson for the
publication of the photography Mathematischer Verein an der Georgia Augusta.
WS 1894/95 from Voit’s Sammlung.
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145–154. 11, S. Kȩpiński, 120–125. 12, T. Friesendorff, 87, 189–196, 246–248;
H. Bortkiewicz, 226–232, 330–339; A. Stebnicka, 233–237, 311–322. 13, S. Kwietniewski,
48–55. 14, M. Feldblum, 315–325. 19, C. Reczyński, 71–72; W ladys law Dziewulski, 82–90.
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Göttingen, far away: Felix Klein’s influence on mathematics in Japan

Harald Kümmerle

While Göttingen figures prominently in the history of mathematics in Japan as
a destination of study abroad, it is difficult to clearly identify Japanese students
of Klein. This is importantly because the founder of mathematics as a disci-
pline in Japan, Fujisawa Rikitaro (1861-1933), had laid a strong emphasis on pure
mathematics. Investigating the cases of Yoshiye Takuji (1874-1974) and Kuroda
Minoru (1878-1922), both of whom studied in Göttingen, gives insight into the
mathematical “establishment” in early 20th century Japan. In contrast, two of
the most prolific recipients of Klein’s contributions to the movement for the reform
of mathematical education, Hayashi Tsuruichi (1873-1935) and Ogura Kinnosuke
(1885-1962), had very untypical biographies and never studied in Göttingen (nor
Germany more generally). Despite this, they were based at Tohoku Imperial Uni-
versity (in Sendai), where the whole department of science officially give itself
the motto to become “Japan’s Göttingen”. When investigating their activities in
mathematical research and education as well as the hurdlest, they faced, Hayashi
and Ogura appear as two exponents of the “anti-establishment”. Ironically but not
coincidentally, the movement for the reform of mathematical education in Japan
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– together with other ambitions of Felix Klein – achieved success only when mil-
itarism was taking hold during the 1930s. Thus, the talk provides an additional
perspective on the complex relation of mathematics and modernity.

Getting to Göttingen: Support for women’s mathematical research at

Bryn Mawr and Girton

Brigitte Stenhouse

The end of the nineteenth century saw the emergence of mathematical research as a
formal part of university life, legitimised by the awarding of doctoral degrees. The
seminars of Felix Klein epitomised the ideals of a certain style of university research
that became highly respected (and imitated) by a broad mathematical community.
The seminars fulfilled many functions, from connecting mathematicians on an
international scale, enabling collaboration, supporting students in the pursuit of
a PhD, and substantially directing research through the posing and answering of
questions [1]. Although participation in university life was highly gendered, this
story of rigorous higher education and careers in mathematical research is no less
true for women as for men.

In this talk we explore the communities and structures built to enable women
to pursue research in mathematics. We focus especially on the anglophone women
who came from Bryn Mawr College in Philadelphia, USA and Girton College in
Cambridge, UK to participate in Klein’s Göttingen seminar.

Girton College was founded in 1869 as the first residential college for the degree-
level education of women. The founder had a clear vision of what she wanted to
achieve with the college: “Miss [Emily] Davies was resolved that women students
should submit to the same tests, in order that they might share the same oppor-
tunities, as men” [2, pp. 16–17]. This occasionally put Davies in conflict with
the founders of Newnham College, also in Cambridge, who were happy to provide
separate lectures and exams specifically for women, rather than fighting to inte-
grate women into the established Cambridge systems (though it should be noted
that this was partly in response to a low opinion of the Cambridge exams!). High
school education for girls was still at a low standard in the late nineteenth cen-
tury, and the early Girton students had to almost start from scratch learning the
mathematics, latin, and other subjects necessary to pass the intermediary exams
— such as the ‘Little-Go’ — before moving on to the prestigious Tripos examina-
tions taken in their final year. In order to sit the exams, special permission was
required from the examiners, each and every year, with no guarantee it would be
granted. Nevertheless, the tenacity of the teachers and their students paid off in
1905 when Trinity College, Dublin offered retrospective reciprocal degrees to any
woman who had previously satisfied all the necessary degree requirements. The
hundreds of women who travelled by steamboat to Ireland to claim their degree
(forty years before Cambridge would award degrees to women on an equal footing
with men) were thus dubbed the ‘Steamboat Ladies’.
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One of the earliest Girton students to sit the Mathematical Tripos was Charlotte
Angas Scott, who was placed as 8th Wrangler in the First Class in 1880. (All
undergraduates who sat the exam were ranked in order, and those achieving a first
class were named Wranglers with the top student named Senior Wrangler. Women
were not officially included in the ranking.) Frances Hardcastle was bracketed 53rd
in Part I in 1891, and then achieved a second class in Part II in 1892. In 1892,
two students from Girton sat Part I of the Mathematical Tripos and attained
the equivalent ranking of Wrangler, namely Isabel Maddison and Grace Chisholm
(later Chisholm Young). Grace Chisholm subsequently sat Part II in 1892, being
ranked in the 3rd class. All of these women were subsequently involved with
Klein’s seminar, as were many of the men who they were taught by at Girton,
such as Arthur Cayley, Arthur Berry, and Andrew Russell Forsythe [3].

Meanwhile, in the USA, Brywn Mawr College was founded in 1879 with classes
beginning in 1885 [4]. Similarly to Girton, Brywn Mawr had a strong focus on pro-
viding an education for women to rival that received by their male contemporaries.
Indeed, Bryn Mawr was the first women’s college in the USA to have a graduate
department, whilst many of the others focused on offering high-school-level tuition
to compensate for the inadequate extant provision for women. The college was
substantially shaped by the first Dean and later President, Martha Carey Thomas,
who had been refused a PhD in linguistics from Göttingen in 1882, owing to her
sex. Charlotte Angas Scott was appointed as Associate Professor in Mathematics
at Bryn Mawr in 1885, and would supervise eight PhD students during her tenure
which lasted until her retirement in 1924. One of those PhD students was Isabel
Maddison, who subsequently worked at Bryn Mawr in various roles until 1926, in-
cluding as Assistant to the President (Thomas) and Reader in Mathematics. Three
other PhD students who passed through Göttingen include Emilie Norton-Martin,
Virginia Ragsdale, and Helen Elizabeth Schaeffer [5].

A key motivation for many higher education institutions was to train women
into qualified teachers who could then provide a higher quality education for girls.
This is reflected in the career trajectories of the alumni of Girton and Bryn Mawr,
at least for those who remained unmarried and thus in paid employment [6]. How-
ever, through these institutions women were simultaneously building infrastructure
to support themselves in pursuing alternative careers in mathematical research [7].

Research Fellowships were offered to graduate students at Bryn Mawr specifi-
cally to enable a period of study and research to be undertaken in Europe. Maddi-
son, Norton-Martin, and Schaeffer all made use of the Garret European Fellowship
in order to study with Klein in Göttingen during their doctoral studies; Ragsdale
was supported by the Bryn Mawr European Fellowship. The importance of fund-
ing research activities was directly recognised and championed by Girton alumni,
who collectively funded a Research Studentship worth £100 a year for two years.
By the 1930s the fellowship infrastructure at Girton had considerably expanded
to include multiple opportunities aimed directly at researchers in the physical sci-
ences, including mathematics. Money was also used to recognise and celebrate
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achievements of alumni, which would assist in reputation building as a mathe-
matician. Maddison and Chisholm-Young were both awarded the Gamble Prize
from Girton, for published articles in 1895 and 1915 respectively. Hardcastle sim-
ilarly won the Gamble Prize in 1897 for an article on point groups, and she was
subsequently invited to write a report on this topic for the British Association for
the Advancement of Science; her work in this area was supported by a Pfeiffer
Studentship, again from Girton.

Both Bryn Mawr and Girton provided employment opportunities for women,
but it is ambiguous as to whether this helped or hindered research activity. Teach-
ing loads could be heavy, leaving little time for other pursuits, and contracts were
often precarious, only running year by year. It is pertinent to consider the case
of Grace Chisholm-Young, perhaps the most research active of all women who
attended Klein’s seminar, and yet she never held an official academic position,
instead collaborating with her husband who had easier access to university jobs
as a Cambridge-educated man [8]. Nevertheless, women’s colleges provided gain-
ful employment and access to an academic community that was not always easily
found elsewhere; learned societies in Europe and North America only gradually
accepted women as full members from the end of the nineteenth century onwards.

In conclusion, whilst there are many specificities to studying the trajectory of
women’s research careers at the end of the nineteenth century, doing so allows us
to reflect more broadly on the changing landscape of academic research. We can
witness the emerging means of publishing and gaining recognition for work done;
the beginnings of research taking on a complementary role to teaching within
university spaces; the need for robust high school education to prepare students
for university; the importance of scholarships and research fellowships; and the
high value of building networks and social organisation which thus directs and
enables the development of new ideas in mathematics.
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Felix Klein’s first female doctoral student Grace Emily Chisholm

Young (1868–1944). A livelong connection concerning mathematical

research and much more

Elisabeth Mühlhausen

In October 1893 Grace Emily Chisholm arrived in Göttingen to study mathemat-
ics, physics and astronomy. Having successfully completed her studies at Girton
College in Cambridge her lecturer Andrew R. Forsyth had suggested that she
should continue there because he knew about his colleague Felix Klein’s commit-
ment to women’s studies.

With enthusiasm and energy she followed the lectures, she joined discussions
with her new academic acquaintances. During this time she enjoyed the invita-
tions of Klein and his family. She also improved her German language skills and
gave her first lecture at Klein’s seminar early in 1894 about spherical trigonom-
etry. This subject was suggested by Klein and the basis for her dissertation
on “Algebraisch-gruppentheoretische Untersuchungen zur sphärischen Trigonome-
trie”. She obtained her Ph.D. degree “magna cum laude” in April 1895 and was
the first woman in Prussia to do so.

On the famous photography of the Göttingen Mathematics Club of 1902 you
can see her keeping eye contact with Klein in the centre who is surrounded by
his younger colleagues. Meanwhile Grace had married the mathematician William
Henry Young (1863–1942). On their first mathematical journey to Italy, another
suggestion of Klein’s of course, they got to know the mathematicians who belonged
to his network. In winter 1898 they studied for some months at the University
of Turin with professor Corrado Segre (1863–1924) who held the chair of higher
geometry and was a regular correspondent of Klein. In the field of algebraic
geometry the Youngs wanted to get on the latest research level. One year later
their results were published in Turin, in Italian naturally.

Their successful joint work started 1900 when Klein advised them to read the
report on set theory of Arthur Schönflies (1853–1926). The next 25 years they
concentrated their research on this evolving field. One year before Klein had ad-
viced Schönflies to write an article on the state of set theory for the Encyclopedia
and soon thereafter Schönflies published his much longer report “Die Entwick-
lung der Lehre von den Punktmannigfaltikeiten” in the journal of the Deutsche
Mathematiker-Vereinigung.

It was the starting point for their contribution to set theory and its applications.
Between 1900 and 1905 they published their joint work results in about 20 papers
and concluded a contract with Cambridge University Press to publish a textbook
in set theory that introduced this new field to the UK. “The Theory of Sets of
Points” was published already 1906.

They also worked in related areas like measure theory and integration, Fourier
series, and the foundation of differential calculus.

Until 1929 they published 214 papers which are listed in the bibliography by
Ivor Grattan-Guinness. Most of them appeared under William Young’s name, 13
were jointly authored and 18 have Grace Chisholm Young as the sole author.
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For me as a former teacher of mathematics and biology it was particularly
interesting that Grace Chisholm Young also found time to write children’s books.
She published in 1905 “Bimbo” and in 1907 a successor called “Bimbo and the
Frogs” in which she describes the life of a family that is strongly reminiscent of the
Young family. At that time they already had four children: Frances *1897, called
Bimbo since their time in Italy, Cecily *1900, called Rosebud, Janet*1901, called
Lenchen and the just born Helen *1903, in the books mentioned as Dortchen in the
cradle. Every family member is part of a turbulent family life and in between the
focus is on a boy, Bimbo, who asks questions that are answered with illustrated
biological descriptions of the development of plants and animals especially frogs.

In 1905 Grace Chisholm Young published another book, her first joint publica-
tion with her husband with the title: “Beginner’s book of Geometry”. It describes
the basic features of geometry in terms of folding paper. It is obvious that she
took up Klein’s ideas how to teach mathematics in a visual way.

The book is entertaining not only because of many illustrations but a child needs
perseverance and parental help to get through the complicated folding instructions.
Fortunately every 3D model can be folded without using any glue. The child-
friendly structure of the book from the simple to the difficult is well done.

In 1908 there appeared a German translation “Der kleine Geometer” by Felix
Bernstein (1878–1956) who at that time he had just published his dissertation
concerning set-theory. Felix Klein was glad to see it and was very fond of it. In
his “Elementarmathematik vom höheren Standpunkte aus”, published 1908, it is
described as a new original way to introduce the child to geometric understanding
by starting with all kinds of three-dimensional models.

Apparently Felix Klein sensed the mathematical creativity and power Grace
Chisholm Young possessed. His trust in her talent was certainly a strengthening
factor for her mathematical confidence. Under his influence she changed from
a student to a research mathematician. I think, it was one of Felix Klein’s special
talents to recognise and support talented mathematicians regardless of gender.
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From St. Petersburg to Göttingen. About two female Felix Klein

undergraduate students

Joanna Zwierzyńska

The second half of the 19th century was a pivot period for women’s higher ed-
ucation. They were finally allowed to study at universities in several European
countries such as Switzerland or France. In the Russian Empire, they were still
not formally admitted to universities, but institutions aimed exclusively at them
gradually emerged, making higher education possible. The largest and best-known
such institution in the Russian Empire was the Bestuzhev Courses – a four-year
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course founded in 1878 in St. Petersburg that enabled women deprived of access
to universities to obtain higher education.

The idea of women’s higher education was promoted in the society of the Rus-
sian Empire by female activists leading the women’s movement in this country:
Nadezhda V. Stasova, Maria V. Trubnikova, and Anna P. Filosofova. They gained
support from wide circles of democratic intelligentsia, among others professors
of St. Petersburg University, to create such an institution [5]. Higher Women’s
Courses were named Bestuzhev Courses after Konstantin Nikolayevich Bestuzhev-
Ryumin (1829–1897), professor of history and their first director.

Bestuzhev Courses opened their doors to women of all social classes. To allow
women with worse financial situation to study, Filosofova, Stasova, and other
female activists created the Society for Providing Means of Support for the Higher
Women’s Courses, which organised book sales, lotteries, lectures, and concerts so
they could award scholarships to deserving women [4].

The Higher Women’s Courses had two faculties: one in history and philology
and the second one in mathematics and natural sciences. They stood out for their
excellent teaching staff as well as their facilities: they had excellently equipped
classrooms, and in 1880, the first chemical laboratory for women was provided. In
1903, a mathematical reading room was opened due to the students’ request [8].

The first women graduated from Bestuzhev Courses in 1882, four years after
the school was opened. Graduates of the courses were pioneers in almost every
scientific field in the Russian Empire and beyond - suffice it to say that among
them were for example the first woman to become an employee of the Pulkovo
Observatory, Russia’s first female petrographer and palaeontologist, founder of
the empire’s first women’s accounting courses, the first female climatologist in
Russia or the first female university professor in Romania.

Among the graduates of the Bestuzhev Courses were Helena Bortkiewicz (He-
lene von Bortkewitsch) and Aleksandra Stebnicka (Alexandrine von Stebnitzky),
both of Polish origin and of noble birth. Both came to Göttingen attracted by
the opportunity to study under Felix Klein’s tutelage. Klein was known as a firm
believer in the equal abilities of men and women, and he accordingly believed that
they should have access to the same educational opportunities [6].

Helena Bortkiewicz (Helene von Bortkewitsch) was born on 3.08.1870. Her
father was Józef Bortkiewicz, a Polish nobleman who served in the Russian army
with the rank of colonel, lecturer in artillery and mathematics at the military
academy, and author of textbooks on mathematics, economics, and bookkeeping.
Her mother was Helena (Helene) Bortkiewicz, née Rokicki (von Rokicka). Helena
(daughter) was the sister of the statistician and economist W ladys law (Ladislaus)
Bortkiewicz (von Bortkewitsch) (1869–1931).

Aleksandra (Alexandra, Alexandrine) Stebnicka (von Stebnitzky) was born
23.04.1870 in Tbilisi. She was a daughter of the Polish engineer, general Hieronim
Stebnicki (1832–1897), a cartographer, geodesist, geophisicist and a corresponding
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member of the Academy of Sciences in St. Petersburg, who worked in the orber-
vatory in Pulkovo, and his wife Praskowia. Alexandra’s sister Olga was mother of
Pyotr Kapitsa (Peter Kapitza), a famous phisicist and Noble laureate.

Both Helena Bortkiewicz and Aleksandra Stebnicka came to Göttingen in the
academic year 1894/1895 (W ladys law Bortkiewicz already had a PhD degree ob-
tained in 1893 in Göttingen, but in 1895 he worked in Strasbourg). Because of
their gender, they were not allowed to enter the matriculation book, but they
could attend lectures and seminars of professors who gave their consent. They not
only participated in Klein’s courses but also presented papers in his seminar. Both
enrolled in Klein’s lectures on differential (SS 1895) and integral (WS 1896/1897
– only Bortkewitsch) calculus, number theory (WS 1895/1896), theory of the top
(WS 1895/1896) and the mathematical theory of the gyroscope. Both partici-
pated in Klein’s seminar (SS 1895, WS 1895/1896, and only Bortkewitsch in WS
1896/1897) Each of them gave two talks at Klein’s seminar:

• 28 May 1895, Tuesday, Helene von Bortkewitsch, Differenzenrechnung.
• 31 May 1895, Friday, Alexandra von Stebnitzky, Summationsrechnung.
• 27 November 1895, Wednesday, Alexandra von Stebnitzky, Ueber die
ganzen Zahlen im Körper(i) und ihre Zerlegungssätze.

• 11 December 1895, Wednesday, Helene von Bortkewitsch, Grundlegung der
Idealtheorie.

An analysis of the notes shows that Aleksandra Stebnicka and Helena Bortkie-
wicz were well-prepared to deliver a fairly advanced lecture. Unfortunately –
neither of them was given the opportunity to pursue a real scientific career. With
their immense talents, excellent education and ample opportunities, they did not
realise a career in science.

Helena Bortkiewicz, after her stay in Göttingen came back to Russia. As Wolf-
gang Karl Härdle and Annette B. Vogt realised, ,,[she] published papers in Russian
journals, but the situation was not comfortable for her since the only widely ac-
cepted professions for women were as a physician or a teacher in a girls school”[2].
She worked for three years as a teacher of mathematics and languages. In February
1917 she became a staff member in a St. Petersburg bank [2].

After the October Revolution, Helena Bortkiewicz moved to Berlin, where she
lived from 1919 in her brother’s apartment in Berlin-Halensee After his death in
1931, she suffered severe financial problems [2]. She died 29.10.1939.

Aleksandra Stebnicka after studies came back to St. Petersburg and tried to
work scientifically. She was primarily an astronomer, not a mathematician, so it
is not a surprise that she became an astronomer in Pulkovo near St. Petersburg,
where she independently conducted astronomical observations, sponsored by the
Imperial Academy of Sciences in St. Petersburg. She died 28.04.1928.

We can only speculate how would Helena Bortkiewicz’s and Aleksandra Ste-
blicka’s fate look like if they did not meet the restrictions because of their gender.
It is, however, interesting to compare their story with that of their yearmate Teofil
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Friesendorff, also of Polish origin, also a member of the St. Petersburg Mathe-
matical Society and also a student in Göttingen in 1895, in particular, presenting
papers at a Klein seminar.

Teofil was immortalised in 1895 in a photograph of the Mathematical Society
in Göttingen, in which it is in vain to find any women, particularly his female
Polish colleagues. The same year, nine women studying mathematics in Göttingen,
including Helena and Aleksandra, formed a club, which can be interpreted as the
formation of the first women’s network of mathematicians [7]. Still, we do not
have any photograph of their society.

Two years after participation in Klein’s seminar, in 1897, Friesendorff attended
the First International Congress of Mathematicians in Zurich, and a few years
later, became a professor at the Electrotechnical Institute in St. Petersburg. Of
course, we can only speculate whether he was the most talented or hardworking
of their three – but I have not found any evidence to support this statement.
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Julio Rey Pastor, precursor of the modernization of mathematics in

Spain and Argentina under the inspiration of Felix Klein’s

Erlangen Program

Grodecz Alfredo Raḿırez Ogando

1. Historical Mathematical Context: Argentina in the 19th century

After gaining its independence in 1820, Argentina found itself in the need to de-
velop knowledge in both engineering and science. There are several attempts to
modernize mathematics by sending students to Europe or bringing scientists from
Europe. Two examples from the mid-19th century were shown. The first was
Santiago Cáceres who after studying theology and philosophy at the University
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of Cordoba, in 1853 the university sent him to study mathematics, physics and
astronomy with Weber and Gauss. When Cáceres returned, he was supposed
to occupy the chair of exact sciences. This did not happen due to bureaucratic
problems within the University of Cordoba.[12] The second example was Valentin
Balb́ın (1851-1901), he went to Oxford in 1872 to studied mathematics. In 1884
he returned to the University of Buenos Aires to the chair of Higher Mathematics.
In 1889 Balb́ın founded the ”Revista de Matemáticas Elementales” and in 1892 to
1896 Balb́ın was rector of the Unvercity of Bueno Aires [12].

2. Historical Mathematical Context: Spain in the 19th century and

beginning of the 20th century

José Echegaray y Eizaguirre (1832-1916) mathematician and writer, Nobel Prize
for Literature in 1904, gave in 1866 an acceptance speech to the “Real Academia de
las Ciencias Exactas, F́ısicas y Naturales” entitled: “Historia de las matemáticas
puras en nuestra España”. In it he seeks to show the level of regression of Spain
in the area of mathematics and proposed to promote basic sciences. The speech
was highly exaggerated to provoke a reaction in the Spanish scientific community
and the Spanish government [1].

There did not seem to have been a reaction on the part of the political or uni-
versity authorities, but rather a counter-reaction, since in 1875 academic freedom
was limited in all the universities of Spain and the study plans were drawn up for
all the universities from the university of Madrid. In response to this limitation,
the academic community began to found institutes outside the universities, such as
the “Instituto de enseñanza libre”. In its journal it has contributions from Rusell,
Tolstoy, Montessori, Darwin among other personalities of the scientific, cultural
and pedagogical world [8].

Another institution founded to promote scientific and cultural exchange was the
“Junta de Ampliación de Enseñanza e Investigaciones Cient́ıficas” (JAE) founded
in 1907. The JAE was in charge of coordinating the sending of Spanish students
to other countries. At a later stage, it was in charge of creating autonomous
laboratories independent of the universities. This is important, since the JAE is
an effort of Spanish academics to have more contact with scientists outside Spain
and thus improve the level of science in Spain [3].

3. Zoel Garćıa de Galdeano y Yanguas

In spite of this control in the periphery, some academic freedom was exercised,
as it happened at the University of Zaragoza in the Faculty of Sciences in the
mathematics course. This was the case of Zoel Garćıa de Galdeano y Yanguas
(1846-1924), who was professor of infinitesimal calculus in Zaragoza from 1889 to
1918 and taught courses in set theory, non-Euclidean geometry, algebraic geometry
and in 1907 he gave a short exposition of Felix Klein’s Erlangen program. With
them he sought to bring to his students the avant-garde mathematics that was
being carried out in Germany, France, England and Italy [1]. Garćıa de Galdeano
had contact with several German mathematicians such as George Cantor. In 1899
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Garćıa de Galdeano wrote a book on geometry which he dedicated to Felix Klein,
to whom he sent the book, as can be seen in a letter in the archives of the University
of Göttingen [2],[9],[6].

The interest in this international contact was shown by his participation in the
International Congresses of Mathematicians (1897, 1900, 1904, 1908, 1912, 1920).
In addition, at the Rome congress of 1908, he was appointed Spanish delegate to
the “International Commission on Mathematics Education” (ICME), where Felix
Klein was the president [1].

One tool Garćıa de Galdeano used to promote mathematical development among
his students was his personal library, known by his students as “La biblioteca de
Don Zoel”. This library had more than three thousand books with works by Klein,
Riemann, Cauchy, Darboux, Cantor, Weierstrass, Mittag-Leffler, Lie, Poincaré and
many others [7].

4. Julio Rey Pastor

Julio Rey Pastor (1888-1962), was born in la Rioja not so far from Zaragoza, was
a student of Garćıa de Galdeano from 1904 to 1908 and did his doctorate at the
University of Madrid, since at that time it was only possible to do a doctorate in
mathematics in Madrid or Barcelona [5]. As a student, he published several articles
in the “Revista trimestral de matemáticas” and in the “Anales de la Facultad de
Ciencias de Zaragoza” [11]. He obtained his doctorate degree under the advice of
Eduardo Torroja, with the thesis in synthetic geometry entitled: ”Correspondencia
de figuras elementales: Con aplicación al estudio de las figuras que engendran”.
He went to the Universtity of Oviedo for the chair of Mathematical Analysis at the
University of Oviedo in 1911 where he gave a provocative speech in a tone similar
to Echegaray’s, denying the existence of Spanish contributions to science [8]. In the
same year in October he obtains a scholarship to study at the University of Berlin
mathematical analysis and advance geometry. In Berlin he studied with Schwarz,
who was his tutor, and took courses with Frobenius, Knopp, Schotty and Schur
[12]. During his stay in Germany he had the opportunity to conduct research at
the university of Munich for a historical work on Spanish mathematicians of the
16th century [12].

In 1913 Rey Pastor obtains the chair of Mathematical Analysis at the University
of Madrid and in the summer of he went to Gottingen.This was a 14-month stay.
He attended courses taught by Carathéodory, Courant and Hilbert. He also took
part in seminars on number theory, led by Landau and on function theory led by
Herzglotz and Koebe.He had to suspend his stay in Göttingen earlier than planned
because of the war and before returning to Spain he went to Italy where he visited
Italian mathematicians [12].

As a result of his stays in Germany he publishes two very different articles in
geometry. The first one in 1912: “Geometric Theory of Polarity” more an article
on syntetic Geometry. The second in 1916: “Fundamentals of Higher Projective
Geometry.” The second is on algebraic geometry and in 1917, Rey Pastor worked
on problems related to the uniformization theorem of Riemann surfaces.
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What is notorious in some sources is that they say that in Göttingen he took
lectures or was a student of Felix Klein. However, in the Göttingen records of the
students who took courses with Klein, the name of Rey Pastor is not found. It is
possible that he may have met him or taken a course with him however this claim
cannot be proven.

In 1915 Rey Pastor gaves a series of six lectures on contemporary problems
of mathematics at the Ateneo de Madrid. The lectures were printed under the
title “Introducción a la Matemática Superio” and Hermann Weyl made a review
of this work in which he asked Rey Pastor: How did you manage to develop in
six lectures the essential ideas of contemporary mathematics? I do not cease to
admire as I read each line [12].

Rey Pastor implements at the university of Madrid with the help of JAE
structures for mathematical research in the tradition of Felix Klein’s seminar at
the university of Göttingen. In 1916 he founds the “Seminario de Investigación
Matemática” [10].

Rey Pastor was invited in 1917 by the “Institución Cultura Española” to give
a series of lectures at the university of Buenos Aires. This institution was cre-
ated by Spanish immigrants to Argentina and this institution had a chair within
the University of Buenos Aires. He gave the lectures of the “Introducción a la
Matemática Superior” and his stay in Argentina lasts five months, more than
what was planned [12], [10].

In 1921 Rey Pastor obtained a chair at the University of Buenos Aires, without
losing his chair at the University of Madrid where he went to give courses for a few
months every year until his retirement in 1962 with some interruptions [12].

In Buenos Aires the entrance in the university of Rey Pastor brings the modern-
ization of mathematics by founding, in the tradition of Felix Klein, mathematical
research seminars and their respective journals [12].

5. Conclusions

No evidence was found that Julio Rey Pastor was a student of Felix Klein. How-
ever, both in Spain and in Argentina he applied Klein’s program and the traditions
learned in Göttingen with the research seminars. It should be mentioned that Rey
Pastor already possessed this mathematical academic culture before his stays in
Germany through his teacher Zoel Garćıa de Galdeano. In this case, the work done
in Spain by Garćıa de Galdeano for the intruduction of the Erlangen Program and
the modernization of mathematics was transcendent and Rey Pastor was the one
who acted as an amplifier for the change of mathematical culture within the Klein
tradition, both in Spain and in Argentina.
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Adding Another Dimension – Felix Klein’s Influence from the

Perspective of David Hilbert, Adolf Hurwitz, and Hermann Minkowski

Jule Hänel

Felix Klein’s mathematical network was without doubt extensive. Part of this net-
work as his student was Adolf Hurwitz and as his later colleagues David Hilbert
and Hermann Minkowski, from whose perspective Klein’s influence on the mathe-
matical community between 1885 and 1919 is investigated here. The foundation for
this is the extensive correspondence between the three mathematicians, in which
Klein is one of the most frequently referenced personalities. In particular, com-
ments appearing on international students that are listed in the Klein protocols
[4] documenting his seminars in Göttingen are examined and evaluated.

Their early mathematical careers led the three mathematicians to Königsberg:
Adolf Hurwitz (1859-1919) was a Jewish mathematician who studied in Munich,
Leipzig, and Berlin, where he completed his habilitation under Schwarz and Weier-
strass before becoming an extraordinary professor in Königsberg in 1884. Hermann
Minkowski (1964-1909), also of Jewish origin, studied in Königsberg and Berlin
and spent his career between 1887-1896 as a lecturer and extraordinary professor
in Bonn and Königsberg. Finally, David Hilbert (1862-1943), who was born in
Königsberg, was a student in Berlin and Paris, extraordinary and later ordinary
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professor in Königsberg until 1895. Klein comments on their interaction in [1]:
“And fortunately around 1885, for almost a decade, a trio of young researchers
came together [...] in Königsberg, who put this tendency into practice in a new way
[...]” (p. 327f), where the last part refers to the combination of the mathematical
research areas of invariant theory, equation theory, function theory, geometry, and
number theory (compare [1], p. 327).

Having formed a friendship and established the habit of mathematical walks dur-
ing their common period in Königsberg 1884-1892, many personal and mathemati-
cal matters arise in the correspondence between Hilbert, Hurwitz, and Minkowski.
Between 1885 and 1919, 324 letters and postcards of the correspondence have
been found so far. Letters to Minkowski have been lost, whereas the letters from
Minkowski to David Hilbert have already been published in [2]. Most of the let-
ters between Hilbert and Hurwitz can be found in the archive of the university
of Göttingen, signatures Cod Ms D Hilbert 160 and Cod Ms Math Arch 76, a
few can be found in the archiv of the ETH Zürich library under the signature HS
583:51,52. The publication of the whole correspondence in chronological form is
joint work in progress with Nicola Oswald, Jörn Steuding, and Klaus Volkert.

Felix Klein is mentioned in over 90 letters/postcards in the correspondence. While
Adolf Hurwitz was a student under Klein in Leipzig and Munich and spent most of
his mathematical career in Zürich from 1892 until he died in 1919, David Hilbert
and Hermann Minkowski were colleagues of his in Göttingen. Klein succeeded in
hiring David Hilbert in 1895, marking the beginning of their common time there
until Klein died in 1925. Minkowski came to Göttingen in 1902 but died early in
1909. The three had a changing and at times close relationship with Klein.

International students of Klein, i.e. mathematicians who attended Klein’s sem-
inars and are listed in the seminar protocols, appear at various points of the
correspondence. Examples are Charles Jaccottet from Switzerland, who earned
his doctorate under Felix Klein in 1895 and was recommended to him by Hurwitz
from Zürich, Luigi Bianchi from Italy, Anne Lucy Bosworth Focke from America,
Annie Louise MacKinnon Fitch from Canada, and Giuseppe Veronese from Italy.
The most frequently mentioned international student is the Danish mathemati-
cian Charlotte Wedell (Baronesse Wedell-Wedellsborg), who was one out of four
women to participate in the first ICM meeting in Zürich in 1897. In the Klein
protocols [4], information can be found on when the students participated in the
seminars and what talks they gave; the participation of the female mathematicians
is documented nicely in [3], Table 1.1.

There is however much more to gain about the perception of Felix Klein’s
international influence from the correspondence between Hilbert, Hurwitz, and
Minkowski. For example, around 1893, many letters treat Chicago’s World Fair
and how Klein calls the three mathematicians for articles and reports from his
stay in America. His Evanston Lectures and other international and national
responsibilities of Klein are mentioned as well as (joint) seminars in Göttingen. Of
course, many social aspects describing the relationship between the three and Felix
Klein appear throughout the entire correspondence, changing tenor in phases. In
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this talk, impressions of this correspondence will shed light on how Klein and his
influence are perceived by David Hilbert, Adolf Hurwitz, and Hermann Minkowski.
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Greek traces regarding F. Klein’s activity

Christine Phili

In Göttingen “a seat of an international Congress of Mathematicians permanently
in session”as Carathéodory characterized it, some Greek mathematicians had the
privilege to attend Klein’s lectures.

Although Cyparissos Stephanos (1857-1917) never attended his lectures during
the preparation of his Thèse d’Etat, under Hermite’s supervision, started his cor-
respondence, with Felix Klein, who for all his life had a number of students came
from abroad.

The intensive mathematical activity of Stephanos, as well as the development
of international contacts from 1880 to 1890 appeared in his eight letters written in
French to Felix Klein, which exists in the Archives of the University of Göttingen.
From his post of archivist of the French mathematical Society, he contributed to
organize regularly the exchanges between French and German scientific societies.

Through Klein’s disciple Walther von Dyck, Stephanos in his unpublished letter
of the 29 September 1883 indicated his vivid interest to publish in Acta the French
translation of Erlanger Programm.

However in spite of Poincaré’s and Klein’s efforts as appeared in their letters
to Mittag-Leffler on the 14th of August 1883 and on the cod. F. Klein 21th June
1885, the Swedish mathematician never accepted this proposition.

In 1908 at the International Congress of mathematicians in Rome, Stephanos
thanks to Klein’s support was designed to be the Greek representative to the
International Commission of Mathematical Instruction. From this post he tried
to reform the teaching of Mathematics in Greece.

Athanassios Karagiannides (1868-?) by a fellowship from Greek government
continued his post doctoral studies in Göttingen; where he attended Klein’s lec-
tures during the academic year 1890-1891. In Klein’s Archives exists two letters of
this Greek student. The first one, written on the 23th of December 1891 constitutes
a formal letter of thanks but in his second letter one the Greek mathematician
developed his ideas in order to prove that “any polynom became a polygon”.
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In Karagiannides’s libel, The non Euclidean geometry from the antiquity until
today. A historic-critical study (Berlin, 1893), in which refused the existence
of the non-Euclidean geometry attacked Klein’s contribution “So, arbitrary and
façon de parler, Mr. Klein named the non Euclidean geometry with three names,
hyperbolic, elliptic and parabolic geometry”.

Nicolaos Hatzidakis (1872-1942) continued his post doctoral studies firstly in
Paris and in 1898-1899 in Göttingen, where attended the lectures of Klein, Hilbert
and Schönfliess. In 1899 Hatzidakis presented his paper on differential geometry
in Klein’s seminar.

Unfortunately as the Archives of Hatzidakis’ family seems to be lost we could
find Klein’s letter of introduction in Hatzidakis’ edited curriculum vitae. After
Hatzidakis’ election in the University of Athens in 1904, the next year introduced
the institution of seminars in Greece. When in 1918 the Greek Mathematical So-
ciety was founded, Nicolaos Hatzidakis was unanimously elected his first president
and one of his first target was to establish Realschule in Greece.

Constantine Carathéodory (1873-1950), who lead the most profound and per-
manent relationship with Klein, a successor of his chair, he maintained his esteem
and respect during all his life.

In this paper, we focus on two letters, written in Smyrna, where Carathéodory
after Venizelos’ invitation accepted to organize a new University. In his project
appeared Klein’s influence mainly in the department of Ethnology.

In his first letter written on the 11th of March 1921 after expressing his thanks
for the consignment of the first volume of his Gesammelte Abhandlungen, informed
his mentor for his activity in Smyrna.

In his second letter, on the 2th February 1922 written from in the magnificent
house of his ancestors in Istanbul, aware of the gravity of the situation and feeling
that the catastrophe will be a matter of time, unveiled the truth stressing that
“we are leaving the country”.

Unfortunately Toynbee’s statement regarding this chimeric institution came
true. The Ionian University never opened its gates as the tragic events of Septem-
ber 1922 swept.
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Abstract. Approximation techniques for high dimensional PDEs are cru-
cial for contemporary scientific computing tasks and gained momentum in
recent years due to the renewed interest in neural networks. It seems that
especially nonlinear parametrizations will play an essential role in efficient
and tractable approximations of high dimensional problems. We held a mini-
workshop on the relation and possible synergy of neural networks and tensor
product approximation. To reliably evaluate the prospect of different nu-
merical experiments, the traditional talks were accompanied by live coding
sessions.
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Introduction by the Organizers

The workshop Nonlinear Approximation of High-dimensional Functions in Scien-
tific Computing, organised by Mathias Oster (RWTH Aachen), Janina Schütte

(WIAS Berlin) and Philipp Trunschke (École Centrale de Nantes) was attended
by 17 people (16 on-site and 1 online) with affiliations for example in Germany,
the US, the UK, France, Italy and the Netherlands. The program consisted of 16
talks (50 minutes) and three coding sessions (90 minutes), allowing for extended
discussions throughout the workshop. Conversations with all participants lead to
a positive conclusion. The workshop was a success fostering new collaborations,
strengthening standing connections and providing the space to learn about other
attendees research in the talks, while also having time to discuss new ideas during
breaks and the coding sessions.
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Topic. Numerous state-of-the-art applications in engineering and physics rely on
the efficient solution of high-dimensional partial differential equations (PDEs) with
controllable precision and reliable error bounds. But classical methods like finite
differences, finite elements and finite volumes are limited to low dimensions due
to an exponential growth in complexity. To circumvent this curse of dimension-
ality, new approximation methods such as sparse approximations, tensor product
approximations and neural networks have been developed.

This mini-workshop explored the benefits and limitations of contemporary meth-
ods for neural network and tensor network approximations of high-dimensional
functions and used the generated insights to discuss possible new and improved
tools. Here, the coding session allowed the participants to explore some new ideas
on-site, as for example using a combination of (global) linear transformation and
tensor trains to reduce the ranks, exploring the implicit bias observed for linear
networks as well as synthesising tensor trains with neural networks by using func-
tional tensor trains whose basis functions are parametrised by neural networks.
The following topics have been discussed in the workshop.

• Theory-to-practice gap The theory-to-practice gap describes two or-
thogonal phenomena in machine learning. On the one hand, it is often
observed that neural networks outperform their theoretical expressivity
bounds when the required accuracy is moderate. In particular, many
proofs for approximation rates of neural networks show that certain net-
work architectures are able to model classical approximation schemes.
It is thus natural to ask when the trained networks can perform better
than these classical algorithms and manifest the first interpretation of the
theory-to-practice gap. On the other hand, the theory-to-practice gap
describes the practical difficulty of estimating neural networks from point
evaluations. Theoretical constructions demonstrate that the required sam-
ple size may suffer from the curse of dimensionality and practical experi-
ments substantiate that even the approximation of “simple” functions, like
the square x 7→ x2, is difficult to high-accuracy. This obviously depends on
the distribution of the data and may be alleviated by model- and problem-
dependent importance sampling schemes. However, theoretical results in
this direction are currently sparse and first advances for the special case
of tensor networks have been discussed in the workshop. As of now, it
remains unclear if the theory-to-practice gap for general neural networks
can be bridged or if it is a fundamental limitation of the model class akin
to the concept of the “condition number” in numerical linear algebra.

• Neural Operators For neural operator techniques as Deep-O-Net or
Fourier-Neural-Operators it is often claimed that they can approximate
mappings from one functional space to another functional space with “dis-
cretisation invariant” schemes. These invariance claims have have been dis-
cussed and some counter examples have been presented. This also leads to
interesting tasks of correct sampling of functional spaces (“Besov priors”).
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• Mean-Field Limit Two mean field generalisations of deep learning, based
on neural ordinary differential equations (neural ODEs) have been dis-
cussed. The first approach considered the learning problem in the mean-
field limit of the data. In this setting, the learning problem can be in-
terpreted as an optimal control problem in Wasserstein space, where the
initial data distributions is transported by means of a neural network (the
control). Another approach, presented the infinite width and depth limit
of neural networks as neural ODEs with Barron functions as vector fields
and formulated an corresponding abstract optimal control problem with
measure-valued controls.

• Optimisation The abundance of local minima in learning tensor net-
works and neural networks leads to an influence of the chosen optimisation
scheme on the resulting generalisation performance. Of particular interest
in this context is the implicit regularisation in the context of overparame-
terisation (more parameters than training data), i.e., which networks are
favoured by such algorithms. This implicit bias was discussed for neural
networks with linear and non-linear activation functions. In the optimi-
sation of tensor methods optimal sampling strategies and active learning
have been of interest.

• Synthesising Techniques Finally, part of the workshop was concerned
with combining tensor decomposition methods with more classical ap-
proaches, such as sparse approximation schemes, for solving time-space
discretisations of parabolic PDEs and model order reduction techniques
for optimal controls of the Navier–Stokes equation.

As expected, these complex open problems were not solved in one week. Nev-
ertheless, discussions in all considered areas were productive and new ideas and
collaborations were found.
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Janina Schütte (joint with Martin Eigel)
Convolutional neural networks for parametric PDEs . . . . . . . . . . . . . . . . . 2803



Nonlinear Approximation of High-dimensional Functions 2777

Abstracts

Semi-global Optimal Control Problems and their Applications to

Machine Learning

Mathias Oster

(joint work with Angela Kunoth, Reinhold Schneider)

Learning a function f : Rd → R by deep neural networks with activation function
σ in for example the L2 norm can be interpreted as an abstract optimal control
problems with measure-valued controls µ(t) of the form

min
µ(·)

J (µ(·)), J (µ(·)) =

∫

Rd
‖f(x) −

∫
aσ(A z(T, x) + b) dµ(t; a,A, b)‖2dx

s.t.
d

dt
z(t, x) =

∫
aσ(Az(t, x) + b) dµ(t; a,A, b), z(0, x) = x

and provides an interesting mathematical framework to analyse the expressivity
and optimization of deep neural networks from a continuous point of view. This
control problem can be seen as an infinitely deep neural network with distinguished
last layer. Here we exploit the ideas of Barron spaces as continuous interpretation
of infinitely wide shallow networks and neural odes as infinitely deep residual
network architectures. This continuous interpretation might allow one to deduce
new adaptive algorithms for neural network that change the depth and width of
the neural network during the training process.

First, we show the existence of minimizers to the optimal control problem by using
Prokhorov’s theorem on tight measures and some regularity assumptions on the
activation function and classical compactness and continuity arguments.
Secondly, we analyse analyse the gradient flows corresponding to optimizing the
map µ(·) → J (µ(·)) in the space of probability measures. To that end, we intro-
duce a fibered Wasserstein metric on probability measures with bounded second
moment and fixed first marginal and define the notion of absolute continuous
curves. Furthermore, we define a notion of Wasserstein gradient and exemplify
it on the example of a potential functional E(µ) =

∫
V (u)dµ(u) for some twice

continuously differentiable function V . By using the equivalence of absolute con-
tinuous curves and solutions to the continuity equation we can state the gradient
flow equations for the optimal control problem and we sketch the proof of existence
of gradient flows based on the so-called generalized minimizing movement.

Lastly, we propose a first näıve algorithm to deal with flexible architectures and
provide some very first examples.



2778 Oberwolfach Report 48/2023

References
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Approximation of high-dimensional functions with tensors and

neural networks

Ivan Oseledets

Approximation of multivariate functions is a notoriously difficult task. In this
talk, I discussed two different approaches: tensor decompositions and neural net-
works/operators.

The idea behind tensor decompositions is based on the separation of variables.
Several tensor formats exist that utilize this idea: the simple canonical decompo-
sition, which has well-known problems with stability if used as a general approxi-
mation tool, and SVD-based tensor formats such as tensor train and Hierarchical
Tucker (H-Tucker). Using those formats, one can often approximate functions with
high precision. Moreover, for a special class of functions written in the so-called in-
verse Polish notation, we can constructively represent tensors with optimal ranks.
Some applications include computation of the matrix permanent and cooperative
games, for more details see [3]. The idea of quantized tensor train (QTT) uses the
procedure of tensorization. For example, given a function f(x) = sin(x) we can
create a vector v = 2d of length d of values of this function on a uniform grid and
reshape it into a 2× 2× . . .× 2 d-dimensional tensor. For this example, the QTT-
ranks will be equal to 2, giving logarithmic complexity. Moreover, one can show
that for a certain class of functions QTT-representation gives the approximation
of a function with complexity O(logα ε), where ε is the approximation accuracy
[4, 5].

However, it is also clear that there are important cases when tensor approxi-
mation fails, for example, for function with diagonal singularities like

f = e−x
2/2e−y

2/2e−|x−y|.

A big alternative are neural networks, which are universal function approximators.
However, the converger of the error with respect to the number of parameters is not
well understood. A promising class of functions seems to be Deep-ReLU networks,
especially due to the results of Yarotsky [7]. It can be shown, for example, that a
function f(x) = x2 can be well-approximated using DeepReLU network and the
error decays exponentially with the depth. Based on this result, one can show
that polynomials can be well-approximated and large classes of functions. In [6]
we showed that even for the simplest one-dimensional example it is not possible to
recover such a good Deep ReLU representation: instead of 10−6 we get 10−2−10−3

error of approximation at its best. The reason for that is the loss function is very
“narrow” in this particular point. The current understanding of the situation is
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that deep feedforward networks can be very unstable in training, and we need to
look for alternatives.

A promising direction is the approximation not of the solutions, but of the map-
pings using so-called neural operators. Neural operator is a parametrized mapping
from a function (element of a Banach space) to another function (Banach space),
and they are quickly gaining popularity. Popular approaches include DeepONet
[8] and Fourier Neural Operator (FNO). All of them still can not be considered as
real operators, and they do not improve with better discretizations, as standard
methods. However, in many cases they provide an extremely fast surrogate model.

Among open problem for training neural operators, I want to highlight the fol-
lowing one. A standard approach is to construct a dataset of input-output pairs.
The input pair (for example, coefficient in the diffusion equation) is sampled from
a certain probability distribution over functions. But this distribution is taken
empirically, like random mixture of Gaussians or random trigonometric polynomi-
als. However, it is not clear why these functions are used for training, and what is
the motivation for using such kind of functions. The research question, that needs
an answer is what the optimal (or quasioptimal) way of sampling input data for
different kinds of problems, where neural operators are used? Understanding and
the solution of the problem may be the key for the generalization of such neural
operators and their wider usage.
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Optimal Sampling for Approximate Gradient Descent

Philipp Trunschke

(joint work with Robert Gruhlke, Charles Miranda, Anthony Nouy)

We consider the problem of minimising a loss functional

minimisev∈M L(v), L(v) :=

∫
ℓ(v;x) dρ(x)

over a possibly nonlinear model class M ⊆ H in a Hilbert space H. When com-
puting the integral is infeasible, a common approach is to replace the exact loss L
with a Monte Carlo estimate before employing a standard gradient descent scheme.
This results in the well-known stochastic gradient descent (SGD) method. How-
ever, using an estimated loss instead of the true loss can result in a “generalisation
error”. Rigorous bounds for this error usually require compactness of M and Lip-
schitz continuity of L while providing a very slow decay with increasing sample
size. This slow decay is unfavourable in settings where high accuracy is required
or sample creation is costly.

To address this issue, we propose a new approach that performs successive cor-
rections on local linearisations of M. To be specific, we suppose that in every
step t ∈ N there exists a linear space Tt that approximates M locally around
the current iterate ut. Given the gradient gt := ∇L(ut) and an estimator Pnt of
the H-orthogonal projector Pt onto Tt, we then perform a linear update ūt+1 :=
ut − stP

n
t gt in direction of the (empirically) projected negative gradient −Pnt gt.

This yields the intermediate iterate ūt+1. Since the ūt+1 is not guaranteed to lie
in the original model class M, we perform a recompression step ut+1 := Rt(ūt+1),
where Rt : H → M takes the linear update ūt+1 back to the model class M with
a controllable error in the loss L. The proposed algorithm can thus be presented
in the two equations

ūt+1 := ut − stP
n
t gt, gt := ∇L(ut),

ut+1 := Rt(ūt+1).

We show that under certain assumptions on the loss L and the sequences of pro-
jectors Pnt , step sizes st and recompressions Rt, the resulting optimisation scheme
converges almost surely to a stationary point of the true loss. The corresponding
rates of convergence are displayed in Table 1. The proposed algorithm exhibits
the same convergence rates as classical gradient descent (GD) in the best case but
can never perform worse than SGD. We pay particular attention to the estimation
of the projectors Pnt , which must be carried out using optimally weighted samples
in order to achieve the presented rates.
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GD Best-case Worst-case SGD

L-smoothness O(t−1) O(t−1+ε) O(t−1/2+ε) O(t−1/2+ε)
strong convexity O(at) O(at) O(t1−2ε) O(t1−2ε)

Table 1. Almost sure convergence rates for different algorithms
with ε ∈ (0, 12 ) and a ∈ (0, 1) depending on the chosen step size.

Tensor train approximation of deep transport maps

Sergey Dolgov

(joint work with Tiangang Cui, Robert Scheichl, Olivier Zahm
and workshop participants)

A challenging example of high-dimensional functions is joint probability density (or
distribution) functions of multiple random variables. Sampling and computation
of expectations of high-dimensional random variables is one of the fundamental
challenges in stochastic computation. We develop a deep transport map that is
suitable for sampling concentrated distributions defined by an unnormalised den-
sity function [1]. We approximate the target distribution as the pushforward of
an easy reference distribution under a composition of inverse Rosenblatt trans-
formations of coordinates. Each transformation is formed by a tensor-train (TT)
decomposition of a bridging density, which is a simplified version of the target
density. This composition of maps moving along a sequence of bridging densities
alleviates the difficulty of approximating the concentrated target density directly.
In contrast to neural network layers, each Rosenblatt map is fully defined by its
bridging density, and can be computed independently of next layers by fast TT
cross algorithms. We propose two bridging strategies suitable for wide use: tem-
pering of the target density with a sequence of increasing powers [1], and smoothing
of an indicator function with a sequence of sigmoids of increasing scales [3]. The
latter strategy opens the door to efficient computation of rare event probabilities
in Bayesian inference problems. Numerical experiments on problems constrained
by differential equations show little to no increase in the computational complexity
with the event probability going to zero, and allow to compute hitherto unattain-
able estimates of rare event probabilities for complex, high-dimensional posterior
densities.

One drawback of the TT decomposition though is its sensitivity to the order of
variables. Probability density functions with locally correlated variables exhibit
typically low TT ranks [4], whereas if the same variables are permuted in such
a way that strongly correlated variables are far apart in the random vector, the
TT ranks may increase up to an exponential factor. Permutation (or even bet-
ter, rotation) of variables may significantly expand the applicability of TT-driven
approximation methods to higher dimensions and more complicated functions. In
principle, this is the problem that is tackled by the Rosenblatt map. However,
if the initial dimension is very high, it may still be daunting to compute a TT
approximation, even for simple bridging densities. In this case it may be useful
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to identify unimportant variables (e.g. those in which the function is almost con-
stant), and truncate them altogether. If the function to be approximated is a
posterior density function of exponential family, the eigenvalue decomposition of
the information matrix computed from the gradient of the log-likelihood can be
used to inform the permutation or rotation of variables [2]. This allowed us to solve
a Bayesian inverse problem constrained by an elasticity PDE with a thousand of
random variables.

Both techniques outlined above require a function to be of a probability density
form to compute the Rosenblatt map or the information matrix. Efficient tensor
methods for very high dimensional functions which are neither positive nor easily
differentiable are still lacking. During the workshop, we have come up with an idea
of learning a matrix of linear change of variables simultaneously with a low-rank
TT decomposition from data such as random samples of the function. Preliminary
experiments with simple functions demonstrated that a nearly optimal rotation of
variables is achievable using a moderate amount of function evaluations. However,
further research is needed to make this technique useful for higher dimensions and
concentrated functions, sampling of which is difficult.
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Curse-of-dimensionality-free deep-learning approaches to deterministic

control problems

Lars Grüne

(joint work with Dante Kalise, Luca Saluzzi, and Mario Sperl)

It is known that deep neural networks have the ability to represent certain classes of
high-dimensional functions without being affected by the curse of dimensionality.
One of these classes are the so-called Barron functions. However, the usual way
to check that a function falls into this class is by checking suitable smoothness
properties, which cannot be expected to hold for the functions to be approximated
in typical deterministic control problems.

Another prominent function class for which the curse of dimensionality can be
avoided, the so-called compositional functions, have recently been shown to be
a promising system class for problems involving deterministic dynamical systems
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[2, 4]. In this talk, we have explained the ability of the simplest functions in this
class, the so-called separable functions, to approximate control Lyapunov functions
and optimal value functions.

For control Lyapunov functions, the requirement of separability is closely linked
to the kind of Lyapunov functions that can be obtained from nonlinear small-gain
theory, which is used for this purpose in a control context e.g. in [1]. While this
approach is in principle constructive, it suffers from the fact that the construction
of the resulting control Lyapunov functions is quite complicated. Here neural
networks can provide a remedy, because the theory is only used for designing the
architecture of the network, while the actual separable structure is learned in the
training process of the network [3]. More precisely, small-gain theory ensures the
existence of a control Lyapunov function V of the separable form

V (x) =

s∑

i=1

Vi(zi),




z1
...
zs


 = Tx,

where the low-dimensional subvectors zi are obtained from the original high-
dimensional state vector x by some coordinate transformation T , but the com-
putation of T and of the individual Vi is left to the training process of the neural
network.

For optimal value functions, separability is in general a too demanding property,
as exploiting the interaction between different subsystems is usually a prerequisite
for achieving optimality. However, when the subsystems are connected via a graph,
it seems reasonable to expect that subsystems that are far away (in terms of
the graph distance) only interact with each other very weakly. This heuristic
expectation can be made rigorous in the framework of decaying sensitivity [5]
and exploited for a curse-of-dimensionality-free approximation of optimal value
functions V via overlapping separable functions

V (x) =

s∑

i=1

Wi(zi), zi =




xj1
...
xjk


 ,

where each component xj of the state vector may occur in several of the subvectors
zi but the number k of components appearing in each zi is bounded independent of
the overall dimension. Under an exponential sensitivity assumption, first rigorous
error estimates for such an overlapping separable approximation were obtained in
[6].
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A statistical Tensor Train - POD approach for feedback boundary

optimal control in fluid dynamics

Luca Saluzzi

(joint work with Sergey Dolgov and Dante Kalise)

Consider the optimal control problem

(1)

{
inf
u∈U

J(u(·, x)) :=
∫ +∞

0 y(s)⊤Qy(s) + u⊤(s)Ru(s) ds ,

subject to ẏ(s) = f(y(s)) +B(y(s))u(s), s ∈ (0,+∞),

where y(0) = x and U = L∞([0,+∞);U) is the set of admissible controls. For
a given initial condition x ∈ Rd, we define the value function associate to the
optimal control problem (1) as

V (x) = inf
u∈U

J(u(·, x))

which, by standard dynamic programming arguments, satisfies the following Hamil-
ton-Jacobi-Bellman PDE

(2) min
u∈U

{
(f(x) +B(x)u)⊤∇V (x) + x⊤Qx+ u⊤Ru

}
= 0, x ∈ Rd.

The HJB PDE (2) is a challenging first-order fully nonlinear PDE cast over Rd,
where d can be arbitrarily large, and thus intractable through conventional grid-
based methods. However, in the unconstrained case, i.e. U = Rm, the minimizer
of the l.h.s. of eq. (2) can be computed explicitly as

(3) u∗(x) = −1

2
R−1B(x)⊤∇V (x).

In this context we propose to approximate the value function together with
its gradient in a data-driven approach, learning a surrogate model for the value
function via adaptive sampling of the solution of the HJB (2). The synthetic data
are generated via the so-called State-Dependent Riccati Equation (SDRE), an
extension of the Riccati solution to nonlinear dynamics. By writing the dynamics
in semilinear form

(4) ẏ = A(y(t))y(t) +B(y(t))u(t),

equation (2) can be approximated as

(5) A⊤(x)Π(x) + Π(x)A(x) − Π(x)B(x)R−1B(x)⊤Π(x) +Q = 0 ,
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which is obtained by applying the ansatz V (x) = x⊤Π(x)x with a gradient ap-
proximation ∇V (x) ≈ 2Π(x)x. At this point, similarly to [1], the value function
is represented in Functional Tensor Train (FTT) format
(6)

V (x) ≈ Ṽ (x) :=

r0∑

α0=1

r1∑

α1=1

· · ·
rd∑

αd=1

G
(1)
(α0,α1)

(x1) · · · G(k)
(αk−1,αk)

(xk) · · · G(d)
(αd−1,αd)

(xd),

with

G
(k)
(αk−1,αk)

(xk) =

nk∑

i=1

Φ
(i)
k (xk)H

(k)
(αk−1,i,αk)

,

where {Φ
(i)
k (xk)}nki=1 are prescribed basis functions and {rk}dk=1 are called TT

ranks.
Given certain sample points {xi}Ni=1 and the dataset {V (xi), ∇V (xi)}Ni=1 com-

puted by SDRE, we are interested in determining the coefficient tensors
{H(1), . . . , H(d)} which characterize the FTT representation Ṽ (x) introduced

in (6), solving the regression problem

min
H(1) ,...,H(d)

N∑

i=1

|Ṽ (xi) − V (xi)|2 + λ‖∇Ṽ (xi) −∇V (xi)‖2,

which is approximated by an alternating direction strategy and a TT cross inter-
polation technique [2, 5]. The TT Cross enables to adapt the sampling sets to
minimize the conditioning of the interpolation problem, avoiding the evaluation of
the function on the whole tensorial grid. The methodology has been successfully
applied to the optimal control of a multi-agent system, where the TT ranks of the
approximation of the value function presented a constant behaviour varying the
dimension of the system, yielding an effective mitigation of the curse of dimen-
sionality. However, the dimension of the value function is still that of the state
space, leading to a very large number of unknowns in the approximation ansatz
and training data. A possible way to tackle this problem is given by the applica-
tion of Model Order Reduction (MOR) techniques. One of the most famous MOR
method is the Proper Orthogonal Decomposition (POD), which synthesizes a set
of snapshots capturing the behaviour of the system and looks for basis functions
that capture the major variations in the data. In contrast to existing techniques,
we propose a Statistical Proper Orthogonal Decomposition (SPOD) which takes
into account controlled trajectories treating boundary conditions and initial condi-
tion as random variables. The corresponding reduced basis is chosen to minimize
the empirical risk for the controlled solution, avoiding any linearisation of the dy-
namical system. Once computed the basis and projected the system, the reduced
dynamics can be employed for either a fast online computation of the optimal
control or an efficient synthesis of a dataset for the construction of a TT surro-
gate model. The methodology has been tested on the vorticity stabilization of
the 2D Navier-Stokes equations, whose discretization employs several thousands
of degrees of freedom.
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A Mean-Field Optimal Control Approach to the Training of

NeurODEs & AutoencODEs

Cristina Cipriani

(joint work with Benôıt Bonnet, Massimo Fornasier, Hui Huang,
Alessandro Scagliotti and Tobias Wöhrer)

In recent years, neural networks have emerged as a significant tool in artificial in-
telligence. However, there exists a pressing need for a robust mathematical frame-
work to systematically analyze their intricate characteristics. A key theoretical
advancement involves interpreting deep neural networks with residual connections
(or shortcut connections) as dynamical systems, as outlined in the works [1] and
[2]. The information flow from input to output in a network with an infinite
number of layers can be expressed in the continuum limit as:

Ẋ(t) = F(X(t), θ(t)),

This leads to nonlinear neural ODEs (NeurODEs), where time takes the role of
the continuous-depth variable. This perspective allows the interpretation of neu-
ral network learning problems as continuous-time control problems, which provides
access to the extensive literature of mathematical control theory, potentially en-
hancing the overall explainability of learning algorithms. Relevant works in this
direction include [3] and [4].
Our work in [5] focuses on the mean-field formulation of the control problem,
specifically addressing the scenario of an infinitely large dataset. We examine the
evolution of the distribution µ0 of initial data through the network as a partial
differential equation, subsequently considering the corresponding mean-field opti-
mal control problem. In [5], we establish first-order optimality conditions through
a mean-field Pontryagin Maximum Principle, derived as a consequence of an ab-
stract Lagrange multiplier rule in the Banach space of Radon measures.
However, it is crucial to note that NeurODEs encounter limitations when mod-
eling neural networks with discrepancies in dimensionality between consecutive
layers. Skip connections with identity mappings necessitate a ”rectangular” net-
work shape, where the width of layers is uniform. To address this limitation



Nonlinear Approximation of High-dimensional Functions 2787

and enhance the network’s capacity, we introduce a novel design of the vector
field driving the dynamics in [6]. This continuous-time model accommodates var-
ious width-varying neural networks and builds upon insights from our previous
work [5]. Furthermore, in [6] we extend our framework to encompass the low-
Tikhonov regularization regime. For the continuous-time version of Autoencoders
(AutoencODEs), we propose a novel discrete architecture and an alternative train-
ing method based on the Pontryagin Maximum Principle. To demonstrate the
effectiveness of our approach, we present informative numerical examples offering
valuable insights into the resulting algorithm.
Finally, we leverage the well-established theory of optimal control to address the
lack of robustness in neural networks against data manipulation, commonly known
as adversarial attacks. These attacks involve small changes of the inputs, which
lead to significant modifications in the model outputs. In [7], we interpret the
adversarially robust learning problem arising in machine learning as a minimax
control problem

min
u

E(x0,y)∼µ

[
max
‖α‖≤ǫ

Loss(θ, x0 + α, y)

]
,

where the initial data and labels (x0, y) are drawn from an underlying data
distribution µ, and Loss(u, x0, y) quantifies the prediction accuracy. We derive the
Pontryagin Maximum Principle for this problem using separation of Boltyanski
approximating cones, as presented in [8], and develop a numerical method to
address the robust learning problem, which is used for low-dimensional examples.
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Spectral approximation of Lyapunov operator equations with

applications in non-linear feedback control

Bernhard Höveler

(joint work with Tobias Breiten)

Let a (non-linear) dynamical system be given as
{

d
dtx(t) = f(x(t)), for t ∈ (0,∞)
x(0) = z

for some f : Rn → Rn and let us define the Lyapunov function v to a given cost
g : Ω ⊆ Rn → R+ as follows

v(z) :=

∫ ∞

0

g(Φt(z)) dt for z ∈ Ω

where the flow Φt(z) is defined as the mapping from the initial value z to the state
x(t) with x(0) = z at time t, i.e Φt(z) := x(t). Computing such a function is a
challenging task both from the numerical as from the analytical side. One of the
main numerical challenges arises, when n is large and therefore the system is high
dimensional.
One of the main results of this talk is that we can define a weak-* continuous
semigroup

S∗(t) : X∗ → X∗

φ 7→ φ ◦ Φt

and that there exists a preadjoint S(t). Here X and X∗ are some specially
weighted Lp (Ω) spaces. The weighting assures the exponential decay under some
assumptions. It is shown that – if the cost function g admits the decomposition
g(x) =

∑∞
i=1 ci(x)2 – the Lyapunov function v can be written as

v(x) =

∞∑

i=1

pi(x)2

where pi are the eigenfunctions of the symmetric bilinear form

〈φ, ψ〉P =

∫ ∞

0

〈Cφ,Cψ〉ℓ2 dt with Cφ :=
(
〈φ, ci〉X,X∗

)
i∈N

.

Furthermore, it can be shown that the error to a finite rank approximation decays
with a rate that is depending on the regularity of the ci and f . Lastly, the generator
A of the semigroup S can be used to show that P is the solution to an operator
Lyapunov equation of the form

〈Aφ,ψ〉P + 〈φ,Aψ〉P + 〈Cφ,Cψ〉ℓ2 = 0 for all φ, ψ ∈ D(A) ⊆ X

which can be exploited for a numerical method. The proposed scheme relies on a
low rank approximation and a splitting integrator to solve a corresponding time
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Figure 1. First six eigenfunctions (left) and the Lyapunov func-
tion ( right ) of a modified van der pool oscillator.
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Figure 2. Maximum error of the proposed scheme applied to the
discretized Allen Cahn model.

dependent problem. To overcome the curse of dimensionality tensor trains (TT)
are used. This leads to an approximation of the Lyapunov function of the form

vh(x1, . . . , xn) := Re

k∑

j,j′

n∏

i=1

G
(j)
i (xi)M̃j,j′

n∏

i=1

G
(j′)
i (xi)

where G
(j)
i : [−1, 1] → Rr

(j)
i

×r
(j)
i+1 are matrix valued functions for j = 1, . . . , k and

i = 1, . . . , n while M̃ ∈ Ck×k.

However, in contrast to a neural network the TT-approximation depends on the
chosen basis and from an analytical standpoint it is not immediately clear what a
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good choice of basis might be. A possible mitigation might be to optimize over the
choice of basis as well, which leads to an optimization over the Stiefel manifold.

Another area of interest is the inclusion of control. Ongoing research suggests
that a non-linear operator equation similar to the Riccati equation is suitable.

〈Aφ,ψ〉P + 〈φ,Aψ〉P − 1

2

∞∑

k=1

(〈Mkφ,Bkψ〉P + 〈Bkφ,Mkψ〉P ) + 〈Cφ,Cψ〉ℓ2 = 0

Where:

B∗
kφ := pkb

⊤∇φ and Mkφ := b⊤∇pkφ
However, the non-linear nature makes the analysis of this equation much more
difficult.
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Functional SDE approximation inspired by a deep operator

network architecture

Martin Eigel

(joint work with Charles Miranda)

We are concerned with the efficient generation of solution trajectories of SDEs by
training a specific neural network (NN) architecture called SDEONet. This archi-
tecture is inspired by recent development in the area of operator learning, where
operators in infinite dimensional spaces are represented with NNs. In particular,
we refer to the analysis on deep operator networks (DeepONets) in [1]. These are
composed of two NNs, a branch and a trunk network, representing learned basis
coefficients (branch) of a linear combination of a learned reduced basis (trunk),
respectively. To transfer this functional framework to the task of solving SDEs,
we make use of the representability of any process Xt ∈ L2(Ω,F ,P) in terms of a
Wiener chaos expansion

(1) Xt =
∑

k≥0

∑

|α|=k

xα(t)

∞∏

i=1

Hαi

(∫ T

0

ei(s) dWs

)

︸ ︷︷ ︸
Ψα

,

with univariate Hermite polynomials Hn of degree n and a basis (ei)i≥1 of
L2([0, T ]), which we choose to be the Haar basis. The coefficients x can be ob-
tained by projection onto the Wiener chaos but also follow the dynamics of an
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ODE [2]

dxα
dt

(t) = µ(t,Xt)α +

∞∑

j=1

√
αjej(t)σ(t,Xt)α−(j),(2)

xα(0) = 1α=0x0.(3)

Our SDEONet architecture is a mapping from Brownian increments to the re-
alization of the respective SDE trajectory as depicted in Figure 1 with input G
consisting of integrals of ei as in (1). It can hence be seen as an alternative
approach to the standard Euler-Maruyama simulation scheme.

Figure 1. Sketch of SDE trajectory generation by the SDEONet architecture.

We consider the continuous stochastic process (Xt)t∈[0,T ] that satisfies the sto-
chastic differential equation (SDE)

(4) dXt = µ(t,Xt) dt+ σ(t,Xt) dWt, with X0 = x0,

and (Wt)t∈[0,T ] a Brownian motion on a filtered probability space (Ω,F , (Ft)t∈[0,T ],
P).

Figure 2 illustrates the representation of the functional mapping (of the stochas-
tic process operator G) by the SDEONet architecture. First, the encoder maps

the Brownian increments W to (Gi)
m−1
i=0 with Gi :=

∫ T
0
ei(t) dWt. Second, the

approximator maps (Gi)
m−1
i=0 to approximate polynomial chaos Ψk∗

j
. These two

operations constitute the branch net. The trunk net approximates the coefficient
functions xk∗

j
(t). The reconstructor uses branch and trunk to approximate the

trajectory (Xm,p∗

t )t∈[0,T ].
For the convergence and complexity analysis, we consider a decomposition of

the error E into (Wiener chaos) truncation [2], NN (Hermite) polynomial approx-
imation [4] and reconstruction (with approximate ODE coefficients) [3],

E :=

(∫ T

0

E[|Xt − X̃m,p
t |2] dt

)1/2

≤ ETrunc + EApprox + ERecon.

For all three terms, convergence rates and NN complexity bounds can be derived.
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L2([0, T ] × Ω) L2([0, T ] × Ω)

L2(Ω,R)m L2(Ω,R)p

Encoder
W 7→ G := (G1, . . . , Gm)

G

Approximator

G 7→ (Ψ̃1, . . . , Ψ̃p)

Reconstructor
Ψ̃ 7→∑p

i=1 x̃iΨ̃i

Figure 2. Diagram of the SDEONet operator mapping.
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Approximating Langevin Monte Carlo with ResNet-like Neural

Network architectures

Charles Miranda

(joint work with Martin Eigel, Janina Schütte, David Sommer)

Deep Neural Networks (DNNs) have demonstrated their success in solving com-
plex numerical problems, such as image classification, regression, kernel learning
and solving partial differential equations (PDEs). Therefore, significant attention
is given to establishing theoretical guarantees on the expressive abilities of DNNs.
Deep neural networks (DNNs) have overcome the curse of dimensionality, espe-
cially when it comes to approximating Kolmogorov partial differential equations
(PDEs) [1]. The latter demands a polynomial growth of parameters with the in-
crease in dimension and expected precision, yet DNNs offer a potent workaround,
thus presenting a remarkable achievement. Our study aims to sample from smooth
log-concave probability distributions dµ∞(x) ∝ exp(−V (x))dx. The primary ob-
jective is to create a deep neural network (DNN) with the ability to generate
samples from the target distribution. The DNN’s performance is evaluated based
on the 2-Wasserstein distance, using input samples from a simple reference distri-
bution such as the standard normal distribution. Our investigation is focused on
the approximation of the Langevin Monte Carlo (LMC) algorithm, which is the
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Euler-Maruyama discretisation of the stochastic differential equation

dXt = −∇V (Xt)dt+
√

2dWt

through ResNet-like neural network structures

x0 := X0

xk := xk−1 + φk(xk−1) + ξk, x ∈ 1, . . . ,K

where φk are fully connected neural networks and ξk are i.i.d. standard normal
random variable. Notably, we pay special attention to error analysis in the con-
text of the 2-Wasserstein distance. The suggested approach emulates LMC by
connecting feed-forward neural networks as above. The approximation of the drift
term with epsilon accuracy occurs in an appropriate L2 space established by the
current law of the process. Namely, our analysis is done on the quantity

‖ − ∇V − φk+1‖L2
νk

(Rd;Rd)

where νk is the law of xk.
We demonstrate that if the above quantity is smaller than ε

W2(µ∞, νK) ≤ (1 −mh)KW2(µ∞, µ0) +
7
√

2

6

M

m

√
hd+

1 − (1 −mh)K

m
ε

where m is the strong-convexity parameter of V , M the Lipschitz constant of
∇V and h ≤ 2/(m+ M) the step size in the LMC algorithm. By exploiting the
properties of the initial distribution, which is the standard Normal distribution,
and of the ResNet-like architecture, we are able to show that the measures νk
are sub-Gaussian. We show that the ε-accuracy can be achieved for all φk such
that the number of parameters for the ResNet-like architecture is bounded by
K(N(d, r, ε/

√
d,m,M) + 2d2 + 2), where N(d, r, ε/

√
d,m,M) is the number of

parameters for a single fully connected neural network φ to satisfy

‖ − ∇V − φ‖L∞(Br(0);Rd) ≤
ε√
2d

where

r ∈ O
(
d7/4ε−1(d9/4ε−1)3(1.5

K−1)
)

Unfortunately, the aforementioned result indicates that the radius of the ball
must increase exponentially in the number of steps. We conjecture that due to
the strong convexity of V and the Lipschitz continuity of ∇V , there exists a
neural network capable of approximating −∇V with a linear error growth. The
experiments also indicate that the proposed architecture can sample from µ∞ with
the same convergence rate even if the potential V is no longer strongly convex,
such as in a Gaussian mixture.
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The implicit bias phenomenon in deep learning

Holger Rauhut

It is common in deep learning to use many more parameters than training ex-
amples. Despite traditional statistical wisdom, which would predict overfitting,
the learned neural networks usually generalize well to new unseen data [17]. In
this overparameterized setting many networks exist that interpolate the data ex-
actly. They all lead to global minimizers of the empirical loss function, which
sums up the losses of a neural network over the training data. In this situation,
the employed optimization algorithm (usually variants of gradient descent or sto-
chastic gradient descent), including hyperparameters such as initialization, step
sizes etc., significantly influences the computed minimizer. This phenomenon is
called implicit bias of the learning algorithm. It is puzzling that the implicit
bias of (stochastic) gradient descent and variations is often towards solutions that
generalize well. Although there is a growing research literature available, see e.g.
[1, 2, 4, 3, 5, 9, 10, 11, 13, 15, 16, 17], many aspects of this phenomenon are not
well understood yet.

One working hypothesis is that (stochastic) gradient descent with suitable ini-
tialization favors networks of low complexity, i.e., networks that can be represented
with much fewer parameters than the number of trainable network weights. Low
complexity may be understood in a broad sense here and it may be a challenge
to determine suitable low complexity models for concrete types of data and net-
work models. Examples may be sparse representations [3, 5, 7] as well as low rank
matrix [1, 4] and tensor representations [14].

In order to gain theoretical understanding of the implicit bias phenomenon, it is
useful to study simpler optimization problems that share two characteristics with
the overparameterized deep learning scenario:

• many (infinite number of) global minimizers;
• a factorization/compositional structure.

In [3, 7] the problem of minimizing the function

L(x) =
1

2
‖Ax− y‖22

is considered where A ∈ Rm×n and y ∈ Rm with m < n. In this case, L has
infinitely many global minimizer. In fact, if A has full rank, they form the affine
subspace of solutions x to Ax = y. In order to induce a factorization structure we
set

x = w(1) ⊙ w(2) ⊙ · · · ⊙ w(N),

where (w(1) ⊙ w(2))j = w
(1)
j w

(2)
j is the Hadamard product. This structure can be

interpreted as a linear diagonal neural network. Plugging into the function L, we
define

LN (w(1), . . . , w(N)) = L(w(1) ⊙ w(2) ⊙ · · · ⊙ w(N))(1)

=
1

2
‖A(w(1) ⊙ w(2) ⊙ · · · ⊙ w(N)) − y‖22.(2)
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Initializing identically with w(ℓ)(0) = α1, ℓ = 1, . . . , N , where 1 = (1, 1, . . . , 1)T ,
we consider the gradient flow

d

dt
w(ℓ)(t) = −∇w(ℓ)LN(w(1)(t), . . . , w(N)(t)), ℓ = 1, . . . , L.

We are interested in the convergence behavior and implicit bias of the product
flow

v(t) =

N∏

ℓ=1

w(ℓ)(t).

For identical initialization (as assumed) the vectors w(ℓ)(t) remain identical,
w(1)(t) = · · · = w(N)(t) = w(t), so that v(t) = w⊙N (t), where w(t) is the gradient
flow for

L̃N (w) =
1

2
‖Aw⊙N − y‖22.

Theorem. Assume that S+ = {z ≥ 0 : Az = y} is nonempty, and let N ≥ 3.
Then v∞ = limt→∞ v(t) = w⊙N (t) exists and v∞ ∈ S. Let Q = minz∈S+ ‖z‖1 and
β = ‖v(0)‖1 = α

√
n. If β < Q then

‖v∞‖1 −Q ≤ N

(
β

Q

)1− 2
N

Q.

Since ℓ1-minimization promotes sparse solutions, see e.g. [8], this result basically
states that the implicit bias of gradient flow is towards sparse solutions if the
initialization scale α is small enough compared to the ℓ1-norm of the ℓ1-minimizer.

This result can be extended to the recovery of vectors with not necessarily non-
negative coefficients by using a difference of two factorizations, i.e., v = w⊙N

1 −
w⊙N

2 , see [3] for details. Furthermore, by splitting w = ru, where r is a scalar
und u is a vector on the unit sphere, and considering the gradient flow for both
r and w with different learning rates – also referred to as weight normalization
– gives similar results [5] as stated in the theorem above, however, allowing for
larger initialization scale α, which leads to faster convergence.

In order to make a step closer to realistic neural networks, deep linear fully
connected networks of the form V = W (N) · · ·W (1) are considered in several works
[1, 4, 6, 11, 15]. The current results suggest implicit towards low rank solutions,
but a theorem similar to the one stated above is not yet available.

Of course, the next step will be to extend to nonlinear networks. Preliminary
results for two-layer networks are available, see e.g. [12], but in general the under-
standing of the implicit bias phenomenon in deep learning is widely open.
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The Role of Statistical Theory in Understanding Deep Learning

Sophie Langer

(joint work with Alina Braun, Gabriel Clara, Michael Kohler,
Johannes+Schmidt-Hieber, Harro Walk)

In recent years, there has been a surge of interest across different research ar-
eas to improve the theoretical understanding of deep learning (see, e.g., [1] and
[8]). A particulary promising approach is the statistical one, which interprets
deep learning as a nonlinear or nonparametric generalization of existing statisti-
cal models. For instance, a simple fully connected neural network is equivalent
to a recursive generalized linear model with a hierarchical structure. Given this
connection, many papers in recent years derived convergence rates of neural net-
works in a nonparametric regression or classification setting (see, e.g., [12], [3],
[10]) . Nevertheless, phenomena like overparameterization seem to challenge the
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statistical principle of bias-variance trade-off (see [15]). Therefore, deep learning
cannot only be explained by existing techniques of mathematical statistics but also
requires a radical overthinking. In this talk, we will delve into the dual aspects
of the role statistics plays in comprehending deep learning: its significance and
its limitations, emphasizing the need to bridge with other research domains. Our
discussion centeres around three distinct topics:

Empirical risk minimizers vs. estimators learned by gradient descent.

The statistical performance of deep neural networks is often analyzed within a non-
parametric regression framework. The objective here is to construct an estimator
mn for the true regression function m such that

E

∫
|mn(x) −m(x)|2PX(dx)(1)

is small with a particular interest in the behavior of the bound as the number of
data points n increases - the rate of convergence. Previous studies (see, e.g., [12],
[3], [10]) adopted the empirical risk minimizer

mn ∈ arg min
f∈F

1

n

n∑

i=1

|f(Xi) − Yi|2,

based on a specific class of neural networks. For this kind of estimators rate of
convergence results were derived under different assumptions on m, which all have
in common that the rate, i.e., the bound on (1), no longer depends on the input
dimension d of the problem but on a lower dimension d∗ and thus promises fast
convergence even in high-dimensional spaces. While these results show interesting
approximation and generalisation results for neural networks, they are subject to
a fundamental problem: they sidestep the optimization process of neural networks
by assuming an empirical risk minimizer, limiting the holistic understanding of
the procedure. To adress this gap, we showed in a simplified setting (see [4]), i.e.,
for regression functions with suitable decaying Fourier transform (similar to the
so-called Barron class in [2]) and for shallow neural networks with sigmoidal acti-
vation function a rate of convergence of n−1/2. While these results offer hope for
a statistical analysis that considers training, they also underscore the indispens-
ability of integrating optimization considerations, especially for deeper network
structures and less restrictive assumptions on the regression function.

Understanding dropout in a linear model. Overparameterized neural net-
works have gained significant attention in recent years due to their remarkable
ability to achieve high accuracy on complex tasks. However, these networks are
prone to overfitting, where they memorize the training data rather than learning
the underlying patterns. To address this issue, researchers have developed various
regularization schemes. In addition to explicit regularization techniques such as
ℓ2- or ℓ2-penalization, algorithmic regularization approaches have been employed.
Among them, dropout has emerged as a technique that randomly drops neurons
during training, and it has demonstrated its effectiveness in various applications
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(see [13]). However, despite its empirical success, a comprehensive theoretical
understanding of how dropout achieves regularization is still somewhat limited.

In the case of a linear model, it was shown that under an averaged form of
dropout the least squares minimizer performs a weighted variant of ℓ2-penalization.
In turn, the heuristic “dropout performs ℓ2-penalization” has even made it in
popular textbooks (see [6] and [7]). We challenge this relation by investigating
the statistical behavior of iterates generated by gradient descent with dropout
(see [5]). In particular, non-asymptotic convergence rates for the expectation and
covariance matrices of the iterates are derived. While in expectation the connection
between dropout and ℓ2-penalization can be verified, we show sub-optimality of the
asymptotic variance compared to the estimator resulting from direct minimization
of averaged dropout. To us, this result highlights once again, that simplification
in analyzing deep learning can also lead to wrong conclusions.

Statistical analysis of image classification. The availability of massive im-
age databases resulted in the development of scalable machine learning methods
such as convolutional neural network (CNNs) filtering and processing these data.
While the very recent theoretical work on CNNs focuses on standard nonpara-
metric denoising problems, the variability in image classification datasets does,
however, not originate from additive noise but from variation of the shape and
other characteristics of the same object across different images. To address this
problem, we consider a simple supervised classification problem for object detec-
tion on grayscale images (see [11]). While from the function estimation point of
view, every pixel is a variable and large images lead to high-dimensional function
recovery tasks suffering from the curse of dimensionality, increasing the number of
pixels in our image deformation model enhances the image resolution and makes
the object classification problem easier. We propose and theoretically analyze two
different procedures. The first method estimates the image deformation by sup-
port alignment. Under a minimal separation condition, it is shown that perfect
classification is possible. The second method fits a CNN to the data. We derive a
rate for the misclassification error depending on the sample size and the number
of pixels. Both classifiers are empirically compared on images generated from the
MNIST handwritten digit database. The obtained results corroborate the the-
oretical findings. To us, the introduced image deformation model offers a new
way of analyzing image classification theoretically with rates of convergence that
are in line with practical observations. Furthermore, it highlights the necessity of
critically questioning and revising existing statistical models.
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Optimal sampling and tensor learning

Anthony Nouy

(joint work with Robert Gruhlke, Bertrand Michel, Charles Miranda,
Philipp Trunschke)

We consider the approximation of functions in L2 from point evaluations, using
linear or nonlinear approximation tools. For linear approximation, recent results
show that weighted least-squares projections allow to obtain quasi-optimal ap-
proximations with near to optimal sampling budget [1, 2]. This can be achieved
by drawing i.i.d. samples from suitable distributions (depending on the linear ap-
proximation tool) and subsampling methods. In a first part of this talk, we review
different strategies based on i.i.d. sampling and present alternative strategies based
on repulsive point processes that allow to achieve the same task with a reduced
sampling complexity. In a second part, we show how these methods can be used to
approximate functions with nonlinear approximation tools, in an active learning
setting, by coupling iterative algorithms and optimal sampling methods for the
projection onto successive linear spaces. We particularly focus on the approxima-
tion using tree tensor networks, an approximation tool with high expressive power
[3, 4] and with an architecture allowing for an efficient implementation of optimal
sampling procedures within coordinate descent algorithms.
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Low-rank tensor solvers for high-dimensional parabolic PDEs

Markus Bachmayr

(joint work with Henrik Eisenmann, Manfred Faldum, Emil Kieri,
André Uschmajew)

In this talk, we consider two different approaches for numerically solving second-
order parabolic initial value problems on high-dimensional product domains using
low-rank tensor approximations. A typical model problem takes the form

(1) ∂tu−∇ ·M∇u = f in (0, T ) × Ω = Ω1 × · · · × Ωd,

subject to the initial condition u(0, ·) = u0 in Ω and the boundary condition u = 0
on (0, T ) × ∂Ω. As the following results show, using methods based on low-rank
approximations of solutions this problem can be treated also for large d.

The two types of low-rank approximations that we consider are conceptually
quite different, one based on dynamical low-rank approximation, the other on
an adaptive solver for a space-time variational formulation. In both cases, we
assume a Gelfand triplet V ⊂ H ⊂ V ′, where in the case of (1), V = H1

0 (Ω) and
H = L2(Ω). In the first approach based on dynamical low-rank approximation,
one obtains approximate dynamics under the additional constraint that for all
times t ∈ [0, T ), one has u(t) ∈ M, where M is a manifold of low-rank tensors
such as M =

{∑r
i=1 φ

1
k ⊗ φ2k : φ1k ∈ L2(Ω1), φ2k ∈ L2(Ω2)

}
⊂ H in the case d = 2.

The Dirac-Frenkel variational principle then yields an accordingly projected
problem, which as shown in [3] can also be formulated in a weak formulation of
(1): Given f ∈ L2(0, T ;V ′) and u0 ∈ M ∩ H , find u ∈ W (0, T ;V, V ′) = {u ∈
L2(0, T ;V ) : u′ ∈ L2(0, T ;V ′)} such that for almost all t ∈ [0, T ],

(2)

u(t) ∈ M,

〈u′(t) +A(t)u(t), v〉 = 〈f(t), v〉 for all v ∈ Tu(t)M∩ V ,
u(0) = u0,

where Tu(t)M denotes the tangent space at u(t) and where A(t) : V → V is the
elliptic part of the operator, assumed to be Lipschitz continuous with respect to
t. Under natural conditions on M and the additional regularity requirements
f ∈ L2(0, T ;H) and u0 ∈ M∩V , in addition to a splitting of A(t) = A1(t)+A2(t)
where A1(t) maps M to the respective tangent space and A2(t) satisfies a suitable
boundedness condition as a mapping from M∩V to H , in [3] we obtain existence
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and uniqueness of solutions u ∈ W (0, T ∗;V,H) ∩ L∞(0, T ∗;V ) whenever u0 has
positive distance from the boundary of M. Here either T = T ∗ or u(t) approaches
the boundary of M as t → T ∗. In [4], this result is shown to be applicable to
manifolds M of tensor trains and hierarchical tensors in H , and thus to problems
with large d. We also show the resulting approximation to be stable with respect
to perturbations of the problem data and that spatial semidiscretizations converge
under natural assumptions.

Numerical solvers with favorable properties are available for the reduced prob-
lems on M defined by (2). However, with this approach in general one cannot
ensure that the solutions of (2) are close to the unconstrained evolution given by
u′(t) +A(t)u(t) = f(t); as a simple example, one obtains a systematic error when
u0 ⊥H f(0). Ensuring that such effects are avoided is difficult in practice. Such
issues do not arise in the second approach that we consider.

This alternative construction of a low-rank solver for parabolic problems such
as (1) is based on a space-time variational formulation. In the basic case of the
heat equation, it reads: with X = W (0, T ;V, V ′) and Y = L2(0, T ;V ) ×H , find
u ∈ X such that for all (v, w) ∈ Y,

(3)

∫ T

0

〈∂tu, v〉V ′,V +

∫

Ω

∇u · ∇v dxdt+

∫

Ω

γ0uw dx

=

∫ T

0

∫

Ω

f v dxdt+

∫

Ω

u0w dx,

where γ0u ∈ H denotes the inital trace of u. Here we restrict ourselves to the
model case Ω = (0, 1)d for simplicity. Similarly to [6], our approximations of u
are based on basis functions {θµ}µ∈I on (0, T ) with the Riesz basis properties

‖v‖ h
∥∥∑

µ∈I vµ
θµ

‖θµ‖S

∥∥
S

for all v ∈ ℓ2(I) and S ∈ {L2(0, T ), H1(0, T )} and

{ψν}ν∈J on (0, 1) such that ‖v‖ℓ2(J ) h
∥∥∑

ν̂∈J vν̂
ψν̂

‖ψν̂‖S

∥∥
S

for all v ∈ ℓ2(J )

and S ∈ {H1
0 (0,1), L2(0,1), H−1(0,1)}. A concrete example of suitable such basis

functions is provided by spline (multi-)wavelets.
A novel aspect in the method that we obtain in [5] is that we combine a sparse

expansion in time with adaptive low-rank approximations in the spatial variables.
Specifically, we compute approximations of u in the form

(4) u(t, x1, . . . , xd) ≈
∑

µ∈Λt⊂I

θµ(t)
∑

(ν1,...,νd)∈Λµ

uµ,ν1,...,νd d
X
µ,νψν1(x1) · · ·ψνd(xd)

with finite Λt ⊂ I and Λµ = Λ1
µ×· · ·×Λdµ ⊂ J ×· · ·×J that are potentially differ-

ent for each µ. Here the coefficient tensors uµ = (uµ,ν1,...,νd)ν∈Λµ are represented
in hierarchical tensor format separately for each µ.

Based on a generalization of the strategy with a single hierarchical tensor rep-
resentation of the approximate solution developed in [2] (see also [1]) for elliptic
problems, an adaptive solver operating on the Riesz basis representation of the
problem is obtained in [5] that refines the index sets Λt and Λµ, µ ∈ Λt, while
at the same time computing approximate coefficient tensors uµ with adaptively
adjusted ranks. A central role is played by suitable low-rank approximations of
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the scaling factors dXµ,ν in (4) that yield the appropriate normalization to a Riesz
basis of X . These can be chosen as

dXµ,ν =
‖ψν1 ⊗ · · · ⊗ ψνd‖H1

‖ψν1 ⊗ · · · ⊗ ψνd‖2H1 + ‖θµ‖H1

.

For each fixed µ and aµ = ‖θµ‖H1 , low-rank approximations by exponential sums
of these expressions are obtained by applying quadrature to the integral represen-
tations

√
s

s+ aµ
=

∫ ∞

0

1√
πy

(
1 − 2

√
aµyF (

√
aµy)

)
exp

(
− ys

)
dy, s > 0,

where F is the Dawson function, and by setting s = ‖ψν1 ⊗ · · · ⊗ ψνd‖2H1 =∑d
i=1 ‖ψνi‖2H1 . This yields approximate low-rank diagonal preconditioning for

(3).
The resulting method can always be guaranteed to converge in X -norm to the

exact solution u of (3). Under benchmark approximability assumptions on the
problem data and on u, it is also shown to yield approximations with optimality
properties analogous to those obtained for the elliptic case in [2], especially on
the arising tensor ranks. In particular, the curse of dimension can be avoided
both concerning the complexity of approximations and the required number of
operations in their computation. This is confirmed by the numerical tests in [5],
where the total computational costs are observed to grow polynomially in d in the
case of the heat equation as in (3).
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Parametric PDE-induced Neural Networks and Network Training by

Hierarchical Tensors

Thong Le

(joint work with Martin Eigel, Lars Grasedyck, Janina Enrica Schütte)

In our research, we investigate the potential of integrating low-rank tensor decom-
positions in neural network training. Our approach involves discretizing the loss
function

LΦ : Rd 7→ R, W 7→ LΦ(W ).

with a grid of size nd and afterwards finding the position of the minimum absolute
entry which corresponds to the weights of the neural network. Calculating all
entries is not possible because of the curse of dimensionality so we make use of
the Hierarchical Tucker format to circumvent the curse of dimensionality. This
not only enhances the networks’ ability to optimize but could also facilitate more
effective weight initialization, potentially leading to better network training. There
are two different approaches one could choose:

• First idea is to create a fine grid in order to better approximate the mini-
mum loss value but this would lead to higher n,

• Second idea is to use a grid refinement strategy to adaptively approach
the minimum loss value which could be done with small n.

In this workshop we focused on the latter idea.
Furthermore we propose an idea to construct Feedforward Neural Networks

using hierarchical domain decompositions of the parameter field of the parametric
PDE which in our case is a cookie-shaped domain.
Our focus throughout the workshop is the Darcy partial differential equation as
the model problem within a cookie-shaped parameter domain. Using this model
problem we provide numerical results.
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Convolutional neural networks for parametric PDEs

Janina Schütte

(joint work with Martin Eigel)

Deep learning has emerged as a flexible tool, extending its reach beyond famous
applications, such as in natural language processing and image recognition, into
the realm of solving parametric partial differential equations (pPDEs).
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The significance of solving pPDEs lies in their crucial role across diverse fields
such as physics, engineering, finance, and environmental science. Understanding
the impact of varying parameters on a system is essential for predicting outcomes
and making informed decisions.

Deep learning offers a novel approach to tackle the complexity of pPDEs. By
training neural networks on appropriate data sets, the models learn intricate re-
lationships between parameters and the corresponding system behavior. This ex-
pedites the solution process and therefore provides a chance to observe different
states of the system under the influence of many different parameters.

There exist well developed mathematical concepts to solve PDEs specifically
finite element (FE) and finite volume methods. There are works incorporating
these methods into the setting of parametric PDEs, such as the Adaptive Stochas-
tic Galerkin FEM [2] or the Variational Monte Carlo method [3], which are based
on a polynomial chaos expansion and tensor approximation. A method based on
convolutional neural networks (CNNs) was proposed in [1].

Parametric Darcy problem. The introduced methods are sample based and can
be applied to data generated with a large class of linear and nonlinear pPDEs. In
the analysis, the focus lies on the parametric Darcy problem, or stationary diffusion
equation, which we also use as a benchmark problem in the numerical experiments.
We formulate it in the following way. Let D ⊂ Rd be a spatial domain and Γ ⊂ RN

a possibly countable infinite parameter space. Let f : D → R. We approximate
the map u : Γ ×D → R, which satisfies

{
∇x · (κ(y, x)∇xu(y, x)) = f(x) for x ∈ D and

u(x) = 0 for x ∈ ∂D
(1)

for the parameter field κ : Γ × D → R and where the derivatives are applied to
the variable x.
The dependence of the parameter field κ on the parameter vector y can be char-
acterized in different ways. For instance, for the cookie problem, the parameter
field is defined for D = [0, 1]2 and Γ = [0, 1]p. Let y ∈ Γ with yk ∼ U [0, 1] for
k = 1, . . . , p and define

κ(x, y) = a0 +

p∑

k=1

ykχDk(x),

where Dk are disks with fixed centers and radii and a0 > 0 is constant. A visu-
alization of the cookie parameters and the corresponding solutions can be seen in
figure 1 in the top and bottom row, respectively.

CNN approximating an adaptive finite element method. To solve this
problem a CNN architecture is proposed, which maps the coefficients of a FE
discretization of κ(y, · · · ) to those of u(y, ·). For a FE space Vh we denote the
interpolation of κ(y, ·) into Vh by κh and the Galerkin projection of the solution
of problem (1) u(y, ·) onto Vh by hh(y, ·). Well suited P1 finite element spaces Vh
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Figure 1. Realizations of parameter fields for the cookie problem
and the corresponding solutions to the parametric Darcy problem

are build to control the discretization error

E = ‖u(y, ·) − uh(y, ·)‖H1
0 (D)

for any y ∈ Γ. The space is build in an adaptive manner by starting with a coarse
FE space and repeating:

Solve on current space

→Estimate E locally

→Mark large error regions

→Refine marked regions

A CNN architecture is derived, which can approximate every step of the above
iteration. There exists a constant C > 0 such that for any ε > 0 and Vh the
final space of the described algorithm after K ∈ N steps with maximally L ∈ N
refinement steps in every region, there exists a CNN Ψ : R2×dimVL → R

∑L
ℓ=1 dimVℓ

such that the number of parameters is bounded by CLK log(ε−1) and

‖u(y, ·) −F(Ψ(κL(y), fL))‖H1(D) ≤ ‖u(y, ·) − uh(y, ·)‖H1(D) + ε,

where F maps the coefficients of the CNN output to the corresponding FE func-
tion.

Approximation of corrections. As the derived CNN can approximate steps of
an adaptive finite element method, individual parts of the network can be trained
separately. A first part of the network can approximate the solution on a coarse
grid, while the following parts of the network approximate correcitons of the so-
lution on finer grids, as depicted in figure 2. The training of only few parameters
at a time yields an advantage, when optimizing the network. Furthermore, the
influence of later corrections quickly decreases, which gives a need for good ap-
proximations in the first steps and requires less accuracy in later corrections. This
can be translated into smaller networks for later corrections or only few fine grid
training samples.
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Figure 2. Visualization of the multilevel decomposition

Coclusions and outlook. Convolutional neural networks are an efficient tool to
solve parametric partial differential equations. Theoretically small approximation
errors can be achieved with network sizes growing only logarithmically with the
the inverse of the required error bound. Numerically, the multilevel decomposition
of the data allows for efficient training of small networks and with few expensive
and many cheap data points. Solving a parametric PDE for a given parameter
with the trained neural network only takes one forward pass through network,
which can be evaluated quickly.
Applying this network to different applications, such as the inverse problem map-
ping the solution to the parameter, is of great interest.
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Introduction by the Organizers

The mini-workshop Mathematics of Many-body fermionic systems, organized by
Nikolai Leopold (Basel), Phan Thành Nam (Munich) and Chiara Saffirio (Basel)
gathered sixteen participants, including the organizers. The group covered a broad
range of expertise and maintained a well-rounded balance in terms of both age and
gender. The main goals of the workshop were to showcase the most recent math-
ematical techniques in many-body interacting fermionic systems and to foster the
interaction between different research groups. The newest results in the field were
presented in thirteen one-hour lectures. Several free slots as well as an open prob-
lem discussion session provided opportunities for in-depth scientific discussions on
cutting-edge methodologies and potential future research directions.
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The talks were centered on the following core themes: ground state energies
of many-body fermionic systems, effective dynamics for quantum systems and
quantum systems in interaction with radiation fields.

The majority of the contributions dealt with ground state energies of many-
fermion systems. Christian Hainzl opened the workshop with a presentation con-
cerning the correlation energy of the electron gas in the mean-field regime. Related
developments were reported by Martin Christiansen about spectral estimates for
fermionic n-body operators and reduced density matrices, by Emanuela Giacomelli
about the low density Fermi gas in three dimensions towards the Huang-Yang con-
jecture, and by Blazej Ruba concerning the bosonization for strongly interacting
Fermi gases. The topic was in addition addressed by Volker Bach who discussed
unitary renormalization group flows for fermion systems, Mathieu Lewin who gave
an overview on mathematical results in density functional theory, and Charlotte
Dietze who presented semiclassical estimates for Schrödinger operators with Neu-
mann boundary conditions on Hölder domains.

The time evolution of quantum systems was treated by Peter Pickl with his
presentation about effective evolution equations for tracer particles in interaction
with either bosonic or fermionic gases. François Golse gave insights into the ran-
dom batch method in the context of large N limit (uniform in ~) of the Wigner
transform of the single-particle reduced density matrix associated with an N -body
quantum system. Jani Lukkarinen’s talk was concerned with the propagation of
chaos via cumulant hierarchies in two example models: the discrete nonlinear
Schrödinger evolution and the stochastic Kac model.

Systems with radiation fields have been considered by Tadahiro Miyao who pre-
sented a unified mathematical framework to describe the magnetic properties of
ground states in many-electron systems, and Simone Rademacher who discussed
the Landau-Pekar conjecture on the effective mass problem for the classical po-
laron. The workshop ended with the talk of Manfred Salmhofer reviewing results
on the Hubbard model and the Fermi liquids, based on renormalization group
techniques.

Wednesday morning was devoted to a collaborative discussion session aiming
to maximize the interaction between the participants. The attendees were split
into four subgroups, each dedicated to exploring a given topic for an hour. Subse-
quently, the findings were shared in a large plenary session, sparking further dis-
cussions. This format, recommended to the organizers by Mathieu Lewin, proved
highly successful with many topics continuing to be explored during the traditional
afternoon hike. The subjects listed below were the main themes of the discussion.

Correlation estimates : The discussion revolved around the study of the energy in
terms of reduced density matrices, and in particular around Coulson’s challenge
related to the reconstruction of the N -particle states originated from a two-body
density matrix. At present it is believed that in practical applications the so-called
P-Q-G-T1-T2 conditions on two-body density matrices suffice for the reconstruc-
tion of the N -body states up to a very high precision. In 2013, Volker Bach, Hans
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Konrad Knörr and Edmund Menge showed that conditions P-Q-G imply the va-
lidity of the Hartree-Fock approximation, thus particularly explaining the success
of earlier numerical tests by Eric Cancès, Mathieu Lewin and Gabriel Stoltz. On
the other hand, the T1 and T2 conditions are obtained by suitable 3-body density
inequalities, and they seem to be hidden in recent developments in the correla-
tion energy. Potential links between the P-Q-G-T1-T2 conditions and the random
phase approximation were suggested, leading to interesting open problems to be
investigated in the upcoming years.

Effective dynamics : The second group focused on the derivation of effective evolu-
tion equations for many particle systems. Two key open problems were identified.
Firstly, there is an interest in deriving effective equations for longer time scales
than those thus far explored. Secondly, a highly desirable goal is to establish the
derivation of the Vlasov–Poisson equation from the classical dynamics of many par-
ticles with Coulomb interaction. The plenary discussion revolved around the latter
challenge, specifically addressing the fact that Sylvia Serfaty and Mitia Duerinckx
have successfully derived the Vlasov–Poisson equation with Coulomb potential
in the monokinetic case. The discourse then centered on exploring whether the
assumptions on the solutions of the pressureless Euler–Poisson equation (linked
to monokinetic solutions of the Vlasov–Poisson equation) can be relaxed in the
monokinetic derivation. Additionally, it was addressed how a derivation beyond
the monokinetic scenario could be accomplished.

Kinetic equations : The group directed its attention towards the derivation of the
quantum Boltzmann equation from the many-body Schrödinger equation. The
weakly interacting and dilute regime were identified for derivations of the quan-
tum Boltzmann equation with cubic collision operator. Recent findings about
the derivation of the quantum Boltzmann equation by Thomas Chen, Michael
Hott and Esteban Cárdenas as well as concerning the derivation of the wave ki-
netic equation by Tristan Buckmaster, Yu Deng, Pierre Germain, Zaher Hani and
Jalal Shatah were highlighted. The main focus of the discussion then shifted to
the technical aspects of the derivation. On the one hand it was investigated how
Gronwall-type estimates could be optimized to be more useful in the kinetic regime.
In this context it was discussed if the introduction of randomness could be helpful.
On the other hand attention was directed towards finding suitable macroscopic
observables for the derivation such as cumulants.

Semiclassical limits (including systems with radiation fields): Natural connections
between semiclassical analysis and density functional theory were mentioned, in-
cluding several problems on semiclassical estimates. In particular, challenging
questions on asymptotic behaviors of large Coulomb systems were promoted. Con-
cerning systems with radiation fields it was discussed in which way Maxwell’s equa-
tions emerge from the quantized electromagnetic field with large photon number.
Existing results were pointed out and a derivation of Maxwell’s equations from
non-relativistic quantum electrodynamics in a many-fermion limit as open prob-
lem identified. Additionally, the question if it is possible to define and analyze a
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microscopic model of a laser was raised. First results in this direction by Jean-
Bernard Bru and Walter de Siqueira Pedra were pointed out.
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A tracer particle interacting with a cold quantum gas . . . . . . . . . . . . . . . . . 2831

Mathieu Lewin (joint with Elliott H. Lieb and Robert Seiringer)
Some mathematical results in Density Functional Theory . . . . . . . . . . . . . 2832

Charlotte Dietze
Spectral estimates for Schrödinger operators with Neumann boundary
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Abstracts

Correlation energy of the electron gas in the mean-field regime

Christian Hainzl

(joint work with M. R. Christiansen and P. T. Nam)

In [5] we prove a rigorous upper bound on the correlation energy of interacting
fermions in the mean-field regime for a wide class of interaction potentials. Our
result covers the Coulomb potential, and in this case we obtain the analogue of
the Gell-Mann–Brueckner formula [6] c1ρ log (ρ) + c2ρ in the high density limit.
We do this by refining the analysis of our bosonization method in [3] to deal with
singular potentials, and to capture the exchange contribution which is absent in
the purely bosonic picture.

In a forthcoming paper we will actually also prove the corresponding lower
bound. Before stating the Theorem we give a precise definition of the model.

We consider N (spinless) electrons in the unit torus Ω = [0, 2π]3 (periodic b.c.)
where

N = |BF | = |B(0, kF ) ∩ Z3|, kF ∼ N1/3,

BF denoting the Fermi ball and kBF
the Fermi momentum. The N -body Hamil-

tonian on L2
a(ΩN ) has the form

HN =

N∑

i=1

(−∆xi
) +

1

kF

∑

1≤i<j≤N

V (xi − xj)

with mean-field periodic Coulomb potential

1

kF
V (x) =

1

kF (2π)3

∑

k∈Z3\{0}

V̂ke
ik·x, V̂k =

4π

|k|2 .

The main theorem about recovering the Gell-Mann-Brueckner formula for the
correlation energy reads as follows, where EHF is the Hartree-Fock energy.

Theorem.

EN = EHF + Ecorr,bo + Ecorr,ex + o(kF )kF→∞

with bosonic correlation contribution,

Ecorr,bo =
1

π

∑

k∈Z3\{0}

∫ ∞

0

F


k

−1
F V̂k

(2π)3

∑

p∈Lk

λk,p
λ2k,p + t2


 dt ∼ kF log(kF )

and exchange correlation contribution

Ecorr,ex =
1

4(2π)6

∑

k∈Z3\{0}

∑

p,q∈Lk

k−2
F V̂kV̂p+q−k
λk,p + λk,q

∼ kF

F (x) = log(1 + x) − x, λk,p = 1
2 (|p|2 − |p− k|2) > 0, p ∈ Lk = (BF + k)\BF .
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The main idea of the proof can be summerized as follows. Starting from the
Hamiltonian in second quantization, one can approximate the main contribution
of the Hamiltonian by the following pseudo-quadratic Hamiltonian

Heff ≈
∑

k∈Z3\{0}

∑

p∈Lk

2λk,pb
∗
k,pbk,p+

∑

k,p,q

V̂kk
−1
F

2(2π)3
(2b∗k,pbk,q+bk,pb−k,−q+b∗−k,−qb

∗
k,p),

where the operators bk,p describe a pair of Fermions,

bk,p = a∗p−kap, p ∈ Lk = (BF + k)\BF ,

where a∗p−k annihilates a hole in the Fermi sea and ap annihilates a particle outside
the Fermi sea. These bk,p’s behave approximately like bosons. Following Sawada
[8, 9] we diagonalize the Hamiltonian as if these operators were bosons and obtain
the stated result. Since we track the non-bosoniscity of the b-operators exactly we
also recover the exchange contribution in contrast to Sawada. Using a different
approach, more precisely patching the Fermi sea, a similar result for smooth po-
tentials was obtained earlier, see [1, 2]. In a perturbative form a similar result was
obtained in [7]. In a similar way one can also track the elementary excitations.
Plugging in the Coulomb potential into the final formula, one obtains the so called
plasmon spectrum [4].
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Spectral Estimates for Fermionic n-Body Operators

Martin Ravn Christiansen

Fermionic n-Body Operators. Let h be a Hilbert space and let Ψ ∈ ∧N
h

be a normalized N -particle state. Then the n-body operator associated to Ψ,
γΨn :

⊗n
h →⊗n

h, is defined with respect to elementary tensors by
〈
(ϕ1 ⊗ · · · ⊗ ϕn), γΨn (ψ1 ⊗ · · · ⊗ ψn)

〉
= 〈Ψ, c∗(ψ1) · · · c∗(ψn)c(ϕn) · · · c(ϕ1)Ψ〉 .

Here c∗(·) and c(·) denote creation and annihilation operators, which obey the
canonical anticommutation relations (CAR)

{c(ϕ), c∗(ψ)} = 〈ϕ, ψ〉 , {c(ϕ), c(ψ)} = 0 = {c∗(ϕ), c∗(ψ)} .
γΨn is a positive self-adjoint operator on

⊗n
h, and if (uk)k is an orthonormal basis

for h then its action can be recast as

〈
Φ, γΨn Φ

〉
=

∥∥∥∥
∑

k1,...,kn

Φk1,...,knckn · · · ck1Ψ

∥∥∥∥
2

where Φk1,...,kn = 〈uk1 ⊗ · · · ⊗ ukn ,Φ〉 for Φ ∈⊗n
h and ck = c(uk) for k ∈ N.

The n-body operator γΨn is trace-class with tr(γΨn ) = N !
(N−n)! . This trivially

implies that also ‖γΨn ‖op ≤ N !
(N−n)! ∼ Nn, which is optimal in the bosonic case.

For fermions this is untrue however, as e.g.
〈
ϕ, γΨ1 ϕ

〉
= 〈Ψ, c∗(ϕ)c(ϕ)Ψ〉 ≤ 〈Ψ, {c∗(ϕ), c(ϕ)}Ψ〉 = ‖ϕ‖2

by the CAR, which shows that
∥∥γΨ1

∥∥
op

≤ 1.

In terms of the basis (uk)k, this can be expressed as ‖∑k αkck‖2op ≤∑k |αk|
2

for any coefficients (αk)k. This implies an improvement on the bound for ‖γΨn ‖op
for any n, since
√
〈Φ, γΨn Φ〉 ≤

∑

k1,...,kn−1

∥∥∥∥
(∑

kn

Φk1,...,knckn

)
ckn−1 · · · ck1Ψ

∥∥∥∥

≤
√ ∑

k1,...,kn

|Φk1,...,kn |2
√ ∑

k1,...,kn−1

∥∥ckn−1 · · · ck1Ψ
∥∥2 =

N !

(N − n+ 1)!
‖Φ‖

implies that ‖γΨn ‖op ≤ N !
(N−n+1)! ∼ Nn−1.

Yang’s Estimates. For n = 2 this simply reads ‖γΨ2 ‖op ≤ N , which was first
proved by Yang in [1], who also showed it to be optimal (for even N). Based on
his analysis of the optimizers, he conjectured - and later proved - the following:

Theorem. (Yang, [1, 2]) For any normalized Ψ ∈ ∧N h it holds that for all n ∈ N

‖γΨn ‖op ≤ CnN
⌊n

2 ⌋

for constants Cn > 0 depending only on n.
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This bound follows from two main points. The first is that if we define ΛNn =
supΨ 6=0 ‖γΨn ‖op‖Ψ‖−2

op - i.e. the quantity we wish to control - it is seen that

√
〈Φ, γΨn Φ〉 ≤

∑

k1

∥∥∥∥
( ∑

k2,...,kn

Φk1,...,knckn · · · ck2
)
ck1Ψ

∥∥∥∥

≤
√

ΛN−1
n−1

∑

k1

√ ∑

k2,...,kn

|Φk1,...,kn |2 ‖ck1Ψ‖

≤
√

ΛN−1
n−1

√ ∑

k1,...,kn

|Φk1,...,kn |2
√∑

k1

‖ck1Ψ‖2 =
√
NΛN−1

n−1 ‖Φ‖

which implies the recursive estimate ΛNn ≤ NΛN−1
n−1 .

The second point is that an argument of Bell [3] implies that ΛNn . C′
nΛNn−1 for

odd n - combining these two estimates then yields Yang’s estimate ΛNn ≤ CnN
⌊n

2 ⌋
by induction.

To illustrate Bell’s argument, consider n = 3: Then as for n = 1

〈
Φ, γΨ3 Φ

〉
≤
〈

Ψ,

{(∑

k,l,m

Φk,l,mcmclck

)∗

,

(∑

k,l,m

Φk,l,mcmclck

)}
Ψ

〉

and since 3 is odd, the anticommutator reduces to a sum of terms containing at
most 4 creation/annihilation operators, rather than 6. Indeed, assuming without
loss of generality that the coefficients Φk,l,m are antisymmetric, this anticommu-
tator is

9
∑

k

∣∣∣∣
∑

l,m

Φk,l,mcmcl

∣∣∣∣
2

− 18
∑

k,l

∣∣∣∣
∑

m

Φk,l,mcm

∣∣∣∣
2

+ 6
∑

k,l

|Φk,l,m|2

which implies that ΛN3 ≤ 9ΛN2 + 6.

Hilbert-Schmidt Estimates for γΨ2 and γΨ,T2 . The argument of Bell was re-
cently used to obtain Hilbert-Schmidt estimates on 2-body operators and their

truncated versions γΨ,T2 = γΨ2 − (1 − Ex) (γΨ1 ⊗ γΨ1 ).
First let us note that by the identity ‖γΨ2 ‖tr = N(N − 1) and Yang’s optimal

estimate ‖γΨ2 ‖op ≤ N , it easily follows that ‖γΨ2 ‖HS ≤ N
3
2 . This can however be

improved significantly:

Theorem. ([4]) For any normalized Ψ ∈ ∧N h it holds that

‖γΨ2 ‖HS ≤
√

5N, ‖γΨ,T2 ‖HS ≤
√

5N tr(γΨ1 − (γΨ1 )2).

Note that the bound ‖γΨ2 ‖HS ≤
√

5N is of the same order with respect to N
as Yang’s bound ‖γΨ2 ‖op ≤ N - informally speaking this implies that although γΨ2
can have eigenvalues of order N , it can not have “too many” large eigenvalues.
Furthermore, for Slater states Ψ it holds that ‖γΨ2 ‖HS =

√
2N , so this order is

optimal.
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The first estimate follows by noting that

tr(AγΨ2 ) = −
∑

n

〈 ∑

k,l,m

Ak,l,m,nc
∗
mclckΨ, cnΨ

〉

for any Hilbert-Schmidt operator A, whence

∣∣tr(AγΨ2 )
∣∣ ≤

√
N
∑

n

〈Ψ, T ∗
nTnΨ〉 ≤

√
N
∑

n

〈Ψ, {T ∗
n , Tn}Ψ〉

for Tn =
∑

k,l,mAk,l,m,nc
∗
mclck. Since this is again a sum of terms with 3 fermionic

operators, the anticommutator simplifies significantly, with the consequence that
(assuming without loss of generality an antisymmetry condition on Ak,l,m,n)

∑

n

{T ∗
n , Tn} ≤

∑

m,n

∣∣∣∣
∑

k,l

Ak,l,m,nclck

∣∣∣∣
2

+ 4
∑

k,n

∣∣∣∣
∑

l,m

Ak,l,m,nc
∗
l cm

∣∣∣∣
2

,

and since not only ‖∑k αkck‖2op ≤ ∑
k |αk|

2
but also ‖∑k αkc

∗
k‖2op ≤ ∑

k |αk|
2

this can be bounded as

∑

n

{T ∗
n , Tn} ≤ 5

( ∑

k,l,m,n

|Ak,l,m,n|2
)(∑

k

|ck|2
)

= 5N ‖A‖2HS

for the claim. The estimate on ‖γΨ,T2 ‖HS follows by a similar argument after noting
the identity

〈
(ϕ1 ⊗ ϕ2), γΨ,T2 (ψ1 ⊗ ψ2)

〉
=
〈
Ψ, c(γΨ1 ϕ2)c∗(ψ1)c∗(ψ2)c(ϕ1)Ψ

〉

−
〈
Ψ, c∗(ψ1)c∗(ψ2)c(ϕ1)c((1 − γΨ1 )ϕ2)Ψ

〉
.
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Unitary Flows for Fermion Systems

Volker Bach

(joint work with Jakob Geisler, Konstantin Merz)

1. Unitary Flows on Fermion Operators

1.1. Fermion Systems and Fermi Gases. Here we present a mathematical
study of fermion systems. Although we ultimately aim at treating atoms and
molecules, we focus on Fermi gases here. For d, L ∈ N, the configuration space
of the system is the d-dimensional torus Λ := R

d/LZd of sidelength L ≫ 1,
the corresponding momentum space is Λ∗ = 2π

L Z
d. States of the system are

represented by vectors in fermion Fock space F = Ff (h), where h = L2(Λ) is the
Hilbert space of a single fermion. The system’s dynamics is generated by the
second-quantized Hamiltonian

H̃g,ν =
∑

k∈Λ∗

(k2 − ν) â∗k âk +
g

2

∑

q,k,k′∈Λ∗

v̂q
|Λ| â

∗
k+q â

∗
k′ âk′+q âk ,(1)

where ν > 0 is the chemical potential, g ≥ 0 is the coupling constant, v̂ : Λ∗ → R

+
0

is the restriction to Λ ⊆ R

d of the Fourier transform F[V ] ∈ S(Rd) of a pair
potential V ∈ S(Rd), both assumed to be nonnegative, smooth functions of rapid
decrease, for simplicity.

The Fermi gas under consideration is characterized by the spectral properties of

H̃g,ν . These have been an object of research for almost a century, just like quan-
tum mechanics itself. The discovery of High-Tc superconductivity brought these
models into the focus of mathematical physics some 35 years ago. Monographs
that provide an overview are [10, 7, 9]

1.2. Hartree–Fock Theory and Bogoliubov Transformations. One of the
most important approximations to the ground state energy of a many-fermion
system is the Hartree–Fock approximation which is defined by restricting the
Rayleigh–Ritz variational principle to Slater determinants,

EHF(g, ν) :=(2)

inf
{〈
f1 ∧ · · · ∧ fN

∣∣
H̃g,ν(f1 ∧ · · · ∧ fN)

〉 ∣∣∣ N ∈ N0 , 〈fi|fj〉 = δi,j

}
.

In [6, 2] it was shown that the Hartree–Fock energy EHF(g, ν) coincides with the
smallest energy expectation value of wave functions, which are Bogoliubov trans-
forms UΩ of the vacuum vector Ω,

EHF(g, ν) = inf
{〈

Ω
∣∣
U

∗
H̃g,ν UΩ

〉 ∣∣∣ U ∈ Bog(F)
}
.(3)

Here, Bog(F) ⊆ U(F) denote the Bogoliubov transforms on F, i.e., all unitary
operators that act linearly on creation and annihilation operators. If we impose
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translation invariance of |UΩ〉〈UΩ|, then the best choice for U is

h∗k := Uµ â
∗
kU

∗
µ := â∗k , k2 ≥ µ ,(4)

ℓ∗k := Uµ â
∗
kU

∗
µ := âk , k2 < µ ,(5)

UµΩ :=
( ∏

k2<µ

â∗k

)
Ω ,(6)

where µ ≡ µ(g) = ν + O(g) is chosen as to minimize 〈Ω|U∗
µH̃g,νUµΩ〉. Note that

translation invariance of |UΩ〉〈UΩ| for the minimizing Bogoliubov transformation
U is a plausible assumption and actually violated sometimes; BCS theory builds
up on this assumption. For more details see [1] and references therein.

After conjugation with Uµ, the Hamiltonian reads

Hg := U

∗
µ H̃g,ν Uµ = EtHF(g, ν) + dΓ(ω) + gQ ,(7)

where EtHF(g, ν) is the Hartree–Fock energy restricted to translation-invariant
states, ωk = |k2 − µ|, and Q is purely quartic in h∗k, ℓ∗k, hk, and ℓk.

1.3. Flow Equations for Fermion Systems in Standard Representation.

We report on joint work in progress with J. Geisler and K. Merz. A suggestive
formulation of the renormalization group (RG) is given by a family

(
W(t)

)
t≥0

of

unitarily equivalent operators determined by the evolution equation

∀ t > 0 : Ẇ(t) = i
[
G(t) ,W(t)

]
, W(0) = Hg ,(8)

where G(t) = G∗(t) is chosen as to eliminate (“diagonalize away”) the undesired
terms in Hg. A concrete implementation of this idea is the Brockett-Wegner flow
[5, 11, 3, 4]. A main difficulty for setting up the flow (8) is to find an appropriate
Banach space on which it possesses basic properties such as (local and global)
existence in the flow parameter t ≥ 0.

A natural idea is to write W(t) = Q[w(t)] ∈ B[F] and G(t) = Q[g(t)] ∈ B[F] as

images of symbols w(t), g(t) ∈ W under a linear quantization map Q : W → B[F],
where W is a suitable Banach space of coefficients. Here and henceforth, we
assume, for simplicity, Λ∗ to be finite and, hence, the one-fermion space h =
ℓ2(Λ∗) and also the fermion Fock space F = F[h] to be finite-dimensional, so
that all operators are bounded. The Banach space W =

⊕
m,n≥0 Wm,n contains

collections w(t) =
(
w

(t)
m,n

)
m,n≥0

and g(t) =
(
g(t)
m,n

)
m,n≥0

of antisymmetric functions

w
(t)
m,n, g(t)m,n : (Λ∗)m × (Λ∗)n → C. Given w =

(
wm,n

)
m,n≥0

∈ W , its quantization

Q[w] is defined as

Q[w] :=

∞∑

m,n=0

∑

xm
1 ∈(Λ∗)m

∑

yn1 ∈(Λ∗)n

wm,n(xm1 |yn1 ) a∗(xm1 ) a(yn1 ) ,(9)

where xm1 = (x1, . . . , xm) with x1 < . . . < xm and yy1 = (y1, . . . , yn) with y1 <
. . . < xn, for some fixed total order on Λ∗. Moreover, a∗(xm1 ) = a∗x1

· · · a∗xm
and
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a(yn1 ) = ayn · · · ay1 . Now observe that, for v =
(
vm,n

)
m,n≥0

, w =
(
wm,n

)
m,n≥0

∈
W , we have

Q[v]Q[w] = Q[v ∗ w] ,(10)

with the convolution product defined by

(v ∗ w)M,N (xM1 |yN1 ) :=

∞∑

r=0

M∑

m=0

N∑

n=0

(−1)mn+r r!

(
m+ r
r

) (
n+ r
r

)
(11)

AM,N

[ ∑

zr1∈(Λ∗)r

vM−m,n+r(x
M
m+1|zr1 , yn1 ) wm+r,N−n(zr1 , x

m
1 |yNn+1)

]
,

and AM,N being the antisymmetrization operator. While the parametrization (9)
seems natural, the No-Go theorem of Geisler [8] shows that, under some mild
assumption on its form, no choice of norm ‖ · ‖W on W will

• make the convolution product (11) submultiplicative, i.e.,

∀ v, w ∈ W : ‖v ∗ w‖W ≤ ‖v‖W ‖w‖W ,(12)

• and at the same time control the operator norm, i.e.,

∀w ∈ W : ‖Q[w]‖B[F] ≤ ‖w‖W .(13)

1.4. New Representation of Fermion Operators. We continue to report on
joint work in progress with J. Geisler and K. Merz. Given the negative result of [8]
that (12) and (13) plus some further natural assumptions lead to a contradiction,
we propose to change the parametrization of operators on fermion Fock space

altogether. We replace W by a different Banach space Ŵ of interaction coupling
functions ŵ : P(Λ∗)3 → C of the form ŵ =

(
ŵI,J,K

)
I∪̇J∪̇K⊆Λ∗ , where P(Λ∗) is

the collection of subsets (power set) of Λ∗, and ∪̇ denotes disjoint union. The

quantization Q̂ : Ŵ → B[F] is defined by

Q̂[ŵ] :=
∑

I∪̇J∪̇K

ŵI,J,K a∗I nK aJ ,(14)

where the summation is defined as∑

I∪̇J∪̇K

F (I, J,K) :=
∑

K⊆Λ∗

∑

J⊆Λ∗\K

∑

I⊆Λ∗\(K∪J)

F (I, J,K) ,(15)

a∗∅ := a∅ := n∅ := 1, and

a∗A := aα∗
1
· · · a∗αn

, aA := aα∗
n
· · · a∗α1

, nA := a∗A aA ,(16)

for A = {α1, · · · , αn} ⊆ Λ∗ with α1 < · · · < αn. We can show that this quantiza-
tion possesses the following properties.

• For any v̂ =
(
v̂I,J,K

)
I∪̇J∪̇K⊆Λ∗ , ŵ =

(
ŵI,J,K

)
I∪̇J∪̇K⊆Λ∗ ∈ Ŵ, the product

of their quantizations

Q̂[v̂]Q[ŵ] = Q̂[v̂ ∗ ŵ] ,(17)
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induces a convolution product on Ŵ given for disjoint I, J,K ⊆ Λ∗ by

(v̂ ∗ ŵ)I,J,K =(18)
∑

I′∪̇J′∪̇K′

∑

I′′∪̇J′′∪̇K′′

∑

G⊆J′∪̇I′′

SI,J,KI′,J′,K′; I′′,J′′,K′′;G v̂I′,J′,K′ ŵI′′,J′′,K′′ ,

where SI,J,KI′,J′,K′; I′′,J′′,K′′;G ∈ {−1, 1} is an explicit function.

• For ξ, η ≥ 1 with ξ2 ≥ 1+η define a norm on Ŵ for ŵ =
(
ŵI,J,K

)
I∪̇J∪̇K⊆Λ∗

∈ Ŵ by
∥∥ŵ
∥∥
ξ,η

:=
∑

I∪̇J∪̇K

ξ|I|+|J| η|K| |ŵI,J,K | .(19)

Then
∥∥v̂ ∗ ŵ

∥∥
ξ,η

≤
∥∥v̂
∥∥
ξ,η

∥∥ŵ
∥∥
ξ,η
.(20)

• For ŵ ∈ Ŵ , the operator norm of Q̂[ŵ] is bounded by the norm of ŵ,
∥∥
Q̂[ŵ]

∥∥
B[F]

≤
∥∥ŵ
∥∥
ξ,η
.(21)

Our current activity aims at implementing the diagonalizing flow (8) with W(t)

and G(t) given by Q̂[ŵ(t)] and Q̂[ĝ(t)], respectively, for suitable ŵ(t), ĝ(t) ∈ Ŵ .
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Bosonization for strongly interacting Fermi gases

Blazej Ruba

(joint work with S. Fournais and J. P. Solovej)

We study a gas consisting of N ≫ 1 spinless fermions interacting through a two-
body potential v modulated by the factor N−α, where α is a numerical parameter.
The gas is described by the Hamiltonian

(1) HN =

N∑

i=1

(−∆i) +N−α
∑

1≤i<j≤N

v(xi − xj)

on the Hilbert space of functions in L2((R/Z)3N ) antisymmetric with respect to
permutations of the N copies of (R/Z)3. We are interested mostly in the ground
state energy EN of HN .

Assuming that the Fourier series of v has non-negative coefficients v̂(k) satisfy-
ing

∑
k |k|v̂(k) <∞, we have elementary bounds

(2) E
(0)
N ≤ EN ≤ E

(0)
N + cN

2
3−α

∑

k

|k|v̂(k) + o(N
2
3−α),

where c > 0 is an explicit constant and

(3) E
(0)
N = min

p1,...,pN∈2πZ3

distinct

N∑

i=1

|pi|2 +
N−α

2

∫
v − N1−α

2
v(0).

One may ask whether one of the bounds in (2) is sharp up to o(N
2
3−α). The

answer is, at least for regular enough v: for α > 1
3 the upper bound is sharp,

for α = 1
3 neither is sharp, and for α < 1

3 the lower bound is sharp. The last
statement is our main new result.

The choice α = 1
3 , often called the mean field scaling, has been studied exten-

sively. In [1] Hamiltonians in the mean field scaling with small and very regular v
were studied. It was explained how in such models one can use second order per-
turbation theory rigorously. If we take α > 1

3 , which corresponds to interactions
weaker than in the mean field scaling, the perturbative expansion is an even better
approximation. In particular the reasoning in [1] shows that the upper bound in
(2) is sharp up to our desired accuracy. The next term in EN , given by second

order of the perturbative expansion, is of order N1−2α ≪ N
2
3−α.

The understanding of the ground state energy in the mean field scaling was
further improved in two series of works, [2, 3, 4] and [5, 6], where two approaches
to approximate bosonization were developed. In both treatments one introduces
operators which, in some sense, satisfy approximate canonical commutation rules
and derives an effective Hamiltonian quadratic in the approximate bosons. Then
that Hamiltonian is diagonalized using a Bogoliubov transformation. It is unclear
whether the last step of this procedure can be justified also for α < 1

3 , because
then the generator of the Bogoliubov transformation is so large that it is difficult
to control errors of the bosonic approximation.



Mini-Workshop: Mathematics of Many-body Fermionic Systems 2825

In order to avoid the difficulties of working with a large Bogoliubov transfor-
mation, we do a variational calculation with the class of all vectors which can be
obtained from the ground state of a non-interacting gas by acting with a poly-
nomial in approximate bosons. More precisely, we construct a linear map from
the Fock space of exact bosons to the fermionic Hilbert space and show that it is
approximately isometric and approximately intertwines between HN and the ef-
fective Hamiltonian. The quality of the approximation gets better as N increases,
but it deteriorates very rapidly with the number of bosons in the state. Consider-
ing general states with O(1) bosons and optimizing over the state after taking the
limit N → ∞ we obtain our result:

(4) EN = E
(0)
N + o(N

2
3−α).

If one performs the Bogoliubov calculation non-rigorously, i.e. without control-
ling the error terms, one arrives at

(5) EN ≈ E
(0)
N +

N
1−α

2√
2

∑

k

|k|
√
v̂(k). (conjectural!)

It seems that in order to justify this formula using the bosonization method one
would have to understand how to control errors in calculations with states involving
many bosons.
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Estimation of propagation of chaos via cumulant hierarchies in two

example models

Jani Lukkarinen

(joint work with Aleksis Vuoksenmaa)

Propagation and generation of “chaos” is an important ingredient in rigorous con-
trol of applicability of kinetic theory, in general. Chaos can here be understood as
sufficient statistical independence of random variables related to the “kinetic” ob-
servables of the system. Cumulant hierarchy of these random variables thus often
gives a way of controlling the evolution and the degree of such independence, i.e.,
the amount of chaos in the system.

Motivated by recent successes of “direct” perturbation expansion results, such
as those in [1, 2], we propose a way to combine such techniques into a simpler
method to rigorously control the evolution of the cumulant hierarchy in two, qual-
itatively different, example cases for which kinetic theory is believed to be appli-
cable: the discrete nonlinear Schrödinger evolution (DNLS) with suitable random,
spatially homogeneous initial data, and the stochastic Kac model. In both cases,
we set up suitable random variables and propose methods to control the evolution
of their cumulant hierarchies. In this abstract, we focus only on the latter results.

The stochastic Kac model is a toy model introduced by Mark Kac in 1956 [3] for
deriving a Boltzmann equation. It consists of N particles, where only velocities vi,
i = 1, 2, . . . , N , of the particles are tracked, and collisions between particles take
place stochastically. The collisions are determined by a Poisson clock whose rate
is scaled to match the time-scale of the kinetic evolution. Once the clock rings,
the labels of the two colliding particles are picked randomly and, for the chosen
pair, their velocities are mixed randomly in such a way that the total energy is
always preserved in a collision.

Assuming, for simplicity, that the initial distribution has energy density one, it
has been proven that the distribution of the system approaches uniform distribu-
tion on the corresponding constant energy surface. However, this convergence can
be quite slow, taking order N time units for typical initial data. Also, already in
his original work, Kac proved a version of propagation of chaos for this system: if
the initial data is approximately of a product form, then it will remain approxi-
mately in a product form for later times and the single velocity marginal can be
well approximated by the solution to a corresponding Boltzmann-type evolution
equation. Summary of the related results and literature may be found from [4, 5].

In our work in progress, we have been able to improve these results in two ways:
(1) We have fairly accurate estimates for finite cumulants which become very small
(consistent with approximate independence) already at times which are order one.
(2) Since our initial data is less restricted, we are also able to conclude generation
of chaos for these cumulants.

A more precise summary, whose proof and detailed assumptions can be found
from our upcoming work, is given in the following Theorems. The results concern
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cumulants of the energies of the particles, i.e., the random variables ei := v2i and,
for simplicity, we only consider the one-dimensional case, vi ∈ R.

Theorem 1 (preliminary for non-repeated cumulants). Assume that the
initial distribution is exchangeable, i.e., label permutation invariant. Suppose there
is B ≥ 0 such that the initial non-repeating energy cumulants MN

n (0) satisfy a
bound |MN

n (0)| ≤ B(n!)2. Then there is a constant A which only depends on B,
such that the time-evolved non-repeating cumulants MN

n (t) satisfy the following
bound for n ≥ 3 and t ≥ 0:

|MN
n (t)| ≤ An(n!)2

(
1

(N − 1)n−1
+ e−

n
4 t

)
.

This indeed proves generation of chaos for all finite order non-repeating cumu-
lants whenever lnN ≫ lnn. The first term in the bound is uniformly O(N−(n−1))
hence goes to zero as N → ∞. This is consistent with the above mentioned con-
vergence to a stationary distribution since the variables ei are mildly correlated
under the uniform distribution on the energy surface.

Theorem 2 (preliminary for general cumulants). Assume that the initial
distribution is exchangeable, i.e., label permutation invariant. Suppose there is

B ≥ 0 such that the initial energy cumulants κn,N0 (es) satisfy a bound |κn,N0 (es)| ≤
Bn

2

(n!)2. Then there is a constant A, which only depends on B, and N0(n) ∈ N,
such that for every N ≥ N0(n) the time-evolved cumulants κm,Nt (es) satisfy the
following bound for any t ≥ 0 and any sequence s of m labels, m ∈ {3, 4, . . . , n}:

|κm,Nt (es)| ≤ Am
2

(m!)2
(

1

(N − 1)len(s)−1
+ e−

1
4
t

)

In the above, s is a sequence of m labels from {1, 2, . . . , N}, and len(s) is the
number of different labels in this sequence. The earlier bound for non-repeating

cumulants is e−
len(s)

4 t while here we are only able to prove e−
1
4 t. The proof is

based on using an order on the structure of certain partition classifiers to control
the linear part of the evolution and then iteratively propagating the upper bound.

In addition to the above generation of chaos bounds, it would be of interest to
also look at relaxation for fixed N : Could we control (exponential) convergence
of cumulants to their values in the uniform distribution on the sphere, as t → ∞
for a fixed N? Would it be possible to control the accuracy of kinetic theory
predictions such as improving the earlier estimates for the accuracy of the solution
of the Boltzmann equation?

How much of these techniques can be used for cumulant hierarchies of other
models, such as the nonlinear Schrödinger equation, is still under investigation.
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The low density Fermi gas in three dimensions

Emanuela L. Giacomelli

(joint work with Marco Falconi, Christian Hainzl, Marcello Porta)

In 1957 Huang-Yang (HY) conjectured a formula for the asymptotic expansion of
the ground state energy density of the Fermi gas at low density and in the infinite
volume limit (see [1]), the rigorous validation of which is still an open problem.
Here we present some recent results aimed at paving the way for rigorously proving
the HY formula. We consider N interacting fermions with spin σ = {↑, ↓} in a
box ΛL := [−L/2, L/2]3, with periodic boundary conditions. The Hamiltonian of
the system is

(1) HN = −
N∑

i=1

∆xi
+

N∑

i<j=1

V (xi − xj),

and it acts on L2
a(Λ

N↑

L ) ⊗ L2
a(Λ

N↓

L ), where L2
a(Λ

Nσ

L ) is the antisymmetric tensor
product of Nσ copies of L2(ΛL) with Nσ denoting the number of particles with spin
σ = {↑, ↓} (N = N↑ + N↓). Correspondingly, we set ρσ := Nσ/L

3 (ρ = ρ↑ + ρ↓).
In the following, we will assume that our system is dilute, i.e., ρσ ≪ 1. The
interaction potential V is such that

(2) V (x − y) =
1

L3

∑

p∈ 2π
L

Z3

V̂∞(p)eip·(x−y), V̂∞(p) =

∫

R3

dxV∞(x)e−ip·x,

where V∞ is supposed to be non negative, radial, smooth and compactly supported.
We are interested in the thermodynamic limit, meaning that Nσ, L→ ∞ keep-

ing ρσ fixed. In this setting, it is well know [2] that, in units such that ~ = 1 and
putting the masses of the particles equal to 1/2, the ground state energy per unit
volume can be approximated as

(3) e(ρ↑, ρ↓) =
3

5
(6π2)

2
3 (ρ

5
3

↑ + ρ
5
3

↓ ) + 8πaρ↑ρ↓ + o(ρ2) as ρ→ 0.

The first term in the above expansion is purely kinetic (the kinetic energy of
the free Fermi gas), and the fact that this contribution is proportional to ρ5/3

is a consequence of the fermionic nature of the wave function. The effect of the
interaction appears at the next order, via the parameter a, which is the scattering
length of the interaction potential. In particular the contribution O(ρ2) in (3)
corresponds to the leading order in the asymptotic expansion for the correlation
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energy, which is defined as the difference between the ground state energy and
that of the free Fermi gas. In [1] Huang-Yang conjectured a refined version of the
asymptotics in (3) in the case where ρ = ρ↑/2 + ρ↓/2:

(4) e(ρ) =
3

5
(3π2)

2
3 ρ

5
3 + 2πaρ2 +

4(11 − 2 log 2)

35π2

(
3

4π

) 4
3

a2ρ
7
3 + o

(
ρ

7
3

)
.

as ρ → 0. In 2021, the same asymptotics as the one in (3) have been re-derived
in [3]. Differently than in [2], in [3] more restrictions are put in the interaction
potential, but better error estimates are obtained. However, the main difference
between [2] and [3] is the approach taken. In particular, the main novelty in [3] is
the use of Bogoliubov theory applied to pairs of fermions (particle-hole pairs) that
behave approximately as bosonic particles. Developing further this approach, in
[4] refined asymptotics estimates are obtained, as stated below.

Theorem 1. Let V, V∞ as in (2) with V∞ non negative, radial, smooth and com-
pactly supported. There exists L0 > 0 such that for L ≥ L0, it holds

(5) eL(ρ↑, ρ↓) =
3

5
(6π2)

2
3 (ρ

5
3

↑ + ρ
5
3

↓ ) + 8πaρ↑ρ↓ + rL(ρ↑, ρ↓),

where a is the scattering length of the interaction potential V∞ and

−Cρ2+ 1
5 ≤ rL(ρ↑, ρ↓) ≤ Cρ

7
3 .

Note that the upper bound in Theorem 1 is optimal, in the sense that it agrees
with the HY formula in (4). We also mention that very recently the ground state
energy of the dilute spin-polarized Fermi gas was studied in [6] and with similar
techniques an almost optimal upper bound for the ground state energy of a dilute
spin 1/2 Fermi gas was derived (via cluster expansion) in [5].

The general strategy of the proof of Theorem 1 is based on the use of almost
bosonic operators to describe the low energy excitations around the Fermi ball.
These operators are defined as

(6) b∗p,σ =
∑

k∈Bσ
F

k+p/∈Bσ
F

a∗k+p,σa
∗
k,σ, bp,σ =

∑

k∈Bσ
F

k+p/∈Bσ
F

ak,σak+p,σ

where a∗, a are the fermionic creation/annihilation operators. In (6), BσF denotes
the Fermi ball, i.e., BσF :=

{
k ∈ (2π/L)Z3 | |k| ≤ kσF

}
, and kσF is the Fermi

momentum which, for fixed densities and in the limit L → ∞, can be written as

kσF = (6π2)1/3ρ
1/3
σ + o(1). The reason why we refer to the operators in (6) as

almost-bosonic operators is that, when acting on states with few particles, they
approximately behave as bosonic creation/annihilation operators (i.e., they almost
satisfy the canonical commutation relations). Once these operators are introduced,
the main idea is to express the relevant contributions to the correlation energy
in terms of b, b∗ and to diagolanise this effective energy via an (almost-bosonic)



2830 Oberwolfach Report 49/2023

Bogoliubov transformation, which is explicitly written as

(7) T = exp





1

L3

∑

p∈ 2π
L

Z3

ϕ̂(p)b̂p,↑b̂−p,↓ − h.c.



 .

Note that, the choice of ϕ̂ is responsible for getting the right dependence on the
scattering length in the constant term we want to extract, i.e., 8πaρ↑ρ↓. In other
words, ϕ̂ is related to the scattering equation. Finally, we emphasise that since
we are working directly in the thermodynamic limit, both in [3, 4] we need to
introduce some localizations in order to obtain decay estimates that are not true
in the original setting. More specifically, we need to use a regularised version
of the almost bosonic creation/annihilation operators. In [4]1 this corresponds
to discarding some momenta inside the Fermi ball, i.e., all the k ∈ (2π/L)Z3 in
kF + ρ2/3 < |k| < kF and some others outside2, i.e., all the momenta in the
annulus kF < |k| < 2kF or |k| > ρ−β . In our approach, however, we not only need
to regularise the almost bosonic operators but we also need to localise ϕ̂: it turns
out that it is convenient to do this localisation in configuration space. The way
we do it is different in [3] and [4]. We conclude by comparing these two different
approaches. In [3] we take3 ϕ ≡ ϕγ , where ϕγ is the periodization of the solution
of the Neumann problem in a ball B ≡ Bρ−γ (0) ⊂ R3 centered at zero and with
radius ρ−γ . More precisely, ϕγ is the periodization of ϕγ,∞ which is the solution
of

−2∆(1 − ϕγ,∞) + V∞(1 − ϕγ,∞) = λγ(1 − ϕγ,∞), ϕγ,∞ = 2∇ϕγ,∞ = 0 on ∂B,

where |λγ | ≤ Cρ3γ . In [4], instead, ϕ(x) is taken to be the periodization of
a localized version of the solution of the zero energy scattering equation in R3,
which reads as

ϕ∞(x) := ϕ0(x)χ(x/ρ−1/3), 2∆ϕ0V (1 − ϕ0) = 0, ϕ0(x) → 0 as |x| → ∞,

where χ is a smooth cut-off function in R3, which varies smoothly between 0 and
1 in the annulus ρ−1/3 ≤ |x| ≤ 2ρ−1/3. As a consequence of our localization,
ϕ∞ = ϕ0 in the support of the interaction potential V∞ and it is such that ϕ∞

2∆ϕ∞ + V∞(1 − ϕ∞) ∼ −2a

[
2ρ

1
3

|x|2 +
ρ

2
3

|x|

]
χ(|x| ∼ ρ−

1
3 ),

where a is the scattering length of the interaction potential. This different way
of doing the localization allows us to better estimate many error terms recovering
the optimal estimate in the proof of the upper bound in Theorem 1.

1In [3] a different choice of the cut-off is used.
2The smoothness of the interaction potential is needed to justify the ultraviolet cut-off.
3In [3], we take γ = 2/9 for the upper bound and γ = 1/3 in the lower bound.
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A tracer particle interacting with a cold quantum gas

Peter Pickl

(joint work with Viet Hoang, Maximilian Jeblick, Jonas Lampart,
David Mitroskas, Sören Petrat)

The computation of effective equations in many body systems is an interesting
area of research and was the topic of the Oberwolfach Min-Workshop where this
presentation was held. In the talk I will present recent findings on the dynamics
of a so called tracer particle entering a cold quantum gas. Both cases, gases
made of Fermions and of Bosons, will be considered. The question is of physical
interest, since the influence of the gas on the dynamics of the tracer can be used
to gain information of the underlying interactions of the system. In the Bosonic
case it has been shown recently, that – assuming constant density of the gas
and a respective scaling of the interaction of the gas particles with the tracer
– the system is effectively described by the Bogoliubov-Fröhlich Hamiltonian: the
interaction of the tracer will be of leading order influenced by the Bogoliubov
excitations in the gas [1] and excite itself further particles of a similar number as
the Bogoliubov excitations. In the Fermionic case the rigidity of the Fermi-ball
plays an important role for the dynamics of the tracer. It suppresses the effective
interaction significantly and leads to free evolution of the tracer for relatively strong
couplings [2] respectively an effective interaction between tracers when shooting
more than one tracer particle into the gas [3]. At the end of the talk, new, so
far unpublished findings for the Fermi gas will be presented. Together with Viet
Hoang we could show that, increasing the tracer-gas coupling, the leading order
dynamics will be given by a tracer coupled to a phonon field. The phonons describe
the pair-excitations in the gas and behave like Bosons.

Possible extensions and open questions are the generalization of these findings
to systems of large volumes. Further it should, at least in the case of an absence
of interaction within the gas, be possible to extend the time scales for which one
can proof validity of the effective descriptions to times polynomial in the density
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rather than logarithmic. On large time scales, new physical phenomena should
become visible.
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Some mathematical results in Density Functional Theory

Mathieu Lewin

(joint work with Elliott H. Lieb and Robert Seiringer)

I review some mathematical results in Density Functional Theory (DFT) follow-
ing [4]. Consider N electrons in R3 and assume that they have the one-particle
density ρ (a non-negative function such that

∫
R3 ρ(x) dx = N). Lieb’s functional [5]

provides the lowest possible energy of these electrons at the given ρ:

(1) F (ρ) := inf
ρΓ=ρ

tr
(
HN (0)Γ

)
.

The infimum is over all N -particle mixed states Γ on
∧N

1 L2(R3,C2) having density
ρΓ = ρ. Here

HN (V ) :=

N∑

j=1

(−∆xj
+ V (xj)) +

∑

1≤j<k≤N

1

|xj − xk|

is the usual Coulomb N -particle Hamiltonian in an external potential V — in (1)
we took V ≡ 0. The main interest of F (ρ) is that the ground state energy in any
external potential V can be expressed as

(2) min σ(HN (V )) = inf
ρ∫

R3
ρ=N

{
F (ρ) +

∫

R3

ρ(x)V (x) dx

}
.

This minimization problem is settled in the physical space R3 and not in the N -
particle space R3N . If we knew how to compute F (ρ), this would dramatically
decrease the computational cost of the ground state energy. Unfortunately, F (ρ)
is a highly nonlinear and nonlocal unknown functional which is defined in terms
of N -particle states. The cost of computing F (ρ) is probably at least as high as
solving Schrödinger’s equation. The purpose of (orbital-free) DFT is to provide
simple but efficient approximations of F (ρ).
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The most famous is the Local Density Approximation (LDA), where it is as-
sumed that ρ is locally flat and the local energy is taken to be that of an infinite
gas of constant density, per unit volume:

F (ρ) ≈ FLDA(ρ) :=
1

2

∫∫

R3×R3

ρ(x)ρ(y)

|x− y| dx dy +

∫

R3

f
(
ρ(x)

)
dx,

where f : R+ → R is the energy per unit volume of the infinite uniform electron
gas. The LDA was rigorously justified for the first time in [3], for the grand-
canonical version of F (ρ). It is an open problem to justify the LDA for the
canonical functional F (ρ).

Another regime is the large density limit, where the kinetic energy dominates
and the system becomes non-interacting. This limit can be stated as

lim
λ→∞

F (ρλ)

λ2
= T (ρ), ρλ(x) = λ3ρ(λx).

The kinetic energy can be expressed in terms of the one-particle density matrix γ
(a trace-class operator on L2(R3)) as

(3) T (ρ) = inf
Γ

ρΓ=ρ

tr
( N∑

j=1

(−∆)xj

)
Γ = inf

0≤γ=γ∗≤1
ργ=ρ

tr(−∆)γ.

Let us now discuss some known bounds on T (ρ) and work in any dimension
d ≥ 1. The Hoffman-Ostenhof inequality state that

T (ρ) ≥
∫

Rd

|∇√
ρ(x)|2 dx.

This implies that
√
ρ ∈ H1(Rd) is a necessary condition for T (ρ) to be finite. It was

proved in [5] that this is also a sufficient condition. For the proof one takes as trial

state the Slater determinant Ψ = (N !)−1/2 det(φj(xk)) with φj =
√
ρ/Neiθj(x).

The phases θj are chosen so that the φj are orthonormal, with
∫
Rd ρ|∇θj |2 < ∞.

It is very hard to construct such phases and get good bounds. In [5] Lieb got

T (ρ) ≤
(
π2

3
N2 + CN

)∫

Rd

|∇√
ρ(x)|2 dx.

This blows up quite fast with N . The growth was later improved to the optimal
rate CN2/d in [1]. In fact, an extensive bound cannot only involve gradients. It
should at least also include the semi-classical approximation of T (ρ),

T (ρ) ≈ cTF

∫

Rd

ρ(x)1+
2
d dx, cTF =

π2d

(d+ 2)q2/d

(
d

|Sd−1|

) 2
d

where cTF is the semi-classical (a.k.a. Thomas-Fermi) constant. Here q is the
number of spin states, which is q = 2 for electrons. Choosing the phases θj
appropriately, March and Young [6] had already obtained in dimension d = 1

(4) T (ρ) ≤ π2

12

∫

R

ρ(x)3 dx+

∫

R

∣∣∣
(√
ρ
)′

(x)
∣∣∣
2

dx.
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The first constant is just cTF in d = 1, which led them to conjecture the following
inequality in any dimension

(5) T (ρ)
?

≤ cTF

∫

Rd

ρ(x)1+
2
d dx+ C

∫

Rd

|∇√
ρ(x)|2 dx,

This conjecture is still open in dimension d ≥ 2, but recent works came arbitrarily
close to the result in the following sense.

Theorem 1 (Semi-classical estimates on the kinetic energy functional). Let d ≥ 1.
There exists a constant C = C(d) such that

(6) cTFe
−ε

∫

Rd

ρ1+
2
d − C

ε

∫

Rd

|∇√
ρ|2 ≤ T (ρ)

≤ cTF(1 + ε)

∫

Rd

ρ1+
2
d − C(1 + ε)

ε

∫

Rd

|∇√
ρ|2

for any ε > 0 and any ρ ≥ 0 with
√
ρ ∈ H1(Rd).

The lower bound was first proved in [7] but with the coefficient C/ε3+4/d in
front of the second term. The upper bound was shown in [3], using the simple
trial state

γ =

∫ ∞

0

√
η

(
t

ρ(x)

)
1

(
−∆ ≤ d+ 2

d
cTFt

2
d

) √
η

(
t

ρ(x)

)
dt

t
,

where η ∈ C∞
c (R+,R+) is so that

∫∞

0
η(t) dt = 1 and

∫∞

0
t−1η(t) dt ≤ 1. Here

the two functions
√
η(t/ρ(x)) are interpreted as multiplication operators. The

main idea is to locate the places where ρ(x) ≈ t using the cut-off function η and
to place a free Fermi gas of density t there. Concentrating η about 1 at scale
ε one obtains the upper bound in (6). This idea was recently pursued in [8] to
also provide the stated lower bound. In fact, taking ε large enough and using the
Hofmann-Ostenhof inequality provides a very simple proof of the Lieb-Thirring
inequality. If we scale a density ρ as ρ(~x) and take ε = ~ in(6), we find

T (ρ~) = cTF~
−d

∫

Rd

ρ1+
2
d +O(~−d+1).

An interesting open problem is to justify the next order, which is predicted to be

d− 2

3d
~−d+2

∫

Rd

|∇√
ρ(x)|2 dx.

The negativity of the coefficient in d = 1 is related to the non-optimality of the
semi-classical constant for the Lieb-Thirring inequality in dimension d = 1 [2].

References
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Spectral estimates for Schrödinger operators with Neumann boundary

conditions on Hölder domains

Charlotte Dietze

Netrusov and Safarov proved Weyl’s law

(1) N
(
−∆N

Ω − λ
)

=
|Bd1 (0)|
(2π)d

|Ω|λ d
2 + o

(
λ

d
2

)
as λ→ ∞,

for γ-Hölder domains Ω with Neumann boundary conditions for all Hölder expo-
nents γ ∈

(
d−1
d , 1

)
[1, Corollary 1.6]. They also showed that Weyl’s law fails for

all γ ∈
(
0, d−1

d

]
. More precisely, for those γ, there exists a γ-Hölder domain Ω

such that (1) is not true [1, Theorem 1.10].

We consider Weyl’s law for Schrödinger operators on Hölder domains Ω

(2) N
(
−∆N

Ω + λV
)

= (2π)−d
∣∣Bd1 (0)

∣∣λ d
2

∫

Ω

|V | d2 + o
(
λ

d
2

)
as λ→ ∞,

where V : Ω → (−∞, 0]. In view of [1], one might expect that (2) holds for all
γ ∈

(
d−1
d , 1

)
and V ∈ Ld/2(Ω). For every γ ∈

(
d−1
d , 1

)
we give an explicit example

for a γ-Hölder domain Ω, and V ∈ Ld/2(Ω), where (2) fails [2, Theorem 1.1].
However, if we assume more integrability on V , namely that it is in some weighted
Lp-space for some p = p(d, γ) > d/2, we prove (2) [2, Theorem 1.3].

The proof of (2) relies on a Cwikel-Lieb-Rozenblum-type bound for the number of
negative eigenvalues of the Schrödinger operator −∆N

Ω + V [2, Theorem 1.2]. In
the proof of this Cwikel-Lieb-Rozenblum-type bound, we use a new covering the-
orem, and a new Poincaré-Sobolev inequality for suitably chosen small rectangles
intersected with Ω.

Further details and explanations can also be found in [3].
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The Random Batch Method for Quantum Dynamics

François Golse

(joint work with Shi Jin & Thierry Paul)

Consider the quantum Hamiltonian for a system of N identical particles

HN :=

N∑

m=1

− 1
2~

2∆xm
+ 1

N−1

∑

1≤l<n≤N

V (xl − xn) ,

where V is an even, real-valued function. The cost of computing the interaction
potential is 1

2N(N − 1) evaluations of V and additions.
The Random Batch Method (RBM) is, at each time step (1) to replace the

total interaction of each particle with the N − 1 other particles by the interaction
with p ≪ N other particles chosen at random multiplied by (N − 1)/p (with a
computing cost Np ≪ 1

2N(N − 1) operations), and (2) to reshuffle the particles
at each time step (with a computating cost O(N) by Durstenfeld’s algorithm [3]).

1. Formulation of the RBM: Case p = 2

Let N ≥ 2 be an even integer. Let σ1, σ2, . . . , σj , . . . be a sequence of random
mutually independent elements of SN distributed uniformly. Given ∆t > 0, define

Tt(l, n) :=

{
1 if {l, n} = {σ[t/∆t]+1(2k − 1), σ[t/∆t]+1(2k)} for some k = 1, . . . N2 ,

0 otherwise.

and

H̃N (t) :=

N∑

m=1

− 1
2~

2∆xm
+

∑

1≤l<n≤N

Tt(l, n)V (xl − xn) .

The RBM dynamics is defined by the Cauchy problem

i~∂tR̃N (t) = [H̃N (t), R̃N (t)] , R̃N (0) = RinN .

In the sequel, we seek to compare

RN (t) := e−itHN/~RinN e
itHN/~ , and R̃N (t) .
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2. Convergence of the RBM

The convergence of the RBM is couched in terms of the Wigner function. Any
trace-class operator S on H = L2(Rd) is defined by an integral kernel s ≡ s(x, y)
such that (see Lemma 2.1 in [1])

z 7→ [x 7→ s(x+ z, x− z)] ∈ Cb(R
d
z;L

1(Rd
x)) .

Its Wigner function is the Fourier transform (in S ′(Rd ×Rd))

W~[S](x, ξ) := 1
(2π)d

∫

Rd

s(x + 1
2~y, x− 1

2~y)e−iξ·ydy .

We shall also need the dual norm

|||f |||−m :=sup

{∣∣∣∣
∫

R2d

f(z)a(z)dz

∣∣∣∣ : a ∈ C∞
c (R2d) and max

0<|α|≤m
‖∂αa‖L∞ ≤ 1

}
.

Finally, the notion of symmetrized 1-particle marginal R̃N :1(t) of R̃N (t) is defined
as follows: for all A ∈ L(H),

trH(R̃N :1(t)A) := 1
N

N∑

k=1

trHN
(R̃N (t)JkA)

where HN = H⊗N = L2(RdN ) and

JkA := I
⊗(k−1)
H

⊗A⊗ I
⊗(N−k)
H

.

Theorem. [4] Assume that V is an even real-valued function on Rd with Fourier

transform V̂ ∈ L2(Rd; (1+|ω|2)dω), while (RinN )∗ = RinN ≥ 0 satisfies trHN
RinN = 1.

Then, for all ∆t, ~ ∈ (0, 1), all even N ≥ 2 and all t ≥ 0,

|||W~[ER̃N :1(t) −RN :1(t)]|||−[d/2]−3

≤ 5∆t · γdL(V )(1 + (1 + 2
√
d)L(V )t)e6tmax(1,

√
dL(V )) ,

where L(V ) = (2π)−d‖(d+ |ω|2)V̂ ‖L1 .
This result proves the convergence of 1-particle observables for the RBM as

the reshuffling time step ∆t → 0, uniformly in the particle number N and in the
Planck constant ~. We have treated only the case p = 2; larger values of p can be
handled in essentially the same manner — in fact, one expects that the larger p,
the better the RB approximation will be.

3. Metrizing the Set of Density Operators

Let D(H) = {R = R∗ ∈ L(H) : R ≥ 0 and trH(R) = 1} the set of density
operators on H. For R,S ∈ D(H), set

d~(R,S) := sup
A∈L(H)

{|trH((R − S)A)| : sup
1≤j,k≤d

SCj,k(A) ≤ 5~2} ,

where
SCj,k(A) :=~‖[xj , A]‖ + ~‖[−i∂xj , A]‖ + ‖[xk, [xj , A]]‖

+ ‖[−i~∂xk , [xj , A]]‖ + ‖[−i~∂xk , [−i~∂xj , A]]‖ .
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Proposition. [4]
(1) The functional d~ : D(H) ×D(H) → [0,+∞] is an extended metric.
(2) There exists γd > 0 depending only in the space dimension d such that

|||W~[R− S]|||−[d/2]−3 ≤ γdd~(R,S) , R, S ∈ D(H) .

The proof of this proposition is based on the duality formula
∫

R2d

W~[T ](x, ξ)a(x, ξ)dxdξ = trH(TA∗)

where A is the Weyl operator with symbol a, and on the Calderón-Vaillancourt
theorem [2].

The definition of d~ is reminiscent of the Kantorovich-Rubinstein duality for-
mula (Theorem 1.14 in [6]) for the Monge-Kantorovich distance MK between
Borel probability measures on Rn with finite first order moment

MK(µ, ν) := sup
Lip(φ)≤1

∣∣∣∣
∫

Rn

φ(z)µ(dz) −
∫

Rn

φ(z)ν(dz)

∣∣∣∣

The quantum analogue of this metric for R,S ∈ D(H) is

MK~(R,S) := sup
A∈L(H)

{|trH((R− S)A)| : sup
1≤j≤d

S̃Cj(A) ≤ ~} ,

where

S̃Cj(A) = max(‖[xj , A]‖, ‖[−i~∂xj , A]‖) .

The analogy comes from the correspondence principle, which says that

i
~

[xj , ·] → {xj , ·} = −∂ξj , i
~

[−i~∂xj , ·] → {ξj , ·} = ∂xj ,

where {·, ·} is the Poisson bracket defined on pairs of C1 functions on phase space,
while ξj is the j-th component of the classical momentum variable ξ, which is
conjugate to the jth position coordinate xj .

The proof of the theorem of convergence of the RBM is based on proving that

d~(ER̃N :1(t), RN :1(t)) ≤ 5∆tL(V )(1 + (1 + 2
√
d)L(V )t)e6tmax(1,

√
dL(V ))

by a duality argument. In the course of the proof, one needs to control com-
mutators with the interaction potential V in terms of d~. This is done with the
following lemma.

Lemma. Let f ≡ f(x) such that f̂ and ∂̂xf belong to L1(Rd). Then

‖[f, T ]‖ ≤ max
1≤j≤d

‖[xj , T ]‖ · 1
(2π)d

d∑

j=1

‖∂̂xjf‖L1 .

For a quick proof of this inequality, see formula (55) in [5].
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Magnetic properties of ground states in many-electron systems

Tadahiro Miyao

(joint work with K. Nishimata, H. Tominaga)

In crystals, electrons exhibit the following fundamental properties: (i) Fermi sta-
tistics, (ii) spin, (iii) Coulomb repulsion, and (iv) itinerancy. Explaining ferro-
magnetism in metals solely based on these properties remains a significant goal in
condensed matter physics.

In 1963, Gutzwiller, Kanamori, and Hubbard proposed a simple model to de-
scribe electrons on a crystal lattice and analyzed the magnetic properties of the
ground state [1, 2, 3]. This model, known today as the Hubbard model, is one
of the simplest models that captures the four fundamental properties mentioned
earlier.

Subsequently, various studies, including numerical calculations, have been con-
ducted on this model in theoretical physics. However, a precise explanation of the
quantum origin of metallic ferromagnetism remains incomplete.

In this talk, I will first explain fundamental issues in the rigorous analysis of
metallic ferromagnetism. Next, I will elaborate on the basic theorems in this
field, namely the Marshall–Lieb–Mattis theorem [5, 6], Lieb’s theorem [4], and
their stability [9, 10]. After revealing the similar structures inherent in these three
theorems, I will consider the following problem: constructing a unified mathemat-
ical theory that can describe them all. In this talk, I will formulate this theory
using the standard form of von Neumann algebras. As a result, I will establish
the existence of a set of Hamiltonians CMLM possessing the following properties
[11, 13]:

(1) All ground states of Hamiltonians in CMLM exhibit properties akin to
those stated in the Marshall–Lieb–Mattis theorem for the ground states
of Heisenberg models.

(2) CMLM contains a countably infinite number of elements.

We refer to CMLM as the Marshall–Lieb–Mattis (MLM) stability class. The
MLM stability class enables the explanation of the magnetic properties of ground
states in half-filling many-electron systems on bipartite lattices. For instance, it is
demonstrated that Hamiltonians describing systems where many electrons interact
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with phonons or photons belong to CMLM. Consequently, the magnetic properties
of the ground states of these Hamiltonians satisfy the aforementioned property
(1), see [9, 10, 11]. This implies the stability of magnetic properties in the ground
states under electron-lattice interactions.

In addition to the MLM stability class, several stability classes can be con-
structed, such as the Nagaoka–Thouless stability class [11, 13, 14]. These stability
classes are determined by factors such as the filling factor, crystal structure, and
Coulomb interaction, each corresponding to different scenarios in many-electron
systems. Each stability class describes the stability of magnetic states in many-
electron systems in different situations.

A modified version of the MLM stability class, known as the deformed MLM
stability class, encompasses models such as the Kondo lattice model and the peri-
odic Anderson model. Moreover, it includes Hamiltonians derived by introducing
electron-phonon interactions to these models [12, 15]. Consequently, the stability
of magnetic properties in the ground states of the Kondo lattice model and peri-
odic Anderson model, influenced by these interactions, can be expounded through
the attributes of this deformed MLM stability class.

In this talk, due to time constraints, I will elucidate findings pertaining to finite
lattice systems. For discussions on the infinite volume limit using conditional
expectations between von Neumann algebras, please refer to [13].

In addition to the rigorous results mentioned here, the flat-band ferromagnetism
theory proposed by Mielke and Tasaki is considered to describe more realistic
many-electron systems [7]. A methodology for constructing stability classes de-
scribing flat band ferromagnetism is becoming evident, and I am presently engaged
in the detailed investigation of this phenomenon.

References

[1] M. C. Gutzwiller. Effect of Correlation on the Ferromagnetism of Transition Metals. Physical
Review Letters, 10(5):159–162, Mar. 1963.

[2] J. Hubbard. Electron correlations in narrow energy bands. Proceedings of the Royal Society
of London. Series A. Mathematical and Physical Sciences, 276(1365):238–257, Nov. 1963.

[3] J. Kanamori. Electron Correlation and Ferromagnetism of Transition Metals. Progress of
Theoretical Physics, 30(3):275–289, Sept. 1963.

[4] E. H. Lieb. Two theorems on the Hubbard model. Physical Review Letters, 62(10):1201–
1204, Mar. 1989.

[5] E. H. Lieb and D. C. Mattis. Ordering Energy Levels of Interacting Spin Systems. Journal
of Mathematical Physics, 3(4):749–751, July 1962.

[6] W. Marshall. Antiferromagnetism. Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences, 232(1188):48–68, Oct. 1955.

[7] A. Mielke and H. Tasaki. Ferromagnetism in the Hubbard model. Communications in Math-
ematical Physics, 158(2):341–371, Nov. 1993.

[8] T. Miyao. Ground State Properties of the SSH Model. Journal of Statistical Physics,
149(3):519–550, Sept. 2012.

[9] T. Miyao. Rigorous Results Concerning the Holstein–Hubbard Model. Annales Henri
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The effective mass problem for the classcial polaron

Simone Rademacher

(joint work with Dario Feliciangeli and Robert Seiringer)

The polaron is a quasi-particle that models an electron in a charged crystal. While
moving through the crystal, the electron interacts with its self-induced polarization
field that is mathematically either described by a quantum field (Fröhlich model)
or by a classical field (Landau-Pekar equations). Here we consider the classical
field description: For that we consider a pair (ψ, ϕ) ∈ H1(R3) × L2

ε(R
3) where ψ

denotes the L2-normalized wave function of the electron and ϕ the polarization
field that is an element of the weighted L2-space

L2
ε(R

3) := {f : R3 → C|
∫
ε(k)|f(k)|2dk <∞}(1)

for a positive function ε : R3 → R+. The dynamics of the classical polaron is given
by the solution (ψt, ϕt) to the Landau-Pekar (LP) equations

i∂tψt = h√αϕt
ψt, iε−1(k) ∂tϕt(k) = ϕt(k) +

√
ασψt

(k)(2)

where α > 0 denotes the coupling constant and

hϕ := − ∆
2m + 2Re

∫
v(k)ϕ(k)eik·xdk, σψ(k) = (2π)3/2

v(k)

ε(k)
|̂ψ|2(k)(3)

for some v : R3 → R. Landau and Pekar [5, 6, 9] first described the classical
polaron in the strong coupling regime, α → ∞, by (2) with the choice

v(k) = |k|−1, ε = 1(4)

for the form factor resp. the dispersion of the underlying medium.
The dynamics of the polaron is closely related to the polaron’s effective mass:

While interacting with the self-induced polarization field, the electron slows down;
and thus the polaron’s effective mass increases. Landau and Pekar [6] formulated a
quantitative conjecture on the effective mass of the polaron in the strong coupling
regime, whose mathematical verification is an outstanding open problem. For the
effective mass problem of the quantum (Fröhlich) polaron there is recent progress
for lower [1, 2, 10] and upper bounds [3] improving earlier results [11].
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Here we address the effective mass problem for the classical polaron given by
(2) as originally studied by Landau and Pekar. The heuristic arguments of Landau
and Pekar are based on traveling wave solutions to (2) that are given for v ∈ R3

by initial states (ψv, ϕv) such that

(ψt(x), ϕt(k)) = (eiωvtψv(x− vt), eik·vϕv(k))(5)

solves the Landau-Pekar equations (2) for some phase factor ωv ∈ R. Due to a
vanishing speed of sound for the choice (4) we, however, conjecture that there are
no traveling wave solutions for the classical polaron with the choice (4).

Considering a regularized polaron model with non-vanishing speed of sound,
i.e. considering the dispersion ε of the underlying medium such that

vc := inf
k
ε(k)/|k| > 0(6)

for v ≤ vc, I prove [8] that there exist traveling wave solutions of the form (5):

Theorem 1. [8] Let ε satisfy (6) and v/ε1/2 ∈ L2
(|k|+1)4(R3) , v/ε1/2(k) ≥ |k|−1/4.

For |v| ≤ vc there exist traveling wave solutions of the form (5).

In this case, the heuristic arguments of Landau and Pekar can be made rigorous
and the effective mass of the classical regularized polaron can be defined through
an energy-velocity expansion of sub-sonic traveling waves, i.e.

(ψv, ϕv) satisfying (4) with |v| ≤ vc, ωv ≥ −eα + v2/4(7)

that have low energy, i.e. such that

G(ψv, ϕv) = 〈ψv, hϕvψv〉 + ‖ϕ‖2L2
ε
< eα + κ(8)

for sufficiently small κ > 0 and where eα = infψ,ϕ G(ψ, ϕ). I prove the following
expansion for states of the set

Iv := {(ψv, ϕv) ∈ H1(R3) × L2
ε(R

3) | (7), (8) hold } .(9)

Theorem 2. [8] Let ε satisfy (6) and v/ε1/2 ∈ L2
(|k|+1)4(R3) , v/ε1/2 ≥ |k|−1/4.

Then for all α ≥ α0, and α≪ 1, it is

Ev := infIvG(ψ, ϕ) = eα +
meffv2

2
+O(αv3) .(10)

The constant meff is explicitely given and, in particular, satisfies in the strong
coupling limit

lim
α→∞

α−1meff = lim
α→∞

α−1 lim
v→0

Ev − eα
v2/2

=
2(2π)3

3
‖kvε−3/2‖22(11)

that agrees with findings for the effective mass the regularized (quantum) Fröhlich
model [7]. Moreover, I prove in [8] that alternatively the effective mass can be
defined based on an energy-momentum expansion of low-energy states with fixed
total momentum.

However, for the Landau-Pekar equations with the choice (4) for the dispersion
relation resp. the form factor, as originally considered by Landau and Pekar,
non of these two approaches work (the reason is related to the vanishing speed of
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sound in this case). In [4] we therefore provide a novel approach for the definition
of the effective mass based on an energy-velocity expansion for solutions to the LP
equations with that gives a first verification the conjecture of Landau and Pekar
for the classical polaron.
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Hubbard Models, Fermi Liquids, and Renormalization

Manfred Salmhofer

I review some ideas and results in mathematical condensed-matter physics, specifi-
cally about many-electron models for metals, magnets, and superconductors, along
the lines of [1].

A prototypical such model is the Hubbard model, a quantum many-body system
on a square or cubic lattice, introduced independently by Gutzwiller, Hubbard,
and Kanamori [4] in the late 1950s. The particles obey Fermi statistics, their ki-
netic term is the discrete Laplacian, and their interaction is an on-site repulsion.
More general Hubbard-type models involve different lattices, general short-range
hopping amplitudes in the kinetic term, and also more general short-range interac-
tions that may also be attractive. Since the late 1980s these models have received
enormous attention as microscopic models for high-temperature superconductors
[2, 3]. Because the high-Tc materials have a layered structure, where hopping
amplitudes between layers are at least one order of magnitude smaller than those
within a layer, the Hubbard model on a two-dimensional lattice is of particular
interest.
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For fermions on a finite lattice, the Fock space is finite-dimensional. Thus the
Hamiltonian H is bounded below, the ground state is well-defined, and so is the
thermal state of quantum statistical mechanics in finite volume, as a positive linear
functional on the fermionic C∗ algebra, given by the appropriately normalized trace
with e−β(H−µN), where β > 0 is the inverse temperature (the grand canonical
ensemble, with the number operator N and the chemical potential µ fixing the
average density). The interest lies in finding and proving statements that hold in
the thermodynamic limit where the volume becomes infinite, or that are uniform
in volume at large volumes.

In spite of the simplicity of the Hamiltonian, many of the properties of the
ground state and the thermal state remain controversial. Some remarkable rigorous
results, in particular about magnetism in these models, are reviewed in [4, 5].

In the physical application, the interaction is very often strong, i.e. the typical
two-body interaction energy is much larger than the band width defined by the
kinetic term. But it is already very nontrivial to treat the weakly coupled case,
which arises from noninteracting Fermi gases at positive particle density when a
weak, short-range interaction is included. The positive density implies that the
Fermi gas has an extended Fermi surface, in particular the spectrum of the kinetic
energy operator is gapless in the infinite-volume limit.

This property is essential for much of the phenomenological importance of these
models – the presence of a Fermi surface is the basis for metallic behaviour – but
it also presents an essential mathematical difficulty, in that naive perturbation
theory diverges at zero temperature and gives a wrong temperature dependence
at small positive temperatures. This necessitates renormalization to give a rigorous
treatment of interaction effects.

It is a fundamental question whether the low-lying excitations of the weakly in-
teracting system, i.e. the states energetically just above the ground state, have the
character of fermionic quasiparticles, which very loosely speaking means that the
states in Hilbert space correspond to wave packets with a small damping, which
satisfy Fermi statistics. Landau’s Fermi liquid (FL) theory asserts that a rather
general class of fermion systems (which also includes ones with strong interactions)
has this property [6, 7]. From the mathematical point of view, FL theory remained
largely conjectural for some time, partly because a precise definition of a Fermi
liquid is not straightforward, partly because of the difficulty of the problem. In
one dimension, the exact solution of the Luttinger model shows that FL theory is
not valid. This was proven to extend to Hubbard-type models in one dimension
in [8, 9]. FL theory was very successful in many three-dimensional fermion sys-
tems, but its limitations became obvious in the high-Tc materials, which exhibit
striking deviations from the predictions of FL theory, such as a linear rise of elec-
trical resistivity as a function of temperature above the critical temperature for
superconductivity.

A mathematically precise condition for a weakly interacting Fermi system to
be a Fermi liquid at positive temperature was formulated in [10], as follows. The
quantum-field theoretical fermionic two-point function of a Fermi gas has Fourier
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transform Ĉ(ω, k) = (iω − e(k))−1, where ω is an odd multiple of π
β , e(k) =

ε(k) − µ, and k 7→ ε(k) is the Fourier transform of the hopping amplitude. The

level set S = {k : e(k) = 0}, where Ĉ becomes large, and singular in the zero-
temperature limit β → ∞, is called Fermi surface in three dimensions, and Fermi
curve in two dimensions (for brevity, always referred to as the Fermi surface in the
following). The system with an interaction with coupling strength λ is a Fermi
liquid at sufficently low temperatures (say, β > 1) if there is C > 0, independent
of the volume, such that (a) renormalized perturbation theory converges on the
set R of all pairs (λ, β) satisfying |λ| log β < C and (b) on R, the fermionic two-

point function has Fourier transform Ĝ(ω, k) = (iω− e(k)−Σ(λ, ω, k))−1 and the
fermionic self-energy Σ is a C2 function of (ω, k), with sup norms of the second
derivatives bounded uniformly on R.

This condition is fine enough to separate FL from the one-dimensional Luttinger
liquids: in one dimension, (a) holds but (b) fails, since already the first derivative of
Σ diverges on the zero set of e (which in one dimension is a set of two points). This
second-order divergence is the first indication for the anomalous decay exponents
of the full solution in one dimension. In two spatial dimensions, the detailed
calculation of the order-λ2 contribution to the self-energy [14] shows that (b) is
the best one can hope to get, and in the limit β → ∞, the second derivative blows
up.

The deeper motivation for condition (a) is that, because of the Kohn-Luttinger
effect [11], one should not expect a Fermi system that satisfies e(−k) = e(k) to
be a FL at zero temperature. Specifically, for ε(k) = k2 the ground state will
be superconducting for any µ > 0, i.e. it has off-diagonal long range order that
spontaneously breaks the U(1) particle number symmetry of the action. In other
words, the restriction to the set R places the temperature β−1 above the critical
temperature for the superconducting transition.

When analyzing the Fermi system, it becomes clear that the validity or failure
of FL theory in this sense is intimately tied to the geometry of the Fermi surface
S: if the Fermi surface is regular, i.e. ∇e(k) 6= 0 for all k ∈ S, and if it obeys
a relatively weak non-nesting condition, then the first derivatives with respect to
momentum and frequency are bounded [12, 13]. (The singularity in one dimension
arises because there is no curvature.) If the interior of S is strictly convex and if
S is regular and positively curved, (b) holds. These properties were proven to all
orders in λ in all dimensions d ≥ 2 in [13, 14, 15]. In subsequent work, the above
FL condition was proven to hold for models with positively curved Fermi surfaces
in two dimensions in [17, 18, 19, 20, 21]. Conversely, it was proven not to hold in
the half-filled case, where the Fermi surface is perfectly nested [22]. It was also
shown that even in the absence of nesting, the presence of Van Hove singularities,
i.e. points k ∈ S where ∇e(k) = 0, leads to singularities in the fermionic self-
energy Σ that violate (b) [23, 24]. The regularity of Σ as a function of ω and of k
is different, unlike in the one-dimensional Luttinger model [24].

Fermi systems with e(−k) 6= e(k) (defined by precise conditions) were shown to
be Fermi liquids in a more general sense by Feldman, Knörrer, and Trubowitz [25].



2846 Oberwolfach Report 49/2023

Remarkably, their proof holds in the limit of zero temperature, β → ∞, i.e. in [25]
the region R plays no role, and the only condition on the coupling is |λ| < const.
The intuitive reason is that the asymmetry of the band function in k removes the
Cooper pairing instability, but the full proof requires more, namely rather subtle
bounds on particle-hole contributions to the effective interaction. The result of
[25] includes the proof that the fermionic occupation density has a discontinuity
at the Fermi surface (which is never true at any positive temperature).

In all the above proofs, mathematical renormalization group methods [26, 27,
28] were used; the same methods also serve to prove an inversion theorem [16] that
justifies renormalization. A variant of these methods have also been successful in
theoretical physics studies. Their application to the Hubbard model in the param-
eter range interesting for the high-Tc materials explains the phase diagram of these
systems and sheds light on the interplay of antiferromagnetic and superconducting
correlations in the Hubbard model [24, 29, 30, 31, 1].
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Introduction by the Organizers

Standard subspaces originate from the theory of von Neumann algebras, where
they encode the modular data of a von Neumann algebra w.r.t. a cyclic and
separating (standard) vector. They can however also be defined independently of
von Neumann algebras in the simple setting of a complex Hilbert space; a standard
subspace is then a closed real linear subspace which contains no complex line and
has dense complex linear span. In recent years it has become increasingly clear
that this point of view allows for a rich and still unfolding theory that is of interest
in its own right and has fascinating applications in various fields.

The mini-workshop Standard Subspaces in Quantum Field Theory and Repre-
sentation Theory was a meeting designed to bring together researchers working
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with standard subspaces from different perspectives, with an emphasis on people
in quantum field theory and representation theory of Lie groups.

In quantum field theory (QFT), standard subspaces serve as a means to encode
localization regions in a spacetime manifold and are thus a basic aspect of any
model QFT. Typical questions involve the modular data of standard subspaces
belonging to particular localization regions (for massive QFT, the modular group
for a double cone is still unknown), the usage of standard subspaces in the formu-
lation of examples of interacting QFTs, the role played by standard subspaces to
define an intrinsic notion of entropy, or the interplay of standard subspaces with
KMS-condition and reflection positivity, which appears in reconstruction theorems
for Euclidean field theories.

In the presence of a spacetime symmetry Lie group, one considers nets of stan-
dard subspaces transforming under a unitary representation of this group, which
immediately explains the close link to Lie group representations. Here typical ques-
tions concern the interplay between the geometric configurations, such as wedge
regions for modular flows on causal homogeneous spaces and the types of unitary
group representations that can host corresponding nets of standard subspaces.
Another important aspect is to detect natural finite-dimensional spaces of dis-
tribution vectors for the representations, specified by a suitable KMS condition,
that are invariant under large subgroups and from which well-behaved nets of real
subspaces can be constructed by a smearing process.

The mini-workshop format has turned out to be the perfect choice for discussing
these questions in an efficient and productive manner. The areas of expertise of
the 17 participants were close enough to allow for easy discussions, and at the same
time far enough apart for learning new results, points of view and ideas from each
other. For the younger participants the event also offered the highly appreciated
opportunity to get to know more colleagues, discuss and present their projects,
and grow their scientific networks.

Thanks to the mini-workshop format, we could also successfully implement some
informal discussion sessions in addition to more typical seminar talks. In these
sessions, participants presented ideas, observations and questions in an unfinished
format which led to long and intense discussions between many people.

An example of such a discussion was a session on inclusions of standard sub-
spaces. Here the main question is how to decide whether an inclusion K ⊂ H
is irreducible, and the discussion related this to questions in von Neumann alge-
bras (split property, modular nuclearity), entropy (the boundedness of the cutting
projection decides about the existence of irreducible extensions), symmetric inner
functions and the distribution of their zeros (closely connected to dim(K ′ ∩H) in
particular examples), and more.

Another group discussion was centered around positive energy representations
of gauge groups. As these groups are infinite-dimensional, the highly developed
finite-dimensional structure theory does not apply to these groups, but their pos-
itive energy representations appear naturally in physical models, such as Confor-
mal Field Theory (CFT), where positive energy representations of loops groups
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are crucial in the construction for models, such as the U(1)-current and its deriva-
tives. The extension of the elaborate geometric side of standard subspaces for
finite-dimensional groups to important classes of infinite-dimensional ones is an
important problem for future research.

Some further group discussions concerned the, by far not fully understood,
aspect of reflection positivity and the existence of euclidean models. In this context
it is not clear how the modular objects, such as modular operator and conjugation,
corresponding to standard subspaces, should be represented on the euclidean side.
Natural candidates involve unitary representations of the non-connected group
O2(R), satisfying suitable positivity conditions.

The following abstracts provide an excellent picture of the current state of the
art and the diverse research directions concerning various aspects of standard
subspaces and their applications. Topics that appeared in several presentations
were aspects of entropy (Longo, Cadamuro), deformations of second quantization
processes (Lechner, Correa da Silva), reflection positivity and euclidean models
(Adamo, Tanimoto), and connections between nets of standard subspaces and

unitary representations (Morinelli, Ólafsson, Beltiţă, Neeb).

Acknowledgement: The organizers thank the director Prof. Dr. Gerhard Huisken,
and the Oberwolfach staff for offering an outstanding environment for this work-
shop and support in all phases of the planning.

The MFO and the workshop organizers would also like to thank the Simons
Foundation for supporting Gestur Ólafsson in the “Simons Visiting Professors”
program at the MFO.
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Gestur Ólafsson (joint with J. Frahm, V. Morinelli, K.-H. Neeb and
I. Sitiraju)
Standard Subspaces and Distribution Vectors . . . . . . . . . . . . . . . . . . . . . . . . 2867

Detlev Buchholz (joint with Klaus Fredenhagen)
Arrow of time and quantum physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2870

Karl-Hermann Neeb (joint with Vincenzo Morinelli)
Nets of standard subspaces on homogeneous spaces . . . . . . . . . . . . . . . . . . . 2873

Gerardo Morsella (joint with Roberto Conti)
Quasi-free isomorphisms of second quantization von Neumann algebras
and modular theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2876

Ricardo Correa da Silva (joint with Gandalf Lechner)
Twisted Araki-Woods Algebras: structure and inclusions . . . . . . . . . . . . . . 2879
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Abstracts

Standard subspaces in Representation Theory

Vincenzo Morinelli

(joint work with K.-H. Neeb, G. Ólafsson)

A model in Algebraic Quantum Field Theory (AQFT) is specified by a map as-
sociating to any open region of the spacetime, its von Neumann algebra of local
observables acting on a fixed complex Hilbert space H (the state space), satisfying
fundamental quantum and relativistic assumptions as Isotony, Locality, Poincaré
covariance, positivity of the energy, cyclicity of the vacuum vector for local alge-
bras [Haa96]. One can take as an example an AQFT on Minkowski spacetime.
Here, the Rindler wedge and its Poincaré transforms are fundamental localization
regions called wedges. They are determined by the one-parameter group of boost
symmetries (properly parametrized) that fix them as a subset of the Minkowski
spacetime. The algebraic canonical construction of the free field provided by
Brunetti–Guido–Longo (BGL) builds on the the wedge-boost identification, the
Bisognano-Wichmann (BW) property and the PCT Theorem, cf. [BGL02]. In
particular, given a particle, namely an irreducible representation of the proper
Poincaré group U that is unitary on the connected component of 1 and antiuni-
tary on the connected component of −1, it is possibile to canonically determine the
states in the Hilbert space HU supporting U localized in any wedge, having as a
fundamental input the unitary representation of the one-parameter group of boosts
associated to the wedge and the antiunitary operator implementing the wedge re-
flection. For instance, consider the wedge region WR = {x ∈ R1+d : |x0| < x1},
the real standard subspace1 H(WR) ⊂ HU of states localized in a wedge region
WR is uniquely determined as follows: let

∆it
H(WR) := U(ΛWR

(−2πt)), (BW) property

JH(WR) := U(rWR
), (PCT) Theorem

where we have that ΛWR
(t)x = (cosh(t)x0 + sinh(t)x1, sinh(t)x0 + cosh(t)x1,x),

jRx= (−x0,−x1,x), for x∈R1+d, x∈Rd−1, then H(WR) = ker(1−JH(WR)∆
1
2

H(WR)).

Note that SH(WR) = JH(WR)∆
1
2

H(WR)
is the Tomita operator of the standard sub-

space H(WR) (for the Tomita theory of standard subspaces we refer to [Lon08]).
Then for every open region O =

⋂
W⊃OW with W wedge region, one can define

the set of states localized in O by intersection H(O) =
⋂
W⊃O H(W ). The free

field net of von Neumann algebras is then constructed via second quantization,
see [BGL02, LRT78].

In this presentation, we will provide an overview on the analysis developed
in the last years together with K.-H. Neeb and G. Ólafsson where we generalize
this one-particle picture from a geometrical perspective. The core of this analysis
relies on the understanding of a deep connection between the geometry of standard

1a real closed subspace H ⊂ H is standard if H + iH = H and H ∩ iH = {0}
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subspaces, given by the Tomita modular operator and modular conjugation, and
the geometry of specific elements in the Lie algebra of a Lie group G called Euler
elements and their representation theory. This approach provides feedbacks for
representation theory and for the algebraic approach to Quantum Field Theory
without restrictions to second quantization models.

Let G be a connected Lie group and let h be an Euler element in its Lie algebra
g, namely adh is diagonalizable and Spec(adh) = {−1, 0, 1}, then τh = exp(iπ h)
generates an involution on g. Simple Lie algebras containing Euler elements are
classified, cf. [MN21, Kan00]. Assume that τh integrates to an involution on G
and let Gτh be the semidirect product group generated by G and the involution
τh. A G-equivariant set of wedges is defined by

GE = {W = (x, τx) ∈ g× τhG : x is and Euler element}
where the G-action is defined by g.W = (Ad g(x), gτxg

−1). Once a cone C in the
Lie algebra g is given, then wedge inclusions can be defined. Furthermore, the
causal complement of a abstract wedge is given by W ′ = (−x, τx). In particular
we have defined on a abstract level a local poset of abstract wedge regions, for the
general picture see [MN21].

Let W = (xW , σxW ) ∈ GE , given an (anti-)unitary representation of Gτh on a
Hilbert space H, then U(exp(−2πt xW )) and U(σxW ) identify the standard sub-
space H(W ) ⊂ H by the Tomita theory. Due to the general theory of standard
subspaces we can define a generalized framework for one particle nets of standard
subspaces that strictly extends the set of one-particle models from AQFT that can
be constructed through the BGL-construction, cf. [MN21].

Causal homogeneous spaces M = G/H play the role of the spacetime in AQFT
models. On these spaces concrete wedge regions, as positive subsets for the Euler
element flow, can be defined, see [NÓ22, NÓ23, MNÓ23a, MNÓ23b]. If G is cen-
terfree and the wedge subset is connected in M , then there is a correspondence
between abstract wedges (Euler couples) and wedge subsets of a causal homoge-
neous space [MN23]. Given a unitary representation U of G, one can associate
real subspaces on general open regions by using the language of distribution vec-
tors [FNÓ23, NÓ23, NØÓ21, NÓ21]. Bosonic second quantization associates to a
one-particle net an isotonous, G-covariant net of von Neumann algebras acting on
the Fock space [MN21].

We are in the position of defining an axiomatic framework for nets of von Neu-
mann algebra on abstract wedges as well as on open regions of a causal symmetric
spaces. One can deduce properties of wedge symmetries and wedge von Neumann
algebras for this generalized AQFT from local properties of the net.

The following results are contained in [MN23]. Firstly, given a one-parameter
subgroup λ(t) of a connected Lie group G, a unitary representation U of G with
discrete kernel on an Hilbert space H and a standard subspace inclusion K ⊂ H ⊂
H such that ∆it

H
= U(λ(−2πt)) (BW property) and U(g)K ⊂ H when g is in an

open neighbourhood of the identity (regularity property), then λ(t) is generated
by an Euler element. So, Euler elements appear naturally in this framework as a
consequence of the (BW) and the regularity properties.
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Let G, U and λ as before. Assume that λ(t) is generated by an anti-elliptic
element of g and consider a von Neumann algebra inclusion N ⊂ M ⊂ B(H)
with a common unique G-fixed cyclic and separating vector in H (vacuum vector).
If the Bisognano-Wichmann property holds, namely ∆it

A,Ω = U(λ(−2πt)) where

∆it
A,Ω is the modular group of A with respect to Ω, and an analogue regularity

property holds for the von Neumann algebra inclusion N ⊂ M with respect to the
adjoint G-action, then the algebra M is a type III1 factor with respect to Connes’
classification.
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[NÓ22] Neeb, K.-H., and G. Ólafsson, Wedge domains in non-compactly causal symmetric
spaces, Geometriae Dedicata 217:2 (2023), Paper No. 30; arXiv:2205.07685

[NÓ23] Neeb, K.-H., and G. Ólafsson, Wedge domains in compactly causal symmetric spaces,
Int. Math. Res. Notices 2023:12 (2023), 10209–10312; arXiv:math-RT:2107.13288
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Signal communications and modular theory

Roberto Longo

We propose a conceptual frame to interpret the prolate differential operator

W =
d

dx
(1 − x2)

d

dx
− x2 ,

which appears in Communication Theory, as an entropy operator; indeed, we write
its expectation values as a sum of terms, each subject to an entropy reading by an
embedding suggested by Quantum Field Theory.

This adds meaning to the classical work by Slepian et al. on the problem of
simultaneously concentrating a function and its Fourier transform, in particular
to the “lucky accident” that the truncated Fourier transform FB

FB = EBFEB

commutes with the prolate operator; here, F is the unitary Fourier transform on
L2(R) and EB the orthogonal projection onto L2(B), with B = (−1, 1) the unit
ball.

The key is the notion of entropy S(Φ||H) of a vector Φ of a complex Hilbert H

space with respect to a real linear subspace H , recently introduced by the author,
and extended with collaborators, by means of the Tomita-Takesaki modular theory
of von Neumann algebras; if H is a factorial standard subspace of H with modular
operator ∆H , we have

S(Φ||H) = ℜ(Φ, iPH i log ∆HΦ) = ℜ(Φ,EHΦ) .

Here, PH is the cutting projection

PH : Φ + Φ′ 7→ Φ , Φ ∈ H, Φ′ ∈ H ′ ,

with H ′ the symplectic complement of H . PH can be explicitly expressed in terms
of the modular data.

EH = i log ∆H is a real-linear, selfadjoint, positive operator, that we regard as
an entropy operator inasmuch as its expectation values are entropy quantities.

We consider a generalization of the prolate operator to the higher dimensional
case and show that it admits a natural extension commuting with the truncated
Fourier transform; this partly generalizes the one-dimensional result by Connes to
the effect that there exists a natural selfadjoint extension to the full line commuting
with the truncated Fourier transform.

We consider the entropy operator EH when H is the one-particle Hilbert space
of a free, massless, scalar Boson, H is the local subspace associated with the unit
ball B in Rd, and Φ ∈ H is a wave packet. Then S(Φ||H) is the information
contained by Φ in B.

In this case, on Cauchy data in L2(B) ⊕ L2(B), EH has (up to constants)
two components: −L, with L = ∇(1 − r2)∇ the Legendre operator, and M , the
multiplication operator by (1 − r2).

We infer that the prolate operator is an entropy operator, thus a natural a priori
candidate to commute with FB.
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The massive modular Hamiltonian for a double cone

Daniela Cadamuro

Since it has been set up in the 1970’s due to works by Tomita that became public
with lectures by Takesaki [Tak70], as well as by Araki [Ara76], Tomita-Takesaki
modular theory has been one of the most important developments in the theory
of operator algebra, as well as in quantum theory. However, in relevant examples
from quantum (field) theory, obtaining an “explicit” form of the modular generator
log ∆ has been the strenous work of many researchers along the time. At least in
the following situations, a model-independent answer is known:

• If M is the algebra of all observables and Ω represents a thermal equilib-
rium state (KMS condition), then log ∆ is the generator of time transla-
tions (up to a factor) [HHW67].

• If M = A(W) is the algebra associated with a spacelike wedge region W
in quantum field theory, and Ω is the Minkowski vacuum, then log ∆ is
the generator of boosts along the wedge [BW75].

But what about the algebra of a double cone, M = A(O), in a quantum field
theory? To answer this question we consider the example of a real scalar free
field φ of mass m > 0. We consider the Fock vacuum as our cyclic and separating
vector. The local algebras, as well as the modular operator [EO73], are determined
by second quantization, so that we only need to consider the modular operator at
one-particle level, which is defined as follows.

On the (complex) one-particle Hilbert space H1 of the theory, we consider
a (closed real) local subspace L1(O) ⊂ H1, which is “standard” and “factorial”
(L1 + iL1 = H1, L1∩L′

1 = L1∩iL1 = {0}), where “prime” denotes the symplectic
complement. We define the one-particle Tomita operator on H1 as

(1) T1 : f + ig 7→ f − ig, f, g ∈ L1(O),

the polar decomposition of its closure is T1 = J1∆
1/2
1 . (We shall drop the index

“1” from now on.)
We can rewrite the one-particle modular generator as follows. Let P be the

real-linear projector onto L ⊂ H with kernel L′ ⊂ H. Then, on a certain domain,
we write

(2) P = (1 + T )(1 − ∆)−1.
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A computation then shows that

log ∆ = −2 arcoth(P − iP i− 1).(3)

This determines log ∆ from P , and hence from L [FG89]. We now write this
formula in a different manner, by writing H in time-0 formalism in configuration
space. Here, H is parametrized by time-0 initial data of field and field momentum
f = (f+, f−). The scalar product and the complex structure, with A = −∇2+m2,
are given by

(4) Re〈f, g〉H =
〈
f,

(
A1/2 0

0 A−1/2

)
g
〉
2
, iA =

(
0 A−1/2

−A1/2 0

)
.

The local subspaces are defined as follows. Let B be the base of O at time 0, then
we define

(5) L = C∞
0 (B) ⊕ C∞

0 (B), P = χ⊕ χ,

where χ multiplies with the characteristic function of B. Inserting this in formula
(3), we have

(6) log ∆ = iA

(
0 M−

−M+ 0

)
,

where

(7) M± = 2A± 1
4 arcoth(B)A± 1

4 , B = A1/4χA−1/4 +A−1/4χA1/4 − 1.

Hence, ∆ is determined from χ and A. However, “explicitly” finding the spectral
decomposition of B as a selfadjoint operator on L2(Rs) is very difficult. There are
however known examples:

• If O is the wedge in x1-direction, then M− multiplies with 2πx1, indepe-
dent of m.

• If O is a double cone of radius r and m = 0, then M− multiplies with
π(r2 − ‖xxx‖2) [HL82].

Now the questions we would like to answer in the case of double cones and m > 0
are the following: Is M− mass indepedent? Is M− a multiplication operator?
Since answering these questions anaytically is very difficult, we do it numerically,
namely we evaluate B and M− numerically to check this hypothesis.

Using numerical approximation means approximating As and χ with finite-
dimensional matrices. For that, we need to choose an orthonormal basis and finite
dimensional in one summand of H, and we need to approximate A±1/4 and χ with
a matrix in this basis. Then, we can apply numerical eigendecomposition in order
to evaluate the arcoth, and therefore approximate the operator B. We do this
with no rigorous estimates on the approximation. Explicitly, A,χ acts on L2

R(R)
by A = −∂2x +m2, and χ is determined by the region considered: χ(x) = Θ(x) for
a wedge, or χ(x) = Θ(1 + x)Θ(1 − x) for the standard double cone.

As our basis functions, we choose suitable piecewise linear functions [BCM23],
and the discretization is first done for A−1/4 which is bounded and has a known
convolution kernel; we then obtain A1/4 by numerical matrix inversion. We can
then approximate (the integral kernel of) M− using the formula (7); this is done by
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Figure 1

functional calculus of matrices, and the computation turns out to require extended
floating point precision of 400–600 decimal digits. We expect convergence against
the undiscretized result in the weak sense, i.e., if M (N,b) denotes the integral kernel
at a number N of basis elements covering the interval [−b, b],

∫∫
g(x)M

(N,b)
− (x, y)h(y)dx dy −−−−−→

N,b→∞

∫∫
g(x)M−(x, y)h(y)dx dy.

We choose g = h to be a Gaussian located near a point µ, then we vary this point
µ.

The results in the wedge case turn out to be compatible with known results. In
the case of a double cone, we find that the discretized kernel M− is concentrated
predominantly on the diagonal, see Figure 1. There appear to be some contribu-
tions along the antidiagonal, but it is unclear whether this is due to numerical
errors or whether there is really a subdominant non-diagonal contribution. An
explicit expression for the curves displayed in Figure 1 and Figure 2 is not known.
The smeared version of the discretized kernel M−, see Figure 2, shows that the
kernel is mass-dependent. In particular, the black parabola corresponds to the
case m = 0 and therefore to the quadratic result of Hislop-Longo, while the two
straight black lines (piecewise linear) for large mass correspond to the result of
a left and a right wedge. Indeed, large masses correspond to small correlation
lengths, and hence a heuristic explanation for the approximate “double wedge”
structure may be that at one end of the interval, the contribution from the other
end of the interval is very small, so that the modular operator for the interval
approximately behaves like the one for a half-line.

A similar analysis can be done for a double cone in the 3+1-dimensional field
using its spherical symmetry. It turns out in this case that the modular operator
also depends on angular momentum [BCM23].
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Figure 2
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[HHW67] R. Haag and N. M. Hugenholtz and M. Winnink, On the equilibrium states in quantum
statistical mechanics, Commun. Math. Phys. 5(3), 215–236 (1967).

[HL82] P. D. Hislop and R. Longo, Modular structure of the local algebras associated with the
free massless scalar field theory, Commun. Math. Phys. 84(1), 71–85 (1982).

[Tak70] M. Takesaki, Tomita’s Theory of Modular Hilbert Algebras and its Applications, Lec-
ture Notes in Mathematics 1(1970).

Modular Generators Implementing Conformal Flows in

1 + 1 de Sitter Space

Christian Jäkel

(joint work with Urs Achim Wiedemann)

We construct modular Hamiltonians, which satisfy the Virasoro algebra relations.
They give rise to one-parameter groups of unitary operators in the Fock represen-
tation for the free massless field, which implement the geometric flows associated
to the conformal Killing vector fields on the 1+1-dimensional de Sitter space dS.
Previous results by Longo and Kawahigashi [KL05] and Longo, Martinetti, and
Rehren [LMR10] on chiral quantum fields suggest that the modular Hamiltonians
on de Sitter space should be given by Connes’ spatial derivatives for pairs of prod-
uct states, build up from rescaled vacuum states. We show that this is indeed the
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case, and that we can provide explicit expressions for Connes’ spatial derivatives
in terms of higher ladder operators on Fock space.

To be more specific, we first compute the conformal Killing vector fields on the
two-dimensional de Sitter space dS

.
=

{
x ∈ R1+2 | x20 − x21 − x22 = −r2

}
. We show

that these vector fields can be analytically continued to conformal Killing vector
fields defined on S2 \ {(ir, 0, 0), (−ir, 0, 0)}, where S2

.
=

{
(ix0, x1, x2) ∈ (iR)×R2 |

x20 + x21 + x22 = r2
}
⊂ dSC is the Euclidean sphere embedded in the complexified

de Sitter space. Only six vector fields allow analytic continuations to all of S2,
as this is the maximum number of conformal Killing vector fields allowed on S2.
The other (analytically continued) vectors fields diverge at the poles (±i, 0, 0)
of S2. We solve the flows equations for the conformal Killing vector fields and the
analytically continued conformal Killing vector fields. Inspecting Killing vector
fields for higher k > 2, we find that also there, analytic continuation of the flow to
t → iπ/k yields a discrete space-time transformation that amounts to mirroring
any point a ∈ dS at the source or sink of the corresponding vector field that lies
the closest to a.

Next, we provide [BJM23] a new realisation of the representations D±
1 first

studied by Bargmann in his classification of the unitary irreducible representations
of SO0(1, 2). While Bargmann used functions supported on the forward light cone
in R1+2, our representation space consists of functions supported on the Cauchy
surface C = {x ∈ dS | x0 = 0}, sometimes called the time-zero circle. The scalar
product1

(1) 〈h1, h2〉 = − 1
2

∫

C

dψ h1(ψ)

∫

C

dψ′ ln
(
2 − 2 cos(ψ − ψ′)

)
h2(ψ) .

and the generators of the rotations and the two Lorentz boosts, denoted by k0, l1
and l2, have a particular simple form in our formulation: the corresponding unitary
groups are

D±
1 (R0(α)) = eiαk

±

0 , k±
0 = −i d

dψ .

and

D±
1 (Λ1(t)) = eitνr cosψ , (cosψ h)(ψ)

.
= cosψ · h(ψ) , h ∈ h± .

The unitary group of the second boost is D±
1 (Λ2(t)) = eitνr sinψ .

In the sequel, we associate to any (generalized) function h in the one-particle

Hilbert space h, a distribution ĥ on the de Sitter space, with support on the Cauchy
surface C. With the help of the fundamental solution E, we construct solutions

Φĥ

.
= E ∗ ĥ of the wave equation with Cauchy data

φĥ = −(νr)−1ℑh and πĥ = ℜh , h ∈ h .

We verify that the generators ki and li, i = 0, 1, 2, implement the geometric flows

ΦXi
t and ΦYi

t associated to the (conformal) Killing vector fields Xi and Yi, i =

1The logarithmic singularity of the kernel is integrable and hence ultra-violet divergencies are
mild, while infra-red divergencies are absent due to the fact that C is compact.
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0, 1, 2. For instance,

ℜ eitlih =
(
∂
∂ηE ∗ (ĥ ◦ ΦXi

t )
)
(0, . ) ,

−(νr)−1ℑ eitlih = −
(
E ∗ (ĥ ◦ ΦXi

t )
)
(0, . ) , i = 1, 2 .

This geometric picture allows us to look out for Cauchy data supported in an
interval I ⊂ C. The lack of a zero mode requires care when defining the standard
subspaces hI associated to an interval I on the Cauchy surface: the Cauchy data
(f ′, g) ∈ hI gives rise to a solution of the wave equation which has support in the
space-time points that can be connected with light rays to points in the closed
interval I, once an overall constant solution is subtracted. As expected, hI =
h+I ⊕ h−I can be decomposed into right-movers and left-movers without destroying
the localisation properties, as left and right movers are uncorrelated. The map
I 7→ hI has a number of desirable properties: isotony, preservation of intersections,
additivity, locality, Haag duality, anti-locality and the one-particle Reeh-Schlieder
property all hold. Rescaling is a delicate operation on the one-particle Hilbert
space h due to the fact that the Cauchy surface is compact. The higher conformal
flows defined maps on the set of solutions of the wave function, and therefore also
on the Cauchy data. The positive and negative frequencies remain separated.

The next step is to build up the Tomita operator associated to a wedge W ⊂ dS

from the boost leaving the wedge invariant, and the reflection at the edge of the
wedge. Since both building blocks arise from group theory, the Tomita operator
associated to a wedge is given intrinsically by the representation theory of the
space-time symmetry group. We show that modular localisation, invented by
to Brunetti, Guido and Longo [BGL02], assigns R-linear subspaces h(O) of h to
causally complete space time regions O ⊂ dS, in agreement with our physical
expectations, as it yields the localisation of Cauchy data for solutions of the wave
equation because

h(OI) :=
⋂

W⊂OI

h(W ) = hI

for all double cones OI with base I ⊂ C.
The generators l0, l1, l2 and k1, k2 are modular Hamiltonians, i.e., they are the

generators of modular groups associated to R-linear subspaces h(X ) of h. The
localisation region X ⊂ dS turns out to be the region where the associated Killing
vector field (select one among Y0,X1,X2 and Y1,Y2) is time-like and future di-
rected. As the vector field X0 is nowhere time-like, the angular momentum op-
erator k0 is not a modular Hamiltonian. Beside the five modular Hamiltonians
already mentioned, there exits many more such Hamiltonians which arise by ap-
plying SO0(2, 2) transformations to the space-time regions already considered. A
particular interesting case arises by shrinking a wedge to a double cone.

In the sequel, we introduce Fock space and we define smeared-out field operators

ϕ(h)
.
= 1√

2

(
a∗(h) + a(h)

)
, h ∈ h ,

satisfying the canonical commutation relations
[
ϕ(f), ϕ(g)

]
= iℑ〈f, g〉h, f, g ∈ h.

The canonical momenta are defined by setting π(g)
.
= ϕ(iνrg), νrg ∈ h, g real
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valued. Next, we provide unitary operators on Fock space which implement the
higher conformal flows. The generators

X
(n)
1

.
= 1

2

(
K+
n +K+

−n +K−
n +K−

−n

)
,

Y
(n)
1

.
= 1

2

(
K+
n +K+

−n −K−
n −K−

−n

)
,

can be expressed in terms of higher ladder operators K+
n , K+

−n, K−
n and K−

−n

satisfying the Virasoro algebra relations
[
K±
n ,K

±
m

]
= (n−m)K±

n+m + 1
12 n(n2 − 1)δn,−m 1 ,

while [K±
n ,K

∓
m] = 0 for all n,m ∈ Z. The generators satisfy

i
[
X

(n)
1 , ∇ϕ(f) + π(g)

]
= π

(
cosnψ

d
dψf

)
+ ∇ϕ

(
cosnψ

d
dψ g

)
,

i
[
Y

(n)
1 , ∇ϕ(f) + π(g)

]
= ∇ϕ

(
cosnψ

d
dψf

)
+ π

(
cosnψ

d
dψ g

)
.

Similar formulas hold for X
(n)
2 and Y

(n)
2 , n ∈ N. In the the sequel we show that

these operators are the generators of modular groups for product states consisting
of rescaled vacuum state.
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Standard Subspaces and Distribution Vectors

Gestur Ólafsson

(joint work with J. Frahm, V. Morinelli, K.-H. Neeb and I. Sitiraju)

Construction of fields of standard subspaces using antiunitary representations and
the geometry of causal symmetric spaces has recently been studied in a series of
articles including [BN23, FNÓ23, MN21, MNÓ23a, MNÓ23b, NØÓ21, NÓ23a,

NÓ23b, ÓS23]. We give here a short overview of the main ideas.
In the following G will always denote a connected semisimple Lie group with

finite center, τ : G → G a nontrivial involution and (Gτ )e ⊆ H ⊂ Gτ , where
Gτ = {x ∈ G | τ(x) = x}. We denote by Gτh the semidirect product of G and
{1, τh}. The derivative of τ induces a Lie algebra homomorphism τg : g → g which
leads to the ±1-eigenspace decomposition g = h⊕ q, where h is the Lie algebra of
H and q is isomorphic as a H-space to the tangent space of M at x0 = eH . We
assume that the symmetric space M = G/H is noncompactly causal, i.e., there
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exists an H-invariant closed pointed and generating cone C ⊂ q such that the
elements of Co are hyperbolic.

We always choose a Cartan involution that commutes with τ and write g = k⊕p

for the corresponding Cartan decomposition. Let a ⊂ p be maximal abelian.
Denote by ∆ the set of roots of a in g and let Ωa = {x ∈ a | (∀α ∈ ∆) |α(x)| < π/2}.
We then let AiΩ = exp iΩ and define ΞG/K = Ξ = GAiΩa

x0 ⊂ GC/KC, the
crown of the Riemannian symmetric space G/K. We also define ΞG = GAiΩKC =
q−1
G/K(ΞG), the crown domain in GC. Here qG/K : G→ G/K denotes the canonical

projection x 7→ xK. Ξ is open in GC/KC and ΞG is open in GC. Both sets are
by definition G-invariant. Denote by ∂dΞ the distinguished boundary of Ξ (see
[GK02]).

Theorem 1 (Gindikin-Krötz, [GK02]). Assume that G ⊂ GC, GC simply con-
nected. Let M = Gz0KC be an open G-orbit in ∂dΞ. If M is a symmetric space
then M is ncc and z−1

0 HCz0 = KC, H = Gz0 . Furthermore, up to covering, every
ncc space G/H can be realized in this way.

Example 2 (The de Sitter space). For v = (v0,v), w = (w0,w) ∈ R1+d let [v, w] =
v0w0 − 〈v,w〉. Let G = SO1,d(R) ⊃ H = SO1,d−1(R). We have G(ie0) = G/K =

Hd = {iv ∈ iRd+1 | [v, v] = 1} and Ge1 = G/H = dSd. Let h : (x0, x1, x̃) 7→
(x1, x0, 0, · · · , 0). Then h is an Euler element and a = Rh. Furthermore, ΞHd =

(Rd+1 + iV+)∩dSd where V+ is the forward light cone. We have exp(−ith)(ie0) =

i(cos t)e0 + (sin t)e1 → e1 as t → π/2 and dSd is the only open G-orbit in the
distinguished boundary of Ξ.

Let (U,H) be an anti-unitary representation of Gτh . Recall that a real subspace
V ⊂ H is standard if V is closed, V ∩ iV = {0} and V + iV ⊂ H is dense. Denote
by H∞ the space of smooth vectors and by H−∞ the conjugate linear dual of H.
For a finite dimensional H-invariant subspace E ⊆ H−∞ and O ⊆M = G/H open
define

(1) HE(O) := spanR{U−∞(φ)E | φ ∈ C∞
c (q−1

M (O),R)} ⊂ H.
HE defines a net of real subspaces which is clearly isotone and covariant, but locality,
Reeh-Schlieder and Bisonanao-Wichmann do not hold in general.

Let h be an Euler element such that z0 = exp(πi2 h), z0 as in Theorem 1. Denote

by αt(m) = exp(th)m, m ∈ M , the modular flow and XM
h (m) = d/dt|t=0 αt(m).

The positivity domain is W+
M (h) = {m ∈ M | XM

h (m) ∈ V+(m)} (see [MNÓ23a,

NÓ23a, NÓ23b]).
Let (U,H) be a irreducible antiunitary representation ofGτh. Denote by H−∞,8[h]

the space of h-finite distribution vectors and by H[K] the space of K-finite vec-
tors. If G ⊂ GC is linear then for ξ ∈ H[K] the orbit map g 7→ Ugξ extends to a
holomorphic function on ΞG ([KS04]). Define

β±(ξ) = lim
t→±π/2

U(exp−ith)ξ ∈ H[h]

whenever the limit exists.
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Theorem 3 (FNÓ23). Assume that G is linear or locally isomorphic to SO1,2(R).
Assume that M = G/H is ncc. Let (U,H) be an irreducible antunitary representa-
tion of Gτh , E ⊂ H[K] finite dimensional subspace invariant under K and J = Uτh .
Let E = EJ . Then the following holds:
1) β± : H[K] → H−∞,[h] exists and both maps are injective.
2) Let EH = β+(E) ⊆ H−∞. Then the net HMEH defined in (1) on M is isotone,
covariant and has the Reeh-Schlieder and Bisognano-Wichmann property, where
W = W+

M (h)eH is the connected component of the positivity domain of h on M ,
containing the base point.

The holomorphic extension of the orbit map g 7→ Ugξ leads to a sesquiholomor-
phic G-invariant positive definite kernel on Ξ×Ξ, ΦUξ (z, w) = Φw(z) = 〈Uwξ, Uzξ〉
(the inner product is linear in the second factor). The GNS construction then leads
to a realization of (U,H) in spaces of holomorphic functions on ΞG. If ξ ∈ HK

then ΦUξ lives on ΞG/K and φUξ = ΦeK is a spherical function if ‖ξ‖ = 1. Keeping

one of the variable, say z, in Ξ we have y → Φ(z, y) extends to an analytic func-
tion on M and hence a well defined distribution M . The question is then again if
limz→eH Φ(z, ·) exists in D′(G/H). For this we discuss as an example the case of

dSd. Let U = Uλ be a unitary spherical representation of SO1,d(R)e with spectral
parameter λ. In this case we have, with ρ = (n− 1)/2:

Ψ(z, w) = 2F1

(
ρ+ λ, ρ− λ;

n

2
;

1 − [z, w̄]

2

)
, λ ∈ iR+ ∪ (0, ρ].

The hypergeometric function 2F1(z) is holomorphic on C \ [1,∞). For x ∈ dSd

let Γ(x) = {z ∈ dSd | [z − x, z − x] > 0} = Γ+(x) ∪ Γ−(x) where the ± indicate
±(z − x)0 > 0. We have

Lemma 4. 1) {[z, w̄] | z, w ∈ Ξ} = C \ (−∞,−1].

2) [dSd,Ξ] ∩ R = (−1, 1).

3) If x ∈ dSd then [x, y] ≤ −1 if and only if x+ y ∈ Γ(x).

(1) Shows that Ψ(z, w) is well defined on the crown. (2) shows that Ψ(z, y) is

well defined for z ∈ Ξ and y ∈ dSd. Finally, it was shown in [FNÓ23, ÓS23] that

the distributional limit exists and defines a H-invariant distribution on dSd.
There is also the conjugate crown, the crown of G(−ie0), so we have two natural

crowns Ξ± and two kernels Ψ± and hence two distributions η±λ . The explicit
formulas above show that η+−η− is supported on the closed forward and backward
light cone (see [ÓS23, Cor. 6.9])

Similar calculations work for all K-types for principal series representations of

S̃L2(R) expressed in terms of hypergeometric functions.
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Arrow of time and quantum physics

Detlev Buchholz

(joint work with Klaus Fredenhagen)

The arrow of time is a subject of ongoing debate ever since this term was coined
by Eddington almost a hundred years ago. In brief, this topic can be described
as follows: the time parameter that enters into the fundamental equations of
physics can be reversed, which in principle seems to allow physical systems to
move backwards in time. On the other hand, there is overwhelming evidence that
this does not happen. The standard resolution of this apparent clash between
theory and reality is based on the argument that such time reversed processes
are exceedingly unlikely (Second Law). Therefore, they were and will never be
observed.

In this contribution a complementary view is presented [BF23]. It is based on
the hypothesis that time translations form a semi-group acting on all systems,
there is no inverse and hence no return to the past. Information about the past
is encoded in material bodies which accompany us, such as books or other devices
and media, not least our brains. We can extract from them information about
past events, observations, experiments, data taken, and theories developped on
their basis. The informations obtained in this way can be described in common
language, including mathematics. In order to check their truth value, one has to
repeat past experiments. But this can only happen in the future. Thus the past
may be regarded as factual, whereas the future is indeterminate.



Standard Subspaces in Quantum Field Theory and Representation Theory 2871

While this hypothesis seems consistent with reality, it raises some questions con-
cerning the theoretical treatment of time. These questions and the proposed an-
swers are outlined in this abstract.

1. Is the hypothesis of an intrinsic arrow of time compatible with the success-
ful theoretical treatment of time as a group? In order to answer this question
one considers a unital C*-algebra A(Vo), describing local observables in a given
future-directed lightcone Vo in Minkowski space M. On this algebra acts the
abelian semi-group of time translations V+ := {τ = t(1, vvv) : t ≥ 0 , |vvv| < 1} by
endomorphisms α, viz. ατ (A(Vo)) = A(Vo + τ). With this input one can identify
vacuum states in the region Vo. The following result can then be established.

Proposition 1. In the GNS-representation induced by a vacuum state

(i) there exists a continuous unitary representation U0 of the semi-group V+
whose adjoint action implements the time translations on the observables.

(ii) there exists an extension of U0 to a continuous unitary representation U
of the group of spacetime translations Rd on M. It satisfies the relativistic
spectrum condition. Its adjoint action on the represented observables in
Vo defines a net of observables in all of Minkowski space M.

This proposition shows that the hypothesis of a fundamental arrow of time is com-
patible with the familiar theoretical assumption according to which the group of
spacetime translations Rd acts on the observables. In this way a theoretical picture
of the past is obtained that is consistent with the theory for future observations.

2. Are there uncertainties in the theoretical description of the past and how do
they manifest themselves? It turns out that the unitary representation U0 of the
semigroup V+ to a representation U of the group Rd is in general not unique. The
pertinent information is encoded in the largest projection Z in the weak closure of
the algebra of observables in Vo that annihilates the vacuum state. It commutes
with all translations U . Whenever Z < (1 − P0), where P0 is the projection
onto the vacuum state, the extension U is not unique. As a consequence, the
theoretical description of the past is ambiguous. This feature becomes manifest in
the structure of the energy-momentum spectrum.

Proposition 2. If the past is ambiguous, i.e. the extensions U of the time trans-
lation U0 are not unique, their spectrum consists of the closed cone V + in energy-
momentum space. So there exist excitations of arbitrarily small mass. Conversely,
the existence of massless excitations implies that the extensions U are not unique.

Since there are massless excitations in reality, the photons, complete information
about the past (the wave function of the universe) is a theoretical fiction.

3. How big is the loss of information on the properties of states over time that arises
from these ambiguities? An answer is given by noticing that the uncertainties
concerning the past are due to states Φ in the kernel of the projection Z, involving
massless excitations. The corresponding information in a lightcone Vo + τ can be
quantified by a convenient measure of information Iτ (Φ), which is related to the
concept of relative entropy introduced by H. Araki. It was invented by R. Longo,
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who used the theory of standard subspaces for its definition. Making use of this
notion, the following result obtains.

Proposition 3. Let Φ be a state in the kernel of Z. Then

(i) Iτ (Φ) ∈ [0,∞] and there is a dense set of states Φ for which this informa-
tion is finite.

(ii) Iτ (Φ) ≤ Iσ(Φ) if τ − σ ∈ V+.

The information contained in the stationary vacuum state is equal to 0.

Thus the information contained in the states decreases in the course of time.

4. Does the arrow of time enforce the quantum features of operations that are
described by common language (classical terms), extracted from past information?
The preceding results suggest that a statistical description of future experiments
is unavoidable in view of the lacking information about the past. It turns out that
the arrow of time adds to it the non-commutative features of quantum physics.

We outline here the simple case of a classical, non-interacting, smooth field
x 7→ φ(x) in Minkowski space M with relativistic Lagrangian density

x 7→ L(x)[φ] = (1/2)(∂µφ(x)∂µφ(x) −m2φ(x)2) .

One considers operations affecting the field which are induced by perturbations of
the Lagrangian. In the present simple case these are given by

L(x)[φ] → L(x)[φ] + c(x) + f(x)φ(x) ,

where c, f are real test functions with compact support. Their spacetime integrals
describe functionals φ 7→ F [φ] on the field. The support of the functionals F in
M is identified with the support of f . Constant functionals have empty support.

The effect of these pertubations on φ, encoded in the functionals F , is described
by symbols SL(F ). They define a dynamical group GL. It is the free group
generated by these symbols, modulo the following defining relations:

(1a) SL(F )SL(G) = SL(F + G) if suppF lies above and suppG lies beneath
some Cauchy surface. Here the arrow of time enters, the swapped product
is not fixed and depends on the dynamics. Only if the supports of F and
G are spacelike separated, the product is commutative according to this
definition.

(1b) SL(c) = eic1 , c ∈ R.
(2) SL(F ) = SL(Fφ0 + δL(φ0)), where Fφ0 [φ] := F [φ+ φ0] for given external

smooth field φ0 with compact support; δL(φ0) is the corresponding vari-
ation of the action, determined by L. In this relation the Lagrangian and
hence the dynamics enters. If F = 0, the underlying field is unaffected.

Proceeding from the group GL to the enveloping dynamical C*-algebra AL, one
arrives at the following result.

Proposition 4. Let L be the non-interacting Lagrangian, given above. The algebra
AL coincides with the Weyl algebra of a local quantum field, satisfying the Klein-
Gordon equation. It is generated by the exponentials of the field, integrated with
real test functions f .
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For Lagrangians L describing interacting fields, the corresponding algebras AL

comply with all Haag-Kastler axioms of local quantum physics. These results
obtain without imposing any quantization rules. It is the arrow of time which,
together with the dynamics, leads to the quantization of the classical input. In
view of these results, it seems worthwhile to take a fresh look at the foundations
of quantum physics, based on this new paradigm.
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Nets of standard subspaces on homogeneous spaces

Karl-Hermann Neeb

(joint work with Vincenzo Morinelli)

We discuss some recent results concerning nets of real subspaces indexed by open
subsets O of a homogeneous space M = G/H of a Lie group G. We assume that
M carries a G-invariant causal structure, i.e., a field of pointed generating closed
convex cones Cm ⊆ Tm(M) that is invariant under the G-action. Typical exam-
ples are time-oriented Lorentzian manifolds on which G acts by time-orientation
preserving symmetries or conformal maps. Natural properties of such nets are
closely related to those of nets of von Neumann algebras.

For a unitary representation (U,H) of a connected a Lie group G and a homoge-
neous space M = G/H , we consider families (H(O))O⊆M of closed real subspaces
of H, indexed by open subsets O ⊆M with the following properties:

(Iso) Isotony: O1 ⊆ O2 implies H(O1) ⊆ H(O2)
(Cov) Covariance: U(g)H(O) = H(gO) for g ∈ G.
(RS) Reeh–Schlieder property: H(O) is cyclic if O 6= ∅.

(BW) Bisognano–Wichmann property: There exists an open subset W ⊆M
(called a wedge region) and h ∈ g, such that exp(Rh)W ⊆ W and H(W )

is standard with modular group ∆
−it/2π
H(W ) = U(exp th), t ∈ R.

Given a unitary representation (U,H), we would like to understand, and pos-
sibly classify, all nets with these properties. To this end, the first problem is
to understand which Lie algebra elements h and which regions W ⊆ M oc-
cur in (BW). The following theorem shows that we may restrict our attention
to the case where h is an Euler element, i.e., g = g1(h) ⊕ g0(h) ⊕ g−1(h) for
gλ(h) = ker(λ1− adh).

Theorem 1. (Euler Element Theorem, [MN23]) Let G be a connected finite-
dimensional Lie group with Lie algebra g and h ∈ g. Let (U,H) be a unitary
representation of G with discrete kernel. Suppose that V is a standard subspace
and N ⊆ G an identity neighborhood such that

(a) U(exp(th)) = ∆
−it/2π
V for t ∈ R, i.e., ∆V = e2πi ∂U(h), and

(b) VN :=
⋂
g∈N U(g)V is cyclic, i.e., VN + iVN is dense in H.
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Then h is an Euler element and the conjugation JV satisfies

(1) JVU(expx)JV = U(exp τh(x)) for τh = eπiadh, x ∈ g.

If (Iso), (Cov), (RS) and (BW) are satisfied, then the preceding theorem applies
with V = H(W ). For any relatively compact open subset O ⊆ W we find a
symmetric e-neighborhood with N.O ⊆ W , and then H(O) ⊆ VN by (Iso), (Cov)
and (BW). Hence (RS) implies that VN is cyclic. Accordingly, we may assume
in the following that h is an Euler element, and by (1), that U extends to a
representation of the extended group Gτh = G⋊ {e, τh} with U(τh) = JH(W ).

So we may now start with an (anti-)unitary representation (U,H) of Gτh with
discrete kernel, and consider the standard subspace V := V(h, U), specified by

JV = U(τh) and ∆
−it/2π
V = U(exp th), t ∈ R.

For any homogeneous space M = G/H and an open exp(Rh)-invariant subset
W ⊆M , we may then consider the nets

(2) H
max(O) :=

⋂

g∈G,O⊆gW

U(g)V and H
min(O) :=

∑

g∈G,gW⊆O

U(g)V.

Both nets are easily seen to be isotone and covariant. It is also rather easy to
verify that they satisfy (BW) in the sense that H

max(W ) = H
min(W ) = V if and

only if we have the following inclusion of subsemigroups of G:

(3) SW := {g ∈ G : gW ⊆W} ⊆ SV := {g ∈ G : gV ⊆ V}.
We refer to [MN23] for details. An interesting consequence is that the existence of
a net H on open subsets of M , satisfying (Iso), (Cov) and (BW), implies (3) and
that

H
min(O) ⊆ H(O) ⊆ H

max(O)

for all open subsets of O ⊆M .
As this point, the next step consists in a better understanding of condition (3).

Here W and the semigroup SW are the most intricate points, but the semigroup
SV has a rather explicit description ([Ne22, Thms. 2.16, 3.4]):

(4) SV = GV exp(C+ + C−) = exp(C+)GV exp(C−),

where GV = {g ∈ G : Ad(g)h = h, τh(g)g−1 ∈ ker(U)}, and

C± := ±CU ∩ g±1(h), CU := {x ∈ g : −i∂U(x) ≥ 0}.
In this sense SV can be obtained from h, kerU , and the positive cone CU of the
representation U .

Natural choices of wedge regions W ⊆M are the connected components of the
positivity domain

W+
M (h) := {m ∈M : XM

h (m) ∈ C◦
m}

of the so-called modular vector field XM
h (m) := d

dt

∣∣
t=0

exp(th).m. These “wedge
regions” have been studied for compactly and non-compactly causal symmetric
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spaces in [NÓ23b] and [NÓ23a, MNÓ23], respectively. In many situations W+
M (h)

is connected, and then one has good information on SW (cf. [MN23, Prop. 2.9]):

L(SW ) := {x ∈ g : exp(R+x) ⊆ SW } = g0(h) + (CW ∩ g1(h)) − (CW ∩ g−1(h)),

where CW := {y ∈ g : (∀m ∈W ) XM
y (m) ∈ Cm} contains the invariant cone

CM := {y ∈ g : (∀m ∈M) XM
y (m) ∈ Cm}.

In all examples for which we have explicit information on these cones, we have
CM ∩ g±1(h) = CW ∩ g±1(h). Note that CM can be considered as the “positive
cone” of the G-action on the causal manifold M , so that the semigroups SV and
SW are closely related to the cones CU and CM in a similar fashion.

Example 2. For Minkowski space M = R1,d, G = R1,d⋊SO1,d(R)↑, the Poincaré
group, the Lie algebra g contains only one adjoint orbit of Euler elements, repre-
sented by the boost generator h.x = (x1, x0, 0, . . . , 0). Then

W = {x ∈ R1,d : x1 > |x0|}
is the Rindler wedge, SW = W ⋊ (SO1,1(R)↑ × SOd−1(R)), and for an antiunirary
representation of Gτh = R1,d ⋊ SO1,d(R), the compatibility condition SW ⊆ SV is
equivalent to the positive energy condition that

V+ = {x ∈ R1,d : x0 > x2, x0 > 0} ⊆ CU .

If the semigroup SW is a connected group, then the compatibility condition
SW ⊆ SV imposes no essential restriction on the representation, such as positive
spectrum conditions. In this context, a central result of [MN23], based on the

irreducible case that is dealt with in [FNÓ23], is:

Theorem 3. For every connected reductive linear Lie group G and any Euler
element h ∈ g, there exists a causal symmetric space M = G/H such that for all

conneced components W ⊆ W+
M (h) and all (anti-)unitary representations (U,H)

of Gτh , the net Hmax satisfies (Iso), (Cov), (BW) and (RS).
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Quasi-free isomorphisms of second quantization von Neumann

algebras and modular theory

Gerardo Morsella

(joint work with Roberto Conti)

1. Motivations

We present the work [CM], whose main motivation is to try to understand a
classical result by Eckmann and Fröhlich on the local quasi-equivalence of vacua
of different masses of the Klein-Gordon field [EF74] (proven with methods form
constructive QFT) in terms of modular theory. The main tool employed towards
this end is the quasi-equivalence criterion of Araki and Yamagami [AY82].

2. Abstract result

Our setting is the following. Let H be a complex Hilbert space with scalar product
〈·, ·〉 and let eH =

⊕+∞
n=0H

⊗Sn be the associated symmetric Fock space, in which

the coherent vectors ex :=
⊕+∞

n=0
1√
n!
x⊗n, x ∈ H , form a total set. We also

consider on eH the Weyl unitaries W (x), x ∈ H , defined by their action on Ω := e0

(vacuum vector) and by the canonical commutation relations (CCR):

W (x)Ω := e−
1
4‖x‖

2

eix/
√
2, x ∈ H,

W (x)W (y) = e−
i
2ℑ〈x,y〉W (x+ y), x, y ∈ H.

For any standard subspace K of H (i.e., a real subspace such that K + iK = H
and K ∩ iK = {0}), the von Neumann algebra

A(K) = {W (h) | h ∈ K}′′

on eH , is called the second quantization algebra of K. Moreover, K defines a
closed, densely defined conjugate linear operator

s : K + iK → K + iK, s(h+ ik) = h− ik, h, k ∈ K.

and if s = jδ1/2 is the polar decomposition, j and δ are the modular conjugation
and the modular operator of K. Their second quantizations J = Γ(j), ∆ = Γ(δ)
are respectively the modular conjugation and the modular operator of A(K) with
respect to Ω [EO73, Lon].

A Bogolubov transformation between standard subspaces K1,K2 ⊂ H is a real
linear bijection Q : K1 → K2 preserving the symplectic form, i.e., ℑ〈Qh,Qk〉 =
ℑ〈h, k〉, h, k ∈ K1. Given such a map, the C*-algebras generated by the Weyl
operators W (k) and W (Qk), k ∈ K1, are isomorphic, and it is then natural to ask
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under which condition this isomorphism extends to an isomorphism between the
respective von Neumann algebras φ : A(K1) → A(K2). If this is the case, φ is
called the quasi-free isomorphism induced by Q.

The problem of the existence of the quasi-free isomorphism is equivalent to
the problem of the quasi-equivalence of the states ω and ωQ on the C*-algebra
generated by W (k), k ∈ K1, defined by

ω(W (k)) = e−
1
4‖k‖

2

, ωQ(W (k)) = e−
1
4‖Qk‖

2

, k ∈ K1.

The relevance of the modular structures of K1, K2 for this problem can be under-
stood from the fact that they relate the symplectic structures and the real Hilbert
space ones of K1, K2. Indeed, if

Rj := i
δj − 1

δj + 1
, j = 1, 2,

is the polariser of Kj , there holds ℑ〈h, k〉 = ℜ〈h,Rjk〉, h, k ∈ Kj.
Applying then the very general quasi-equivalence criterion of [AY82], one ob-

tains the following result, in which Q† : K2 → K1 is the adjoint of Q w.r.t. the real
scalar products of K1, K2, and Q†Q is extended to K1 + iK1 by complex linearity.

Theorem 1. The Bogolubov transformation Q : K1 → K2 induces a quasi-free
isomorphism if and only if:

(i) Q is bounded (w.r.t. the norm of H);
(ii) (1 + iR1)1/2 − (Q†Q + iR1)

1/2 is Hilbert-Schmidt on K1 + iK1, endowed
with the graph scalar product of s1.

A sufficient condition for (ii) is that 1 − Q†Q is of trace class on K1, while a
necessary condition is that 1 − Q†Q is Hilbert-Schmidt on K1. Moreover, (ii) is
also equivalent to the fact that the operators

(∗) 1 −Q†Q,
1√

1 + δ1
−Q−1 1√

1 + δ2
Q

are both Hilbert-Schmidt on K1 + iK1. In the case in which δ1, δ2 are bounded,
using powerful results of [BS67], it is possible to show that the fact that 1 −Q†Q
is Hilbert-Schmidt on K1 is equivalent to (ii).

3. Applications to QFT

The one particle space of the Klein-Gordon field in d spatial dimensions is H =
L2(Rd). On it, the operator ωm := (−∆+m2)1/2 is defined by functional calculus.
For d = 1 and I ⊂ R an open interval, the space

Km(I) :=
{
ω−1/2
m f + iω1/2

m g : f, g ∈ C∞
c (I,R),

∫
I
f = 0 =

∫
I
g
}−

, m ≥ 0,

is a standard subspace of H for m > 0, and of

H0 :=
{
ω
−1/2
0 f + iω

1/2
0 g : f, g ∈ C∞

c (R,R),
∫
R
f = 0 =

∫
R
g
}−
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for m = 0. The restriction to zero average functions is needed to avoid the infrared
divergence of the scalar field in d = 1. The map

Q : Km(I) → K0(I), ω−1/2
m f + iω1/2

m g 7→ ω
−1/2
0 f + iω

1/2
0 g,

is a Bogolubov transformation, and it can be shown that 1 − Q†Q is of trace
class [CM20], so, by the above results, it induces a quasi-free isomorphism of the
respective second quantization von Neumann algebras. Equivalently, the restric-
tion of the massive and massless vacua to the nets generated by the derivative of
the time zero field and momentum are locally quasi-equivalent.

For d = 2, 3 and B ⊂ Rd the unit ball, the real subspace

Km(B) := L−(B) + iL+(B), L±(B) := ω
±1/2
m C∞

c (B,R), m ≥ 0.

is a standard subspace of H for all m ≥ 0, and, given m > 0,

Q : Km(B) → K0(B), ω−1/2
m f + iω1/2

m g 7→ ω
−1/2
0 f + iω

1/2
0 g,

is a Bogolubov transformation, for which one can compute

Q†Q =

(
E−

ωm
ω0

E− + iE+
ω0

ωm
E+i

)∣∣∣
Km(B)

,

with E± : H → L±(B) the real orthogonal projections. Contrary to the d = 1
case, now 1−Q†Q is most likely not of trace class. However, the above formula can
be used to estimate the integral kernel of EKm(B)(1−Q†Q)EKm(B) (with EKm(B)

the real orthogonal projection onto Km(B)), and obtain the following partial result
towards the existence of the quasi-free isomorphism induced by Q.

Theorem 2. The operator 1−Q†Q is Hilbert-Schmidt on Km(B)+ iKm(B) (and
then on Km(B)), and its Hilbert-Schmidt norm vanishes for m→ 0+.

Unfortunately, proving the Hilbert-Schmidt property of the second operator
in (∗) seems to require a much more detailed knowledge of the massive modular
operator than is presently available.

As a byproduct of the above result, if δm,B is the modular operator of Km(B),
then the Hilbert-Schmidt norm (on Km(B) + iKm(B)) of (λ− δm,B)−1−Q−1(λ−
δ0,B)−1Q, λ ∈ C \ [0,+∞), vanishes for m → 0+, i.e., the resolvents of the local
modular operators depend continuously on the mass.
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Twisted Araki-Woods Algebras: structure and inclusions

Ricardo Correa da Silva

(joint work with Gandalf Lechner)

Fock spaces and second quantization are central concepts in algebraic quantum
theory and exist in various forms. From the physics perspective, the better known
examples are the Boltzmann-Fock space F0(H) =

⊕∞
n=0 H⊗n, the Bose-Fock space

FF (H) =
⊕∞

n=0 SnH⊗n, and the Fermi-Fock space F−F (H) =
⊕∞

n=0 AnH⊗n,
where Sn and An are the symmetrization and anti-symmetrization operators,
which are used in the description of interaction-free Bosonic and Fermionic mod-
els [BR97]. The use of symmetrization and anti-symmetrization maps on the n-
particle components capture the fact that bosons satisfy CCR and fermions CAR,
respectively, and more general commutation relations such as the q-deformed com-
mutation relations require the introduction of twisted Fock spaces [BS91], whose
construction holds in much more generality than only q-deformed commutation
relations and are relevant in studying representations of Wick algebras [JSW95].
Analogous spaces, called S-symmetric Fock spaces, are also relevant in integrable
models in quantum field theory when a prescribed two-particle scattering matrix
S is given [Lec23], [AL17].

Twisted Fock Spaces and Twisted Araki-Woods Algebras. Following
[BS91] and [JSW95], given a separable Hilbert H and an operator T ∈ B(H⊗H)
with ‖T ‖ ≤ 1 we define, for n ∈ N, the operators Tj, RT,n, PT,n ∈ B(H⊗n), 1 ≤
j ≤ n−1, by Tj = 1⊗(j−1)⊗T⊗1⊗(n−j−1), RT,n := 1+T1+T1T2+. . .+T1 · · ·Tn−1,
PT,1 := 1, PT,n+1 := (1 ⊗ PT,n)RT,n+1. In case PT,n is positive for all n ∈ N we
say that T is a twist and denote the set of all twists T≥.

In case T ∈ T≥, we define HT,n as the closure of the quotient H⊗n/ ker(PT,n)
with respect to the inner product 〈[ψn], [φn]〉T,n := 〈ψn, PT,nφn〉, where the square-
brackets denote equivalence classes and ψn, φn ∈ H⊗n. Finally, the twisted Fock
space is FT (H) :=

⊕∞
n=0 HT,n provided with the natural inner product 〈·, ·〉T . It

is worth mentioning that, as the afore-used notation suggests, the case T = 0,
T = F , and T = −F , where F is the tensor flip, correspond respectively to the
Boltzmann-, Bose-, and Fermi-Fock spaces, but there are many more operators
that are twists. In fact, it is known that if T = T ∗ and T satisfies one of the
following conditions (i) ‖T ‖ ≤ 1

2 ; (ii) T ≥ 0; (iii) ‖T ‖ ≤ 1 and the Yang-Baxter
equation holds, i.e. T1T2T1 = T2T1T2, then T ∈ T≥.

The recursive formula defining PT,n makes, for each ξ ∈ H, the twisted left

creation operator a⋆L,T (ξ) : H⊗n/ kerPT,n → H⊗(n+1)/ kerPT,n+1 given by the

formula a⋆L,T (ξ)[Ψn] := [ξ ⊗ Ψn] a well-defined operator which naturally extends

to densely define operator on FT (H) denoted by the same symbol. Its adjoint with
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respect to 〈·, ·〉T can be calculated and turns out to be the twisted left annihila-
tion operator aL,T (ξ)[Ψn] = [aL(ξ)RT,nΨn], where aL(ξ) is the usual (untwisted)
annihilation operator.

As usual, we can define the essentially self-adjoint field operators φL,T (ξ) =
a⋆L,T (ξ) +aL,T (ξ) and define, following [CdSL23], for a standard subspace H ⊂ H,
the left twisted Araki-Woods algebras

Definition 1. Given a closed real subspace H ⊂ H and a twist T ∈ T≥, we define
the (left) T -twisted Araki-Woods von Neumann algebra

LT (H) := {exp(iφL,T (h)) : h ∈ H}′′ ⊂ B(FT (H)).

It is easy to prove that H being cyclic in H implies the Fock vacuum Ω to be
cyclic for LT (H). The natural question to be asked is under which conditions Ω
is separating for LT (H) and what is the modular data of this pair.

Twisted Araki-Woods Algebras and Standard Vectors. Under the assump-
tion that Ω is separating, we have two modular data to consider: The one originat-
ing from H , denoted by JH , and ∆H (see [Lon08]); and the one originating from
the pair (LT (H),Ω), denoted by J and ∆. In order to have ∆|H∩Dom(∆)

= ∆H , we
introduce the concept of compatibility:

Definition 2. Let H ⊂ H be a standard subspace. The twists compatible with H
are the elements of

T≥(H) := {T ∈ T≥ : [∆it
H ⊗ ∆it

H , T ] = 0 for all t ∈ R}.
Under the assumption of compatibility and Ω being separating for LT (H), one

can explore the KMS condition to prove two conditions about the twist:

(i) T is braided, i.e. T satisfies the Yang-Baxter equation T1T2T1 = T2T1T2;
(ii) T is crossing-symmetric, i.e. for all ψi ∈ H, 1 ≤ i ≤ 4

T (t) := 〈ψ1 ⊗ ψ2, (∆
it
H ⊗ 1)T (1 ⊗ ∆−it

H )ψ3 ⊗ ψ4〉
must have a continuous and bounded extension to the strip in the complex
plane with 0 ≤ Im(t) ≤ 1

2 and analytic in its interior satisfying the boundary
condition

T

(
t+

i

2

)
:= 〈ψ2 ⊗ JHψ4, (1 ⊗ ∆−it

H )T (∆it
H ⊗ 1)JHψ1 ⊗ ψ3〉.

On the other hand, in case T satisfies the Yang-Baxter equation and crossing-
symmetry, the analogous construction for right twisted operators is possible and
it is easy to see that the twisted right Araki-Woods algebra satisfies RT (H ′) ⊂
LT (H)′ whereH ′ is the symplectic complement of the standard subspaceH . These
results can be collect in the following theorem which is one of the main results on
[CdSL23]:

Theorem 3. Let H ⊂ H be a standard subspace and T ∈ T≥(H) a compatible
twist. The following are equivalent:

(1) Ω is separating for LT (H);
(2) T is braided and crossing symmetric w.r.t. H.
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Inclusions of Twisted Araki-Woods Algebras. From the quantum field the-
ory perspective, one is interested in a net of von Neumann algebras indexed by the
open regions of a manifold. Among several other physically motivated conditions,
we mention: (i) isotony, meaning that if two space-time regions O1 ⊂ O2, then
A(O1) ⊂ A(O2); and causality, meaning that if O1 is space-like separated from
O2, then [A(O1),A(O2)] = 0. In the standard subspace language, it justifies con-
sidering the relative commutant of the inclusion LT (K) ⊂ LT (H), where K ⊂ H
are standard subspaces, namely, CT (K,H) := LT (H) ∩ LT (K)′.

Two situations are studied in [CdSL23] and [CdSL], one showing that the rela-
tive commutant can be very big (a type III von Neumann algebra) and the other
showing that the relative commutant may consists only of multiples of the identity.

Theorem 4. Let K ⊂ H be an inclusion of standard subspaces and let T ∈ T≥(H)
be a braided crossing-symmetric twist w.r.t to H with norm ‖T ‖ < 1.

(1) If L2-nuclearity holds on the standard subspace level, i.e. ‖∆
1/4
H ∆

−1/4
K ‖1

< 1, where ‖ · ‖1 is the trace norm on H, and T is also compatible with
K, then LT (K) ⊂ LT (H) satisfies L2-nuclearity and is quasi-split. If, in
addition, LT (H) is of type III, also the relative commutant CT (K,H) is of
type III.

(2) If ∆
1
4

HEK is not compact, where EK is the real orthogonal projection onto
K, then LT (K)′ ∩ LT (H) = C1.

The assumptions on item (1) on the above theorem are, in general, too strong
and item (2) shows that physical models with ‖T ‖ < 1 are usually non-local.

Understanding what happens in the situation when ∆
1
4

HEK is compact, but L2-
nuclearity doesn’t hold, and when ‖T ‖ = 1 are still under investigation.
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Holomorphic extension in a locally convex setting

and standard subspaces

Daniel Beltiţă

(joint work with Karl-Hermann Neeb)

In the framework of one-parameter operator groups on locally convex spaces, we
discussed holomorphic extensions with respect to the parameter, from the real
line to suitable horizontal strips in the complex plane. In the special case of one-
parameter unitary groups eitH = (eH)it on Hilbert spaces, we recover the complex
powers eizH = (eH)iz of the positive operator defined as the exponential of the
infinitesimal generator. This Hilbert space setting is however too special for the ap-
plications to certain constructions of nets of standard subspaces in the framework
of Lie group representations, as they appear in Algebraic Quantum Field Theory
in connection with the Kubo–Martin–Schwinger (KMS) boundary conditions. The
constructions of this type are our main motivation. They require one-parameter
operator groups on spaces of distribution vectors of unitary representations of Lie
groups as presented below in some more detail.

A general KMS boundary condition. We assume the following setting:

• Sπ := R + i(0, π) ⊂ R + i[0, π] =: Sπ ⊂ C
• Y a complex Hausdorff locally convex space.
• for every subset Γ ⊆ C we denote by O∂(Γ,Y) the set of all continuous

functions f : Γ → Y that are weakly holomorphic on the interior of Γ
• (Ut)t∈R is a 1-parameter subgroup of GL(Y)
• J : Y → Y is an anti-linear continuous map
• the following compatibility condition is satisfied: (∀t ∈ R) JUt = UtJ

Then v ∈ Y is said to satisfy the KMS condition (v ∈ YKMS) if there exists a
function f ∈ O∂(Sπ,Y), satisfying the boundary condition

(∀t ∈ R) f(t) = Utv, f(t+ iπ) = JUtv (= Jf(t)).

A construction of standard subspaces in a representation theoretic set-

ting. We now assume the following:

• G is a finite-dimensional real Lie group with Lie algebra g and exponential
map expG : g → G.

• U : G → U(H), g 7→ Ug is a unitary representation of G with continuous
orbit maps U ξ(g) = Ugξ.

• H∞ := {ξ ∈ H : U ξ ∈ C∞(G,H)} is endowed with its unique Fréchet
topology for which the inclusion map H∞ →֒ H is continuous.

• dU : g → L(H∞), dU(x)v := d
dt

∣∣
t=0

UexpG(tx)v;

• The space H−∞ of continuous antilinear functionals on H∞ is endowed
with its weak-∗-topology and we write

〈·, ·〉 : H∞ ×H−∞ → C

for the antiduality pairing that coincides on H∞×H with the scalar prod-
uct of H (antilinear in the first variable).
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• U±∞ : G→ GL(H±∞) are the representations naturally associated to the
unitary representation U : G→ U(H).

• We also define for h ∈ g and t ∈ R

Uh,t := U(expG(th)), U±∞
h,t := U±∞(expG(th)).

• J : H → H is a conjugate-linear surjective isometry satisfying JUh,t =
Uh,tJ for every t ∈ R, and moreover JH∞ ⊆ H∞, hence we also have its
corresponding operators J±∞ : H±∞ → H±∞.

We then obtain a standard subspace of H defined by

V := {v ∈ D(∆1/2) : ∆1/2v = Jv} for ∆ := e2πidU(h)

(cf. [NÓ17, §3.1]). Moreover, [NØÓ21, Prop. 2.1] implies V = HKMS.
The position of the standard subspace within the space of distribution

vectors. Our main results can now be stated as follows:

• H−∞
KMS is the (weak-∗-)closure of V in H−∞ ([BN23, Thms. 6.2 and 6.5]);

• H−∞
KMS ∩H = V ([BN23, Thm. 6.4]).

• H−∞
KMS is the annihilator of JV∩H∞ with respect to the imaginary part of

the pairing ([BN23, Cor. 6.8]).

Here we define the space H−∞
KMS via the KMS boundary condition with respect to

the 1-parameter group (U−∞
h,t )t∈R in GL(H−∞) and the continuous antilinear map

J−∞ : H−∞ → H−∞.
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Inclusions of Standard Subspaces

Gandalf Lechner

(joint work with Ricardo Correa da Silva)

Standard subspaces naturally appear in the context of von Neumann algebras,
where any von Neumann algebra in standard form gives rise to a standard subspace
encoding its modular data, and in quantum field theory, where standard subspaces
encode localization regions. From this perspective, standard subspaces appear as
auxiliary objects. There is however growing evidence that standard subspaces are
interesting objects in their own right – for example, they lead to an independent
notion of entropy [CLR19], can naturally be constructed on the basis of suitable
Lie group representations [MN21], and lie at the basis of the recently introduced
twisted Araki-Woods algebras [CdSL23].



2884 Oberwolfach Report 50/2023

In these and other applications, one is typically not interested in a single stan-
dard subspace (the set of all standard subspaces H of a complex Hilbert space H
can easily be classified, see [Lon08, Cor. 2.1.5]), but rather in families of standard
subspaces and their intersection, inclusion and covariance properties. The topic of
this talk was therefore to initiate an abstract discussion of inclusions

K ⊂ H ⊂ H

of standard subspaces, without reference to von Neumann algebras or group rep-
resentations. This can be seen as an analogue of the study of inclusions of von
Neumann algebras, or more specifically subfactors.

We review some known results about inclusions of standard subspaces and then
reported on joint work in progress with R. Correa da Silva [CdSL].

Inclusions and irreducible inclusions. Given a standard subspace K, can we
embed it properly into a larger standard subspace H , or can we properly embed
a smaller standard subspace into K? This question is answered in the following
lemma:

Lemma 1. [FG00] Let K ⊂ H be a standard subspace. Then the following are
equivalent:

(1) There exists a standard subspace H ⊂ H such that K ( H.
(2) There exists a standard subspace H ⊂ H such that H ( K.
(3) The modular operator ∆K is unbounded.

Guided by the comparison with subfactor theory, we are particularly interested
in understanding irreducible inclusions, which by definition are inclusions K ⊂ H
with K ′ ∩ H = {0}. Here K ′ denotes the symplectic complement of K. Clearly,
this requires in particular K ′ ∩ K = {0}, i.e. K must be a factorial subspace
(a factor, for short). Recall that a factor has a well-defined cutting projection
PK : K +K ′ → K, k + k′ 7→ k [CLR19].

The basic result in this regard is a reformulated version of a proposition from
[FG00].

Proposition 2. Let K ⊂ H be a standard subspace. Then the following are
equivalent:

(1) There exists a standard subspace H ⊂ H such that K ( H is irreducible.
(2) There exists a standard subspace H ⊂ H such that H ( K is irreducible.
(3) The modular operator ∆K is unbounded, K is a factor, and the cutting

projection PK of K is unbounded.

This proposition states that irreducible inclusions of standard subspaces exist
in abundance. A central question is then how to detect whether a given inclusion
is irreducible, or how to detect whether the relative symplectic complement K ′∩H
is cyclic (hence standard).
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Detecting irreducibility. Let K,H be a pair of standard subspaces. Then
[BGL02, Prop. 4.1]

K ′ ∩H + i(K ′ ∩H) = {v ∈ dom(S∗
KSH) : S∗

KSHv = v}.

This characterization is however often difficult to use as it leads to intricate domain
questions. The same holds true for other characterizations that we derived for
K ′ ∩H in terms of polarizers and projections [CdSL].

Comparing with the von Neumann algebraic situation, two notions that are
helpful tools in the understanding of relative commutants are the split prop-
erty [DL84] and modular nuclearity [BDL90]. We give standard subspace for-
mulations for both of them and investigate their consequences in [CdSL]. Here we
focus on the nuclearity aspects.

Definition 3. An inclusion K ⊂ H of standard subspaces is said to satisfy mod-

ular nuclearity if the real linear operator ∆
1/4
H EK , where EK : H → K is the real

orthogonal projection onto K, is trace class.

Making use of [LRT78, BDL90, LS16], we then prove:

Theorem 4. [CdSL] Let K ⊂ H be an inclusion of factor standard subspaces
satisfying modular nuclearity. Then dim(K ′ ∩H) = ∞.

A class of examples. As a concrete class of examples, we consider the irreducible
one-dimensional standard pair, namely the Hilbert space H = L2(R+,

dp
p ) and the

standard subspace H ⊂ H given by the data (see [LL14, Sect. 4] for this and other
equivalent formulations)

(∆it
Hψ)(p) = ψ(e−2πtp), (JHψ)(p) = ψ(p).

The one-parameter group of unitaries (U(x)ψ)(p) = eipxψ(p) acts half-sidedly by
endomorphisms of H , namely U(x)H ⊂ H , x ≥ 0. It is known that the semigroup
of all unitaries V ∈ U(H) that commute with U(x), x ∈ R, and satisfy V H ⊂ H ,
are precisely the unitaries of the form V = ϕ(P ), where P is the generator of U
and ϕ an inner function on the upper half plane satisfying the symmetry condition
ϕ(−p) = ϕ(p), p > 0 [LW10, Thm. 2.3].

We are therefore presented with the family of concrete inclusions ϕ(P )H ⊂ H .
In the talk it was explained that the modular nuclearity condition fails except for
quite specifically chosen inner functions ϕ. Nonetheless it is possible to understand
and sometimes explicitly compute the relative symplectic complement ϕ(P )H ′∩H ,
which can be {0}, finite-dimensional, infinite-dimensional, or cyclic depending
on ϕ. In particular, there are interesting relations relating the number of zeros of
the inner function ϕ and the dimension of ϕ(P )H ′ ∩H .

The structures found in this class of examples are currently being investigated
alongside more general methods for analyzing relative symplectic complements of
standard subspaces [CdSL].
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Unitarity and reflection positivity in two-dimensional conformal

field theory

Yoh Tanimoto

(joint work with Maria Stella Adamo, Yuto Moriwaki)

Two-dimensional conformal field theories (2d CFTs) have been studied extensively
in various setting, from algebraic to analytic. One of the algebraic settings is
Vertex Operator Algebras (VOAs), which formalize chiral components of a 2d
CFT in terms of formal series in z. A VOA that corresponds to a quantum field
theory must satisfy a condition called unitarity [DL14].

It is known [CKLW18] that one can construct Wightman fields on S1 from quasi-
primary fields in a unitary VOA satisfying so-called polynomial energy bounds.
As S1 can be seen as the one-point compactification of R, one can see these Wight-
man field as Wightman fields on one of the lightrays in R1+1. On the other hand,
there are Osterwalder-Schrader axioms (OS axioms) [OS73, OS75] that can acco-
modate many interacting QFTs, mostly the massive ones. From the Schwinger
functions satisfying the OS axioms, one can reconstruct Wightman fields. As the
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VOA formalism considers the Euclidean setting, it should be possible to construct
Schwinger functions satisfying the OS axioms, at least for a nice class of 2d CFTs.

The OS axioms in the two-dimensional Euclidean space concern the Schwinger
functions {Sn(z1, · · · , zn)}, where Sn is a distribution on a subset of R2n excluding
the coinciding points, zj 6= zk for j 6= k. Among the OS axioms, we consider only
reflection positivity, which assures the Hilbert space structure in the resulting
Wightman field theory. Up to a conformal transformation [FFK89], this means
that, for a finite sequence of test functions {fn(z1, · · · , zn)} supported in the region
|z1| < |z2| < · · · < |zn|, one should have

0 ≤
∑

j,k

∫
fj(z̄

−1
j , · · · , z̄−1

1 )fj(zj+1, · · · , zj+k)Sj+k(z1, · · · , zj+k)

|J(z1) · · · J(zn)|dx1dy1 · · · dxj+kdyj+k,(1)

where zj = xj + iyj ∈ R2 and J(z)dxdy is a measure on R2 invariant under the
reflection z 7→ z̄−1 when including the scaling factor coming from the conformal
transformations for fields (we define Sn(z1, · · · , zn) = 〈Ω, φ(z1) · · ·φ(zn)Ω〉, see
below).

Let V, Y (·, z) be a unitary VOA and v ∈ V be a quasi-primary vector. For a
given v, we denote φ(z) = Y (v, z) =

∑
n φnz

−n−d, where d ∈ N is the conformal

dimension of v and φn ∈ End(V ). Unitarity means that V is equipped with a
positive-definite inner product 〈·, ·〉 and V is generated by quasi-primary fields
satisfying (φn)∗ = φ−n [CKLW18]. We put φ(z) =

∑
n φnz

−n and define

Sn(z1, · · · , zn) = 〈Ω, φ(z1) · · ·φ(zn)Ω〉
=

∑

k1,··· ,kn

〈Ω, φk1 · · ·φknΩ〉z−k11 · · · z−knn ,(2)

where Ω ∈ V is the vacuum. This is, at this point, a formal series in z1, · · · , zn.
We assume polynomial energy bounds for V [CKLW18]. This means that

‖φnΨ‖ ≤ C(|n| + 1)s‖(L0 + id)pΨ‖ for some C, s, p > 0. Then one can show
that the series (2) converges for |z1| < · · · < |zn|. Using again polynomial energy
bounds, it is also possible that Sn defines a distribution as required in the OS
axioms.

If we consider z ∈ S1, we have the relation (φ(z)∗) = φ(z). By analytically
continuing this equation, we have (weakly) φ(z)∗ = φ(z̄−1). As for reflection
positivity, by the positive definiteness of the scalar product, we have 〈Ψ,Ψ〉 ≥ 0,
where

Ψ =
∑

j

∫
fj(z1, · · · , zj)ϕ(a1, z1) · · ·ϕ(aj , zj)Ω |J(z1) · · ·J(zj)|dx1dy1 · · · dxjdyj

is a vector in the completion V of V . One can show that 〈Ψ,Ψ〉 is equal to the
right-hand side of (1), therefore, reflection positivity holds under unitarity and
polynomial energy bounds. Other OS axioms can be checked as well [Mor22],
and also the linear growth condition [OS75] from polynomial energy bounds. Al-
together, quasi-primary fields in unitary VOA can generate Schwinger functions,
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from which one can construct Wightman fields as is done in Constructive QFT
[GJ87].

We hope to extend this to full vertex operator algebras [Mor20], as we already
have Wightman fields for a class of full CFT [AGT]. We hope to find Hilbert
space structure for the Euclidean fields. This Euclidean construction could be
useful when one tries to perturb CFTs to obtain massive models [JT].
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Reflection Positivity for finite dimensional Lie groups

Maria Stella Adamo

(joint work with Karl-Hermann Neeb, Jonas Schober)

Reflection positivity appears as one of Osterwalder–Schrader axioms, used to study
a large class of quantum field theories (QFTs) [OS73, OS75]. Such axioms are used
in Constructive QFT, for example, to construct interacting or massive QFTs, see,
e.g., [GJ87]. Osterwalder–Schrader axioms are given for a Euclidean field theory,
providing tools to reconstruct Wightman fields for a Minkowskian (Lorentzian)
quantum field theory by analytic continuation of Euclidean Schwinger functions.

As a consequence of a similar duality between the Euclidean motion Lie group
and the Poincaré Lie group on the Minkowski space, see [LM75], one can investigate
instead reflection positivity for unitary Lie group representations U on Hilbert
spaces H equipped with a θ-positive closed subspace H+ ⊆ H, where θ is an
involution on H.
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The represented Lie groups G are paired with a subsemigroup S and an invo-
lution τ such that τ(S)−1 = S. Note that S and τ play the role of H+ and θ re-
spectively in the group theoretic context. A unitary representation U : G → U(H)
is said to be reflection positive if U is a representation of (G, S) on (H,H+), i.e.,
U(S)H+ ⊆ H+, and U and θ verify a compatibility condition between θ and τ of
the form θU(g)θ = U(τ(g)) for all g ∈ G, for further reading, see [NO18]. When
the other conditions are satisfied, the compatibility condition is usually difficult
to establish.

From a quadruple (U ,H,H+, θ) as before, in a canonical way, one obtains a new

∗-representation Û of (S, ♯) on Ĥ, where s♯ := τ(s)−1 is the involution induced by

τ in S. Ĥ indicates the completion of the quotient of H+ by the null vectors

with respect to the norm induced by θ. This construction of Û from U involves
the so-called Osterwalder-Schrader transform and so we regard (U ,H,H+, θ) as a

Euclidean realization of (Û , Ĥ).
One of the simplest example of (G, S, τ), yet rich in information, is given by

the real line R with its subsemigroup of the positive half line R+ and τ = −idR.
Analogously, one can consider the triple (Z,N,−idZ). In [ANS22] we consider
only regular representations U , namely those for which ∩g∈GU(g)H+ = {0} and

∪g∈GU(g)H+ = H. For these representations U , every U(G)-invariant subspace in
H+ is trivial and the only U(G)-invariant subspace that contains H+ is H itself.

For the real line R, a regular representation U is a 1-parameter group, that by
the spectral form of the Lax–Phillips Representation Theorem, is realized by mul-
tiplication on L2(R,M), and its positive subspace corresponds to the Hardy space
H2(C+,M) of the upper half-plane C+ with values in some higher dimensional
multiplicity space M [LP81, NO18]. Furthermore, in [ANS22] we assume that the
multiplicity space is one-dimensional. However, the Lax–Phillips Theorem doesn’t
recover the involution, and thus doesn’t give information on the compatibility con-
dition between θ and τ . Thus, we investigate the issue of classifying the involution
θ which verify the compatibility condition and thus produce reflection positive
representations.

Under these assumptions, θ is of the form θ = ϕR, where ϕ ∈ L∞(R) takes
values on the unit circle and, for x ∈ R, Rf(x) := f(−x) is a reflection on the real
line. By using a similar characterization of Hankel operators given for the unit
disk D, we show that θ defines a Hankel operator by Hθ := P+θP

∗
+. Therefore,

we obtain a 1-1 correspondence between positive Hankel operators and unitary
reflection positive representations, see [ANS22, Example 1.7 (a)], cf. [Nik02, Nik19,
Par88, RR94].

Hankel operators can be characterized through Carleson measures. By Nehari’s
Theorem [ANS22, Nik02], such a measure has a symbol h ∈ L∞(R) with values in
S1, and thus a kernel, that allows us to define a new weighted space L2(R, ν) ∼=
L2(R) through a *-isometric isomorphism that preserves the Hardy space (the posi-
tive part) and produces a reflection positive representation (U ,L2(R, ν),H2(C+, ν),
θh) [ANS22, Theorem 4.5]. Recently, in [Sch23], if the positive Hankel operator on
H2(C+) is contractive, then there exists a involution θh such that (L2(R),H2(C+),
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θh) is a reflection positive Hilbert space, without modification of the measure. Ac-
cordingly, by using the Wold decomposition as a normal form for regular unitary
operators U on Z, we obtain similar results for the triple (L2(S1),H2(D),U), where
U acts as a multiplication operator by z.

For reflection positive representations on Z and R respectively, the positive part
of the Hilbert space is realized as a Hardy space H2 on D and on C+ respectively.
Such domains are biholomorphically equivalent to the β-strip Sβ of all z ∈ C
such that Im z ∈ (0, β). Nonetheless, the β-strip exhibits different geometrical
features compared to D and C+, e.g., the biholomorphism to the upper half-
plane C+ is given by the exponential map, which is not a Möbius transformation,
and the boundary of Sβ has two connected components, whereas the boundaries
of D and C+ are both connected. Such a domain naturally appears when one
studies reflection positivity for the circle group (Tβ ,Tβ,+, τβ) for β > 0, where
Tβ := R/βZ, Tβ,+ is the half-circle and τβ(z) := −idTβ . Compared to the previous
cases of R and Z, Tβ,+ is not a semigroup.

We will start our investigation of reflection positivity for the circle group Tβ
by looking at reflection positive functions ϕ, since they provide a way to pro-
duce reflection positive representations through GNS-like construction by using
the positive definite kernels induced by ϕ [NO15, NO18]. In the special case of
reflection positive functions on the real line R which verify the β-KMS condition,
they constitute a source of standard subspaces. Indeed, in [NO19] such functions
on R are shown to be of the form ϕR(t) := 〈v,∆−it/βv〉 for t ∈ R, where v belongs
to a standard subspace V ⊆ H and (∆, J) denotes its modular pair.

For the circle group Tβ , general reflection positive functions ϕTβ admit an inte-
gral representation with respect to a finite Borel measure µ on R+ [KL81, NO15].
This allows to extend ϕTβ to a continuous function on Sβ , which is holomorphic
in Sβ and to obtain by restriction to the lower boundary of Sβ a reflection positive
function on R which verify the β-KMS condition [NO15, NO19]. Using the integral
representation of ϕTβ , such a restriction is given by the Fourier transform of a finite

positive Borel measure ν on R that verifies β-reflection, i.e., dν(−p) = e−βpdν(p).
On the other hand, in [ANS], finite positive Borel measures ν on R for which β-

reflection holds are in 1-1 correspondence with finite positive Borel measures µ on
R+. To define ϕTβ , we consider the restriction on [0, β]i of the Fourier transform of
the finite positive Borel measure ν on R, which satisfies the β-reflection condition.
Therefore, we can directly show that reflection positive functions ϕTβ are in 1-
1 correspondence with reflection positive functions ϕR which verify the β-KMS-
condition.
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Maximal Quantum f−Divergences in von Neumann Algebras

Alessio Ranallo

(joint work with Stefan Hollands)

Inspired by recent advances in the study of the capacity of quantum channels be-
tween finite-dimensional factors by means of Geometric Rényi Divergences [FF21],
we study the notion of Maximal Quantum f−Divergences in the setting of von
Neumann algebras and Algebraic Quantum Field Theory.

Divergences are used to distinguish between couples of probability measures
(and quantum states). Araki’s notion of relative entropy is an example of diver-
gence. In Quantum Information Theory an account of quasi-entropies is given in
[OP93] and a more systematic account of various types of Quantum f−Divergences
can be found in [Hia19].

Consider two probability measures p = {pi}i , q = {qi}i ∈ P(X) on a finite set
X , such that p≪ q. The relative entropy between these two reads

S(p‖q) = −
∑

i

pi log

(
qi
pi

)
= −

∑

i

pi log
(
(Rqp)i

)
,
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where Rqp denotes the Radon-Nikodym derivative of q w.r.t. p. Relative entropy can
be generalized to the quantum setting in a number of ways. The Araki’s notion
of relative entropy comes from the Umegaki’s one, where the Radon-Nikodym
derivative is replaced by the relative modular operator. Indeed, let M be a von
Neumann algebra in standard form acting on the Hilbert space H. Let ψ, ϕ ∈
M∗,+ be two normal, bounded, and positive functionals with (standard) vector
representatives Ψ,Φ ∈ H. For the sake of simplicity, suppose that both ψ and ϕ
are faithful, then

S(ϕ‖ψ) = −〈Φ , log (∆ψ,ϕ) Φ〉
is the formula for Araki’s relative entropy. It is then easy to show that in finite
dimensions Araki’s notion reduces to the Umegaki’s original definition

S(ϕ‖ψ) = −Tr (ρϕ (log (ρψ) − log (ρϕ))) ,

where ρϕ, resp. ρψ, denotes the matrix representing ϕ, resp. ψ. However, in finite

dimensions, the choice of the operator ρ
1/2
ψ ρ−1

ϕ ρ
1/2
ψ induce another “entropy-like”

quantity

SBS(ϕ‖ψ) := −Tr
(
ρϕ log

(
ρ
1/2
ψ ρ−1

ϕ ρ
1/2
ψ

))
.

Here, BS is for Belavkin-Staszewski [BS82], where this entropy was introduced.
Note that SBS(ϕ‖ψ) = S(ϕ‖ψ) whenever ρϕ and ρψ commutes. Araki’s relative
entropy is an example of standard divergence, while the Belavkin-Staszewski notion
is an example of maximal divergence, see [Hia19] for a more systematic treatise.

We prove that a Kosaki-type formula holds for the Belavkin-Staszewski diver-
gence.

SBS(ϕ‖ψ) = sup sup

{
ϕ(1) logn−

∫ ∞

1/n

[
ϕ(xtx

∗
t ) +

1

t
ψ(yty

∗
t )

]
dt

t

}
,

where the first sup is taken over n ∈ N, while the second is over finite range step
functions x(·) : ( 1

n ,∞) → M such that xt = 1 for sufficiently small t, such that
xt = 0 for sufficiently large t, and where yt := 1 − xt.

Given two normal linear maps α , β : N → M that are completely positive and
unital, normal channels for short, we are able to provide a notion of Belavkin-
Staszewski divergence of α w.r.t. to β. The definition generalizes the one for
matrix algebras introduced (for generalized divergences of which SBS is an instance
of) in [LKDW18], where one takes the sup over all states induced from states on
the enlarged system obtained from coupling our initial system, e.g. M above,
with an ancillary system A (arbitrary), and then precomposing with the dilated
channels α⊗ idA, β ⊗ idA:

SBS(α‖β) = sup
A

ψ∈(M⊗A)∗,+,1

SBS(ψ ◦ (α⊗ idA)‖ψ ◦ (β ⊗ idA)) .

The motivation behind this definition comes from the fact that refined informa-
tion about the action of channels can be obtained through entanglement. In the
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case of von Neumann algebras of general type, we provide a generalization of this
definition based on the notion of bimodules between two von Neumann algebras.

After presenting some results on channel divergences, we discuss briefly some open
questions of relevance to the workshop.
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Localization of positive energy representations for gauge groups on

conformally compactified Minkowski space

Bas Janssens

(joint work with Karl-Hermann Neeb)

For a gauge theory associated to a principal K-bundle P →M , the relevant group
G of gauge transformations depends rather sensitively on the boundary conditions
at infinity. It contains the group Gauc(P ) = Γc(M,Ad(P )) of compactly supported
vertical automorphisms1 of P (the ‘local’ gauge transformations), but it is usually
larger. For instance, if P = M ×K is the trivial bundle, one would expect G to
contain the group K of constant gauge transformations, which are certainly not
compactly supported.

On the other hand, if one requires that G preserves boundary conditions for the
(classical) fields at infinity, then the relevant group G of gauge transformations
may be significantly smaller than the group Gau(P ) = Γ(M,Ad(P )) of all vertical
automorphisms. Any input on the following question would be most welcome:

1My convention here is that Ad(P ) = (P×K)/K is the bundle of Lie groups over M associated
to P by the conjugation, and ad(P ) = (P × k)/K is the bundle of Lie algebras associated to P

by the adjoint action.
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Question

What, in the gauge theory and geometric setting of your choice,
would be examples of relevant groups Gauc(P ) ⊂ G ⊂ Gau(P ) of
gauge transformations?

Different gauge theories and space-time geometries will probably lead to different
answers. For instance, if the boundary conditions are in terms of a fall-off rate 1/rk

for the curvature F ∈ Ω2(M, k) of the principal connection, then the requirement
on the infinitesimal gauge transformations ξ ∈ Γ(ad(P )) will be that the fall-off
rate for δF = [ξ, F ] does not exceed 1/rk for any field F with this property. If K
is abelian, then this condition is vacuous. If K is semisimple however, then the
above condition is fulfilled only if ξ ∼ 1 is bounded. (See [Ash83] for a more refined
version of this type of argument, taking into account the ‘peeling-off’ behaviour
of F .)

Let me say a few words about the background of the above question, and sketch
the implications of one possible answer. I will be rather brief because the details
have appeared elsewhere [JN23].

Together with Karl-Hermann Neeb, we have proven a localization theorem for
certain projective unitary representations of the compactly supported gauge group
Gauc(P ). This is in an equivariant setting, with a Lie group H of ‘space–time
symmetries’ whose action on M lifts to an action on P by bundle automorphisms.
In the Lie algebra h of H we specify a distinguished cone C of ‘timelike generators’.
If, for example, M = Rd is Minkowski space and H = Rd ⋉ SO(d − 1, 1) is the
Poincaré group, then it is natural to choose C = {p ∈ Rd ; η(p, p) ≤ 0} to be the
forward light cone.

We are interested in positive energy representations ; projective unitary repre-
sentations of Gauc(P ) that extend to the semidirect product of Gauc(P ) with the
group H of space-time symmetries in such a way that every timelike generator
p ∈ C gives rise to a Hamilton operator H(p) with spectrum bounded from below.

This positive energy condition is surprisingly restrictive. If the structure group
K of the principal fibre bundle P → M is compact, semisimple and 1-connected,
one can prove the following result.

Theorem 1 (Localization theorem). Suppose that the action of C on M has no
fixed points. Then for every positive energy representation (ρ,H) of the identity
component Γc(M,Ad(P ))0, there exists a 1-dimensional, H-equivariantly embed-
ded submanifold S ⊆ M and a positive energy representation ρS of Γc(S,Ad(P ))
such that the following diagram commutes,

Γc(M,Ad(P ))0

rS

��

ρ
// PU(H)

Γc(S,Ad(P )),

ρS

77
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦

where the vertical arrow denotes restriction to S.
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Loosely speaking: if there are no fixed points for the action of the space-time
symmetry group H , then positive energy representations come from 1-dimensional
H-orbits.

One way to fix boundary conditions on Minkowski space is to require the gauge
fields (weighted by an appropriate conformal factor) to extend smoothly to the
conformal compactification M = S1 × Sd−1. In this setting, the relevant gauge
group is G := Γ(S1×Sd−1,Ad(P )). This is larger than the group Γc(Rd,Ad(P )) of
‘local’ gauge transformation (because compactly supported gauge transformations
extend trivially to infinity), but it is strictly smaller than the group Γ(Rd,Ad(P ))
of all vertical automorphisms (which does not require any limiting behaviour at
infinity). This is one example of a choice of boundary conditions for which

Γc(R
d,Ad(P )) ⊆ G ⊆ Γ(Rd,Ad(P )).

If we take H to be the connected Poincaré group, then our theorem does not
immediately apply. The reason for this is that although the action of H on null
infinity is fixed point free, spacelike infinity ι0 (which is identified with timelike
infinity ι± in the compactification) is a fixed point.

Let us start by taking M to be the noncompact manifold M = S1 × S1/{ι0},
the conformal compactification of R2 with spatial infinity removed. The action of
the Poincaré group then has three orbits: Minkowski space R2, and the two one-
dimensional components IL/R ≃ R of null infinity (corresponding to left and right
moving modes). So the only 1-dimensional Poincaré-invariant orbits are IL/R! In
this setting, the localization theorem implies that every positive energy represen-
tation of Γc(S

1 × S1/{ι0}, P ) is determined entirely by two positive energy rep-
resentations of the pointed loop group Γc(S

1/{ι0},Ad(P )), one for IL ≃ S1/{ι0}
and one for IR ≃ S1/{ι0}.

Although we cannot directly apply the above form of the localization theorem to
the full compactification S1×S1, a more refined analysis reveals that for every pos-
itive energy representation (ρ,H) of Γ(S1×S1,Ad(P )), the projective unitary op-
erator ρ(g) ∈ PU(H) associated to a gauge transformation g ∈ Γ(S1 × S1,Ad(P ))
can only depend on the values of g at null infinity IL/R, and on the 2-jets at
spatial infinity ι0.

For Minkowski space Rd with d > 2, the conformal compactification S1 × Sd−1

has one orbit of dimension d (the open dense subset Rd), one orbit of dimension
d− 1 (null infinity), and a single fixed point (spacelike infinity ι0, which is again
identified with past and future timelike infinity ι± in the compactification). If we
again apply the localization theorem to the noncompact manifold S1×Sd−1/{ι0},
we now find that every positive energy representation of Γ(S1 × Sd−1,Ad(P )) is
trivial on Γc(S

1 × Sd−1/{ι0},Ad(P )). In other words: for every positive energy
representation (ρ,H) of Γ(S1 × Sd−1,Ad(P )), the projective unitary transforma-
tion ρ(g) ∈ PU(H) assigned to a gauge transformation g depends only on the germ
of g around spacelike infinity ι0.

In fact, a more refined analysis shows that ρ(g) depends only on the 1-jet of g
at ι0. Taking into account the Poincaré group as well, this reduces the relevant
symmetry group from (SO0(d − 1, 1) ⋊ Rd) ⋉ Γ(S1 × Sd−1,Ad(P )) to the finite
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dimensional Lie group (SO0(d− 1, 1) ⋊Rd) ⋉ J1
ι0Ad(P ). Now the group of 1-jets

J1
ι0Ad(P ) is isomorphic to K ⋉ k ⊗ Rd, where the first term captures the values

of the gauge transformation at ι0 and the (abelian) second term captures the first
derivatives of the gauge transformation at ι0. Putting it all together, we end up
with a semidirect product

(SO0(d− 1, 1) ×K) ⋉ (Rd ⊕ k⊗ Rd)

of a semisimple Lie group G := SO0(d − 1, 1) × K with the abelian Lie group
V := Rd ⊕ k ⊗ Rd (considered as a vector space with addition). The projective
unitary representations of this group can be found using Mackey’s imprimitivity
theorem; they are given by a G-orbit in V , together with a projective unitary
representation of the little group Lν ⊆ G, the stabiliser of a point ν in the orbit.

For d = 4, K = SU(3) and ν = p ⊕ X ⊗ p with η(p, p) = 0, one obtains
representations that are induced from the little group Lν = E(2)×S(U(2)×U(1)),
where E(2) ⊆ SO(3, 1) is the group of two-dimensional euclidean motions. It is
tempting to speculate that these representations might be connected to symmetry
breaking phases.
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On separable states

Ko Sanders

1. Introduction

Entanglement is the phenomenon in quantum physics where measurements in
spacelike separated regions give rise to correlations that cannot be explained by
classical physics. Although this defining feature of quantum physics is rather
counter-intuitive, it is not at all rare. Physical systems naturally entangle them-
selves with their environment at no cost to the experimenter. On the contrary, to
prevent this decoherence is difficult and expensive in terms of effort and energy.

The omnipresence of entanglement is reflected in the structure of relativistic
quantum field theory (QFT). The Reeh-Schlieder Theorem [RS61] states that the
vacuum vector Ω0 ∈ H of any Wightman QFT in Minkowski space is cyclic for all
local algebras of observables. This entails that the vacuum is entangled between
any two spacelike separated open regions A and B of spacetime, cf. Corollary
1 in Section 5.1 of [HS18]. This property is shared by many other states, cf.
[San09, Wit18]. Indeed, H contains a dense Gδ of vectors with the Reeh-Schlieder
property [DM71].



Standard Subspaces in Quantum Field Theory and Representation Theory 2897

Even though entanglement is the rule in QFT, rather than the exception, there
are at least two good reasons to have a closer look at separable states, i.e. states
which are not entangled between A and B. Firstly, most of our physical concepts
are classical and hence arise in a context where all states are separable. Secondly,
to quantify the amount of entanglement between A and B in a given state ω,
one uses an entanglement measure, which compares ω to the nearest separable
state. Here, the word “nearest” can be made mathematically precise in various
ways, leading to a range of entanglement measures, cf. [HS18] and references cited
therein.

E.g., the entanglement entropy in vacuum typically falls off when the separation
between A and B increases. This suggests an explanation as to why the physical
world looks so classical on large scales: a smaller entanglement entropy should
make it harder to exploit any entanglement present in the system and make it
visible. Unfortunately, I am not aware of any results that quantify the word
“harder” in terms of the energy (density) needed in relativistic QFT.

It is known that there exist normal separable states under quite general cir-
cumstances, namely when a QFT satisfies the split property, cf. [BDF87] (see also
[Buc74]). However, normality is a rather weak condition on quantum states and
one might like to ascertain further physical properties, e.g. that separable states
can share the symmetry of a system and/or have a finite energy (density), etc.
Furthermore, it would be interesting to know how much energy needs to be ex-
pended to create and/or maintain a separable state. In this talk, based on [San23],
I present a result that gives partial answers to these questions in a toy model sys-
tem. The proof of this result required novel methods involving test functions of
positive type, which I will also discuss.

2. An existence theorem for separable states

To formulate the main result of [San23], let us fix an inertial coordinate frame in
Minkowski space and write x = (x0,x). ω2(x, x′) denotes the two-point distribu-
tion of a state.

Theorem. Consider a free scalar QFT of mass m > 0 in 4-dimensional Minkoswki
space. Given any R > 0 there exists a quasi-free, Hadamard, stationary, homoge-
neous, isotropic state ω, s.t.

(i) ω2(x, x′) = 0 if (x, x′) ∈ S = {‖x− x′‖ > R+ |x0 − x′0|},

(ii) ω(T ren
00 (x)) ≤ 1031m4 e

− 1
4
mR

(mR)8 .

Item (i) ensures that ω is a product state between A and B, as soon as these
regions are separated by a distance ≥ R. By a standard spacetime deformation
argument one can also establish the existence of separable states for massless fields
and in curved spacetimes with topology R4.

To find ω, we will compare ω2 to the vacuum two-point distribution ω0
2 , i.e.

ω2(x− x′) = ω0
2(x− x′) + w(x − x′) ,
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where we exploited the translation invariance. w must satisfy (�+m2)w = 0 with
initial data w0(x) = w|x0=0(x) and w1(x) = ∂0w|x0=0 ≡ 0 such that

(1) w0 is real-valued, smooth and rotation invariant.
(2) w0 is of positive type, i.e. ŵ0 ≥ 0.
(3) w0(x) = −ω0

2(0,x) if ‖x‖ > R.

(4) ω(T ren
00 (x)) = (−∆ +m2)w(0) ≤ 1031m4 e

− 1
4
mR

(mR)8 .

The strategy to find w (and hence ω2) is to modify the initial data of ω0
2 , taking

w0(x) = −χ∞(‖x‖)ω0
2(0,x) + f(x) .

Here χ∞ is a smooth, rotation invariant function that vanishes near x = 0 and
equals 1 when ‖x‖ ≥ R, removing all unwanted correlations. f ∈ C∞

0 (R3,R) is
supported in the ball of radius R and is needed to achieve the positive type of w0,

i.e. f̂ ≥ F
[
χ∞ω

0
2 |x0=0

]
(the Fourier transform), which leads to the study of test

functions f of positive type and lower bounds on f̂ . To my knowledge such bounds
had not been considered before, except asymptotically for |k| → ∞ [FF15].

3. Test functions of positive type

A standard construction of test functions starts with the characteristic function
χ of the interval

[
− 1

2 ,
1
2

]
and takes repeated convolutions (cf. [Hor90]). Given

a =
∑∞

n=1 an < ∞ with a1 ≥ a2 ≥ · · · > 0, one obtains a test function f ∈
C∞

0 ([−a, a],R) by taking the limit

f := χ

(
.

a1

)
∗ χ

(
.

a2

)
∗ · · · .

This construction leads to good control on f , e.g. on ‖∂nx f‖∞ for all n ≥ 0 and on

upper bounds on |f̂ |. Because χ̂ ∗ χ = χ̂2 ≥ 0 we can even get f̂ ≥ 0. However,

we have no good control over lower bounds on f̂ . Indeed, f̂ will have zeroes. To
remedy this, one can modify the construction and replace χ by η = 3

2 (χ ∗χ)2 with

1

1 + 7
40k

2
≤ η̂(k) ≤ 1

1 + 1
20k

2
.

For f ∈ C∞
0 (R,R), f̂ falls off faster than any polynomial and |f̂(k)| ≤ e−|k| iff

f ≡ 0. More precisely, using the construction with χ Ingham [Ing34] showed:

Theorem. Given l > 0 and ǫ : R≥0 → R>0 decreasing, there exists f ∈ C∞
0 ([−l, l],

R) such that |f̂(k)| ≤ e−kǫ(|k|) iff
∫ ∞

1

ǫ(k)

k
dk <∞ .(1)

In analogy, [San23] proves a lower bound using the construction with η:

Theorem. Given l > 0, ǫ : R≥0 → R>0 decreasing and γ ∈ (0, 1) such that (1)
holds and lim

k→∞
kγǫ(k) = ∞, there exists a non-negative, even g ∈ C∞

0 ([−l, l],R)

such that
∫
g(x)dx = 1 and |ĝ(k)| ≥ e−kǫ(|k|).
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Analogous results hold in higher dimensions. Examples include test functions of
arbitrarily small support that dominate Gevrey type functions. The constructions
involved provide enough detailed control over test functions of positive type to
prove the main theorem in Section 2, but the estimate on the energy density is
not sharp. It would be interesting to see if the methods introduced here can be
developed further to yield sharper results.
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Brüderstraße 16
04103 Leipzig
GERMANY

Dr. Ricardo Correa da Silva

Department Mathematik
Universität Erlangen-Nürnberg
Cauerstr. 11
91058 Erlangen
GERMANY

Dr. Christian D. Jaekel

Department of Applied Mathematics
Institute of Mathematics and Statistics
University of São Paulo
Rua do Matão, 1010 - Vila Universitaria
São Paulo, SP 05508-090
BRAZIL

Dr. Bas Janssens

Delft Institute of Applied Mathematics
Delft University of Technology
Mekelweg 4
2628 CD Delft
NETHERLANDS

Prof. Dr. Gandalf Lechner

Department Mathematik
Universität Erlangen-Nürnberg
Cauerstr. 11
91058 Erlangen
GERMANY

Prof. Dr. Roberto Longo

Dipartimento di Matematica
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Università di Roma “Tor Vergata”
Via della Ricerca Scientifica, 1
00133 Roma
ITALY

Prof. Dr. Gerardo Morsella

Dipartimento di Matematica
Università di Roma “Tor Vergata”
Via della Ricerca Scientifica, 1
I-00133 Roma
ITALY



Standard Subspaces in Quantum Field Theory and Representation Theory 2901

Prof. Dr. Karl-Hermann Neeb

Department Mathematik
FAU Erlangen-Nürnberg
Cauerstraße 11
91058 Erlangen
GERMANY

Prof. Dr. Gestur Olafsson

Department of Mathematics
Lockett Hall 322
Louisiana State University
70803 Baton Rouge, LA 70803-4918
UNITED STATES

Mr. Alessio Ranallo

Dipartimento di Matematica
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Introduction by the Organizers

The workshop was organized by Andreas Bernig (Goethe-Universität Frankfurt),
Julius Ross (University of Illinois at Chicago) and Thomas Wannerer (Friedrich-
Schiller-Universität Jena). It was held over 5 days and included five introductory
talks over three topics, and 13 research talks.

The mini-workshop revolved around a recent theme that has connected many
seemingly different areas of mathematics, the so-called “Kähler package” that con-
tains Poincaré duality, the hard Lefschetz theorem, and the Hodge–Riemann bilin-
ear relations. Originally coming from Kähler and algebraic geometry, it is now un-
derstood that this also appears in algebra, combinatorics and convex geometry. For
example, each of the following admits a version of the Kähler package: McMullen’s
algebra generated by the Minkowski summands of a simple convex polytope, the
combinatorial intersection cohomology of a convex polytope, the Chow ring of a
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matroid, and the ring of algebraic cycles modulo homological equivalence on a
smooth projective variety via Grothendieck’s standard conjectures on algebraic
cycles. A powerful idea in the groundbreaking work of the Fields medalist June
Huh and his collaborators is that the existence of a log-concave sequence is strong
evidence for a Kähler package in the background. The celebrated Alexandrov–
Fenchel inequality of convex geometry is an important example of a log-concave
sequence, and therefore it is no surprise that this inequality can be deduced from
at least three different incarnations of the Kähler package.

The aim of the mini-workshop was to bring together researchers interested in
different aspects of the Kähler package, with an emphasis on aspects that relate
most closely to complex and convex geometry.

The first introductory talk was titled Plurisubharmonic functions and com-
plex Brunn–Minkowski theory and was given by Bo Berndtsson. He introduced
the class of plurisubharmonic functions, sketched Bedford–Taylor theory, and dis-
cussed the complex version of Prekopa’s theorem. The second introductory talk,
over two hours, was titled Valuations and convex geometry and was given by Se-
myon Alesker. He introduced the algebraic structures on the space of valuations
on convex bodies that are fundamental in the (partly conjectured) Kähler package
for valuations. The final introductory talk, over two hours, was titled Lorentzian
polynomials and given by Hendrik Süß. He introduced the concept of Lorentzian
polynomials according to the work by Brändén and Huh and then explained various
operations that map Lorentzian polynomials to Lorentzian polynomials. Thanks
to the introductory talks, a common background knowledge was established at the
beginning of the week on which later talks could rely.

The research talks covered various related topics such as the Alexandrov–
Fenchel inequality and related inequalities for mixed volumes, the theory of valua-
tions on convex bodies and on manifolds, the Hodge–Riemann bilinear relations on
Kähler manifolds, Weighted Ehrhart theory, Gamma-positivity, Superforms and
Hodge–Riemann classes coming from ample vector bundles.

The stimulating atmosphere of the mini-workshop led to many fruitful discus-
sion that strengthened the links between different, but in fact closely related, areas
of mathematics.
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Abstracts

Plurisubharmonic functions and complex Brunn-Minkowski theory

Bo Berndtsson

This was an introductory lecture. I first defined the notion of plurisubharmonic
function. A function φ, defined in an open subset of Cn is plurisubharmonic if it
is upper semicontinuos and its restriction to any complex line is subharmonic as
a function of one complex variable. If the function is smooth, this is equivalent to
saying that its complex Hessian

(
∂2φ

∂zj∂z̄k
)

is positively semidefinite everywhere. With a plurisubharmonic function one can
associate the positive differential form – or current –

i∂∂̄φ := i
∑ ∂2φ

∂zj∂z̄k
dzj ∧ dz̄k.

If φ is smooth, this is a differential form of bidegree (1, 1) (meaning that it contains
one barred differential and one unbarred); in general it is a current (meaning that
the coefficients should be interpreted as distributions). That this form is posi-
tive means, in the smooth case, that the coeffcient matrix is positive semidefinite
everywhere. In the general case it means that for any vector (λ1, ...λn)

∑ ∂2φ

∂zj∂z̄k
λj λ̄k,

is a positive distribution, i.e. a positive measure.
If our funtion φ(z) = φ(x+ iy) = φ(x) depends only on the real part of z, then

φ is plurisubharmonic if and only if it is convex, and its complex Hessian coincides
with the real Hessian, modulo a factor 1/4. Moreover, one checks that

i∂∂̄φ = (1/2)
∑

φjkdxj ∧ dyk
then. So, this expression has a meaning as a current for any convex function, not
necessarily smooth.

It was discovered by E. Bedford and B.A. Taylor, that the (1, 1) currents associ-
ated to plurisubharmonic functions can be multiplied, provided that the functions
are locally bounded, so that e.g.

i∂∂̄φ ∧ i∂∂̄ψ
is a well defined current. This is remarkable since distributions, or even measures,
cannot be multiplied in general, but it turns out that the cancellation from the
wedge product of differential forms works in our favour. When φ depends only on
the real part of z, this gives in particular that

(
∑

φjkdxj ∧ dyk)n/n!
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is a well defined measure, the Monge-Ampère measure of φ. It can be shown that
this coincides with Alexandrov’s definition of Monge-Ampère measure.

The second topic of the lecture further developed the analogy between convexity
and plurisubharmonicity. The analog for convex functions of the Brunn-Minkowski
inequality for convex sets is Prékopa’s theorem. Prékopa’s theorem says that if
φ(t, x) is a convex on Rn+1, then

φ̃(t) := − log

∫

Rn

e−φ(t,x)dx

is again convex. One well known proof of this, by Brascamp and Lieb, uses a
certain Poincaré-type inequality: If u is a function on Rn sucht that

∫
ue−φdx = 0,

then ∫
u2e−φ ≤

∫
|du|2(φjk)e

−φ.

Here |du|2(φjk) :=
∑
ujukφ

jk is the norm of du measured with the inverse of the

Hessian of φ.
The Brascamp-Lieb inequality can be seen as the real variable counterpart of

Hormander’s L2-estimates for the ∂̄-equation. A natural question is then if there
is a complex version of Prékopa’s theorem? In one sense the answer is no: A
counterexample by Kiselman shows that the function

φ̃(τ) := − log

∫

Cn

e−φ(τ,z)dm(z)

is in general not subharmonic for plurisubharmonic φ(τ, z). It does, however, hold
under various extra assumptions, most notably if φ is S1-invariant in z, for fixed
τ :

φ(τ, eiθz) = φ(τ, z).

One way to see this is via the Bergman kernel, here defined as

Bτ (z) := sup
h

|h(z)|2∫
|h|2e−φ(τ,z)dm(z)

,

with the supremum taken over all holomorphic functions. The real variable analog
of this would be to take supremum over all constant functions, leading to the
function φ̃(τ) (as logBτ ) introduced above. The first complex Prékopa theorem
says that in general

logBτ (z)

is plurisubharmonic in (τ, z). In the special case of S1-invariance it is easily seen
that

Bτ (0) = 1/

∫

Cn

e−φ(τ,z)dm(z),

giving a more concrete Prekopa theorem in this case.
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The complex Prékopa (or Brunn-Minkowski ) theory is, however, considerably
richer than this. One way to explain the general picture is to start from the obser-
vation that the Bergman kernel is the squared norm of the evaluation functional

h→ h(z)

on the Hilbert space

A2
τ := {h ∈ H(Cn),

∫
|h|2e−φ(τ,z)dm(z) <∞}.

It turns out that one can replace the evaluation functional by any other family of
functionals µτ , that depend holomorphically on τ in the sense that

τ → µτ (h)

is holomorphic for holomorphic h. This means, intuitively, that the bundle of
Hilbert spaces τ → A2

τ has positive curvature.
This is finally the most general statement along these lines , in the setting of

Euclidean space. The complex case is, however, more naturally studied in the
setting of complex manifolds. We then replace Cn+1 by a complex manifold X ,
and the projection from Cn+1 to C by a surjective holomorphic map to another
manifold. It turns out that one can develop a similar theory in this setting, under
the crucial assumption that X be Kahler.

Valuations and convex geometry

Semyon Alesker

(1) I gave two introductory talks on translation invariant valuations on convex sets
focusing mostly on the structures on the space of smooth translation invariant
valuations (product, convolution, Fourier type transform), their relations to
the recent Kotrbatý’s conjectures on mixed hard Lefschetz (mHL) and mixed
Hodge-Riemann (mHR) type results, to McMullen’s polytope algebra, and
to toric varieties. Below we briefly summarize main relevant definitions and
theorems.

(2) Let V be a finite dimensional real vector space, n = dim V . Let K(V ) denote
the family of all convex compact non-empty subsets of V . Its elements are
also called convex bodies.

Definition 1. A valuation is a functional φ : K(V ) → C which is finitely
additive:

φ(A ∪B) = φ(A) + φ(B)− φ(A ∩B)

whenever A,B,A ∪B ∈ K(V ).

Definition 2. A valuations φ is called translation invariant if

φ(K + v) = φ(K) for any K ∈ K(V ), v ∈ V.
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(3) Let us denote by V al(V ) the set of all continuous (in the Hausdorff metric)
translation invariant valuations. It is a vector space over C. Being equipped
with the topology of uniform convergence on compact subsets of K(V ) it be-
comes a Banach space.

Definition 3. A valuation φ is called α-homogeneous if

φ(λK) = λαφ(K) for any K ∈ K(V ), λ > 0.

Let V alα(V ) ⊂ V al(V ) denote the subset of α-homogeneous valuations. Clearly
it is a closed linear subspace. The following structural result is very important
in the theory.

Theorem 4 (P. McMullen [6], 1977). One has the decomposition

V al(V ) = ⊕n
i=0V ali(V ).

It is known that:
(1) V al0(V ) = C · χ. This is trivial.
(2) V aln(V ) = C · vol. This is not trivial and due to Hadwiger.

The space V al(V ) has an important distinguished dense subspace V al∞(V)
of so called smooth valuations which carries rich algebraic structures. The
definition was given in the lectures.

(4) The space V al∞(V ) carries a canonical multiplicative structure. Let us fix a
positive Lebesgue measure volV on V .

Theorem 5 (Alesker [2], 2004). (1) V al∞(V ) has a canonical (thus GL(V )-
equivariant) continuous (in the Garding topology) product V al∞ × V al∞ →
V al∞ which is uniquely characterized by the following property: Let φ(K) =
volV (K +A), ψ(K) = volV (K +B). Then

(φ · ψ)(K) = volV 2(∆(K) + (A×B)),

where volV 2 := volV × volV is the product measure, and ∆: V → V ×V is the
diagonal imbedding, i.e. ∆(x) = (x, x).

(2) Equipped with this product V al∞(V ) is an associative commutative al-
gebra with a unit (= χ).

(3) V al∞(V ) is a graded: V al∞i · V al∞j ⊂ V al∞i+j .
(4) Poincaré duality: the bilinear map

V al∞i × V al∞n−i → V aln = C · vol
is a perfect pairing, i.e. for any 0 6= φ ∈ V al∞i there exists ψ ∈ V al∞n−j such
that φ · ψ 6= 0.

Furthermore V al∞(V ) satisfies a version of the hard Lefschetz theorem which
is a combination of results of Alesker [1, 3] and Bernig-Bröcker [4].

(5) Another important structure is the Bernig-Fu convolution.

Theorem 6 (Bernig-Fu [5],2006). (1) V al∞(V ) has a continuous (in the
Garding topology) convolution V al∞ × V al∞ → V al∞ commuting with the
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group of linear volume preserving transformaitons which is uniquely character-
ized by the following property: Let φ(K) = volV (K+A), ψ(K) = volV (K+B).
Then

(φ ∗ ψ)(K) = volV (K + A+B).

(2) Equipped with this convolution V al∞(V ) is an associative commutative
algebra with a unit (= volV ).

(3) V al∞n−i ∗ V al∞n−j ⊂ V al∞n−i−j .

Poincaré duality and hard Lefschetz theorem (for intrinsic volumes) are also
satisfied by convolution.

(6) Alesker [1, 3] has constructed an isomorphism of topological algebras, called
Fourier type transform,

F : (V al∞(V ), ·)→̃(V al∞(V ∗), ∗)
commuting with the group of linear volume preserving transformations.

(7) The Kotrbatý’s conjectures are formulated in terms of convolution and they are
mixed hard Lefschetz and mixed Hodge-Riemann type results for valuations.
I explained a heuristic argument in favor (imho) of the conjectures. It is based
on the connection of valuations to the McMullen’s polytope algebra established
by Bernig and Faifman. Then I indicated a relation to toric varieties.
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Gamma-positivity for symmetric edge polytopes

Martina Juhnke-Kubitzke

Symmetric edge polytopes are a class of lattice polytopes that has seen a surge
of interest in recent years for their intrinsic combinatorial and geometric prop-
erties [MHN+11, HKM17, OT21a, OT21b, CDK23] as well as for their relations
to metric space theory [Ver15, GP17, DH20], optimal transport [ÇJM+21] and
physics, where they appear in the context of the Kuramoto synchronization model
[CDM18, Che19] (see [DDM22] for a more detailed account of these connections).

Given a finite simple graph G = ([n], E), the associated symmetric edge polytope
PG is defined as

PG = conv(±(ei − ej) : ij ∈ E).
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Symmetric edge polytope have been shown to exhibit several nice properties, in-
dependent of the underlying graph: all of these polytopes are known to admit
a pulling regular unimodular triangulation [OH14, HJM19] and to be centrally
symmetric, terminal and reflexive [Hig15]. In particular, by this latter property,
it follows from work of Hibi [Hib92] that their h∗-vectors are palindromic. Thus,
given the h∗-vector h∗(PG) = (h∗0, . . . , h

∗
d) of a symmetric edge polytope, one can

define the γ-vector of PG by applying the following change of basis:

(1)

⌊ d
2
⌋∑

i=0

γit
i(t+ 1)d−2i =

d∑

j=0

h∗j t
j .

Obviously, γ(PG) = (γ0, . . . , γ⌊ d
2
⌋) stores the same information as h∗(PG) in a

more compact form. More generally, in the same way, one can associate a γ-vector
with any symmetric vector and this has been done and studied extensively in a
lot of cases. One of the most prominent examples in topological combinatorics,
which is strongly related to the just mentioned example of h∗-vectors of reflexive
polytopes, are h-vectors of simplicial spheres. For flag spheres, Gal’s conjecture
[Gal05] states that their γ-vectors are nonnegative. Several related conjectures
exist, including the Charney–Davis conjecture [CD95], claiming nonnegativity only
for the last entry of the γ-vector, and the Nevo–Petersen conjecture [NP11] which
even conjectures the γ-vector of a flag sphere to be the f -vector of a balanced
simplicial complex.

If a polytope P admits a regular unimodular triangulation ∆, which is the
case for symmetric edge polytopes, then the restriction of ∆ yields a unimodular
triangulation of the boundary complex of P , as well. If, in addition, P is reflexive,
it is well-known that the h∗-vector of P equals the h-vector of any unimodular
triangulation ∆ of its boundary, which in particular is a simplicial sphere. This
provides a link between the study of the γ-vector of PG and the rich world of
conjectures on the γ-nonnegativity of simplicial spheres; however, note that the
objects we are interested in will not be flag in general. Despite the lack of flagness,
in all the cases known so far the γ-vector of PG is nonnegative, and this brought
Ohsugi and Tsuchiya to formulate the following conjecture, which is the starting
point of this paper:

Conjecture 1. [OT21a, Conjecture 5.11] Let G be a graph. Then γi(PG) ≥ 0 for
every i ≥ 0.

On the one hand, it is already known and follows e.g. from [BR07] that a weaker
property, namely, unimodality of the h∗-vector holds. On the other hand, though
it is tempting to hope that even the stronger property of the h∗-polynomial being
real-rooted is true, this is not the case in general, as shown by the 5-cycle. The
γ-nonnegativity conjecture above has been verified for special classes of graphs,
mostly by direct computation: as shown in [OT21a, Section 5.3], such classes
encompass cycles, suspensions of graphs (which include both complete graphs
and wheels), outerplanar bipartite graphs and complete bipartite graphs. This
last instance was originally proved in [HJM19] but was generalized in [OT21a]
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to bipartite graphs H̃ obtained from another bipartite graph H as in [OT21a, p.
708].

The main goal of this work is to provide some supporting evidence to the γ-
nonnegativity conjecture, independent of the graph. We take two different ap-
proaches: a deterministic and a probabilistic one.

In the deterministic part, we focus on the coefficient γ2. Through some deli-
cate combinatorial analysis, we are able to prove that γ2 is always nonnegative.
Moreover, we provide a characterization of those graphs for which γ2(PG) = 0:

Theorem 2. ] Let G = ([n], E) be a graph. Then γ2(PG) ≥ 0. Moreover, if G
is 2-connected, then γ2(PG) = 0 if and only if either n < 5, or n ≥ 5 and G is
isomorphic to one of the following two graphs:

• the graph Gn with edge set {12} ∪ {1k, 2k : k ∈ {3, . . . , n}}; or
• the complete bipartite graph K2,n−2.

The “if” part of the equality statement can be deduced from the results in
[HJM19] and [OT21a], where the authors compute explicitly the γ-vector of the
families of graphs appearing in 2.

For the probabilistic approach, we consider the Erdős-Rényi model G(n, p(n)),
which is one of the most popular and well-studied ways to generate a graph on
the vertex set [n] via a random process: for a graph G ∈ G(n, p), the probability
of ij with 1 ≤ i < j ≤ n being an edge of G equals p(n), and all of these
events are mutually independent. Our question is then: for an Erdős-Rényi graph
G ∈ G(n, p), how likely is it that the entries of the γ-vector of PG are nonnegative?
As an extension, we pose the question of how big those entries will most likely be.
Our main result, answering both questions, is the following:

Theorem 3. Let k be a positive integer. For the Erdős-Rényi model G(n, p(n)),
where p(n) = n−β for some β > 0, β 6= 1, the following statements hold:

• (subcritical regime) if β > 1, then asymptotically almost surely γℓ = 0 for
all ℓ ≥ 1;

• (supercritical regime) if 0 < β < 1, then asymptotically almost surely
γℓ ∈ Θ(n(2−β)ℓ) for every 0 < ℓ ≤ k.

In particular, this shows that γℓ ≥ 0 for 1 ≤ ℓ ≤ k with high probability,
thereby proving that (up to a fixed entry of the γ-vector) Gal’s conjecture holds
with high probability. To prove this result, we need to distinguish two regimes:
subcritical (β > 1) and supercritical (0 < β < 1), the subcritical one being the
easier one. Along the proof, we derive concentration inequalities for the number
of non-faces and faces of the triangulation of PG studied in [HJM19, Proposition
3.8]. Unfortunately, our approach does not give results for the critical regime.

This is joint work with Alessio D’Aĺı, Daniel Köhne and Lorenzo Venturello.
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Lorentzian polynomials

Hendrik Süß

In [1] Brändén and Huh introduced the notion of Lorentzian polynomials. This
is a class of polynomials which generalizes the log-concavity properties of volume
polynomials appearing in convex and algebraic geometry and behaves well with
respect to many natural operations, such as multiplication, specialization and
(positive) linear transformation. The theory of Lorentzian polynomials has been
used to prove and reprove important conjectures in matroid theory, see [1, 2].
Moreover, many polynomials arising from representation theory are conjectured
to be (denormalized) Lorentzian [3].

In my introductory talk I gave an overview of the definitions and basic theory
of Lorentzian polynomials as presented in [1] and discussed the proof of the Strong
Mason Conjecture also given in [1] as an exemplary application to matroid theory.
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Some analogies between valuation on convex bodies and algebraic
cycles on varieties

Nguyen-Bac Dang

Fix X = Pd(C) the complex projective space of dimension d ≥ 1 and a rational
map f : X 99K X on X whose image is not contained in a hypersurface (i.e f is
called dominant). Fix a Kähler form ω, for each k ≤ d, a general problem is to
estimate the growth of the sequence (degk(f

n))n∈N where

degk(f
n) =

∫

X

(fn)∗(ωk) ∧ ωd−k.

When the map f is holomorphic, these sequences can be understood on the coho-
mology of X . Namely, the element ωk represents a class in the Dolbeaut cohomol-
ogy Hk,k(X) and f induces a pullback action this vector space by multiplication
by deg1(f)

k. To tackle this problem for general meromorphic maps, the general
strategy is to consider the pullback action of f on an infinite vector space:

n-Ck(X ) = lim−→Hk,k(Y ),

where the inductive limit is taken over all birational models Y with a birational
morphism π : Y → X . More generally, one sees that the group of bimeromorphic
transformations Cr(d) of Pd(C) (the Cremona group) induces an action on the
graded algebra:

(1) Cr(d) →֒ ⊕d
k=0 n-C

k(X ).
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This viewpoint was very fruitful and allowed for example Cantat [Can11] to study
group theoretic properties of the Cremona group of dimension 2.

One can then read the growth of the sequence degk(f
n) on the growth of the

sequence of vectors (fn)∗ωk ∈ n-Ck(X ). In [BFJ08, DF21] a purely exponential
growth of the sequence deg1(f

n) was obtained under some conditions. The method
was to complete the space n-C1(X ) with a suitable Banach norm so that the
sequence of classes (fn)∗ω converges to a unique eigenvector for the operator f∗.

The situation is very well-understood when k ≥ 2 if the map f is defined by
monomials. Fix a matrix A = (aij) ∈ GLd(Z), the monomial map associated to
A is:

fA : (x1, . . . , xd) 7→


y1 =

d∏

j=1

x
a1j

j , . . . , yd =
d∏

j=1

x
adj

j


 .

The map A ∈ GLd(Z) → fA ∈ Cr(d) induces an injection of GLd(Z) in the
Cremona group. In that case, this subgroup acts on the subspace:

⊕d
k=0 n-C

k(Xtor) = ⊕k lim−→
Y toric

Hk,k(Y ),

where the injective limit is taken over all toric compactifications Y of (C∗)d. On

one hand, elements of n-Ck(Xtor) correspond to collection of classes of algebraic
cycles living on a toric variety, but on the other hand, the theory of toric varieties
allows one to view those as valuations on convex bodies. Namely, if P is the
fundamental polytope of Rd, then

degk(fA) =MV (A(P )[k], P [d − k]),

where MV (A(P )[k], P [d − k]) denotes the mixed volume of A(P ) taken k times
and P taken d− k times. Precisely, the class of ωk is associated to the translation
invariant valuation φωk homogeneous of degree d− k such that

φωk(K) =MV (P [k],K[d− k]),

for all K convex body in Rd. The action by GLd(Z) is then given by A · φ(K) =
φ(A−1(K)). Denote by V alk(R

d) vector space of translation invariant valuations
of given degree k, one recovers an action on the graded vector space

(2) GLd(Z) →֒ ⊕kV alk(R
d).

Comparing (1) with (2), one sees that the previous space had a structure of
graded algebra while in the second, it is only a graded vector space since the
convolution between two valuations is not always well-defined. When d = 2, the
analog in convex geometry of the norm defined by Boucksom-Favre-Jonsson is
given by:

(3) ||φ||2 = 2φ(B)2 − φ ⋆ φ

where B is a ball of volume 1 and where φ is a smooth valuation of degree 1.
Taking the completion of smooth valuations for this norm yields a smaller space
on which the convolution extends continuously. The fact that the above formula
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yields a norm is a consequence of Hodge-index theorem in algebraic geometry,
and in convex geometry is the Legendre-Fenchel inequality or the Hodge-Riemann
property for degree 1 valuations.
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Schur polynomials, positivity and the Hodge-Riemann property

Matei Toma

(joint work with Julius Ross)

We present recent joint work with Julius Ross, [1], [2], [3], showing that Schur
polynomials evaluated on ”positive” forms or cycle classes exhibit strong posi-
tivity properties themselves, such as the Hard Lefschetz property and the Hodge-
Riemann property. Our work was motivated by the need to understand intersection
properties of algebraic cycles on complex projective manifolds and was inspired
by two parallel developments. On one hand, in algebraic geometry the extension
of the classical Hard Lefschetz Theorem proved by Bloch and Gieseker, [4], paved
the way towards the work of Fulton and Lazarsfeld, [5], on positivity of Schur
classes of ample vector bundles. On the other hand, in Kähler geometry it was
suggested by Gromov in [6] and proved by Dinh and Nguyen, [7], that the Hard
Lefschetz Theorem and the Hodge-Riemann bilinear relations may be extended to
a mixed situation, meaning by this that both work with a product of Kähler classes
replacing the power of a single Kähler class in the classical statements. A natu-
ral question arises, whether other combinations of positive classes, besides those
exhibited by the Bloch-Gieseker and Dinh-Nguyen theorems, have similar Hard
Lefschetz and Hodge-Riemann properties. Our results, which we next describe,
say that this is the case for two-codimensional Schur classes.

We will denote by c0, c1, . . . , ce ∈ k[x1, . . . , xe] the elementary symmetric poly-
nomials, by Λ(d, e) the set of partitions λ = (λ1, . . . , λN ) of d with

0 ≤ λN ≤ . . . λ1 ≤ e, and

N∑

i=1

λi = d

and we will set

sλ := det




cλ1
cλ1+1 · · · cλ1+N−1

cλ2−1 cλ2
· · · cλ2+N−2

...
...

...
...

cλN−N+1 cλN−N+2 · · · cλN


 .
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The sλ are called Schur polynomials and build a basis of the space k[x1, . . . , xe]
sym
d

of degree d homogeneous symmetric polynomials in e variables, when λ runs
through Λ(d, e).

Then we can prove the following three instances of Hard Lefschetz and Hodge-
Riemann properties for ”Schur classes” of degree d = n− 2.

Theorem (linear algebra case). Let ω1, . . . , ωe be strictly positive (1, 1)-forms on
V = Cn, λ be a partition in Λ(n − 2, e) and vol be the standard volume form on
V . Then the linear map

2∧

R

V ∗ →
2n−2∧

R

V ∗, α 7→ α ∧ sλ(ω1, . . . , ωe)

is an isomorphism and the quadratic form

Qsλ(ω1,...,ωe) : (

1,1∧
V ∗)R → R, α 7→ (α ∧ sλ(ω1, . . . , ωe) ∧ α)/vol,

is non-degenerate of signature (1, n2 − 1).

Theorem (Kähler case). If ω1, . . . , ωe are Kähler classes on a compact Kähler
manifold X of dimension n and λ is a partition in Λ(n− 2, e), then the linear map

H2(X,R) → H2n−2(X,R), α 7→ α ∧ sλ(ω1, . . . , ωe)

is an isomorphism and the quadratic form

Qsλ(ω1,...,ωe) : H
1,1(X)R → R, α 7→

∫

X

α ∧ sλ(ω1, . . . , ωe) ∧ α,

is non-degenerate of signature (1, h1,1 − 1).

Theorem (ample vector bundle case). If E is a rank e ample vector bundle on a
complex projective manifold X of dimension n and λ ∈ Λ(n−2, e), then the linear
map

H2(X,R) → Hn−2(X,R), α 7→ α ∧ sλ(ω1, . . . , ωe)

is an isomorphism and the quadratic form

Qsλ(ω1,...,ωe) : H
1,1(X)R → R, α 7→

∫

X

α ∧ sλ(ω1, . . . , ωe) ∧ α,

is non-degenerate of signature (1, h1,1 − 1).
We start by proving the ”ample vector bundle case” and in doing so we make

use of the Bloch-Gieseker Theorem and of the Fulton-Lazarsfeld cone construction.
We then successively deduce the ”linear algebra case” and the ”Kähler case”. Let
us note that a different, more algebraic, approach to prove the ”linear algebra
case” has appeared in the meantime in [8]. It seems however that for the ”ample
vector bundle case” a geometric proof is needed.
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[8] J. Ross, H. Süß, Th. Wannerer, Dually Lorentzian Polynomials, arxiv2304.08399.

Bezout inequalities for mixed volumes

Maud Szusterman

Bezout inequality (in Pn) and the Bernstein-Khovanskii-Kushnirenko (BKK) the-
orem allows to derive inequalities of mixed volumes

V (A1, ..., Ar,∆)V (∆)r−1 ≤
∏

i≤r

V (Ai,∆[n− 1]),

where Ai are arbitrary convex bodies in Rn, and ∆ is an n-simplex. Another
consequence of the BKK theorem is

V (A1, ..., An)V (∆) ≤ V (A2, ..., An,∆)V (A1,∆[n− 1]).

We introduce the affine invariant quantities br(K) and b(K) as the least br, b ≥ 1
such that

V (A1, ..., Ar,K)V (K)r−1 ≤ br
∏

i≤r

V (Ai,K[n− 1]), respectively

V (A1, ..., An)V (K) ≤ bV (A2, ..., An,K)V (A1,K[n− 1]),

holds true for any (Ai). In particular note that 1 ≤ b2(K) ≤ br(K) ≤ b(K)r−1 for
any n ≥ 2, and for any K.

In [1], C. Saroglou, I. Soprunov and A. Zvavitch have proven that b(K) = 1
characterizes the simplex among all convex bodies, and that b2(K) = 1 charac-
terizes the simplex among all n-polytopes: we shall review the proof of this latter
characterization, and explain where it fails to generalize to the setting of convex
bodies (if one uses Wulff-shape perturbations of K rather than “perturbated poly-
topes”). Moreover it follows from Fenchel’s inequality, respectively from Diskant’s
inequality (see also [3]) that b2(K) ≤ 2 and b(K) ≤ n for all K (both constants are
sharp, as shown by the cross-polytope for b2, and by the unit cube for b). While
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the characterization of all K such that b2(K) = 2 is known, that of all K such
that b(K) = n remains open.

This study of Bezout inequalities for mixed volumes was initiated by Soprunov
and Zvavitch in [2], where they conjectured that the n-simplex is the only mini-
mizer of b2. Though this conjecture remains open, we will discuss recent progress
on restricting the set of potential minimizers; namely we will present a necessary
condition on the support of the surface area measure of K. In dimension 3, this
necessary condition, together with previously established restrictions, is enough to
answer positively Soprunov-Zvavitch’s conjecture.
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Applications of Legendre transforms in Kähler geometry

Xu Wang

The Legendre transform of a generalized function φ : Rn → [−∞,∞] is defined by

φ∗(y) := sup
x∈Rn

x · y − φ(x).

It is one of the most important concepts in convex geometry. For instance, it can
be used to define the interpolating family between two convex functions and prove
that the mixed volume function is a polynomial for convex bodies (see formula
(3.2) and Corollary 3.8 in [1]). It also plays an crucial role in the intersection
theory in algebraic geometry. For example, it can be used to prove compactness
of a Delzant toric manifold and the Bernstein-Kushnirenko inequality (see section
2 in [6]). In this talk, we will introduce a few recent applications of Legendre
transforms in Kähler geometry. The first result is the following generalization [3]
of McDuff–Polterovich’s result [4] (for β = (1, · · · , 1), in which case ǫx(ω;β) is
called the Seshadri constant).

Theorem A. Let (X,ω) be a compact Kähler manifold. Fix x ∈ X, we have

ǫx(ω;β) = cx(ω;β), β = (β1, · · · , βn), βj > 0, 1 ≤ j ≤ n,

where the β-Seshadri constant of (X,ω) at x ∈ X is defined by

ǫx(ω;β) := sup{γ ≥ 0 : there exists ψ ∈ PSH(X,ω) such that

ψ = γ log(|z1|2/β1 + · · ·+ |zn|2/βn) near x},
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and “ψ ∈ PSH(X,ω)” means that ψ is upper semi continuous on X and ω+ddcψ ≥
0, dc := (∂ − ∂̄)/(4πi), in the sense of currents on X. The β-Kähler width

cx(ω;β) := sup
{
πr2 : Bβ

r →֒ holx(X, ω̃), ∃ ω̃ ∈ Kω

}
,

Bβ
r :=



z ∈ Cn :

n∑

j=1

βj |zj |2 < r2



 ,

where “Bβ
r →֒ holx(X, ω̃)” means that there exists a holomorphic injection f :

Bβ
r → X such that f(0) = x and f∗(ω̃) = i

2

∑n
j=1 dzj ∧ dz̄j, Kω denotes the space

of Kähler metrics in [ω].

The main ingredient of our proof is the following Legendre transform result.

Theorem B ([3, Theorem 3.7]). Let φ be smooth strictly convex on Rn and
A ⊂ Rn be closed. Put φA(x) = supy∈A y · x − φ∗(y). If x satisfies φA(x) < φ(x)
then φA(x) = supy∈∂A y · x− φ∗(y), where ∂A denotes the boundary of A.

Another application of Theorem B is the following Ross-Witt Nyström theorem
[5].

Theorem C. Let φ be a smooth strictly convex function on Rn. Assume that A :=
∇φ(Rn) is bounded. Fix a concave function u on A and assume that u ∈ C∞(Rn).
Then for every t > 0,

(φ∗ − tu)∗ = sup
α∈R

{φα + tα}, φα(x) := sup
u(y)≥α

y · x− φ∗(y).

The compact Kähler version of the above theorem is known as the Ross-Witt
Nyström correspondence between the maximal test curves and geodesic rays.

Definition D. Let (L, e−φ) be a positive line bundle over a compact complex
manifold X. A map α 7→ vα from R to PSH(X,ω), ω := ddcφ, is called a bounded
test curve if

(1) λv := inf{α ∈ R : vα ≡ −∞} <∞;
(2) α 7→ vα(x) is concave, decreasing and usc for any x ∈ X;
(3) vα ≡ 0 for α ≤ 0 and sup{α ∈ R : vα ≡ 0} = 0.

A bounded test curve is said to be maximal if P [vα] = vα for every α ∈ R, where

P [vα] :=
∗

sup{v ∈ PSH(X,φ) : v ≤ 0 and v − vα is bounded on X},
is called the maximal envelope of vα.

Definition E. Let (L, e−φ) be a positive line bundle over a compact complex man-
ifold X. A map t 7→ ut from (0,∞) to PSH(X,ω), ω := ddcφ, is called a sub-linear
sub-geodesic ray if

(1) φ(x) + u− log |ξ|2(x) is psh on X × {ξ ∈ C : |ξ| < 1};
(2) ut ≥ limt→0 ut = 0 and λu := limt→∞ supX ut/t <∞.

A sub-linear sub-geodesic ray ut is called a geodesic ray if for every 0 < a < t < b
we have ut = sup{vt} where the supremum is taken over all sub-geodesics vt with
lim supt→a,b vt ≤ ua,b.
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The main theorem in the Ross-Witt Nyström correspondence theory is the
following result.

Theorem F ([5, Theorem 1.1]). The α-Legendre transform v̂t := supα∈R{vα +
tα}, t > 0, gives a bijective map, say L, between

(1) bounded test curves and sub-linear sub-geodesic rays;
(2) maximal bounded test curves and geodesic rays.

Moreover, we have λv = λv̂ and L−1(ut) is given by the t-Legendre transform

ǔα := inf
t>0

{ut − tα}, α ∈ R.

The above theorem implies the following Bergman kernel estimate in [2].

Theorem G. Let (L, e−φ) be a positive line bundle over an n-dimentional compact
complex manifold X. Assume that the Seshadri constant of L is > n on X. Then
Bφ ≥ HSφ, where

Bφ(x) := sup
f∈H0(X,O(KX+L))

in
2

f(x) ∧ f(x)e−φ(x)

∫
X
in2 f ∧ f̄e−φ

, ∀ x ∈ X,

denotes the φ-weighted Bergman kernel form on X and

HSφ(x) :=
(ddcφ)n(x)∫

TxX
e−φL,x(ddcφ)n(x)

, ∀ x ∈ X,

is called the Hele-Shaw form on X, where

φL,x := sup

{
Ghom,x : G ∈ PSH(X,ω) with sup

X
G = 0

}

is called the canonical growth condition [7] of ω := ddcφ at x, here

Ghom,x(w) := lim sup
t→0

{G(expx(tw)) − νx(G) log(|t|2)}, w ∈ TxX,

expx denotes the exponential map from TxX to X with respect to ω and

νx(G) := lim inf
z→0

G(z)

log(|z|2)
denotes the Lelong number of G at x.

The proof of Theorem G is to use an Ohsawa-Takegoshi extension theorem (see
Theorem A in [2]) behind Theorem F.
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Towards Hodge theory for smooth translation-invariant valuations

Jan Kotrbaty

Let A =
⊕n

k=0 Ak be a commutative, associative, graded algebra over R with
An

∼= R and a fixed cone K ⊂ A1. Let k be any integer between 0 and n
2 . We say

that A satisfies

(1) Poincaré duality if for each x ∈ Ak with x 6= 0 there exists y ∈ An−k such
that x · y 6= 0;

(2) hard Lefschetz theorem if for each x1, . . . , xn−2k ∈ K, the map Ak → An−k

given by y 7→ y · x1 · · ·xn−2k is an isomorphism;
(3) Hodge–Riemann relations if for each x1, . . . , xn−2k+1 ∈ K and y ∈ Ak such

that y 6= 0 and y · x1 · · ·xn−2k+1 = 0 one has (−1)k y · y · x1 · · ·x2n−k > 0.

A prototypical example of such an algebra—from which the terminology was
inherited—is the subring

⊕
kH

k,k of the Dolbeault cohomology of a compact
Kähler manifold (M,ω). The statement is classical for the one-dimensional cone
K = R>0ω. However, the case when K is the full Kähler cone was proved only
recently by Dinh–Nguyên [9]. A more elementary example is the linear counter-

part
⊕

k

∧k,k
(Cn)∗ proven by Timorin [15]. Further examples are the McMullen’s

algebra Π(P ) generated by polytopes strongly isomorphic to a fixed simple poly-
tope P [14] or the Chow ring of a matroid, as proven by Adiprasito–Huh–Katz
[1]. Many more examples along with remarkable applications of these properties
to combinatorics are listed in the excellent account of Huh [10].

Let K denote the space of convex bodies, i.e., compact convex subsets in Rn.
We call φ : K → R a valuation if

φ(A ∪B) = φ(A) + φ(B)− φ(A ∩B)

whenever A,B,A ∪ B ∈ K. The space Val of translation-invariant, continuous
valuations is a Banach space. It carries a natural left GL(n) action given by
g · φ = φ ◦ g−1. GL(n)-smooth vectors in Val are called smooth valuations. It
follows from a classical result of McMullen [14] that the space of smooth valuations
is graded by the degree of homogeneity of a valuation: Val∞ =

⊕n
k=0 Val

∞
k .

Moreover, by a combination of results of Alesker and Bernig–Fu [2, 4, 8], Val∞

is in fact a graded algebra satisfying Poincaré duality with respect to a natural
product given as follows: Denoting the mixed volume on Rn by V and k copies
of a convex body by [k], one has A 7→ V (B1, . . . , Bk, A[n− k]) ∈ Val∞n−k provided
the convex bodies Bi are from K∞

+ , i.e., have smooth boundaries with positive

https://wiki.math.ntnu.no/_media/ma8108/2023h/ccg_1.pdf
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curvature. Then we define

V (B1, . . . , Bk, •[n− k]) ∗ V (C1, . . . , Cl, •[n− l])

= cnk,lV (B1, . . . , Bk, C1, . . . , Cl, •[n− k − l])

where cnk,l =
(n−k)!(n−l)!
n!(n−k−l)! .

Motivated by the aforementioned results in other contexts and by known special
cases listed below, the following conjecture was formulated in [11]:

Conjecture 1. The algebra Val∞ satisfies the hard Lefschetz theorem and the
Hodge–Riemann relations with respect to K = {V (C, •[n− 1]) | C ∈ K∞

+ }.
The conjecture is now known to hold for the one-dimensional cone

{V (D, •[n− 1]) | D ∈ K∞
+ is a Euclidean ball}.

In this case, the hard Lefschetz theorem was first showed by Alesker [3] for the
subalebra of even valuations. Later on, Bernig–Bröcker [7] removed the evenness
assumption and prove the statement for Val∞. Similarly, the Hodge–Riemann
relations were first proved in the even case by Kotrbatý [11]. Somewhat later,
Kotrbatý–Wannerer [13] proved the Hodge–Riemann relations for Val∞ and also
gave a new proof of the hard Lefschetz theorem. The point of working with
the Euclidean cone is that the Lefschetz map then commutes with the group
SO(n). This makes it possible to use representation theory, in particular the
known decomposition of Val∞ into SO(n)-types established by Alesker–Bernig–
Schuster [6].

For the full cone K, Conjecture 1 is proven in general only for k = 0, 1. The
former case is easily seen to be equivalent to non-negativity of the mixed volume.
The latter was proved by Kotrbatý–Wannerer [12] (and observed independently by
Alesker) by generalizing the Alexandrov’s second proof of the Alexandrov–Fenchel
inequality

V (A,B,C1, . . . , Cn−2)
2 ≥ V (B,B,C1, . . . , Cn−2)V (A,A,C1, . . . , Cn−2).

Conversely, it was first observed by Alesker that the Hodge–Riemann relations
for valuations subsume geometric inequalities: Taking n = 2, k = 1, and y =

V (K, •)− V (K,D)
V (D,D)V (D, •), where K ∈ K∞

+ is arbitrary and D ∈ K∞
+ is a Euclidean

ball, the Hodge–Riemann relations together with the definition of the product ∗ of
valuations yield at once the isoperimetric inequality on the plane. More generally,
the case k = 1 of Conjecture 1 implies for general n the Alexandrov–Fenchel
inequality [11]. Moreover, Alesker [5] and Kotrbatý–Wannerer [13] deduced in
this way from the Hodge–Riemann relations new inequalities for mixed volumes,
apparently beyond the previously known geometric methods.
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Octonionic Monge-Ampère operator and its applications to valuations
theory and PDE

Semyon Alesker

(1) In this talk I introduce an octonionic Monge-Ampère (MA) operator for 2
octonionic variables, apply it to a construction of translation invariant con-
tinuous valuations on R16, in particular a Spin(9)-invariant example. Then I
introduce (jointly with Peter Gordon) an octonionic analogue of Kähler met-
rics on 16-torii and prove a Calabi-Yau type theorem for them. The latter
states solvability of certain non-linear elliptic second order PDE.

(2) Let O be the (non-commutative, non-associative) field of octonions. Recall
that any octonion q ∈ O can be written uniquely

q =
7∑

i=0

xpe
p,

where xp ∈ R, and ep are octonionic units such that e0 = 1 and (ep)2 = −1
for p > 0. The conjugate is defined by

q̄ = x0 −
7∑

i=1

xpe
p.
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(3) Let F be a smooth O-valued function on O ≃ R8. Define two operators

∂F

∂q̄
:=

7∑

i=0

ep
∂F

∂xp
,
∂F

∂q
:=

7∑

i=0

∂F

∂xp
ēp.

Such operator can be defined in the case of several octonionic variables for
each variable.

(4) For a smooth function f : On → R define its octonionic Hessian

HessO(f) =

(
∂2f

∂q̄i∂qj

)
.

This n× n matrix is Hermitian, i.e. aij = āji.
(5) In order to define the MA operator we need a notion of determinant. There

is such a notion for 2 × 2 octonionic Hermitian matrices. A general such a
matrix has the form [

a q
q̄ b

]
, a, b ∈ R, q ∈ O.

Its determinant is defined by the usual formula ab− qq̄ = ab− q̄q.
Finally we define the octonionic MA operator for a C2-smooth real valued

function f by
MAO(f) := detHessO(f).

(6) We show that MAO(f) can be defined by continuity (with respect to the
uniform convergence) for arbitrary continuous plurisubharmonic (in particular
for convex) functions on 2 ≃ R16 which is not necessarily C0-smooth as a non-
negative measure.

Theorem 1 (Alesker [1], 2008). Fix ψ ∈ C0
c (R

16,R). Define the functional
on the family of all convex compact subsets of O2 ≃ R16 by

K 7→
∫

O2

ψ ·MAO(hK),

where hK is the supporting functional of K. This is a continuous translation
invariant 2-homogeneous valuation.

Note that the valuation property follows from a version of the Blocki’s for-
mula saying that if u, v are continuous octonionic psh functions and min{u, v}
is also psh then

MAO(min{u, v}) +MAO(max{u, v}) =MAO(u) +MAO(v).

If the function ψ is O(16)-invariant then the corresponding valuation is
Spin(9)-invariant. For different such ψ’s the corresponding valuations are
proportional.

The same argument works to construct continuous valuations on the class
of continuous octonionic psh (in particular, on convex) functions on O2 ≃ R16.

(7) P. Gordon and me introduced a class of metrics on O2 which are octonionic
analogues of Kähler metrics and proved a Calabi-Yau type theorem for an
octonionic MA equation on 16-torii for such metrics.
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Singularities of plurisubharmonic functions

Dano Kim

This talk was a survey on recent results in the study of singularities of plurisub-
harmonic functions, a topic which has seen active interactions among complex
analysis, algebraic geometry and convex geometry.

A plurisubharmonic (psh for short) function ϕ on a complex manifold X is
said to have analytic singularities (of type ac) if it is locally of the form ϕ =
c log

∑m
i=1 |gi| + u where c ≥ 0 is real, u bounded and g1, . . . , gm are local holo-

morphic functions generating a (global) coherent ideal sheaf a ⊂ OX . Informally,
let us say that such ϕ is algebraic psh in that its singularities are encoded in ac

which is algebro-geometric data. Otherwise, let us say ϕ is general psh, which is a
transcendental object.

General psh functions emerge in several different contexts in algebraic geometry:
for example, from the study of graded sequence of ideal sheaves (cf. [5], [11]) or
from local weight functions of singular hermitian metrics for a pseudoeffective
line bundle (cf. [4]). In many concrete statements/results, one can observe two
patterns. 1) A general psh function behaves very differently from algebraic ones.
2) A general psh function behaves similarly to algebraic ones.

An instance of 1) is a recent result [12, Thm. 5.7] joint with Hoseob Seo on
psh functions with accumulation points of jumping numbers, which generalized a
single initial example due to [8] to infinitely many examples, in fact characterizing
them among all toric psh functions in dimension 2. Seo generalized this result to
arbitrary dimension in [14]. Connection with convex analysis and geometry played
an important role in these works. In this regard, another recent paper of Seo with
An [1] developed further methods of using convex analysis to study equisingular
approximation of psh functions.

On the other hand, as an instance of 2), the following result (joint with J.
Kollár, in preparation) was announced. (J (ϕ) is the multiplier ideal sheaf of ϕ,
cf. [4].)

Theorem 1. Let X be a complex manifold and ϕ a quasi-plurisubharmonic func-
tion on X such that (X,ϕ) is log canonical. Then every point of X has a Stein open
neighborhood U ⊂ X with holomorphic functions gi on U and real ci > 0, such
that ψ :=

∑m
i=1 ci log |gi| is log canonical at every point of U , and J (ϕ) = J (ψ).

In the second part of this talk, we consider psh functions with isolated singu-
larities at a point, say 0 ∈ Cn. For such psh functions u1, . . . , un, we denote their
mixed Monge-Ampère mass at 0 ∈ Cn by

m(u1, . . . , un) =

∫

{0}

(ddcu1) ∧ . . . ∧ (ddcun)
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which is defined due to work of Demailly [3]. In the case when uk = log |ak| , k =
1, . . . , n, for zero-dimensional ideals ak at 0, m(u1, . . . , un) is equal to the mixed
multiplicity µ(a1, . . . , an) of the ideals. In the joint work with Alexander Rash-
kovskii [10], we have the following Alexandrov-Fenchel inequality for mixed Monge-
Ampère masses (generalizing a result of [5]).

Theorem 2. Let u1, . . . , un be psh functions with isolated singularities at 0 ∈ Cn.
Then we have the inequality

m(u1, u1, u3, . . . , un)m(u2, u2, u3, . . . , un) ≥ m(u1, u2, u3, . . . , un)
2.

As a consequence for convex geometry, we derive an Alexandrov–Fenchel in-
equality for mixed covolumes [10, Cor. 1.5] using the case when u1, . . . , un are
appropriate toric psh functions.

An important special case of mixed MA masses is ‘higher Lelong numbers’ of u
defined as

(1) ek(u) =

∫

{0}

(ddcu)k ∧ (ddc log |z|)n−k

for k = 1, . . . , n, generalizing the usual Lelong number e1(u). The main result of
[5] (cf. [2]) is the following lower bound for the log canonical threshold lct(u) at 0,

(2) lct(u) ≥ en−1(u)

en(u)
+
en−2(u)

en−1(u)
+ . . .+

1

e1(u)
.

When u is algebraic psh associated to a zero-dimensional ideal a, this improves

an earlier result of [7], lct(u) ≥ n( 1
en(u)

)
1
n which was applied in the topic of

birational rigidity from birational geometry. The author does not yet know of
an instance where (2) itself was used in birational geometry so far.

On the other hand, in a recent paper [9], we discovered an application of (2) to a
completely different topic in algebraic geometry, namely hypersurface singularities.
Let (f = 0) be a germ of an isolated hypersurface singularity at 0 ∈ Cn. In [15],
Teissier defined the polar invariant θ(f) which measures the rate of vanishing of
the Jacobian ideal Jf of f with respect to that of the maximal ideal m of 0 ∈ Cn.
Also consider θ(f1), . . . , θ(fn−1) where fj denotes the restriction of f to general
j-codimensional planes containing 0 ∈ Cn. We have the following upper bound for
the particular combination of these polar invariants from a question in [15].

Theorem 3. [9] Let lct(m · Jf ) be the log canonical threshold at 0 ∈ Cn of the
product ideal m · Jf . We have

(3)
1

1 + θ(f)
+

1

1 + θ(f1)
+ . . .+

1

1 + θ(fn−1)
≤ lct(m · Jf ).

In fact, in his question [15, p.7], Teissier conjectured that one can put the Arnold
exponent σ(f) of f at 0, in the place of lct(m·Jf ) in (3). The Arnold exponent σ(f)
is related to log canonical thresholds by lct(f) = min{σ(f), 1}. The conjectured
upper bound was proved by [6] whose methods are very different from [9] and
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based on more algebraic theories such as Saito’s theory of mixed Hodge modules
and the theory of Hodge ideals (cf. [13]).
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Weighted Ehrhart theory

Katharina Jochemko

The convex hull of finitely many points in the integer lattice Zd is called a lattice
polytope. Ehrhart [2] showed that for any lattice polytope P ⊂ Rd, there is a
polynomial EP (n) such that EP (n) = |nP ∩ Zd| for all integers n ≥ 0. The
polynomial EP (n) is called the Ehrhart polynomial and is the central object of
study in Ehrhart theory. At the heart of Ehrhart theory are questions about the
interpretation and characterization of the coefficients of the Ehrhart polynomial.
A standard technique is to consider the h∗-polynomial h∗P (t), a linear transform
of the Ehrhart polynomial, with many desirable properties. For a d-dimensional
polytope P it is a polynomial of degree at most d given by the numerator of the
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generating series
∑

n≥0

EP (n)t
n =

h∗P (t)

(1− t)d+1

A fundamental result by Stanley [4] states that the coefficients of the h∗-polynomial
are always nonnegative and integers, in contrast to the coefficients of the Ehrhart
polynomial which can be negative and rational in general. Another desirable
property due to Stanley [5] is monotonicity of the coefficients, that is, for lattice
polytopes P,Q ⊂ Rd with h∗-polynomials h∗P (t) =

∑
i≥0 h

∗
i (P )t

i and h∗Q(t) =∑
i≥0 h

∗
i (Q)ti , if P ⊆ Q then

h∗i (P ) ≤ h∗i (Q) for all i ≥ 0 .

In this talk we present extension of Stanley’s nonnegativity and monotonicity
results [4, 5] to weighted lattice point enumeration. These results were obtained
in joint collaboration with Esme Bajo, Robert Davis, Jesús A. De Loera, Alexey
Garber, Sof́ıa Garzón Mora and Josephine Yu [1].

A naive way to express the number of lattice points in a polytope P is∑
x∈P∩Zd 1. We consider more general expressions of the form

ehr(P,w) =
∑

x∈P∩Zd

w(x)

where w : Rd → R is a polynomial function. Weighted sums of that type appear
in various different areas, in particular, in enumerative combinatorics, optimiza-
tion, convex geometry and statistics, see [1] and references therein. By results
of Khovanskĭı and Puklikov [3], Ehrhart’s polynomiality result [2] extends to this
weighted setup. More precisely, if w is a polynomial function of degree at most m
and P a lattice polytope of dimension d then ehr(nP,w) is given by a polynomial
of degree at most d + m in the dilation factor n ≥ 0. It follows that the corre-
sponding generating series is again a rational function and we define the weighted
h∗-polynomial of P , denoted h∗P,w(t), to be its numerator:

∑

n≥0

ehr(nP,w)tn =
h∗P,w(t)

(1− t)d+m+1
.

A natural question to ask is for which classes of polynomial functions w the
weighted h∗-polynomial h∗P,w(t) satisfies nonnegativity and monotonicity of its
coefficients. We consider two families of weights: sums of products of linear forms
that are nonnegative on P , denoted RP , and nonnegative sums of products of
linear forms, denoted SP . Clearly, RP ⊂ SP . In general, this inclusion is strict.
For example, if P = conv(0, e1, e2) ⊂ R2 then w(x1, x2) = (x1 − x2)

2 is in SP but
not in RP . It is rather easy to find examples of non-homogeneous weight functions
for which the weighted h∗-polynomial has negative coefficients, even if the value
of the weight function at every point in the polytope is nonnegative [1]. We thus
restrict to homogeneous polynomial weight functions.

We have the following nonnegativity results.
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Theorem 1 ([1]). Let P ⊂ Rd be a lattice polytope and let w : Rd → R be a
polynomial function.

(i) If the weight w is a homogeneous element in RP , then the coefficients of
h∗P,w(t) are nonnegative.

(ii) If the weight w is a homogeneous element in SP , then h
∗
P,w(t) ≥ 0 for all

t ≥ 0.

We remark that Theorem 1 (i) is rather sharp in the sense that it does in general
not even extend to the case when w is the square of a single linear form, except
for if P is a lattice polygon in R2 [1].

Further, we have the following monotonicity results.

Theorem 2 ([1]). Let P,Q ⊂ Rd be a lattice polytopes, P ⊆ Q, and let w : Rd → R

be a polynomial function.

(i) If the weight w is a homogeneous element in RP , then h∗P,w(t) � h∗Q,w(t)
coefficient-wise.

(ii) If the weight w is a homogeneous element in SP and dimP = dimQ, then
h∗P,w(t) ≥ 0 for all t ≥ 0.

Observe that in Theorem 2 (ii) the assumption dimP = dimQ is necessary [1],
in contrast to the classical monotonicity result by Stanley [5] and Theorem 2 (i)
where P and Q may have different dimensions.

While the talk focusses on weighted Ehrhart polynomials of lattice polytopes,
the theory and result hold more general for rational polytopes after suitable ad-
justments. See [1] for detailed statements.
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Uncertainty and quasianalyticity on higher grassmannians

Dmitry Faifman

1. Introduction

Recall two integral transforms playing important roles in integral geometry.
The Radon transform is defined for p < k by

Rp,k : C(Grp(R
n)) → C(Grk(R

n)), Rp,kf(F ) =

∫

Grp(F )

f(E)dE;

The cosine transform is given by

Ck : C(Grk(R
n)) → C(Grk(R

n)), Ckf(F ) =
∫

Grk(Rn)

| cos(E,F )|f(E)dE.

Both admit natural extensions to the space of distributions.
For a geometric application, let Ks(R

n) the centrally symmetric convex bodies,
and by Ss(R

n) the centrally-symmetric star-shaped sets. Let Ak(E;S) := volk(E∩
S) ∈ C(Grk(R

n)) denote the k-section function of S ∈ Ss(R
n), and Pk(E;K)) :=

volk(PrE(K)) ∈ C(Grk(R
n)) the k-projection function of K ∈ K(Rn).

It then holds that Ak(E;S) = R1,k(
1
kρ

k
S)(E), where ρS is the radial function of

S. Far less obviously, it holds also that Pk(E;K) lies in the closure of Image(Ck).
Two foundational results in geometric tomography are as follows.

Theorem 1 (Funk 1916). Fix 1 ≤ k ≤ n−1. If S, S′ ∈ Ss(R
n) satisfy Ak(E;S) =

Ak(E;S′) for all E ∈ Grk(R
n), then S = S′.

Theorem 2 (Aleksandrov 1937 [1]). Fix 1 ≤ k ≤ n− 1. If K,L ∈ Ks(R
n) satisfy

Pk(E;K) = Ak(E;L) for all P ∈ Grk(R
n), then K = L.

The former result is based on the injectivity of the Radon transform R1,k. The
latter makes use of the injectivity of the cosine transform C1.

2. Results

In the following, T denotes either the Radon transform Rp,k with dimGrp <
dimGrk, or alternatively Ck with 2 ≤ k ≤ n − 2. We will write ImageCN (T ) :=
ImageC−∞(T ) ∩ CN , where ImageC−∞(T ) is the image of T on distributions.

In either cases, ImageNC (T ) is not dense in CN (Grk(R
N )) N ∈ {−∞, 0,∞}. A

representation-theoretic description of the image is available, which we now recall.
Denote κ = min(k, n− k), and Λκ = {λ1 ≥ · · · ≥ λκ : λi ∈ 2Z+}. One has the

multiplicity-free decomposition [8]

L2(Grk(R
n)) = ⊕λ∈Λκ

Vλ,

where Vλ are certain pairwise distinct irreducible representations of O(n).
We then have

Theorem 3 (Gelfand-Graev-Rosu [5]). Image(Rp,k) consists of those Vλ with
λp+1 = 0.
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Theorem 4 (Alesker-Bernstein [2]). Image(Ck) consists of those Vλ with λ2 ≤ 2.

It follows that any f ∈ Image(T ) has rather stringent restrictions on its spec-
trum. Our goal is to find a geometric rigidity manifestation of this spectral re-
striction. It will be realized through a quasianalyticity phenomenon. Generally
speaking, a class of functions is called quasianalytic if it has a unique continuation
property understood in broad terms: the values of a function from the class in an
appropriate small set must determine the function uniquely.

Definition 5. Fix F ∈ Grn−k(R
n). The open Schubert cell Σk

F ⊂ Grk(R
n)

is Σk
F = {E : E ∩ F = {0}}. The Schubert equator X ikF is its complement,

X ikF = {E : E ∩ F 6= {0}}.
Definition 6. A class of functions A ⊂ C(Grk(R

n)) is exp-X i-quasianalytic if,
whenever f, g ∈ A coincide exponentially on X ikF , namely if for some C, c > 0 it
holds for all E that

|f(E)− g(E)| ≤ C exp

(
− c

dGr(E,X ijF )

)
,

then f = g.
A class of distributions A ⊂ C(Grk(R

n)) is Bernstein-X i-quasianalytic if, when-
ever f, g ∈ A coincide in a neighborhood of X ikF , then f = g.

Our main result is as follows.

Theorem 7 (F [4]). Let T denote either Rp,k with dimGrp < dimGrk, or Ck
with 2 ≤ k ≤ n− 2. Then ImageC0(T ) is exp-X i-quasianalytic, and ImageC−∞(T )
is Bernstein-X i-quasianalytic.

This immediately implies sharper version of Funk’s and Aleksandrov’s theorems:

Theorem 8 (Sharper Funk, F [4]). Fix 1 ≤ k ≤ n − 1. If for S, S′ ∈ Ss(R
n) it

holds that Ak(E;S) and Ak(E;S′) coincide on any single Schubert equator, then
S = S′.

Theorem 9 (Sharper Aleksandrov, F [4]). Fix 1 ≤ k ≤ n−1. If for K,L ∈ Ks(R
n)

it holds that Pk(E;K) and Pk(E;L) coincide on any single Schubert equator, then
K = L.

One similarly obtains a sharper version of the Klain injectivity theorem [9] in
convex valuation theory, which can then be used to prove also a sharper version
of the Schneider injectivity theorem [10].

3. Sketch of proof of Theorem 7

The idea of the proof is quite simple. Let us work with T = Ck.
Assume by contradiction that a counterexample f exists, which for simplicity we

assume to be supported inside Σk
F . The first step is producing a counterexample

supported at a point. We use a trick going back to Gelfand-Graev-Rosu [5], writing
Ck as a GLn(R)-equivariant transform between spaces of sections of certain line
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bundles. Considering f as such a section, this allows to take gǫ = PrF⊥ + ǫPrF ∈
GLn(R), and define fǫ = g∗ǫ (f). Evidently fǫ has support shrinking to {F⊥},
and one can show that a sequence cǫ → 0 exists such that cǫfǫ converges to a
distribution f0 supported at {F⊥} which is still inside Image(Ck).

The second step consists of proving an uncertainty principle. Namely, we prove

Theorem 10 (F [4]). Assume 1 ≤ k ≤ n − 1. Assume f0 ∈ C−∞(Grk(R
n)) is

supported at one point. Consider supp(f̂0) = {λ ∈ Λκ : f̂0(λ) 6= 0}. Then

lim
m→∞

#{λ ∈ supp(f̂0) :
∑
λi ≤ 2m}

#{λ ∈ Λκ :
∑
λi ≤ 2m} = 1.

Moreover for k ∈ {1, n− 1}, supp(f̂0) must be co-finite.

However by the theorem of Alesker-Bernstein, that limit above must vanish,
leading to a contradiction.

Let us conclude by remarking that by results of Grinberg [7], Gonzalez and
Kakehi [6], the image of the Radon transform admits a description as the kernel of
SO(n)-invariant differential operator, while the image of the cosine transform lies
in the kernel of another such operator by results of Alesker-Gourevitch-Sahi [3].
However, this quasianalyticity property does not appear to be a consequence of the
PDEs. Furthermore, the methods and results above apply in greater generality to
various GLn(R)-modules realized as spaces of sections of equivariant line bundles
over the grassmannians, where no PDE description is known to exist.
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Valuations on Kähler manifolds

Gil Solanes

(joint work with Andreas Bernig, Joseph H.G. Fu, Thomas Wannerer)

LetMn be a smooth manifold, and let P(M) be the class of compact submanifolds
with boundary ofM . A smooth valuation onM (cf. [1]) is a functional φ : P(M) →
R of the form

φ(A) =

∫

N(A)

ω +

∫

A

η

where N(A) is the so-called conormal cycle of A, and ω ∈ Ωn−1(S∗M) is a differ-
ential form on the cosphere bundle S∗M of M , while η ∈ Ωn(M).

Remarkably (cf. [2]), the space V(M) of smooth valuations onM has an algebra
structure fulfilling e∗(φ · ϕ) = e∗(φ) · e∗(ϕ) for all φ, ϕ ∈ V(N) and any smooth
embedding e : M → N .

As a consequence of H. Weyl’s tube theorem, every riemannian manifold Mn

has a canonical subalgebra LK(M) ⊂ V(M), called the Lipschitz-Killing algebra,
characterized by the following facts:

i) if e : M → N is an isometric embedding between riemannian manifolds,
then e∗(LK(N)) = LK(M)

ii) if M is euclidean space Rn, then LK(M) is the full algebra ValO(n) of
isometry invariant valuations.

It follows that the algebra structure of LK(M) is universal: it depends only on
the dimension of M . Another simple consequence is that the algebras of invariant
valuations of euclidean space Rn and the round sphere Sn are isomorphic to each
other.

It was realized in [3] that also the algebra of isometry invariant valuations of CPn

is isomorphic to the algebra ValU(n) of valuations of Cn invariant under hermitian
isometries. This suggested the possibility that an extened version of the Lipschitz-
Killing algebra might be present on any Kähler manifold. This is precisely the
content of the following theorem.

Theorem 1 ([4]). To every Kähler manifold Mn there is an associated subalge-

bra KLK(M) ⊂ V(M) isomorphic to ValU(n) in such a way that e∗(KLK(N)) =
KLK(M) for every isometric holomorphic embedding e : M → N of Kähler mani-
folds.
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Superforms and convex geometry

Bo Berndtsson

This lecture continues the first part of my introductory lecture. A superform on Rn

is defined as a differential form on Cn whose coefficients depend only on x = Re z;

α =
∑

αJK(x)dxJ ∧ dξK .
The usual exterior differentiation operator acts on superforms, and we define

d# =
∑

∂/∂xj dξj ∧ .

This coincides with the operator dc = i(∂̄ − ∂) from complex analysis (the d-
operator twisted with the complex structure), but we write d# to emphazise that
we consider only its action on superforms. If φ(x) is a function on Rn we have

d#φ =
∑

φjkdxj ∧ dξk,
which makes sense as a current with measure coefficients for any convex (finite
valued) function, and also for functions that can be written locally as the difference
of two convex functions. By the theory of Bedford and Taylor (see the (abstract
of) the introductory lecture), wedge products of such currents

Ωk = d#φ1 ∧ ...d#φk
are also well defined. Taking k = n and φ = φ1 = ...φn we get the Monge-Ampère
measure of φ, MA(φ).

The integral of a superform of maximal degree is defined as
∫
a0(x)dx1 ∧ dξ1 ∧ ...dxn ∧ dξn :=

∫
α0(x)dx,

meaning essentially that we define
∫
dξ1 ∧ ...dξn = ±1

(Berezin integration).
The main point of the lecture was to advocate the use of superforms for cal-

culations involving the volume of convex bodies (this is partly based on previous
work of my students A. Lagerberg and S. Larsson) , and we tried to illustrate that
with a possibly new proof of the Alexandrov-Fenchel theorem. If φ is the support
function of a convex body K, one finds that MA(φ) is a a Dirac measure at the
origin of size |K|, the volume of K. More generally, if φj are support functions of
convex bodies Kj ;

d#φ1 ∧ ...d#φn = V (K1, ...Kn)δ0,

where V (K1, ...Kn) is the mixed volume of the Kj. More generally we can then
define in the same way V (u1, ...un), where uj are 1-homogeneous functions that
can be written as differences of support functions of convex bodies. Fixing convex
bodies K3, ...Kn and their support functions, we then get a quadratic form

Q(u, u) := V (u, u, φ3, ...φn).



Positivity and Inequalities in Convex and Complex Geometry 2937

The essence of the Alexandrov-Fenchel theorem is that this form has Lorentzian
signature, i. e. that it is positive somewhere, and seminegative on a subspace of
codimension 1.

One approach to proving this (essentially Alexandrov’s approach) is to note
that

Q(u, v) = V (u, v, φ3...) =

∫

∂U

d#u ∧ d#v ∧ Ωn−2,

where U is any convex neighbourhood of the origin. After a rewrite this can be
written as ∫

∂U

uA(v)dm

where dm is, say, surface measure and A(v) is an elliptic second order differ-
ential operator. Alexandrov’s proof proceeds by studying the eigenvalues of A.
We sketched an alternative way, based on a study of Dirichlet problem for A on
domains in ∂U of the form

D = {x ∈ ∂U, x1 > 0}.
The main points were that the only function in D with zero boundary values,
solving A(u) = 0, is u = x1, and that this statement implies the Alexandrov-
Fenchel theorem.

On the Adler-Taylor Gaussian kinematic formula

Joseph Fu

The statisticians R. Adler and J. Taylor have introduced a new type of kinematic
formula based on the behavior of Gaussian random fields on a Riemannian man-
ifold Mn: that is, smooth random functions f = fω, ω ∈ Ω, on M whose value
f(x) is an N(0, 1) random variables for each x ∈M , and which give an isometric
embedding M → RΩ. Specifically, given d i.i.d. random functions of this type we
obtain a random mapping F :M → Rd. For convex bodies D ⊂ Rd, Adler-Taylor
show that for nice objects A ⊂M that

(1) E[χ(A ∩ F−1D)] =
∑

ciµi(A)γi(D)

where the µi are the intrinsic volumes and the γi are the “Gaussian intrinsic
volumes” on Rd, viz. the Gaussian measure γ0 and its derivatives with respect to
metric expansion.

We propose that Adler-Taylor theory should be viewed as a chapter in the
theory of valuations initiated by Alesker. To do so requires the resolution of two
technical issues.

First, we recall that Faifman and Hofstätter [3] have shown that any π belonging
to the algebra V(M) of smooth valuations on M may be expressed as

(2) π =

∫

S

χ(· ∩ S) dS,
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and subject to the multiplication formula

(3) ν · π =

∫

S

ν(· ∩ S) dS

for any ν ∈ V(M), where (S, dS) is a measured family of subsets of M . The left
hand side of (1) is an expression of the type (2), and we expect that it is also
subject to (3), but we do not yet have a full understanding of the conditions on
the family (S, dS) that would ensure this. This is surely true of the (1), in view
of the the higher Adler-Taylor formulas

(4) µj · E[χ(· ∩ F−1D)] = E[µj(· ∩ F−1D)] =
∑

ci,jµi+j(·)γi(D)

Second, [2] proposes a proof of (1) via embeddings of M into spheres ΣN ⊂
RN+1 of radius

√
N and dimension N , obtaining the Gaussian projection of M

into Rd by precomposing a given orthogonal projection RN+1 → Rd with a random
rotation of ΣN . This brings the spherical kinematic formula into play, which
we understand thoroughly using the methods of algebraic integral geometry. To
confirm (1) by this means requires a careful study of the resulting tube formulas
in ΣN .

Beyond these technical questions, Adler-Taylor theory also suggests an avenue
towards resolving a central puzzle of integral geometry: the extension of the Weyl
Tube Theorem (that the µi(M) are Riemannian invariants) to singular spaces such
as convex hypersurfaces or sets with positive reach.
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Abstract. Control of hyperbolic partial differential equations (PDEs) is a
truly interdisciplinary area of research in applied mathematics nurtured by
challenging problems arising in most modern applications ranging from road
traffic, gas pipeline management, blood circulation, to opinion dynamics and
socio-economical models, as well as in environmental and biological issues, or
more recently in the analysis of deep learning and machine learning methods.
The topic has gained an increasing attraction of researchers in the last twenty
years due to fundamental theoretical as well as numerical advances achieved
in the field of nonlinear hyperbolic PDEs. The hyperbolic and the control
of PDEs communities, while pursuing separate interests in their respective
range of action with a different focus and, often, with a different array of
technical tools, do share a substantial body of common knowledge and back-
ground. We think the time is right and the momentum is propitious to bring
those communities together at a joint workshop, to mutually stimulate each
other and interact with one another, for a marked advancement of this area of
research on a broad spectrum of control ranging from theoretical to numerical
problems and covering also the emerging challenges involving the interplay
between (topics of) control and learning. In order to also attract young scien-
tists to this striving field we focus on selected lectures, in-depth discussions,
transfer of information from senior to young researchers, and vice versa, and
invited plenary talks.
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Introduction by the Organizers

The workshop Control Methods in Hyperbolic PDEs, organized by F. Ancona
(Padua), B. Anvari (London), O. Glass (Paris) and M. Herty(Aachen) was well
attended with over 40 participants with broad geographic representation from all
continents. This workshop was a nice blend of researchers with various back-
grounds. The presentations fostered discussions and exchange on emerging points
of interest. Young researchers had also the opportunity to give ad hoc presen-
tations in the afternoon to present their research and to benefit from discussions
with colleagues in their field of research. The intention of the workshop has been
to cover three topics that are currently very relevant for the future of the field.

First, hyperbolic equations on networks have been studied recently inspired by
applications in infrastructure networks. Control questions arise naturally by con-
sidering for example nodal flow regulation or capacity planing problems. Usually,
the problems lead to spatially one-dimensional hyperbolic equations that allow for
a broader range of applicable tools. Natural boundary controllability questions
need to be addressed. In the case of regular solutions very general results were ob-
tained in the recent past while the case of entropy weak solutions is much less clear.
For example, a very important question is to understand how these equations can
be controlled when the control is applied only on one side of the boundary. New
ideas of methods of vanishing viscosity and relative entropy analysis in order to
understand the well-posedness and control for the dynamics shall be considered.
The topic is strategically located in a dimension between one and two and bridges
the rather broad knowledge on one-dimensional problems with the less established
theory in multiple dimensions by studying problems on highly connected graphs.

Second, the topic of closed–loop feedback controls has been intensively studied
in the context of ordinary differential equations but its development for hyperbolic
problems is still in early stage besides strong progress on methods and tools in
the case of smooth solutions. The rigorous analysis of control strategies, the
incorporation of complex flow models in the numerical simulation, as well as, error
estimates for the numerical approximation are not yet fully understood. Challenges
like nonlinear models, online efficient control in particular for large scale networks
are also currently absent. Feedback laws using methods of suitable Lyapunov
functions have been applied to control smooth and mildly nonlinear flow patterns.
Questions on how to extend this to strong nonlinearities and on how for example
entropy and entropy flux pairs may be applied to obtain results also for weakly
differentiable functions will be considered in this part. Closed–loop systems might
be studied without relying on a sensitivity calculus and therefore we placed this
topic in the middle between a pure Cauchy problem and a possible optimality
system arising in open loop control. Techniques developed here might therefore
shed light on possible ways to tackle problems in open loop control.

Third, apart from formal approaches, very little is known about the link of the
sensitivity of particle based models with corresponding sensitivity of the formal
kinetic equations. Presentations on individual-based models, their rigorous coarse-
graining into macroscopic models and possible applications will be given. The
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agent based models have the advantage that they consists of finitely many ordinary
differential equations such that control concepts are readily available. The coarse
graining of those concepts to derive a suitable calculus on the kinetic level will
be a first step towards a simi lar calculus on the macroscopic, i.e., hyperbolic
level. Therefore, this topic might open new ways to derive suitable concepts for
control questions by revisiting existing hierarchies from particles to kinetic and
hyperbolic equations. In a similar spirit, recent advances in the (characteristic-
like) Lagrangian representation techniques developed for nonlinear conservation
laws could provide powerful tools to address controllability and optimality issues
in mixed PDE-ODE problems arising for example in mixed traffic flow. This
may include also control problems for PDE-ODE models and nonlocal models
that naturally arise in pedestrian traffic and autonomous vehicles applications,
as well as in supply-chain for complex production networks. Further, there are
formulations of dense neural networks where coarse graining has been proposed to
develop an efficient description that is amend- able for optimization and control
methods. Those in turn could be beneficial in understanding training process of
complex learning tasks.

The workshop succeeded in having talks on all fields as well as intensive dis-
cussions across those. The following extended abstracts illustrate this nicely and
summarize very well the successful workshop.





Control Methods in Hyperbolic PDEs 2945

Workshop: Control Methods in Hyperbolic PDEs

Table of Contents

Fatiha Alabau-Boussouira (joint with Piermarco Cannarsa, Cristina Urbani)
Bilinear control of PDE’s by bounded or unbounded scalar-input control
and constructive algorithms for concrete applications . . . . . . . . . . . . . . . . . 2947

Giovanni S. Alberti (joint with Rima Alaifari, Tandri Gauksson)
Instabilities in machine learning and in PDEs . . . . . . . . . . . . . . . . . . . . . . . 2950

Boris Andreianov (joint with Shyam S. Ghoshal)
Source and subdomain control of scalar conservation laws . . . . . . . . . . . . . 2954

Stefano Bianchini (joint with Martina Zizza)
Non-admissibility of spiral-like strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 2955

Alberto Bressan
Optimal control strategies for moving sets . . . . . . . . . . . . . . . . . . . . . . . . . . 2958

Cleopatra Christoforou (joint with Debora Amadori)
A Front Tracking Approach to an Euler-type Flocking Model . . . . . . . . . . 2961

Maria Teresa Chiri (joint with Alberto Bressan, Najmeh Salehi)
Optimal Control of Propagaton Fronts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2963

Rinaldo M. Colombo (joint with Mauro Garavello, Francesca Marcellini,
Elena Rossi)
Renewal Equations: Models, Analysis and Control Problems . . . . . . . . . . 2965

Piermarco Cannarsa
Generalised characteristics of Hamilton-Jacobi equations, propagation of
singularities, and long-time behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2967

Gui-Qiang G. Chen
Some inverse problems for shock wave control . . . . . . . . . . . . . . . . . . . . . . . 2968

Andrea Corli (joint with Haitao Fan)
Hysteresis and string stability in traffic flows . . . . . . . . . . . . . . . . . . . . . . . . 2968

Carlotta Donadello (joint with Giuseppe M. Coclite, Nicola De Nitti and
Florian Peru)
Inverse design for the chromatography system . . . . . . . . . . . . . . . . . . . . . . . 2970

Paola Goatin (joint with R. Bürger, D. Inzunza, E. Rossi, L. M. Villada)
Nonlocal macroscopic models of multi-population pedestrian flows for
walking facilities optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2972

Simone Göttlich (joint with Sonja Groffmann)
Boundary feedback control problems for systems of balance laws . . . . . . . . 2973



2946 Oberwolfach Report 52/2023

Martin Gugat
Isothermal flow in gas networks: Synchronization of observer systems . . 2976

Amaury Hayat
Stabilization methods for evolution equations . . . . . . . . . . . . . . . . . . . . . . . . 2977

Dante Kalise (joint with Luis Briceño-Arias and Francisco J. Silva)
Convex Optimisation Methods for Variational Mean Field Games . . . . . . 2980

Elio Marconi
Structure of non entropy solutions to scalar conservation laws . . . . . . . . . 2983

Lorenzo Pareschi
Optimization by kinetic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2985

Vincent Perrollaz (joint with Rinaldo M. Colombo, Abraham Sylla)
Peculiarities of non-homogeneous conservation laws . . . . . . . . . . . . . . . . . . 2988

Konstantin Riedl (joint with Massimo Fornasier and Timo Klock)
Understanding Consensus-Based Optimization: Two Analytical
Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2990

Massimiliano Daniele Rosini (joint with Andrea Corli, Ulrich Razafison)
Modeling and management of gas flows across junctions . . . . . . . . . . . . . . 2993

Chiara Segala (joint with Martin Gugat, Michael Herty)
The turnpike property for mean-field optimal control problems . . . . . . . . . 2995

Luca Talamini (joint with Fabio Ancona)
Regularity and Control for Conservation Laws with Space Discontinuous
Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2997

Oliver Tse
Optimal control of scalar conservation law with particle approximations 3000

Deepanshu Verma
Neural Network approaches for High-dimensional Optimal
Control Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3003

Mattia Zanella
Kinetic Modelling and Control of Multiagent Systems with
Missing Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3004

Enrique Zuazua
Sidewise control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3005



Control Methods in Hyperbolic PDEs 2947

Abstracts

Bilinear control of PDE’s by bounded or unbounded scalar-input
control and constructive algorithms for concrete applications

Fatiha Alabau-Boussouira

(joint work with Piermarco Cannarsa, Cristina Urbani)

Scalar-input bilinear controlled abstract PDE’s systems take the form:

(1)

{
u′(t) +Au(t) + p(t)Bu(t) = 0, t ∈ [0, T ],

u(0) = u0 ∈ X,

where X is the state space, A stands for the diffusion operator, A : D(A) ⊂
X 7→ X is a linear unbounded operator and the infinitesimal generator of a C0

semigroup of bounded linear operators on X , B is a fixed given control operator
with B : D(B) ⊂ X 7→ X is a linear (bounded or unbounded) operator on X .
Here u stands for the state depending on time and taking values in X , and the
control p satisfies p : [0, T ] 7→ R, so that the control is a real scalar-valued function
that appears as a multiplicative factor acting on the state u (see [7, 9, 10] and
references therein).

Such abstract formulation have applications in quantum control (Schrödinger
equation) or for the evolution of a probability density (Fokker-Planck equation),
on the modeling of nuclear chain reactions for the processes of production of neu-
trons in fission (heat-based models) or for mechanical systems (such as beams)
for describing the dynamics of smart materials. We consider mainly in the sequel
heat-based models.

1. Local and semi-global exact controllability to the ground state

We consider (1) under the following assumptions: (X, 〈·, ·〉, || · ||) is a separable
Hilbert space, B ∈ L(X), p ∈ L1

loc(0,∞);R), A : D(A) ⊂ X 7→ X is a densely
defined linear operator satisfying:

(2)





A is self-adjoint

∃ σ > 0 : 〈Ax, x〉 ≥ −σ||x||2 ∀ x ∈ D(A) (Assumptions on A)

∃ λ > 0 : such that (λI +A)−1 : X 7→ X is compact

so that X has an orthonormal basis (ϕk)k∈N∗ formed of eigenvectors of A, the
eigenvalues (λk)k∈N∗ of A are bounded below by σ, ordered in a nondecreasing
sequence converging to ∞ as k goes to infinity. Setting ψj(t) = e−λjtϕj , we
prove:

Theorem 1 (A.-B., Cannarsa, Urbani NoDEA 2022). Let A be a densely defined
linear operator on X satisfying the above assumption, and B ∈ L(X). Assume
that {A,B} is j−null controllable in any time T > 0 for some j ∈ N

∗. Suppose
that the control cost N(·) satisfies: N(τ) ≤ eν/τ ∀ τ ∈ (0, T0] (CCC), for some
constants ν > 0 and T0 > 0. Then for any T > 0, there exists a constant RT > 0
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such that for any u0 ∈ B(ϕj , RT ), there exists a control p ∈ L2(0, T ) such that the
solution of (1) satisfies u(T ;u0, p) = ψj(T ) (with explicit estimates on the control
cost).

Theorem 2 (A.-B., Cannarsa, Urbani NoDEA 2022, with applications to the
Fokker-Planck equation). Let A satisfy (Assumptions on A) and be such that the
(Gap Condition holds). Let B ∈ L(X) be such that there exist b > 0, q > 0
such that the following non vanishing condition (NVC) (first assumption) and
asymptotic behavior (second inequality) hold:

(3) 〈Bϕj , ϕj〉 6= 0 (NV C) & |λk − λj |q|〈Bϕj , ϕk〉| ≥ b ∀ k 6= j (AB).

Then the pair {A,B} is j − null controllable in any time T > 0 and the control
cost satisfies (Control Cost Condition) with explicit estimates.

Thus, (1) is locally controllable to the jth eigensolution ψj in any time T >
0. Furthermore when A is an accretive operator, we prove additional two semi-
global controllability results, showing that every u0 ∈ X\ϕ⊥

1 is controllable to the
evolution (i.e. the dynamical system without control) of its orthogonal projection
along the ground state.

2. Unbounded control operator and applications

Let (X, 〈·, ·〉, ||·||) be a separable Hilbert space. Let A : D(A) ⊂ X → X be a
densely defined linear operator with the following properties:

(a) A is self-adjoint,
(b) 〈Ax, x〉 ≥ 0, ∀x ∈ D(A), (New Assumptions on A)
(c) ∃λ > 0 : (λI +A)−1 : X → X is compact.

Under the above assumptions A is a closed operator and D(A) is also a Hilbert
space with respect to the scalar product (x, y)D(A) = 〈x, y〉+ 〈Ax,Ay〉, ∀x, y ∈
D(A). Note also that −A is the infinitesimal generator of a strongly continuous
semigroup of contractions on X which is also analytic and will be denoted by e−tA.
We also assume that B : D(B) ⊂ X → X be a linear unbounded operator such
that D(A1/2) →֒ D(B) with continuous embedding.

Theorem 3 (A.-B., Cannarsa, Urbani Comptes Rendus Mathématique 2023). Let
A and B : D(B) ⊂ X → X be a linear unbounded operator satisfying the above
hypotheses. Let {A,B} be 1-null controllable in any T > 0 with control cost N(·)
such that there exist ν, T0 > 0 for which (CCC) holds. Then, for any T > 0, there
exists a constant RT > 0 such that, for any u0 ∈ BRT ,1/2(ϕ1), there exists a control

p ∈ L2(0, T ) for which (1) with initial data u0 ∈ D(A1/2) is locally controllable to
the ground state solution in time T , that is, u(T ;u0, p) = ψ1(T ).

Remark 1. We show that the above assumptions can be weakened in order to in-
clude the cases when A admits negative eigenvalues. We also prove two semi-global
exact controllability results to the ground state, or to its orthogonal projection.
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3. An original methodology and algorithm

We developed a general method for producing infinite classes of potential functions
that fulfill the non vanishing condition (NVC) holds (see the first condition in (3)),
for the above results to hold. We also provide an algorithm to derive functions µ
(the dipole moment for the Schrödinger equation for instance). The asymptotic
lower estimates (AB) for an appropriate q can also be deduced thanks to our
results. It also allows to derive new spacesX in which several of the above theorems
hold.

Theorem 4 (A.-B., Urbani 2019-2020). Let T > 0 be given and µ ∈ (S)NVC

(as given in A.-B.-Urbani’s algorithm). Then there exist δ > 0 and a C1 map

Γ : RT −→ L2(0, T ) such that Γ
(
ψ1(T )

)
= 0, and for all uf ∈ RT , the solution of

the Schrödinger equation with initial data u0 = ϕ1 = ψ1(0) and control p = Γ(uf )
satisfies u(T ) = uf where ψ1(t, x) = e−iλ1tϕ1(x) ∀ t ≥ 0, ∀ x ∈ [0, 1] and for
T > 0 and δ > 0, RT = {uf ∈ S ∩D(A), ||uf − ψ1(T )||H2 < δ}

4. Some perspectives and open question

Whenever the moment method is used, it reduces the scope to 1D or radial results.
This raises the question of proving j−null controllability, by other strategies for
2D and 3D controllability results such that the ones relying on (3). Extension
to semi-linear parabolic dynamical systems, more complex models and to build
efficient numerics are also of great interest. For the Fokker-Planck equation we
cannot handle the case of perfectly reflecting boundary conditions for which D(A)
becomes a domain that both depends on the time and the control function p. It
is an open question to treat such boundary conditions.
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Instabilities in machine learning and in PDEs

Giovanni S. Alberti

(joint work with Rima Alaifari, Tandri Gauksson)

Adversarial examples in classification. Deep neural networks (DNN) in clas-
sification have been shown to be susceptible to adversarial perturbations [8]: small
changes in the inputs can lead to misclassification. In other words, given an image
x that is correctly classified by the network, it is possible to construct an adver-
sarial example x′ that is visually indistinguishable from x but misclassified by the
network. The standard measure of the distance between x and x′ is given by a
suitable norm of x− x′, e.g.

‖x− x′‖∞ ≤ ε.

Here, it is required that the maximum pixel perturbation in the adversarial exam-
ple is smaller than or equal to ε. For this reason, x′ is an adversarial (additive)
perturbation of x.

It is natural to wonder about the best way to measure the distance between
x and x′. While the above approach is easy to interpret and straightforward to
implement, it is also clear that many small transformations between two images are
not captured. For example, if x′ is a small translation of x, their image content is
unchanged, but ‖x−x′‖∞ will not be small. This observation leads us to consider
adversarial deformations. Given an image x ∈ L2([0, 1]2), we consider

xτ (p) = x(p+ τ(p)),

where τ : [0, 1]2 → R
2 is a vector field determining the deformation. The distance

between x and xτ is measured by a suitable norm of τ , e.g. ‖τ‖L∞([0,1]2). In [1], we
design a simple iterative algorithm that constructs adversarial deformations, and
show that neural networks that are commonly used in classification (for MNIST
and ImageNet) are indeed vulnerable to adversarial deformations.

Adversarial examples in inverse problems. These observations indicate that
DNN tend to be unstable, meaning that given two inputs that are very close, their
outputs may be far apart. Another domain where stability plays a crucial role
is inverse problems, where unknown physical quantities need to be reconstructed
from indirect measurements. Since these measurements are typically noisy, it is
important for any reconstruction method to be stable. In recent years, machine
learning, and especially deep learning, has become a popular tool for solving in-
verse problems. Therefore, it is crucial to understand how stable these methods
are. In [4], the authors demonstrate that several deep learning based methods
developed for solving the inverse problem (undersampled Fourier measurements)
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in accelerated magnetic resonance imaging (MRI) are indeed vulnerable to ad-
versarial perturbations. The reconstructions may contain hallucinations, namely,
undesirable features that are completely created by the network and may not be
easily identified. Another conclusion of [4] is that state-of-the-art reconstruction
methods based on total variation (TV) regularization and with guarantees pro-
vided by the theory of compressed sensing are more stable and do not hallucinate.

A more quantitative analysis is provided in [5], where deep learning and TV
regularization are compared by using the relative L2 error of the reconstruction
as a metric. The results show a similar vulnerability of the two methods to adver-
sarial errors and to Gaussian errors. However, as discussed above, the L2 norm
does not fully capture the meaningful features of an image. For instance, given a
(discretized) image x, one can construct two noisy perturbations:

x1 = x+ g, x2 = x+ aχA,

where g is white Gaussian noise with ‖g‖2 = ε and χA is the indicator function of
a small region A, so that ‖aχA‖2 = ε. As a consequence, we have

‖x− x1‖2 = ‖x− x2‖2.
Thus, if we use the L2 norm, these two perturbations are quantitatively identical.
However, in terms of visual impact, if ε is small, x1 will be visually indistinguish-
able from x (or the noise can easily be identified), while the feature A added in x2
may be more problematic. A possible strategy to construct adversarial perturba-
tions that are visually meaningful as well as quantitatively measurable is proposed
in [2], where localized adversarial artifacts are constructed for the inverse prob-
lem of undersampled MRI. We show that TV regularization is more vulnerable
than DNN-based methods. Furthermore, we show how the vulnerability to this
type of attacks is inherently connected to the exact recovery guarantees given by
compressed sensing theory for TV regularization.

Instabilities and adversarial examples in PDEs. The stability properties of
DNN can also be analyzed through the lens of the theory of partial differential
equations (PDEs). It was shown in [7] that when both the layers and the space
variables are considered in the continuous limit, the action of a residual convolu-
tional neural network (CNN) on an input f may be written as

f 7−→ u(T ),

where u is the solution of a (nonlinear) dynamic PDE of the form:

∂tu(t) = Ft(u(t)), u(0) = f,

where Ft is a, possibly nonlinear, differential operator. Whenever energy conser-
vation is crucial, this parabolic CNN may be replaced by a hyperbolic CNN :

∂2t u(t) = Ft(u(t)), u(0) = f, ∂tu(0) = 0.

In both cases, under suitable assumptions on the differential operators and on the
nonlinearities included in Ft, it is possible to show that

‖u1(T )− u2(T )‖2 . ‖u1(0)− u2(0)‖2.
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Figure 1. An example of a sequence as in (2). These two figures
show the radial components of fn and of un(1, :), respectively.
The initial states fn, n = 1, 2, 3, 4, are continuously differentiable
functions that transition from the value -1 to the value 0 in a
window of width w = 2−n, centered at r = 1.

Namely, these maps are Lipschitz stable.
These bounds are obtained by using standard energy estimates, and are specific

to the L2 norm. Because of the above discussions on the different possibile notions
of perturbations, and in particular on the observations on the limited relevance of
the L2 norm in certain contexts, it is natural to wonder whether these stability
estimates can be extended, for instance, to the L∞ norm. The answer is negative,
as a simple example shows. Consider the (linear) wave equation with constant
coefficients in R

3:

(1) ∂2t u−∆u = 0, u(0) = f, ∂tu(0) = 0.

With a radial initial condition f(x) = g(|x|), u is a spherical wave of the form

u(t, x) =
1

2|x| (ϕ(|x| − t) + ϕ(|x| + t)) , ϕ(r) = rg(r).

If we evaluate this expression at x = 0, we obtain u(t, 0) = g(t)+t·g′(t). Therefore,
it is possible to find a sequence of adversarial examples fn such that

(2) ‖fn‖∞ ≤ 1, ‖un(1, ·)‖∞ → +∞,

see Figure 1. In particular, the map f 7→ u(1, ·) is unstable with respect to the
L∞ norm.

From an abstract point of view, this instability can be analysed by using the
framework of Fourier multipliers [6]. The map f 7→ u(1, ·) may be written as

B : L2(R3) → L2(R3), f 7→ F−1 [cos (2π | · |)Ff ] ,
and it is easy to see that this map is not bounded with respect to the L∞ norm.
In [3], we propose a method to regularize the operator B in order to obtain a
family of approximations that are bounded as operators L∞(R3) → L∞(R3). More
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Figure 2. Radial component of spherical waves at times t = 0
and t = 1. Left: the clean initial state f and a perturbed initial
state f + r, with ‖r‖L∞(R3) = 0.01 · ‖f‖L∞(R3). Right: the end
states Bf , B(f + r), and Bα,β(f + r).

precisely, let

Bα,β(f) = F−1 (cos (2π | · |) · κα · F (hβf)) ,

with filters κα, hβ ∈ L2(R3) ∩ L∞(R3). The operator Bα,β : L
p(R3) → Lp(R3) is

well-defined and bounded for every p ∈ [2,+∞]. Moreover, if the family of filters
kα and hβ is suitably chosen, then Bα,β → B in a suitable sense as α, β → 0.

An example of this behavior is shown in Figure 2. A radial input f is modified
with a small (with respect to both the L∞ and the L2 norm) adversarial pertur-
bation r. The quantity B(f + r), namely, the solution to (1) with initial value
f + r calculated at time t = 1, presents a visible artifact in the origin. By using
the regularized quantities Bα,β(f + r), it is possible to substantially reduce the
artifact, while maintaining a good overall quality of the output. As is typical in
regularization, this procedure requires a suitable choice of the parameters α and β.
This regularization strategy turns out to be effective for this simple linear PDE,
and it would be interesting to investigate whether similar ideas can be used also
for more complicated nonlinear PDEs or for the corresponding neural networks.
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Source and subdomain control of scalar conservation laws

Boris Andreianov

(joint work with Shyam S. Ghoshal)

Given a trajectory v : [s, T ] 7→ X for evolution equation of the form u̇ + Au ∋ g
governed by an m-accretive densely defined operator on a Banach space X ([3]),
given any initial state u0 ∈ X , we provide avery simple construction of feedback
control that permits to reach, at t = T , the final state v(T ) starting from u0
at t = 0. The construction is reniniscent of Luenberger’s observers (the nudging
strategy) in Data Assimilation ([6]), but the exponential stabilisation to the target
state at large times is replaced by exact control at final time T . In turn, this
provides a distributed control in L1(0, T ;X) whereX is the state space. Therefore,
if s a state vT is attainable (with source) at some time τ , it is attainable - with
source- from any initial/boundary states, at any time T ≥ τ .

The specific application we have in mind is to scalar conservation laws, possibly
multi-dimensional and non-convex; moreover, replacing the abstract semigroup
arguments by the standard PDE arguments, we can also handle e.g. the Cauchy-
Dirichlet problem with time-dependent boundary conditions. The construction
of the distributed control has a numerical counterpart, in the setting of Finite
Volume approximation by a monotone scheme.

Backward constructions with source are proposed, showing that wide classes
of data (including BV and many fractional Sobolev spaces) are attainable - with
distributed source in L1- at any time (cf. [5] for bounded source). In 1D, a variant
of backward front-tracking construction provides reconstructions under the form
of a continuous juxtaposition of compression and rarefaction fans, for BV data.

Further, combining the idea of source control, now localized in a compact inter-
val in space, with geometric observability-kind constructions in terms of backward
characteristics ([2, 1]), we are also able to explore the framework of subdomain
control (cf. [5]). This approach remains however restricted to a 1D, strictly convex
scalar conservation law, in the Cauchy or the Cauchy-Dirichlet setting.

Extension to kinetic formulation systems of conservation laws makes sense ([4]).
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Non-admissibility of spiral-like strategies

Stefano Bianchini

(joint work with Martina Zizza)

1. Introduction

We study a dynamic blocking problem first proposed by Bressan in [3]. The
problem is concerned with the model of wild fire spreading in a region of the plane
IR2 and the possibility to block it constructing some barriers in real time. If we
denote by R(t) ⊂ IR2 the region burned by the fire at time t, then we can describe
it as the reachable set for a differential inclusion. More precisely, one considers
the Cauchy Problem

ẋ ∈ F (x), x(0) ∈ R0,

where the set R0 ⊂ IR2 represents the region burnt by the fire at the initial time
t = 0, while the function F describes the speed of spreading of the fire. The
set R0 ⊂ IR2 is assumed to be open, bounded, non-empty and connected with
Lipschitz boundary, whereas the standard assumptions on F : IR2 ⇒ IR2, which is
a Lipschitz-continuous multifunction, are:

(1) there exists r > 0 such that Br(0) ⊂ F (x) ∀x ∈ IR2;
(2) F (x) is compact and convex ∀x ∈ IR2;
(3) x⇒ F (x) is Lipschitz-continuous in the Hausdorff topology.

If no barriers are present the reachable set for the differential inclusion is

R(t) =
{
x(t), x(·) abs. cont., x(0) ∈ R0, ẋ(τ) ∈ F (x(τ)) for a.e. τ ∈ [0, t]

}
.

When the fire starts spreading, a fireman can construct some barriers, modeled
by a one-dimensional rectifiable set ζ ⊂ IR2, in order to block the fire. More in
detail, we consider a continuous function ψ : IR2 ⇒ IR+ together with a positive
constant ψ0 > 0 such that ψ ≥ ψ0. If we denote by ζ(t) ⊂ IR2 the portion of the
barrier constructed within the time t ≥ 0, we say that ζ is an admissible barrier
(or admissible strategy) if

(1) (H1) ζ(t1) ⊂ ζ(t2), ∀t1 ≤ t2;
(2) (H2)

∫
ζ(t)

ψdH1 ≤ t, ∀t ≥ 0,
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where H1 denotes the one-dimensional Hausdorff measure. Once we have an ad-
missible strategy ζ, then we define the reachable set for ζ at time t the set
(1)

Rζ(t) =
{
x(t) : x abs. cont., ẋ(τ) ∈ F (x(τ)) a.e. τ ∈ [0, t], x(τ) 6∈ ζ(τ) ∀τ ∈ [0, t]

}
.

Definition. Let t ⇒ ζ(t) be an admissible strategy. We say that it is a blocking
strategy if

Rζ
∞

.
=
⋃

t≥0

Rζ(t)

is a bounded set.

We call isotropic the case in which the fire is assumed to propagate with unit
speed in all directions, while the barrier is constructed at a constant speed σ > 0,
namely

(2) F ≡ B1(0), R0 = B1(0), ψ ≡ 1

σ
,

where B1(0) denotes the closure of the unit ball of the plane centered at the origin.
We remark that in [5] there are comparison results between more general choices
of the data R0 and F and the isotropic problem for the study of the fire problem
in a more general setting.

The existence of admissible blocking (or winning) strategies for the isotropic
blocking problem is a very challenging open problem and it has been addressed
mainly in [3],[5].1 In particular, the following theorems hold:

Theorem. Assume that (2) hold. Then if σ > 2 there exists an admissible
blocking strategy.

Theorem. Assume that (2) hold. Then if σ ≤ 1 no admissible blocking strategy
exists.

The two theorems are proved in [3] and they motivate the following Fire Conjecture
[4]:

Conjecture. Let (2) hold. Then if σ ≤ 2 no admissible blocking strategy exists.

In this talk we study spiral-like strategies: namely, admissible barriers that
are constructed putting all the effort on a single branch. The study of spiraling
strategies is of key importance in the complete solution of Bressan’s Fire conjec-
ture, indeed there is a strongly belief that these strategies are the best possible
barriers that can be constructed when σ ≤ 2.

We start giving the definition of spiral-like strategies:

1One can prove that the existence of blocking strategy does not depend on the starting set
R0 but only on the speed σ [2].
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Definition. Let Z = ζ([0, S]) ⊂ IR2 be a strategy, where ζ is a parametrization
by length. We say that it is a spiral-like strategy if it satisfies:

• ζ(0) = (1, 0) and ζ|[0,S) is simple;
• s 7→ u ◦ ζ(s) is increasing.

Finally, we say that Z is an admissible spiral if it is a spiral-like strategy, the curve
is locally convex, in the sense of the definition above and moreover it satisfies the
following assumption

(A1) 0 ≤ ∠(t+(0), e2) ≤
π

2
,

where e2 is the vertical vector of the canonical base t(0) is the tangent vector of
the spiral in the starting point (commonly (1, 0)) and ∠ denotes the angle between
the two vectors. What really matters in the definition of spiral-like strategies is
the requirement

s⇒ u ◦ ζ(s) is increasing,

which corresponds to the fact that either a portion of the barrier lies on the level
set {u =} (so that the previous function is constant), or the fire can not burn two
portions of the barrier simultaneously. We believe instead that the hypothesis of
local convexity and the assumption (A1) are automatically satisfied by optimal
spiral-like strategies, which is an open question.

In addition to the parametrization by arc-length, it is possible to parametrize any
admissible spiral by (r(φ), φ), where φ denotes the angle of rotation on the spiral,
while r(φ) represents the length of the final segment of the fire ray reaching the
point (r(φ), φ).

The only results known on these barriers can be found in [5] and [8]. In the two
papers it is proved independently and with different techniques the following

Theorem. Let σ > 2.6144.. (critical speed). Then there exists a spiral-like strategy
which confines the fire.

This theorem inspires therefore the following

Conjecture. If σ ≤ 2.6144... then no spiral-like strategy is admissible.

A partial answer to this conjecture has been given in [8] where the authors use

a geometric argument to prove that if σ ≤ 1+
√
5

2 then no spiral-like strategy is
admissible.

We proved the following

Theorem. No admissible spiral-like strategy confines the fire if σ ≤ 2.3.

The bound 2.3 is not sharp, since it is obtained by purely numerical computa-
tions. It could be an interesting question to investigate the numerical optimization
of the parameter σ accordingly to the method we will propose for the solution of
this problem. But unfortunately, even if the speed σ could be optimized, the criti-
cal case σ = 2.6144.. at the present time seems out of reach and very delicate. We
remark that this theorem proves Bressan’s Fire Conjecture in the case of spiral
strategies.
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Optimal control strategies for moving sets

Alberto Bressan

We consider a family of control problems for a moving set. In applications, this
set can describe the region infested by an invasive biological population, which
can grow or shrink in time, depending on the control applied along the boundary.
For example, a region infested by mosquitoes can be reduced in size by spraying
pesticides along its boundary. Optimal strategies are sought, which minimize the
contaminated area plus a cost for implementing the control.

In mathematical terms, given an initial bounded set Ω(0) = Ω0 ⊂ R
2, for

t ∈ [0, T ] we seek a motion t 7→ Ω(t) which minimizes a cost functional of the form

J
.
=

∫ T

0

φ
(
E(t)

)
dt+

∫ T

0

meas
(
Ω(t)

)
dt+ κmeas

(
Ω(T )

)
. (1)

This accounts for a control cost, and a cost depending on the area of the contam-
inated region at various times.

Denoting by β(t, x) the inward-pointing velocity of the boundary of the set
Ω(t) at the point x ∈ ∂Ω(t), the total control effort at time t is measured by

E(t) .
=

∫

∂Ω(t)

E
(
β(t, x)

)
dx. (2)

A natural choice for the effort function E in (2) is

E(β) = max{1 + β, 0}. (3)

In other words, if no effort is made, the contaminated region expands with unit
speed (E = 0 corresponds to β = −1). By applying a control along the boundary,
this expansion can be reduced, or even reversed.
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Possible choices for the function φ in (1) are:

φ(s) =
s2

2
or φ(s) =

{
0 if s ≤M,

+∞ if s > M.
(4)

Notice that, if the second definition applies, then the first term in (1) has the
meaning of a constraint: at every time t ∈ [0, T ] the total control effort must
satisfy E(t) ≤M .

Optimization problems of the form (1) were first considered in [2], and formally
derived from the control of a parabolic equation, by taking a sharp interface limit.
Existence of optimal solutions was proved in [3]. Necessary conditions for optimal-
ity were also determined, in the form a Pontryagin maximum principle. A basic
setting is the following:

(OP) Optimization Problem. Given a bounded initial set Ω(0) = Ω0 ⊂ R
2,

find a motion t 7→ Ω(t) ⊂ R
2 that minimizes the cost

J = meas
(
Ω(T )

)
,

subject to β(t, x) ≥ −1 and

E(t) .
=

∫

∂Ω(t)

(
1 + β(t, x)

)
dσ ≤ M for every t ∈ [0, T ]. (5)

Notice that in this case:

(i) With no control, the contaminated set Ω(t) expands with unit speed in all
directions.

(ii) Implementing a control along the boundary, we can clear a region
of area M per unit time.

In turn, this implies that the increase of the area of Ω(t) is determined by

d

dt
meas

(
Ω(t)

)
= length

(
∂Ω(t)

)
−M.

This suggest that, in order to reduce the area, it is always most convenient to
reduce the perimeter as quickly as possible. A rigorous proof of this fact was
recently given in [1].

Theorem 1. In connection with the optimization problem (OP), assume that the
initial set Ω(0) = Ω0 ⊂ R

2 is convex. Then, at each time t ∈ [0, T ], the optimal
set Ω(t) is convex.

The optimal control is active precisely along the portion of the boundary ∂Ω(t)
where the curvature is maximum. This is a union of arcs of circumferences, all
with the same radius r(t).

At the present time, several related questions remain open. In particular:

(Q1) What is the regularity of the optimal sets Ω(t)? We recall that, to derive
the necessary conditions in [3], one needs to construct trajectories t 7→
x(t, ξ) ∈ ∂Ω(t) orthogonal to the boundary. Can these trajectories be
always well defined?
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(Q2) If the initial set Ω0 is not convex, what can one say about the optimal
strategy? Under what conditions is it true that the sets Ω(t) are connected,
for all t ∈ [0, T ] ?

(Q3) More generally, all the above problems can be formulated on R
n, or even

on an n-dimensional Riemann manifold. How much of the theory remains
valid in a multidimensional setting? Does the convexity result stated in
Theorem 1 remain true for optimal set motion in R

3 ?

The case with geographical constraints, where the pest population needs to be
eradicated from an island (a bounded open set V in the plane), is also of interest.
As before it is assumed that, within V , the contaminated region expands with unit
speed in all directions, while the control can “clean up” an area M per unit time.
In this setting, two main problems arise.

Eradication problem. Find an admissible strategy t 7→ Ω(t) ⊆ V that completely
eradicates the contamination in finite time. This means: Ω(0) = V , Ω(T ) = ∅,
and the following constraint is satisfied:

E(t) .
=

∫

∂Ω(t)∩V

(
1 + β(t, x)

)
dσ ≤ M for every t ∈ [0, T ].

The existence or non-existence of such a strategy can be determined by com-
paring the speed M with two geometric invariants of the set V . In the positive
case, one can further consider:

Minimum time problem. Among all strategies that eradicate the contamina-
tion, find one that minimizes the time T .

The analysis of optimality conditions indicates that, in an optimal strategy, at
each time t > 0 the interface between free and contaminated zone should be the
union of

(i) arcs of circumferences, all with the same radius r(t), where the control is
active, together with

(ii) additional arcs where the control is not active, and the contamination
expands with unit speed.

A direction of current research aims at understanding the structure of optimal
strategies in two main cases:

(i) V is a polygon.
(ii) V is a generic convex set, with smooth boundary.
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A Front Tracking Approach to an Euler-type Flocking Model

Cleopatra Christoforou

(joint work with Debora Amadori)

The study of hydrodynamic models that emerged in the area of self-organization
has received alot of attention in the recent years and many new challenges in
partial differential equations have arisen that yield interesting questions in the
mathematical community.

We consider the system

(1)




∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x
(
ρv2 + p(ρ)

)
= K

∫

R

ρ(x, t)ρ(x′, t) (v(x′, t)− v(x, t)) dx′

with (x, t) ∈ R× [0,+∞). Here ρ ≥ 0 stands for the density, v for the velocity, p
for the pressure, given by

(2) p(ρ) = α2ρ , α > 0 ,

and K > 0 is a given constant. Having set m := ρv as the momentum variable, we
consider the Cauchy problem (1) with the initial condition

(3) (ρ, m)(x, 0) = (ρ0(x), m0(x)) x ∈ R ,

and our aim is to formulate a problem to (1)–(3) with conditions appropriate
for the models of self-organized systems and then seek weak solutions that admit
time-asymptotic flocking.

The pioneering work of Cucker and Smale [5] led a major part of the mathemat-
ical community to conduct research intensively on this topic. Many mathematical
models have arised and most work so far is on the behavior of the particle models,
the kinetic equation and the hydrodynamic formulation. However, very little is
done in this area on weak solutions and the scope of our work is to contribute in
this direction of weak solutions in the set up of the Euler-type flocking system that
can be derived using a hydrodynamic formulation. We refer to the reviews [4, 7, 8]
and the references therein. We stand out the work of Karper, Mellet and Triv-
isa in [6], in which it is shown the convergence of weak solutions to the kinetic
equation Cucker-Smale flocking model to strong solutions of an Euler-type flocking
system of the form (1) with pressure of the form (2). Thus, we study this system
with pressure as derived in [6] although pressureless systems have received most
attention so far. Also, we are interested in solutions with discontinuities and most
results so far deal with regular solutions.

Our analysis goes over the following steps: we first set up the problem with
initial data appropriate for flocking models, that is the initial data having finite
total mass confined in a bounded interval and initial density uniformly positive
therein. Next, we introduce an appropriate notion of entropy weak solutions with
concentration centred along two free boundaries emanating from the endpoints of
the initial support. It is shown that under this notion, solutions conserve mass and
momentum and the system reduces to a local one for an all-to-all interaction kernel.
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The construction of the weak solution is obtained by transforming the problem
into Lagrangian variables (cf. [9]) and employing the front tracking algorithm
(cf. [3]). Showing that the linear functional is non-increasing, it allows us to pass
to the limit and obtain an entropy weak solutions with concentration. Additional
analysis at the level of approximate solution reveals a geometric wave decay and
this yields an exponential decay of the total variation in time. Having this, we
conclude unconditional time-asymptotic flocking, i.e. the support of the solutions
remains bounded for all times and velocity alignment occurs without any further
restrictions on the data.

There are many open problems on this topic arise that would be very interesting
to be studied and contribute in the better understanding of flocking phenomena.
It would be important to extend our result to the non-constant case of interaction
kernel K that would include especially the singular kernels. Another direction
would be to study control-type problems on this set-up, i.e. given a final state at
time t = T , to determine the initial data for which the given profile is reached
at time T . An alternative interesting direction is the study of the system with
pressure of the form ργ for γ > 1 and its relation with the solutions to (1), we
have taking the limit γ → 1.
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Optimal Control of Propagaton Fronts

Maria Teresa Chiri

(joint work with Alberto Bressan, Najmeh Salehi)

The control of parabolic equations is by now a classical subject [8, 9, 10, 12].
More specifically, several studies have been devoted to the optimal harvesting of
spatially distributed populations [5, 6, 11]. Our recent interest in the control of
reaction-diffusion equations is primarily motivated by models of pest eradication
[1, 2, 7, 13]. The controlled spreading of a population, in a simplest form, can be
described by a semilinear parabolic equation

(1) ut = f(u) + ∆u− αu.

Here u = u(t, x) denotes the population density at time t, at a location x ∈ R
2.

The function f describes the reproduction rate, while α = α(t, x) is a distributed
control representing the quantity of pesticides sprayed at time t at location x, and
αu describes the amount of population which is eliminated by this strategy. Given
an increasing, convex cost function φ : R+ 7→ R+, we can consider the following
optimization problem

(OP1) Optimization Problem for a reaction-diffusion equation. Given
an initial profile u(0, x) = u0(x) and a time interval [0, T ], determine a control
α = α(t, x) ≥ 0 so that, calling u(t, x) the corresponding solution to (1), the total
cost

(2) J .
=

∫ T

0

φ

(∫
α(t, x) dx

)
dt+ κ

∫ T

0

∫
u(t, x) dx dt

is minimized.

We think of
∫
α(t, x)dx as the total control effort at time t. Standard results

yield the existence of an optimal strategy, and necessary conditions for optimal-
ity. However, very rarely one can find explicit formulas for the optimal solution.
Assuming that f(0) = f(1) = 0, and observing that solutions to (1) often develop
stable traveling fronts, the parabolic problem (OP1) can be approximated with
an optimal control problem for the moving set Ω(t) =

{
x ∈ R

2 ; u(t, x) ≈ 1
}
,

representing the contaminated region. In this case, the control function is the
speed β = β(t, x) at which the boundary ∂Ω(t) is pushed in the inward normal
direction. This new problem has the form

(OP2) Optimization Problem for a moving set. Let an initial set Ω0 ⊂ R
2

and cost functions E : R 7→ R+, φ : R+ 7→ R+∪{+∞} be given. Find a set-valued
function t 7→ Ω(t), with Ω(0) = Ω0, which minimizes

(3) J =

∫ T

0

φ

(∫

∂Ω(t))

E
(
β(t, x) dσ

)
dt+ κ

∫ T

0

meas
(
Ω(t)

)
dt.

In our work [3, 4] we investigated the underlying connection between the two
above optimization problems. In particular, the effort E(β), needed to achieve the
inward normal speed β, can be uniquely determined by solving an optimal control
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problem for traveling wave profiles of (1). The cost for moving the interface at
different speeds in the normal direction is determined through the analysis of
traveling wave profiles for the PDE model, and justified via a sharp interface
limit. More generally, the same approach remains valid for systems of (possibly
degenerate) parabolic equations with spatial variable in R

n.
A rigorous derivation of (OP2) would require a study of the Γ-limit of the

functionals

(2) Fε(u)
.
=

∫ T

0

∫
[ε∆u+ ε−1f(u)− ut]+

u
dx dt

as ε → 0. Here [s]+ = max{s, 0}. As first step in this direction, we have proved
that the cost J at (3) can be achieved as the limit of the cost (2), for a family of
solutions to the rescaled parabolic equations

uεt =
1

ε
f(uε) + ε∆uε − uεαε , t ∈ [0, T ], x ∈ R

2.
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Renewal Equations: Models, Analysis and Control Problems

Rinaldo M. Colombo

(joint work with Mauro Garavello, Francesca Marcellini, Elena Rossi)

According to [13, § 3.1] by renewal equation the following initial boundary value
problem is meant:





∂tρ+ ∂xρ = 0 (t, x) ∈ R+ × R+

ρ(t, 0) =
∫ +∞
0 b(ξ) ρ(t, ξ) dξ t ∈ R+

ρ(0, x) = ρo(x) x ∈ R+ .

However, recently, this term has been used more and more also to refer to rather
general problems, such as

(1)





∂tρ+∇x · (ρ V ) = S (t, x) ∈ R+ × Ω
ρ(t, ξ) = B(t, ξ) (if there is a boundary) (t, ξ) ∈ R+ × ∂Ω
ρ(0, x) = ρo(x) x ∈ Ω

that typically have in common the presence of non local terms and a motivation
coming from some sort of biological model. In (1), the velocity V , the source S and
the boundary term B may well depend – locally or not locally – on the unknown
function ρ which, in turn, may well be both a scalar or a vector.

An attempt to obtain a rather general well posedness result for a renewal equa-
tion in the sense of (1) is presented in [10]. There, the precise form of the considered
problem is

(2) ∂tu
h+∇x

(
vh(t, x)uh

)
= ph (t, x, u(t)) uh+ qh (t, x, u, u(t)) h ∈ {1, . . . , k} .

Here t ∈ R+ is time and the “space” variable x varies in R
m
+ × R

n. This choice
allows to encompass in (2) also situations where where part of the independent
variables are bounded below, while the remaining part varies in R

n. The former
variables may thus represent age or time since vaccination, for instance, see [4, 9],
while the latter variables are typically space coordinates, for instance. Note also
that in (2), the dependence on u(t) stands for a dependence which is non local in
the x variable. In the right hand side in (2) the choices of ph and qh are flexible,
so that the provided estimates can be optimized for the specific model considered.
Refer to [10] for specific models that fit into (2). Other well posedness results in
similar settings are provided in [6, 7] and in [12], where the problem is set in the
framework of evolution equations in metric spaces.

Renewal equations appear also in mixed systems devoted to some sort of preda-
tor prey dynamics, such as

(3)

{
∂tu+∇ · (u v(u)) = f(t, x, w)u + a
∂tw − µ∆w = g(t, x, u, w)w + b

(t, x) ∈ R+ × Ω

where u “hunts” w and the hunting term v is of the form

(4) v(u) = V (∇u ∗ η) ,
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η being a smooth approximation of Dirac delta and V a Lipschitz continuous
function. The case of Lotka–Volterra interaction is recovered by

f(t, x, w) = αw − β and g(t, x, u, w) = γ − δ u ,

but further terms, for instance related to some sort of capacity are not excluded.
System (3)–(4) can be studied in both cases Ω = R

n, see [8], and Ω bounded,
see [11] – in the latter case suitable boundary conditions need to be supplemented.
The term a = a(t, x), respectively b = b(t, x), is a control parameter describing
the amount of u, respectively w, that is deployed per unit time at position x and
time t. Indeed, system (3)–(4) applies to cases, for instance, where the predator
u is a parasitoid used against the propagation of the parasite w, see [5, 8] or also
when the chemical substance w diffuses attracting and killing the pest u.
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Generalised characteristics of Hamilton-Jacobi equations, propagation
of singularities, and long-time behaviour

Piermarco Cannarsa

A generalised characteristic (GC) is a solution of certain differential inclusions that
play a crucial role for propagation of singularities of solutions to Hamilton-Jacobi
equations H(x, u(x), Du(x)) = 0. GC’s were introduced in [4], in the context of
hyperbolic conservation laws and then adapted to Hamilton-Jacobi equations in
[1] and [3]. In this talk, we will discuss several topics related to GC’s including re-
stricted classes of characteristics introduced in [5], uniqueness issues, continuation
properties in connection with propagation of singularities [2].

We will then focus on classical mechanical systems on the torus with the Hamil-
tonian

H(x, p) =
1

2
|p|2 + V (x), x ∈ T

d, p ∈ R
d

and consider the stationary Hamilton-Jacobi equation

(1) H(x,Du(x)) =
1

2
|Du(x)|2 + V (x) = α[0], x ∈ T

d,

where α(0) is the Mañé’s critical value. For any semiconcave solution (or viscosity
solution) u of (1), the set of the points of non-differentiability of u, Sing(u), is
called the singular set of u. The singularities of a semiconcave solution u of (1)
propagate along the generalized gradient flow defined by

(2)

{
ẋ(t, x) ∈ D+u(x(t, x)), t ≥ 0 a.e.

x(0, x) = x.

Denoting by xu(t, x) the associated semi-flow for a semiconcave solution u of (2),
for any x ∈ T

d and any T > 0 we introduce the (individual) invariant occupational
measure for xu(·, x) as the Borel probability measure µT

x defined by
∫

Td

f(y) dµT
x (y) =

1

T

∫ T

0

f
(
xu(t, x)

)
dt ∀f ∈ C(Td).

Then, we call any weak limit of µTn

x , as Tn → ∞, a limiting occupational measure
of xu(·, x). We denote byWu(x) be the family of all limiting occupational measures
of xu(·, x). As we shall see, there are interesting connections among the critical
set of u, the set of limiting occupational measures Wu(x) of xu(·, x), and Sing(u).
We first show that Wu(x) 6= ∅ and, by the Krylov-Bogoliubov argument, that each
measure in Wu(x) is invariant under xu(·, x). Then we show that the critical set
of u is an attractor for the semi-flow xu(t, x) in the sense that, for any ε > 0,
the probability for xu(t, x) to be ε-close to the critical set of u, with t picked at
random in [0, T ], tends to 1 as T → ∞.

Given (a nonzero cohomology class) c ∈ R
d, to extend the above results to the

cell problem

(3)
1

2
|Du(x) + c|2 + V (x) = α[c], x ∈ T

d,
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is a challenging open question that will definitely require new ides. Even more
so, it would be extremely interesting to adapt the current approach to a general
Hamilton-Jacobi equation

(4) H(x,Du(x) + c) = α[c], x ∈ T
d

with H of Tonelli type.
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Some inverse problems for shock wave control

Gui-Qiang G. Chen

Controlling shock waves is crucial in applications in various fields of science and
engineering, including aerodynamics, aerospace engineering, explosion mitigation,
and shock tube experiments. In this talk, we present some inverse problems for con-
trolling multi-dimensional steady shock waves and discuss some recent progress in
controlling both the leading shock waves generated by wedges/conical bodies and
associated fluid flows by designing the boundary geometries of the wedges/conical
bodies with desired pressure distributions and/or leading shock locations through
the inverse problems. Some further perspectives and open problems in this direc-
tion will also be addressed.

Hysteresis and string stability in traffic flows

Andrea Corli

(joint work with Haitao Fan)

In this talk we discuss some new macroscopic models of traffic flow [2, 4], whose
aim is to model stop-and-go waves and related phenomena by means of a hysteretic
term. The approach is inspired by the modeling of fluid flows in porous media [1],
where hysteresis plays an important role. We also comment on the so-called string
stability of the model, a notion of stability that is widely used in microscopic
models but that is here extended to macroscopic models [3].

Stop-and-go waves are observed in real traffic flows but cannot be produced by
the classical Lighthill–Whitham–Richards (LWR) model. To capture stop-and-go
waves, we add hysteresis to the LWR model; we call HLWR such a model [2].
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The model HLWR consists of two equations for the unknown functions ρ, the
vehicle density, and h, the hysteresis variable. It is hyperbolic but it is not in
conservation form, because there is no reason for the hysteresis to be conserved;
moreover, it involves functions that are possibly discontinuous, and solutions are to
be meant in the sense of [5]. For the model under consideration, we find all possible
“viscous” waves as well as necessary and sufficient conditions for their existence. In
particular, deceleration and acceleration shocks appear and stop-and-go waves are
produced by pairs of deceleration and acceleration shocks completing a hysteresis
cycle. We solve the Riemann problem for every Riemann data and show that,
where hysteresis loops exist, a deviation in speed of a few vehicles in a uniform car
platoon can generate stop-and-go waves. This analysis could be possibly useful
for the control of traffic flows. We also discuss how the previous approach can be
extended to the Aw-Rascle-Zhang (ARZ) model [4].

In microscopic models, string stability or instability is concerned with the prop-
agation of oscillations in a car platoon caused by the leading vehicle. The issue is
whether and when such oscillations are amplified or damped; in the former case,
traffic jams occur. We propose a suitable notion of string stability for continuum
models and show that the LWR and AWR models model are string stable for
wide classes of perturbations. In the case of the previous hysteretic model, we
show that string instability can occur for large perturbations, while, under small
perturbations, examples as well as approximate solution analysis suggest that the
hysteretic traffic flow modeled for instance by the HLWR model is string stable.

In this framework there are many open problems. First of all, the Riemann
solvers are not unique, as it was already the case in [1]; is it possible to select a
“rational” Riemann solver? Second, the analysis of the initial-value problem for
general data with bounded variation is missing; we conjecture that such a solution
exists, at least for small initial data. Third, it would be interesting to validate
the model by analyzing real traffic flows. Indeed, the evidence of hysteresis loops
in traffic flows is known in the applied literature since several decades, but the
modeling of hysteresis as a variable of the models has never been checked with
such real flows.
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Inverse design for the chromatography system

Carlotta Donadello

(joint work with Giuseppe M. Coclite, Nicola De Nitti and Florian Peru)

We present some results on the inverse design problem for the n × n chromatog-
raphy system. The particular structure of the system, which can be written as
a triangular system consisting of one autonomous strictly concave conservation
law and n − 1 linear continuity equations, allows to combine the backward re-
construction method introduced in [2] with recent results obtained by Colombo
and Perrollaz, [3], and by Liard and Zuazua, [5, 4], on the inverse design problem
for a strictly convex scalar conservation law. More precisely, in the case of two
components, the original system





∂tu1 + ∂x

(
u1

1 + u1 + u2

)
= 0, t > 0, x ∈ R,

∂tu2 + ∂x

(
u2

1 + u1 + u2

)
= 0, t > 0, x ∈ R,

rewrites as 



∂tv + ∂x

(
v

1 + v

)
= 0, t > 0, x ∈ R,

∂tw + ∂x

(
w

1 + v

)
= 0, t > 0, x ∈ R,

thanks to the change of variables

v := u1 + u2, w := u1 − u2.

For any v0 ∈ L∞(R), the Cauchy problem



∂tv + ∂x

(
v

1 + v

)
= 0, t > 0, x ∈ R,

v(0, x) = v0(x), x ∈ R,

admits a unique entropy solution in L∞(R+×R). From it we can define the vector

field

(
A(t, x) = v(t, x), B(t, x) =

v(t, x)

1 + v(t, x)

)
, satisfying the hypothesis which, in

[6], are necessary to prove the existence of a unique weak renormalized solution z
of




∂t(vz) + ∂x

(
vz

1 + v

)
= 0, t > 0, x ∈ R,

z(0, x) = z0(x), x ∈ R,

for any z0 ∈ L∞(R). In particular, z is time-reversible, in the sense that if
A(T, x)z(T, x) = A(T, x)zT (x), then t 7→ z(T − t) is a generalized solution of

{
∂t(Aρ)− ∂x(Bρ) = 0, t > 0, x ∈ R,

A(0, x)ρ(0, x) = A(0, x)zT (x), x ∈ R.
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Using this approach to implement a backward reconstruction, it was proven in [2]
that the physically relevant attainable profiles for the chromatography system in
the (u1, u2) variables are

AT (R) =
{
(vT , wT ) : v ∈ AT

(
R, v 7→ v

1 + v

)
and there exists

z ∈ L∞(R; [−1, 1]) such that wT = zvT

}
,

where the set AT contains the attainable profiles at time T for the first equation,
as described in [1]. For a given positive time T and an attainable profile VT =
(vT = uT1 + uT2 , wT = uT1 − uT2 ) ∈ AT (R), the set of initial conditions leading
to VT can be easily characterized, and its topological properties inferred, thanks
to a 1–to–1 correspondence with the set I(vT ) of inverse designs for the scalar
conservation law with strictly concave flux, [3, 5].

For a target profile V which is not attainable in time T , we recover the initial
condition which would steer the system as close as possible to V in the L2 norm
thank to a minimization procedure analogous to the one in [4].

Building on the numerical scheme in [2] and results in [4], we implemented a
finite volume numerical scheme which, for any attainable profile UT and positive
integer r, provides an initial condition leading to UT and which first component
(the initial condition for the nonlinear conservation law) suffers of exactly r dis-
continuities.

The final part of the presentation explains why these results are limited to a
system with a very specific structure and cannot easily be generalized to the class
of triangular systems considered in [2].
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Nonlocal macroscopic models of multi-population pedestrian flows for
walking facilities optimization

Paola Goatin

(joint work with R. Bürger, D. Inzunza, E. Rossi, L. M. Villada)

We consider a class of nonlocal crowd dynamics models for N populations, N ≥
1, with different destinations trying to avoid each other in a confined walking
domain Ω ⊂ R

2 and described by their densities ρ = (ρ1, . . . , ρN )T . This can be
formalized in the following initial-boundary value problem:

(1)





∂tρ
k + divx

[
fk
(
ρk
)
ν
k
(
t,x,J k[ρ]

)]
= 0, x ∈ Ω, t ≥ 0, k = 1, . . . , N,

ρ(0,x) = ρ0(x), x ∈ Ω,

ρ(t,x) = 0, x ∈ ∂Ω,

where ν
k = (νk1 , ν

k
2 ) is the velocity vector field of the k-th population, J k is a

nonlocal operator, i.e. J k[ρ] =
(
J k[ρ(t)]

)
(x), and ρ0 is a given initial datum.

Usually, the vector fields ν
k consist of a fixed smooth vector field of preferred

directions (e.g. given by the regularized solution of an eikonal equation) together
with nonlocal correction terms depending on the current density distribution.

We assume that Ωc = R
2 \ Ω is a compact set consisting of a finite number

M ∈ N of connected components Ωc = Ωc
1 ∪ . . .∪Ωc

M . To account for the presence
of these obstacles, in [3] we proposed to evaluate the nonlocal operators on the
extended density ρΩ : R2 → R

N
+ including the presence of obstacles:

ρkΩ(t,x) :=

{
ρk(t,x) if x ∈ Ω,

Rℓ if x ∈ Ωc
ℓ,

with Rℓ ≥ R > 0, ℓ = 1, . . . ,M , big enough so that ν
k
(
t,x,J k[ρΩ]

)
· n(x) ≤ 0

for all x ∈ ∂Ω, t ≥ 0, n being the outward normal to Ω. In this way, (1) can be
rewritten as

(2)

{
∂tρ

k + divx
[
fk
(
ρk
)
ν
k
(
t,x,J k[ρΩ]

)]
= 0, x ∈ R

2, t ≥ 0, k = 1, . . . , N,

ρ(0,x) = ρ0(x), x ∈ R
2.

Under suitable regularity assumptions, well-posedness results for weak entropy
solutions of (2) can be proved relying on [1, 2], see [3, 5].

The trick of incorporating the obstacles in the nonlocal operator allows to avoid
including them in the vector field of preferred directions. In particular, we can
address shape optimization problems aiming at finding the optimal position of
the obstacles to minimize the total travel time, rewriting them as standard PDE-
constrained optimization [4]. In addition, to accelerate the numerical optimization
procedure, we propose to address the computational bottleneck represented by the
convolution products by a Finite Difference scheme that couples high-orderWENO
approximations for spatial discretization, a multi-step TVD method for temporal
discretization, and a high-order numerical derivative formula to approximate the
derivatives of nonlocal terms, and in this way avoid excessive calculations.
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Boundary feedback control problems for systems of balance laws

Simone Göttlich

(joint work with Sonja Groffmann)

The main objective of this work is to investigate the exponential and Input-to-
state (ISS) stability of solutions to linear hyperbolic balance laws that are paired
with boundary feedback conditions. In particular, we consider the following k× k
system of linear hyperbolic balance laws

(1) ∂tW (x, t) + Λ(x)∂xW (x, t) + Π(x)W (x, t) = 0, (x, t) ∈ [0, l]× [0,+∞)

for the state vector W :=W (x, t) : [0, l]× [0,+∞) → R
k over some space interval

of length l and an open time horizon. The variable coefficients are chosen such that
Π(x) is a non-zero matrix in R

k×k and Λ(x) is a diagonal matrix with non-zero
eigenvalues in R

k×k.
For an analysis of the hyperbolic system, characteristic variables are applied and

Λ(x) is split into a positive and a negative part according to the sign of its eigen-
values. Therefore, Λ(x) = diag{Λ+(x),−Λ−(x)}, where Λ+(x) = diag{λi(x) > 0 :
i = 1, ...,m} and −Λ−(x) = diag{λi(x) < 0 : i = m+1, ..., k} for some m ∈ N with
m ≤ k. Analogously, the state vector is split into the parts that correspond to the
positive and negative eigenvalues of Λ(x), respectively. Hence, W = [W+,W−]T

with W+ ∈ R
m and W− ∈ R

k−m.
The hyperbolic system of balance laws will be paired with an initial condition

(2) W (x, 0) =W0(x), x ∈ (0, l),

for a function W0 : (0, l) → R
k, as well as boundary conditions consisting of a

disturbed linear feedback law

(3)

[
W+(0, t)
W−(l, t)

]
= K

[
W+(l, t)
W−(0, t)

]
+Mb(t), t ∈ [0,+∞),

whereK,M ∈ R
k×k are constant matrices and b : [0,+∞) → R

k is a vector-valued
function describing the disturbances. This model has been also studied in [4].
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In case of exponential stability an undisturbed feedback boundary condition
is required. Therefore, the following special case of (3) with Mb(t) ≡ 0 for all
t ∈ [0,+∞) will sometimes be considered as well:

(4)

[
W+(0, t)
W−(l, t)

]
= K

[
W+(l, t)
W−(0, t)

]
, t ∈ [0,+∞).

Both of the above stated boundary conditions are called feedback laws, as the
inflow into the system W+(0, t) and W−(l, t) at the spacial boundaries x = 0 and
x = l is a function of the outflow out of the system at the boundaries given by
W+(l, t) andW−(0, t). The information about the outflow is returned via feedback
to influence the inflow. Similar types of feedback boundary conditions are often
employed for boundary control problems or boundary stabilization as presented
for example in [2, 3].

The problem is now completed by the following assumptions which shall hold
for all x ∈ [0, l] and t ∈ [0,+∞).

A1 Λ is a real diagonal matrix of class C1([0, l]), i.e., Λ(x) is a function that
is once continuously differentiable.

A2 Π is a real matrix of class C0([0, l]), i.e., Π(x) is a continuous function.
A3 b is a vector of boundary disturbances of class C0([0,+∞)), i.e., b(t) is a

continuous function.

Based on these assumptions, a detailed Input-to-state stability analysis in the
L2-norm has been provided in [4]. More precisely, the steady state W ≡ 0 of the
system (1) with the boundary conditions (3) is Input-to-state stable in L2-norm
with respect to the disturbance function b if there exist positive real constants
η > 0, ξ > 0, C1 > 0 and C2 > 0 such that, for every initial condition W0(x) ∈
L2((0, l);Rk), the L2-solution to the system (1) with initial condition (2) and
boundary conditions (3) satisfies for all t ∈ R

+

(5)

‖W (·, t)‖2L2((0,l);Rk) ≤ C1 exp(−ηt)‖W0‖2L2((0,l);Rk) +
C2

η

(
1 +

1

ξ

)
sup

s∈[0,t]

(|b(s)|2).

If the disturbance function disappears, i.e., b(t) ≡ 0 for all t ∈ [0,+∞), the def-
inition of exponential stability can be retrieved from the notion on Input-to-state
stability. The latter notion is of course weaker than its exponential counterpart,
as the disturbance term in inequality (5) counteracts the exponential decay of the
first term and is highly dependent on the given disturbances.

A possible Lyapunov function candidate to study the exponential stability of
hyperbolic balance laws has been originally introduced in [1], i.e.,

(6) L(W (·, t)) =
∫ l

0

WTP (x)Wdx, t ∈ [0,+∞),

for continuously differentiable positive definite matrices P (x). This Lyapunov
function is then said to be an ISS-Lyapunov function for the system (1) with the
boundary conditions (3) if there exist positive real constants η > 0, ξ > 0 and
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ν > 0 such that, for all functions b(t) ∈ C0([0,+∞)), for L2-solutions of the
system (1) satisfying the boundary conditions (3), and for all t ∈ [0,+∞),

(7)
dL(W (·, t))

dt
≤ −ηL(W (·, t)) + ν

(
1 +

1

ξ

)
sup

s∈[0,t]

(|b(s)|2).

It turns out that if the matrix

(8) −Λ(x)P ′(x)− Λ′(x)P (x) + ΠT (x)P (x) + P (x)Π(x)

is positive definite for all x ∈ [0, l] and the matrix

(9)

[
Λ+(l)P+(l) 0

0 Λ−(0)P−(0)

]
− (1 + ξ)KT

[
Λ+(0)P+(0) 0

0 Λ−(l)P−(l)

]
K

is positive semi-definite, the steady state W (x, t) ≡ 0 of the system (1) with
boundary conditions (3) is Input-to-state stable in the L2-norm with respect to
the disturbance function b.

A further approach intends to answer the question how the results from the
continuous setting in terms of Input-to-state stability can be transferred to a dis-
cretized version of (1)-(3). Following the the numerical discretization presented in
[3] based on the operator splitting technique

∂tW (x, t) + Λ(x)∂xW (x, t) = 0 (x, t) ∈ [0, l]× [0,+∞)(10)

∂tW (·, t) + Π(·)W (·, t) = 0 t ∈ [0,+∞).(11)

then allows for a rigorous numerical analysis of Input-to-state stability. In fact, a
notable advantage of the discretized approach is the explicit computation of decay
rates η that appear in (5). For an illustration of the results obtained so far, we
make use of the Telegrapher’s equations which is a 2×2 system of linear hyperbolic
balance laws of the form

(12) ∂tW (x, t) + Λ∂xW (x, t) + ΠW (x, t) = 0

for x ∈ [0, l], where Π and Λ are independent of x and defined as

Π :=
1

2

[
RL−1 + ZC−1 RL−1 − ZC−1

RL−1 − ZC−1 RL−1 + ZC−1

]
,(13)

Λ :=

[
λ+ 0
0 λ−

]
, with λ± = ±(

√
LC)−1(14)

and positive constants R,L, Z,C. Applying the weighted matrices

(15) Pj = diag{p1 exp(−µ1xj), p2 exp(µ2xj)}
with µ1, µ2 > 0 and p1, p2 > 0 to the disctrization of (6), we are able to show that
for the Telegrapher’s equations given by (12) - (14) the decay rate η is defined by

η =
1

∆x
√
LC

(1− exp(−µ∆x)).

Future considerations will investigate the notion of Input-to-state stability for
balance laws of type (1) on networks. This requires in particular a discussion on
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coupling conditions and their influence on the continuous and discretized problem,
respectively.
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Isothermal flow in gas networks: Synchronization of observer systems

Martin Gugat

We study systems that are governed by neworked hyperbolic partial differential
equations. As an example, think of gas pipeline networks.

We discuss the necessity to design observers for this type of system. They can
be applied to produce an approximation of the full system state that can be used
as input in a feedback law and also provide initial data for optimal control prob-
lems. We present an observer system that is also defined as a networked system of
hyperbolic partial differential equations and is fed with pointwise measurements
from the original system. These measurements are taken at a finite number of
locations in the network. In our model, we consider the measurements as contin-
uous in time. This is not completely realistic, and in future studies we will also
consider time-discrete measurements and also an observer system that is defined
on discrete times and is implementable on a computer.

We show that for a sufficiently large number of measurement locations, the
observer system synchronizes exponentially fast with the original system, that is
the error decays exponentially fast to zero. This is a local result that we can only
proof under a number of smallness assumption for the state of the original system
and also for the error of the estimate of the initial state that is used in the observer
system. Since the semi-global classical solutions of quasilinear hyperbolic systems
are a suitable framework to prove the synchronization results, we use an existence
result for semi-global classical solutions in our analysis of the well-posedness of the
system. These results have been investigated thoroughly in the group of Ta-Tsien

Li.
We discuss a Lyapunov function with exponential weights that can be used for

the proof of the exponential synchronization in the L2–sense. Such exponential
weights have been used very successfully by Jean-Michel Coron and his group.

As an outlook, we discuss the extension of the observer to the case where the
gas is a mixture of hydrogen and natural gas. We consider a model of the following
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type that is similar as in [2]:

(1)





∂tρ+ ∂x(ρv) = 0

∂tc+ v ∂x(c) = 0

∂t(ρv) + ∂x
(
ρv2 + p̂(ρ, c)

)
= −λF

2D
ρ|v|v

where ρ1 and ρ2 denote the densities of the two components, ρ := ρ1 + ρ2, v is
the velocity of the gas mixture and c := ρ1/ρ. Note that in order to close the
system, the knowledge of the pressure law p̂(ρ, c) for the mixture is mandatory.
The number λF is a friction parameter and D denotes the diameter of the pipe.

Finally we mention the challenge to deal with hydrogen embrittlement in steel
pipelines. Since pressure fluctuations promote the damage of the pipes by hydrogen
embrittlement, one aim of the operation control must be to mitigate these fluctua-
tions. In the mathematical model this leads to new state constraints that have to
be compatible with a realistic damage model, for example the rainflow-counting al-
gorithm used for calculations of the fatigue. Problems of optimal boundary control
for gas pipeline networks have been investigated in [3].
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Stabilization methods for evolution equations

Amaury Hayat

The topic of this talk is the stabilization of systems of (partial) differential equa-
tions. We focus on three parts:Fredholm backstepping, also known as F-equivalence,
a powerful approach that allows the derivation of explicit feedback laws for a large
class of systems of PDEs; stabilization of traffic flow, modeled by hyperbolic sys-
tems of PDEs, and the use of Artificial Intelligence (AI) in mathematics. The
latter extends beyond the sole area of stabilization.

1. The F -equivalence method

We study the general stabilization problem for linear systems. Consider

(1) ∂ty(t) = Ay(t) +Bu(t),

where y(t) ∈ X describes the state of the system at time t, X is a Banach space,
A is a differential operator with discrete spectrum and defined on a Banach space
X with the domain D(A), B : H → D(A∗)′ is a so-called control operator and
u(t) = Ky(t) is the control chosen as a feedback law, and K is consequently a
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feedback operator with values in H . The goal is to find K such that the system
(1) is exponentially stable. Ideally, we would even want to ensure that, for any
λ > 0, there exists Kλ such that the system (1) is exponentially stable with decay
rate λ. When B is not bounded in X and H is finite dimensional, this becomes
a complex problem. The F -equivalence approach is as follows: instead of trying
to directly find a feedback operator K, one attempts to simultaneously find a
mapping T and a feedback operator K such that T is an isomorphism and maps
the system (1) to an exponentially stable target system

(2) ∂tz = A′z,

where A′ is a carefully chosen exponentially stable operator. If this can be done
then, as a consequence, the original system (1) is exponentially stable (with the
same decay rate).

The backstepping method, introduced in 2003 by Krstic and several collaborators,
relied on this paradigm and suggested looking for T in the form of a Volterra
transform, which led to many proven results. Another method, sometimes called
Fredholm backstepping, and relying on more general transformations, was intro-
duced in 2013 by Coron and Lu for a particular case. We present a new method
[3] to generalize the F -equivalence approach to generic systems where A is skew
adjoint with eigenvalues scaling more than linearly, B is admissible, and the sys-
tem is exactly null controllable. In particular, this allow to solve an open question
presented at the College de France in 2017. The hope is that the F -equivalence
approach can provide quantitative estimates of T and K with respect to λ and can
extend locally to nonlinear systems, even for systems where classical perturbation
arguments do not apply.

2. Traffic flow stabilization

We examine a particular problem: the stabilization of traffic flow. In traffic,
when the density of cars is high, the uniform flow steady-state becomes unstable
and stop-and-go waves appear, resulting in a phenomenon commonly known as a
traffic jam. Our goal is to stabilize these uniform steady-states. Our approach
is to use autonomous vehicles (AVs) as controls on the traffic. The resulting
mathematical system is modeled by one or several PDEs coupled with an ODE:
the PDE(s) represent the bulk of traffic, while the ODE represents the location of
the autonomous vehicle. The PDE model could be, for instance, the LWR model

(3) ∂tρ+ ∂x(ρV (ρ)) = 0,

where V is a function that is concave and C2. A more realistic approach would
be to consider a second-order model, for instance, the Generalized-ARZ (GARZ)
equations

(4)

{
∂tρ+ ∂x(ρV (ρ, ω)) = 0,

∂t(ρω) + ∂x(ρωV (ρ, ω)) = 0.
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The dynamics of the AV’s location y(t) can be modeled by

(5) ẏ(t) = min{u(t), V (ρ(t, y(t)+), w(t, y(t)+))},
where u(t) refers to the control, and for a BV function f , f(y(t)+) refers to the
right limit at y(t). The min comes from the fact that the AV cannot move faster
than the traffic flow in front of it (to avoid a crash). This system has both practical
and mathematical interests. From a practical perspective, reducing stop-and-go
waves could lead to a significant reduction in fuel consumption and CO2 emissions,
as well as safer traffic. From a mathematical perspective, the PDE/ODE system
modeling this situation is interesting in that the relevant physical solutions are not
the entropic solutions, usually considered as the natural solutions for hyperbolic
systems and studied for decades. More specifically, the physical solutions are
not necessarily entropic at the AV’s location. For this reason, we need a new
condition to replace the entropy condition at the AV’s location. We use a flux
condition similar to the Delle Monache-Goatin flux condition

(6) ρ(t, y(t))(V (ρ(t, y(t)), ω(t, y(t))) − ẏ) ≤ αmax
ρ,ω

(ρ(V (ρ, ω)− u(t)))

where α ∈ (0, 1). We present an existence result (in the class of BV solutions,
entropic outside of the AV’s location) for a solution to the Cauchy problem (4)–(6)
for any initial condition (in the same class), provided that the control is constant
[5]. The question of a time-varying control and, a fortiori, of the stabilization
problem is widely open.

We also present field experiment results obtained in Nashville, TN in November
2022 as part of the CIRCLES project, where 100 autonomous cars were sent on a
highway in dense traffic during peak hours, showing that our candidate controller
drastically reduces the speed variance of the stop-and-go waves [4].

3. AI for mathematics

AI has seen many successes in the last decade, especially in natural language
processing. A natural question we would like to ask is:

Can an AI learn mathematics in some sense?

We focus on two interpretations of this question:

• Can an AI predict the solution to an advanced mathematical problem?
• Can an AI prove a mathematical statement and provide a proof?

The answer to the first question seems to be yes. In several works, a trained AI
model (a Transformer) managed to predict the solution to several mathematical
problems, for instance, predicting explicit solutions to ODEs, the controllability
of the linearized system given a nonlinear system, or a suitable feedback law [2].
We illustrate with two examples how this approach can assist mathematicians in
solving open problems. The first one is a preliminary neural network trained to
find Lyapunov functions for a nonlinear system, which is a general open question.
The second one is a mix of deep reinforcement learning and mathematical analysis
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[1] that allowed the finding of a control feedback law and the stabilization of a
system for which finding such a feedback law was an open question until now.

Regarding the second question, we present a work [6] inspired by AlphaZero, where
we train a neural network to demonstrate (small) mathematical statements and
provide proof. This neural network is capable of demonstrating high school or
undergraduate exercises and some exercises from the International Mathematical
Olympiads.
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Convex Optimisation Methods for Variational Mean Field Games

Dante Kalise

(joint work with Luis Briceño-Arias and Francisco J. Silva)

We discuss the numerical approximation of stationary mean field games [1]

(MFG∞)





−σ2∆v(x) +H(x,∇v(x)) − λ = f(x,m(x)) in T
d ,

−σ2∆m(x)−∇ ·
(
∂pH(x,∇v(x))m(x)

)
= 0 in T

d ,

m ≥ 0,

∫

Td

mdx = 1,

∫

Td

v dx = 0 ,

by convex optimisation methods. Under suitable hypotheses on the coupling term
f and the Hamiltonian H , we begin by defining the momentum variable w(x) =
−∂pH(x,∇v(x))m(x) and reformulating the MFG system as a PDE-constrained
optimisation problem
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(OC∞) :





min
(m,w)

∫

Td

b(x,m(x), w(x)) + F (x,m(x)) dx

s.t. − σ2∆m(x) +∇ · (w(x)) = 0 , and

∫

Td

mdx = 1 ,

,

where

F (x,m) :=





m∫
0

f(x, µ) dµ if m ≥ 0 ,

+∞ otherwise

and

b(x,m,w) :=





mH∗(x,− w
m) if m > 0 ,

0 if (m,w) = (0, 0) ,

+∞ otherwise .

Here, H∗(x, p∗) denotes the convex conjugate H∗(x, p∗) = −inf
p
{H(x, p)−〈p∗, p〉}.

Assuming f(x,m(x)) increasing in m, (OC∞) is a convex optimisation problem
[10, 11]. This variational formulation is related to other problems of interest, such
as:

• the Schrödinger Bridge problem [4, 5]

(SB)





min
(m,u)

1

2

∫ 1

0

∫

Rd

m(x, t)|u(x, t)|2dxdt

s.t.

∂tm(x, t) +∇ · (m(x, t)u(x, t)) − ǫ

2
∆m(x, t) = 0 ,

m(x, 0) = m0(x) , m(x, 1) = m1(x) ,

which in the deterministic limit (σ = 0) corresponds to the Benamou-
Brenier formulation of the optimal transport problem [2, 3].

• the JKO scheme for gradient flows [6]

∂tm = ∇ · [ρ∇ (U ′ (m) + V +W ∗m)]

where, at every discrete time step, the mass is recovered as the solution of

mn+1
∆t ∈ arginf

m

{
1

∆t
W2(m

n
∆t, m) + F(m;U, V,W )

}
,

and the Wasserstein distance W2 can be computed using a similar formu-
lation as in (SB) above [7].
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The construction of a numerical scheme for these problems begins with a suit-
able discretization of the transport equation and the cost, leading to

(OCh
∞) :





min
(mh,wh)

∑

i,j

b̂(xi,j ,mi,j , wi,j) + F (xi,j ,mi,j)

s.t Ahmh +Bhwh = 0 , ∀i, j = 1, . . . , N ,
∑

i,j

h2mi,j = 1 ,

where b̂(m,w) = b(m,w)+ ιR×K(m,w), with K := R
+×R

− ×R
+×R

−. Problem
(OCh

∞) belongs to a class of convex optimization problems of the form

min
y

Φ(y) + Ψ ◦ C(y)

where Φ,Ψ are convex, l.s.c, proper functions, and C is a linear operator. Algo-
rithms for this class of problems rely on duality and on the proximal operator

proxλf (v) := argmin
x

(
f(x) +

1

2λ
||x − v||2

)
.

Within a wide class of suitable convex optimisation algorithms, we focus on the
application of the primal-dual algorithm proposed by Chambolle and Pock [8, 9].
Given γ, τ ≥ 0, such that γτ < ‖C‖|−2, the iteration reads:

σk+1 = proxγΨ∗(σk + γCȳk)

yk+1 = proxτΦ(y
k − τC∗σk+1)

ȳk+1 = 2yk+1 − yk

We discuss convergence to the solution of (MFG∞), assignments for Φ and Ψ,
and the effective computation of proximal operators.
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Structure of non entropy solutions to scalar conservation laws

Elio Marconi

We consider bounded weak solutions of conservation laws of the form

(1) ∂tu+ divx(F (u)) = 0, u : R× R
d → R, F : R → R

d.

In particular we are interested in solutions with finite entropy production, namely
solutions for which for every smooth entropy-entropy flux pair (η,Q) the distribu-
tion

µη := ∂tη(u) + divx(Q(u))

is a locally finite Radon measure. Compared to the more usual notion of entropy
solution we do not require that if η is convex, then µη is a negative measure.

These solutions arise in the study of large deviations for stochastic particle
scheme approximations of entropy solutions of (1) (see [11] and the recent results
in [10]). A variational point of view investigated in [3] relates this problem to the
following control problem for conservation laws in dimension 1: given ε > 0 and
uε, let Eε be such that

(2) ∂tuε + ∂x(F (uε)) = ε∂xxuε + ∂xEε

and set Iε(uε) = min
∫
R2 E

2
εdxdt, where the minimum is taken among the functions

Eε satisfying (2).
It is well known that if uε solves (2) with Eε ≡ 0, the family uε converges to

the entropy solution of (1) as ε→ 0.
An interesting regime is when ε−1Iε(uε) remains bounded: in this case it is

shown in [3] that uε converges up to subsequences to a solution with finite en-
tropy production. Moreover the Γ-convergence of ε−1Iε is investigated: a natural
candidate H is proposed as well as a proof of

H ≤ Γ− lim inf
ε→0

ε−1Iε.

The functional H can be described in terms of the entropy production measures
µη: in the case of the Burgers equation F (u) = u2 we expect that it coincides with

H(u) =
1

6

∫

J+
u

|u+ − u−|3dH1,

where H1 denotes the one-dimensional Hausdorff measure and J+
u is the subset of

the jump set of u where the right trace u+ is larger than the left trace u−, namely
the non-entropic shocks.

In order to complete the analysis we need to build a recovery sequence for this
functional: it can be done for solutions with some additional structure (see the
notion of entropy-splittable solution in [3]). It would be sufficient to check that
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these solutions are dense (in energy) in the class of solutions with finite entropy
production, alternatively we should provide some different procedure to produce
a recovery sequence directly for a general solution with finite entropy production.

In both cases it seems that a better understanding of the structure of solutions
with finite entropy production is needed.

The general picture is that solutions with finite entropy production share several
fine properties with solutions with bounded variation, even if in general they do
not belong to BV . It is shown in [7] (in dimension 1) and in [5] in several space
dimensions that under mild nonlinearity assumption on F for any solution of (1)
with finite entropy production we can define a co-dimension 1 rectifiable jump set
J with the following properties:

(1) every (t, x) /∈ J is a point of vanishing mean oscillation;
(2) for Hd-a.e. (t, x) ∈ J there are strong traces u± in L1.

One may wonder if vanishing mean oscillation points are Lebesgue points (at
least Hd-a.e. as it happens for BV functions). A partial result in this direction
has been obtained in [6] for d = 1 and in [8] in several space dimension: in both
cases it is shown that the singular points has co-dimension (at least) 1.

Since the candidate Γ-limit functional H introduced in [3] can be written in
terms of the measures µη, a desirable property that BV solutions enjoy and we
would like to prove for general solutions with finite entropy production is that for
every η the measure µη is concentrated on Ju. This is proven for Burgers equation
in [9], and it is possible to extend this result to general conservation laws in the
case d = 1 with similar techniques [2].

The results in [2, 8, 9] relies on a ’Lagrangian’ description of the solutions of
(1) developed in [4, 8]: inspired by the Lagrangian techniques introduced in [1]
to study the linear continuity equation, we consider the kinetic formulation of
(1) and we provide a decomposition along characteristics of the kinetic function
associated to the solution of (1). A useful feature of this technique is that it allows
to exploit some geometric constraint on the underlying characteristics structure
of these solutions, despite they are a priori merely bounded. Since the geometry
if d = 1 is simpler compared to the case of several space dimensions, this may
explain why, using these techniques, we obtain better results when reducing to
one space dimension.
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Optimization by kinetic equations

Lorenzo Pareschi

Since its introduction n the late 1980s [14], simulated annealing has become a
popular optimization algorithm, and its applications have expanded to many fields,
including artificial intelligence, machine learning, and operations research. The
algorithm was developed as an extension of the Metropolis-Hastings algorithm,
a Monte Carlo method used for simulating complex systems in physics [15], and
adapts the concept of annealing to optimization problems by viewing the process
of slowly cooling a material as a search for the lowest-energy state of the system.

Simulated annealing is similar to other metaheuristic algorithms such as genetic
algorithms, ant colony optimization, particle swarm optimization and consensus
based optimization in that it is based on the idea of exploring a large search space
to find a global optimum without using gradient-based information. However,
simulated annealing is distinct in that it uses a single solution-based probabilistic
approach to accept worse positions in the hope of finding a better one, whereas
other metaheuristic algorithms often use a population-based approach and other
stochastic strategies.

By applying the above concepts, metaheuristic algorithms have been able to
make significant advances in the search for valuable solutions to challenging opti-
mization problems out of reach of traditional (gradient-based) methods. However,
proving the rigorous convergence of metaheuristic optimization algorithms to the
global minimum for non convex functionals, or to some reasonable approximation
of it, remains a challenge. Indeed, metaheuristics involves the creative use of avail-
able resources to find efficient solutions without necessarily relying on a rigorous
mathematical foundation that provides an analytical setting.

On the other hand, metaheuristics share similarities with statistical physics
since they both deal with the complexities of large systems. The principles of
statistical physics are versatile and powerful, providing insight into the behavior
of large systems in a wide range of fields, from materials science to biophysics. By
drawing upon the principles of statistical physics, it may be possible to provide a
solid mathematical foundation to these class of optimization methods and develop
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more effective and efficient optimization algorithms that can handle increasingly
complex problems and larger search spaces.

Mean field equations and kinetic equations are among the concepts in statisti-
cal physics that are most relevant to optimization. Mean field equations describe
how each particle in a system interacts with a theoretical ”average” field created
by all the other particles in the system. This provides insight into the behav-
ior of large systems, making it possible to predict macroscopic properties such
as temperature or pressure. Kinetic equations, on the other hand, describe the
evolution of a particle system, considering the interactions between particles as
instantaneous, microscopic collisions [18]. Recently, these ideas have led to a new
view of methaeuristic optimization by considering the corresponding continuous
dynamics described by appropriate kinetic equations of Boltzmann type [3] and
mean-field type [4, 6, 16, 13] even in constrained contexts [1, 11, 9, 10], multiob-
jective situations [2], or in generalizations to sampling [5]. See [17] for a recent
survey.

In this talk we will focus our attention on one of the most notable examples
of metaheuristics, namely the simulated annealing algorithm. This algorithm was
inspired by the Monte Carlo algorithm developed by Metropolis et al. in the
middle of last century. We show how classical tools of kinetic theory can be used
to describe the Markov process which characterizes the method and show how its
convergence to the global minimum is related to classical functional inequalities
based on the so-called entropy method [8].

Furthermore, the continuous setting based on kinetic PDEs permits to investi-
gate the relationships with Fokker-Planck equations describing the so-called mean-
field Langevin dynamic [7, 12]. In particular, we illustrate how to formally derive
the corresponding mean-field model taking a suitable scaling limit of the linear
kinetic model describing the simulated annealing. This has been generalized to
other types of kinetic equations describing variations of the simulated annealing
method that avoid the acceptance-rejection process. Numerical evidence of such
asymptotic behavior has also been discussed through simulation examples. From
a mathematical viewpoint let us finally mention that several challenging questions
remains open, like estimating the rate of convergence to equilibrium in the differ-
ent functional spaces and analyzing the convergence properties of the Maxwellian
variant here introduced. We leave these aspects to future researches.
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Peculiarities of non-homogeneous conservation laws

Vincent Perrollaz

(joint work with Rinaldo M. Colombo, Abraham Sylla)

It might be surprising to realize that in the context of

(1)

{
∂tu+ ∂xf(x, u) = 0,

u(0, ·) = u0.

the hypotheses of Kruzkov seminal existence result [4] may appear too restrictive.
More specifically in the context of (1) — one space dimension and no source term
— Kruzkov hypotheses include:

(K) sup
(x,u)∈R2

− ∂2xuf(x, u) < +∞.

Even within the context of regular flux functions f , some reasonable models are
not directly covered. For instance, when considering a LWR model for traffic flow
where the number of lanes and the speed limit may vary:

∂tρ(t, x) + ∂x

(
ρ(t, x)vmax(x)

(
1− ρ(t, x)

ρmax(x)

))
= 0,

reasonable assumptions on the functions vmax and ρmax could be

(2) ∀x ∈ R, 0 < v ≤ vmax(x) ≤ v̄, 0 < ρ ≤ ρmax(x) ≤ ρ̄

with ρ′max ∈ C2
c (R) and v′max ∈ C2

c (R). This puts the model out of the scope of a
direct application of Kruzkov existence result.

In [2], we provide an alternative framework of hypotheses on the flux f which al-
lows us to still get a semigroup generated by the entropy solutions. More precisely
we replace hypothesis (K) by

(C) ∀f̄ ∈ R, ∃Ū ∈ R, ∀(x, u) ∈ R
2, |f(x, u)| ≤ f̄ =⇒ |u| ≤ Ū .

Let us briefly explain the role that this coercivity hypothesis play in our construc-
tion. The family of constant functions plays a central role in most techniques in
the case of an x-independent flux. For instance, when combined with a locally
contractive semigroup in L1, it provides a priori L∞ bounds. We detail, using our
hypothesis (C), the construction of an alternative family of — possibly discon-
tinuous — stationary solutions in the context of equation (1). We first make use
of tools of differential topology to build such families for a special class of fluxes
with nice geometric properties. We then use the method of compensated compact-
ness to extend the result to a class of fluxes satisfying (C) (and some technical
hypothesis which we expect could be relaxed).

In addition to the a priori L∞ bounds granted by this family of stationary
solutions, we use the method of vanishing viscosity and again compensated com-
pactness to obtain the existence of a semigroup (SCL

t )t≥0 whose orbits are the

unique maximal entropy solutions of (1). As a byproduct of this construction we
also obtain the existence of a semigroup (SHB

t )t≥0 whose orbits are the unique
maximal viscosity solutions of the following Hamilton-Jacobi equation
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(3)

{
∂tU + f(x, ∂xU) = 0,

U(0, ·) = U0.

Of course, since they are both obtained as singular limits of regular viscous ap-
proximations, those semigroups are shown to be related according to the following
commutative diagram

Uo −→ SHJ
t Uo

∂x
y y ∂x
uo −→ SCL

t uo

where the derivation ∂x is taken in the distributional sense. A somewhat surprising
fact is that the continuity properties and stability properties of the semigroups are
not in full correspondence.

Finally, following [3], we describe why — even in the simplest case where the
flux f is convex in u — the entropy semigroup is actually more singular than in
the x-independent case. This phenomenon appears naturally when investigating
the inverse design sets associated to (1)

IT (w) := {u0 ∈ L∞(R) : SCL
T u0 = w}.

The connection between entropy solutions of equation (1) and viscosity solutions
of the Hamilton-Jacobi equation (3) is key for this analysis.

To be specific, we show in [1] for the case where the flux f does not depend on
x that whenever w ∈ L∞(R) is such that IT (w) 6= ∅ — i.e. w is reachable — then
there is at least one initial data u0 such that the solution t 7→ SCL

t u0 is isentropic
between t = 0 and t = T . Since the isentropic solutions are in some sense the
topological closure of the classical solutions, this means that to understand the
range of the semigroup one needs only to consider the classical solutions even
though the blowup in time is generic with respect to initial data. In contrast, we
show in [3] that when the flux f does depend on x then some states are reachable
but a minimal entropy price has to be paid to reach them.
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Understanding Consensus-Based Optimization:
Two Analytical Perspectives

Konstantin Riedl

(joint work with Massimo Fornasier and Timo Klock)

Consensus-based optimization (CBO) [1] is a multi-particle derivative-free opti-
mization method capable of globally minimizing high-dimensional nonconvex and
nonsmooth functions E : Rd → R, i.e., solving problems of the form

x∗ ∈ argminx∈Rd E(x).
Inspired by consensus dynamics and opinion formation, CBO methods employ a
finite number of agentsX1, . . . , XN to explore the domain and to form a consensus
about the global minimizer x∗ as time passes. More concretely, for a discrete time
step size ∆t > 0 and user-specified parameters α, λ, σ > 0, the time-discrete
evolution of the i-th particle X i is defined according to the iterative update rule

(1) X i
k = X i

k−1 −∆tλ
(
X i

k−1 − xEα(ρ̂
N
k−1)

)
+ σdiag

(
X i

k−1 − xEα(ρ̂
N
k−1)

)
Bi

k,

where ρ̂Nk = 1
N

∑N
i=1 δXi

k

is the empirical measure of the particles at time step k

and where Bi
k are i.i.d. Gaussian random vectors with zero mean and covariance

∆tId. Moreover, xEα denotes the so-called consensus point, a weighted average of
the particles’ positions, which is computed for a measure ̺ ∈ P(Rd) according to

(2) xEα(̺) =

∫
x

ωE
α(x)

‖ωE
α‖L1(̺)

d̺(x), with ωE
α(x) := exp(−αE(x)).

In what follows and as illustrated in Figure 1, we provide insights into the
internal mechanisms of CBO from two analytical perspectives.

(a) CBO convexifies any nonconvex prob-
lem in the mean-field limit, see [2, 3].

(b) CBO can be interpreted as a stochas-
tic relaxation of gradient descent, see [4].

Figure 1. Illustrations of the internal mechanisms of CBO,
which are responsible for the success of the method.
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First, based on an experimentally supported intuition that, as the number of
particles goes to infinity in the continuous-time analogous of (1), i.e., in the mean-
field limit, which is captured by the nonlinear nonlocal Fokker-Planck equation

(3) ∂tρt = λdiv
((
x− xEα(ρt)

)
ρt
)
+
σ2

2

d∑

k=1

∂kk

((
x− xEα(ρt)

)2
kk
ρt

)
,

CBO always performs a gradient descent of the Wasserstein distance to the global
minimizer (see Figure 1a), we present a novel technique for proving global con-
vergence in mean-field law for a rich class of objective functions. More precisely,
when analyzing the quantity W 2

2 (ρt, δx∗) we observe the following.

Theorem 1 ([2, Theorem 12] and [3, Theorem 2]). Let the objective E ∈ C(Rd)
satisfy ‖x− x∗‖∞≤ (E(x) − inf E)ν/η for all x ∈ R

d with constants η, ν > 0. More-

over, let ρ0 ∈ P4(R
d) with x∗ ∈ supp(ρ0). Then, for any ε > 0, γ ∈ (0, 1) and with

parameters λ, σ > 0 obeying 2λ > σ2, there exists α0 = α0(ε, γ, λ, σ, d, ν, η, ρ0)
such that for all α ≥ α0 a weak solution (ρt)t∈[0,T∗] to (3) satisfies W 2

2 (ρT , δx∗) =

ε, where T ∈
[

1−γ
1+γ/2T

∗, T ∗] with T ∗ = 1
(1−γ)(2λ−σ2) log

(
W 2

2 (ρ0, δx∗)/ε
)
. Further-

more, on the time interval [0, T ], it holds

W 2
2 (ρt, δx∗) ≤W 2

2 (ρ0, δx∗) exp
(
−(1− γ)

(
2λ− σ2

)
t
)
.(4)

From this result it becomes apparent that the hardness of any global optimization
problem is necessarily encoded in the mean-field approximation, i.e., in the way
how the empirical measure of the finite particle dynamics is used to approximate
the mean-field limit. In consideration of the central significance of such approxi-
mation with regards to the overall computational complexity of the implemented
numerical scheme, we discuss a probabilistic quantitative result about the con-
vergence of the interacting particle system towards the corresponding mean-field
dynamics, for which we refer to [2, Proposition 16]. While the observed conver-
gence rate is of order N−1 in the number of particles N , the constant in this ap-
proximation depends exponentially on the parameter α, which in turn depends in
worst-case scenarios linearly on the dimension d. Characterizing more insightfully
the dependence of α on properties of specific classes of objectives remains an excit-
ing open problem for future research. A combination of the former results yields
a holistic convergence proof of CBO methods on the plane, see [2, Theorem 14].
This analytical framework has allowed to obtain convergence guarantees for several
variants of CBO including CBO with memory effects and local gradients [5], CBO
with truncated noise [6], constrained CBO [7], CBO for multi-objective optimiza-
tion problems [8], CBO for saddle point problems [9], and FedCBO for clustered
federated learning problems [10]. Moreover, it may permit to prove convergence
for other metaheuristics, such as the particle swarm optimization method [11].

Second, by turning our back on the previous mean-field-focused analysis point
of view and by leveraging a completely nonsmooth analysis, which combines a
novel quantitative version of the Laplace principle (log-sum-exp trick) and the
minimizing movement scheme (proximal iteration), we interpret CBO as a sto-
chastic relaxation of gradient descent (see Figure 1b), thereby providing a novel
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analytical perspective on the theoretical understanding of gradient-based learning
algorithms. We observe that through communication of the particles, CBO ex-
hibits a stochastic gradient descent (SGD)-like behavior despite solely relying on
evaluations of the objective function. More rigorously, it holds the following.

Theorem 2 ([4, Theorem 1]). Let the objective E ∈ C1(Rd) be L-smooth, Λ-
convex and satisfy minimal regularity assumptions. Then, for τ > 0 (satisfying
τ < 1/(−2Λ) if Λ < 0) and with parameters α, λ, σ,∆t > 0 such that α & 1

τ d log d,

the iterates (xCBO
k )k=0,...,K with xCBO

k := xEα(ρ̂
N
k ) follow a stochastically perturbed

GD, i.e., they obey

xCBO
k = xCBO

k−1 − τ∇E(xCBO
k−1 ) + gk,

where gk is stochastic noise fulfilling for each k = 1, . . . ,K with high probability
the quantitative estimate ‖gk‖2 = O

(
|λ− 1/∆t|+σ

√
∆t+

√
τ/α+N−1/2

)
+O(τ).

The fundamental value of such link between CBO and SGD lies in the formerly
established fact that CBO is provably globally convergent, hence, on the one side,
offering a novel explanation for the success of stochastic relaxations of gradient
descent, and, on the other side and contrary to the conventional wisdom for which
zero-order methods ought to be inefficient or not to possess generalization abili-
ties, unveiling an intrinsic gradient descent nature of such heuristics. With this
we furnish insights that explain how stochastic perturbations of gradient descent
overcome energy barriers and reach deep levels of nonconvex functions.
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Modeling and management of gas flows across junctions

Massimiliano Daniele Rosini

(joint work with Andrea Corli, Ulrich Razafison)

This presentation focuses on the mathematical theory of flows on networks, which
finds diverse applications in areas such as vehicular traffic, supply chains, and data
networks. Specifically addressing gas flows, the talk delves into the challenges of
modeling and mathematically analyzing these flows at different nodes connecting
pipes with possibly different sections. This includes the consideration of various
devices like junctions, compressors, valves and control valves.

We underline that control and optimization theory plays a crucial role in gas
flows on networks, given its wide-ranging applications in various engineering and
industrial systems.

A common challenge encountered in these systems is the phenomenon of chat-
tering of the devices, characterized by a rapid switching on and off at critical
states. This behavior corresponds to the mathematical concept of coherence of
the corresponding coupling Riemann solver (c-Riemann solver). In control theory,
a similar phenomenon is represented by a bang-bang controller.

Our primary objective is to establish a general framework for constructing and
studying properties of a c-Riemann solver. The solver’s properties, including in-
variant domains, L1

loc-continuity, consistency, and coherence, are examined and
applied to widely used models.

We consider along the pipes an isothermal plug flow as described by the one-
dimensional Euler equations, which express conservation of mass and linear mo-
mentum in the absence of viscous effects. The Riemann problem, a critical com-
ponent in solving these equations, is introduced along with the Rankine-Hugoniot
conditions and Lax curves. At the nodes we consider c-Riemann solvers, detailing
the notation and definitions.

Special attention is given to self-similar c-Riemann solvers, particularly in sce-
narios where a gas flows through a device, causing a loss of momentum conser-
vation. On the other the conservation of mass at the node is typically ensured,
leading to the definition of coupling functions and the corresponding c-Riemann
solvers.

The presentation explores then the coherence of c-Riemann solvers, emphasizing
its importance as a stability property. Various properties and sufficient conditions
for coherence are discussed, providing insights into the analytical and numerical
stability of solutions. The talk concludes with a comprehensive overview of valves,
showcasing examples and addressing challenges related to coherence, consistency,
and L1

loc-continuity. Theoretical and practical approaches to mitigate or to avoid
chattering in valves are presented, offering a glimpse into the ongoing research
endeavors in this fascinating and complex domain.
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The turnpike property for mean-field optimal control problems

Chiara Segala

(joint work with Martin Gugat, Michael Herty)

In this work we study the turnpike phenomenon for optimal control problems with
mean field dynamics that are obtained as the limit N → ∞ of systems governed
by a large number N of ordinary differential equations. We show that the optimal
control problems with with large time horizons give rise to a turnpike structure of
the optimal state and the optimal control. For the proof, we use the fact that the
turnpike structure for the problems on the level of ordinary differential equations
is preserved under the corresponding mean-field limit.

1. The optimal control problem

From a mathematical point of view, a multiagent control problem is described
by minimization of an integral objective functional subject to a constraint that
is the complex dynamic depicted by a system of ordinary differential equations
(ODE). The formulation of an interacting particle system at a microscopic level
requires the study of large-scale systems of agents (or particles) and it requires
a considerable effort both from a theoretical and numerical point of view. We
may consider a different level of description, that is the derivation of mesoscopic
or mean-field approximations of the original dynamic. Here, the density of the
particles is obtained as the number of particles tends to infinity. Of particular
interest is therefore the design of controls in the mean-field control approaches.
In this work, we focus on the turnpike phenomenon for optimal control problems.
This topic has been studied recently for example in [1, 2, 3], and it concerns
relations between the solutions of dynamic optimal control problems with objective
functionals of tracking type and the corresponding static optimal control problems.
The turnpike property states that the distance between the dynamic and the static
optimal solution is small, in particular, for large time intervals. Hence, it allows
to use this information about the structure of the dynamic optimal control to
reduce the cost to obtain a numerical approximation by using the static optimal
control that can be obtained more easily. In this work we consider the turnpike
property with interior decay, which describes the situation that in the interior of
the time interval, the distance between the dynamic optimal control/state pair
and the corresponding static solution is often very small for sufficiently large time
horizons. We are interested in particular on the question whether the turnpike
property of a system persists in the limit of infinitely many ODEs and under
which conditions such a turnpike property holds true on the mean-field level.

We consider the control of high-dimensional nonlinear dynamics accounting for
the evolution of N agents at the microscopic level and, the mean-field dynamics
given by a non-local transport equation for the density of particles at position
x ∈ R

d and time t ∈ R
+. The initial particle density µ0(x) is given and the

control action is modeled by an additive term in the partial differential equation
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(PDE). More specifically, we consider a PDE of the type

(1) ∂tµ(t, x) + ∂x

(
((P ∗ µ)(t, x) + u(t, x)) µ(t, x)

)
= 0, µ(a, x) = µ0(x),

where ∗ denotes the convolution operator, the function P is given, and the real
positive number a is the initial time. We consider an optimal control problem for
a finite large time horizon, subjected to system (1). The objective function that
we want to minimize depends both on the control and the state

J(a, b)(µ, u) =

∫ b

a

f(µ(t, x), u(t, x)) dt,

for a given real-valued function f

(2) f(µ, u) =

∫

Rd

(L(x) + Ψ(u(t, x))) dµ(t, x),

and a time interval [a, b] with a < b real positive numbers. We define the para-
metric mean-field optimization problem

Q(a, b, µ0) : min
u

J(a, b)(µ, u)

subject to (1). We define the optimal value of the mean-field limit problem
Q(a, b, µ0) as V(a, b, µ0). The existence of solutions for Q(a, b, µ0) is guaranteed
by Theorem 5.1 in [4].

2. The strict dissipativity inequality

We assume that the optimal control problem satisfies a strict dissipativity assump-
tion, i.e. for all τ ∈ [a, b]

∫ τ

a

f(µ(t, x), u(t, x))dt

≥
∫ τ

a

∫

Rd

(
‖x− ψ(σ)‖2 + ‖u(t, x)− u(σ)‖2

)
dµ(t, x) dt,

(3)

where f is the functional in (2).

3. The cheap control condition

For our analysis, a cheap control condition is essential. It requires that the optimal
values are bounded in terms of the distance between the initial state and the desired
static state. Given C0 > 0, for all initial times a ≥ 0, terminal times b > a and
initial states µ(a, x) = µ0(x) ∈ P1(R

d), we have

(4) V(a, b, µ0) ≤ C0
∫

Rd

‖x− ψ(σ)‖ dµ0(x)

with

(5) C0 =
1

β

(
CL + βCΨ + 2CPCΨ

)
.
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4. The turnpike property with interior decay

We present a turnpike property for the optimal control problem Q(N, a, b, ψ0)
that follows from the dissipativity inequality and the cheap control condition. As
the name indicates, this property focuses on the situation that the set where the
distance between the optimal dynamic and the optimal static solution is small for
large b is located in final part of the time interval [a, b].

Theorem 1. Let λ ∈ (0, 1) be given, and the interval [a, b] with b > 0. Consider
the quantity

A∗(b) =

∫ b

a+λ(b−a)

∫

Rd

(
‖x− ψ(σ)‖2 + ‖û(a,b,µ0)(t, x)− u(σ)‖2

)
dµ̂(a,b,µ0)(t, x) dt,

where we define as µ̂(a,b,µ0)(t, x) and û(a,b,µ0)(t, x) the density and control respec-

tively at time t with initial condition µ(a, x) = µ0(x) = µ̂(a,b,µ0)(a, x). Then the

optimization problem Q(a, b, µ0) has a turnpike property with interior decay in
the sense that

A∗(b) ≤
C2
0

λ(b − a)

∫

Rd

‖x− ψ(σ)‖ dµ(a, x).

where C0 is as in (5).

Providing suitable assumptions to guarantee the existence of solutions in the
mean-field limit, we have proven the turnpike property on a mean-field level. Pos-
sible future work includes the numerical simulation and the extension e.g. to the
case that the microscopic model is governed by a second-order dynamics.
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Regularity and Control for Conservation Laws with Space
Discontinuous Flux

Luca Talamini

(joint work with Fabio Ancona)

We consider the Cauchy problem for the scalar conservation law

(1)
∂tu(t, x) + ∂xf(u(t, x), x) = 0, (t, x) ∈ [0, T ]× R;

u(0, x) = u0(x), x ∈ R
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where f is a discontinuous function

f(u, x) =

{
fl(u), x < 0,

fr(u), x > 0

Here fl, fr are strictly convex maps. Conservation laws with discontinuous flux
have numerous applications; two well known examples are traffic flow with hetero-
geneous road conditions and two phase flow in porous media.

The discontinuity of the flux naturally leads to the study of infinitely many
L1 contractive semigroups SAB

t , each one associated to particular pair of values,
a connection (A,B), such that fl(A) = fr(B) and f ′

l (A) ≤ 0 ≤ f ′
r(B) (this is

a particular example of an L1 dissipative germ, see [5]). Connections (A,B) are
introduced in [1], and the corresponding solutions are the ones that dissipate the
additional generalized Kružkov entropy

ηAB =

{
|u−A| , x < 0,

|u−B| , x > 0.

In [3] and [4] we are mainly interested in a theoretical analysis of the solutions of
(1) associated to a connection (A,B) and we address both control and regularity
problems.

Regularity and Exact Controllability. The attainable set at time T > 0 is
defined by

(2) AAB(T )
.
=
{
SAB
T u0

∣∣ u0 ∈ L∞(R)
}
.

Oleinik Estimates and Regularity. To understand the structure of AAB(T ) we first
prove some adapted Oleinik estimates. In order to fix the ideas, assume x < 0 and
introduce the auxiliary characteristics lines :

ϑx(t)
.
=

{
x− (T − t) · f ′

l (ω(x)), if τ(x) ≤ t ≤ T ,

(t− τ(x)) · f ′
r

(
πl
r,−(ω(x))

)
, if 0 ≤ t < τ(x)

, t ∈ [0, T ].

These are lines which proceed with the characteristic speed until they are refracted
by the interaction with the interface {x = 0} at time τ(x), according to the unique
transition map πl

r,− such that the Rankine-Hugoniot conditions are satisfied. It
should be noted that these are not real characteristic of the solution due to the
presence of undercompressive zones at {x = 0}.

A first point that we make is that if ω ∈ AAB(T ), then the lines ϑx(t) are
monotone in x, although they are not characteristics. In turn, this yields a bound
of the form

(3) ∂xω ≤ gTL1 in D′(R−)

where gT : R
− → R

+ is a continuous function with possibly a non integrable
singularity in x = 0, i.e. it can happen that limx→0− g(x) = +∞ and moreover
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Figure 1. A shock in the solution is necessary to create the
discontinuity at (T,R).

g /∈ L1(R−) (only when f ′
l (A) · f ′

r(B) = 0). In fact in general ω /∈ BV (R).
Nevertheless, a calculation shows that

f ′
l (x) · gT (x) ≤ O(1) · 1

T |x|1/3
which is integrable. Repeating the argument for x > 0 yields f(ω) ∈ BV (R). From
this one also deduces Lipschitz in time regularity for the solution map t 7→ u(t, ·)
for uniformly positive times.

Structure of AAB(T ). As a second result, we fully characterize the attainable set
AAB(T ) by the above Oleinik-like estimates plus additional geometric constraints.
To give a flavour of the geometric constraints, consider a profile ω ∈ AAB(T ) as in
Figure 1. To create the discontinuity at the point (T,R), a shock must be present
in the solution before time T . To construct this shock one needs the shaded area to
be big enough, and this translates into a condition like ω(R+) ≤ uR, for some state
uR. The tricky part is to characterize uR and to show that ω(R+) ≤ uR is also a
necessary condition. In [3] we characterize uR by a duality procedure introducing
a natural backward semigroup (see (4)) and we show that ω(R+) ≤ uR is also a
necessary condition by using an elementary comparison argument.

Initial Data Identification and Backward Semigroup. For ω ∈ L∞(R), our
goal will be to characterize the set

IAB
T ω =

{
u0 ∈ L∞(R)

∣∣ SAB
T u0 = ω

}
.

In particular, in [4] we prove that IAB
T ω is either a singleton or an infinite dimen-

sional cone. A distinctive feature is that this cone can be non-convex: this is in
contrast with the classical case of a single conservation law with convex flux, or
even a flux smoothly depending on space, in which the corresponding set of initial
data is always a convex cone (see [6], [7]).

An important point is the construction of a backward semigroup operator S [AB]−
T ,

through which the vertex of the cone IAB
T ω can be characterized as the backward

evolution of ω: we prove that the vertex is exactly S [AB]−
T ω. In addition to helping

in the proof, we believe that the backward operator has an independent theoretical
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interest by itself, therefore we sketch its construction. For a connection (A,B) we
define the dual objects:

(i) a dual flux, defined by f(u, x)
.
= f(−x, u);

(ii) a dual connection (A,B), which is uniquely determined by being a con-
nection for the flux f(u, x) with fr(B) = fr(A);

(iii) and a dual semigroup S̃B̄Ā
T , of AB entropy solutions for f .

Then the backward AB-semigroup S [AB]−
T : L∞ → L∞ is defined by

(4) S [AB]−
T ω(x) := S̃ĀB̄

T (ω(−·))(−x).
Finally, using the backward AB semigroup, we prove the equivalence

ω ∈ AAB(T ) ⇐⇒ SAB
T ◦ S [AB]−

T ω = ω

providing a more intrinsic, alternative characterization of the attainable set.
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Optimal control of scalar conservation law with particle
approximations

Oliver Tse

This talk reports on recent (unpublished) work that introduces a convenient ap-
proach to analyzing and numerically solving optimal control problems of the form

(OCP) inf J (u) := Φ(ρ(T )Leb), u ∈ U (Ω,M),

where [0,∞) ∋ t 7→ ρ(t) ∈ L1(R) is a solution to a scalar conservation law

(SCL) ∂tρ+ ∂xf(ρ) = 0, ρ(0) = u,

and

U (Ω,M) :=

{
u ∈ BV (Ω) : 0 ≤ u ≤M,

∫

Ω

u dx = 1

}
, M ∈ (0,+∞),
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is the family of admissible controls. Here, the terminal cost Φ : P(R) → R∪{+∞}
is a functional on the space of probability measures P(R) over R, which we assume
to be Wp-continuous, i.e. continuous w.r.t. the p-Wasserstein metric, and f(r) =
rβ(r) is the flux function, with β : [0,∞) → [0,∞) being a Lipschitz non-increasing
mobility function with β(0) = βmax > 0, β ≡ 0 on [M,+∞) and smooth on [0,M).

An example of a terminal cost Φ and mobility β to keep in mind is

Pp(R) ∋ µ 7→ Φ(µ) =
1

p
W

p
p(µ, ν), ν ∈ Pp(R),

[0,∞) ∋ r 7→ β(r) = (1− r)+,

where Pp(R), p ∈ [1,∞] is the space of probability measures with finite p-moments.

While the solution theory for (SCL) is by now rather mature, the development of
optimal control theories for such equations has been slow due to issues regarding
the non-differentiability, in L1, of flows generated by solutions to (SCL), thus
rendering standard PDE constrained optimal control theory incompatible. Indeed,
although the map L1 ∩ L∞(R) ∋ u 7→ ρ ∈ C([0, T ];L1(R)) can be shown to
be locally Lipschitz, it is in general not directionally differentiable if ρ = ρ[u]
contains shocks [8]. For this reason, new notions of differentiability (eg. shift-
differentiability) had to be developed to deal with the issues [1, 2, 3, 6, 7], which
subsequently led to rigorous studies of optimal control problems for conservation
laws, and for conservation laws on networks used in modeling, i.a., traffic flow,
gas networks, and product flow in supply chains. However, these new notions of
differentiability are often difficult to work with and this study originates from the
desire to address these issues.

Using a (follow-the-leader) discrete particle approximation of (SCL), one obtains
a discrete optimal control problem

inf
x̄∈K n(Ω,M)

J n(x̄) := Φ(px(T )Leb), M ∈ (0,∞),(OCPn)

where x = x(t) is the unique solution of deterministic particle approximation

ẋi = β(ρxi ), i = 0, . . . , n− 1 ,

ẋn = βmax ,
x(0) = x̄,(DPAn)

and the discrete density is defined by

p
x :=

n−1∑

i=0

ρxi 1Kx

i
, Kx

i = [xi, xi+1),

where

ρxi :=
h

xi+1 − xi
i = 0, . . . , n− 1, ρn = 0, h = 1/n.

Here,

K
n(Ω,M) :=

{
x ∈ R

n+1 :M (xi+1 − xi) ≥ h, i = 0, . . . , n− 1
}
.

denotes the family of admissible controls x̄.
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The discrete particle approximation (DPAn) is known to converge to the Kružkov
entropy solution of (SCL) [4, 5] and allows one to establish stability estimates
w.r.t. the p-Wasserstein metric. In particular, one obtains the following result:

Result 1: Let x,y be solutions of (DPAn) with initial data x̄, ȳ ∈ K
n(Ω,M),

respectively. Then,

Wp(p
y(t)Leb, px(t)Leb) ≤ W∞(pȳ(t)Leb, px̄(t)Leb) ∀ t ≥ 0.

The convergence of (DPAn) consequently provides the continuous counterpart of
the stability estimate:

Wp(St(w)Leb, St(u)Leb) ≤ W∞(w Leb, u Leb) ∀ t ≥ 0,

where u 7→ St(u) is the solution operator associated to (SCL).

Moreover, the discrete optimal control problem (OCPn) is shown to admit a
minimizer x̄n ∈ K n(Ω,M) for each n ≥ 1 such that px̄

n ∈ U (Ω,M). In addition,
the sequence (px̄

n

)n≥1 admits an accumulation point u∗ ∈ U (Ω,M) that turns
out to be a minimizer of the continuous optimal control problem (OCP), which
is a consequence of the following Γ -convergence result, justifying the role of the
deterministic particle approximation (DPAn) as a surrogate model for the optimal
control problem:

Result 2: The family of functionals {Ĵ n}n≥1 defined by

Ĵ n(u) :=

{
J n(x̄) if u = px̄, x̄ ∈ K n(Ω,M),

+∞ otherwise,
n ≥ 1,

is (weakly) equi-coercive and Γweak-L1-converges to J .

In practice, one would like to numerically compute a minimizer of (OCP). The
previous result suggests that the numerical solution of (OCPn) can be used as a
proxy for obtaining a minimizer of (OCP). One way of obtaining a minimizer of
(OCPn) is utilizing an adjoint-based approach, which can be easily executed due
to the finite-dimensional nature of the problem.

The last part of the talk was devoted to an initial attempt to link the discrete
adjoint with its continuous counterpart and highlight the issues encountered along
the way. Under very restrictive assumptions on the behavior of the state ρ, one
obtains an equation governing the continuous adjoint equation. This leads to the
following conjecture for general states:

Conjecture: Let u ∈ U (Ω,M) and ρ be its corresponding state satisfying (SCL).
Then, the associated adjoint equation for the adjoint state η reads

∂t(ηρ) + ∂x(ηP (ρ)) = 0,

subjected to an appropriate terminal condition, where P (s) = sf ′(s)− f(s).
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Neural Network approaches for High-dimensional Optimal
Control Problems

Deepanshu Verma

Optimal Control (OC) problems are pervasive in various fields, from finance to ro-
botics, aiming to find a control policy minimizing a defined control objective func-
tional. Traditionally, Dynamic Programming is employed to solve these problems,
seeking the value function that assigns each system state the optimal cost-to-go
and satisfies the Hamilton-Jacobi-Bellman (HJB) equation.

The challenge lies in solving the HJB PDE for the value function. Traditional
numerical schemes suffer from the Curse-of- Dimensionality (CoD), where compu-
tational complexity increases exponentially with problem dimension. In order to
mitigate the CoD, we not only need to alleviate the need for spatial discretization
but also to effectively parameterize the value function in high-dimensions. This is
achieved by parameterizing the value function using NNs.

In [1, 2], we present neural-HJB approach for solving high-dimensional OC
(stochastic and deterministic) problems informed by control theory. Our method
leverages Pontryagin’s maximum principle to guide system sampling and obtain
the optimal control in real-time from the value function via feedback form. No-
tably, our learning is unsupervised , requiring no prior data to learn value function.
In comparison with Reinforcement Learning, a popular unsupervised learning ap-
proach for approximate policies. Our neural-HJB approach demonstrates improved
accuracy, reduced time-to-solution, and fewer PDE solves compared to RL while
approximating superior policies.
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Kinetic Modelling and Control of Multiagent Systems with
Missing Information

Mattia Zanella

Kinetic equations play a leading role in the modelling of large systems of interacting
particles/agents with a recognized effectiveness in describing real world phenomena
ranging from plasma physics to multi-agent dynamics. The derivation of these
models has often to deal with physical, or even social, forces that are deduced
empirically and of which we have limited information [1]. To produce realistic
descriptions of the underlying systems, it is of paramount importance to quantify
the propagation of uncertain quantities across the scales.

We concentrate on the interplay of this class of models with collective phe-
nomena in life and social sciences, where the assessment of uncertainties in data
assimilation is crucial to design efficient interventions. Furthermore, to discuss the
mathematical interface of this class of models with available data, we derive the
evolution of observable quantities based on suitable macroscopic limits of classical
kinetic theory [2, 3]. Finally, we analyze how the introduction of robust control
strategies leads to the damping of the uncertainties characterizing the system at
the macroscopic level [4].
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Sidewise control

Enrique Zuazua

Inspired on [1] and [4], we explored the lateral or sidewise control properties of
1-dimensional waves, a concept applicable to any spatial dimension. Drawing par-
allels with classical control and inverse problems in wave propagation, our focus
lies in influencing the behavior of waves on a portion of the domain boundary
through localized control actions on a distinct subset of the boundary. Unlike
classical problems, our objective is not the control of wave dynamics within the
domain but rather their boundary traces, constituting a goal-oriented controlla-
bility problem.

In the one-dimensional scenario, the typical aim is to govern the trace on one
end of the string by means of a control action at the other end.

Utilizing duality, we reformulated the lateral control problem, into a pertinent
observability inequality. This is applicable in any space dimension. This inequality
involves estimating non-homogeneous boundary traces of waves on a specific subset
of the boundary using measurements acquired on a different one. These inequalities
pose novel challenges that diverge from traditional techniques in the field, such
as Carleman inequalities, non-harmonic Fourier series, microlocal analysis, and
multipliers.

We introduced a distinctive one-dimensional solution method grounded in side-
wise energy propagation estimates, leading to a complete and precise solution.
This methodology extends to address 1-dimensional wave equations featuring BV-
variable coefficients. By combining it with fixed-point techniques as in [5], this
allows handling 1-dimensional semilinear wave equations.

In the multi-dimensional scenario, building upon [3], we demonstrated how
Fourier series decomposition facilitates addressing the problem, resulting in lateral
controllability properties in rectangular domains. Controls are applied on one side,
influencing dynamics on the opposite side. However, the attained results exhibit
an infinite loss (in Sobolev terms) on observed norms and controlled sources. To
deal with more general geometries, we introduced a geometric control condition of
microlocal nature, ensuring control towards targets defined on concave subsets of
the boundary of suitable domains.

Finally, we delved into the parabolic counterpart, introducing a novel transmu-
tation formula and establishing a connection between wave and heat equations, as
presented in [2].
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Abstract. The Workshop ‘Mathematical Logic: Proof Theory, Construc-
tive Mathematics’ focused on proof-theoretic research on the foundations of
mathematics, on the extraction of explicit computational content from given
proofs in core areas of ordinary mathematics using proof-theoretic methods
as well as on topics in proof complexity. The workshop contributed to the
following research strands:

• Interactions between foundations and applications.
• Proof mining.
• Constructive and semi-constructive reasoning.
• Proof theory and theoretical computer science.
• Structural proof theory.
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Introduction by the Organizers

The workshop Mathematical Logic: Proof Theory, Constructive Mathematics was
held November 12-17, 2023 in a hybrid format due to the Corona pandemic. It
had 46 participants at the Oberwolfach Institute and 4 virtual participants who
were connected via ZOOM. The program consisted of 23 talks of 40 minutes (2 of
which were given via ZOOM).

The purpose of the workshop was

To promote the interaction between the foundations of mathematics and applica-
tions to mathematics as done for example in the field of ‘proof mining’. M. Neri,
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P. Oliva and T. Powell talked on the very recent novel development of apply-
ing proof-theoretic proof mining techniques in the context of probability theory.
N. Pischke extended the framework of previously existing logical metatheorems
for proof mining to include concepts such as dual and bidual spaces of a Banach
space, gradients of uniformly Fréchet differentiable convex functions and their
Fenchel conjugates and, finally, Bregman distances which allows one to treat for
the first time important algorithms in optimization which compute zeros of maxi-
mally monotone operators in Banach spaces. P. Pinto used a concrete proof mining
(of a celebrated theorem of S. Reich) due to Kohlenbach and Sipoş to generalize
Reich’s result (together with a quantitative analysis) to a newly defined class of
uniformly smooth and convex hyperbolic spaces (which covers CAT(0)-spaces as a
special case). L. Leuştean gave a survey on recently extracted effective rates of as-
ymptotic regularity in optimization with a special focus on case where linear rates
can be obtained using proof-mining methods. This topic was further extended in
the talk by H. Cheval who, moreover, discussed the potential use of proof assistants
such as LEAN in partially automatizing parts of the mining process.

A. Sipoş gave a quantitative treatment of the class of super strongly nonexpan-
sive mappings which was recently introduced by Liu et al. as a counterpart to
maximally monotone and uniformly monotone operators. This leads to a quan-
titative inconsistent feasibility result which was even qualitatively new. Talks on
the interplay between foundational research in the context of reverse mathemat-
ics (RM) and core mathematics where given by J. Aguilera, who spoke about
recent results on the reverse mathematics of systems of determinacy provable in
second-order arithmetic and on some which go beyond it, and by S. Sanders, who
studied, in particular, the status of various weak forms of continuity in the context
of higher order reverse mathematics. V. Brattka’s talk discussed a number of uni-
form dichotomies for problems in the Weihrauch lattice. M. Baaz showed that a
Skolemization method due to P. Andrews - and used prominently in the context of
resolution - can have a non-elementary speed up over the standard Skolemization
method. R. Kahle and I. Oitavem talked about a problem in the proof complexity
of a Hilbert-type system for propositional logic and for combinatorial logic. S. Ne-
gri developed a natural deduction calculus for Gurevich logic and related it to a
previously proposed cut-free sequent calculus to prove a normalization result.

To explore connections between proof theory, constructive formal systems and com-
puter science. M. Fujiwara’s talk investigated the formula classes Uk, Ek, intro-
duced in 2004 by Akama et al., from the point of view of the standard transforma-
tion procedure for prenex normalization showing that they are exactly the classes
of formulas induced by Σk and Πk resp. via these transformations. M.E. Maietti
proved that the formal system for the ‘Minimalist Foundation for Constructive
Mathematics’, introduced in 2005 by herself and G. Sambin, is equiconsistent
with its extension by the law of the excluded middle. I. van der Giessen presented
an intuitionistic version of Gödel-Löb logic that includes both modalities Box and
Diamond, and allows for a Gentzen-Gödel negative translation of its classical coun-
terpart. P. Schuster (jww G. Fellin) talked about a generalization of Glivenko’s
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theorem to an arbitrary nucleus and to an inductively generated abstract conse-
quence relation. M. Zorzi presented extensional proof systems for modal logics,
focussing on a “geometric” approach that entails a notion of position.

To investigate further the connections between logic and computational complex-
ity. E. Jeřábek’s talk addressed the question of characterizing and axiomatizing
ordered rings that are existential integer parts of real-closed exponential fields,
and especially the first-order theory of such rings. P. Pudlák discussed implicit
proof systems for propositional logic, and the use of iterated implicit proof systems
to capture self-consistency statements. N. Thapen presented first-order theories
of bounded arithmetic for semi-algebraic reasoning about polynomial inequalities,
such as used by the Sum-of-Squares (SoS) proof system. M. Müller presented a
proof of the independence of circuit-lower bounds for nondeterministic exponential
time from theories of bounded arithmetic.

Acknowledgement: The workshop organizers would like to thank the MFO for
supporting the participation of graduate students and recent post docs in the
workshop via the Oberwolfach Leibniz Graduate Student program.
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Abstracts

On a shortest proof of ϕ→ ϕ

Reinhard Kahle, Isabel Oitavem

(joint work with Paulo Guilherme Santos)

1. The standard proof of ϕ→ ϕ in a Hilbert-style calculus

Let us consider the Pure Positive Implication Propositional Calculus in a Hilbert-
style calculus, based on Frege’s axioms for implication [2]:

⊢ ϕ→ (ψ → ϕ) (F1)

⊢ (ϕ→ (ψ → χ)) → ((ϕ→ ψ) → (ϕ→ χ)) (F2)

The only rule is Modus ponens (MP).
Although not an axiom, ϕ→ ϕ is a derivable formula:

Theorem. ϕ→ ϕ is derivable, for every formula ϕ.

Proof. Consider the derivation D1:

1 ⊢ (ϕ → ((ϕ → ϕ) → ϕ)) → ((ϕ → (ϕ → ϕ)) → (ϕ → ϕ)) (F2)

2 ⊢ ϕ → ((ϕ → ϕ) → ϕ) (F1)

3 ⊢ (ϕ → (ϕ → ϕ)) → (ϕ → ϕ) MP[1,2]

4 ⊢ ϕ → (ϕ → ϕ) (F1)

5 ⊢ ϕ → ϕ MP[3,4]
�

We call D1 the standard proof of ϕ→ ϕ (for the given axiomatization).
Some historical notes concerning the discovery of this proof can be found in [5].
Is D1 the shortest proof of ϕ→ ϕ?
Of course, this question makes sense only, when the formal system is fixed, and

when an appropriate measure of length is defined.
We consider the formal system described above, and we focus on the measure

M1 which counts the lines of the proof. For instance M1(D1) = 5.
It is an easy combinatorial exercise to see that there is no shorter proof of

ϕ→ ϕ, for an arbitrary formula ϕ, in this formal system.
However, could there exist shorter proofs than D1 for special instances of ϕ?

2. The special case (ϕ→ ϕ) → (ϕ→ ϕ)

Consider D2:

1 ⊢ (ϕ → (ϕ → ϕ)) → ((ϕ → ϕ) → (ϕ → ϕ)) (F2)

2 ⊢ ϕ → (ϕ → ϕ) (F1)

3 ⊢ (ϕ → ϕ) → (ϕ → ϕ) MP[1,2]
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For the length we have, M1(D2) = 3 < M1(D1).
Is this the only “special case”? We answer this question via Combinatory Logic.

3. Combinatory Logic and the Curry-Howard Correspondence

Schönfinkel [6] and Curry [1] developed the framework of Combinatory Logic which
turned out to be a “computational counterpart” of the Hilbert-style calculus with
Frege’s axioms (F1) and (F2) for implication.

Combinatory terms are build inductively from the two constants, K and S,
variables (X,Y, · · · ), and closure under application: If X and Y are combinatory
terms, then the application (X · Y ) is also a combinatory term. As usual, the
dot for application is often suppressed; and one uses left associativity to reduce
parentheses.

Combinatory terms serve as a kind of programming language, when one con-
siders the following equalities:

• KX Y = X ;
• SX Y Z = X Z (Y Z).

The combinators can be typed by formulas, such that the combinatory terms
represent proofs of these formulas:

• K
ϕ→(ψ→ϕ) for the axiom (F1);

• S(ϕ→(ψ→χ))→((ϕ→ψ)→(ϕ→χ)) for the axiom (F2);
• Application relates to (an application of) modus ponens : Xϕ→ψY ϕ has

type ψ.

In this way, the derivation D1 can be written by the following (typed) combina-
tory term: S(ϕ→((ϕ→ϕ)→ϕ))→((ϕ→(ϕ→ϕ))→(ϕ→ϕ))Kϕ→((ϕ→ϕ)→ϕ)Kϕ→(ϕ→ϕ). This
term has, indeed, type ϕ→ ϕ.

When taking the application dot into account, we have also a one-to-one corre-
spondence between the number of lines of the proof and the length of the combi-
natorial term: M1(D1) = 5 = lh(S ·K ·K).

4. Identity Combinators and Fixed Points

The identity combinator I with IX = X can be defined by I = SKK.
According to the Curry-Howard Correspondence, any identity combinator, i.e.,

a combinator M with M X = X , for all X , will give rise to a proof of (an instance
of) ϕ→ ϕ. But it does not need to be an identity combinator.

Definition. Let M be a closed combinatory term of type ϕ0 → (· · · → (ϕn →
ψ) · · · ), n ≥ 0. X is a fixed point, if for all terms Y1, . . .Yn:

M X Y1 · · · Yn = X Y1 · · · Yn.
Theorem. Let M be a closed combinatory term.

• If M has a fixed point, then M corresponds to a proof of an instance of
ϕ→ ϕ.

• Moreover, the number of lines of that proof is lh(M).



Mathematical Logic: Proof Theory, Constructive Mathematics 3021

Considering only combinatory terms of length less than or equal to 5, we obtain
the following special cases. For terms starting with K:

Comb. M F.P. Proof of ϕ→ ϕ for ϕ being

KK K ϕ→ (ψ → ϕ)
KS S (ϕ→ (ψ → χ)) → ((ϕ→ ψ) → (ϕ→ χ))

K (KK) KK ϕ→ (ψ → (χ→ ψ))
K (KS) KS ϕ→ ((ψ → (χ→ τ)) → ((ψ → χ) → (ψ → τ)))
K (SK) SK (ϕ→ ψ) → (ϕ→ ϕ)
K (S S) S S ((ϕ→ (ψ → χ)) → (ϕ→ ψ)) →

((ϕ→ (ψ → χ)) → (ϕ→ χ))

For terms starting with S:

Combinator M Fixed point Proof of ϕ→ ϕ for ϕ being

SK I ϕ→ ϕ
S S * (ϕ→ (ψ → ψ)) → (ϕ→ ψ)

SKK X ϕ
SKS X ϕ→ (ψ → χ)
S (SK) X (ϕ→ ψ) → ϕ

5. Further considerations

• S S does not has a fixed point in the sense defined above; the analysis of
this case gives, indeed, reason for further considerations.

• Hindley [3] provided a typing algorithm for combinators. From this algo-
rithm one obtains a more general type of SKK which is of interest when
considering other measures (which, for instance, take the length of formu-
las in a proof into account).

• The present study is some ground work for more detailed investigations
on Hilbert’s 24th problem [4]. This problem, preserved in Hilbert’s math-
ematical notebook, asks for criteria of simplicity of proofs, proposing, in
particular, to take the length of proofs into account.

Acknowledgment. Research supported by national funds through the FCT –
Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects
UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applica-
tions) and by the Udo Keller Foundation.

References

[1] H. Curry, R. Feys, Combinatory Logic, vol. I, North-Holland, Amsterdam, 1958.
[2] G. Frege, Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen

Denkens, Louis Nebert, Halle, 1879.
[3] R. Hindley, The Principal Type-Scheme of an Object in Combinatory Logic, Transactions

of the American Mathematical Society, 146 (1969), 29–60.
[4] R. Kahle and I. Oitavem, What is Hilbert’s 24th problem?, Kairos 20 (2018), 1–11.



3022 Oberwolfach Report 53/2023

[5] R. Kahle and I. Oitavem. Frege’s axiomatization of implication and the proof of the tautology
ϕ → ϕ. Boletim da Sociedade Portuguesa de Matemática, Suplemento, to appear.
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Consistency, implicit proofs, and cut-elimination

Pavel Pudlák

Two computable operators have been conjectured to be jumps.

Definition 1 (consistency jump). For a proof system P , define con(P ), the consis-
tency jump, to be the strongest proof systems Q such that S1

2 +Con(S1
2 +Rfn(P ))

proves the reflection principle for Q.

The second operator is based on implicit proofs.

Definition 2 (Kraj́ıček [4], implicit proofs). Let P,Q be proof systems; we define
a proof system [P,Q] as follows. A [P,Q]-proof of φ is a pair (π, c), where

• c is a circuit that defines bits of a (possibly exponential size) Q-proof of
φ,1 and

• π is a P -proof of the fact above.

We conjecture that imp(P ) := [P, P ] is a jump.

We want to find connection between the two operators and believe that it could be
proved by showing that cut-elimination produces implicit proofs in the sense of the
above definition. The fact that elimination of one level of cuts produces exponential
size proofs that have succinct representations has already been observed before,
[1, 2]. The problem is, however, that we still do not fully understand the concept
of an implicit proof. Part of the reason is that it is not a robust concept. For
instance Khaniki proved under plausible complexity-theoretical assumption that
there are two proof systems P and Q such that P ≡p Q, but imp(P ) 6≡ imp(Q),
(cf. [3]). Therefore we decided to first study a restricted version of implicit proofs.

A restricted kind of implicit proofs is defined by requiring that the circuit com-
putes formulas, not single bits, see [4]. Thus the formulas must be of polynomial
size (in the size of the implicit proof). Such proof systems are denoted by [P,Q]m.
(This operation is only defined when Q is a proof system based on formulas.) In
our modification circuits compute sequents, because we want to use the sequent
calculus. We will consider the following proof systems (cf. [5]):

• SF denotes the sequent calculus for propositional logic augmented with
the substitution rule:

Γ −→ ∆

Γ[x/α] −→ ∆[x/α]
,

where α is a Boolean formula.

1If c has n input bits, then it can define bits of a string of length 2n.
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• G denotes the the quantified propositional sequent calculus. E.g., the ∃-
right rule is

Γ −→ ∆, φ(α)

Γ −→ ∆, ∃x.φ(x)
,

where α is a Boolean formula.
• For i ≥ 1, Gi denotes the Σqi fragment of G.

Theorem 1.

(1) [SF, SF ]m ≡p G1,

(2) [SF,Gi]
m ≡p Gi+1 for i ≥ 1.

The more technical part of the proofs are polynomial simulations [SF, SF ]m ≥p
G1 and [SF,Gi]

m ≥p Gi+1. They are based on eliminating cuts with the highest
quantifier complexity and showing that this produces implicit proofs.
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New applications of proof theory: Greedy algorithms, probability,

and proof assistants

Thomas Powell

I will give a brief and high-level overview of some new research projects that I
believe have the potential to yield exciting results over the next few years.

The first revolves around greedy approximation schemes in Hilbert and Banach
spaces. This is an area replete with convergence results, proofs of which are often
nonconstructive and hinge on geometric properties of the underlying space, such
as uniform smoothness. I will present an initial case study and argue that the
area in general may form a fertile ground for applied proof theory, with particular
relevance at the moment given its connections to learning algorithms.

I will also present an overview of some ongoing work in probability theory (joint
with Morenikeji Neri). My focus will be on our efforts to understand some of the
basic notions of probabilistic convergence and the relationships between them from
a computational perspective. Here things seem to get particularly interesting
where uniform integrability plays a role, and implications between convergence
statements seem computationally subtle. A much broader open question is how
to formalise the underlying proofs in a suitable abstract system.
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Finally, I will outline some broad goals in formalised mathematics and auto-
mated reasoning, which are relevant to both of the above themes and applied proof
theory in general.

First-Order Reasoning and Efficient Semi-Algebraic Proofs

Neil Thapen

(joint work with Fedor Part, Iddo Tzameret)

Semi-algebraic proof systems such as sum-of-squares (SoS) [5] have attracted a lot
of attention due to their relation to approximation algorithms: constant degree
semi-algebraic proofs lead to conjecturally optimal polynomial-time approximation
algorithms for important NP-hard optimization problems [1]. Motivated by the
need to allow a more streamlined and uniform framework for working with SoS
proofs than the restrictive propositional level, we initiate a systematic first-order
logical investigation into the kinds of reasoning possible in algebraic and semi-
algebraic proof systems. Specifically, we develop first-order theories that capture
in a precise manner constant degree algebraic and semi-algebraic proof systems:
every statement of a certain form that is provable in our theories translates into
a family of constant degree polynomial calculus or SoS refutations, respectively;
and using a reflection principle, the converse also holds.

This places algebraic and semi-algebraic proof systems in the established frame-
work of bounded arithmetic, while providing theories corresponding to systems
that vary quite substantially from the usual propositional-logic ones [2, 4, 6].

We give examples of how our semi-algebraic theory proves statements such as
the pigeonhole principle, we provide a separation between algebraic and semi-
algebraic theories, and we describe initial attempts to go beyond these theories
by introducing extensions that use the inequality symbol, identifying along the
way which extensions lead outside the scope of constant degree SoS. Moreover, we
prove new results for propositional proofs, and specifically extend Berkholz’s [3]
dynamic-by-static simulation of polynomial calculus (PC) by SoS to PC with the
radical rule.

An earlier version of this work appeared as [7].
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Quantitative Probability from a Logician’s Perspective

Morenikeji Neri

Over the last few decades, proof mining has enjoyed many successes in numerous
areas of mathematics, mostly within analysis. To date, there have only been a
handful of papers that extend proof mining to probability and measure theory. On
the other hand, probability theorists have been informally extracting quantitative
bounds for many years, in particular, obtaining rates for probabilistic convergence
theorems.

In this talk, I shall first discuss some results from quantitative probability theory
obtained by logicians and probability theorists, giving an overview of the relevant
notions from probability theory. I shall then present my own ongoing work in
obtaining quantitative bounds from strong law of large numbers type results, that
not only build on the existing body of work in the proof mining of probability
theory literature but also extend work done by probability theorists obtaining
quantitative results. Lastly, I shall look towards the future and introduce some
questions in quantitative probability theory that one could potentially answer
using ideas from the proof mining program.

On the consistency of circuit lower bounds for non-deterministic time

Moritz Müller

(joint work with Albert Atserias, Sam Buss)

We prove the first unconditional consistency result for superpolynomial circuit
lower bounds with a relatively strong theory of bounded arithmetic. Namely, we
show that the theory V 0

2 is consistent with the conjecture that NEXP 6⊆ P/poly,
i.e., some problem that is solvable in non-deterministic exponential time does
not have polynomial size circuits. We suggest this is the best currently available
evidence for the truth of the conjecture. The same techniques establish the same
results with NEXP replaced by the class of problems decidable in non-deterministic
barely superpolynomial time such as NTIME(nO(log log log n)). Additionally, we
establish a magnification result on the hardness of proving circuit lower bounds.
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Structural proof theory for logics of strong negation

Sara Negri

(joint work with Norihiro Kamide)

Gurevich logic is an extended constructive three-valued logic obtained from in-
tuitionistic logic by adding a connective ∼ of strong negation, with the following
axiom schemata, where ¬ is intuitionistic negation:1

(1) ∼∼A ⊃⊂ A,
(2) ∼¬A ⊃⊂ A,
(3) ∼A ⊃ ¬A,
(4) ∼(A ∧B) ⊃⊂∼A∨ ∼B,
(5) ∼(A ∨B) ⊃⊂∼A∧ ∼B,
(6) ∼(A ⊃ B) ⊃⊂ A∧ ∼B.

Nelson logic [11], also known as Nelson’s constructive three-valued logic N3, is
the intuitionistic negation-less fragment of Gurevich logic.

The primary formal difficulty in developing a natural deduction system for
Gurevich logic, and more generally for logics that employ strong negation, lies in
the requirement of having rules for ¬ and ∼ without ⊥. This is solved using the
rules of explosion, of ¬-introduction, and of excluded middle:2

¬A A
C

Exp

[A]
....
C

[A]
....

¬C
¬A ¬I

[¬A]
....
C

[A]
....
C

C
Em

The natural deduction system for intuitionistic logic NI⋆ is obtained replacing
the rule of ex falso quodlibet of NI with the rule of explosion and adding rule ¬I,
and the natural deduction system for classical logic NK⋆ is obtained from NI⋆

by adding the rule of excluded middle. Next, the natural deduction system for
Gurevich logic NG is obtained from NI⋆ by adding the following rules for strong
negation:

∼ A A
C

∼Exp

A
∼∼ A

∼∼I
∼∼ A
A

∼∼E
A

∼ ¬A ∼¬I
∼ ¬A
A

∼¬E

A ∼ B
∼ (A ⊃ B)

∼⊃ I
∼ (A ⊃ B)

A
∼⊃E1

∼ (A ⊃ B)

∼ B
∼⊃E2

1Gurevich logic can also be obtained by adding intuitionistic negation to Nelson logic (N3)
[1,11], which, in turn, is obtained by adding the principle of explosion to Nelson’s paraconsistent
four-valued logic, N4 [1, 11]. In the original study by Gurevich [4], completeness with respect to
three-valued Kripke semantics, embedding into intuitionistic logic, functional completeness, and
duality theorems for Gurevich logic were proven using a Hilbert-style axiomatic system. Cut-free
Gentzen-style sequent calculi for Gurevich logic have been introduced in [4, 6].

2Systems with primitive negation for intuitionistic logic have a long history, dating back to
the the 1930s with the work of Heyting and Gentzen [5, 12].
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∼ A
∼ (A ∧B)

∼∧I1
∼ B

∼ (A ∧B)
∼∧I2

∼ (A ∧B)

[∼ A]
....
C

[∼ B]
....
C

C
∼∧E

∼ A ∼ B
∼ (A ∨B)

∼∨I
∼ (A ∨B)

∼ A
∼∨E1

∼ (A ∨B)

∼ B
∼∨E2

The natural deduction system NN for Nelson logic N3 is obtained from NG by
deleting Exp, ¬I, ∼¬I, and ∼¬E (i.e., NN is the ¬-less fragment of NG).

Equivalence between these natural deduction systems and correspondence with
previously proposed cut-free Gentzen-style sequent calculi are proven and used to
obtain normalization of the corresponding natural deduction systems. The nor-
malization theorem for NK⋆ cannot be obtained using the equivalence with LK,
and therefore the single-succedent sequent calculus for classical logic LC originally
introduced by von Plato in [13] (see also [9]) is used. In particular, an equivalence
is established between NG and the previously proposed cut-free Gentzen-style se-
quent calculus LG for Gurevich logic, and this result is used to prove normalization
for NG, and, as a bonus, also normalization for NN and NI⋆.

Next, G3-style sequent calculi are introduced for these logics and Avron and De-
Omori logic. G3-style sequent calculi are sequent calculi with all structural rules
admissible, not only cut but also weakening and contraction, and with all or most
of the rules invertible. They are especially suited for root-first proof search and
therefore useful for automated deduction, but also for meta-theoretical purposes
because of their analyticity [9, 10]

First, the G3-style intuitionistic calculus with primitive negation G3ip¬ is ob-
tained from G3ip by admitting an empty succedent and replacing the initial se-
quents ⊥,Γ ⇒ C for the falsity constant ⊥ with the following rules for ¬:

¬A,Γ ⇒ A

¬A,Γ ⇒ ¬L
A,Γ ⇒
Γ ⇒ ¬A ¬R

Then, the G3-style sequent calculus for Gurevich logic G3gv is obtained from
G3ip¬ by adding the following initial sequents and rules for ∼, where γ represents
a formula or the empty multiset:

∼P,Γ ⇒ ∼P init2 ∼P, P,Γ ⇒ init3

A,Γ ⇒ γ

∼∼A,Γ ⇒ γ
∼∼L

Γ ⇒ A
Γ ⇒ ∼∼A ∼∼R

A,∼B,Γ ⇒ γ

∼(A⊃B),Γ ⇒ γ
∼⊃L

Γ ⇒ A Γ ⇒ ∼B
Γ ⇒ ∼(A⊃B)

∼⊃R

∼A,Γ ⇒ γ ∼B,Γ ⇒ γ

∼(A∧B),Γ ⇒ γ
∼∧L

Γ ⇒ ∼A
Γ ⇒ ∼(A∧B)

∼∧R1
Γ ⇒ ∼B

Γ ⇒ ∼(A∧B)
∼∧R2

∼A,∼B,Γ ⇒ γ

∼(A∨B),Γ ⇒ γ
∼∨L

Γ ⇒ ∼A Γ ⇒ ∼B
Γ ⇒ ∼(A∨B)

∼∨R
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A,Γ ⇒ γ

∼¬A,Γ ⇒ γ
∼¬L

Γ ⇒ A
Γ ⇒ ∼¬A ∼¬R

The G3-style sequent calculus for Nelson N3, G3n3, is obtained from G3gv by
deleting the rules ¬L, ¬R, ∼¬L, and ∼¬R (i.e., as the ¬-less part of G3gv, and
the calculus for Nelson N4, G3n4, is obtained from G3n3 by deleting init3.

Structural properties including cut elimination are established for these calculi
and a Glivenko theorem for embedding G3gv into G3ip¬ is shown, providing at the
same time an indirect alternative proof of the cut-elimination theorem for G3gv.

The G3-style sequent calculus G3cp¬∼ is obtained from the intuitionistic calculus
turning it to a multisuccedent system. In G3cp¬∼, ¬ is equivalent to ∼. Thus,
G3cp¬∼ is a redundant G3-style sequent calculus for classical propositional logic,
however, the interest in this calculus lies in the fact that it provides a platform to
obtain G3 calculi for a wealth of logical systems, already studied in the literature,
that lacked a G3-style proof system: it is used to define G3-style sequent calculi
for classical versions of N3 and N4, for Avron logic [2], and for De–Omori logic
(the extension of Belnap–Dunn logic with classical negation) [3].

Finally, the explicit use of ∼ in G3cp¬∼ as an auxiliary connective makes it
possible to prove a Glivenko theorem for embedding G3cp¬∼ into G3gv.

For the details, cf. [7, 8].
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Determinacy and Π1
n
−CA0

Juan P. Aguilera

There is an extremely large body of work on the metamathematics of determi-
nacy principles in the context of set theory and reverse mathematics. From the
perspective of the former, it was known from work of Steel, Tanaka, Heinatsch-
Möllerfeld, Montalbán-Shore, and Nemoto that most of the usual subsystems of
second-order arithmetic, such as WKL0, ACA0, ACA+

0 , ATR0, Π1
1−CA0, Π1

2−CA0,
and Z2 = Π1

∞−CA0, are equiconsistent with schemata of axioms asserting the
determinacy of games with complexity at various levels of the hierarchy of contin-
uous or Lipschitz reducibility. It was open whether the same result is true for the
missing subsystems Π1

n−CA0, where 2 < n <∞.
In this talk, we mentioned the main ingredients of the proof behind the theo-

rem asserting that the systems Π1
n−CA0 are not equiconsistent with any schema of

determinacy assertions when n 6= 1, 2,∞. The main tool was the representation of
the Wadge classes between the levels of the difference hierarchy over the Gδ,σ sets
in terms of separated Boolean connectives in the style of Louveau, together with
an argument by transfinite induction employing an abstract determinacy transfer
theorem which is provable from hypotheses asserting the existence of certain non-
standard models of Kripke-Platek set theory admitting infinitely nested sequences
of elementarity gaps of various kinds. This type of determinacy transfer theorem,
although provable in the weak theory RCA0, also has applications in the context
of ZFC and its extensions. The specific theorem mentioned in the talk was:

Theorem. Suppose that every x ∈ R belongs to a nonstandard βm-model M of
Kripke-Platek set theory satisfying V = L and Γ-determinacy, where Γ is a Borel
Wadge class, and such that there exists a sequence {(ζi, si) : i ∈ N} of M -ordinals
for which the following hold for all i:

(1) ζi < ζi+1 ∈ wfp(M),
(2) si+1 < si,
(3) M |= Lζi ≺Σm+1 Lsi ,
(4) M |= Lsi+1 ≺Σm−1 Lsi .

Then, all games in the class LU(Σ0
2,Γ,m−Σ0

3) are determined. This is the class
of all sets of the form

W =
⋃

i∈N

(
Ai ∩ Ci

)
∪B \

⋃

i∈N

Ci,

where Ai ∈ Γ, Ci ∈ Σ0
2, B ∈ m−Σ0

3, and W ∩ Ci = Ai ∩ Ci for all i ∈ N.

Although quite technical, the theorem is very powerful. Relating the sets pro-
vided by the theorem to those considered in Louveau’s analysis of the Wadge ranks
of Borel sets and using an analog of his of the Hausdorff-Kuratowski theorem, one
can then transfinitely iterate the theorem inside Π1

n−CA0, leading to the following
dichotomy:
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Theorem. Suppose that Γ =
⋃
i∈N Γi is a Borel Wadge class, provably so in

Π1
n+3−CA0. Write Γ-Determinacy for the schema {Γi-Determinacy: i ∈ N}.

Then, one of the following holds:

(1) Π1
n+3−CA0 ⊢ Γ-Determinacy & con(Γ-Determinacy); or

(2) RCA0 + Γ-Determinacy ⊢ con(Π1
n+3−CA0).
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Proof Mining and duality in Banach spaces

Nicholas Pischke

We present a proof-theoretically tame approach for treating the dual space of
an abstract Banach space in systems amenable to proof mining metatheorems
on bound extractions, unlocking a major branch of functional analysis to these
methods. The approach relies on using intensional methods to deal with the high
quantifier complexity of the predicate defining the dual space as well as on a novel
treatment of suprema over certain bounded sets in normed spaces to deal with the
norm induced on the functionals of the dual. Beyond this, we provide an overview
of the many possible extensions and concrete applications to core mathematics
obtainable from this (which in particular includes a theory of convex functions
and corresponding Fréchet derivatives and their duality theory through Fenchel
conjugates, together with the associated Bregman distances).
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Proof mining and asymptotic regularity

Laurenţiu Leuştean

(joint work with Horaţiu Cheval, Paulo Firmino, Ulrich Kohlenbach,
Pedro Pinto)

Proof mining is a research program that consists in the extraction of new infor-
mation from mathematical proofs by applying proof-theoretic techniques. This
program was systematically developed beginning with the 1990s by Kohlenbach
and collaborators, in connection with applications to approximation theory, non-
linear analysis, ergodic theory, topological dynamics, Ramsey theory, (partial)
differential equations, and convex optimization. Kohlenbach’s monograph [11] is
the standard reference for proof mining.
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Asymptotic regularity is a very useful property in the study of the asymp-
totic behaviour of nonlinear iterations, introduced in the 1960s by Browder and
Petryshyn [3] for the Picard iteration and extended to general iterations by Bor-
wein, Reich, and Shafrir [1]. If (xn) is a sequence in a metric space (X, d),
∅ 6= C ⊆ X , and T : C → C, then (xn) is said to be asymptotically regular
if lim
n→∞

d(xn, xn+1) = 0 and T -asymptotically regular if lim
n→∞

d(xn, T xn) = 0. It

turns out that in numerous results on the weak or strong convergence of a nonlin-
ear iteration (xn), the first step is to prove the (T -)asymptotic regularity of (xn).
Usually one proves first that (xn) is asymptotically regular and afterwards that
(xn) is T -asymptotically regular.

A mapping ϕ : N → N is said to be a rate of asymptotic regularity of (xn) if ϕ
is a rate of convergence of (d(xn, xn+1)) towards 0, that is

∀k ∈ N ∀n ≥ ϕ(k)

(
d(xn, xn+1) ≤ 1

k + 1

)
.

One defines similarly the notion of a rate of T -asymptotic regularity of (xn). As
pointed out in [14], the notion of T -asymptotic regularity can be extended to
countable families of mappings. Thus, if (Tn : C → C) is such a family, then we
say that (xn) is (Tn)-asymptotically regular with rate ϕ if lim

n→∞
d(xn, Tnxn) = 0

with rate of convergence ϕ.

In this talk I present recent applications of proof mining consisting in quantitative
asymptotic regularity results for different nonlinear iterations.

In [5] we define the Tikhonov-Mann iteration as a generalization toW-hyperbolic
spaces [11] of a modified Mann iteration studied by Yao, Zho, and Liou [18] and
rediscovered by Boţ, Csetnek, and Meier [2]. Applying proof mining, we com-
pute uniform rates of (T -)asymptotic regularity for the Tikhonov-Mann iteration.
Furthermore, we prove in [4] that there is a strong relation between the Tikhonov-
Mann iteration and the modified Halpern iteration introduced by Kim and Xu [10].
Thus, asymptotic regularity and strong convergence results can be translated from
one iteration to the other and the translation holds also for quantitative versions
of these results, providing rates of (T -)asymptotic regularity and rates of metasta-
bility. As an application of a lemma on real sequences due to Sabach and Shtern
[16] we also obtain in [4] linear rates of (T -)asymptotic regularity for both the
Tikhonov-Mann and the modified Halpern iterations for a special choice of the
parameter sequences.

Dinis and Pinto introduced recently [7] the alternating Halpern-Mann iteration
as an iterative scheme associated with two mappings T , U that alternates between
the well-known Halpern and Mann iterations. They proved, in the setting of
CAT(0) spaces, quantitative results that provide rates of (T, U -)asymptotic regu-
larity and rates of metastability for this iteration by using proof mining techniques
developed in [8]. In [15], we show that the quantitative (T, U -)asymptotic regu-
larity results obtained in [7] can be extended to UCW -hyperbolic spaces [12, 13],
a class of W -hyperbolic spaces that generalize both CAT(0) spaces and uniformly
convex normed spaces. Moreover, we apply again Sabach and Shtern’s lemma to
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compute for the alternating Halpern-Mann iteration linear rates of asymptotic reg-
ularity in W -hyperbolic spaces and quadratic rates of T, U -asymptotic regularity
in CAT(0) spaces, for a special case of the scalars.

In [6] we show that Sabach and Shtern’s lemma can be applied to compute
linear rates of (T -)asymptotic regularity or ((Tn)-)asymptotic regularity for other
Halpern-type iterations studied in optimization and nonlinear analysis.

The viscosity approximation method (VAM), associated to resolvents JAλn
(λn ⊆

(0,∞)) of an accretive operator A in a Banach space X , was studied by Xu et al.
in a recent paper [17], where they prove results on the convergence of VAM to a
zero of the operator A. We obtain in [9] quantitative versions of the asymptotic
regularity results from [17] and, as a consequence, we compute uniform rates of
((JAλn

)-)asymptotic regularity for VAM. Sabach and Shtern’s lemma gives us again
linear rates when we consider a particular case of the parameters.
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[14] L. Leuştean and P. Pinto. Quantitative results on a Halpern-type proximal point algorithm.
Comput. Optim. Appl., 79:101–125, 2021.
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A New Intuitionistic Version of Gödel-Löb Logic: Box and Diamond

Iris van der Giessen

(joint work with Anupam Das, Sonia Marin)

We introduce an intuitionistic version of Gödel-Löb modal logic GL (the provabil-
ity logic of Peano Arithmetic) in the style of Simpson [7]. We develop a non-
wellfounded labelled proof theory and coinciding birelational semantics, and we
call the resulting logic IGL. While existing intuitionistic versions of GL are typically
defined over only the box (and not the diamond), IGL includes both modalities.
One of its interests is that it allows for the Gödel-Gentzen negative translation
into GL which is promising to recover a computational interpretation of classi-
cal GL.

Semantics for IGL

Well-known intuitionistic modal logic iGL is sound and complete with respect to
birelational models (W,≤, R, V ) such that (≤;R) ⊆ R and R is transitive and
conversely wellfounded [8]. The valuation V is persistent, i.e., monotone in ≤. To
interpret the ✸, the models for iGL are too restrictive. In this work we adopt the
same frame conditions as [7], i.e., (R−1;≤) ⊆ (≤;R−1) and (R;≤) ⊆ (≤;R), and
further require R to be transitive and (R;≤) to be conversely wellfounded. We
call this class of models BIGL.

One can view (this form of intuitionistic) modal logic as a fragment of (intu-
itionistic) predicate logic under the standard translation, cf. [7]. In this sense,
we obtain another intuitionistic reading of GL, by interpreting the converse well-
foundedness of (R;≤) within a predicate Kripke models. We denote this class by
PIGL.

Proof theory for IGL

To obtain intuitionistic versions of classical modal logics, it typically suffices to
restrict a ‘standard’ calculus, to having one formula on the right of a sequent.
For GL, restricting the sequent calculus in [1] and cyclic sequent system in [6], yields
calculi for logic iGL [3,4]. For our setting, labelled systems admitting independent
treatments of ✷ and ✸ have been fruitful to define intuitionistic calculi [7]. We
develop a labelled calculus for GL taking inspiration from non-wellfounded proof
theory, where (co)induction principles are devolved to the proof structure rather
than explicit rules or axioms. Note that, in contrast to the labelled system for GL

in [5], we do not modify the usual labelled rules for ✷ and ✸. From this we define
a single-succedent and a multi-succedent non-wellfounded labelled system for IGL,
denoted ℓIGL and mℓIGL, respectively.
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ℓIGL

mℓIGL
predicate

models PIGL

birelational
models BIGL

simulation
+

(partial)

cut-elim

soundness

countermodel via
proof search

Figure 1. Summary of main results. All arrows denote inclu-
sions of modal logics, so the four characterisations coincide.

Results

Our main result is that these notions coincide as depicted in Figure 1. Soundness
for both aforementioned classes of models is readily established via an infinite
descent argument by contradiction that is now standard in non-wellfounded proof
theory. For completeness, we provide a predicate countermodel construction from
a failed proof search in the multi-succedent calculus mℓIGL by appealing to the
(lightface) analytic determinacy result for the corresponding ‘proof search game’.
Simulations using cuts show the equivalence between ℓIGL and mℓIGL concluding
our result. All results can be found in [2].

In future work we would like to establish an explicit axiomatisation for the
logic introduced. At the same time it would also be pertinent to investigate the
complexity of our logic, given our hitherto non-finitary-presentations. Finally, we
would like to examine the role of our logic as a logic of provability in appropriate
models of Heyting Arithmetic.

Acknowledgments This work was partially supported by a UKRI Future Leaders
Fellowship, ‘Structure vs Invariant in Proofs’, project reference MR/S035540/1.
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96(3) (2014), 575–585.



Mathematical Logic: Proof Theory, Constructive Mathematics 3035

[7] A.K. Simpson, The proof theory and semantics of intuitionistic modal logic, PhD Thesis,
University of Edinburgh (1994).

[8] A. Ursini, A modal calculus analogous to K4W, based on intuitionistic propositional logic,

I◦, Studia Logica 38(3) (1979), 297–311.

The Biggest Five of Reverse Mathematics

Sam Sanders

(joint work with Dag Normann)

1. The Biggest Five phenomenon and its limits

The aim of the program Reverse Mathematics (RM for short) is to find the minimal
axioms needed to prove a given theorem of ordinary mathematics. The Big Five
phenomenon of RM is the observation that many (perhaps even ‘most’) theorems
are equivalent to one of four logical systems, assuming a weak logical system called
the base theory. These five systems are called the Big Five.

In [7,12], the Big Five phenomenon is greatly extended by establishing numerous
equivalences involving the second-order Big Five on one hand, and well-known
third-order theorems from analysis about discontinuous functions on the other
hand, working in Kohlenbach’s base theory RCA

ω
0 from [3, §2]. By [7, §2.8], slight

variations/generalisations of these third-order theorems cannot be proved from the
Big Five and much stronger systems. A basic example is as follows.

• Over RCA
ω
0 , WKL0 is equivalent to the supremum principle for any of the

following: Baire 1, cadlag, quasi-continuity, normal bounded variation.
• Over RCA

ω
0 , the Big Five (and much stronger1 systems like Z

ω
2 ) cannot

prove the supremum principle for any of the following: bounded variation,
regulated, cliquish, semi-continuity, Baire 2.

The supremum principles and associated function classes in the first item are
called second-order ish: although they are third-order in nature, they can be
proved from second-order comprehension principles (only). While second-order
RM generally deals with countable and separable constructs, quasi-continuity is
much wilder2, yet part of the RM of WKL0, which is perhaps unexpected.

Many similar examples exist, including for the other Big Five, e.g. the supremum
principle for effectively Baire 2 functions, the Jordan decomposition, and basic
properties of the Riemann integral. A full(er) list may be found in [7, 12].

Finally, Rathjen states in [8] that Π1
2-CA0 dwarfs Π1

1-CA0 and Martin-Löf talks of a
chasm and abyss between these two in [4]. The previous examples show that small
variations of second-order-ish theorems go far beyond the Big Five and Π1

2-CA0,
far beyond the aforementioned abyss.

1The system Z
ω

2
proves the same second-order sentences as Z2 ([2]). Here, Z

ω

2
is RCA

ω

0

extended with, for each k ≥ 1, the functional S2

k
which decides Π1

k
-formulas.

2If c is the cardinality of R, there are 2c non-measurable quasi-continuous [0, 1] → R-functions
and 2c measurable quasi-continuous [0, 1] → [0, 1]-functions (see [1]).
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2. Exploring the Abyss: Kleene’s quantifiers

The results in Section 1 are based on the RM of Kleene’s quantifiers (∃2) and (∃3),
which is interesting in its own right, and discussed in this section.

First of all, Kohlenbach proves the equivalence between the following in [3, §2].

• Kleene’s (∃2) : (∃E : NN → N)(∀f ∈ NN)(E(f) = 0 ↔ (∃n ∈ N)(f(n) = 0).
• There exists a discontinuous function f : R → R.

Moreover, (∃2) is also equivalent to the following (see [7, §2] for a complete list).

• There exists a function f : [0, 1] → R that is not Baire 1.

There are many similar equivalences, but following surprise also lies in wait: the
system Z

ω
2 , a conservative extension of Z2, cannot prove that

There exists a function f : [0, 1] → R that is not Baire 2.

We invite the reader to contemplate the meaning of ‘a code for a Baire 3 function’
in light of the previous result. Since it is consistent with Z

ω
2 that all functions are

Baire 2, we find there to be very little meaning in this coding construct.

Secondly, while at the far edges of the subject, the RM of (∃3) can be surprisingly
basic, as follows. Now, there are dozens (hundreds?) of decompositions of

continuity, where continuity is shown to be equivalent to the combination of two
or more weak continuity3 notions, going back to Baire, as follows:

continuity ↔ weak continuity notion A plus weak continuity notion B. (D)

It is then a natural question whether these weak continuity notions are as tame as
continuity, e.g. how hard is it to find the supremum of weakly continuous functions?
We note that Kohlenbach in [3, §3] singles out this supremum functional as an
interesting object of study.

Now, most of these weak continuity notions are rather tame: working in RCA
ω
0 +

(∃2), one can define the supremum functional λp, q, f. supy∈[p,q] f(y) restricted to
f satisfying the weak continuity notion at hand.

By contrast, there are seven weak continuity notions that are rather exceptional.
In particular, over RCA

ω
0 , the following are equivalent.

• Kleene’s (∃3): (∃E)(∀Y : NN → N)(E(Y ) = 0 ↔ (∃f ∈ NN)(Y (f) = 0),
• Kleene’s quantifier (∃2) plus the existence of a supremum functional for

any of these classes: the Young condition, almost continuity (Husain),
graph continuity, not of Cesàro type, peripheral, pre-, or C-continuity.

These weak continuity notions exist in the literature, side-by-side with the tame
ones, and two go back over a hundred years.

3We note that weak and generalised continuity come with its own AMS code, namely 54C08,
i.e. weak continuity is not a fringe topic in mathematics.
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3. New Big systems

We list four third-order theorems that boast many equivalences, similar to the
original Big Five, with some hints on the kind of principles involved.

• The uncountability of R ([6, 10, 12]) is equivalent to basic properties of
regulated and bounded variation functions.

• The Jordan decomposition theorem ([5, 12]) is equivalent to the fact that
countable sets can be enumerated.

• The Baire category theorem ([11, 12]) is equivalent to basic properties of
semi-continuous functions.

• The pigeon-hole principle for the Lebesgue measure ([11,12]) is equivalent
to one direction of the Vitali-Lebesgue theorem.

For the first two items, the following definition of ‘countable set’ is used. No
elegant equivalences are known for the usual definition based on injections to N.

Definition 1. A set A ⊂ R is height-countable if there is a height function
H : R → N for A, i.e. for all n ∈ N, An := {x ∈ A : H(x) < n} is finite.

Definition 2 (Finite set). Any X ⊂ R is finite if there is N ∈ N such that for
any finite sequence (x0, . . . , xN ) of distinct reals, there is i ≤ N such that xi 6∈ X.

We thank Anil Nerode for his valuable advice. We thank Ulrich Kohlenbach
for (strongly) nudging us towards the initial results in [7] as part of the second
author’s Habilitation thesis ([9]) at TU Darmstadt. Our research was supported
by the Deutsche Forschungsgemeinschaft via the DFG grant SA3418/1-1 and the
Klaus Tschira Boost Fund via the grant Projekt KT43 .

References
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On the theory of exponential integer parts

Emil Jeřábek

An integer part (IP) of an ordered ring R is a discretely ordered subring I ⊆ R
such that every x ∈ R is within distance 1 from I. (By abuse of language, we will
conflate a discretely ordered ring I with the ordered semiring I≥0.) A classical
result of Shepherdson [5] characterizes models of IOpen (= Robinson’s arithmetic
+ induction for open formulas in the language LOR = 〈0, 1,+, ·, <〉):

Theorem 1. Integer parts of real-closed fields are exactly the models of IOpen.

Let an exponential field be an ordered field R endowed with an isomorphism
exp: 〈R, 0, 1,+, <〉 → 〈R>0, 1, 2, ·, <〉, optionally satisfying the growth axiom (GA)
exp(x) > x. Introduced by Ressayre [4], an exponential integer part (EIP) of an
exponential ordered field 〈R, exp〉 is an IP I ⊆ R such that I≥0 is closed under exp.
We are interested in the question of characterizing (non-negative parts of) ordered
rings that are EIP of real-closed exponential fields (RCEF), and in particular,
what is the first-order theory of such rings. This problem (and in particular, the
question whether this theory properly extends IOpen) was raised by Jeřábek [2],
who provided an upper bound: all countable models of the bounded arithmetical
theory VTC0 in LOR are EIP of RCEF.

Extensions of Theorem 1 to exponential ordered fields were previously studied
by Boughattas and Ressayre [1] and Kovalyov [3], but they focussed on generaliz-
ing the other direction of the theorem (e.g., what additional properties of RCEF
ensure that their EIP are models of open induction in a language with exponen-
tiation?). Moreover, they were mostly concerned with EIP in a language with
the binary powering operation xy = exp(y log x). Since 〈I,+, ·, <, xy〉 can define
approximations of exp on its fraction field F , we can canonically extend exp to the
completion of F ; but no such direct construction seems possible for EIP in LOR

or LOR ∪ {2x}, hence our arguments will be of different nature.
The main goal of this talk is to present complete axiomatizations of the first-

order theories of EIP of RCEF in LOR∪{2x}, LOR∪{P2} (where P2 is a predicate
for the image of 2x), and LOR, and determine some properties of these theories.

Our first result can be proved by an easy application of Robinson’s joint con-
sistency theorem:
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Theorem 2. The theory TEIP2x of EIP of RCEF in LOR ∪ {2x} is axiomatized
over IOpen by

x > 0 → ∃y x < 2y ≤ 2x,

2x+y = 2x2y,

2x 6= 0.

The theory of EIP of RCEF satisfying GA is TEIP2x + GA.

Next, we treat the language with a predicate for powers of 2:

Theorem 3. The theory TEIPP2 of EIP of RCEF, with or without GA, in LOR ∪
{P2} is axiomatized over IOpen by

x > 0 → ∃u (P2(u) ∧ u ≤ x < 2u),

P2(u) ∧ P2(v) ∧ u ≤ v → ∃w (P2(w) ∧ uw = v).

The conservativity of TEIP2x over TEIPP2 is, again, proved by a simple ap-
plication of joint consistency; for TEIP2x + GA, we need a rather more complex
back-and-forth argument on a countable recursively saturated model of TEIPP2 .

We mention here that Shepherdson’s [5] model of IOpen expands to a model of
TEIPP2 , but not to a model of TEIP2x .

For any M � IOpen and n ∈ N, the power-of-two game PowGn(M) is played
between two players, Challenger (C) and Powerator (P), in n rounds: in each
round 0 ≤ i < n, C picks xi ∈ M>0, and P responds with ui ∈ M>0 such that
ui ≤ xi < 2ui. C wins if uiuj < uk < 2uiuj for some i, j, k < n, otherwise P wins.
(While not part of the official rules, we may note that if ui < uj but ui ∤ uj for
some i, j, C can force a win in the next round by playing ⌊uj/ui⌋.)

The motivation for the game is that if 〈M, P2〉 � TEIPP2 , then “play ui ∈ P2”
is a winning strategy for P. The theory of EIP in the basic language LOR is now
axiomatized by a schema asserting that Powerator has a winning strategy in PowG
for an arbitrary number of rounds:

Theorem 4. The theory TEIP of EIP of RCEF (with or without GA) in LOR is
axiomatized over IOpen by the sentences

∀x0 ∃u0 . . . ∀xn−1 ∃un−1

(∧

i<n

(xi > 0 → ui ≤ xi < 2ui)∧
∧

i,j,k<n

¬(uiuj < uk < 2uiuj)
)

for all n ∈ N.

The idea of the proof is that if M � TEIP is countable and recursively saturated,
then P has a winning strategy in “PowGω(M)”, and if we let C enumerate all
elements of M , the responses of P form a set P2 such that 〈M, P2〉 � TEIPP2 .

We mention that Svenonius [7] gave a general construction of an axiomatization
of a reduct of a given theory by means of sentences expressing the existence of
winning strategies in a certain game, mimicking a Henkin completion procedure.
However, this axiomatization is rather opaque; in contrast, our game is explicit
enough that we are able to derive useful properties of TEIP from it.
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First, using the existence of a nonstandard model of IOpen that is a UFD
(Smith [6]), we can show that TEIP properly extends IOpen:

Theorem 5. The following consequence of TEIP is not provable in IOpen:

∀x ∃u > x ∀y
(
0 < y < x→ ∃v (v ≤ y < 2v ∧ v | u)

)
.

We also make partial progress on the main remaining problem about TEIP:

Question 6. Is TEIP finitely axiomatizable over IOpen?

Let us write TEIP = IOpen + {∀x0 > 0 ∃u0
(
u0 ≤ x0 < 2u0 ∧ θ1n(u0)

)
: n ∈ N},

where θ1n(u0) denotes

∀x1 ∃u1 . . .∀xn−1 ∃un−1

(∧

1≤i<n

(xi > 0 → ui ≤ xi < 2ui)∧
∧

i,j,k<n

¬(uiuj < uk < 2uiuj)
)
.

If {θ1n : n ∈ N} contained only finitely many inequivalent formulas, then TEIP

would be finitely axiomatizable over IOpen, but this is not the case:

Theorem 7. The formulas θ1n form an infinite hierarchy over Th(N).

We show this by analysis of the power-of-two game. Let PowG1
n(u) denote the

game PowGn(N) where the first round is fixed such that P plays u0 = u (x0 does
not matter). If u is not a power of 2, then C has a winning strategy in PowG1

n+1(u)
for sufficiently large n; let the smallest such n be denoted c(u). Then Theorem 7
amounts to sup{c(u) : u not a power of 2} = +∞, which follows from:

Theorem 8. Let u = 2ν2(u)vr, where v > 1 is not a perfect power. Then

c(u) ≤ log log log min{ν2(u), r} +O(1) ≤ log log log log u+O(1);

more precisely, c(u) ≤ log log d+O(1) for any d ∤ r. On the other hand,

c(u) ≥ min

{
log log log

ν2(u)

log v
, log log d : d ∤ r

}
+O(1).

For example, this shows that c
(
62

2k !) = k +O(1).
Another consequence of Theorem 8 is that there are models 〈M, P2〉 � Th(N) +

TEIPP2 such that P2 is distinct from the set of “oddless numbers” (i.e., whose all
nontrivial divisors are even); indeed, u ∈ P2 may even be divisible by 3.

This work was supported by the Czech Academy of Sciences (RVO 67985840)
and GA ČR project 23-04825S.
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Quantitative Analysis of Stochastic Approximation Methods

Paulo Oliva

(joint work with Rob Arthan)

In an ongoing case study in Stochastic Approximation Theory, Rob Arthan and I
have been working on a quantitative version of Derman-Sachs’ proof [3] of Dvoret-
zky’s theorem [4], a vast generalisation of the well-known Robins-Monro seminal
stochastic approximation method [5]. Our current proof mining builds on our
recent quantitative analysis of the Borel-Cantelli lemmas [1] – one of the ingre-
dients in Derman-Sachs proof. This case study has been proven to be extremely
interesting for several reasons.

Firstly, arguments in Probability Theory (and also Measure Theory) look a
priori extremely ineffective and non-computational. Most arguments rely on uses
of set comprehension to form increasing or decreasing sequences of events, or the
axiom of countable additivity, which does not seem to have a clear constructive
interpretation. Examples of these are the Continuity from Above/Below Lemma
and Egorov’s Theorem. We rely on recent work of Avigad et. al. [2] and interpret
almost sure convergence statements about sequences of random variables

P[{ω | ∀ε > 0∃N∀i, j ≥ N(|Xi(ω) −Xj(ω)| ≤ ε)}] = 1

via a λ-uniform ε-convergent modulus Φ, i.e.

∀ε, δ > 0 (P[{ω | ∀i, j ≥ Φ(ε, δ)(|Xi(ω) −Xj(ω)| ≤ ε)}] ≥ 1 − λ) .

Egorov’s Theorem states that a certain sequence of random variables converges,
and our proof mining extracts an explicit λ-uniform ε-convergent modulus Φ for
the sequence.

Secondly, Derman-Sachs’ proof is also extremely interesting in that it uses sev-
eral subtle lemmas about sequences of real numbers, which as far as we know have
not been proof mined yet. The main ones are:

(1) If
∑
an is a convergent series and {bn} is monotone and bounded then∑

anbn is also a convergent series (Abel’s test),
(2) If {bn} is a sequence of non-negative reals such that the series

∑
bn con-

verges then the sequence {1/Bn} also converges, where Bn =
∏
i≤n(1+bi),
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(3) If {bn} is a sequence of non-negative reals such that the series
∑
bn con-

verges then there exists a sequence an which converges to 0 such that∑
bn/a

2
n still converges.

It seems to us that a shared repository of results about converging or diverging
sequences and series of real numbers which have already been “mined” would be
a very useful resource.

Finally, Derman-Sachs relies on a form a “Transfer Principle”, whereby the
almost sure convergence of a sequence of random variables {Xn} is proven by
finding a suitable event E where for ω ∈ E the convergence of the sequence of real
numbers xn = Xn(ω) can be derived. Ensuring that the rates on the convergence
of the sequences of reals are uniform enough for this transfer to be possible is part
of the the challenge in this proof mining case study.
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Double negation and conservation

Peter Schuster

(joint work with Giulio Fellin)

1. Heuristics

Recall that from derivability in minimal logic ⊢m one obtains derivability first
in intuitionistic logic ⊢i and then in classical logic ⊢c by allowing as additional
axioms finitely many instances of (in first-order logic: the universal closures of) ex
falso quodlibet ⊥ → B and tertium non datur B ∨ ¬B, respectively: that is,

Γ ⊢i A ≡ Γ,EFQ ⊢m A , Γ ⊢c A ≡ Γ,TND ⊢i A .
With double negation, Glivenko’s theorem [4] for propositional logic can be put as

Γ ⊢c A =⇒ Γ ⊢i ¬¬A .
In view of ⊢m ¬¬(B ∨ ¬B), Glivenko’s theorem follows from Brouwer’s lemma:

∆, D ⊢∗ ¬C =⇒ ∆,¬¬D ⊢∗ ¬C (∗ ∈ {m, i}) .
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This and Odintsov’s [6] have brought us to analyse the conclusion of Glivenko’s
theorem in terms of ⊢m:

Γ ⊢i ¬¬A ⇐⇒ Γ,EFQ ⊢m ¬¬A ⇐⇒ Γ,¬¬EFQ ⊢m ¬¬A .
Since 6⊢m ¬¬(⊥ → B) in general, if ⊢i were replaced by ⊢m, then Glivenko’s
theorem would fail already for A ≡ ⊥ → B.

Lemma 1. ¬¬EFQ is equivalent, over ⊢m, to the double negation shift for →:

DNS→ : (B → ¬¬C) → ¬¬(B → C).

So Glivenko’s theorem can alternatively be put with ⊢m as follows:

Γ ⊢c A =⇒ Γ,DNS→ ⊢m ¬¬A.
While DNS→ is provable with ⊢i and thus has hitherto remained invisible in
Glivenko’s theorem, it is in analogy to

(1) the double negation shift for ∀, viz.

DNS∀ : ∀x¬¬Cx → ¬¬∀xCx ,
in Kuroda’s [5] generalisation of Glivenko’s theorem to first-order logic:

Γ ⊢c A =⇒ Γ,DNS∀ ⊢i ¬¬A ;

(2) the double negation shift for
∧

N, viz.

DNS∧
N

:
∧

n∈N

¬¬Cn → ¬¬
∧

n∈N

Cn ,

in Tesi’s [7] counterpart of Kuroda’s theorem for infinitary logic:

Γ ⊢c A =⇒ Γ,DNS∧
N
⊢i ¬¬A .

2. Conservation for nuclei

Let S be a set and ✄ an inductively generated single-succedent entailment relation:
that is, ✄ ⊆ P<ω(S)×S is the least such relation which satisfies certain generating
axioms and rules on top of the following three structural rules :1

reflexivity:
U, a✄ a

monotonicity:
U ✄ a

U, V ✄ a
transitivity:

U ✄ a V, a✄ b

U, V ✄ b

By a nucleus over ✄ we understand a map j : S → S satisfying

U, a✄ jb ⇐⇒ U, ja✄ jb.

We consider two entailment relations which contain ✄:

— the weak or Kleisli extension is defined by U ✄j a ≡ U ✄ ja;
— the strong or stable extension ✄

j is inductively generated by the same
axioms and rules as ✄ plus the axiom of stability ja✄ a.

1By an axiom we understand a premissless rule; for instance, reflexivity is an axiom. Unless
one needs to distinguish axioms from rules, one may subsume the former under the latter.
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Note that always ✄j ⊆ ✄
j. If ✄ ≡ ⊢i and j ≡ ¬¬, then ✄

j ≡ ⊢c, and Glivenko’s
theorem means conservation: that is, ✄j ⊇ ✄

j.
While the stable extension ✄

j by its very inductive definition satisfies all axioms
and rules of ✄, the Kleisli extension ✄j a priori satisfies—in addition to the
structural rules—only all axioms of ✄.

Theorem 1. ✄j ⊇ ✄
j if and only if ✄j satisfies all (non-axiom) rules of ✄.

In fact, stability is automatic for ✄j , because ja✄j a ≡ ja✄ ja.

Corollary 1. ✄j = ✄
j whenever ✄ is inductively generated by axioms only.

We hasten to add that for applying Theorem 1 and Corollary 1 it is irrelevant
which axioms and rules we take for the inductive generation of ✄. In fact, col-
lections R and R′ of axioms and rules generate the same ✄ precisely when every
member of R is the composition of members of R′ and vice versa; and “to hold
for the Kleisli extension ✄j” is closed under composition of rules.

3. Applications to logic

Let ✄ be ⊢m. For propositional logic this is generated by the axioms and rules

A ∧B ✄A
L∧1

A ∧B ✄B
L∧2

A,B ✄ A ∧BR∧

A ∨B,A→ C,B → C ✄ C
L∨

A✄A ∨BR∨1
B ✄ A ∨BR∨2

A→ B,A✄B
L → Γ, A✄B

Γ ✄A→ B
R →

✄⊤R⊤

From this variant of minimal propositional logic one obtains

(1) minimal first-order logic by adding the axioms and rules

∀xA✄A[t/x]
L∀ Γ ✄A[y/x]

Γ ✄ ∀xA R∀ (y fresh)

∃xA, ∀x(A → B) ✄B
L∃ (x /∈ FV(B))

A[t/x] ✄ ∃xAR∃

(2) minimal infinitary logic by adding the axioms and rules

∧
i∈NAi ✄An

L
∧

n
(n ∈ N)

{Γ ✄An : n ∈ N}
Γ ✄

∧
i∈NAi

R
∧

∨
i∈N Ai,

∧
i∈N(Ai → B) ✄B

L
∨

An ✄
∨
i∈NAi

R
∨

n
(n ∈ N)

The only non-axiom rules of the calculi above are R→, R∀ and R
∧

.
Now let j be a nucleus—compatible with substitution for first-order logic [8]:

j(A[t/x]) = (jA)[t/x] .

Lemma 2. Each of R→, R∀ and R
∧

holds for ✄j if any only if the variant of
DNS→, DNS∀ and DNS∧, respectively, obtains in which ¬¬ is replaced by j.
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logic non-axiom rule R holds for ✄j iff case j ≡ ¬¬
propositional R→ B → jC ✄ j(B → C) DNS→

first-order R∀ ∀x jB ✄ j∀xB DNS∀

infinitary R
∧ ∧

n∈N

jBn ✄ j
∧
n∈N

Bn DNS∧

As for the true DNS, the converse ✁ is automatic in the third column. E.g. R→
holds for ✄j if and only if j commutes with every open nucleus [1, 8].

Generalisations include Glivenko-style conservation theorems for the transla-
tions ascribed to Kolmogorov, Gentzen and Kuroda in place of double negation.
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Proceedings of MFPS 2021, Electronic Notes in Theoretical Computer Science (2021).

[3] G. Fellin, P. Schuster, and D. Wessel. The Jacobson radical of a propositional theory. Bulletin
of Symbolic Logic, 28(2) (2022), 163–181.

[4] V. Glivenko. Sur quelques points de la Logique de M. Brouwer. Académie royale des sciences,
des lettres et des beaux-arts de Belgique. Classe des sciences, 15(5) (1929), 183–188.

[5] S. Kuroda. Intuitionistische Untersuchungen der formalistischen Logik. Nagoya Mathemat-
ical Journal, 3 (1951), 35–47.

[6] S. Odintsov. Constructive Negations and Paraconsistency. Dordrecht, Netherland: Springer
(2008).
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Prenex normalization and the hierarchical classification of formulas

Makoto Fujiwara

(joint work with Taishi Kurahashi)

In this workshop, I gave a talk about my recent work [3] on the prenex normal-
ization of first-order formulas by the standard reduction procedure without any
reference to the notion of derivability, as well as some ongoing attempt after the
work.

The prenex normal form theorem states that for any first-order theory based
on classical logic, every formula is equivalent (over the theory in question) to some
formula in prenex normal form. This theorem is verified by using the fact that
several transformations of formulas moving quantifiers in the formula from inside to
outside in a suitable way are admissible in first-order classical logic. For example,
if x is not contained in δ, then ∀xξ(x) → δ is transformed into ∃x(ξ(x) → δ)
with preserving classical validity because they are classically equivalent. For each
first-order formula, one can obtain an equivalent formula in prenex normal form
by the following procedure:
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(1) Apply the above mentioned transformations finitely many times to the
subformulas of the form A◦B with A and B in prenex normal form where
◦ ∈ {∧,∨,→}, and transform the subformulas into equivalent formulas in
prenex normal form;

(2) Repeating this procedure until when all subformulas become to be in
prenex normal form.

Akama, Berardi, Hayashi and Kohlenbach [1] introduced the classes Ek and Uk

of formulas defined by counting the number of the alternations of quantifiers in
a given formula (the formal definitions are given in [2]). The class Ek (resp. Uk)
is intended to form the class of formulas which are classically equivalent to some
Σk-formula (resp. Πk-formula). In addition, as mentioned in [1], the class Pk is in-
tended to represent the set of ∆k+1-formulas, namely, formulas which is equivalent
to some Σk+1-formula and also to some Πk+1-formulas. Note that every formula
with quantifier occurrences is classified into exactly one of Ek+1, Uk+1 and Pk+1.

In [3], Kurahashi and the author gave a proper justification for the hierarchical
classes. They formalized the above mentioned procedure for prenex normaliza-
tion and investigated the relation between the classes of prenex formulas and the
hierarchical classes in [1,2] modulo the transformation procedure in a general lan-
guage of a first-order theory. In particular, they showed that a formula is in E+

k

(resp. U+
k ) if and only if it can be transformed into a formula in Σ+

k (resp. Π+
k ) by

the transformation procedure, where E+
k ,U

+
k ,Σ

+
k and Π+

k are cumulative variants
of Ek,Uk,Σk and Πk, respectively. By the results for the cumulative classes, it
also follows that non-cumulative classes Ek, Uk and Pk (except P0) are the cumu-
lative counterparts of Σk, Πk and ∆k+1 respectively modulo the transformation
procedure.

In addition, I have presented an ongoing attempt about a classification of first-
order formulas based on hierarchical prenex normalization procedures restricted
to those which are admissible in intuitionistic and semi-classical theories. For that
purpose, we introduce new hierarchical classes of first-order formulas and charac-
terize the classes by the hierarchical prenex normalization procedures restricted to
some of those classes.
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Proof mining, applications to optimization, and interactive

theorem proving

Horaţiu Cheval

Let H be a Hilbert space, (Tn : H → H) be a family of nonexpansive mappings and
consider the problem of finding a common fixed point x ∈ ⋂

n∈N

Fix(Tn). Boţ, and

Meier [1] introduced an iterative method for finding such a point, which proceeds
by constructing the sequence (xn) via

xn+1 = (1 − λn)βnxn + λnTn(βnxn),(1)

where (λn), (βn) are sequences in [0, 1], and x0 ∈ H is arbitrary. The main results
of [1] show that, under certain conditions on (λn), (βn) and (Tn), it holds that

• lim
n→∞

‖xn − xn+1‖ = 0;

• lim
n→∞

‖xn − Tnxn‖ = 0;

• lim
n→∞

xn = x, for some x ∈ ⋂
n∈N

Fix(Tn).

The first two results are also known as the asymptotic (resp. (Tn)-asymptotic) of
(xn).

We present [3] an extension of this iteration from the setting of Hilbert spaces
to the nonlinear case of W -hyperbolic spaces, in the sense of [7]. For X a W -
hyperbolic space and (Tn : X → X) a family of nonexpansive self-mappings
thereof, we define its associated Tikhonov-Mann iteration (xn) by

xn+1 = (1 − λn)un + λnTnun, where(2)

un = (1 − βn)u+ βnxn,(3)

with (λn), (βn). This simultaneously generalizes (1), as well as the single map-
ping case studied in W -hyperbolic spaces in [2]. As the main results of [3], we
show that the asymptotic regularity of (xn) still holds in this setting, i.e. that,
under certain conditions on (λn), (βn), (Tn) we have that lim

n→∞
d(xn, xn+1) = 0,

lim
n→∞

d(xn, Tnxn) = 0 and that for any m ∈ N, lim
n→∞

d(xn, Tmxn) = 0.

Furthermore, the convergence theorems obtained are enriched with quantita-
tive information, in the form of rates of ((Tn)-, Tm-)asymptotic regularity, which
display a high degree of uniformity with respect to the space X and the mappings
(Tn). We also present work in progress regarding the generalization of the strong
convergence of (xn) from Hilbert to CAT(0) spaces. This can be carried out effec-
tively, adapting arguments from [4–6,9]. These results are part of the program of
proof mining [8].

Finally, in the second part, we discuss work in progress and research ideas for
using the Lean interactive theorem prover in proof mining, which can be found at
https://github.com/hcheval/. This includes the formalization of mathematical
results used and obtained in the context proof mining (for example quantitative
versions of lemmas widely used in optimization about sequences of real numbers),
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ideally in the form of a unified library. See also https://github.com/Kejineri

for such formalizations.
A different direction is the implementation of the general logical metatheorems

from proof mining which guarantee the possibility of extracting quantitative con-
tent from certain classes of formal proofs. Given the constructive character of
these metatheorems, they could be built into automatic program extraction tools,
which could then be applied to proofs already formalized in Lean, in order to
obtain strengthened variants thereof.
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[2] H. Cheval and L. Leuştean. Quadratic rates of asymptotic regularity for the Tikhonov-Mann
iteration. Optimization Methods and Software, 37(6):2225–2240, 2022.

[3] H. Cheval. Rates of asymptotic regularity of the Tikhonov-Mann iteration for families of
mappings. arXiv:2304.11366 [math.OC], 2023.

[4] B. Dinis and P. Pinto. On the convergence of algorithms with Tikhonov regularization terms.
Optimization Letters, 15(4):1263–1276, 2021.

[5] B. Dinis and P. Pinto. Strong convergence for the alternating Halpern-Mann iteration in
CAT(0) spaces. SIAM Journal on Optimization, 33(2):785–815, 2023.

[6] F. Ferreira, L. Leuştean and P. Pinto. On the removal of weak compactness arguments in

proof mining. Advances in Mathematics, 354:106728, 2019.
[7] U. Kohlenbach. Some logical metatheorems with applications in functional analysis. Trans-

actions of the American Mathematical Society, 357:89–128, 2005.
[8] U. Kohlenbach. Applied Proof Theory: Proof Interpretations and Their Use in Mathematics.

Springer, 2008.
[9] U. Kohlenbach. On quantitative versions of theorems due to F.E. Browder and R.

Wittmann, Advances in Mathematics, 26:2764–2795, 2011.

Equiconsistency of the Minimalist Foundation with its classical version

Maria Emilia Maietti

In our Oberwolfach talk we showed that the Minimalist Foundation, which is a
foundation for constructive mathematics, is equiconsistent with its classical ver-
sion, obtained by extending the underlying logic with the law of excluded middle.

The Minimalist Foundation, for short MF, was initially conceived in 2005 in
collaboration with Giovanni Sambin in [MS05] and further developed into a com-
prehensive two-level system in 2009 in [Mai09].

This two-level structure comprises an intensional level, referred to as mtt, which
is envisioned as a theory possessing sufficiently decidable properties to serve as a
foundation for a proof assistant which at the same time might be enriched with a
mechanism of program extraction from its proofs. Additionally, there is an exten-
sional level, named emtt, which is formulated in a language closely aligned with
that of traditional mathematics. Then, emtt is interpreted within the intensional
level, mtt, through the utilization of a quotient model.
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One of the main novelties of MF is that of serving as a shared core among
significant foundations for mathematics. Notably, its estensional level emtt is
compatible with several prominent mathematical foundations, including the stan-
dard axiomatic set theory ZFC, Aczel’s Constructive Zermelo-Fraenkel set theory,
the general theory of elementary toposes, as shown in [Mai09] (see also [MS22]),
and more recently, Homotopy Type Theory and Voedvosky’s Univalent Founda-
tions as shown in [CM23]. Instead, its intensional level mtt is compatible with
Martin-Löf’s intensional type theory, Coquand-Huet-Paulin’s Calculus of Induc-
tive Constructions, as shown in [Mai09], and again Homotopy Type Theory as
shown in [CM23].

When we say that a theory is “compatible” with another theory, we mean
that there exists a translation preserving the meaning of logical and set-theoretic
operators from the first theory to the latter (and, for example, this implies that
the translation commutes with the embedding of Heyting arithmetics with finite
types in each of the mentioned theories if the first theory includes it).

As a byproduct MF is both constructive and predicative. In particular, the
computational contents of proofs developed within MF and further extensions
with inductive and coinductive topological definitions has been made explicit
through realizability models described in [IMMS18,MMR21,MMR22].

In our Oberwolfach talk we showed the remarkable property that both levels
of MF are still predicative and equiconsistent with the addition of the law of the
excluded middle and are all mutually equiconsistent.

It is worth mentioning two key steps to prove our claim.
The first key step of our proof is that we can smoothly extends Goedel-Gentzen’s

double negation translation of classical Peano arithmetics into the intuitionistic
one (for example in [Tv88]), to show that the intensional level mtt with the
addition of proof-irrelevance for propositions is equiconsistent with its classical
version obtained with the further addition of the law of excluded middle. This
works because the elimination rule of the propositional identity of mtt is equivalent
to the usual replacement rules of first-order equality. Proof-irrelevance is then
needed to interpret the universe of small classical propositions as the subtype of
the mtt-universe of small propositions that are ¬¬-stable.

The second key step to show our claim is that mtt (with or without the addition
of proof-irrelevance for propositions) is equiconsistent with the extensional level
emtt of MF through the use of the quotient model and of canonical isomorphisms
in [Mai09]. The proof of this fact extends smoothly to show the equiconsistency
of mtt (with or without proof-irrelevance) with emtt when the law of excluded
middle is added to each of them.

We also mention that Pietro Sabelli in his forthcoming PhD’s thesis shows that
Goedel-Gentzen’s double negation translation can be extended to provide a direct
interpretation of the classical version of emtt into emtt (whilst the propositional
equality of emtt has stronger rules that the usual first-order equality) thanks to
the fact that the propositional equality of emtt ground types is ¬¬-stable and that
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emtt-type-theoretic constructors preserve the ¬¬-stability of their propositional
equality.

We conclude by underlying that the predicativity and equiconsistency of the
classical version of MF with MF itself is a peculiarity of MF since the other well
known constructive and predicative foundations mentioned above, namely Martin-
Löf’s intensional type theory, Aczel’s Constructive Zermelo-Fraenkel set theory
and Homotopy Type Theory, do not satisfy this property because they become
impredicative when the law of excluded middle is added to their underlying logic.

We leave to future research to investigate whether the extensions of MF with
inductive and coinductive topological definitions in [MMR21] and [MMR22] are
still equiconsistent with their classical version or, at least, are still predicative.
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The computational content of super strongly nonexpansive mappings

Andrei Sipoş

Strongly nonexpansive mappings are a core concept in convex optimization. Re-
cently, they have begun to be studied from a quantitative viewpoint: U. Kohlen-
bach has identified in [2] the notion of a ‘modulus’ of strong nonexpansiveness,
which leads to computational interpretations of the main results involving this
class of mappings (e.g. rates of convergence, rates of metastability). This forms
part of the greater research program of ‘proof mining’, initiated by G. Kreisel
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and highly developed by U. Kohlenbach and his collaborators, which aims to ap-
ply proof-theoretic tools to extract computational content from ordinary proofs in
mainstream mathematics (for more information on the current state of proof min-
ing, see the book [1] and the recent survey [3]). The quantitative study of strongly
nonexpansive mappings has later led to finding rates of asymptotic regularity for
the problem of ‘inconsistent feasibility’ [4, 7], where one essential ingredient has
been a computational counterpart of the concept of rectangularity, recently iden-
tified in [5] as a ‘modulus of uniform rectangularity’.

Last year, Liu, Moursi and Vanderwerff [6] have introduced the class of ‘super
strongly nonexpansive mappings’, and have shown that this class is tightly linked
to that of uniformly monotone operators. What we do is to provide a modulus
of super strong nonexpansiveness, give examples of it in the cases e.g. averaged
mappings and contractions for large distances and connect it to the modulus of
uniform monotonicity. In the case where the modulus is supercoercive, we give a
refined analysis, identifying a second modulus for supercoercivity, specifying the
necessary computational connections and generalizing quantitative inconsistent
feasibility.

The results in this talk may be found in the paper [8].
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Sunny nonexpansive retractions in nonlinear spaces

Pedro Pinto

Undoubtedly, one of the most complicated instances of proof mining to date is the
proof-theoretical analysis of Reich’s theorem, one of the most pivotal results in
functional analysis, carried out in [2].
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In this talk, we introduce the notion of a nonlinear smooth space generalizing
both CAT(0) spaces as well as smooth Banach spaces [3]. Concretely, we say that
a hyperbolic space (X, d,W ) (in the sense of [1]) is a smooth hyperbolic space if
there exists a function π : X2 ×X2 → R satisfying for all x, y, z, u, v ∈ X

(P1) π(−→xy,−→xy) = d2(x, y)
(P2) π(−→xy,−→uv) = −π(−→yx,−→uv) = −π(−→xy,−→vu)
(P3) π(−→xy,−→uv) + π(−→yz,−→uv) = π(−→xz,−→uv)
(P4) π(−→xy,−→uv) ≤ d(x, y)d(u, v)

and for any λ ∈ [0, 1]

(P5) d2(W (x, y, λ), z) ≤ (1 − λ)2d2(x, z) + 2λπ
(−→yz,−−−−−−−−→W (x, y, λ)z

)
.

Moreover, we say that (X, d,W, π) is a uniformly smooth hyperbolic space if it
satisfies additionally

(P6)

{
∀ε > 0 ∀r > 0 ∃δ > 0 ∀a ∈ X ∀u, v ∈ Br(a)

d(u, v) ≤ δ → ∀x, y ∈ X (|π(−→xy,−→ua) − π(−→xy,−→va)| ≤ ε · d(x, y)) .

Formally we can consider these spaces in a extension of the system Aω[X, d,W ]
from [1] where we have a further constant π of type 1(X)(X)(X)(X) governed by
the axioms (P1)–(P6). Clearly by (P4) π is majorizable, and using (P6) the system
proves the extensionality of π. Thus, if we include a modulus of uniform continuity
ωX in the sense of providing a witness for δ in (P6), we have a metatheorem for
the extraction of bounds from (formalizable) proofs in this new class of nonlinear
spaces.

We discuss that this notion allows for a unified treatment of several mathemat-
ical proofs in functional analysis. In particular, we show that Kohlenbach’s and
Sipoş’s treatment of Reich’s result can be appropriately discussed in this nonlinear
setting.
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Extensional Proof-Systems for Modal Logics

Margherita Zorzi

(joint work with S. Guerrini, S. Martini, A. Masini)

1. Introduction

Designing a robust proof theory for modal logics is a subtle task. The difficulty
lies not merely in establishing deductive systems; rather, the real challenge is
in formulating a concrete structural proof theory, in which the objects of study
are (not only) modal formulas, but also modal proofs. A well defined systems
satisfies some desirable properties, such as the the syntactical study of cut elimi-
nation/normalization theorem and its consequences (the sub-formula property and
the consistency theorem, see [1])). Furthermore, if feasible, one could attempt to
define an extensible system – a system capable of capturing not only a single logic
but an entire family.

In the literature, several deductive styles and approaches to modal proof theory
have been introduced. We recall multidimensional systems, where the primary
concept involves equipping formulas with an index or position, (offering a kind
of “spatial coordinate”) and Labeled Deductive Systems, where the rules that
model the accessibility relationship are explicitly integrated into the syntactical
deductive instruments. In this abstract we will focus on natural deduction and on
a family of multidimentional systems based on the notion of position. The main
ideas of our frameworks are the following: formulas are marked with a spatial
coordinate; only one introduction rule and one elimination rule per connective; no
additional structural rules; no explicit reference to the accessibility relation; only
modal operators can “change” the spatial position of the formulas and are treated
in analogy of first-order quantifiers. Refer to [2–4] for complete technical details,
comprehensive references to related work, and a thorough comparison with the
state of the art.

2. From K to S4: the system Npos

A position-formula is an expression of the form Aα, where A is a modal formula
and α is a position. Positions are constructed based on tokens, which are essen-
tially uninterpreted symbols. According to the definition of position we adopt
(a sequence, a set, a singleton set) we are able to characterize different modal
systems.

The classical natural deduction system Npos captures the normal extension of
the logic K by incorporating the basic axiom K ≡ ✷(A → B) → (✷A → ✷B)
and one or more of the following axioms: D ≡ ✷A → ✸A, T ≡ ✷A → A,
4 ≡ ✷A → ✷✷A. This results in K (containing only the basic axiom K) D

(K+D), T (K+T), K4 (K+4), D4 (K+D+4), and S4 (K+T+4).
In Npos positions are interpreted as sequences of tokens (with related operations

such as concatenation).
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Rules for modal operator are designed as much as possible in analogy with
fist-order logic quantifiers:

·
·
·

Aαx

(✷I)
✷Aα

·
·
·

✷Aα

(✷E)
Aαβ

·
·
·

Aαβ

(✸I)
✸Aα

·
·
·

✸Aα

[Aαx]
·
·
·

Cβ

(✸E)
Cβ

In the rule ✷I, one has αx 6∈ Init[Γ], where Γ is the set of (open) assumptions
on which Aαx depends and Init[Γ] = {β : ∃Aα ∈ Γ. β ⊑ α}. In the rule ✸E, one
has αx 6∈ Init[β] and αx 6∈ Init[Γ], where Γ is the set of (open) assumptions on
which Cβ depends, with the exception of the discharged assumptions Aαx. The
system K and K4 are partial logics we use existence predicates (à la Scott) for
formulating sound deduction rules to deal with partial systems.

All the logical systems share the rules above. To obtain a specific logic, one can
“tune” some syntactic constraints, described in the following tables:

name of the calculus constraints on the rules ✷E and ✸I
NS4 no constraints
NT β = 〈 〉
ND β is a singleton sequence 〈z〉
ND4 β is non empty

name of the calculus constraints on the rules ✷E and ✸I
NK4 β is a non empty sequence
NK β is a singleton sequence 〈z〉

Following Prawitz’s original proof for first-order logic, one proves a Normaliza-

tion Theorem: for each derivation Π there exists a derivation Π′ s.t. Π
∗≻ Π′ and

Π′ is in normal form. As a Corollary, one obtains the Consistency of the system(s)
(by syntactical arguments): for each position α, 6⊢NPos

⊥α.
The formal definition of semantics of NPos is very technical but intuitive. Posi-

tions are mapped into nodes of a tree-like Kripke structure (and hence sublists of
a position will range on paths of nodes). Each system captured by NPos is sound
and complete w.r.t. its standard Hilbert-style axiomatization.

3. Beyond S4: the logics S4.2 and S5

What’s happen to if we relax the “structure” of the positions?
If we release the ordering and the multiplicity of tokens, then we move from

sequences to sets, we obtain a (classical) natural deduction system for the logic
S4.2. The logic S4.2 is employed in different settings, ranging from epistemology
to the metamathematics of set theory and algebraic structures. It can be derived
by adding to S4 the axiom 2 ≡ ✸✷A→ ✷✸A. We do not add any additional con-
straints to the rules except for the usual ones on ✷I and ✸E. The resulting system
NS4.2 is sound and complete w.r.t. the standard Hilbert-style axiomatization of
S4.2. Moreover, we can prove a Normalization theorem and, as a consequence, a
Consistency theorem (again, by means of purely syntactical arguments).
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Regarding semantics, the interpretation of position formulas requires an in-
teresting observation. It is well-know that S4.2 is characterized (at the level of
the accessibility relation) by direct partial preorders. If we were to consider this
characterization, in attempting to assign semantics to the positions, we would en-
counter a non-trivial problem. We have to decide which point in the Kripke model
could be uniquely associated with a set of tokens {x1, . . . , xn}. The standard,
naive choice would be to take one of the upper bounds of the worlds associated
with each token, but this choice would not be unique, and in a direct pre-order the
supremum of a finite set of elements might not exist. However, we can use some
results of Goldblatt and Shetmann, which imply that S4.2 is also characterized by
a class of ordered structures different than direct pre-orders, that of semilattices
with a minimum element, where the problem disappears. We can now interpret
a position (i.e. a set) {x1, . . . , xk} as the least upper bound of the points (in a
space) x1, . . . , xk.

We have interpreted positions as general sets. Now, let’s restrict the definition of
positions to singleton sets. What we obtain is NS5 a indexed natural deduction
for S5 logic. The logic S5 is obtained by adding the axiom B ≡ φ → ✷✸φ to
S4 and is characterized by a universal semantics (this means that the accessibility
relation is an equivalence relation). We do not add any additional constraints to
the rules except for an adaptation of the usual ones on ✷I and ✸E. Both the clas-
sical and intuitionistic version NS5 enjoys expected good properties such as the
soundness and completeness w.r.t. their Hilbert-style axiomatization, the Normal-
ization Theorem and its consequences. In the case of intuitionistic logic, instead
of the universal semantics, it is more interesting to explore a BHK interpretation,
that interpret modal operators as follows: a proof of ✷Ax is a construction that
for each y gives a proof f(y) of Ay and a proof of ✸Ax is a pair (y, a) such that
a is a proof of Ay. The BHK interpretation, via the natural deduction system,
induces a Curry–Howard Isomorphism in the usual sense. The resulting calculus
is similar to λ-P, i.e. the typed lambda-calculus for the negative fragment of first
order intuitionistic logic in the so called Barendregt-cube.

The described research is open to various investigations, including the study of
the intuitionistic version of the NPos system from a Curry-Howard perspective
and the extension of techniques to infinitary logics.
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Dichotomies in Weihrauch Complexity

Vasco Brattka

We discuss a number of uniform dichotomies for problems in the Weihrauch lattice.
Such dichotomies have the common form that a problem is either quite well-
behaved (continuous, measurable of some form, etc.) or already relatively badly
behaved. We show that often such dichotomies also have non-uniform versions in
terms of computable reducibility and we indicate how computability concepts such
as Turing jumps, Weak Kőnig’s Lemma, diagonal non-computability, etc., occur
naturally in these non-uniform versions. This leads, for instance, to first-order
characterizations of continuity in terms of Turing degrees. We also discuss how
some known dichotomies from descriptive set theory, such as Solecki’s dichotomy,
can be seen in this context. The talk is based on ongoing research, but some of
the discussed results are published in [1].
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Žitná 25
115 67 Praha
CZECH REPUBLIC

Prof. Dr. Henry Towsner

Department of Mathematics
University of Pennsylvania
209 South 33rd Street
P.O. Box 19104
Philadelphia, PA 19104-6395
UNITED STATES

Dr. Iris van der Giessen

School of Computer Science
University of Birmingham
Birmingham B15 2TT
UNITED KINGDOM

Prof. Dr. Albert Visser

Department of Philosophy
and Religious Studies
Utrecht University
Janskerkhof 13
3512 BL Utrecht
NETHERLANDS

Prof. Dr. Andreas Weiermann

Vakgroep Wiskunde
Universiteit Gent
Krijgslaan 281
9000 Gent
BELGIUM



Mathematical Logic: Proof Theory, Constructive Mathematics 3061

Dr. Keita Yokoyama

Mathematical Insitute
Tohoku University
6-3 Aza-Aoba, Aramaki, Aoba-ku
Sendai 980-8578
JAPAN

Dr. Margherita Zorzi

Dipartimento di Informatica
Università di Verona
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Abstract. Recent years have seen an explosion of algebraic methods to
study singular stochastic and rough dynamics. These include developments in
geometric rough path theory based on the algebra of words, the introduction
of decorated trees in regularity structures, and the recent approach to sin-
gular stochastic partial differential equations based on multi-indices. These
developments have furthermore led to important links with numerical anal-
ysis, machine learning, stochastic quantisation, and the study of symmetries
of physical systems. The aim of this mini-workshop was to bring together ex-
perts working on these fields using algebraic structures that appear in rough
dynamics. The goal was to facilitate the exchange of ideas and encourage
further connections to be established.
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Introduction by the Organizers

Organizational details

The mini-workshop Combinatorial and Algebraic Structures in Rough Analysis
and Related Fields, organised by Yvain Bruned (Université de Lorraine), Carlo
Bellingeri (TU Berlin), Ilya Chevyrev (University of Edinburgh) and Rosa Preiß
(University of Postdam) was attended by 16 participants currently based in France,
Germany, Norway, Poland and the UK. The program consisted of 16 talks (45
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minutes each), each being followed by a discussant’s presentation (15 minutes
each), leaving sufficient time for additional questions from the audience.

Due to some participants becoming ill at short notice in connection with the
Covid-19 pandemic, this event took place in a hybrid format having 4 participants
attending online. In accordance with Oberwolfach’s tradition, the schedule was
not known in advance by the participants. The days’ schedules were sent each
evening to the group. Further informal discussions took place in between and
after the talks. The Zoom session was managed with the precious help of Carlo
Bellingeri, and Usama Nadeem took care of the the report.

Motivation

The main purpose of the mini-workshop was to gather together early career re-
searchers working in the development of new algebraic structures to study non-
linear singular random dynamics arising from rough analysis and connected areas.
In particular, we wanted to encourage collaborative work and the sharing of recent
contributions among different research groups, including groups working on SPDEs
with regularity structures and multi-indices, signatures, numerical analysis, data
science, and operad theory. Combinatorial and algebraic structures arise naturally
in non-linear dynamics when we want to describe in a compact way higher order
expansions of differential equations.

Consider for instance a autonomous system

x′(t) = f(x(t)), x(0) = x0 .

Then, applying iteratively the Taylor formula, we can write x as the asymptotic
series indexed by trees. The same trees can be used also to describe higher order
Runge–Kutta methods to solve the system numerically [3]. More generally, by
introducing appropriate algebraic structures, an important example of which is
the Butcher–Connes–Kreimer Hopf algebra [5], it is possible to derive a consis-
tent theory of numeric integration for ordinary differential equations [10] and to
renormalise Feynman diagrams in quantum field theory. Moving beyond numerical
analysis, formal expansions can be used analytically to establish well-posedness of
singular stochastic dynamics. We refer principally to rough differential equations
(RDEs)

dYt = g(Yt)dWt, Y (0) = Y0

and singular stochastic partial differential equations (SPDEs) of the form

(∂t − L)u = F (u,∇u)ξ, , u(0) = v .

Both systems are characterised by the presence of noise terms, which are associ-
ated respectively to a highly oscillating driving noise W and random distribution
ξ, making the equation singular. The resolution of these systems is performed
in a series of papers [8, 2, 4, 1], taking their roots in Lyons theory of rough
paths [11, 6, 7], and that have culminated in the formation of the recent field of
rough analysis, see [9]. In this context, combinatorial and algebraic structures
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are adopted to construct truncated Taylor-type expansions of the solutions of the
previous equations.

We should indeed mention the following offshoots which have been widely dis-
cussed by the participants:

• Multi-indices, which are a different way to encode the expansions for solu-
tions of singular SPDEs. The idea is to index the expansion according to
the elementary differentials (coefficients arising from the nonlinearities) in-
stead of the iterated integrals. Talks on the subject were given by Bruned,
Linares and Tempelmayr.

• Regularity Structures via decorated trees where the characterisation of
symmetries in a general combinatorial context remains a challenge. For
example, there is no unification between the chain rule in the geometric
and quasilinear KPZ equations and gauge-covariance in Yang-Mills. Talks
were given on this topic by Chevyrev and Nadeem.

• Numerical Analysis for dispersive PDEs where a resonance analysis allows
us to get low regularity schemes for a large class of equations. The com-
binatorial structure used is very similar to decorated trees developed for
singular SPDEs. Talks were given by Alama Bronsard and Schratz.

• Rough paths where its geometry is much better understood via the iso-
morphisms between words and trees. Talks were given on this topic by
Bellingeri, Ferrucci, Rahm and Tapia.

• The potential of these combinatorial structures could be seen via other
fields of application brought by the participants such as Algebraic geom-
etry for rough paths (Preiß), Algebraic operads (Tamaroff), Perturbative
Quantum Field Theory (Klose), Stochastic analysis in Frobenius manifold
(Combe) and 2D signature via multiparemeter iterated integrals (Diehl).

Acknowledgement: The workshop organizers would like to thank MFO for the nice
environment provided for this event.
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Timetable of the Mini-workshop

Monday Tuesday Wednesday Thursday Friday

9h30 Bellingeri Combe Schratz Tamaroff Nadeem
11h00 Klose Chevyrev Diehl Preiß Bruned
15h30 Tempelmayr Rahm Tapia
17h00 Linares Alama Bonsard Ferrucci

Speakers and discussants

Speaker Title Discussant

Bellingeri Algebraic structures in the rough
change of variable formula

Alama Bronsard

Klose Perturbation theory for the Φ4

3 measure,
revisited with Hopf algebras

Tempelmayr

Tempelmayr Recentering for rough paths and
regularity structures via multi-indices

Tamaroff

Linares Algebraic renormalization of rough
paths and regularity structures
based on multi-indices

Bellingeri

Combe Semimartingales with values in a
(pre-)Frobenius manifolds

Ferrucci

Chevyrev Symmetries in stochastic Yang–
Mills equations

Linares

Rahm Planarly Branched Rough
Paths Are Geometric

Combe

Alama Bronsard Numerical approximations to rough
solutions of dispersive equations

Diehl

Schratz Resonances as a computational tool Tapia

Diehl Multiparameter iterated integrals Schratz

Tamaroff From bialgebras to algebraic operads Nadeem

Preiß An algebraic geometry of (rough) paths Rahm

Tapia Branched Itô formula Klose

Ferrucci Natural Itô-Stratonovich isomorphism Bruned

Nadeem Solution theory for quasilinear gen-
eralised KPZ Equation

Chevyrev

Bruned Novikov algebras and multi-indices
in regularity structures

Preiß
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Abstracts

Algebraic structures in the rough change of variable formula

Carlo Bellingeri

Given a smooth function ϕ : Rd → R and a continuous bounded variation path
x : [0, T ] → Rd, x = (x1, . . . , xd) the fundamental theorem of calculus tells us the
well-known identity

ϕ(xt) − ϕ(xs) =

d∑

i=1

∫ t

s

∂ϕ(xr)

∂xi
dxir .

This formula is a cornerstone of standard calculus. In particular, when x does
not satisfy this property, the integral in might not be well defined because x is
not a.e. differentiable and Lebesgue integration theory is not useful any more.
Surprisingly, thanks to the theory of rough paths [5] it is still possible to write
a similar change of variable formula. However, in this case, the formula is not
unique, depending on the underlying algebraic theory defining the integrals. The
goal of this talk is to fully explore the possible identities known in the theory and
prepare the discussion for the talks of Emilio Ferrucci and Nikolas Tapia on [2].

A first possibility is represented by introducing the Young integral, see [11],
defined as the limit of the Riemann-type sum

∫ t

s

f(xr)dx̂ir : lim
|P|→0

∑

[u,v]∈P

f(xu)(xiv − xiu) ,

where π is a generic partition of [s, t] with size |P|. This sum converges if and only
if x is γ-Hölder with γ ∈ (1/2, 1) and one has the formula

ϕ(xt) − ϕ(xs) =

d∑

i=1

∫ t

s

∂ϕ(xr)

∂xi
dx̂ir .

More generally, using the standard theory of geometric rough paths, see [10],
the starting point is not anymore a path but an extended path X : [0, T ]2 → G(Rd)
with values in the character group of the shuffle Hopf algebra (T (Rd),�,∆c).
Using the additional components of X we can indeed define for any γ ∈ (0, 1) the
geometric rough integral

∫ t

s

f(Xr)dX
i
r := lim

|P|→0

∑

[u,v]∈P

∑

|w|<N−1

∂f(Xu)

∂xi1 . . . ∂xiw
〈wi,Xu,v〉 ,

where we sum over a set of words with a length smaller than a finite N depending
on γ. It follows from elementary considerations of Taylor’s formula and the shuffle
product that in this case one has the identity

ϕ(xt) − ϕ(xs) =

d∑

i=1

∫ t

s

∂ϕ(xr)

∂xi
dX i

r .
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Similar computations were also provided in [1] where the shuffle product is de-
formed into a quasi-shuffle product [8]. The main feature of this approach starts
with some apriori relations among the components of X and then one derives the
formula using standard combinatorial relations.

In case we not want to assume any apriori relations we need to start from a
branched rough paths [6, 7] i.e. our starting path will take value in the character
group of the Butcher–Connes–Kreimer Hopf algebra (H(Rd), .,∆ck) [3] where the
product is free. A first general theory to express these identities was given in the
last chapter of David Kelly’s PhD Thesis [9, Chap. 5]. This condition allows us to
obtain an extremely general formula but at the same time, this notion requires to
satisfy some additional properties and it is not unique, which makes this definition
more arduous for applications. Some parts of [2] are dedicated to providing a new
formula in this context. Interestingly we will have a final identity of the form

ϕ(xt) − ϕ(xs) =

d∑

i=1

∫ t

s

∂ϕ(xr)

∂xi
dX i

r + “higher order integrals” .

where in the remaining integral we will integrate not just with respect to the
component of X but the value of X on its primitive elements, whose properties
were deeply analysed in [4].
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Inst. Henri Poincaré Probab. Stat., 59(3) (2023), 1398–1433.

[2] C. Bellingeri, E. Ferrucci, and N. Tapia. Branched Itô Formula and natural Itô-Stratonovich
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Perturbation theory for the Φ4
3
measure, revisited with Hopf algebras

Tom Klose

(joint work with Nils Berglund)

The Φ4
3 model, defined on the 3-dimensional torus T3, is probably one of the

simplest non-trivial models in Euclidean quantum field theory. At cut-off scaleN ∈
N, it can be written as

µN
Φ4

3
(dφ) =

1

ZN (ε)
exp

(
−
∫

Λ

(‖∇φ(x)‖2
2

+
1 − ε2C

(2)
N

2
:φ(x)2: +

ε

4
:φ(x)4:

+ε2C
(3)
N − ε3C

(4)
N

)
dx

)
dφ

where C
(k)
N , k = 1, . . . , 4 are suitable explicit renormalisation constants and : · : is

the Wick product w.r.t. the covariance C
(1)
N . The purpose of this talk is to revisit

perturbation theory for the renormalised log partition function

− log
ZN (ε)

ZN(0)
= γ − logEµN

[
e−αX−βY

]
= γ −

∞∑

n=2

κn
n!
,

κn = EµN
c

[(
α + β

)n]
(1)

associated with this measure, where µN is the Gaussian measure with covari-
ance (−∆ + 1)−1, regularised at scale N ,

(2) X ≡ ≡
∫

T3

:φ(x)4:dx, Y ≡ ≡
∫

T3

:φ(x)2:dx,

and the parameters α, β, and γ are defined as α := ε/4, β := ε2

2 C
(2)
N , and γ :=

ε2C
(3)
N − ε3C

(4)
N . The last equality in (1) is an expansion in terms of cumulants κn

and it is well-known (see, e.g. [10]) that they can be expressed in terms of connected

Feynman diagrams Γ
(k)
nm with m vertices of valency 4, n−m vertices of valency 2,

and n+m edges. These diagrams come with a degree deg(Γ
(k)
nm) = 2n−m−3 for all

k and are associated with a real number via a canonical valuation map ΠN . Even
though all diagrams Γ with valuation ΠN (Γ) ≤ 0 are divergent as N → ∞, it is
unfortunately not the case that all the diagrams with positive valuation converge;
this is known as the problem of (nested) subdivergences. It has been overcome in
the celebrated work by Bogoliubov, Parasiuk, Hepp, and Zimmermann [3, 9, 11],
who constructed a renormalised BPHZ valuation map ΠBPHZ

N for which deg(Γ) >
0 implies that ΠBPHZ

N (Γ) is uniformly bounded in N ; see also the recent work
by Hairer [8] for a self-contained formulation. The main result of our work [2,
Thm. 3.5] is the following theorem:

Theorem 1. The following equality holds in the sense of formal power series:

(3) γ −
∞∑

n=2

κn
n!

=

∞∑

p=4

1

p!
(−α)p

∑

k

b(k)pp ΠBPHZ
N

(
Γ(k)
pp

)
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where the b
(k)
pp ’s denote combinatorial factors. Since deg(Γ

(k)
pp ) = p − 3 ≥ 1

for p ≥ 4, this implies that all terms in the perturbative cumulant expansion (1)
are bounded uniformly in the cut-off parameter N .

This result is already known but our proof is new. The theorem follows from
the commutativity of the diagram below which we establish in [2, Sec. 3.6].

In this diagram, the RHS is well-known. Since we work with connected di-
agrams, note that the only possible divergent sub-diagram in our setting is the
“bubble” .

Furthermore, the co-product ∆ describes the extraction-contraction procedure
due to Connes and Kreimer [5, 6], Ã is the twisted antipode w.r.t. the BPHZ
valuation, and CSΓ is the graph Γ with all bubbles with labels in S contracted to
a vertex, see [2, Sec. 3.3 and 3.4] and the references therein for details.

Inspired by the work of Ebrahimi-Fard et al. [7], the main novelty of our approach
is represented on the LHS of the diagram: We consider the polynomial Hopf al-
gebra H spanned by the monomials X and Y given in (2), equipped with the

classical co-product ∆̂; on top of that, we build a map Âη that resembles the

twisted antipode Ã such that the map χη then resembles the BPHZ renormali-
sation procedure of Feynman diagrams on the RHS. The map M describes the
multiplication M : H ⊗ H → H and the connection between the LHS and the
RHS is given by the map P, which formalises the pairings in Wick’s formula and
projects onto connected diagrams, see [2, Sec. 3.5] for details.
Interaction with the other participants. The discussant, Markus Tempelmayr, did
a wonderful job and raised several interesting questions. The first question con-
cerns the generality of our approach, in particular with regards to

• the full subcritical regime of the Φ4
4−δ model that was recently investigated

in [4] or even
• the case of the critical Φ4

4 model, the triviality of which was established
by Aizenman and Duminil-Copin [1].
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A potential answer to this question is linked to another question raised by the
discussant, namely: Can we characterise the algebraic structure on the LHS of the
commutative diagram above? In our work, we have left that problem open but we
believe that one should be able to recast (a modification of) our construction in
the language of the above-mentioned work by Ebrahimi-Fard et al. [7]. While this
question remains open for now, the workshop has provided the author with the
opportunity to initiate a discussion with Nikolas Tapia, another participant and
co-author of the article [7], which could potentially lead to a follow-up project.
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Recentering for rough paths and regularity structures via multi-indices

Markus Tempelmayr

(joint work with Pablo Linares and Felix Otto)

Following [3, Section 6], we review the Hopf algebra structure underlying recenter-
ing in multi-index based regularity structures introduced in [4]. To simplify this
exposition, we consider instead of a PDE the rough differential equation

(1)
d

dt
u(t) = a(u(t))ξ(t), u(t = 0) = 0.

Here, we think of a : R → R as being a smooth nonlinearity, and of ξ as a random
Schwartz distribution, say ξ ∈ Cα−1 for α ∈ (0, 1). For such ξ, the product a(u)ξ
is a product of a function with a distribution which falls short of the Young regime.



3074 Oberwolfach Report 54/2023

The basic idea to develop a solution theory in [4] is to parameterize the model,
which captures the local solution behaviour, by partial derivatives w.r.t. the non-
linearity a. We thus make the ansatz

u(t) − u(s) =
∑

β

Πsβ(t)

∞∏

k=0

( 1

k!

dka

duk
(
u(s)

))β(k)

for a base point s ∈ R, where β : N0 → N0 is a multi-index. With help of the

coordinates zk on the space of nonlinearities given by zk[a] := 1
k!

dka
duk (0), the above

ansatz takes the more compact form of

u(t) − u(s) =
∑

β

Πsβ(t) zβ [a(· + u(s))],

where the monomials zβ are given by zβ :=
∏∞

k=0 z
β(k)
k . This power series does

in general not converge. We thus “algebraize” our ansatz by not evaluating the
coordinates at a nonlinearity a, and consider instead formal power series in the
abstract variables {zk}∞k=0,

Πs(t) :=
∑

β

Πsβ(t) zβ ∈ R[[zk]].

Plugging this ansatz into (1) and comparing coefficients yields

d

dt
Πsβ(t) =

∞∑

k=0

∑

ek+β1+···+βk=β

Πsβ1(t) · · ·Πsβk
(t)ξ(t), Πs(t = s) = 0,

where we denote by ek the multi-index mapping l to δlk. Some examples are

d
dtΠs e0 = ξ, d

dtΠs e0+e1 = Πs e0ξ,
d
dtΠs 2e0+e2 = Π2

s e0ξ,

d
dtΠs 2e0+e1+e2 = Πs 2e0+e2ξ + 2Πs e0Πs e1ξ.

Comparison to rough paths. We compare this construction to branched rough

paths [1]. For rooted trees τ1, . . . , τk and a tree τ =
τ1 τk

the rough path X(τ) is
recursively defined by

d

dt
Xs,t(τ) = Xs,t(τ1) · · ·Xs,t(τk)ξ, Xs,t=s(τ) = 0.

Some examples are

d
dtXs( ) = ξ, d

dtXs( ) = Xs( )ξ, d
dtXs( ) = Xs( )Xs( )ξ,

d
dtXs( ) = Xs( )ξ, d

dtXs( ) = Xs( )Xs( )ξ.

As these examples correctly suggest, every model component Πsβ can be expressed
as a linear combination of rough paths Xs(τ).

Proposition 1. For every β we have

Πsβ(t) =
∑

τ∈Tβ

σ(β)
σ(τ) Xs,t(τ),
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where Tβ is the set of all trees having β(k) nodes with k children for all k ∈ N0,

σ(β) :=
∏∞

k=0(k!)β(k) is a symmetry factor of a multi-index, and σ(τ) is the
symmetry factor of the tree τ .

This induces a dictionary φ from (linear combinations of) multi-indices T to (linear

combinations of) trees T , given by φ(β) =
∑

τ∈Tβ

σ(β)
σ(τ) τ , such that

Π = X ◦ φ.

Recentering. We turn to recentering, and aim to relate Πs to Πs̄. Observe that
for given us̄ ∈ R and u[a(· + us̄)] the solution to (1) with a replaced by a(· + us̄),

ū := u
[
a(· + us̄)

]
+ us̄

satisfies (1) with initial condition ū(0) = us̄. Allowing the shift to depend on a,
we might hope to choose us̄[a] such that ū(s̄) = 0. We thus informally identified
the transformation Γ∗

s̄0 that recenters solutions from 0 to s̄ by

(Γ∗
s̄0u)[a] = u

[
a(· + us̄[a])

]
+ us̄[a].

The goal is to translate this to the level of Π, where the above can not directly
be applied as Π is not a well-defined functional of a (only a formal power series!).
Instead, we consider the infinitesimal generator D of the u-shift of a defined by

(Du)[a] := d
dv

∣∣
v=0

u[a(· + v)],

which as a derivation is well defined on formal power series R[[zk]]. Analogously,
the generator of the a-dependent u-shift is given by z

βD ∈ Der(R[[zk]]). The linear
span L := span{zβD |β multi-index} is then a pre-Lie algebra when equipped with

z
βD ⊲ zγD := (zβD.zγ)D,

the dot meaning the application of the derivation zβD to the power series zγ . Note
that its universal enveloping algebra U(L) is naturally a Hopf algebra. We define
the space of “forests” of multi-indices T+ via the pairing

U(L)〈zβ1 · · · zβkD · · ·D, γ1 · · · γl〉T+ = δlkδ
γ1

β1
· · · δγk

βk
,

where zβ1 · · · zβkD · · ·D can be given a sense in U(L) by help of the pre-Lie product
⊲, which crucially does not depend on any order as the multiplication of monomials
zβ commutes. This turns T+ into a Hopf algebra. From its character group, we
can analogous to the theory of regularity structures [2] with help of a comodule
build a (structure) group G containing endomorphisms Γss̄, such that their duals
Γ∗
ss̄ ∈ End(R[[zk]]) satisfy

Γ∗
ss̄Πs̄ = Πs.

By working on the “dual side”, we thus obtained a geometric interpretation of the
Hopf algebra at play in regularity structures for recentering.

Comparison to rough paths again. On the tree-side we consider the Grossman-
Larson pre-Lie algebra L := span{τ | τ tree} equipped with

τ1  τ2 :=
∑

τ

n(τ1, τ2, τ)τ,
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Actions on a L U(L) G∗

T+ G

Generators →֒

exp

pairing

Hopf theory

Hairer’s theory

dualizationdual side

primal side

Figure 1. Algebraic construction of the group G
∗.

where n(τ1, τ2, τ) is the number of single cuts performed on τ with branch τ1 and
trunk τ2, e.g.

 = 2 + .

The dictionary φ can by the pairings T〈β, zγD〉L = δγβ and T 〈τ1, τ2〉L = δτ2τ1 be

transposed to obtain φ† : L → L, given by φ†(τ) = σ(β)
σ(τ) z

βD provided τ ∈ Tβ .

Proposition 2. φ† is a pre-Lie morphism, i.e.

φ†(τ1  τ2) = φ†(τ1) ⊲ φ†(τ2).

By the universality property it lifts to a Hopf algebra morphism φ† : U(L) → U(L).
Yet another pairing on forests of trees between the Grossman-Larson Hopf algebra
U(L) and the Connes–Kreimer Hopf algebra H defined by

U(L)〈τ1 · · · τk, σ1 · · ·σl〉H = δlkδ
σ1
τ1 · · · δσk

τk
,

allows to transpose φ† once more and yields a Hopf algebra morphism φ : T+ → H.
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Algebraic renormalization of rough paths and regularity structures

based on multi-indices

Pablo Linares

The theories of rough paths [13], [8, 9] and regularity structures [10] provide local
well-posedness results for RDEs (respectively SPDEs): The fundamental analytic
objects they are based on take the form of local expansions with respect to nonlin-
ear functionals of the driving noise, collected in what is called rough path (respec-
tively model). In their usual approaches, these local expansions and their natural
transformations (re-expansions, multiplication, renormalization) are encoded in
Hopf algebras of trees, leading to a systematic treatment of semi-linear subcrit-
ical singular SPDEs [2, 4, 6]. More recently, and in the context of quasi-linear
SPDEs, [14] obtained a priori bounds in a regularity structures set-ups based on
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multi-indices instead of trees: A deeper algebraic understanding of this new book-
keeping, and particularly of the recentering operation based on multi-indices, was
later given in [12].

The purpose of this talk, based on [5, 11], is to provide a complete description of the
algebraic structures emerging from multi-indices for a general class of semi-linear
equations of the form

Lu =
∑

l∈L

al(u)ξl, u : Rd → R, u =
(

1
m!∂

mu
)
m∈Nd

0
.

More precisely, we give a systematic construction of a regularity structure based on
multi-indices, including a careful study of the recentering transformations leading
to the so-called structure group; we introduce finite counterterms in the original
equation and describe a recursive procedure to construct an algebraically renor-
malized smooth model; and we provide, in the rough path case, the construction
of a renormalization group based on multi-indices.

The basis of the constructions consists of variables {z(l,k)}, l ∈ L, k ∈ M(Nd
0),

which are placeholders for the derivatives of the nonlinearities al; and {zn}, n ∈ Nd
0,

which represent Taylor coefficients of a local parameterization of the manifold of
solutions. Multi-indices arise when considering monomials in these variables zβ .
Next to this, we have infinitesimal generators of shifts in the space of solutions
(denoted D(n), n ∈ Nd

0), which act like pre-Lie products; and of shifts in space-time
(denoted ∂i, i = 1, ..., d), which are commutative linear maps. Appealing to the
construction of Guin and Oudom [7], combined with suitable grading properties,
we derive a Lie algebraic PDE in mild form describing a smooth model, namely

Πx = K ∗ ρ
(

exp(Πx)
)∑

l∈L

z(l,0)ξ
l +

∑

n∈Nd
0

zn(· − x)n,

where exp is a symmetric exponential and ρ some action onto the algebra of {z(l,k)}
∪ {zn}. Similar techniques give rise to the structure group as a group of symmetric
exponentials.

In the description of an algebraically renormalized model, the introduction of a
counterterm is reflected in a shift of the form z(0,0) 7→ z(0,0) + c, where we think

of ξ0 = 1 and c is a polynomial of {z(l,k)} ∪ {zn}; this, in particular, connects
with translation of rough paths [3] and preparation maps [1]. It is also possible
to characterize the infinitesimal generators of local counterterms to seek a non-
recursive construction of renormalized models; these generators create another pre-
Lie algebra, which in the simpler rough path case allows to write translation maps
as symmetric exponentials (the general SPDE case would require an enlargement
of the structure via extended decorations, cf. [4]).

As reflected in [5, 11, 12], multi-indices encode linear combinations of trees, and
have been proven more efficient e. g. when bookkeeping renormalization constants.
Understanding if there are any analytic or stochastic interpretations in this group-
ing of trees is an open problem which was brought up in the posterior discussion.
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Symmetries in stochastic Yang–Mills equations

Ilya Chevyrev

(joint work with Ajay Chandra, Martin Hairer, and Hao Shen)

Recent works [2, 3, 5] have made sense of the stochastic quantisation equations of
Yang–Mills (YM) on the torus Td, d = 2, 3, that read (in the DeTurck gauge)

∂tA
ε = − d∗

AεFAε − dAε d∗Aε + CεA+ ξε = ∆Aε +Aε∂Aε + (Aε)3 + CεAε + ξε .

Here Aε : R+ × Td → gd is a 1-form and g is the Lie algebra of a compact Lie
group G, ξε is an adapted mollification at scale ε > 0 of a gd-valued white noise ξ
on R× Td, and {Cε}ε>0 ⊂ L(g, g) are renormalisation counterterms. In the final
expression we write the heuristic form of the non-linearities in the equation.

For d = 2 or d = 3, there exist choices for Cε such that, as ε → 0, the
solutions Aε converge (modulo blow-up) to a space-time distribution A that we
call a solution to the stochastic YM equations (SYM) with mass {Cε}ε>0.

In this report, we describe the argument in [3] based on small-noise limits
that shows there is distinguished choice for Cε such that the solution A is gauge-
covariant in the following way: if A(t) and Ā(t) are solutions of SYM with mass
{Cε}ε>0 and gauge equivalent initial conditions A(0) ∼ Ā(0), then [A(t)] is equal
in law to [Ā(t)] (modulo blow-up). Here [A] = {B : B ∼ A} is the gauge orbit of
A where ∼ denotes gauge equivalence which, roughly speaking, means that there
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exists g : Td → G such that Ag := AdgA − (dg)g−1 = B. Since solutions to SYM
are distributions, gauge equivalence needs to be interpreted appropriately.

This result is shown for d = 2 and d = 3 in [2] and [3] respectively (see also [4]
for a survey). It in particular implies that the projected process [A(t)] is Markov.
In the case d = 2, one can furthermore choose Cε ≡ C independent of ε, which is
‘atypical’ for a singular stochastic PDE. We also mention that in [5] it is shown,
for d = 2, that the Markov process [A(t)] has a unique invariant measure which
is the YM measure on T2 associated with trivial principal G-bundle and that the
operator Cε ≡ C ∈ L(g, g) with the above property is unique.

The first step in both [2, 3] in the proof of the gauge-covariance proprety is the
following result that follows from the general theory of regularity structures.

Proposition 1. There exist operators Cε
BPHZ

, C̃ε, C̃0,ε ∈ L(g, g) such that, for any

fixed C̊1, C̊2 ∈ L(g, g), the solutions to

(1) ∂tB = ∆B +B∂B +B3 + Adgξ
ε + (Cε

BPHZ
+ C̊1)B + (C̃ε + C̊2)(dg)g−1 ,

(2) ∂tĀ = ∆Ā+ Ā∂Ā+ Ā3 + (Adḡξ)
ε + (Cε

BPHZ
+ C̊1)Ā+ (C̃0,ε + C̊2)(dḡ)ḡ−1 ,

converge to the same limit in probability as ε ↓ 0, where g and ḡ solve

∂tg = ∆g − (∂jg)g−1(∂jg) + [Zj , (∂jg)ḡ−1]g with initial condition g(0)

with Z taken as B and Ā respectively.

The relevance of this result is that, if we choose Cε = Cε
BPHZ

+ C̊1, then B :=

Ag solves (1) provided that C̃ε + C̊2 = Cε. On the other hand, provided that

C̃0,ε + C̊2 = 0, then by Itô isometry, since (Adḡξ)
ε is equal in law to ξε (which is

where we use that (Adḡξ)
ε and thus ḡ are adapted), Ā is equal in law to A. The

gauge-covariance property would thus follow once we show that the limits

(3) lim
ε↓0

C̃ε − Cε
BPHZ

and lim
ε↓0

C̃0,ε exist.

This is because, if these limits exist, then we can choose C̊2 = − limε↓0 C̃
0,ε and

C̊1 = limε↓0{C̃ε − Cε
BPHZ

+ C̊2} to satisfy the the above conditions with Cε =

Cε
BPHZ

+ C̊1. However, since renormalisation constants generically diverge, it is
not clear a priori that (3) holds.

In [2] for d = 2, the claim (3) is shown by direct calculation since the number
of diverging diagrams involved is rather small (three to be precise).

For d = 3, the argument in [3] is different and inspired by the work [1] on
manifold-valued stochastic heat equations. We demonstrate this method by show-
ing that lim supε↓0 |C̃0,ε| <∞ without knowing the precise form of C̃0,ε.

Arguing by contradiction, suppose lim supε↓0 |C̃0,ε| = ∞ and let C̃0,ε
σ denote the

renormalisation constant arising from a rescaled noise σξ. It is not difficult to see
that there exist σε ↓ 0 such that C̃0,ε

σε
→ Ĉ 6= 0 as ε ↓ 0 along a subsequence. Take

now bare masses C̊1 = 0, C̊2 = −Ĉ in the equation for Ā. Then, by continuity in
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the noise, Ā converges to the solution of ∂tĀ = ∆Ā + Ā∂Ā+ Ā3 − Ĉ dḡḡ−1. On
the other hand, Ā is equal in law to the solution of

∂tÃ = ∆Ã+ Ã∂Ã+ Ã3 + Cε
BPHZ,σε

Ã+ σεξ̃
ε + (C̃0,ε

σε
− Ĉ) dg̃g̃−1 .

Treating C̃0,ε
σε

− Ĉ as a bare mass that converges to 0, by joint continuity in noise

and bare mass, Ã converges to the deterministic YM heat flow ∂tÃ = ∆Ã+Ã∂Ã+
Ã3. The limits of Ā and Ã are not equal since Ĉ 6= 0, which yields a contradiction.

A similar but slightly different argument based on gauge-covariance of the de-
terministic YM heat flow shows that lim supε↓0 |C̃ε − Cε

BPHZ
| < ∞. With further

work, one can show that the limits in (3) actually exist, completing the proof of
gauge-covariance. This argument raises the natural question of whether there is
an algebraic framework to describe and unify the symmetries appearing in [1, 2, 3].
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Semimartingales with values in a (pre-)Frobenius manifolds

Noémie C. Combe

In the sixties, Pierre Cartier proposed a generalisation of probability theory on
richer structures such as manifolds. In this paper we follow this idea. We show
that there exists a class of symmetric spaces of Cartan–Hadamard type for which
Itô’s integrals of 1-forms along semimartingales with value in such a manifold have
no divergences. In particular, one can omit the approach relying on perturbative
expansion of the functional integral appearing as a sum labelled by Feynman
graphs. This is explained by the fact that the manifolds investigated below are
Hessian manifolds satisfying the properties of a pre-Frobenius potential manifold
and they contain a submanifold which is a Frobenius manifold.

For this class of manifolds, covariant derivatives form a pre-Lie algebra. The
fibres of the Frobenius manifold’s tangent bundle have the structure of a Frobenius
algebra. The fact that one can omit perturbative expansions here relates—among
others—to the phenomenon that F-manifold algebras are the corresponding semi-
classical limits of pre-Lie formal deformations of commutative associative algebras.
Moreover, by [6], the class of Frobenius algebras is a class closed under deforma-
tions. Finally, applying the geometric flavoured argument (the “no-go theorem”)
of [4] ends the discussion.
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1. A new approach

Let (Ω,F , (Ft)t≥0, P ) be a filtered complete probability space. For X to be a
martingale with values in a vector space V with some given connection ∇, it
is necessary and sufficient that for any 1-form ω, Yt = ∇

∫
Xt

0
ω is a real local

martingale.
We consider the problem of defining semimartingales with values in a Riemann-

ian manifold (M, g). Let (M, g) be a Riemannian manifold of dimension n and
consider its corresponding frame bundle, with frame (Hi)

n
i=1. An M-valued semi-

martingale X is defined throughout the set Z = (Zi)ni=1 of real semimartingales
such that the Stratonovitch formula is

(1) Zi
t =

∫

Xt
0

ωi,

where ωi ∈ T ∗M is a 1-form in the cotangent bundle T ∗M (see [5] for a precise
definition of (1)).

A classical problem in stochastic differential equations is to understand how
to reconstruct X from a real semimartingale Z. That is, given a real valued
semimartingale Z one looks for the M-valued semimartingale X with given X0

and satisfying

d2Xt = hXt
(d2Zt),

where h is defined by putting dxi = hiaω
a.

The Stratonovitch like formula leads to the Itô formula. This step leads to
highlighting relations to connections on a manifold:

X i
t −X i

0 =

∫

Xt
0

dxi =

∫

Xt
0

hiaω
a =

∫ 1

0

hia(Xb) · dZa
s .

Indeed, this implies that dX i
t = hia(Xs)dZ

a
s + 1

2d〈hia(Xs), Z
a
s 〉. But since

d〈hia(Xs), Z
a
s 〉 = Djh

i
a(Xs)d〈Xa

s , Z
a
s 〉 , d〈Xj , Za〉 = hjb(Xs)d〈Zb, Za〉s ,

so dX i
t = hia(Xs)dZ

a
s + 1

2 (Djh
i
a(Xs)h

j
b(Xs)d〈Zb

s , Z
a
s 〉). Symbolically this amounts

to writing

dXt = dZa
t ·Ha(X).

2. Results on (M, g)-valued semimartingales

Theorem 1. Consider one of the following symmetric Riemannian manifolds
GLn(R)/SOn, GLn(C)/SUn, GLn(H)/Spn GL3(O)/F4 and O(1, n − 1)/O(n −
1)⊕R (or a linear combination of those), where n ≥ 2 is a positive integer. If M
is one of those manifolds then it possess all required conditions for (M, g)-valued
semimartingales to be well defined.

The proof of this relies on the approaches of L. Schwartz, M. Emery, P A.
Meyer. We illustrate this on the following fact. Let X1, · · · , Xn be continuous
semimartingales and f ∈ C2(Rn). Then Y = f(X) is a semimartingale and dY =∑

iDif(X)dX i + 1
2

∑
i,j Dijf(X)d〈X i, Xj〉. The rightmost part of the equation is
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ruled by the connection of the manifold. Connections for the listed above manifolds
are torsion-free and the covariant derivatives form a pre-Lie algebra. By [1] those
manifolds are potential pre-Frobenius manifolds. This implies that there exists
everywhere locally a potential function (given by the Koszul–Vinberg characteristic
function) such that the Hessian is non-degenerate.

Furthermore, following [1] any of the spaces listed above obey to a decomposi-
tion into two submanifolds:

(1) a flat torus being a totally geodesic submanifold of (M, g). It carries the
structure of a Frobenius manifold; all geodesics lie in that subspace.

(2) A homogeneous Hadamard space, having strictly negative sectional cur-
vature.

This implies the following.

Proposition 1. Let (M, g) be a Riemannian manifold. Suppose that (M, g) is
one of the following GLn(R)/SOn, GLn(C)/SUn, GLn(H)/Spn GL3(O)/F4 and
O(1, n − 1)/O(n − 1) ⊕ R (or a linear combination of those), where n ≥ 2 is a
positive integer. Consider M the Frobenius manifold (a flat torus) in (M, g).
Each point of M has an open neighborhood U ⊂ M such that for every U -valued
martingale X with X1 ∈ M a.s the whole process (Xt)0≤t≤1 lives in the Frobenius

manifold M.

The proof is based on works of M. Emery [3] and of the theorem in [1].

Proposition 2. The Frobenius manifold in (M, g) (where (M, g) is defined as
above) is the locus in which exist pure fluctuations / local martingales.

Remark 1. The above Riemannian manifolds parametrise the space of Wishart
probability distributions. Wishart laws being exponential we can proceed to a direct
application of our statements above and of the main theorem of [2]. In the latter,
the existence of a Frobenius manifold in a space of probability distributions of
exponential type is shown.

So, as a corollary we have:

Corollary 1. Let (MW , gW ) be a manifold of Wishart distributions (finite di-

mensional). Then, there exists MW
a Frobenius manifold of (MW , gW ) such that

for each point of M one has an open neighborhood U ⊂ M and for every U -

valued martingale X with X1 ∈ MW
a.s the whole process (Xt)0≤t≤1 lives in the

Frobenius submanifold MW
.

Conclusion. We have explored some aspects of the question raised by P. Cartier.
Further developments concerning a discussion and classification of manifolds sat-
isfying good properties for semimartingales is expected.
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Planarly Branched Rough Paths Are Geometric

Ludwig Rahm

(joint work with Kurusch Ebrahimi-Fard)

In 2002 Foissy published the important work [3], where he characterized all finite-
dimensional comodules and all endomorphisms of the Butcher–Connes–Kreimer
Hopf algebra HBCK = (F ,⊙,∆BCK) of non-planar rooted trees. He furthermore
constructed a recursively defined projection map onto the primitive elements of
the Hopf algebra, and showed a Hopf algebra ismomorphism to the shuffle Hopf
algebra generated by the primitives. Almost all of his proofs were based on the
so-called natural growth operation

⊤ : HBCK ⊗HBCK → HBCK ,

and its relation to the reduced coproduct:

∆̂BCK(x⊤y) = x⊗ y + x(1) ⊗ x(2)⊤y,(1)

where y is a primitive element and we use Sweedler’s notation for the reduced
coproduct

∆̂BCK(x) = x(1) ⊗ x(2).

The Hopf algebra isomorphism constructed by Foissy was later used by Boedi-
hardjo and Chevyrev to interpret branched rough paths as being geometric rough
paths [1]. This allowed the authors to consider important results on the well-
studied theory of geometric rough paths, and obtain the same results for branched
rough paths.

Rough path theory is a very successful theory for solving rough differential
equations. A rough path is a two-parameter path taking values in the character
group of a Hopf algebra. A branched rough path takes values in the BCK Hopf
algebra, and a geometric rough path takes values in a shuffle Hopf algebra. Both
of these rough path theories are used for rough differential equations on Euclidean
spaces. In [2], the authors constructed so-called planarly branched rough paths to
solve rough differential equations on homogeneous spaces. These rough paths are
valued in the Munthe-Kaas-Wright Hopf algebra HMKW = (OF ,�,∆MKW ).
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In this talk we note that the MKW Hopf algebra can be endowed with a natural
growth operation, meaning a map that satisfies equation (1) for the reduced MKW

coproduct ∆̂MKW . This lets us apply the results Foissy obtained for HBCK , to
HMKW . In particular, we obtain a Hopf algebra isomorphism between HMKW

and a shuffle Hopf algebra. We also obtain a way to find the primitive elements via
a recursively defined projection map. Following the approach of Boedihardjo and
Chevyrev, we can then interpret planarly branched rough paths as being geometric
rough paths by using the Hopf algebra isomorphism. Results for geometric rough
paths can then be transfered to results for planarly branched rough paths. As an
example of this, we obtain the result that two planarly branched rough paths have
the same signature if and only if they are tree-like equivalent.
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Numerical approximations to rough solutions of dispersive equations

Yvonne Alama Bronsard

An introduction was given on resonance-based schemes, a class of schemes which
allows for the approximation at low-regularity to the following class of nonlinear
dispersive equation:

(1)
i∂tu(t, x) + L (∇)u(t, x) = p (u(t, x), u(t, x))

u(0, x) = u0(x), x ∈ Td,

with L real operator, p polynomial nonlinearity. The idea behind their construction
was illustrated on the prototypical Nonlinear Schrödinger equation (NLS):

i∂tu(t, x) = −∆u(t, x) + |u(t, x)|2u(t, x), (t, x) ∈ R× Td, + I.C,

where one goes to Fourier variables in space to carefully extract dominant and
lower-order contributions appearing from the interaction of the linear evolution
and the nonlinearity. This idea was worked out by [6] in the first order case.
A generalization was made by [7] which allows for first and second order low-
regularity approximation to a class of nonlinear evolution equation set on more
general domains. These new schemes, together with their optimal local error,
allow for convergence under lower regularity assumptions than required by classical
methods, such as exponential integrator or splitting methods.

Higher order extensions were then presented, following new techniques based on
decorated trees series inspired by singular SPDEs via regularity structures. The
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work of [4] was first presented, where the authors derive resonance-based schemes
up to arbitrary order for solving the class of equations (1).

We then presented the work [2] which considers the case of a randomized initial
condition of the form:

(2) u(0, x) = vη(x) =
∑

k∈Zd

vkηk(ω)eikx,

with (ηk)k∈Z i.i.d standard complex Gaussians. By letting u be solution of (1)
starting from the randomized initial data (2), we obtained higher order approxi-
mations to the second moment E(|uk(t, vη)|2), together with a formal local error
bound. This second order moment is a central quantity of interest for the deriva-
tion of the Wave Kinetic equation. This equation is widely used in oceanography
for the forecasting of waves in the ocean.

A limitation of the former resonance-based approaches was, since the algorithm
for extracting dominant parts depended on Fourier computations, the method is
restricted to spatial domains which are periodic. In the work [3] we consider sys-
tematizing the higher order derivation of low-regularity schemes for the following
class of nonlinear evolution equations set on more general domains:

∂tu− Lu =
∑

l

fl(u, u)Vl, (t, x) ∈ R× Ω, Ω ⊆ Rd.

This work was inspired by the work [1] which dealt with the first and second or-
der low-regularity approximation to the Gross-Pitaevski equation. In the work [3]
we extended it to higher orders and for a more general class of nonlinear evolution
equations, using the commutators and filtering functions introduced in [7].

We finished by presenting a symmetric low-regularity schemes for the NLS equa-
tion, which exactly conserves time-reversibility of the underlying equation. We ex-
plained on the one hand the construction of this symmetric scheme, which inherits
much better structure preserving properties on the discrete level than previous
low-regularity schemes. On the other hand we presented rigorous low-regularity
error analysis results.

Higher order construction of a class of symmetric schemes using the previously
introduced tree formalism was briefly discussed through our recent joint work [4].
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Resonances as a computational tool

Katharina Schratz

A large toolbox of numerical schemes for dispersive equations has been established,
based on different discretization techniques such as discretizing the variation-of-
constants formula (e.g., exponential integrators) or splitting the full equation into
a series of simpler subproblems (e.g., splitting methods). In many situations these
classical schemes allow a precise and efficient approximation. This, however, dras-
tically changes whenever non-smooth phenomena enter the scene such as for prob-
lems at low regularity and high oscillations. Classical schemes fail to capture the
oscillatory nature of the solution, and this may lead to severe instabilities and loss
of convergence. In this talk I present a new class of resonance based schemes. The
key idea in the construction of the new schemes is to tackle and deeply embed the
underlying nonlinear structure of resonances into the numerical discretization.

Let me explain the key idea behind resonances as a computational tool on the
nonlinear PDE1

(1) ∂tu(t, x) + iL
(
∇, ε−1

)
u(t, x) = f

(
u(t, x)

)
, u(0, x) = u0(x)

which covers a large class of important models, e.g., Schrödinger (L = −∆),
KdV (L = −i∂3x) and half-wave (L =

√
−∆) equations, wave maps, Zakharov,

Kadomtsev–Petviashvili, and many more systems.
The symmetric differential operator L

(
∇, ε−1

)
thereby triggers oscillations (in

space and/or in time) and, unlike for parabolic problems, no smoothing can be
expected. At low regularity, e.g., for rough solutions and in highly oscillatory
regimes ε → 0, it is therefore crucial to capture these oscillations numerically.
Most classical schemes were originally developed for linear problems and fail to
resolve the nonlinear frequency interactions in system (1).

The key idea to overcome this is to understand, control and deeply embed the
nonlinear resonance structure (driven by the nonlinear frequency interaction of the
operator L and nonlinearity f in (1)) into the numerical discretisation. In order to
achieve this we have to first understand the behaviour of the nonlinear PDE (1).
Duhamel’s formula (suppressing the x-dependence) reads

1We include the parameter ε
−1 to also cover relativistic regimes, e.g., relativistic Klein–Gordon

with L = ε
−1

√
ε
−2 − ∆
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(2) u(t) = e−itLu(0) +

∫ t

0

e−i(t−ξ)Lf(u(ξ))dξ

with the next iteration (i.e., using that u(ξ) = e−iξLu(0) +
∫ ξ

0
. . .dξ1) given by

(3) u(t) = e−itLu(0) +

∫ t

0

e−i(t−ξ)Lf
(
e−iξLu(0)

)
dξ +

∫ t

0

∫ ξ

0

. . .dξdξ1.

At first order we can neglect the higher order terms (i.e., the double integral) and
observe that the underlying structure of the solution is driven by the nonlinear
frequency interaction of L and f with central oscillations of the form

(4) eiξLf
(
e−iξLu(0)

)
.

Classical numerical methods are based on linear frequency approximations, (e.g.,
splitting schemes, Gautschi-type, exponential and Lawson methods with possible
filter functions, and in general neglect the nonlinear interactions in (4). For in-
stance, in case of splitting or an exponential approach the underlying frequency
approximations read

(5) (splitting) eiξLf
(
e−iξLu(0)

)
≈ f (u(0))

While such linearised frequency approximations are computational very handy (as
on the right-hand side of (5) no oscillations anylonger appear), they dramatically
destroy the underlying structure of the PDE (1). This is due to the fact that
nonlinear frequency interactions play an essential role (especially on bounded do-
mains, where no dispersion can be expected) and can heavily impact the solution:
Note that while the influence of iL can be small, the influence of the interaction
of +iL with −iL can be huge, and vice versa. The central idea lies in a new
nonlinear approach: Instead of linearising the frequency interactions in the central
oscillations (4) (as done in (5)) the key idea is to filter out the dominant parts of
the oscillations and solve them exactly while only approximating the lower order
terms in spirit of

eiξLf
(
e−iξLu(0)

)
≈

[
eiξLdomfdom(u(0))

]
fnoc(u(0)) + lower order terms.(6)

Here, Ldom denotes a suitable dominant part of the high frequency interactions and
fnoc the corresponding non-oscillatory part. A first attempt of so-called resonance-
based schemes (Schratz et al. [4]), based on the approximation (6), was profoundly
inspired by major breakthroughs in the theoretical analysis of dispersive equations
at low regularity (Bourgain [3], Tao [8]) and rough path theory (Gubinelli [6])
and provides a powerful tool which in many situations allows for approximations
in a much more general setting (i.e., for rougher data) than classical schemes
(e.g., Splitting with Ldominant = 0 cf. (5)), see also the recent important works
[2, 5, 7, 9, 10] and references therein.

The severe shortcoming of the approach (6), however, lies in the fact that
the corresponding resonance-based schemes are not structure preserving as they
do not take the underlying geometric structure of PDEs into account. Lack of
structure preservation is also observed drastically in numerical experiments and, as
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for classical schemes, breaks down the earlier and earlier the rougher the solutions
becomes.

This is an open question, and up to now only symmetric schemes could be found
[1].
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Multiparameter iterated integrals

Joscha Diehl

Iterated sums and integral have in the last decade found great success in data
science applications. Whereas the original domain of their application is to data
indexed by one parameter, i.e. time series, there are recent investigations of multi-
parameter generalizations [2, 8, 4, 3].

The success of iterated sums/integrals is partly explained by the fact that their
calculation is possible in linear time, owing to a dynamic programming principle.
It finds its algebraic counterpart in Chen’s formula, which establishes a connection
between the concatenation of words and the concatenation of time series.

For multi-parameter objects, the situation is more complicated. There is no
canonical way to concatenate two objects, and, apart from special cases, none of
the algebraic structures in the mentioned papers is compatible with the different
concepts of concatenation. This has the consequence that the calculation of the
multiparameter sums from [2] or the multiparameter integrals from [3] is, in gen-
eral, not possible in linear time (lower complexity bounds for special cases are
established in [2]).



Combinatorial and Algebraic Structures in Rough Analysis 3089

Let us illustrate the problem with a simple example. Consider the following
integral of a two-parameter function Z : [0, 1]2 → R:

∫
0≤r11<r21≤t1
0≤r12<r22≤t2

Zr11,r
1
2
Zr21,r

2
2
dr

Now, we try to split this integral in the horizontal direction at some point
u1 < t1:

. . . =

∫
0≤r11<r21<u1≤t1

0≤r12<r22≤t2

Zr11,r
1
2
Zr21,r

2
2
dr +

∫
u1<r11<r21≤t1
0≤r12<r22≤t2

Zr11,r
1
2
Zr21,r

2
2
dr

+

∫
0≤r11<u1<r21≤t1

0≤r12<r22≤t2

Zr11,r
1
2
Zr21,r

2
2
dr.

Note that the last term presents an issue, since the integral cannot be split into a
product of two integrals, as it would in the one-parameter case.

The problem of (naive) non-multiplicativity of multi-parameter integrals is well-
known in category theory and it has been addressed with techniques from higher
categories, see for example [1, 7] for entry points into the literature.

In the work in progress presented, which is joint with Ilya Chevyrev, Kurusch
Ebrahimi-Fard, and Nikolas Tapia, we build on the work of [5] to realize an analog
to the classical iterated-integrals signature that does satisfy a Chen-like identity
and allows for a linear-time calculation. An important ingredient is the notion
of crossed modules of Lie algebras, in particular the free crossed module of Lie
algebras over the free Lie algebra over Rn. Here n is the dimension of the ambient
space of the data.

The techniques are closely related to the recent work [6], but the two approaches
differ in at least two aspects:

(1) We work with the free crossed module of Lie algebras, whereas [6] works
with a specific crossed module. Our current expectation is that the object
obtained by us is universal in the sense that any “surface development” in
another crossed module can be arbitrarily well approximated by terms in
our object.

(2) We consequently do calculations in the Lie algebra, in what can be con-
sidered a Magnus-like expansion.
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From bialgebras to algebraic operads

Pedro Tamaroff

Algebraic homotopy theory explains that, in order to find new robust and more
general definitions of algebras (algebras up to homotopy), one can find (possibly
non-minimal) models for operads. These also allows us understand the homotopy
theory of their (co)algebras and, in particular, define their deformation theory.
This has been done in many situations: for associative algebras [1], commutative
algebras, Lie algebras [2], Gerstenhaber and Poisson algebras [3], and Batalin–
Vilkovisky algebras [4, 5, 6], among others. In the context of the current work-
shop, it is useful to remark that pre-Lie algebras fall within the scope of Koszul
duality theory, through which most of the previous examples are handled, and
other interesting recent generalizations due to P. Laubie [7] involving Greg trees
decorated by coalgebras, have been proved to also fall within the scope of Koszul
duality.

The present talk explained how to take an operadic point of view of the well
known fact that, for any bialgebra H , the category of left H-modules admits an
internal tensor product —defined through the so called diagonal action of H—
coming from its coproduct. This means that it makes sense to consider associative
algebras in the category H mod of left H-modules, which we show are controlled
by an algebraic operad. There is a functor H 7−→ AssH that assigns to each weight
graded bialgebra H a weight graded operad AssH so that an associative algebra
in H mod is the same as an AssH -algebra. The idea of producing such functors
from certain “amenable” categories to study operads and related structures, or
even producing endofunctors on operads themselves, has already appeared several
times in the literature, see [18, 11, 19] and [13]*Chapter 4, for example.

Unraveling the definitions, we see that the way the associative product x1x2
of an AssH -algebra and an operation Th coming from h ∈ H behave with respect
to each other is dictated by the coproduct of H : using Sweedler notation, we re-
quire that the following compatibility relation holds (á la Boardmann–Vogt [8])
Th(x1x2) = Th(1)

(x1)Th(2)
(x2). This relation is not quadratic, so the operad AssH

falls outside the scope of the theory of Koszul duality, in strong contrast to the
examples we mentioned above. To counter this, we use the methods of V. Dot-
senko [19] (word operads) and pertubation theoretic methods in the spirit of B.
Vallette and S. Merkulov [9] to show how to obtain a minimal model of AssH

from an associated quadratic operad qAssH which, in case H is Koszul, is itself a
Koszul operad. Moreover, we showed that this functor behaves well with respect to
Gröbner bases: one can directly compute one of AssH in case H admits a Gröbner
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basis. In particular, we showed that qAssH is strongly Koszul —that it admits a
quadratic Gröbner basis— in case H is itself strongly sKoszul.

The takeaway is that we can explicitly describe the differential of the minimal
model of AssH provided we can do this for the Koszul model ofH and its coproduct.
This problem, pertaining to the domain of algebras and coalgebras, is usually a
simpler problem to tackle, so our result gives a useful bridge to solve from a much
familiar problem a seemingly more complicated one. The theory of Koszul duality
for usual associative algebras, on the other hand, has existed for almost five decades
since its inception in [10], and now extensive literature and methods exist to deal
with them and with many of their variants; see for example [12, 14, 15, 16, 17].

As a by product, the talk introduced key concepts in the study of algebraic
operads and their theory, which lead to and allowed for a detailed discussion of
the results of P. Laubie [7] regarding families of pre-Lie algebras with a common
Lie bracket by participant U. Nadeem. In particular, Koszulness of the operads
constructed by Laubie, which follow from the existence of Gröbner bases for them,
were discussed, and compared to the results presented in the talk.
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An algebraic geometry of (rough) paths

Rosa Preiss

In previous work, see e.g. [1], the complex projective Zariski closure of the fi-
nite dimensional semialgebraic set that is σ(k)(Xℓ), where Xℓ is piecewise linear
paths/polynomial paths/log-linear rough paths of order ℓ.

Our new approach, however, is to introduce a Zariski topology and algebraic
geometry on the infinite dimensional path space itself, see the preprint [2].

The algebraic and combinatorial structure we are working with is

(T (Rd),�,∆•,A,≻,≺),

where (T (Rd),�,∆•,A) is the well known shuffle-deconcatenation Hopf algebra.
Let the right ≻ and left ≺ halfshuffles be recursively defined by

w ≻ i := wi, i ≺ w := iw

w ≻ vi := (w ≻ v + v ≻ w)i, iv ≺ w := i(w ≺ v + v ≺ w)

Then x � y = x ≻ y + y ≻ x = x ≺ y + y ≺ x and A(x ≻ y) = Ay ≺ Ax,
A(x ≺ y) = Ay ≻ Ax. Let

〈
W

〉
≻

denote the ≻-ideal generated by W .

In classical algebraic geometry, affine varieties in Rd are sets of the form
V (P ) = {x ∈ Rd|p(x) = 0 ∀p ∈ P}, where P is a set of polynomials p : Rd → R.

Similarly, we now consider varieties in the space C2−-var(Rd) of continuous paths
in Rd with finite p-variation for some p < 2. We call an affine path variety any
subset of the form

V(W ) := {X ∈ C2−-var(Rd)|〈σ(X), x〉 = 0 ∀x ∈ W}, W ⊆ T (Rd)

They form the closed sets of what we introduce as the path Zariski topology. Path
varieties are in 1-to-1 correspondance to the 2−-var ’radical’ shuffle ideals

I(U) := {x ∈ T (Rd)|〈σ(X), x〉 = 0 ∀X ∈ U}, U ⊆ C2−-var(Rd).

V ◦ I is the closure operator, and I ◦ V is the 2−-var radical operator. Our first
main result is the following.

Theorem 1. Whenever a set of paths U contains history, i.e. all left subpaths of
reduced paths, I(U) is a ≻-ideal. Whenever I is a ≻-ideal, V(I) contains history.

The next corollary is of key importance.

Corollary 1. Let p : Rn → Rm be a polynomial map with p(0) = 0. Then
V(

〈
ϕ(pi), i

〉
≻

) is the variety P∈M of all paths X such that X̌−X0 lies in the point
variety M defined by the vanishing of all pi.
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This allows us to define rough paths on point varieties! Indeed, it makes sense
to demand that geometric rough paths living on an affine point variety should
be those which are limits of smooth paths living on that point variety. This is
a strictly stronger property than just the underlying path living on that point
variety!

Our second main result concerns another way of using the time ordered aspect
of paths, through concatenation.

Theorem 2. If M ⊆ C2−-var(Rd) is a set of paths closed under concatenation,
then the variety M̄ is closed under concatenation, time reversal and taking admis-
sible roots, and I(M) is a Hopf ideal.

Corollary 2. The set of lattice paths L is Zariski dense in C2−-var(Rd).

To summerize, if an affine path variety V contains history then I(V ) is a half-
shuffle ideal, and thus its coordinate ring R[V ] := T (Rd)/I(V ) is a Zinbiel algebra
again.

If an affine path variety V is stable under concatenation, then I(V ) is a Hopf
ideal, and this means R[V ] := T (Rd)/I(V ) is a Hopf algebra.

An important remark, however, is that to understand the geometrical structure
of V , we need the algebraic structure of the coordinate ring R[V ] plus the 2−-var
radical operator on the power set of R[V ]. At least until we can find a purely
algebraic characterization of I ◦ V , and can answer whether the radical operator
can be derived from the ring structure of R[V ] alone, or not.

In the discussion led by Ludwig Rahm we answered that while understanding

I ◦ V for C2−-var(Rd) is a very hard problem, the solution to which would in
particular solve the important open problem about how to characterize the image
of the signature, understanding the radical operator for piecewise linear paths and
polynomial paths should be feasible much earlier. Furthermore, as also brought
up in a question by Ludwig Rahm, generalizations of our approach to maps from
subsets of Rn to Rd, instead of just time dependend paths, will become relevant.
Finally, as asked by Ilya Chevyrev, a generalization of the notion of variety to
vanishings 〈σ(X), x〉 = 0 for infinite series x ∈ T ((Rd)) which can be paired with
the signature is another opportunity for future work.
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Branched Itô formula

Nikolas Tapia

(joint work with Carlo Bellingeri, Emilio Ferrucci)

Branched rough paths were introduced by Gubinelli [8], as an extension of Lyons’
original approach [9], in order to encode iterated integrals of processes that do not
satisfy an integration-by-parts rule. These are defined as families of characters
over the Connes–Kreimer Hopf algebra HCK [3] of non-planar decorated rooted
trees satisfying certain regularity and compatibility conditions. By leveraging
Foissy’s decomposition of this Hopf algebra in terms of its primitive elements [6]
and iterations of the natural growth operator [2], we show that nonetheless an
integration by parts rule is still satisfied. Primitive elements can be interpreted as
higher-order variations of the process, analogous to the stochastic bracket present
in classical Itô calculus, in the sense that they describe the correction terms in said
formula. The algebraic structure precisely describing this new integration-by-parts
identities is that of a B∞-algebra [7].

Let P denote the space of primitive elements, π : HCK → P be Foissy’s projec-
tion and Q := im(π)⊥. Denote by F+ the set of non-empty forests. We define
rough differential equations with drifts, as solutions to RDEs of the form

dy =
∑

f∈F+

Fπ∗(f)(Y ) dXπ(f),

where F ∈ L(Q, C∞(Rn,Rn)) is a given collection of vector fields, and show they
satisfy the following change of variable formula: there exists a family of differential
operators F : L(Q,Diff(Rn)) such that for any smooth observable ϕ : Rn → R we
have

(1) ϕ(yt) = ϕ(y0) +
∑

f∈F+

∫ t

0

Fπ∗(f)ϕ(yu) dXπ(f)
u ,

where the integrals are defined in the rough sense.
In the case of quadratic drift, i.e., an Itô SDE, (1) coincides with the classical Itô

formula. The definition of Fq fully relies on the pre-Lie structure of vector fields
on Euclidean space, and the proof relies on an extended form of Davie expansion
including corrections induced by the drifts.

We also show that quasi-geometric rough paths correspond to a particular quo-
tient of branched rough paths, and therefore an analog of formula (1) holds in that
case. This is connected to already-known formulas [1, 5].

Question 1. Any coalgebra equipped with a family of 1-cocycles indexed by its
primitive elements is cofree. What other kinds of rough paths can be show to
satisfy integration-by-parts, and therefore an Itô formula? This question has been
partially answered by K. Ebrahimi-Fard and L. Rahm.
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Question 2. In regularity structures Hopf algebras also play an important role.
Is it possible to obtain a similar decomposition for positive and/or negative renor-
malization? If so, what would be the interpretation of primitive elements in that
context?
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Natural Itô-Stratonovich isomorphism

Emilio Ferrucci

(joint work with Carlo Bellingeri, Nikolas Tapia)

Following the theory introduced by Nikolas Tapia in a previous talk, we consider
the Connes–Kreimer Hopf algebra HCK as a commutative B∞-algebra over its
primitive elements P . After introducing the Eulerian idempotent of a Hopf algebra
and some of its properties, we use it, together with Foissy’s idempotent π : HCK →
P , to define an explicit Hopf isomorphism from the shuffle algebra over P to HCK.
This isomorphism can be used to transform branched rough paths to geometric
ones of inhomogeneous regularity over a larger space. Compared to the work of [1,
2], who considered this problem previuosly, our isomorphism has the distinguishing
property of being a natural transformation when HCK and the shuffle algebra are
viewed as a covariant functor in the decorating vector spaces. The motivation
for naturality comes from, among other things, the requirement that our theory
continue to work when shifted to the setting of smooth manifolds. We compare
our isomorphism with Hoffman’s exponential [3], which can be obtained from it,
but which contains strictly fewer terms: those not present come from interactions
between forests that may contain edges. Our work has since appeared on arXiv
[4].

During the Q&A, the question of uniqueness (subject to naturality) came up.
During the discussion portion, Yvain Bruned brought up the question of how the
theory might develop along similar lines when HCK is replaced with more recently-
introduced Hopf algebras that appear in the context of regularity structures. When
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cofreeness no longer holds, it might not be reasonable to find an isomorphism, and
a natural epimorphism may be the next best thing.
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Solution theory for quasilinear generalised KPZ Equation

Muhammad Usama Nadeem

(joint work with Yvain Bruned and Mate Gerencser)

In this work, we provide a (local-in-time) solution theory for the so called quasi-
linear generalised KPZ equation defined on the 1-d torus, that takes the following
form:

(1) ∂tu− a(u)∂2xu = f(u)(∂xu)2 + k(u)∂xu+ h(u)︸ ︷︷ ︸
F1

+ g(u)︸︷︷︸
FΞ

ξ.

Here f, k, h, and g are assumed to be smooth (although one may be able to survive
with functions regular enough), a is smooth with the additional constraint of
being bounded by some c ∈ R+, and ξ is a random spacetime distribution - the
quintessential example being that of the spacetime white noise. This equation falls
under the umbrella of singular Stochastic Partial Differential Equation (SPDEs) of
the parabolic type and as such the regularising effect of the dynamics fall short of
facilitating the pathwise understanding of certain products in the equation. In the
equation above and the sort of random fields we are after, g(u)(∂xu)2 for example,
does not make sense.

In the semilinear case (i.e. when a(u) ≡ 1) the advent of the theories such
as regularity structures [7] have provided a definite solution to this problem. A
major component of this theory is the notion of (negative) renormalisation, which
amounts to subtracting infinite constants (dubbed renormalisation constants) from
the equation to cure the divergence caused by the ill-defined products in the equa-
tion. From a generalisation of Hairer’s work [2] we can quote the renormalised
equation for the semilinear gKPZ:

(2) ∂tuε−∂2xuε = f(uε)(∂xuε)
2 +k(uε)∂xuε +h(uε) +

∑

τ

ΥF [τ ]

S(τ)
Cε(τ) + g(uε)ξε,

where ξε is a mollified version of the noise, τ denotes rooted trees that encode mul-
tiple stochastic integral, S(τ) is a symmetry factor, Cε(τ) are the renormalisation
constants, and ΥF [τ ] are elementary differentials that are defined by taking deriva-
tives of F1 and FΞ. This has also inspired investigation into potential adaptation
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of these techniques to quasilinear problems. We refer the reader to [5, 8, 9, 10, 11]
for the existing state of this work. The present work is an extension of the work
[5], wherein the authors employ an innovative extension of the Hairer’s original
work. What the authors realise in [5], is that the local-in-time solution of (1)
solves the following the system of equations:

u = I(a(u), F̂ ), vα = Iα(a(u), F̂ ),

F̂ =
[
q(f − a′) + a(a′)2v(2,0) + aa′′v(1,0)

]
(∂xu)2

+ 2(aa′)(u)(∂xu)v(1,1) + a′(u)(∂xu)v(0,1) + ĝ(u)ξ.

(3)

The benefit of this reformulation is that the existing results of the semilinear
SPDEs can be applied with only minor changes. Unfortunately, due to the restric-
tions of the methodology (1) remains out of reach of this work. We ameliorate this
condition by introducing some new abstract derivatives ∂vα for α ∈ N2, wherewith
we define new elementary differential equations: ΥF̂ and ΥVα

. This allows us to
prove the following theorem:

Theorem 1. The renormalised version of (1) is given by:

∂tuε − a(uε)∂
2
xuε = f(uε)(∂xuε)

2 + k(uε)∂xuε + h(uε) + g(uε)ξε

+
∑

Cc
ε(τ)

ΥF̂ [τ ](uε)

S(τ)
.

(4)

Also, the local solutions uε on T endowed with an initial condition uε(0, ·) = ϕ ∈
C2δ(T), converge in probability in Cδ

⋆ to a nontrivial limit u.

The defect that [5] suffers from, and by extension our work, is that there is no
systematic way of proving that the renormalisation constants Cc

ε do not depend on
the non-local terms vα that were introduced into the equation when transforming
the equation into the non-divergence form. The way this is dealt with by them,
is to prove that the constants satisfy some integration by parts [4, Lemma 2.4],
and then use this result to check for each τ that the non-local terms cancel out
[4, Section 3.4]. The problem with this approach is that it very easily becomes
unwieldy, due to the amount of calculations involved. Our solution to this problem
is to recognise that the integration-by-parts formula is just a specific case of the
chain rule that was derived in [3]. To leverage the results of that paper we need
to specify a set of covariant derivatives that are capable of generating the space
of τ , and at the same time are independent of the non-local terms. By positing
these, we suspect the following result is immediate from the arguments in [3]:

Conjecture 1. The renormalised equation of (1) is given by:

∂tuε − a(uε)∂
2
xuε =

f(uε)(∂xuε)
2 + k(uε)∂xuε + h(uε) + g(uε)ξε +

∑

τ

Ca(uε)
ε (τ)

ΥF [τ ](uε)

S(τ)

where the C
a(u)
ε (τ) satisfy certain chain rule identities. Moreover uε converges in

the same sense as before.
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Some possible open problems in this programme include that of global-in-time
solutions, identification of the Butcher series for these problems á la [1], and finally
one could look at the same problem in some other manifold.
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Novikov algebras and multi-indices in regularity structures

Yvain Bruned

(joint work with Vladimir Dotsenko)

We are looking at the class of subcritical semi-linear stochastic partial differential
equations (SPDEs) of the form

(1) (∂t − L)u =
∑

l∈L−

al(u)ξl.

where L− is a finite set, L is a differential operator, ξl are space-time noises and
al(u) are non-linearities depending on the solution u and its derivatives. This class
of equations have been successfully treated via the theory of Regularity Structures
[9, 3, 1, 6]. The resolution is based on new Taylor expansions whose monomials
are recentered iterated integrals that can be described in a systematic way via
decorated trees in [3]. More recently, another index set has been proposed in
[13, 11] for quasi-linear SPDEs. It has been extended in [4] for covering equations
of the form (1). The simplest possible instance of multi-indices corresponds to
considering a set of abstract variables (zk)k∈N, where the variable zk encodes
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nodes of the tree that have k children. Multi-indices β over N can be represented
as monomials

zβ :=
∏

k∈N

z
β(k)
k .

The pre-Lie product on the vector space of such monomials is defined as

zβ ⊲ zβ
′

= zβD(zβ
′

), D =
∑

k∈N

(k + 1)zk+1∂zk .

The action of this operator corresponds to adding one child to one of the nodes
of our tree in all possible ways. We focus on multi-indices satisfying the so called
“populated” condition [11]:

∑

k∈N

(1 − k)β(k) = 1.

It was conjectured by Dominique Manchon that populated multi-indices form the
free Novikov algebra. A Novikov algebra is a vector space equipped with a bilinear
product x, y 7→ x ⊲ y, satisfying the identities

(x ⊲ y) ⊲ z − x ⊲ (y ⊲ z) = (y ⊲ x) ⊲ z − y ⊲ (x ⊲ z),

(x ⊲ y) ⊲ z = (x ⊲ z) ⊲ y.

This type of algebras was considered in [8, 5, 12]. It turns out that the corre-
sponding theorem does exist in the literature; it goes back to [7].

Theorem 1. [7, 10, 2] The Novikov algebra of populated multi-indices is isomor-
phic to the free algebra on one generator.

One first extends this theorem to general multi-indices defined using formal
variables of the form z(l,w) with l belongs to L− and w is a commutative monomial

in the alphabet A = Nd+1. One can define a collection of derivations D(n) indexed
by A. These very general multi-indices have been proposed in [4]. One needs
a new structure for these multi-indices called multi-Novikov algebra which is a
vector space equipped with bilinear products x, y 7→ x ⊲a y indexed by a set A

(x ⊲a y) ⊲b z − x ⊲a (y ⊲b z) = (y ⊲a x) ⊲b z − y ⊲a (x ⊲b z),

(x ⊲a y) ⊲b z − x ⊲a (y ⊲b z) = (x ⊲b y) ⊲a z − x ⊲b (y ⊲a z),

(x ⊲a y) ⊲b z = (x ⊲b z) ⊲a y,

for all a, b ∈ A. This is analogue to the generalisation from pre-Lie algebras to
multi-pre-Lie algebras in [1]. One gets a new version of Theorem 1.

Theorem 2. [2] The multi-Novikov algebra of populated general multi-indices is
isomorphic to free algebra generated by the set L−.

For capturing the complexity of the multi-indices for singular SPDEs, one has to
introduce other derivations ∂i, 0 ≤ i ≤ d, that satisfy, together with the derivations
D(n), the following relations:

D(n)D(m) = D(m)D(n), ∂i∂j = ∂j∂i

D(n)∂i = ∂iD
(n) + niD

(n−ei),
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where ei is the standard basis vector of Nd+1. There is a corresponding generali-
sation of multi-indices which we shall call SPDE multi-indices.

Theorem 3. [2] The multi-Novikov algebra of populated SPDE multi-indices is
isomorphic to free algebra generated by the set Nd+1 × L−.

After free multi-pre-Lie, one has a new free structure useful for expanding so-
lutions of singular SPDEs. They are several applications/open problems to such
a result:

• One can try to find other combinatorial sets and their free structures that
will be different from multi-indices and decorated trees.

• One can get a more operadic perspective as it was initiated in [14] that
recovers as an example the multi-Novikov algebra.

• One can study symmetries in the contex of multi-indices like the chain
rule or Itô isometry by defining maps from the free Novikov structure.
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important breakthroughs in the last decade, the homological theory for (non-
compact) totally disconnected locally compact groups is an emerging research
area. Specific topics include finiteness conditions for locally compact groups,
Mackey functors and Bredon cohomology for topological groups, connections
to condensed mathematics, connections to ℓ

2-invariants and Σ-invariants.

Mathematics Subject Classification (2020): 18Gxx, 20Exx, 20Fxx, 20Jxx, 22Dxx, 57Txx.

Introduction by the Organizers

The class of locally compact (= LC) groups plays a central role among topological
groups. With the solution of Hilbert’s 5th problem, the understanding of the struc-
ture of connected LC-groups has significantly increased. Since every LC-group is
an extension of a connected LC-group by a totally disconnected LC-group, the
contemporary structure problem focuses on totally disconnected LC-groups (=
TDLC-groups). In the last decades there has been a significant progress in the
study of the structure theory of TDLC-groups, see e.g. [2, 4, 14, 10, 12, 13].
However, the study of homological finiteness conditions has, so far, been rather
disjointed and piece-meal. Stefan Witzel gave a 3-lectures survey on finiteness
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properties for LC-groups, discussing the notions introduced by Castellano–Corob
Cook [6] and Abels–Tiemeyer [1] and stressing further on the missing pieces of
the theory. Ged Corob Cook, during his talk, suggested a new strategy to inves-
tigate finiteness properties for TDLC-groups based on new model structures on
k-spaces and simplicial k-spaces [8]. Homological finiteness conditions are very
well understood for discrete groups [3], and there is a rich theory for cohomology
(both discrete and profinite) for profinite groups. A link, however, to the theory
of TDLC-groups, so far, is only very superficial. In recent years, partly due to the
theory developed by Castellano–Weigel [7], the study of cohomological finiteness
conditions for TDLC-groups has had a little bit of a resurgence [6, 5, 11]. Thomas
Weigel’s lectures introduced the state of the art of the rational discrete cohomol-
ogy for TDLC-groups [7], and highlighted the connection with zeta functions for
groups. Stable categories for the rational discrete modules of a TDLC-group were
considered by Rudradip Biswas, whereas Sofiya Yatsyna introduced Gedrich and
Gruenberg invariants for TDLC-groups. Bianca Marchionna presented her recent
work concerning double coset zeta functions of TDLC-groups acting on trees, and
Laura Bonn discussed the relation between the finiteness properties of a discrete
group and those of its Schlichting completion. Peter Kropholler offered three lec-
tures related to finiteness properties of discrete groups that culminated in a lecture
on condensed mathematics and profinite groups. He highlighted the advantages
of condensed mathematics over other theories: homological algebra in condensed
mathematics takes place in abelian categories, which provides an apparently easier
approach, though there is still much work to do in that area. Ian Leary presented
several embeddings theorems for discrete groups whose TDLC analogue is still
unknown, and Lewis Molyneux discussed finiteness properties of groups generaliz-
ing Richard Thompson’s group F. Dawid Kielak [9] and Yuri Santos Rego offered
different perspectives on profinite rigidity.

This mini-workshop was attended by the 16 invited participants, who all travelled
to Oberwolfach. Amongst the 20h lectures, there were four mini series of 3h each
given by four experienced mathematicians, eight 1h talks, mostly given by early
career researchers, and one very lively problem session.

The staff of the Mathematisches Forschungsinstitut Oberwolfach have excelled,
providing all the support that we could have wished, and all in a very courte-
ous manner. We are very grateful for the additional funding for 2 young PhD
students through Oberwolfach-Leibniz-Fellowships. We strongly believe that such
opportunities enable Ph.D. and junior researchers to get integrated within the re-
search community at an early stage in their academic career, and broaden their
networking activities. In conclusion, the meeting was a success.
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Abstracts

Geometric and Cohomological Finiteness Conditions in Group Theory

Peter H. Kropholler

The background to Leary’s results on groups of type FP2. In 1937, Bern-
hard Neumann proved that there are uncountably many 2-generator groups. Sub-
sequently, in 1949, Higman, Neumann, and Neumann [3] introduced what are now
known as HNN extensions and used them to prove that every countable group can
be embedded in a 2-generator group. A parallel can be drawn with Liouville’s
discovery of a transcendental number in 1844. In essence Liouville showed that
the number

∞∑

n=1

10−n!

is far better approximated by rational numbers than is possible for any irrational
root of a polynomial with integer coefficients, and therefore this number must be
transcendental. Liouville’s result was trumped by Cantor’s proof that there are
2ℵ0 transcendental numbers but only ℵ0 algebraic numbers. Of course, Cantor’s
extraordinary insight took many year to develop because Set Theory was in its
infancy and the theory of infinite cardinals needed to be developed. In particular,
clear proofs (avoiding the axiom of choice) of the Schroeder–Bernstein Theorem
(which is needed to show that the order relation on cardinal numbers satisfies
the law of trichotomy) did not emerge until the turn of the century and until
that matter was settled, Cantor’s diagonal argument showing that the set of real
numbers is uncountable remained one piece of a jig-saw.

Liouville’s number admits many variations and it is easy to generate 2ℵ0 num-
bers with the essential property concerning rational approximation. In 1844, Li-
ouville and others would have been aware that there was now a whole family of
transcendental numbers but would not have been able to formulate this in terms
of countability or uncountability.

By 1937, Bernhard Neumann’s construction of 2ℵ0 finitely generated groups
was a milestone similar in nature to Liouville’s discovery of 2ℵ0 transcendental
numbers and 1949 paper [3] cements this discovery with the more remarkable
embedding theorem which can be compared with Cantor’s discover that almost all
real numbers are transcendental.

Since there are only countably many finitely presented groups up to isomor-
phism the question arises: which finitely generated groups can be embedded into
finitely presented groups. Higman answered this in 1961 by exhibiting a remarkable
connection with logic, [2]: a finitely generated group admits a finitely presented
overgroup if and only if it is recursively presentable.

By this point, cohomological finiteness conditions emerged in the work of Serre.
A group G if of type FPn if there is a projective resolution P∗ → Z of the trivial
ZG-module with Pj finitely generated for j < n+ 1. It was easy to see that type



3110 Oberwolfach Report 55/2023

FP1 is equivalent to finite generation, and that finitely presented groups are of
type FP2. Therefore the natural question arose:

Do there exist groups of type FP2 that are not finitely presented? The
question was answered in 1997 by the celebrated work of Bestvina and Noel Brady,
[1]. They developed a combinatorial form of Morse theory suited to cube complexes
and were able to exhibit whole families of examples. However, unlike the case
of Louiville’s numbers where we can see now that Liouville has a continuum of
examples of similar kinds of number, the Bestvina–Brady examples were only
countable in number. This fact seemed to pass unnoticed but around 2014 at
a gathering in the Oxford Mathematical Institute, Charles Miller III raised the
question. By 2018, Ian Leary had the answer both in the spirit of Bernhard
Neumann’s theorem [5]:

There are uncountably many groups of type FP. And in the spirit of the
Higman–Neumann–Neumann theorem [4]:

Every countable group can be embedded in a group of type FP2. So
arguably, Leary’s results build on Bestvina and Brady’s work in the same way
that Cantor’s diagonal argument transcends Liouville’s examples of 1844.

This raises a number of questions. The obvious one, and only one I will mention
in this short abstract is:

For which n is it possible to embed every countable group into a group

of type FPn? It is natural to suspect that the answer is n =∞ but there is not
method known at present even to address the case n = 3.
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Discrete cohomology, the Hattori-Stallings rank, the Euler

characteristic and formal Dirichlet series for t.d.l.c. groups

Thomas Weigel

(joint work with Ilaria Castellano, Gianmarco Chinello, Bianca Marchionna and
George Willis)

In recent years totally disconnected locally compact (= t.d.l.c.) groups have raised
much attention. As reflected by D. van Dantzig’s theorem (cf. [6]), which states
that every t.d.l.c. group contains a compact open subgroup, the structure theory
of t.d.l.c. groups is significantly different from the theory of Lie groups. T.d.l.c.
groups arise in many different areas in Mathematics.

Example 1. (A) If X is an affine group scheme defined over Z and F is a t.d.l.c.
field, then X(E) carries naturally the structure of a t.d.l.c. group.
(B) If T is a locally finite tree then Aut(T ) carries naturally the structure of a
t.d.l.c. group.
(C) Let Λ be a connected graph and let G be a graph of groups based on Λ such
that Gx are profinite groups for all x ∈ V (Λ) ∪E(Λ), and that αe : Ge → Gt(e) are
open immersions for all edges e ∈ E(Λ). Then π1(G ,Λ, x0) carries naturally the
structure of a t.d.l.c. group.
(D) If F is a field of characteristic 0, and E/F is a field extension of finite tran-
scendence degree then AutF(E) = {α ∈ Aut(E) | α|F = idF } carries naturally the
structure of a t.d.l.c. group (cf. [1, §6.3]).
(E) For every crystallographic Coxeter group (W,S) there exists a simply-connec-
ted root group datum D and a Tits functor XD . Evaluating this functor on a finite
field F and taking the completion with respect to its action on the positive part
of the twin building ∆± one obtains the topological Kac-Moody group X̂D(F ).

1. Discrete cohomology. Let G be a t.d.l.c. group, let R ∈ {Z,Q} and let M
be a left R[G]-module. Then

(1) dM = {m ∈M | stabG(m) open in G }
is an R[G]-submodule of M , the largest discrete left R[G]-submodule of M . One
calls the left R[G]-module discrete, if M = dM . The full subcategory R[G]dis of

R[G]mod, the objects of which are discrete left R[G]-modules, is an abelian cate-
gory with enough injectives and thus allows to define cohomology with coefficients
in R[G]dis by dH•(G, ) = R•( G). For R = Z these cohomology groups are
quite difficult to compute. Nevertheless, an interesting question in this context
which has not yet obtained the attention it deserves, is the following:

Question 1. Let G = AutF(E), where F is a field of characteristic 0 and let E/F
be a field extension of finite transcendence degree over F. What is dH1(G,E×)?

In [3] the authors addressed many problems concerning the category Q[G]dis.
However, several questions remained unanswered. E.g.:



3112 Oberwolfach Report 55/2023

Question 2. Let G be a t.d.l.c. group. For which closed subgroups H of G is
resGH( ) mapping injectives to injectives. Of particular interest would be the case
when H is co-compact in G, or when H is discrete in G.

For R = Q calculations of dH•(G, ) become easier due to the following fact

Fact 1. The category Q[G]dis is an abelian category with enough projectives. Indeed
for any compact, open subgroup O of G the left Q[G]-permutation module Q[G/O]
is a projective object in Q[G]dis.

If M and N are two rational discrete left G-modules it is straightforward to
verify that M ⊗Q N is again a rational discrete left G-module. Neverthelesss the
following question remained unanswered.

Question 3. Let P be a projective object in Q[G]dis and letM be a rational discrete
left G-module. Is P ⊗Q M necessarily a projective object in Q[G]dis?

The existence of enough projectives in Q[G]dis allows one to define discrete
rational homology dH•(G, ) with coefficients in Q[G]dis, and yields also a natural
notion of being rationally of type FP∞. The setup allows one to define the rational
discrete cohomological dimension of a t.d.l.c. group G by

(2) cdQ(G) = sup{n ∈ N | dHn+1(G, ) = 0 } ∈ N ∪ {∞}.
E.g., for a discrete group G this number coincides with the cohomological Q-
dimension of G. It is a direct consequence of Bass-Serre theory that the t.d.l.c.
groups π = π1(G ,Λ, x0) described in Example (C) satisfy cdQ(π) ≤ 1. Let G be
a t.d.l.c. group and let µ be a fixed left-invariant Haar measure on G. One says
that G is c/o-bounded, if there exists a positive real number c such that for every
compact open subgroup O of G one has µ(O) ≤ c. The following theorem can be
seen as a second1 t.d.l.c. version of the Stallings-Swan theorem (cf. [4]).

Theorem 2 (I. Castellano, B. Marchionna, T.W.). Let G be a unimodular c/o-
bounded, compactly generated t.d.l.c. group satisfying cdQ(G) ≤ 1. Then there
exists a graph of groups G like in Example (C ) based on a finite connected graph
Λ such that G ≃ π1(G ,Λ, x0).

Question 4. Does Theorem 2 remain true without the hypothesis of c/o bound-
edness, and/or unimodularity?

Although there is no group algebra one may associated to the abelian category

Q[G]dis, there is a canonical rational discrete bimodule

(3) Bi(G) = lim−→
O⊆c/oG

Q[G/O]

which plays a similar role as the integral group algebra for discrete groups. E.g.,
the t.d.l.c. group G is said to be a rational duality group of dimension d ∈ N, if

(a) G is rationally of type FP∞,
(b) cdQ(G) = d,

1A first version has been obtained by I. Castellano in [2].
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(c) dHk(G,Bi(G)) = 0 for k 6= d.

From work of Michael Davis one concludes that the t.d.l.c. group G = X̂(F) of
Example 1(E) is a rational duality groups of dimension d ≥ 1 if, and only if, (W,S)
is a Q-duality group of dimension d (cf. [3]). Although many features of Coxeter
groups have been studied in detail, the author could not find a satisfactory2 answer
to the following question.

Question 5. What crystallographic Coxeter groups are Q-duality groups of di-
mension d ≥ 1?

2. The Hattori-Stallings rank and the Euler-Poincaré characteristic. In
case that G is unimodular, the Hom-⊗ identity in combination with the evaluation
morphism φO : P ⊗G HomG(P,Bi(G)) → Q · µ assigns do the identity of every
finitely generated projective object P in Q[G]dis a rational multiple hs(P ) ∈ Q · µ
of a normalized Haar measure µ, and thus can be considered as a generalized
Hattori-Stallings rank (cf. [5]), e.g., hs(Q[G/O]) = µO, where µO is the Haar
measure on G which restriction to O is a probability measure. The following
theorem may be considered as a t.d.l.c. version of a theorem of I. Kaplansky (cf.
[5]).

Theorem 3 (I. Castellano, G. Chinello, T.W.). Let G be a t.d.l.c. group, let O
be a compact open subgroup of G, and let P ∈ ob(Q[G]dis) be projective. Then

hs(P ) ∈ Q+
0 · µO. In particular, hs(P ) = 0 if, and only if, P = 0.

Let G be a t.d.l.c. group which is

(i) unimodular,
(ii) rationally of type FP∞,

(iii) of finite rational cohomological dimension.

For such a group let (P•, ∂•) be a finite and finitely generated projective resolution
of the trivial left Q[G]-module in the category Q[G]dis. Then one defines the Euler-
Poincaré characteristic χG of G by

(4) χG =
∑

k∈N0

(−1)k · hs(Pk).

Example 2. (A) If G = π1(G ,Λ, x0) is the fundamental group of a profinite graph
of groups based on the finite graph Λ (cf. Ex.1(C)), one has

(5) χG =
∑

v∈V (Λ)

µGv
−

∑

e∈Eg(Λ)

µGe

(B) If G = X̂D(F) for some finite field of cardinality q (cf. Ex.1(E)) one obtains

(6) χG = 1
pW,S(q) · µIw,

where Iw is the stabilizer of a chamber in the building ∆+.

2Obviously, affine and crystallographic hyperbolic Coxeter groups share this property, but
one may speculate whether the class of examples is much larger or not.
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3. Formal Dirichlet series associated to t.d.l.c. groups. Let G be a t.d.l.c.
group, let µ be a left-invariant Haar measure of G, let O ⊆c/o G and let R ⊂ G
be a set of coset representatives for O\G/O. One says that G has bounded coset
growth with respect to O, if for all n ∈ N one has

(7) an = |{ r ∈ R | µ(OrO) = n · µ(O) }| <∞.
If G has bounded coset growth with respect to some compact open subgroup, then
it has bounded coset growth with respect to all compact open subgroups. For such
a t.d.l.c. group G one defines the formal Dirichlet series

(8) ζG,O(s) =
∑

n∈N

an · n−s.

In many cases one verifies that ζG,O defines a meromorphic function ζ̂G,O : C →
C ∪ {∞}. In this case one calls (G,O) a meromorphic pair. A question we have
investigated for many examples is the following:

Question 6. For which merohoric pairs (G,O) satisfying (i)-(iii) is it true that

(9) χG = 1
ζG,O(−1) · µO

Question 6 has an affirmative answer for (X̂D(F), Iw) for every crystallographic
Coxeter group (W,S) (cf. Ex. 1(E)). The same is true if G = X(E) for a Chevalley
group scheme X , a t.d.l.c. field E and O ⊂ G a parahoric subgroup of G (cf. [5]).
However, recently B. Marchionna found examples of merohoric pairs which do not
satisfy (4) and also many merohoric pairs satisfying (4) (for t.d.l.c. groups G
without Bruhat decomposition).

The abscissa of convergency a = abs(ζG,O) as well as the order of the pole
ord(ζG,O) at a, do not depend on the choice of compact open subgroup, and thus
are invariants of G.
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Cohomological finiteness conditions and stable categories on rational

discrete modules over TDLC groups

Rudradip Biswas

1. Objective. We want to associate to the abelian category of rational dis-
crete modules over a TDLC group a “stable category” with good behaviour (i.e.
satisfying the equivalences shown in Theorem C).

2. A useful homological result. For any TDLC group G, it is known (Propo-
sition 3.2 of [3]) that the rational discrete modules form an abelian category with
enough projectives and enough injectives - we will be denoting this category by AG.
Denote the supremum over all AG-objects with finite projective (resp. injective)
dimension by Fin ProjDim(AG) (resp. Fin InjDim(AG)).

Theorem A. (partly new, partly inspired by [5], and partly covered by Thm.
VII .2.2 of [2]) The following are equivalent for any TDLC group G.

a) Every object in AG admits a complete projective resolution, i.e. every object
has a projective resolution that eventually agrees with a totally acyclic complex
of projectives.

b) silp(AG) (defined as the supremum over the injective dimension of AG-
projectives) and spli(AG) (defined as the supremum over the projective dimension
of AG-injectives) are finite.

c) Every object in AG admits a complete injective resolution, i.e. every object
has an injective resolution that eventually agrees with a totally acyclic complex of
injectives, and Fin InjDim(AG) <∞.

d) Complete cohomology computed with projective resolutions agrees with com-
plete cohomology computed with injective resolutions (in the style of Nucinkis [5]).

Proposition B. When any of the equivalent statements of Theorem A are sat-
isfied (an easy example is when G = SLn(Qp) as it has finite virtual cohomological
dimension), we have

silp(AG) = spli(AG) = Fin ProjDim(AG) = Fin InjDim(AG) <∞
We can add some more invariants here like the finitistic and the global Goren-

stein dimensions. The main use of Theorem A is that it gives very neat conditions
on when every object has complete resolutions which is useful in constructing a
well-behaved stable category as we describe below.

3. Candidates for stable categories and equivalences.

Theorem C. (new, in the spirit of [1, 4]) Let G be a TDLC group such that
silp(AG) and spli(AG) are finite. Then, the following triangulated categories are
equivalent (and are therefore equivalently adequate candidates for our stable cat-
egory):

(i) (AG, Êxt
0

AG
( , )) (here, the objects are all modules in AG and the Hom-sets

are given by the zero-th complete cohomology groups computed with projective
resolutions)
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(ii) (AG,}Ext
0

AG
( , )) (here, the objects are all modules in AG and the Hom-

sets are given by the zero-th complete cohomology groups computed with injective
resolutions)

(iii) Db(AG)/Kb(Proj -AG) (the Verdier quotient of the derived bounded cate-
gory on AG and the homotopy category of bounded complexes of AG-projectives)

(iv) Db(AG)/Kb(Inj -AG) (the Verdier quotient of the derived bounded category
on AG and the homotopy category of bounded complexes of AG-injectives)

(v) The homotopy category of totally acyclic complexes of AG-projectives.
(vi) The homotopy category of totally acyclic complexes of AG-injectives.
(vii) GProj(AG) (Gorenstein projectives of AG, i.e. AG-objects arising as cycles

in totally acyclic complexes of AG-projectives, form a Frobenius category with the
class of projective-injectives given by the AG-projectives; GProj(AG) denotes its
stable category where we keep all Gorenstein projectives as objects and kill all
morphisms that factor through an AG-projective). To get to (iii) from (i), con-
sider a module as a complex concentrated in degree 0; for (iii) to (v), take complete
projective resolutions (possible due to Thm A); for (v) to (vii), take the zero-th
syzygy functor (see Def. 3.7 of [4]); and for (vii) to (i), use the inclusion functor.
Composing these, get (i) ∼= (iii) ∼= (v) ∼= (vii). Repeat the analogous treatment
with “module as a deg 0 concentrated complex”, “taking complete injective reso-
lutions” (again, possible due to Thm A), and the zero-th cosyzygy functor, to get
(ii) ∼= (iv) ∼= (vi). (i) ∼= (ii) by Thm A, and (iii) ∼= (iv) as silp(AG), spli(AG) <∞.

Note that all the categories in Theorem C except two, namely (AG, Êxt
0

AG
( , ))

and (AG,}Ext
0

AG
( , )), are clearly triangulated categories. Without the assump-

tion that silp(AG) and spli(AG) are finite, these two categories need not even be
triangulated. Since we know very little about AG-injectives, the presence of (vi)
above is noteworthy.

4. Finishing remarks. We are insisting on these equivalences because they are
useful for making progress on stratification questions in the spirit of, for example,
Benson-Iyengar-Krause or Barthel-Heard-Sanders. This is why even if we can
replace AG with a more refined abelian category associated to G using the full
force of Condensed Maths, our use of and dependence on complete resolutions
(both projective and injective) to establish “good behaviour” of our stable category
will remain.

Ending open question. Can we achieve Theorem C with a finiteness assump-
tion on just one of silp(AG) and spli(AG)?
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Finiteness properties and locally compact groups

Stefan Witzel

Topological finiteness properties of discrete groups are studied for two principal
reasons. The classical one is that they give sufficient conditions for group cohomol-
ogy to be effectively computable using a CW-model for a classifying space. The
modern one is that certain finiteness properties are coarse invariants and there-
fore allow to distinguish the large-scale geometry of groups. Finiteness properties
for locally compact groups have been proposed. What is missing is the universal
object whose finiteness they are supposed to describe.

1. Discrete groups

Topological finiteness properties are about the existence of classifying spaces with
good finiteness properties so we start with these. If G is a discrete group, a
K(G, 1) is a homotopy type CG of a pointed CW-complex such that π1(CG) = G
and the map [(Z, z0), CG] → Hom(π1(Z, z0), G) is bijective. Another perspective
is via principal bundles: a principal G-bundle p : EG → BG is universal if every
numerable principal G-bundle arises as a pullback f∗(p) along a map f : Z → Y .

For a discrete group G, a principal G-bundle X → Y is the same as a normal
covering with group of deck transformations G which by covering space theory
corresponds to a homomorphism π1(Y )→ G. In particular, the universal bundle
EG → BG can be recovered from BG and K(G, 1) and BG are the same thing.
This is specific to discrete groups and for non-discrete groups it may be more
reasonable to generalize EG.

A discrete group is of type Fn if it admits a CW-model for EG whose n-skeleton
is compact modulo G, equivalently if acts freely and cocompactly on an (n − 1)-
connected CW complex. It is of type F∞ if it is of type Fn for all n.
A basic fact about these finiteness properties is that if 1 → N → G → Q → 1 is
an extension in which N is of type Fn then G of type Fn+1 implies Q of type Fn+1

and Q of type Fn implies G of type Fn.
The main tool in determining finiteness properties is Brown’s criterion [3, The-

orems 2.2, 3.2]:

Theorem. Fix G and n. Let X be an (n−1)-connected G-CW complex. Let (Xi)i
be a filtration by G-CW subcomplexes. Assume that Gσ is of type Fn−dimσ for all
σ. Then G is of type Fn if and only if (Xi)i is essentially (n− 1)-connected.

The filtration is essentially n-connected if the directed system (πk(Xi))i is es-
sentially trivial for every k ≤ n which in turn means that for every i there exists a
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j such hat πk(Xi → Xj) = 0. Brown’s criterion can be decomposed into two parts:
the stabilizer part says that a CW-complex on which G acts can be replaced by one
on which G acts freely without affecting cocompactness on the n-skeleton provided
the stabilizers have the right finiteness properties; and the filtration part says that
if G acts freely on an (n− 1)-connected CW complex, its finiteness properties are
detected by any cocompact filtration.

2. Universal spaces for locally compact groups

Moving on to locally compact groups, we would like to define finiteness properties
Fn that capture the finiteness of some universal free G-space EG. It turns out that
is relatively easy to agree on what the properties Fn will be but not so clear what
the universal space EG is that they describe finiteness of, a basic problem being
that non-discrete groups do not act freely and continuously on CW-complexes (in
contrast there is no problem to define a classifying space for proper actions of a tdlc
group, for instance). One may hope for EG to be an object in a model category for
topological spaces with continuous G-actions that has a notion of dimension and
then Fn would be universality with respect to n-dimensional objects. Milnor’s EG,
the infinite join of G with itself appropriately topologized, is bound to be model
for EG in the sense to be established, but studying finiteness properties becomes
interesting only once one can vary the model within its (equivariant) homotopy
class. Corob Cook [4] has results in this direction with the additional ambition of
recovering G from BG as a topological group, but their universal properties are
unclear and connected groups will likely interfere with the homotopy theory.

Finiteness properties of locally compact groups should generalize the notions
of being compactly generated (F1) and of being finitely presented (F2) and these
special cases are instructive: G is compactly generated if there is a compact subset
C that generated G as an abstract group. This can be reformulated to say that
G acts cocompactly on a topological graph with vertex set G and edge set G×C
whose underlying discrete graph is connected. A natural extension to G being of
type Fn would be to ask for the existence of a simplicial space ∆ (consisting of
topological spaces ∆[k] of k-simplices and continuous face and degeneracy maps)
on which G acts freely such that the action on ∆[k], k ≤ n is cocompact and that
the geometric realization of the underlying simplicial set |F∆| is (n−1)-connected
(where F is the forgetful functor from topological spaces to topological sets). Or
alternatively to act freely on a topological CW-complex (whose n-cells are indexed
by a topological space rather than a set) cocompactly on k-cells, k ≤ n, and
that the underlying CW-complex (with discrete set of cells) be (n− 1)-connected.
But for now these are just ad-hoc notions without justification by some form of
universality.

There are a few more lessons to be learned from looking at compact generation.
First, the models for EG we are looking for will not be G-CW complexes, which
are built out of equivariant cells G/H×Dk: while the 0-skeleton of the topological
graph is a single equivariant cell G/{1}×D0, already the edges are parametrized
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by G × C, so a single G/H-factor is not sufficient to capture the amount of non-
discreteness. Second, a connected group G is not compactly generated simply
because G → G\G is a bundle with connected total space but rather because it
is generated by any identity neighborhood and this neighborhood can be taken to
be compact. This leads to a warning when moving beyond the locally compact
setting: if G\X is compact it may not be true that there is a compact C ⊆ X
with G.C = X .

3. Finiteness properties for locally compact groups

The reason that the correct notion of finiteness properties for locally compact
groups is uncontroversial is that certain simple assumptions determine them uniquely.
For instance:

Observation. Suppose (Tn)n∈N are properties of groups (and T∞ means Tn for
all n) such that the following hold:

(1) If 1→ N → G→ Q→ 1 is an extension with N of type T∞ then G is Tn
if and only if Q is Tn.

(2) If G acts properly and transitively on a contractible manifold then it is of
type T∞.

Then G is Tn if and only if G/G(0) is Tn. If in addition

(3) Brown’s criterion holds (at least for proper actions)

then the properties Tn are uniquely determined.

Proof. If G is compact then it is T∞ by (2). If G is connected Lie then it admits
a maximal compact subgroup C [7, Theorem 14.1.3] and C\G is contractible [7,
Theorem 14.3.11] soG is T∞ by (2). IfG is connected then by the Gleason–Yamabe
theorem it is pro-Lie. Since the Lie groups involved have bounded dimension, the
inverse system eventually consists of coverings. Since the fundamental group of a
Lie group is finitely generated abelian [7, Theorem 12.4.14], only finitely many of
these can be infinitely-sheeted. It follows that G is (pro-finite)-by-Lie and hence of
type T∞ by (1). If G is a general locally compact group with connected component
G(0) it follows by another application of (1) that G is Tn if and only if G/G(0)

is, reducing to the tdlc case. Finally if G is tdlc then by van Dantzig’s theorem
there is a compact open subgroup C. Then G acts properly on the free simplicial
set over G/C, which is contractible, so it is of type Tn if and only if some/any
cocompact filtration is essentially (n− 1)-connected. �

The existing notions of finiteness properties for locally compact groups stipu-
late some assumption of this form to get a definition. The compactness properties
Cn by Abels–Tiemeyer [2] stipulate that the filtration part of Brown’s criterion
should hold for the filtration of the free simplicial set over G filtered by G-orbits
of free simplicial sets over compact subsets of G. The finiteness properties Fn

by Castellano–Corob-Cook [5], which are only defined for tdlc groups, stipulate
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that compact groups should be F∞ and that the stabilizer part of Brown’s crite-
rion should hold for proper actions. Applying [2, Theorem 3.2.2] and [5, Theo-
rems 4.7,4.10] to the free simplicial set over G/C, C a compact open subgroup,
one finds that both notions coincide on tdlc groups.

4. Examples

Examples of locally compact groups with interesting finiteness properties exist in
the literature although they are usually formulated for discrete groups because of
the unclear meaning of finiteness properties of locally compact groups. This is
true specifically of the solvable groups discussed in [12, 10]. Note that Brown’s
criterion together with the fact that arithmetic groups are F∞ allows to reduce
the determination of finiteness properties of S-arithmetic groups to that of finite-
ness properties of algebraic groups over local fields, see [11, Theorem 3.1]. For
instance finiteness properties of A(Z[1/p]) are equivalent to compactness proper-
ties of A(Qp). Beyond this equivalence, however, the proof that A(Z[1/p]) is of
type Fn−1 but not of type Fn by filtering a Bruhat–Tits building applies in ver-
batim to prove that A(K) is of type Fn−1 but not of type Fn even if K is local
field of positive characteristic, using the version [5, Theorems 4.7,4.10] of Brown’s
criterion.

5. Coarse geometry

The second motivation for studying finiteness properties mentioned in the intro-
duction is coarse geometry. In this context the situation is much clearer, even
beyond locally compact groups. A metric space X is coarsely n-connected if the
Vietoris–Rips filtration VRr(X) is essentially n-connected. Alonso [1] observed
that this is a coarse invariant and by Brown’s criterion being of type Fn coincides
with being coarsely (n − 1)-connected for countable groups. A locally compact
σ-compact group G carries an adapted pseudo-metric that is unique up to coarse
equivalence. If G is compactly generated then the metric can be taken to be
coarsely geodesic and is then unique up to quasi-isometry (see [6, Milestones 4.A.8
and 4.B.13]. This generalizes statements for discrete groups that are countable
and finitely generated, respectively. Thus from a geometric perspective the nat-
ural notion for a locally compact (σ-compact) group to be of type Fn is to be
coarsely (n − 1)-connected. If one is willing to work with coarse structures that
need not be metrizable (see [8]) one can go further: Rosendal [9] defines a coarse
structure on every topological group that is unique up to coarse equivalence.

An analogous form of coarse and large-scale geometry also exists for approxi-
mate groups leading to similar questions. In particular, it would be interesting to
know how coarse connectivity relates to finiteness of cohomology.
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Profinite rigidity, homology, and Coxeter groups

Yuri Santos Rego

(joint work with Petra Schwer)

Dropping ‘locally’ from TDLC, a (topological, Hausdorff) group G is called profi-
nite if it is totally disconnected (TD) and compact (C). Many infinite groups have
TDC counterparts. Given G ∈ FGRF = class of finitely generated residually finite

(discrete) groups, its profinite completion Ĝ is the topological closure

Ĝ := ι(G) ≤
∏

NEG& [G:N ]<∞

G/N, where ι(g) = (gN)N is the diagonal embedding

and each finite quotient G/N is given the discrete topology (thus Ĝ is TDC).

1. Profinite rigidity and homological aspects

To what extent does the collection of (isomorphism classes of) finite quotients of
an infinite group G determine its algebraic structure? This problem, whose origin
is traced back to questions of Grothendieck and others in the 1970s, is a common
point of interest for geometric group theory and the theory of TDLC groups. An
ambitious first version is whether finite quotients determine isomorphism types.

Definition 1. Given a subclass C ⊆ FGRF we say G ∈ FGRF is profinitely rigid

relative to C if (Ĝ ∼= Ĥ =⇒ G ∼= H) holds for all H ∈ C. If C = FGRF we call
G absolutely profinitely rigid. If (up to isomorphism) there are only finitely many

H ∈ C with Ĥ ∼= Ĝ but H 6∼= G, we call G almost profinitely rigid (rel. C).

Below is a widely nonexhaustive list around the current state of knowledge. We
tacitly assume our discrete groups to lie in FGRF unless explicitly said otherwise.
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(1) (Folklore) Z and the infinite dihedral group are absolutely profinitely rigid.

(2) (Baumslag) ∃B1, B2 ∈ FGRF metacyclic with B̂1
∼= B̂2 but B1 6∼= B2.

(3) (Pickel) Nilpotent groups are almost absolutely profinitely rigid.
(4) (Remeslennikov; open problem) Are free groups absolutely profinitely rigid?
(5) (Wilton) Free groups are profinitely rigid relative to limit groups.
(6) (Liu) Fundamental groups of hyperbolic 3-manifolds of finite volume are

almost profinitely rigid relative to 3-manifold groups.

Adapting the question, what kinds of features are witnessed by finite quotients?

Definition 2. A group-theoretic property (P ) and a group-theoretic invariant
η(−) are said to be profinite relative to C ⊆ FGRF in case the implications

• (G has property (P ), G, H ∈ C, and Ĝ ∼= Ĥ) =⇒ H has property (P ),

• (G, H ∈ C, and Ĝ ∼= Ĥ) =⇒ η(G) = η(H)

hold, respectively. If C = FGRF we call the property (P ) (resp. η(−)) profinite.

For instance, the first integral homology group H1(−,Z) is a profinite invariant.
In fortunate cases, further homological information is detected by completions, or
homological tools aid in computing completions, motivating the following (broad)
program: Given a class of groups C ⊆ FGRF, ...

(1) ...find (co)homological invariants relative to C,

(2) ...use (co)homological methods to check whether Ĝ ∼= Ĥ for G,H ∈ C.

Here we mention some important contributions in this direction.

Theorem 3 (Platonov–Tavgen). Consider G1, G2 ∈ FGRF and suppose there

exists a finitely presented group Q 6∈ FGRF for which Q̂ = 1 and H2(Q,Z) = 0
and such that there are epimorphisms π1 : G1 → Q and π2 : G2 → Q. Then the
fiber product associated to π1 and π2 has the same profinite completion as G1×G2.

Theorem 4 (Lück; Bridson–Conder–Reid). The rational Euler characteristic is
a profinite invariant relative to C = lattices in PSL2(R).

Theorem 5 (Kammeyer–Kionke–Raimbault–Sauer). Let C be the class of arith-
metic groups with the congruence subgroup property. Then the rational Euler char-
acteristic is not a profinite invariant relative to C, though its sign is so.

Theorem 6 (Jaikin-Zapirain; Hughes–Kielak). Let C be the class of finitely pre-
sented subgroup-separable groups. Then the property “the BNS invariant Σ1(−;R)
contains antipodal points (for any commutative unital ring R)” is profinite rel. C.

2. Coxeter groups

Profinite topics have been actively studied for groups of strong geometric flavor.
Surprisingly, not much is known for the (arguably) core examples of such groups:
a Coxeter group W (of rank n) is a group admitting a Coxeter presentation

W ∼= 〈s ∈ S | (st)ms,t for every pair s, t ∈ S with ms,t <∞〉,
i.e., |S| = n and the orders ms,t satisfy ms,s = 1 and ms,t = mt,s ∈ N≥2 ∪ {∞}.
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Example 7. Sym(n) is a prototypical finite Coxeter group, and D∞
∼= C2 ∗C2 is

the ‘smallest’ infinite Coxeter group. The following Coxeter group of rank 5,

W ∼= 〈a, b, c, d, e | a2, b2, c2, d2, e2, (ab)3, (bc)5, (ad)2, (bd)2, (be)2, (ce)2〉,
is also isomorphic to the (hyperbolic) Coxeter triangle group ∆(6, 10,∞).

To our knowledge, profinite literature around the class G := Coxeter groups of
finite rank ⊂ FGRF is at most a decade old. We record:

(Kropholler–Wilkes [4]; Corson–Hughes–Möller–Varghese [3]) Right-angled
Coxeter groups are profinitely rigid relative to G.
(Bridson–McReynolds–Spitler–Reid [2]) 14 hyperbolic Coxeter triangle groups
are known to be absolutely profinitely rigid.
(Möller–Varghese [5]) Relative to G, irreducible and affine imply rigidity.

Let us highlight two results addressing our motivating program for Coxeter groups.

Theorem 8 (Corson–Hughes–Möller–Varghese [3]). The right-angled Coxeter group
(C2 ∗ C2 ∗ C2 ∗ C2)× (C2 ∗ C2 ∗ C2 ∗ C2) is not absolutely profinitely rigid.

Proof sketch. Apply Theorem 3 of Platonov–Tavgen taking G1 = G2 = C2 ∗ C2 ∗
C2 ∗ C2 and using R. Thompson’s simple group V as the quotient Q, and check
that the corresponding fiber product is not isomorphic to G1 ×G2. �

Theorem 9 (Santos Rego–Schwer [6]). Write G≤3 for the class of Coxeter groups
that admit some Coxeter presentation of rank three or less. Then every W ∈ G≤3

is profinitely rigid relative to G≤3. Moreover, Coxeter triangle groups satisfy

̂∆(p, q, r) ∼= ̂∆(p′, q′, r′) ⇐⇒ {p, q, r} = {p′, q′, r′}.
Proof strategy. Rule out spherical groups and clear the affine case by looking at
H1(−,Z) and comparing completions of virtually abelian groups. In the hyperbolic
case the presence of von Dyck subgroups implies that Theorem 4 still applies.
Compare Euler characteristics and invoke profinite techniques of [1] to finish. �

Theorem 9 applies to some groups of higher rank, see Example 7. Besides using
homological tools, Theorem 9 shows that the geometry of the given groups (e.g.,
covolume, having cusps, being hyperbolic) is encoded by finite quotients. We pose:

Problem 10. Which (co)homological properties and invariants are profinite rela-
tive to the class G of Coxeter groups of finite rank?
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Double-coset zeta functions for groups acting on trees

Bianca Marchionna

Double cosets play a prominent role in the study of totally disconnected locally
compact (= t.d.l.c.) groups, e.g. in Representation Theory or Geometric Group
Theory. From now on, we focus on double cosets of a t.d.l.c. group G with respect
to a compact open subgroup K ≤ G. In this case, each double coset KgK has

(1) µK(KgK) = |K : K ∩ gKg−1| ∈ Z≥1,

where µK( ) is the left Haar measure on G such that µK(K) = 1. For a given
pair (G,K), consider the following (formal) Dirichlet series:

(2) ζG,K(s) :=
∑

KgK∈K\G/K

µK(KgK)−s,

which is called the double-coset zeta function associated to (G,K) (cf. [2]).
The key for studying ζG,K(s) is to find a favourable enumeration of the K-

double cosets and an explicit formula for each µK(KgK). Consider for instance
G = SL2(Qp) and K = SL2(Zp), where Qp is the p-adic field and Zp is its ring of
integers. By the Cartan decomposition of G with respect to K one has

(3) G =
⊔

d∈Z≥0

K · diag(p−d, pd)︸ ︷︷ ︸
=:gd

·K.

Via a direct computation, µK(KgdK) = |K : K∩gdKg−1
d | is 1 if d = 0, and equals

(p+ 1)p2d−1 otherwise. Therefore,

(4) ζG,K(s) =
+∞∑

d=0

µK(KgdK)−s = 1 +
(p+ 1)−sp−s

1− p−2s
.

There is another (geometric) way to obtain the same result, which goes beyond
matrix computations and opens to further generalizations. It is based on the fact
(cf. [6, Ch. II, § 1]) that G = SL2(Qp) acts on a (p + 1)-regular (simplicial)
tree Tp+1 and K = SL2(Zp) is the stabilizer of a vertex, say v0. Remarkably,
the G-action on Tp+1 is locally ∞-transitive, i.e., every vertex-stabilizer Gv acts
transitively on the set of geodesics {[v, w] ⊂ Tp+1 : length([v, w]) = k}, for every
k ≥ 0. Hence there is a 1-to-1 correspondence mapping KgdK, d ≥ 0, to the orbit
K · [v0, gd · v0] = {[v0, w] ⊂ Tp+1 : length([v0, w]) = 2d}. Moreover, by (1) one has

µK(KgdK) = |K · [v0, gd · v0]| = |{[v0, w] ⊂ Tp+1 : length([v0, w]) = 2d}.
By the regularity of Tp+1, one recovers the formula of µK(KgdK) claimed before.
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This second argument easily extends to every t.d.l.c. group G acting locally ∞-
transitively on a locally finite tree T with compact open vertex-stabilizers, taking
K as a vertex-stabilizer (or, up to minor changes, an edge-stabilizer).

More generally, we can assume that G acts weakly locally ∞-transitively on T ,
i.e., every vertex-stabilizer Gv acts transitively on the set of geodesics from v in T
having the same image via the quotient map π : T −→ Γ := G\T . If the G-action
on T is edge-transitive, this condition coincides with locally ∞-transitivity. In
general, however, it comprises many other (non-edge transitive) examples, like the
groups of automorphisms of locally finite trees preserving a vertex-coloring (cf. [7,
§ 5]) or universal groups associated to certain local action diagrams (cf. [5]).

In this more general setting, let K = Gv be a compact open vertex-stabilizer.
Then, eachKgK corresponds to a loop at π(v) in Γ, i.e., π([v, g ·v]), and µK(KgK)
is the number of geodesics from v in T lifting the loop π([v, g · v]) via π. A similar
argument can be found in [1, § 3]. Hence, for computing ζG,K(s), we need only
two tools: the quotient graph Γ = G\T regarded as a Serre-graph1, and a weight
ω(e) ∈ Z≥1 on each e ∈ Edg(Γ) giving the number of edges in the Serre-graph
associated to T lifting e and with a common origin. With a similar argument as
in [3], one deduces what follows.

Theorem A. Let G be a t.d.l.c. group acting weakly locally ∞-transitively on
a locally finite tree T with compact open vertex-stabilizers, and let K = Gv be a
vertex-stabilizer. Let Γ = G\T be finite, and ω(e) ≥ 3 for every e ∈ Edg(Γ). Then
ζG,K(s) converges at some s ∈ C and it can be meromorphically continued to C as

ζG,K(s) =
det(I −W (s) + Uπ(v)(s))

det(I −W (s))
.

Here, W (s) and Uπ(v)(s) are |Edg(Γ)|-dimensional matrices whose entries are en-
tire functions in s ∈ C depending only on Γ and ω( ).

Following [2], we can often recover the Euler characteristic2 χG of the group G
from the meromorphic continuation of ζG,K(s) as follows.

Theorem B. Let (G,K) as in Theorem A. If Γ is a tree, then χG = ζG,K(−1)−1µK .

Unlike the examples studied in [2], if Γ is not a tree, the conclusion of Theorem
B is no longer true in general (cf. [4]). At the current stage, however, there is
not a complete characterization of all pairs (G,K) for which χG = ζG,K(−1)−1µK

holds yet.
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Profinite rigidity of fibring

Dawid Kielak

(joint work with Sam Hughes)

The starting point for this series of three lectures is the theorem of Jaikin-Zapirain
[5].

Theorem 1. Let M and N be compact connected orientable aspherical three-
manifolds. If their fundamental groups are profinitely isomorphic, then M fibres
over the circle if and only if N does.

Here, being profinitely isomorphic means precisely that the profinite comple-
tions of the groups are isomorphic. When the groups are finitely generated, as is
the case for the groups above, this amounts to saying that for every finite group,
it is a quotient of one of the groups if and only if it is a quotient of the other.

For irreducible three-manifolds, fibring over the circle can be understood alge-
braically: it was shown by Stallings [7] that it is equivalent to algebraic fibring,
that is, admitting an epimorphism to Z with finitely generated kernel (this fact
has two more modern proofs [3, 1]). Hence, it becomes natural to ask under what
circumstances does being algebraically fibred pass between groups with the same
profinite completions.

Theorem 2 (Hughes–K. [4]). Let G and H be two finitely presented LERF groups,

and suppose that the profinite completions Ĝ and Ĥ are isomorphic. If G is alge-
braically fibred, then so is H.

Recall that a group G is LERF (locally extended residually finite) if and only
if for every finitely generated subgroup A 6 G and an element b ∈ G r A, there
exists a quotient map ρ : G→ Q with finite image such that ρ(b) 6∈ ρ(A).

The above is actually an instant of a more general result. To state it, we need to
introduce the concept of BNS-invariants. Given a ring R, the nth BNS invariant
of G over R, denoted Σn(G;R), is a subset of the set of non-zero homomorphisms
G→ R consisting of maps φ : G→ R for which

Hi(G; R̂G
φ
) = 0
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for all i 6 n. Here R̂G
φ

is the Novikov ring associated to φ, defined as the ring of
functions G → R whose support intersects φ−1((−∞, κ)) in a finite set for every
κ ∈ R.

The BNS-invariants are related to our previous discussion, since for a character
φ : G → Z, lying in Σn(G;R) ∩ −Σn(G;R) is equivalent to having kernel of type
FPn(R).

A character G→ Z lying in Σn(G;R)∪−Σn(G;R) will be called n-semi-fibred.
In [4] we introduced the following definition.

Definition 3. Let R be an integral domain. A group G lies in TAPn(R) if and
only if n-semi-fibred characters are precisely the characters for which all twisted
Alexander polynomials over R in dimensions i for all i 6 n do not vanish.

The twisting considered above is that by an epimorphism from G to a finite
group. For every group, if we are given an n-semi-fibred character, then its twisted
Alexander polynomials over R in dimensions i for all i 6 n do not vanish; the
interesting part of the definition is the reverse implication.

It was first observed by Friedl–Vidussi [2] that twisted Alexander polynomials
are important in recognising fibred 3-manifolds. In the language we just intro-
duced, the main theorem of [2] states that fundamental groups of connected com-
pact orientable three-manifolds with empty or toroidal boundary lie in TAP1(R)
for every Noetherian UFD R.

We now have more examples of such groups.

Theorem 4 (Hughes–K. [4]). Let R be a commutative ring.

• If G is a LERF group of type FP2 over any commutative ring, then G lies
in TAP1(R).
• The class TAP1(R) is closed under finite products.
• Products of limits groups lie in TAP∞(R).

Once a group is shown to lie in TAP1(F) over a finite field F we can use it to
study profinite rigidity of BNS-invariants, thanks to the following result, heavily
inspired by ideas of Jaikin-Zapirain [5] and Liu [6].

Theorem 5 (Hughes–K. [4]). Let G and H be groups of type FPn(Z) that are
n-good in the sense of Serre, and that have isomorphic profinite completions. If G
lies in TAPn(R) and Σn(G;R) = ∅ then Σn(H ;R) = ∅ as well.

The class TAP1(R) remains quite mysterious.

Conjecture 6. Do all {finitely generated free}-by-cyclic groups lie in TAP∞(R)?
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Classifying Spaces

Ged Corob Cook

An important tool for studying abstract groups G is the use of group actions on
spaces. When we care about understanding these actions up to homotopy, we
typically work in the categories like CW-complexes or G-CW-complexes. There
is a CW-complex BG which is a classifying space for G: it classifies principal
G-bundles, it is an Eilenberg-MacLane space for G, and so on. As noted by Ste-
fan Witzel at this workshop, we would like to phrase questions about homological
finiteness conditions for totally disconnected, locally compact groups (type FPn,
cohomological dimension) in terms of properties of such a classifying space. When
group theorists think of doing this for topological groups, they tend to take the
approach that, at any rate, there can be no Eilenberg-MacLane space for a topo-
logical group, since the homotopy group(oid)s of such a space would be abstract
groups. The purpose of this talk is to argue that most, if not all, of the work done
by classifying spaces for abstract groups can be recovered for topological groups.

This generalisation is done by category theory in [1]. First, we replace the cate-
gory of topological spaces with a convenient category of spaces, that is, a cartesian
closed category. In my existing work, this is the category U of compactly gener-
ated, weakly Hausdorff spaces (k-spaces); in future iterations, it will probably be
condensed sets. The first benefit of this comes when we want to define topological
homotopy groups of topological spaces X : putting the compact-open topology on
the set of (pointed) continuous maps Sn → X , and the quotient topology from
this on πn(X), does not give a topological group in general. The problem is pre-
cisely the failure of topological spaces to be cartesian closed. But using the version
of the compact-open topology internal to U (that is, the k-ification of the usual
compact-open topology) instead, πn(X) becomes an internal group object of U: a
k-group.

We can put a model structure on U, the CH-structure, such that the fibrant-
cofibrant objects (that is, our analogue of CW-complexes) are retracts of KW-
complexes, spaces built by ‘attaching spaces of n-cells’ in dimension n, instead of
attaching a discrete sets of n-cells. Formally, a KW-complex X is a colimit (in
k-spaces) of a sequence

X0 → X1 →2→ · · ·
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in which X0 = T0 is a disjoint union of compact Hausdorff spaces, and each maps
Xn → Xn+1 is given by a pushout of a diagram

Xn ← Sn × Tn+1 → Bn+1 × Tn+1,

where Sn is the n-sphere, Bn+1 the n + 1-ball, and Tn+1 is a disjoint union of
compact Hausdorff spaces.

This model structure has fine enough weak equivalences that weak equivalences
induce isomorphisms of all homotopy k-groups. On the other hand, maps that
induce such isomorphisms are not weak equivalences in the CH-structure in gen-
eral. For this reason, we also need to track a weaker structure, called the regular
structure, in which the weak equivalences are those which induce isomorphisms of
homotopy group objects in the Barr-exact completion of U. Both the CH-structure
and the regular structure have analogous versions in sU, the category of simplicial
objects in U, which we will also need.

Finally, we can use this category-theoretic work to start constructing classifying
spaces for totally disconnected, locally compact groups, in [2]. For an abstract
group G, the classifying space can be constructed as the geometric realisation
of a simplicial set S with Sn given by the n-fold product Gn, and we copy this
construction for k-groups, building the classifying space BG from a simplicial k-
space S with Sn = Gn. By van Dantzig’s theorem, Sn is a disjoint union of
compact Hausdorff spaces when G is totally disconnected, locally compact, so BG
is a KW-complex. (For k-groups more generally, one takes a cofibrant replacement
of S before the geometric realisation.) The main technical result is the following:

Theorem 1. Suppose C is an open cover of X ∈ U, closed under intersections;
we think of C as a poset ordered by inclusion. Then Sing(X) is weakly equivalent

(in the regular structure on sU) to the homotopy colimit (in the CH-structure on
sU) of {Sing(U)}U∈C.

From this, we show the main result.

Theorem 2. If a k-group G is totally path-disconnected, BG is an Eilenberg–Mac
Lane space K(G, 1) for G.

This applies, in particular, to totally disconnected, locally compact groups. I
conjecture that if one replaces U with the category of condensed sets, the weak
equivalences in the CH-structure and the regular structure will be the same; this
should strengthen the equivalent of Theorem 1 and allow further results to be
proved in this direction.
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From discrete to t.d.l.c.

Laura Bonn

For discrete groups there are a lot of results about finiteness conditions, see [3].
The question is now, how we can transform these results into the world of totally
disconnected locally compact groups. As a first step we generalize the concept of
normal subgroups.

Definition. (also see [1]) Let Γ be a group and Λ ≤ Γ. Then Λ is called a
commensurated subgroup of Γ, if Λ∩gΛg−1 has finite index in Λ and in gΛg−1.

In the following we want Γ to be a discrete group and Λ ⊆ Γ to be a commensurated
subgroup. Then Γ acts on Γ/Λ by left multiplication, such that we can define a map
α : Γ → Sym(Γ/Λ). We can equipped Sym(Γ/Λ) with the topology of pointwise
convergence and then we define the following group.

Definition. The group Γ//Λ := α(Γ) is called the Schlichting completion.

Sometimes this construction is called the profinite completion of Γ relative to Λ.

Remark. (also see [2])

• If Λ is a normal subgroup, then Γ//Λ = Γ/Λ.
• Γ//Λ is a totally disconnected locally compact group.
• If Λ is a not normal subgroup, then Γ →֒ Γ//Λ is a dense embedding.

• α(Λ) is a compact open subgroup of Γ//Λ.

For the Schlichting completion the following lemma holds.

Lemma 1. [1, Lemma 6.3 and 6.4] Γ//Λ = α(Λ)α(Γ) and α(Λ) ∩ α(Γ) = α(Λ).

We want to transform some finiteness conditions of the discrete group along the
Schlichting completion to the tdlc case.

Theorem. [1, Theorem 6.1] If Γ is finitely presented and Λ ⊆ Γ is a finitely
generated commensurated subgroup then Γ//Λ is compactly presented.

Sketch of proof: For the full proof see [1, Theorem 6.1].

The compact generation set is α(Λ)∪S, where S is a finite generation set of α(Γ).
Give four types of relations, G inherits all relations of α(Γ), the intersection of

α(Λ) and S gives the second type, the two last types comes from lemma 1. �

In the setting of discrete groups the following result about finiteness properties is
known [4, Section 6], for a short exact sequence 0→ N → G→ H → 0, with N is
of type Fn−1 and G of type Fn, then H is of type Fn and if N and H of type Fn,
then G is of type Fn, too.
Here we have seen, if Γ is of type F2 and the commensurated subgroup Λ is of
type F1, then Γ//Λ is of type F2.
I am currently working on generalizing Le Boudec’s theorem to higher finiteness
conditions.
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Some cohomological invariants for tdlc-groups

Sofiya Yatsyna

When looking at the homological aspects of totally disconnected locally compact
(tdlc) groups, one may come across rational discrete cohomology theory introduced
by Castellano–Weigel in [1]. Specifically, given a commutative ring R with identity
and tdlc group G, let R[G] denote the R-group algebra, and R[G]mod – the abelian
category of left R[G]-modules. A left R[G]-module D is discrete if and only if for
each d ∈ D, the stabilizer stabG(d) is an open subgroup of G. In [1], the authors
establish R[G]dis, the full subcategory of R[G]mod, whose objects are discrete left
R[G]-modules; whereby in the case of R = Q, Q[G]dis is an abelian category with
enough injectives, and rational discrete cohomology theory for tdlc groups can be
defined.

The question naturally arises: Can this cohomology theory be used to find anal-
ogous tdlc versions of known results? One such interesting result is given by
Gedrich–Gruenberg in [3] looking at two homological finiteness conditions on a
ring R: the supremum of projective lengths (dimensions) of injective R-modules
(spli(R)) and the supremum of injective lengths of projective R-modules (silp(R)).
By way of these invariants, one can show the following:

Theorem (Gedrich–Gruenberg [3]). Let R be a commutative noetherian ring of
finite R-injective dimension t. If Λ is a R-projective Hopf R-algebra, then

silp Λ ≤ spli Λ + t.

Results of Cornick–Kropholler in [2] expand on the relationship of the above
Gedrich–Gruenberg invariants with the finitistic dimension when R is the group
algebra of a hierarchically decomposable group. Using rational discrete cohomol-
ogy, it would be interesting to develop the theory of tdlc analogues. Furthermore,
it turns out that Z[G]dis does not have enough projections (unlike its Q[G]dis coun-
terpart) – whether the above cohomological invariants could be defined for Z[G]dis

is also interesting and worth exploring.
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Finiteness Properties of Algebraic Bieri-Strebel Groups

Lewis Molyneux

(joint work with Brita Nucinkis, Yuri Santos Rego)

Given a subinterval of the real numbers I, a subgroup of positive real numbers
under multiplication P , and a Z[P ]-submodule of the real numbers A, the Bieri-
Strebel group G(I, A, P ) is the group of piecewise linear, orientation preserving
homeomorphisms of I, with slopes in P and breakpoints in A. Bieri and Strebel
constructed these groups[1] as a generalisation of Thompson’s group F . We con-
sider groups of the form G([0, 1],Z[β], 〈β〉), where β is the positive real root of the
polynomial (

∑n
i=1 aix

i)− 1, ai ∈ N. We call these Algebraic Bieri-Strebel groups.
A frequently useful property of Thompson’s group F is the ability to express

each element of the group as an ordered pair of rooted binary trees. [2] This
representation of elements has proven useful in proofs of properties of Thompson’s
group, particularly finiteness properties such as Fn (and in particular F∞) and
the BNSR-invariant. For instance, Thompson’s group can be shown to be F∞

via its action on a space of pairs of rooted binary forests and rooted binary trees,
as summarised by Zaremsky [3]. In addition, while the initial calculation of the
BNSR invariant of Thompson’s group was performed by Bieri, Geoghegan and
Kochloukova [4], Zaremsky and Witzel were able to recalculate the invariant using
Morse theory and an adaptation of the previous forest-tree space [5].

For polynomials of the form a2x
2+a1x−1, Winstone was able to show that tree-

pair representations for all elements of the associated group are only possible when
a2 ≤ a1 [6]. Initially, Cleary was able to demonstrate the F∞ property for groups
with associated polynomial of the form x2 +nx−1, n > 0 [8]. This proof has since
been generalised using tree-pair representations, demonstrating the F∞ property
for all quadratic Bieri-Strebel groups with complete tree-pair representations.

Molyneux, Nucinkis and Santos Rego [7] were able to apply Bieri, Geoghegan
and Kochloukova’s method in order to calculate the BNSR-invariant of Fτ , but
the BNSR-invariant for Algebraic Bieri-Strebel groups in general remains an open
problem. For those with complete tree-pair representations, A complex similar to
that constructed by Stein and Farley is producible, and the Morse Theory used
by Zaremsky and Witzel should be applicable.
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Embedding theorems for discrete groups

Ian J. Leary

This talk gave a survey of three embedding theorems and discussed some related
open questions. The theorems, together with their dates of publication, are stated
below.

Theorem 1 (Higman–Neumann–Neumann [4], 1949). Every countable group em-
beds in a 2-generator group.

Theorem 2 (Higman [3], 1961). A finitely generated group embeds in a finitely
presented group if and only if it is recursively presented.

Theorem 3 ([6], 2018). Every countable group embeds in a group of type FP2.

Remark 4. The questions of whether every finitely presented group embeds in a
group of type F3 and whether every group of type FP2 embeds in a group of type
FP3 remain open. Arguably the question for FP2 and FP3 should be easier because
computability seems not to arise.

Remark 5. Can one state and either prove or find a counterexample to a version
of Theorem 1 for tdlc groups? Ilaria Castellano points out that free products, which
are used in the proof of Theorem 1, are not available in this context [9].

Although the statement of Theorem 3 is similar to that of Theorem 1, the
proof is modelled closely on Valiev’s proof of the Higman embedding theorem
(Theorem 2) [11, 7]. The only recent ingredient needed in the proof is the existence
of a family of groups of type FP indexed by subsets of Z [5].

Even the most streamlined versions of the proof of the Higman embedding
theorem are difficult. Very roughly there are three steps: reduction to subgroups
of the free group F2 using Theorem 1; reduction to subsets of N; encoding suitable
subsets of N inside finitely presented groups.

A key definition is that of a benign subgroup H ≤ G of a finitely generated
group G. This is a subgroup H such that the HNN-extension

〈G, t : tht−1 = h h ∈ H〉
can be embedded in a finitely presented group.

Higman’s rope trick states that if H is a benign normal subgroup of finitely
generated G then G/H embeds in a finitely presented group. With the rope trick
and the HNN-embedding theorem, one is reduced to showing that every recursively
generated subgroup of the free group F2 is benign.

Words in two generators and their inverses are encoded as subsets of N via a
Gödel numbering, with the digits 1, 2, 3, 4 standing for the generators and their
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inverses, concatenation being unchanged, and 0 standing for the empty word.
This gives a coding process that replaces subsets of F2 = 〈a, b〉 by subgroups of
F3 = 〈c, d, e〉 of the form 〈cnden : n ∈ S〉 for some S ⊆ N in an algorithmic way.

After this step, one is reduced to showing that any recursively enumerable
subset of N can be ‘encoded’ within a finitely presented group. For this the proof
in Lyndon and Schupp [7] uses a technique that was not available to Higman in
1961: Matiyasevich’s theorem (building on work of Davis, Putnam and Robinson)
that recursively enumerable subsets of Z are Diophantine, i.e., of the form

{x ∈ Z : ∃y1, . . . , yn ∈ Z f(x, y1, . . . , yn) = 0}
for some n and for some integer polynomial f [8, 2, 10].

In the 1990’s Bestvina and Brady constructed the first groups of type FP that
are not finitely presented [1], resolving a well-known problem that had been open
for at least 30 years. Around 20 years later, I discovered a way to generalize the
Bestvina–Brady construction to produce an uncountable family of groups of type
FP ; in particular for any S ⊆ Z with 0 ∈ S I could construct a group J = J(S)
of type FP and elements j1, . . . j4 ∈ J so that jn1 j

n
2 j

n
3 j

n
4 = 1 iff n ∈ S [5]. This

showed that the class of subgroups of groups of type FP2 is larger than the class
of subgroups of finitely presented groups. Note that the map S 7→ J(S) encodes
any subset of Z that contains 0 inside the presentation of a group of type FP .

This also suggested the possibility of proving the new Theorem 3, by modifying
Valiev’s proof of Theorem 2. Define a subgroup H of a finitely generated group
G to be homologically benign if the HNN-extension 〈G, t〉 as defined earlier can be
embedded in a group of type FP2. Next check that there is a homological version
of the Higman rope trick: if H ≤ G is homologically benign, then G/H embeds
in a group of type FP2. Just as in the proof of the Higman embedding theorem,
this plus the HNN-embedding theorem gives a reduction: to prove Theorem 3 it
suffices to show that every normal subgroup of the free group F2 is homologically
benign. The encoding of subsets of F2 via subgroups of F3 and then subsets of N
can be used essentially unchanged. Since we already know how to encode arbitrary
subsets of N ⊆ Z inside presentations of groups of type FP2, this gives Theorem 3.
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Open problems on TDLC-groups

The mini-workshop also featured a discussion session on the open problems and
further questions related to totally disconnected locally compact groups. In addi-
tion to problems already stated in the extended abstracts presented in this report,
this section compiles further problems that remain unresolved and are ordered by
those who have expressed interest in them.

1. Dawid Kielak

Question 1. Let G be a group of type FPn(F), for F ∈ {Q,Fp : p prime}. In
general, G is not of type FPn(Z) (n ≥ 1), but there exist examples where it holds
(e.g. right-angled Artin group (RAAG)).

(i) In which classes of groups is it true?
(ii) Is it true if there exists an exact sequence G→ H → Z, where H of type F?

2. Rudradip Biswas

Theorem 1. [1, Theorem 19.1] Let Γ ∈ LHF (locally in Kropholler’s Hierarchy
with all finite groups as the base class), and suppose Γ is of type FP∞(Z). Then
Γ has only finitely many conjugacy classes of finite elementary abelian p-groups.

Question 2. Is it possible to formulate a TDLC version of this theorem?

Remark 2. It follows from the discussion that it may be useful to consider groups
of type FP∞(Q) or F∞.

3. Ilaria Castellano

Question 3. Let G, H be compactly generated TDLC groups, and suppose G is
quasi-isometric to H, with G and H both having finite cohomological dimension
over Q. Does cdQ(G) = cdQ(H)?

Question 4. Is there a suitable TDLC analogue of right-angled Artin groups
(RAAGs)?

4. Ian Leary & Ilaria Castellano

Question 5. Suppose G is a σ-compact TDLC group. Does G embed into a
compactly generated TDLC group?
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5. Roman Sauer

Question 6. Does a version of the Atiyah conjecture hold for TDLC groups? Or
do there exist examples of TDLC groups G with irrational L2-Betti numbers, i.e.

b
(2)
n (G,µ) 6∈ Q, where µ is the Haar measure normalised to be 1 on a compact-open
subgroup of G.

Remark 3. For a locally compact group G and lattice Γ < G, then b
(2)
n (Γ) =

covol(Γ)b
(2)
n (G). There exist non-compactly generated examples with irrational co-

volume.

Question 7. Are there examples of compactly generated TDLC groups with lattices
of irrational covolume?

6. Yuri Santos Rego

Question 8. Under which conditions are Coxeter groups virtually residually finite
rationally solvable (RFRS)?

Remark 4. Kielak in [2] shows that for a finitely generated virtually RFRS group
G, virtual fibering is equivalent to the vanishing of the first L2-Betti number, i.e.

b
(2)
1 (G) = 0.

Question 9. Do there exist Coxeter groups W1, W2 with isomorphic profinite

completions Ŵ1
∼= Ŵ2 but different rational Euler characteristic χ(W1) 6= χ(W2)?

7. Thomas Weigel

Question 10. Let Nq be the Neretin group acting on the q-regular rooted tree.

(i) Is Hk(Nq,Bi(Nq)) = 0 for all k?
(ii) Is Hk

c (E
O
Nq,Q) = 0 for all k?

Question 11. Are there “non-good” Coxeter groups?
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Introduction by the Organizers

The mini-workshop Flavors of Rabinowitz Floer and Tate homology was organized
by Kai Cieliebak, Alexandru Oancea and Nathalie Wahl. Its goal was to bring
together specialists from symplectic geometry, topology, and algebra, in order to
discuss recent algebraic structures that emerged in parallel in these different fields.

The workshop was structured as follows. The mornings were generally dedicated
to individual talks by the participants, with an intended duration time of 30 min.
and 30 min. discussion time for each talk. The afternoons were generally dedicated
to discussions on topics that arose during the morning talks. This ensured an
intense atmosphere of exchange during the whole duration of the workshop. Each
of the participants in the mini-workshop gave a talk, and we also had a special
guest talk by Peter Kropholler, who was participating in a parallel mini-workshop
during the same week. The 16 participants in the workshop covered a large age
spectrum and included 3 Ph.D. students, and also a large geographic area with
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participants from 8 countries. We had also a reasonable gender balance with 5
women and 11 men.

The first day started with an Introductory opening talk by Kai Cieliebak. He
outlined the various symplectic, algebraic, and topological constructions that we
were planning to discuss during the week, as well as the interactions between them,
both those that are already understood and those that are not yet understood and
that formed part of the discussion material for the workshop. The abstract of his
talk can serve as a concise guide to the topics that were subsequently discussed
during the week. Then followed two talks by Ph.D. students. Shuaipeng Liu
explained in his talk Introduction to symplectic homology the fundamentals of
Floer homology, with the specific goal of building common mathematical ground
for the participants in the workshop. Zhen Gao explained in his talk Calabi–Yau
algebras the fundamentals of Calabi–Yau structures. The talk was geared towards
the participants that were not specialists in algebra, and it had a similar goal
of building common mathematical ground. The afternoon of the first day was
dedicated to discussing various flavors of Calabi–Yau algebras, arising both in the
context of Hochschild homology and in the context of string topology. In the
afternoon, Inbar Klang gave a talk on String topology category as a Calabi–Yau
category, which put the previous notions in a topological context.

During the second day we steered towards various version of the Tate construc-
tion. Alexandru Oancea’s first talk in the morning on Cone perspective on Rabino-
witz–Floer homology explained a Tate-type construction in Floer theory. More
specifically, he focused on algebraic structures arising from mixing together at
chain level a product and a coproduct. Alice Hedenlund followed with a talk on
the Tate construction, both in the classical setting of finite groups, and in the much
more general setting of spectra. In the afternoon, Peter Kropholler gave a guest
talk on Tate homology without complete resolutions, and Alex Takeda explained
during the first discussion session various other flavors of Tate constructions aris-
ing in the context of Hochschild homology. The second part of the afternoon
featured an intense discussion on the precise interpretation of Rabinowitz Floer
homology as a Tate construction. Also during the second day we had an evening
talk by Mohammed Abouzaid on Symplectic cohomology with supports and framed
E2-algebra structures, in which he explained how to build suitable models for sym-
plectic cochains, strictly compatible both with the structure of framed E2-algebra,
and with Viterbo restriction maps.

The third day of the workshop started with a talk by Noémie Legout on Rabino-
witz Floer homology/category from the perspective of Symplectic Field Theory. Her
construction uses pseudo-holomorphic curves in symplectizations and complements
geometrically the constructions inspired by the wrapped Fukaya category, as the
one presented by Hanwool Bae later in the day. The second talk that morning was
given by Urs Frauenfelder, on Spectral jumps in Rabinowitz–Floer–Tate homol-
ogy. He emphasized certain spectral jump phenomena akin to ones encountered in
quantum mechanics, which become visible once the classical Rabinowitz–Floer ho-
mology is enhanced by an additional construction of Tate flavor with respect to the
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natural circle action. The third talk in the morning was given by Hanwool Bae, on
Calabi–Yau structures on Rabinowitz Fukaya categories. His talk complemented
the one by Noémie Legout by presenting a construction of that category that relies
heavily on methods from symplectic homology and wrapped Floer homology.

On Wednesday afternoon the whole group went on the traditional hike to Sankt
Roman. It was a beautiful sunny afternoon.

The fourth day started with the talk by Amanda Hirschi, in which she presented
the recent Counterexamples to Donaldson’s 4-6 question that she discovered in
joint work with Luya Wang. This is a classical question in 4-manifold topology,
asking whether the diffeomorphism type of symplectic 4-manifolds is detected by
the symplectic deformation class after stabilization with S2. The second talk in
the afternoon by Ph.D. student Colin Fourel was on Sheaf and singular models
for ∞-groupoid cohomology. He explained how to prove the equivalence between
singular cohomology of a space X and sheaf cohomology of the constant sheaf,
based on the analogy between X and BG, with G = ΩX . This point of view
was directly relevant to the theme of the workshop, during which the based loop
space played a prominent role. The third talk was given by Andrea Bianchi, on
String topology and graph cobordisms, in which he explained how to generalize the
fundamental operations from string topology to spaces of maps in a functorial
way. The afternoon was dedicated to phrasing some key questions and discussing
possible answers and future directions of research. We discussed the construction
of operations in Floer theory, the interpretation of the Rabinowitz Floer chain
complex as a classifying space for Tate homology, explicit computations for free
loop spaces of spheres, as well as S1- and O(2)-equivariant aspects. Koszul duality
between C∗(ΩM) and C∗(M) for a simply connected manifold M was discussed
in several instances.

The last half-day of the workshop featured three talks. Alex Takeda explained
the Categorical formal punctured neighborhood at ∞, a categorical construction
that gives an open-string description of Rabinowitz Floer homology. Nathalie
Wahl gave a talk on Spaces of operations, in which she explained Sullivan diagrams
as a model for moduli spaces of Riemann surfaces, and how these give rise to
algebraic operations on Hochschild complexes. The last talk of the workshop was
by Georgios Dimitroglou Rizzell on Relative Calabi–Yau structure from acyclic
Rabinowitz–Floer complexes of Legendrians. This was a beautiful conclusion to
the workshop, putting to work all the algebraic structures that had been seen over
the week in a geometric context.

At the end of the week all the participants were exhausted, but happy. One
Ph.D. student said: “I learnt more mathematics this week than during a whole
semester!” We would like to interpret that as a sign of success for the workshop.
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Abstracts

Three flavors of Rabinowitz Floer and Tate homology

Kai Cieliebak

Rabinowitz Floer homology appears in three flavours: symplectic, topological,
and algebraic. The goal of this talk is to describe these aspects and discuss their
relationships, with an emphasis on open problems. The talk has three parts.

Part 1 is devoted to the following isomorphisms for a closed oriented n-dimensional
manifold M :

SH∗(D
∗M) ∼= H∗(ΛM) ∼= HH∗

(
C∗(ΩM)

) π1M=0∼= HH∗
(
C∗(M)

)
.

Here the first term is the symplectic homology of the unit disk cotangent bundle
D∗M . This is a purely symplectic invariant which is defined more generally for
any Liouville domain V . The second term is of topological nature and denotes the
singular homology of the free loop space ΛM . The third and fourth terms are of
algebraic nature. HereHH∗(A) andHH

∗(A) denote the Hochschild homology and
cohomology of a differential graded algebra A (or, more generally, an A∞-algebra
or an A∞-category). These are applied, respectively, to the singular chains on the
based loop space ΩM and the singular cochains on M . All (co)homology groups
are taken with R-coefficients, and for the last isomorphism we assume that M is
simply connected.

All four (co)homology groups are BV algebras in a natural way, and the isomor-
phisms are expected to respect this structure. In the first two groups the BV
structure arises from the pair-of-pants product resp. the Chas-Sullivan loop prod-
uct and the circle action. In the last two groups it arises from the cup product on
Hochschild cohomology and the Connes operator, using the fact that C∗(ΩM) is
smooth Calabi–Yau and (a suitable Poincaré model of) C∗(M) is proper Calabi–
Yau. The first isomorphism is known as the Viterbo isomorphism, and the last
isomorphism arises from the fact that C∗(M) is the Koszul dual of C∗(ΩM). The
isomorphism SH∗(D

∗M) ∼= HH∗

(
C∗(ΩM)

)
is a special case of the isomorphism

SH∗(V ) ∼= HH∗

(
WFuk(V )

)

for any Weinstein domain V , where WFuk(V ) denotes its wrapped Fukaya cate-
gory.

Part 2 concerns the extension of the previous structures by coproducts. On
the symplectic side, this requires the passage to reduced symplectic homology
SH∗(V ) = coker(c∗) with respect to the canonical chain map

c : SC−∗(V )→ SC∗(V )

from symplectic cochains to chains. For a suitable class of Weinstein domains
(including unit disk cotangent bundles), SH(V ) carries a secondary pair-of-pants
coproduct defining together with the pair-of-pants product the structure of a unital
infinitesimal antisymmetric bialgebra. On the topological side, such a structure
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exists on reduced loop homology H∗(ΛM) = H∗(ΛM)/χ(M)[pt], the quotient
of loop homology by the Euler characteristic times the point class. Here the
coproduct is an extension of the Sullivan-Goresky-Hingston coproduct and the
Viterbo isomorphism descends to an isomorphism of bialgebras

SH∗(D
∗M) ∼= H∗(ΛM).

The relation of this structure to similar structures on the algebraic side appears
not yet to be fully understood.

Part 3 concerns the partly conjectural isomorphisms

RFH∗(S
∗M) ∼= Ĥ∗(ΛM) ∼= ĤH∗

(
C∗(ΩM)

) π1M=0∼= ĤH
∗(
C∗(M)

)
.

Here the first term is the Rabinowitz Floer homology of the unit sphere cotangent
bundle S∗M . This is a purely symplectic invariant which is defined more generally
for the boundary ∂V of any Liouville domain V . One of its definitions is as the
homology of the cone of the map c : SC−∗(V ) → SC∗(V ) from above. Similarly,

Rabinowitz loop homology Ĥ∗(ΛM) can be defined as the homology of the cone
of the map c : C−∗(ΛM) → C∗(ΛM) multiplying the point class by χ(M). On

the algebraic side, ĤH∗(A) and ĤH
∗
(A) denote the Tate Hochschild homology

and cohomology of a differential graded Frobenius algebra A, applied to suitable
models for C∗(ΩM) and C∗(M) (where to our knowledge only the latter has been
defined so far).

All four (co)homology groups are expected to be graded Frobenius algebras and
the isomorphisms are expected to respect this structure. However, this appears to
be proved only for the first two groups and their isomorphism. The isomorphism

RFH∗(S
∗M) ∼= ĤH∗

(
C∗(ΩM)

)
is expected to generalize to isomorphisms

RFH∗(∂V ) ∼= ĤH∗

(
WFuk(V )

) ∼= HH∗

(
RWFuk(V )

)

for certain Weinstein domains V , where RWFuk(V ) denotes the Rabinowitz
(wrapped) Fukaya category.

Further open questions concern the description of the above groups in terms
of symplectic field theory, their S1-equivariant versions, the underlying chain-level
structures, their relation to Varolgunes’ version of symplectic homology, and their
role in semiclassical quantization.

Symplectic Homology and Rabinowitz Floer Homology Revisited

Shuaipeng Liu

Symplectic homology is defined in a Liouville domain (W,dλ, ∂W = M,λ) with

symplectic completion Ŵ = W ⊔M ([1,∞) ×M,d(rλ)) by attaching the positive
symplectization along the boundaryM , where the Liouville vector field defined by
ιXdλ = λ transversally points outwards along M .



Mini-Workshop: Flavors of Rabinowitz Floer and Tate Homology 3147

As a filtered version of Floer homology, the filtered chain group CF<a
∗ (H) is

the Q−vector space generated by the critical points of the Hamiltonian action

functional of a loop x : S1 → Ŵ ,

AH(x) :=

∫

S1

x∗λ−
∫ 1

0

H(t, x(t))dt,

and graded by the Conley-Zehnder index CZ(x), where the filtration is given by the
bounded action AH(x) < a. The differential operators ∂k : CFk(H)→ CFk−1(H)
are defined by algebraically counting the number of the unparametrized moduli
space of Floer trajectories,

∂kx :=
∑

CZ(y)=k−1

#M(y, x)y, x ∈ CFk(H)

decreasing the action. By setting an action window −∞ ≤ a < b ≤ ∞, they

restrict to differential operators ∂
(a,b)
∗ on CF

(a,b)
∗ := CF<b

∗ /CF<a
∗ . Then the

filtered Floer homology group is

FH
(a,b)
∗ (H) := H∗(CF

(a,b), ∂(a,b)).

The symplectic homology is defined as the direct limit of filtered Floer homolo-
gies with respect to Hamiltonians of an admissible class, which will be non-negative

on W and grow linearly for r large enough in the completion Ŵ with only nonde-
generate 1-periodic orbits. By standard argument about the continuation map, i.e.

a monotone increasing homotopy Ĥ : H− → H+, one can define the symplectic
homology by taking direct limit via the monotone homotopy,

SH
(a,b)
k := lim

−→
FH

(a,b)
k (H).

Likewise, one can dually define the symplectic cohomology by taking the inverse
limit.

Symplectic homology and symplectic cohomology cannot be related directly by
an isomorphism. The main result to describe the relationship is by a new version
of Floer homology constructed via a new class of admissible Hamiltonians required
addionally to be non-negative in some tubular neighborhood of the boundary M
and positive elsewhere in the Liouville domain W , thus they vividly look like with
the shape

∨
. The new version is called the Rabinowitz Floer Homology, denoted

by ˇSH. And the main result is as follows

Theorem [1] There exists a long exact sequence

· · · −→ SH−∗(W ) −→ SH∗(W ) −→ ˇSH∗(W ) −→ SH−∗+1(W ) −→ · · ·

In the talk, I will briefly explain the notions mentioned in the definition of
symplectic homology as a revisit to Floer-like theory.
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Flavors of Calabi–Yau structures

Zhen Gao

The notion of Calabi–Yau structure in the algebraic context was initially noticed by
Maxim Kontsevich and formally introduced by Victor Ginzburg [1], then further
studied and developed by many others, e.g. Michel Van den Bergh, Bertrand
Toën, and Bernhard Keller. Calabi–Yau structures have played a prominent role in
algebraic geometry, noncommutative geometry, and representation theory. Recent-
ly, Calabi–Yau structures are emerging in string topology and symplectic topology
on the relevant homological algebraic invariants.

Let A be an DG/A∞-category over a field K. Denote by A∆ the diagonal
A-bimodule, and A! := RHomAe(A,Ae) the inverse dualizing bimodule of A re-
garded as diagonal bimodule. There are following absolute Calabi–Yau structures:

Smooth n-CY: Suppose A is (homologically/locally) smooth, i.e. A is a
perfect A-bimodule, a weak smooth Calabi–Yau structure of dimension n
on A is a Hochschild class [ξA] ∈ HHn(A) such that the induced map

[ξ̂A ◦ Σ−n] : A![n]→ A is an isomorphism in the derived category D(Ae).
A strong smooth Calabi–Yau structure of dimension n on A is a negative
cyclic class [ξ̃A] ∈ HC−

n (A) whose underlying Hochschild class [ξA] :=

h([ξ̃A]) ∈ HHn(A) is a weak smooth n-Calabi–Yau structure.
Proper n-CY: Suppose A is (locally) proper, i.e. A∆ is a proper A-bimod-

ule, a weak proper Calabi–Yau structure of dimension n on A is a de-
gree n chain map tr : C•(A,A) → K[n] inducing an isomorphism A ∼−→
(Aop)∗[−n] in derived category D(Ae). A strong proper Calabi–Yau struc-
ture of dimension n on A is a factorization of weak proper n-Calabi–
Yau structure through the projection to the cyclic chain complex t̃r :
CC•(A)→ K[−n].

One of the significant consequences of the presence of smooth Calabi–Yau struc-
ture is the Poincaré duality between Hochschild cohomology and homology first
observed by Michel Van den Bergh [2], see also [3], and naturally from which a
Batalin–Vilkovisky algebra structure on Hochschild cohomology follows, e.g. [4].

Examples.

• In string topology, let X be a topological space, the mostly concerned
DG/A∞ algebras are chains of based loop space C•(ΩX ;K) and singular
cochains C•(X ;K). When X is a n-dimensional Poincaré duality space
over characteristic 0 field K, then C•(ΩX ;K) resp. C•(X ;K) is strong
smooth resp. proper n-CY.
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• In symplectic topology, let X be a Liouville manifold, e.g. cotangent
bundle T ∗Q of a closed oriented smooth manifold Q, the relevant alge-
braic invariant is some A∞-category called Fuakaya category, e.g. wrapped
Fukaya category W(X) and its proper full subcategory F(X), introduced
and established by Mohammend Abouzaid and Paul Seidel. When X
is non-degenerate Liouville manifold, there is geometric strong smooth
Calabi–Yau structure on W(X) resp. strong proper Calabi–Yau structure
on F(X). C.f. [5],[6].

Relative Calabi–Yau structures are introduced byChristopher Bravand Tobias
Dyckerhoff in [7] for a DG functor between DG categories F : A → B. Definitions
are similar to absolute cases hence generalizing the notions to relative sense, de-
spite in addition the relevant Hochschild classes in HH•(A) should also induces
isomorphisms in derived category D(Ae) between some distinguished triangles for
the homotopy cofiber and fiber of certain induced maps γ!F and γF from the func-
tor F . In very recent work, Christopher Brav and Nick Rozenblyum have shown
that in the compactly generated DG categories setting, there is framed E2-algebra
structure on the chain-level of Hochschild cohomology given a relative Calabi–Yau
structure.

Examples.

• In string topology, key examples are C•(Ω∂Q) →֒ C•(ΩQ) and C•(∂Q) →֒
C•(Q) where Q is taken to be compact oriented smooth manifold with
boundary ∂Q.
• In symplectic topology, Gergeois Dimitroglou Rizell and Noémie Legout
reveal that Chekanov-Eliashberg DG algebra with coefficient as based
loop DG algebra for some Legendrian submanifold carries relative smooth
Calabi–Yau structure.
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The string topology category as a Calabi–Yau category

Inbar Klang

The string topology category SM of a connected, closed, oriented manifold M
was defined by Blumberg–Cohen–Teleman in [1]. The objects of this category
are some collection of connected, closed, oriented submanifolds N ⊆ M that all
contain some chosen point q ∈M . The morphisms between N1 and N2 consist of
chains on the space of paths PN1,N2

that start in N1 and end in N2, shifted by the
dimension of N1.

The composition in this category is given by intersecting and concatenating, similar
to the Chas–Sullivan product on homology of a free loop space of a manifold. To
define this more precisely, one uses Poincaré duality onN1 to rewrite the morphism
complexes as a derived hom,

RhomC∗(ΩM)(C∗(Pq,N1
), C∗(Pq,N2

))

Here C∗(ΩM) denotes the based loop space, Map∗(S
1,M). This embeds the

string topology category as a full subcategory of PerfC∗(ΩM), the category of
perfect modules over C∗(ΩM). In fact, if {q} ∈ M , the string topology category
includes the generator of PerfC∗(ΩM), and is Morita equivalent to it.

The category PerfC∗(ΩM), and in the above case also the string topology category,
are smooth Calabi–Yau categories. This comes from the fact that C∗(ΩM) is a
smooth Calabi–Yau algebra. Roughly, A is a smooth Calabi–Yau algebra over k
if it is smooth (a perfect A⊗Aop module) and has an S1-invariant “fundamental
class” in the Hochschild chains of A, evaluation on which gives an equivalence
between the Hochschild chains and cochains of A (with an appropriate shift.)

In the case A = C∗(ΩM), this fundamental class comes from the fundamental
class of M in C∗(M), which can then be mapped to the Hochschild chains of
C∗(ΩM), which agree with C∗(Map(S1,M)). Since Hochschild cochains always
have a shuffle product, this gives a product on (a shift of) C∗(Map(S1,M)), which
agrees with the Chas–Sullivan product.
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Cone perspective on Rabinowitz Floer homology

Alexandru Oancea

(joint work with Kai Cieliebak, Nancy Hingston)

In joint work with Kai Cieliebak and Nancy Hingston [1] we studied Rabinowitz
Floer homology and cohomology RFH∗(V ) of a Liouville domain V . One of our
key results is that they both carry the structure of graded Frobenius algebras and
that they are related by a Poincaré duality isomorphism.

In the particular case when the Liouville domain is the unit disc cotangent
bundle D∗Q of a closed smooth manifold Q, its symplectic topology is related to
the topology of the free loop space Λ = Map(S1, Q). Let Λ0 ⊂ Λ be the subspace
of constant loops. We define the Rabinowitz loop homology of Q to be

Ĥ∗Λ = RFH∗(D
∗Q).

LetH∗Λ denote the homology of the free loop space ofQ, andH∗Λ its cohomology.
Consider the map ε : H−∗Λ → H∗Λ that is everywhere zero, except in degree 0
in the component of contractible loops, where it is multiplication by the Euler
characteristic χ(Q). The reduced loop homology and cohomology groups

H∗Λ := coker ε, H
∗
Λ := ker ε

therefore differ from H∗Λ and H∗Λ only by χ(M) times the point class.

Theorem [1, 2, 3]. (i) The Chas-Sullivan product on H∗Λ descends to H∗Λ. The

Goresky-Hingston product on H∗(Λ,Λ0) extends (canonically if H1Q = 0) to H
∗
Λ.

(ii) We have a short exact sequence in which ι is a ring map

(1) 0→ H∗Λ
ι−→ Ĥ∗Λ

π−→ H
1−∗

Λ→ 0,

which splits (canonically if H1Q = 0) via a ring map H
1−∗

Λ
ī−→ Ĥ∗Λ. The

product on Ĥ∗Λ restricts to the Chas-Sullivan product on H∗Λ, and to the extended

Goresky-Hingston product on H
1−∗

Λ.

To prove this theorem, we developed in joint work with K. Cieliebak [2] a theory
of multiplicative structures on cones. Indeed, the previous theorem can be proved
by describing Rabinowitz loop homology at chain level as the “cone of ε”.

The general setup for multiplicative structures on cones is that of a chain com-
plex (A, ∂) and a chain map c : A∨ → A. We prove in [2] that a multiplicative
structure on Cone(c) = A ⊕ A∨[−1] can be obtained from the data of an A+

2 -
structure on A, a notion that we define. This consists of the chain map c, a
homotopy between c∨ and c, a degree 0 product on A and a degree 1 coproduct on
A, satisfying certain relations. The product on the cone is obtained by dualizing
the product and coproduct in all possible ways at their inputs and outputs. The
axioms of an A+

2 -structure ensure that the resulting operation is a chain map. It
is an open problem to develop the theory of A+

3 -structures (associativity), and
indeed A+

∞-structures (associativity up to homotopy).
In the talk I have explained the notion of an A+

2 -structure, how it determines
a product structure one the cone, and how that articulates with Rabinowitz Floer



3152 Oberwolfach Report 56/2023

homology. I have also argued that this construction can be interpreted as a chain
level counterpart of a classical construction called the Drinfeld double [4].
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Tate Cohomology of Finite Groups and the Tate Construction

Alice Hedenlund

1. Tate Cohomology of Finite Groups

Let k be some commutative ring. Classically, Tate cohomology of the finite groupG
with coefficients in the G-module M is defined as

Ĥ∗(G;M) = Êxt
∗

kG(k,M)

where Êxt denotes the complete Ext of Mislin [3]. In practice, the Tate cohomology
groups are computed via the complete resolution

P̂∗ := (· · · P1 P0 P∨
0 P∨

1 · · · )

k ∼= k∨
ǫ ǫ∨

where ǫ : P∗ → k is a projective resolution of k as a G-module and P∨
i denotes the

k-linear dual of Pi as in [1]. We note that this splices together group homology
and cohomology together via the norm map

NmG : MG −→MG , m 7→
∑

g∈G

gm .

2. The Tate Construction

In this section, G will be a topological group. We denote by BG a fixed classifying
space. Letting Dk denote the derived ∞-category over k, we consider objects in
the category Fun(BG,Dk) which we call chain complexes with G-action. If G is a
finite group, then a G-module M can be viewed as an object in this category, and
we have that

MhG = colim
BG

M ≃ k ⊗L
kG M and MhG = lim

BG
M ≃ RHomkG(k,M) ,

whose homology groups recover group homology and cohomology, respectively.
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The analogue of the Tate construction is obtained by considering a generalization
of the norm map. If X is equipped with a G-action, we can consider it as equipped
with a G×G-action by adding a trivial right action. Consider the chains C∗(G; k),
which is a chain complex with G × G-action by the natural action of G on itself
from the right and the left. Under the appropriate identifications the norm map
is simply the colimit-limit exchange map

colimBG limBG (X ⊗ C∗(G; k)) limBG colimBG (X ⊗ C∗(G; k))

(X ⊗DBG)hG XhG

κ

≃ ≃

NmBG

where DBG is the dualizing spectrum of G by Klein [2]. The Tate construction
on X is defined as the cofibre

XtG = cofib(NmBG : (X ⊗DBG)hG → XhG) .

If G is a finite group and M is a G-module, then the homology groups of the Tate
construction in the above sense recover the Tate cohomology groups of G with
coefficients in M , as in the previous section.

Let us finally outline how the Tate construction is related to Poincaré duality. If
G = ΩQ where Q is an closed n-dimensional manifold, then DQ can be identified
with the Spivak normal bundle of Q. The norm map on homology groups is then

H∗+n(M ;ωM ) −→ H−∗(M ; k) ,

where ωM is the orientation bundle associated to M . This is the same map that
appears in the statement of twisted Poincaré duality. In this case, the norm map
is an equivalence, so that the Tate construction vanishes.
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Tate Cohomology — with or without Complete Resolutions

Peter H. Kropholler

Fix an associative ring with one [8] and denoted R. Let RMod be the category
of left R-modules. A cohomological functor H∗ with domain RMod consists of
a family (Hn)n∈Z of functors Hn : RMod → Ab (= ZMod) such that there are
natural connecting homomorphisms δ : Hn(N ′) → Hn+1(N ′′) associated to any

short exact sequence 0→ N ′′ ι→ N
π→ N ′ → 0 yielding a long exact sequence

· · · → Hn−1(N ′)
δ→ Hn(N ′′)

ι∗→ Hn(N)
π∗→ Hn(N ′)

δ→ Hn+1(N ′′)→ · · · .
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Chain complexes of projective modules provide a source of cohomological functors.
Let P∗ be a chain complex of projective modules. That the assignment N 7→
Hn(homR(P

∗, N)) defines a cohomological functor rests on two key properties P ∗:
firstly it is a chain complex so that homR(P

∗, N) is a cochain complex; secondly
each Pn is projective ensuring the existence of long exact sequences. There is no
requirement that the chain complex P ∗ be exact (i.e. having homology everywhere
zero) or acyclic (i.e. having the homology of a point). Any chain complex of
projective modules will serve as a foundation for a cohomological functor.

We define a Tate cohomological functor to be a cohomological functor which
vanishes on projective modules in all dimensions. Mislin [7] shows that to any

cohomological functor H∗ there is a Tate cohomological functor Ĥ∗ together with

a map H∗ → Ĥ∗ so that the following universal property holds: for any map ν

from H∗ to a Tate cohomological functor K∗ there is a unique map Ĥ∗ → K∗ so

that ν factorises as the composite H∗ → Ĥ∗ → K∗.

Projective modules. The importance of projective modules here is paramount.
Recall the classical definition that a module P is projective if every map from P
to the codomain of an epimorphism factors through the domain. Since RMod
is an abelian category we can reformulate this definition: the modern definition
might read: a module P is projective when the functor hom(P, ) : RMod→ Ab
commutes with finite colimits. This is equivalent to the classical definition: in
effect the classical definition tells us that hom(P, ) commutes with coequalisers but
it automotically commutes with all limits and since finite coproducts in an abelian
category are naturally identified with finite products we deduce that a classically
project P yields a functor hom(P, ) that commutes with finite coproducts and
with coequalisers and therefore with all finite colimits. This philosophy holds for
many abelian categories including categories of sheaves over a space or site. The
category RMod admits a forgetful functor to set which has a left adjoint: the
free module on a set. A map of modules is an epimorphism if it surjective on the
underlying sets (to put this in modern language we may say that the forgetful
functor reflects epimorphisms) and so free modules are projective. This leads to
the characterisation that a module is projective if and only if it is a direct summand
of some free module.

Mislin’s approach to Tate Cohomology via Satellites. For a fixed R-module
N choose any projective resolution P∗ → N → 0. Let Ω0N denote N and let
P−1 = 0. For n ≥ 1, let ΩnN denote the kernel of the map Pn−1 → Pn−2. Then
we have short exact sequences ΩnN → Pn−1 → Ωn−1N for n ≥ 1. We have a
sequence of connecting homomorphisms

Hn(N)
δ→ Hn+1(ΩN)

δ→ Hn+2(Ω2N)
δ→ Hn+3(Ω3N)

δ→ Hn+4(Ω4N)
δ→ · · · .

The colimit of this sequence is the nth Tate cohomology group Ĥn(N).
There are two other accounts by Goichot–Vogel and by Benson–Carlson pub-

lished at around the same time and based on chain maps and chain homotopies. See
the work of Cornick (some joint with the author) [3, 4, 5, 2] for further information.
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Benson–Carlson [1], Goichot–Vogel [6]. Tate cohomology can be defined using
almost chain maps modulo almost chain homotopies. Let C• and C′

• be chain
complexes. An almost chain map φ : C• → C′

• of degree j is a family of maps
(φ∗ : C∗ → C′

∗+j) such that for all sufficiently large n the square starting at Cn

commutes. An almost chain homotopy from an almost chain map φ of degree j to
an almost chain map ψ of degree j is a map s of degree j+1 such that ds+sd = ψ−φ
at the square starting at Cn for sufficiently large n. Using this approach we

define the Tate Ext groups Êxt
j

R(M,N) where M and N are two R-modules by
first choosing two projective resolutions P ∗ → M → 0 and Q∗ → N → 0 and
then defining two projective chain complexes P• and Q• by removing M and N
and defining Pn and Qn to be zero when n < 0. Using these projective chain
complexes we can define a cohomology theory by considering almost chain maps
modulo almost chain homotopies from P• to Q•. This is essentially the treatment
advocated by Goichot [6] and attributed to Vogel and it is described in these terms
by Benson–Carlson [1]. Crucially this definition produces a cohomological functor
isomorphic to Mislin’s construction when applied to Ext∗R(M, ). As an elegant
consequence we have the

Lemma. For any R-module M , Êxt
0

R(M,M) = 0 if and only if M has finite
projective dimension over R.

Tate and Farrell Cohomology. Historically, Tate cohomology was introduced
first for finite groups having its origins in algebraic number theory. It concerns a
finite Galois group G and for any G-module N there are isomorphisms

Ĥn(G,N) ≃
{
Hn(G,N) n ≥ 1

H−n−1(G,N) n ≤ −1

showing that the Tate cohomology conveniently records the ordinary cohomology
in positive degrees and the ordinary homology in degrees ≤ −2. In dimension 0
there is the norm map H0(G,N) → H0(G,N) and the Tate cohomology groups

Ĥ−1(G,N) and Ĥ0(G,N) are the kernel and cokernel of this map. Farrell, inter-
ested in generalising Tate cohomology to a wider class of groups, used the idea of
virtual cohomological dimension. This conveniently applies to arithmetic groups
such as GLn(Z) that have torsion free subgroups of finite index. His theory of
Tate cohomology produces a theory which coincides with ordinary cohomology in
dimensions greater that the cohomological dimension.

Complete projective resolutions. It turns out the for Tate cohomology of fi-
nite groups one can take a projective resolution of the trivial module and then
extend to the right to make a complete resolution that computes the Tate coho-
mology in all degrees. The same conclusion holds for Farrell’s generalization but
one has to perform the surgery a little way along the resolution beyond the virtual
cohomological dimension. A study of when there is a complete resolution can be
found in [4]. There is a connection between the existence of complete resolutions
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and the presence of certain finiteness conditions of which finite virtual cohomologi-
cal dimension is a special case. But as remarked at the outset, one really just needs
a projective chain complex P∗ and to have one that determines the Tate cohomol-
ogy does not in general require exactness. At first sight, all that is really needed in
order to define a Tate cohomology is a projective chain complex P∗ such that for
any projective module Q, homR(P∗, Q) is exact. This holds in situations that go
far beyond the Tate–Farrell cases. For example Richard Thompson’s group F has
cohomology that vanishes everywhere on projective modules so an ordinary pro-
jective resolution computes the Tate cohomology (the ordinary cohomology and
the Tate completion of it coincide everywhere for this group, including in degrees
0 and −1). Another simpler example where this happens is a free abelian group
of infinite rank.
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The framed E2 structure on symplectic cohomology

Mohammed Abouzaid

The construction fo operations on symplectic cohomology has so far relied on ad-
hoc methods relying on inductive choices of Floer data to define operations corre-
sponding to moduli spaces of pseudo-holomorphic curves with increasing number
of inputs, or with increasing energy. With Groman and Varolgunes, we developed
a method that does not rely on choices, yielding a completely functorial invariant
at the chain level. The key idea of the construction is to incorporate all possible
choices of Floer data required to define an operation in an algebraic package, which
takes the form of a topologically enriched multicategory, and the essential lemma
to prove is that the choice of such data, lying over an abstract Riemann surface,
is contractible.

We apply this method to construct a chain model for symplectic cohomology
with support, which carries an algebra structure over an operad weakly equivalent
to the framed E2 operad. Our construction associates such an algebra to each
compact subset of a symplectic manifold which is tame at infinity, and should
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in particular specialise to Rabinowitz Floer homology. The resulting invariant is
defined over the Novikov ring, is strictly functorial under inclusions, and satisfies
the Mayer-Vietoris property for Varolgunes covers.

An A∞-category of Lagrangian cobordisms

Noémie Legout

Using techniques of Symplectic Field Theory, we define a Floer complex
RFC(Σ0,Σ1) associated to a pair of exact Lagrangian cobordisms in the sym-
plectization of a contact manifold (Y, α). We describe higher order operations on
this complex, leading to the definition of a cohomologically unital A∞-category:
the Fukaya category of R× Y . Namely, we have:

Theorem 0.1. There exists a unital A∞-category Fuk(R× Y ) whose objects are
exact Lagrangian cobordisms equipped with augmentations of its negative ends and
whose morphism spaces in the cohomological category satisfy

H∗(homFuk(R×Y )(Σ0,Σ1)) ∼= H∗(RFC(Σ0,Σ1)),

whenever Σ0 and Σ1 are transverse.

1. The Rabinowitz bimodule

Let Λ±
0 ,Λ

±
1 ⊂ Y be Legendrian submanifolds of (Y, α) and denote C0, C1 the

Chekanov-Eliashberg DGA over Z2 of Λ−
0 and Λ−

1 respectively, i.e.

Ci =
(
Z2〈Reeb chords of Λ−

i 〉 = Z2 ⊕ Ci ⊕ C⊗2
i ⊕ C⊗3

i ⊕ . . . , ∂
)
,

where Ci is the Z2-vector space generated by Reeb chords of Λ−
i .

Given two transverse exact Lagrangian cobordisms Σ0,Σ1 ⊂ (R × Y, d(etα))
from Λ−

0 to Λ+
0 and Λ−

1 to Λ+
1 respectively, the Rabinowitz complex denoted

(RFC(Σ0,Σ1),m1) is a DG (C1, C0)-bimodule generated by three types of genera-
tors, namely:

RFC(Σ0,Σ1) = C(Λ+
1 ,Λ

+
0 )⊕ CF (Σ0,Σ1)⊕ C(Λ−

0 ,Λ
−
1 )

where C(Λ+
1 ,Λ

+
0 ), CF (Σ0,Σ1) and C(Λ−

0 ,Λ
−
1 ) are (C1, C0)-bimodules generated

respectively by Reeb chords from Λ+
0 to Λ+

1 , intersection points in Σ0 ∩ Σ1, and
Reeb chords from Λ−

1 to Λ−
0 .

The differential m1 is defined by a count of pseudo-holomorphic discs with
boundary on Σ0 and Σ1, and with punctures asymptotic to Reeb chords and
intersection points. See Figure 1, where each disc can have extra negative asymtp-
totics to Reeb chords of Λ±

0 and Λ±
1 , which all become bimodule coefficients (using

the functoriality of the Chekanov-Eliashberg DGA via cobordism).
Transversality and compactness results on the moduli spaces imply that m2

1 = 0,
i.e. m1 is a differential.

At first glance, the Rabinowitz complex looks similar to the Cthulhu complex
Cth(Σ0,Σ1) defined by Chantraine, Dimitroglou Rizell, Ghiggini and Golovko [1],
but it has actually different properties. For example, it is not always acyclic when
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the contact manifold Y is the contactization of a Liouville manifold. Moreover,
it admits a product structure and a continuation element with respect to this
product.

1

1 1
1

0

0 0

0 0

out

out

out
out

out out

out

in

in in

in

in

in

in

Figure 1. Pseudo-holomorphic discs contributing to the differ-
ential m1, where “in” stands for “input” and “out” for “output”.

2. The product structure

Given a triple Σ0,Σ1,Σ2 of transverse exact Lagrangian cobordisms from Λ−
i to

Λ+
i , i = 0, 1, 2, such that the Chekanov-Eliashberg DGAs Ci of Λ−

i admit augmen-
tations (in such a way, the bimodules RFC(Σi,Σj) can be turned into Z2-vector
spaces), we define a map

m2 : RFC(Σ1,Σ2)⊗RFC(Σ0,Σ1)→ RFC(Σ0,Σ2)

by a count of pseudo-holomorphic discs, and show that it satisfies the Leibniz rule
m1 ◦m2 +m2(m1 ⊗ 1) +m2(1⊗m1) = 0. We then show:

Theorem 2.1. When Σ1 is a negative perturbed copy of Σ0, there exists an ele-
ment e01 ∈ RFC(Σ0,Σ1) such that the map

m2(·, e01) : RFC(Σ1,Σ2)→ RFC(Σ0,Σ2)

is a quasi-isomorphism.

We construct more generally a family of maps {md}d≥1 satisfying the A∞-
equations, which together with Theorem 2.1 are used to construct the category
Fuk(R× Y ) by localization. It is expected (but not proved) that this category is
equivalent to the Rabinowitz wrapped Fukaya category defined recently by Gana-
tra, Gao, Venkatesh [2] using Hamiltonian techniques (and under the hypotheses
that the contact manifold Y is fillable.)
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Spectral Jumps in Rabinowitz Tate Homology

Urs Frauenfelder

We consider m exact symplectic manifolds (Mi, ωi = dλi) with 1 ≤ i ≤ m. Each
loop space C∞(S1,Mi) is endowed with a circle action obtained by reparametri-
sation of its domain. This endows the loop space of the product manifold M =
M1 × . . .×Mm

C∞(S1,M) = C∞(S1,M1)× . . .× C∞(S1,Mm)

with an action of the m-dimensional torus Tm. We further assume that each
symplectic manifold is endowed with a smooth function

Hi : Mi → R.

This gives rise to a smooth function

H : M → Rm, (x1, . . . , xm)→
(
H(x1), . . . , H(xm)

)
.

There is further given a smooth function

f : Rm → R.

so that the composition leads to a smooth function

f ◦H : M → R.

Abbreviating
λ = λ1 ⊕ . . .⊕ λm ∈ Ω1(M)

we have two Rabinowitz action functionals

A : C∞(S1,M)× R, (v, τ) 7→
∫
v∗λ− τ

∫
f ◦H(v)dt

and

Ã : C∞(S1,M)× R, (v, τ) 7→
∫
v∗λ− τf ◦

∫
H(v)dt.

Both functionals have the same critical points on which they attain the same crit-
ical values. However, the second one is invariant under the action of the torus
Tm, while the first one not necessarily is. Hence for the second functional we can
consider Rabinowitz Tate homology for the torus action. Already for the case of
a harmonic oscillator its chain complex is extremely rich and has nonvanishing
homology classes. We discuss how the double filtration in Rabinowitz Tate homol-
ogy leads to the phenomenon that their spectral numbers can jump from minus
infinity to plus infinity.
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Calabi–Yau structures on Rabinowitz Fukaya categories

Hanwool Bae

(joint work with Wonbo Jeong, Jongmyeong Kim)

Rabinowtiz Floer homology, introduced by Cieliebak and Frauenfelder [1], is a
Floer homology associated to a symplectic manifold with contact boundary. As
its open-string analogue, Rabinowitz Floer homology can be also associated to a
Lagrangian submanifold with Legendrian boundary. It was shown in [5] that the
Rabinowitz Floer homology can be defined as the homology of the mapping cone of
a continuation map from the Floer complex for symplectic cohomology to that for
symplectic homology. Following this idea, Ganatra-Gao-Venkatesh [6] introduced
the Rabinowitz Fukaya category of a Liouville domain, which can be said to be
a categorification of Rabinowitz Floer homology of Lagrangian submanifolds. In-
deed, for given two Lagrangian submanifolds L0 and L1 of V , the morphism space
RFC∗(L0, L1) is defined by the mapping cone of a continuation map from the Floer
complex for wrapped Floer homology to that for wrapped Floer cohomology.

On the other hand, it has been shown by Cieliebak-Oancea([4, 5]) and Cieliebak-
Hingston-Oancea([3]) that Rabinowitz Floer homology of a Louville domain (or a
Lagrangian submanifold) has a duality that extends the classical Poincaré duality
of its boundary. It was further shown that such a duality comes from a Frobenius
algebra structure on Rabinowitz Floer homology. Consequently, it is natural to
ask if the Frobenius nature of Rabinowitz Floer homology extends to the level of
category.

As an answer to this question, I and collaborators(Jeong and Kim) proved that
the Rabinowitz Fukaya category RW(V ) of a Liouville domain (V, λ) of dimension
2n has a (n − 1)-Calabi–Yau structure under a degree-wise finiteness assumption
on Rabinowitz Floer homologies between generators. In particular, this means
that, for every pair (X,Y ) of objects of the derived Rabinowitz Fukaya category
and every integer k, there is an isomorphism

RFHk(X,Y ) ∼= RFHn−1−k(Y,X)∨,

where RFH denotes the homology of the chain complex RFC and ∨ is the linear
dual.

To be more precise, we have shown that there is a RW(V )-RW(V )-bimodule
quasi-isomorphism between RW(V ) and (RW(V )op)∨[1− n] if

• there are at most countable Lagrangian submanifolds {Li}i∈I of V gener-
ating the wrapped Fukaya category of V and
• the dimension dimRFHk(Li, Lj) is finite for all i, j ∈ I and k ∈ Z.

This can be proved by constructing a bimodule homomorphism from RW(V )
to (RW(V )op)∨[1 − n] extending the natural Poincaré duality between Floer ho-
mologies.

For example, if a Liouville domain (V, λ) is given by the disk cotangent bundle
(D∗Q, λcan) of a simply-connected smooth closed manifold Q, then the above
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two requirements are satisfied and therefore the corresponding Rabinowitz Fukaya
category is Calabi–Yau.
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Some counterexamples to the Donaldson 4-6 question

Amanda Hirschi

(joint work with Luya Wang)

The following question, credited to Donaldson, concerns the uniqueness of sym-
plectic structures and their relation to the smooth topology of the underlying
manifold.

Conjecture 1. Let (X1, ω1) and (X2, ω2) be two closed (simply connected) sym-
plectic 4-manifolds such that X1 and X2 are homeomorphic. Then the product
symplectic manifolds (X1×S2, ω1⊕ωstd) and (X2×S2, ω2⊕ωstd) are deformation
equivalent if and only if X1 and X2 are diffeomorphic.

Two symplectic structures σ1 on X1 and σ2 on X2 are deformation equivalent
if there exists a diffeomorphism ϕ : X1 → X2 and a path {σ′

t}t∈[0,1] of symplectic
structures on X1 with σ′

0 = ϕ∗σ2 and σ′
1 = σ1.

If the conjecture were to be true, it would be a symplectic analogy of the fact
that given two smooth simply-connected homeomorphic 4-manifolds X1 and X2,
the products X1×S2 and X2×S2 are diffeomorphic. It holds for certain classes of
symplectic 4-manifolds by [2] and [1]. However, Smith, [3], and Vidussi, [4], con-
structed symplectic forms on the same smooth 4-manifold that are distinguished
by their first Chern classes. We show that this difference is preserved after taking
the product with S2.

Theorem 1. There exist closed simply connected symplectic 4-manifolds (X1, ω1)
and (X2, ω2), such that X1 is diffeomorphic to X2, while (X1×S2, ω1⊕ωstd) and
(X2 × S2, ω2 ⊕ ωstd) are deformation inequivalent.

This shows that the symplectic geometry of a product remembers more about
the symplectic geometry of the factors than is true for the smooth structures.
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While the proof of this result only uses classical invariants, Gromov–Witten in-
variants can be used in combination with [1] to prove the following partial converse.

Theorem 2. Given two simply connected symplectic 4-manifolds (X0, ω0) and
(X1, ω1) so that (X0, ω0) × (S2, ωstd) and (X1, ω1) × (S2, ωstd) are deformation
equivalent and σ(Xi) 6= 0, there exists a homeomorphism X0 → X1 relating their
Seiberg-Witten invariants.
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Sheaf and singular models for ∞-groupöıd cohomology

Colin Fourel

The goal of the talk was to explain how one can use group cohomology to prove
that sheaf and singular cohomology are isomorphic on CW complexes.

Let G be a discrete group, then the cohomology of G coincides with the singular
cohomology of any connected CW complex satisfying π1 = G and πi = 0 for i ≥ 2.
Let X be such a CW complex, we also have the following commutative diagram
of abelian categories

ShX
Γ

""❉
❉
❉
❉
❉
❉
❉
❉

LocX
F

//

i

;;
✇
✇
✇
✇
✇
✇
✇
✇
✇

Ab

where LocX denotes the category of local systems over X , ShX that of sheaves
over X , i the inclusion, Γ the global sections functor and F (M) = MG. The
statement that the sheaf cohomology groups with coefficients in local systems over
X are isomorphic to the corresponding cohomology groups of G, is equivalent to
the commutativity of this diagram at the level of derived functors.

Now, this is in turn equivalent to the fact that whenever I is an injective object
of LocX , then i(I) is an acyclic sheaf. Let us give an independent proof of that.

Denote π : X̃ → X a universal cover ofX . Since the total space of π is contractible,
and its fiber are discrete, and since π∗(i(I)) is constant, the Leray spectral sequence
implies that π∗π

∗(i(I)) is acyclic. The unit of the adjunction between π∗ and π∗

gives an injective map of local systems I → π∗π
∗(i(I)) which, by injectivity of I,

has a retract. Hence I is acyclic. We thus recover the isomorphism between the
sheaf and singular cohomologies of X .
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Let us now assume that X is any connected CW complex. Let us introduce the
∞-category of ∞-local systems over X , denoted ∞LocX , which has the following
three equivalent descriptions

(1) D(C∗(ΩX,Z)), the derived∞-category of dg modules over chains over the
based loop space of X with coefficients in Z,

(2) LC(X ;D(Z)), the∞-category of locally constant sheaves on X with values
in D(Z),

(3) Fun(Π∞(X), D(Z)), the ∞-category of functors from the fundamental ∞-
groupöıd of X to D(Z).

The equivalence between (1) and (2) is proven in [2] (theorem 6.26), the equiv-
alence between (2) and (3) is proven in [1] (theorem A.4.19).

Let K ∈ ∞LocX . Using description (3), we define the ith ∞-groupöıd cohomol-
ogy group of Π∞(X) with coefficients in K as:

Hi(Π∞(X),K) = Hi(limK).

Consider the constant ∞-local system Z on X . Using description (1) we have
Hi(Π∞(X),Z) = ExtiC∗(ΩX)(Z,Z), which is isomorphic to Hi

sing(X,Z) (see [3],

Theorem B and Proposition 11.7). On the other hand, using description (2) we
have Hi(Π∞(X),Z) = Hi(Γ(Z)), which is isomorphic to the usual sheaf cohomol-
ogy group Hi(X,Z) ([4], Proposition 10 and Corollary 11). We thus recover the
isomorphism between the sheaf and singular cohomologies of X .
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String topology and graph cobordisms

Andrea Bianchi

String topology is broadly concerned with the study of invariants of mapping
spaces of the form MX = map(X,M), where X is a topological space and M is
a smooth, closed manifold of some dimension d ≥ 1. More specifucally, we want
to study, for a commutative ring R, the homology H∗(M

X ;R), in the assumption
that M is R-oriented. A case of particular interest is X = S1, recovering the
free loop space LM : the homology H∗(LM ;Z) agrees with the (suitably twisted)
symplectic homology of the Liouville domain T ∗M , and the topology of LM can
be used to study the existence and the number of closed geodesics onM , when we
endow M with a Riemannian metric.
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It is convenient to study the homology groups H∗(M
X ;R) for fixed M and

varyingX , as one can describe several string operations relating different homology
groups. The most basic operations are:

(1) for a map Y → X , we get a restriction map H∗(M
X ;R)→ H∗(M

Y ;R);

(2) for Y = X ⊔ ∗, we get map H∗(M
X ;R)

−×[M ]→ H∗+d(M
X × M ;R) =

H∗+d(M
Y ;R) by cross product with the fundamental class of M ;

(3) for Y = X⊔∂I I, i.e. Y is obtained from X by attaching a 1-cell, Chas and
Sullivan [1] constructed a natural operation H∗(M

X ;R)→ H∗−d(M
Y ;R).

The notion of graph cobordism gives a common denominator to (1)-(3). A graph
cobordism between X and Y is a cospan of spaces X →֒W ← Y , together with a
finite cell structure of W relative to X consisting only of 0-cells and 1-cells. Each
graph cobordism gives, by combining the above basic operations, an operation
H∗(M

X ;R)→ H∗+d·χ(W,X)(M
Y ;R).

I define a moduli space MGr(X,Y ) of graph cobordisms from X to Y , by taking
the classifying space of a suitable topological category Gr(X,Y ) of graph cobor-
disms, with morphisms given by forest collapses. I also define a coefficient system
ξd over MGr(X,Y ), taking values in homologically graded R-modules, whose fibre
over X →֒ W ← Y is (non-canonically) isomorphic to R[−d · χ(W,X)].

The main stated theorem is an extension of (1)-(3) to a chain map

C∗(M
X ;R)⊗R C∗(MGr(X,Y ); ξd)→ C∗(M

Y ;R).

The entire construction can in fact be generalised in the case in which R is
an E∞-ring spectrum: in this case ξd is a parametrised R-module of rank 1 over
MGr(X,Y ), and we obtain a map of R-modules

(R⊗X)⊗R (colimMGr(X,Y )ξd)→ (R ⊗ Y ).

The construction can be further generalised to the case in whichM is an R-oriented
Poincaré duality space; in particular all string operations arising in this way are
invariant under homotopy equivalences of manifolds.
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Efimov’s categorical formal punctured neighborhood of infinity,
Rabinowitz Fukaya category, CY and pre-CY structures

Alex Takeda

The purpose of this talk is to propose the construction of the “categorical formal
punctured neighborhood of infinity” [5] as an organizing principle to understand
the relationship between duality structures on (usual) Floer theory and Rabinowitz
Floer theory. This is a purely algebraic construction, that applied to a dg-category

C, produces a dg category Ĉ∞, called the categorical formal punctured neighborhood
of C.
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This category C should be thought of as an algebraic incarnation of the following
geometric construction: for a smooth but non-compact algebraic variety Y , one
chooses a compactification Y = Y ∪D and looks at perfect complexes (of coherent
sheaves) supported on the punctured formal neighborhood of D. Suitably defined,

this category Perf(Ŷ D \ D) is independent of the choice of compactification Y .
Efimov’s construction is a noncommutative version of this operation in the sense
that if one takes C to be (a dg enhancement of) the bounded derived category of

X , then Ĉ∞ ∼= Perf(Ŷ D \D).
This construction has been extended to A∞-categories and applied to symplectic

topology by [7], where it is proven that, given any nondegenerate Liouville manifold

X , there is an A∞-equivalence RW(X)→ ̂(W(X))∞, from the Rabinowitz Fukaya
category of X , to the categorical formal punctured neighborhood of the wrapped
Fukaya category. The former category has as morphism spaces the ‘open string’
version of Rabinowitz Floer homology [2], with composition maps as in [4]. As a
result of this identification, together with some yet-unpublished work of Rezchikov,
one gets an identification of Rabinowitz Floer cohomology RFH∗(X) with

HH∗(W(X),RW(X)) = HH∗(W(X), Ŵ(X)∞),

that is, Hochschild homology of the wrapped Fukaya category with coefficients
in the Rabinowitz Fukaya category. Moreover, this relation recovers the ‘Tate
construction’ perspective [3] on RFH∗, since the complex calculatingHH∗(W(X),

Ŵ(X)∞) is obtained by a cone construction.
After introducing these constructions and results, I explained in my talk a

sketch of how this perspective could be used to understand the origin of products
on RFH∗, as well as the ‘Frobenius’ property described by [1]. For example,

in my own work with Rivera and Wang [8], we study products on HH∗(C, Ĉ∞)
constructed from a type of structure on some category C called a pre-Calabi–Yau
structure, which in particular can be produced for the wrapped Fukaya category
as a consequence of its smooth Calabi–Yau structure together with the results in
[6]; it is reasonable to conjecture that the geometrically-defined product on RFH∗

arises in such a way.
Lastly, the relation between such a description and the products constructed

by [9] on ‘singular Hochschild cohomology’ should be given by some sort of Koszul
duality. In some cases, where the wrapped Fukaya category W(X) has a ‘proper
Koszul-dualizing subcategory’, as defined in [7], combining all the above results,
one gets an equivalence between RW(X) and the derived category of singularities
of a certain dg algebra. I ended my talk with the conjecture that all the product
and duality structures above, should match under the many dualities and identifi-
cations. If proven, this would mean that they all encode the same data, given just
by the smooth Calabi–Yau structure on the wrapped Fukaya category.
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Spaces of operations by example: two BV structures on the
Hochschild homology of symmetric Frobenius algebras

Nathalie Wahl

Given a differential graded associative algebra, let C∗(A,A) denote its Hochschild
complex, C∗(A,A) = C∗(A,A)/C0,0(A,A) the reduced complex where the copy

of A0 in Hochschild degree 0 has been killed, and HH∗(A,A), HH∗(A,A) the
corresponding homology groups.

A BV-algebra is a commutative differential graded algebra V∗ equipped with an
operator ∆ : V∗ → V∗+1 satisfying the BV-relation

∆(abc) = ∆(ab)c+(−1)|a|a∆(bc) + (−1)|a|(|b|+1)b∆(ac)

+ ∆(a)bc+ (−1)|a|a∆(b)c+ (−1)|a|+|b|ab∆(c).

A BV-algebra of dimension d is a BV -algebra with a product of degree ±d and
appropriately modified signs in the commutativity and BV-relation; we refer to
[8, Sec 6.3] for a systematic way to define a “dimension d” version of this type of
algebraic structure.

Recall that the Hochschild complex is endowed with a degree 1 operator B :
C∗(A,A) → C∗+1(A,A), the Connes-Rinehart operator. When A is a symmetric
Frobenius algebra of dimension d > 0, the (long proven) cyclic Deligne conjecture
states that this operator B, together with the dual of the cup product, defines a
coBV-structure of dimension d on H∗(A,A), induced from a chain-level structure.
It corresponds to the string topology BV-structure of Chas-Sullivan when A ≃
C∗M , see [2]. From the papers [1, 4, 5], one can also deduce that the same
operator B, together with a product corresponding to the dual of the Goresky-
Hingston string topology coproduct when A ≃ C∗M (see [6]), endows the reduced
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Hochschild homology HH∗(A,A) with a 1-suspended BV–algebra structure of
dimension d.

One can in principle prove the above stated results in homology by direct com-
putation, as the product, coproduct and the operator B have explicit descriptions,
but it is very difficult to get the signs right when checking the relations! We explain
here how these statements follow from a more general result, and comes from two
different embeddings of the BV-operad in a prop acting on the Hochschild complex
of symmetric Frobenius algebras.

Recall that there is an isomorphism of operads BV ∼= H∗(fE2) between the
operad BV governing BV–algebras and the homology of the framed E2–operad,
an operad that is also equivalent to the cactus operad. We will here denote by
Cact the chain operad of normalised cacti, as defined in [3], with H∗(Cact) = BV .
The above BV and co-BV structures are a consequence of the following chain level
statement:

Theorem 1.

(1) [7, 8] The Hochschild complex C∗(A,A) of a symmetric Frobenius dg al-
gebra A of dimension d admits an action of the dg-prop SDd of degree
d–shifted Sullivan diagrams.

(2) [4, 8] There are inclusions Cact(n) →֒ SD(1, n) and Cact(n) ×∆n−1 →֒
SD(n, 1) compatible with composition.

(3) [5] The resulting action of Cact(n)×∆n−1 on C∗(A,A) descends to an ac-
tion of Cact(n)×∆n−1/∂∆n−1 on the reduced Hochschild chains C∗(A,A).
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Relative Calabi–Yau structure from acyclic Rabinowitz–Floer
complexes of Legendrians

Georgios Dimitroglou Rizell

(joint work with N. Legout)

1. Outline

In this joint work with Legout we establish a geometric incarnation of morphisms
of distinguished triangles of bimodules, realised through the Legendrian invariant
of Rabinowitz Floer complex. The morphism is a quasi-isomorphism if and only
if this complex is acyclic, which is equivalent to the existence of a Calabi–Yau
structure in the sense of Brav–Dyckerhoff [BD19].

2. The morphism of triangles

Consider the canonical inclusion ι : A∗ →֒ C∗ = C∗(Λ;A) of the DGA of chains of
the based loop space A∗ = C−∗(ΩΛ;k) into

C∗ = (A∗〈Reeb chords of Λ〉 = A⊕Q⊕ (Q ⊗A Q)⊕ (Q ⊗A Q⊗A Q)⊕ . . . , ∂),
i.e. the Chekanov–Eliashberg DGA of a closed k-oriented Legendrian submanifold
Λn ⊂ (Y 2n+1, α) of a contact manifold over the chains of the based loop space A∗.

For a DGA B∗, denote by B∆ the so-called diagonal (non-free) left Be =
B ⊗k Bop-module (equivalently: left B−bimodule) given by B endowed with the
canonical bimodule structure coming from DGA-multiplication.

The DG-morphism ι induces a canonical map

µ : ι!(A∆) := Ce ⊗L
Ae A∆ = C ⊗A C µ−→ C∆

of left Ce−modules induced by the multiplication C ⊗A C µ−→ C of the DGA.

Theorem 2.1. There is a quasi-isomorphism of the distinguished triangles

ι!(A) C∆ cof(µ) · · ·

C∗(Λ; Ce) LCC∗(Λ,Λ
+; Ce) LCC∗(Λ,Λ

+; Ce)/C∗(Λ; Ce) · · · ,

µ

≃ ≃ ≃

The upper row is induced by A∗ →֒ C∗, while the lower row is a short exact sequence
induced by the action filtration in Legendrian contact homology.

Here the complex LCC∗(Λ,Λ
+; Ce) denotes the Legendrian contact homology

complex with coefficients in Ce, which is a projective left Ce−module generated
by the Reeb chords from Λ to its small Reeb push-off Λ+. Note that this push-off
creates also a small set of Reeb chords which are in bijection with the critical
points of a small function; thus we get an inclusion of the Morse complex

C∗(Λ; Ce) = Ce ⊗Ae C∗(Λ;Ae) ⊂ LCC∗(Λ,Λ
+; Ce).

Recall that C∗(Λ;Ae) ≃ A∆ is the Morse homolgoy of Λ with Ae as a two-sided
derived local system.
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The bimodule dual (−)! := RhomCe(−, Ce) is an endofunctor (−)! : Db(Ce) →
Db(Ce) which preserves semi-free Ce−modules. There is a chain map

b : LCC∗(Λ,Λ
+; Ce)→ LCC∗(Λ

+,Λ; Ce)![n+ 1]

defined by counting “bananas” in the symplectisation with two positive punctures.
The co-domain of b, which is a Legendrian contact cohomology complex generated
by Reeb chords from Λ+ to Λ (note the order!) can be seen to be isomorphic to
(LCC∗(Λ,Λ

+; Ce)/C∗(Λ; Ce))![n+ 1] by invariance under Legendrian isotopy.

Theorem 2.2. The map b extends to a morphism of distinguished triangles

C∗(Λ; Ce) LCC∗(Λ,Λ
+; Ce) cof(µ) · · ·

(C∗(Λ; Ce))![n] cof(µ)![n+ 1] LCC∗(Λ,Λ
+; Ce)![n+ 1] · · ·

µ

C̃Y≃ b

Σ

b!

Σ

Here the leftmost vertical map is a quasi-isomorphism that is induced by the
absolute n-Calabi–Yau structure

A∆ ≃ C∗(Λ;Ae)
CY−−→ (C∗(Λ;Ae))![n] ≃ A!

∆[n]

by tensoring Ce⊗Ae (−). See [Gan13] or [Leg23] for the latter quasi-isomorphism.
The Rabinowitz–Floer complex is the Legendrian isotopy invariant Cone(b), i.e.

RFC∗(Λ,Λ
+; Ce) :=

(
LCC∗(Λ,Λ

+; Ce)⊕ LCC∗(Λ
+,Λ; Ce)![n],

[
∂ b
0 ∂!

])
.

Theorem 2.3. The Rabinowitz–Floer complex is acyclic when:

• Y = ∂∞(P×C) is the contact boundary of a subcritical Weinstein domain;
• Λ ⊂ Y can be displaced from its Reeb trace by a contact isotopy; or
• Y = J1S2 with a non-trivial bulk-deformation by the H2-class.

The acyclicity of the Rabinowitz–Floer complex is equivalent to Theorem 2.2
being a quasi-isomorphism of triangles. This translates into the property that the
morphism ι : A∗ → C∗ of DGAs is a relative (n+1)-Calabi–Yau pair as defined
by Brav–Dyckerhoff [BD19]. This can be seen as a generalisation of Sabloff duality
[EES09] from augmentations to general DG-bimodules.
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Introduction by the Organizers

The workshop Variational Methods for Evolution, organized by Franca Hoffmann
(Caltech), Alexander Mielke (Berlin), Mark Peletier (Eindhoven), and Dejan
Slepčev (Pittsburgh) brought together researchers with variety of backgrounds
and from a geographically diverse set of academic institutions.

Hamiltonian systems, gradient systems, or mixtures of these two extreme types
are almost ubiquitous in applications. They have been considered in connection
with many real-world models such as fluid dynamics, phase transitions, thin films,
quantum models, nonlinear diffusion and transport problems, chemical reactions,
rate-independent phenomena, material modeling, and many others. Variational
approaches to such evolutionary systems provide a powerful set of tools and meth-
ods, and the past years have seen impressive growth of this area, with the develop-
ment of generalized gradient flows in Banach spaces and gradient flows in metric
spaces, the characterisation of a very wide range of systems as variational evo-
lutions, the study of the interplay between energy landscape and the dissipation
geometry, the connections to stochastic particle systems, and many others.

These variational-evolution methods have recently found new applications in
the rapidly developing field of data science. Many of the models of data science
are variational in nature: to formulate a machine learning task one often cre-
ates an objective functional that describes the desired properties of the solution
sought and then minimizes the functional. Many of these involve minimization
over the probability measures and function spaces, whose minimization is closely
connected to variational evolutions of the relevant functionals. The discrete na-
ture, randomness, and high-dimensionality of the data create challenges that call
for new mathematical approaches.

For instance, one task is to utilize the geometry of the data distribution carried
by the available random samples. This leads to questions about evolutions on
graphs and their many nodes limits. The desire for high-dimensional computa-
tions leads to questions about geometries for gradient flows that can be estimated
accurately in high dimensions, and are robust to noise. Mean-field limits of neural
networks (including deep ones) show promising connections to PDE and evolu-
tionary problems. Likewise, sampling problems and generative models of learning
have evolutionary descriptions that raise important questions.

In this workshop we sought to bring together mathematicians studying variational
evolutions with researchers from the data science community for a stimulating
exchange of ideas. We invited a selected group of experts and young researchers
from both communities to work together to recognize the common mathematical
structures, formulate the most important mathematical questions, and exchange
ideas. Many participants said towards the end of the workshop that they had
found the mix of topics particularly motivating; it is clear that this aim of bringing
people together from different areas of mathematics was successful in creating a
productive scientific meeting.



Variational Methods for Evolution 3175

Another aim of the workshop was to offer the chance to many young and talented
researchers that have started in this promising area, to get exposed to broad
set of relevant ideas and have scientific discussions with the leaders in the field.
Again, this seems to have been successful, based on the observation that a number
of young researchers are now in contact with more established members of this
community, and various plans for follow-up visits and research activities have
already been made.

The workshop was purely on-site and in-person, despite two disruptive events: (i)
a large snow storm in South East Germany on the Saturday evening before com-
plicated the arrival of several participants and (ii) a strike involving the Deutsche
Bahn on Friday forced many participants to invest time in rearranging their de-
parture. Thanks to collective efforts alternative transport was arranged and most
participants were able to stay on Friday. Despite the adversity, the workshop had
an excellent atmosphere, featured exciting talks and lively scientific discussions;
the participants were uniformly positive about the event when they left.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Bharat K. Sriperumbudur in the “Simons Visiting Pro-
fessors” program at the MFO.
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Abstracts

Entropic interpolations are geodesics

Christian Léonard

(joint work with Marc Arnaudon, Giovanni Conforti)

Entropic interpolation. Let Ω = {paths} be the set of all continuous paths
from the time interval [0, T ] to the state space Rn and denote P(Ω) and M(Ω)
the sets of all probability measures and all positive measures on Ω. We choose
as a reference path measure R ∈ M(Ω) the law of the solution of the following
stochastic differential equation on Rn :

{
dXt = −a∇U(Xt)/2 dt+

√
adBt, 0 < t ≤ T,

X0 ∼ m := exp(−U) Leb, t = 0,

where Xt is the random position at time t, a > 0 is a positive number, B is a
standard Brownian motion, U : Rn → R is a scalar potential and Leb stands for
Lebesgue measure. Not only m is an invariant measure, but also R is reversible:
X and X∗ : s ∈ [0, T ] 7→ X∗

s := XT−s, are statistically indistinguishable.
The relative entropy of P ∈ P(Ω) with respect to R is

H(P |R) :=

∫

Ω

log

(
dP

dR

)
dP

and the Schrödinger problem is

inf H(P |R); P ∈ P(Ω) : P0 = α, PT = β

where P0, PT ∈ P(Rn) are the initial and final marginals of P and α, β ∈ P(Rn)
are prescribed. As a strictly convex problem, it admits a unique solution Q (if
any) which is called the Schrödinger bridge between α and β and whose time
marginal flow is called the entropic interpolation between α and β. This problem
was addressed by Schrödinger in 1931 [9,10]. For a review see [7] for instance, and
for its applications to computational optimal transport see [8].

Bridges. Any Schrödinger bridge Q is a mixture of bridges Rab(·) := P(X ∈ · |
X0 = a,XT = b) of R, that is: Q(·) =

∫
Rn×Rn

Rab(·)Q0T (dadb) where Q0T

is the joint law under Q of the endpoint positions. One can extend the above
definition of entropic interpolation to the time marginal flow of any bridge Rab.
The results below remain unchanged provided we restrict our attention to the open
time interval (0, T ).
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Principle of least action. Any Schrödinger bridge inherits the Markov property
from R. Restricting, without loss of generality, the Schrödinger problem to Markov
path measures P allows to write

H(P |R) = F(µT )−F(µ0) +

∫

[0,T ]×Rn

|vcu|2 + |vos|2
2a

(t, x)µt(dx)dt,

where (µt)0≤t≤T is the time marginal flow of P , F(γ) = H(γ|m)/2, γ ∈ P(Rn)
plays the role of a free energy functional, the current velocity field vcu satisfies the
continuity equation

∂tµt +∇ · (vcuµ) = 0,

and the osmotic velocity field is given by the time reversal formula

vos(t, x) = a∇ log

√
dµt
dm

(x).

The idea of the proofs of these expressions dates back to Föllmer [6]. The main
difficulty in the present setting is to give sense to the above expressions while the
only assumption H(P |R) <∞ does not imply much regularity. This is done in [3].

One can also show that the current velocity field vcu of the Schrödinger bridge
is a gradient field (in some weak sense). Restricting, without loss of generality, our
attention to such Markov path measures P , the above continuity equation permits
us to interpret vcut as the tangent vector µ̇t at µt of the marginal flow (µs)0≤s≤T ,
in the sense of the Otto-Wasserstein geometry, see [11, Ch. 15].

On the other hand, plugging the time reversal formula into the expression of
H(P |R), noting that as regards the Schrödinger problem µ0 = α and µT = β are
prescribed, and multiplying by a, we arrive at the following least action principle

inf A(µ); µ := (µt)0≤t≤T : µ0 = α, µT = β,

with

A(µ) =

∫ T

0

(
‖µ̇t‖2µt/2 + a2I(µt)

)
dt

where ‖µ̇t‖2µt =
∫
Rn
|vcut |2 dµt is the Otto-Wasserstein squared norm of the tangent

vector vcut = µ̇t at µt, and

I(γ) :=

∫

Rn

1

2

∣∣∣∣∣∇ log

√
dγ

dm

∣∣∣∣∣

2

dγ

is the Fisher information of γ ∈ P(Rn) with respect to m.

Newton’s equation. The action A is analogous to a usual classical mechanical
action on a Riemannian manifold M with Lagrangian L(γ̇, γ) = ‖γ̇‖2γ/2 + a2I(γ)

instead of the classical Lagrangian L(q, v) := |v|2q/2 − V (q). Since L gives rise to
the Newton equation:

ẍt = −gradxtV,
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where ẍt = ∇ẋt ẋt is the acceleration of the trajectory t 7→ xt, one can show
similarly [4, 5] that the entropic interpolation µ solves the Newton equation

µ̈t = a2gradOW
µt I

with respect to the Otto-Wasserstein geometry. The main issue when extending
the results of [4] to those of [5] is to overcome the lack of regularity under the weak
assumption H(P |R) <∞. In the special case (to keep the writing easy) where R
is the reversible Brownian path measure (i.e. U = 0), we have

gradOW
γ I = ∇Qγ where Qγ := −∆

2

√
γ
/√

γ

is the quantum potential and γ also stands for the density of the measure γ.

Geodesic in spacetime. On the other hand, it is known since Cartan’s article [2]
in 1923 that any solution of Newton’s equation ẍt = −gradxtV , is such that (t, xt)
is a geodesic in the curved spacetime R×M with some Riemann curvature tensor
built on the original curvature tensor of M , plus an additional curvature tensor
built with the Hessian of the potential V. Similarly, it is proved in [1] that the
same property holds for entropic interpolations in a curved spacetime R× P(Rn)
whose curvature tensor is the sum of a curvature coming from the Otto-Wasserstein
geometry and a curvature tensor built with the Hessian of I. In the above special
case where U = 0,

HessOW
γ I(∇θ,∇θ) =

∫

Rn

(
HessQγ(∇θ,∇θ) +

∣∣∣∣
∆

2
∇θ +∇ log

√
γ · ∇θ

∣∣∣∣
2 )

dγ.
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Discrete-to-continuum limits of graph-based gradient flows

Yves van Gennip

(joint work with Yoshikazu Giga, Jun Okamoto, Samuel Mercer)

We are interested in discrete-to-continuum limits of graph-based gradient flows.
Such flows are of interest to image analysis, machine learning, and other graph-
based problems. A well-known example is the gradient flow based on the Allen–
Cahn (or Ginzburg–Landau) functional for image segmentation, as proposed by
Bertozzi and Flenner [2]. This treats the image segmentation problem as a graph
classification problem, to be solved by minimizing

1

2

∑

i,j∈V

ωij(ui − uj)2 +
1

ε

∑

i∈V

W (ui) +
1

2

∑

i∈Z

µi(ui − fi)2

over real-valued functions u defined on the node set V of a graph with edge weights
ωij . The double-well potential W : R→ R has wells at 0 and 1, f contains a priori
known labels on a subset Z ⊂ V and ε and µi are parameters to be chosen. Such
a minimization problem can be tackled by computing a gradient flow.

By establishing a continuum limit, consistency of the method in the limit |V | →
∞ is shown. In the main part of this talk we discuss explicit interpolation methods
on a periodic grid to establish the continuum limit for total variation flow and for
one-dimensional Allen–Cahn flow. A key ingredient in the proofs of these results
is the variational inequality formulation for gradient flows.

In the latter part of the talk we present ideas from ongoing research into semi-
group methods for establishing convergence of gradient flows if Γ-convergence of
the underlying functionals is known. These methods can be applied to flows on
random geometric graphs, but (at the moment) still demand stronger convexity
requirements on the functionals than the variational-inequality-based results.

The main part of this talk is based on the work in [4]. Given a Hilbert space
(H, ‖ · ‖) and λ ∈ R, a function Φ : H → R∪{+∞} is called geodesically λ-convex
if Φ(·)− λ

2 ‖ · ‖2 is convex. In this case, a gradient flow of Φ with respect to ‖ · ‖ is
defined to be a locally absolutely continuous curve u : (0,∞)→ H which satisfies,
for almost all t > 0 and for all v in the domain of Φ, the evolution variational
inequality

1

2

d

dt
‖u(t)− v‖2 +

λ

2
‖u(t)− v‖2 ≤ Φ(v)− Φ(u(t)).

From the perspective of generalisability this formulation is interesting, because
by replacing the norms ‖u(t)−v‖ with a general distance d(u(t), v), it allows us to
define gradient flows on (non-normed) metric spaces as well1. For the purposes of
this talk, it suffices to restrict ourselves to the Hilbert space setting. In this setting,
the evolution variational inequality is equivalent to the, perhaps more commonly
used, differential-inclusion-based gradient flow definition:

1In which case we also need to define geodesic λ-convexity in this generalised setting.
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u′(t) ∈ −∂
(

Φ(u(t))− λ

2
‖u(t)‖2

)
− λu(t).

Here ∂ denotes the subdifferential.
We wish to compare gradient flows on graphs with continuum gradient flows.

The evolution variational inequality allows us to do so, once we have determined
a way to embed these flows into the same space. Thus we consider a sequence of
Hilbert spaces (Hn, ‖ · ‖n) indexed by a parameter n ∈ N, which in our setting are
going to be spaces of functions defined on the node set (of size n) of a graph. We
require an embedding in : Hn → H and a corresponding ‘projection’ pn : H → Hn

such that pn ◦ in is the identity map on Hn. We assume moreover that the maps
in are isometries and that the maps pn are 1-Lipschitz continuous.

Given functions Φn : Hn → R ∪ {+∞}, we require each Φn as well as Φ to
be geodesically λ-convex for some λ ≤ 0 (the same λ for each function), lower
semicontinuous, not identically equal to +∞ and locally bounded below at some
point in their domains (not necessarily the same point for each function). By
Ambrosio et al. [1, Theorem 4.0.4], these conditions guarantee the unique existence
of gradient flows of Φn and Φ for given initial conditions in the closure of the
domains of the respective functions. We assume that these closures of the domains
are equal to the whole spaces Hn and H , for Φn and Φ, respectively.

Writing un for the gradient flow of Φn with initial condition u0n ∈ Hn and u
for the gradient flow of Φ with initial condition u0 ∈ H , the evolution variational
inequality allows us, in [4], to prove the following two theorems.

Theorem 1. Assume the following three conditions are satisfied, for all n ∈ N,
all v ∈ Hn and all w ∈ H: Φ(inv) ≤ Φn(v), Φn(pnw) ≤ Φ(w), and

(1) ‖v − pnw‖2 + ‖inpnw − w‖2 = ‖inv − w‖2.

Then inun is the gradient flow of Φ with initial condition inu
0
n and, for all t > 0,

‖inun(t)− u(t)‖2 ≤ e−2λt‖inu0n − u0‖2.

Theorem 2. Assume that the equality in (1) is satisfied and the following hold.

(a) For all w ∈ H, lim supn→∞ Φn(pnw) ≤ Φ(w).
(b) There exist T > 0, δ > 0, and a nonnegative function Ψ : H → R∪ {+∞}

such that Ψ(u(·)) ∈ L1(0, T ) and, for all w ∈ H and n large enough
Φn(pnw) ≤ Ψ(w).

(c) For all t ∈ [0, T ] and n large enough, Φ
(
inun(t)

)
≤ Φn

(
un(t)

)
+ o(1).

If inu
0
n → u0, then

lim
n→∞

sup
t∈[0,T ]

‖inun(t)− u(t)‖ = 0.

We apply these theorems in a setting in which Hn is the space of real-valued
functions on the node set Vn of the graph we obtain by discretising the flat d-
dimensional torus by a regular grid with nd nodes.
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Theorem 1 can be applied to the total variation flow, with

Φn(u) =
1

2

∑

z∈Vn

∑

z̃∈Vn
z̃∼z

n1−d|u(z)− u(z̃)|, Φ(u) =

∫

Td
|Du|ℓ1 .

The embedding maps in are constructed via piecewise-constant embedding and
the ‘projection’ maps pn by averaging over grid cells.

We apply Theorem 2 to the one-dimensional (i.e. d = 1) Allen–Cahn flow with

Φn(t) =
1

4

∑

z∈Vn

∑

z̃∈Vn
z̃∼z

n2−d
(
u(z)− u(z̃)

)2
+
∑

z∈Vn

n−dW (u(z)),

Φ(u) =
1

2

∫

Td
|∇u(x)|2 dx+

∫

Td
W (u(x)) dx.

In this case the embedding operator in is given by linear interpolation with pn a
corresponding ‘orthogonal projection’ map. Since these in are not an isometries,
Theorem 2 cannot be applied directly. Instead, the inner product structure on Hn

is adapted such that the in become isometries and it is shown that the resulting
gradient flows of Φn do not differ much from the original gradient flows of Φn, for
large n.

In the final part of the talk, which is based on work with Samuel Mercer which
is currently in preparation, we wish to prove convergence of gradient flows in cases
where Γ-convergence of the functions Φn is known, in the tradition of Sandier and
Serfaty’s work [5]. Moreover, we wish to be able to apply this in settings such as
random geometric graphs in which no regular grid is available and interpolation
techniques for embedding discrete functions into continuum function spaces re-
quires more attention. Preliminary results, based on semigroup techniques and an
extension of theorem by Brezis and Pazy [3, Theorem 3.1] to sequences of Banach
spaces suggest this is possible, yet potentially at the cost of requiring stronger
convexity of the functionals than geodesic λ-convexity.
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Thermodynamic limit of stochastic particle systems via

EDP convergence

André Schlichting

(joint work with Chun Yin Lam)

We consider N particles on a lattice of L sites. The state of the system is given
by the occupation numbers η = (ηx)x∈1,...,L of each site, and the time evolution is
modelled by a continuous-time Markov process (η(t))t≥0 on the set V N,L :=

{
η ∈

NL0 :
∑L

x=1 ηx = N
}

of configurations with a fixed number N of particles. The
process is characterized by the generator

(1) Lf(η) =
1

L− 1

L∑

x=1

L∑

y=1

K(ηx, ηy)
(
f(ηx,y)− f(η)

)
, f ∈ C(V N,L) ,

where ηx,y denotes the configuration obtained from η after one particle jumps from
x to y.

This is a particular model class of stochastic particle systems (SPS), which
has been introduced in [3] under the name misanthrope processes. The process is
irreducible and has a unique canonical stationary measure πN,L on V N,L.

We consider condensation as a phase separation phenomenon in the thermo-
dynamic limit N,L → ∞ with N/L → ρ ≥ 0: If the particle density ρ exceeds
a critical value ρc, the system phase separates into a homogeneous bulk and a
condensate, where a finite fraction of particles accumulates on a vanishing vol-
ume fraction of sites. Mathematically, we say that an SPS with canonical mea-
sures (πN,L) exhibits condensation (in the thermodynamic limit) if the single-site
marginals converge narrowly

πL,N [ηx ∈ .]⇒ νρ , a measure on N0 with
∑

k≥0
kνρ(k) < ρ = limN/L .

The condensation threshold mass is denoted by ρc ∈ [0,∞], the largest ρ for which
no condensation occurs. Condensation, i.e. ρc < ∞, in SPS of type (1) has
been studied extensively (see e.g. [2] and references therein) and particular models
include zero-range processes [8] with bounded kernels of the form

(2) K(k, l) = u(k) = 1 +
b

kγ
with parameters b > 0, γ ∈ (0, 1] ,

or various models with product kernelsK(k, l) = kλ(d+lλ) for parameters d, λ > 0.
Spatially homogeneous SPS with these kernels are known to have stationary

measures of product form

(3) πN,L(η) =
1

ZN,L

L∏

x=1

Qηx with normalization ZN,L =
∑

η∈V N,L

L∏

x=1

Qηx ,

and stationary weights Q : N0 → (0,∞), playing the role of the chemical potential.
The condensation transition has been established rigorously in the thermody-

namic limit for zero-range processes of type (2) (see e.g. [8]), where the condensate
consists only of a single site.
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The configuration η ∈ V N,L of a mean-field SPS can be characterized by the
empirical cluster distribution

(4) FLk (η) :=
1

L

L∑

x=1

δk,ηx ∈ [0, 1] , k ≥ 0 .

In the thermodynamic limit these observables converge under quite general con-
ditions, forming the basis of a mesoscopic description of the dynamics. The law
of large numbers was obtained in [7]: Let the process (η(t))t≥0 be given by the
generator (1) for a kernel with at most linear growth, i.e.

(K1) 0 ≤ K(k, l− 1) ≤ CK k l for k, l ≥ 1 ,

If FLk (η(0))→ ck(0) satisfies some suitable tightness assumptions, then cLk (η(0))→
ck(t) converges weakly in the thermodynamic limit L,N → ∞, N/L → ρ ≥
0 to the cluster concentrations ck(t) solving the (deterministic) mean-field rate
equations

(EDG)

ċk =
∑

l≥1

K(l, k − 1)clck−1 −
∑

l≥1

K(k, l− 1)ckcl−1

−
∑

l≥1

K(l, k)clck +
∑

l≥1

K(k + 1, l− 1)ck+1cl−1 , for k ≥ 0 .

Note that the deterministic set of equations (EDG) can formally be obtained
from (5) by mass-action kinetics, and describe the time evolution of concentrations
of finite clusters, i.e. the bulk of the system, on a mesoscopic scale. This descrip-
tion, also known as exchange-driven growth [1]. Basic mathematical properties
regarding the well-posedness and the longtime behavior of the EDG model in the
form of (EDG) are investigated in [4, 6, 15].

Although the exchange-driven growth process is not necessarily realized by
chemical kinematics, it is convenient to be interpreted as a reaction network of
the form

(5) {k − 1}+ {l} K(l,k−1)−−−−−−⇀↽−−−−−−
K(k,l−1)

{k}+ {l − 1} , for k, l ≥ 1 .

Hereby, clusters of integer size k ≥ 1 are denoted by {k} and the variable {0}
represents empty volume. The kernel

(
K(k, l − 1)

)
k,l≥1

encodes the rate of the

exchange of a single monomer from a cluster of size k to a cluster of size l − 1.
Note that no mass is created or destroyed in the reaction.

In the present work, we lift the law of large numbers result to statement on the
convergence of gradient structures related to the large deviation rate functional
of the stochastic particle system. For the description and convergence, we use
the recent framework of gradient flows in continuity equation format established
in [13, 14]. The law of the empirical cluster distribution (4) of the SPS, denoted
with CN,L ∈ P(P(N0)) is associated with a discrete continuity equation encoding
the two conserved quantities of the system given in a suitable weak form of

(6) ∂tC
N,L
t + d̂iv J

N,L
t = 0,
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where the flux is a measure in JN,L ∈ M(P(N0)× N× N0) and d̂iv is the adjoint

operator to the discrete gradient ∇̂f(c)(k, l − 1) = f(ck,l−1) − f(c) with ck,l−1 =
c+ 1

Lγ
k,l−1 and γk,l−1 = ek−1+el−ek−el−1. For the specific absolutely continuous

flux dJ
N,L

t (c, k, l−1) = L2

L−1ck
(
cl−1− δk,l−1

L

)
K(k, l−1)dCN,Lt (c), the solution of (6)

is exactly the forward Kolmogorov equation for the SPS-generator (1). Under the
detailed balance condition

(BDA)
K(k, l− 1)

K(l, k − 1)
=
K(k, 0)K(1, l− 1)

K(l, 0)K(1, k− 1)

the system has a also the formulation as a generalized gradient flow by the theory
developed in [11], which amounts to the fact, that the rate function LN,L(CN,L,
JN,L) takes the form

(7) FN,L(CN,Lt )
∣∣∣
T

t=0
+

∫ T

0

[
RN,L

(
C
N,L
t , JN,Lt

)
+RN,L∗(

C
N,L
t ,−∇DFN,L(CN,Lt )

)]
dt,

where the free energy F is the relative entropy with respect to the equilibrium
cluster distribution FL♯ π

N,L of the SPS from (3) and the functional R and R∗ are

dual dissipation functionals of cosh-type, which are typical for jump processes [9,
11, 13, 14]. In the form (7), a passage to the thermodynamic limit N,L → ∞
of the gradient structure with N/L → ρ ≥ 0 is possible via the notion of EDP-
convergence, also called evolutionary Γ-convergence [5, 10, 12, 14]. The strategy is
to exploit suitable compactness for curves (CN,L, JN,L) solving (6) such that along
converging subsequences (CN,L, JN,L) ⇀ (C, J) the following Γ-lim inf statement
holds

lim inf
N/L→ρ

LN,L(CN,L, JN,L) ≥ Lρ∧ρc(C, J).

The limit functional has a density with respect to the limit measure C and one
arrives at the diagram:

(CN,L
, J

N,L
) solves (6) ⇐⇒ LN,L(CN,L

, JN,L) = 0 Lρ∧ρc(C, J) = 0

cluster distribution (FL

k
(η(t)))t≥0 Lρ∧ρc(c, j(c)) = 0 ⇐⇒ c solves (EDG).

EDP

N,L→∞

N/L→ρ implies
via superpositionEvolution of the law of

In the EDP convergence statement the choice of the topology is crucial and we
equip the space P<∞(N0) with the distance

(8) dEx(µ0, µ1) = |T(µ0)− T(µ1)|ℓ1(N) with Tk(µ) =
∞∑

l=k

µl tail distribution.

The EDP convergence statement is then formulated in the topology (P<∞, dEx)
and for the sake of brevity, we state only the Γ-convergence for the free energy.

Theorem (Γ-convergence of free energy). In the thermodynamic limit N
L → ρ,

the free energy Γ converges

FN,L(CN,L)
Γ→
∫
H(c|νρ∧ρc)dCρ in the narrow topology on (P<∞, dEx) .
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Normal form and the Cauchy problem for cross-diffusive mixtures

Katharina Hopf

(joint work with Pierre-Étienne Druet, Ansgar Jüngel)

Irreversible physical processes compatible with the second law of thermodynamics
can be modelled using the Onsager approach, which is based on a formal gradient-
flow ansatz in the dual form

u̇ = −K(u)DH(u).(1)

Here, u = u(t) denotes the state, u̇ = d
dtu, H a differentiable driving functional

and K the Onsager operator, a symmetric and positive semi-definite linear oper-
ator, whose symmetry property reflects the Onsager reciprocal relations. We are
interested in diffusive processes formally obtained by choosing u = u(t, x) ∈ O,
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t > 0, x ∈ Td, for a convex domain O ⊂ Rn, H(u) =
∫
Td
h(u) dx with h : O → R

smooth and strongly convex such that H := D2h > 0 in O. The Onsager operator
is assumed to take the form K(u)ξ = −∇ · (M(u)∇ξ) with M(u) ∈ Rn×n symmet-
ric and positive semidefinite. Inserting these choices into (1) gives the quasi-linear
second-order system

∂tu = ∇ · (A(u)∇u), A(u) = M(u)H(u).(2)

While the matrix A(u) need not be symmetric, the positive definiteness of H(u)
and the positive semi-definiteness of M(u) ensure that it is diagonalisable over R

and all its eigenvalues are non-negative. If in addition rankA(u) = n, the PDE
system (2) is parabolic in the sense of Petrovskii, rendering the Cauchy problem
locally well-posed for sufficiently regular data.

The present note is motivated by an application in population dynamics deter-
mined by the choice

h(u) =

n∑

i=1

1

λi
ui(logui − 1), Mij(u) = uiBijλjuj , i, j ∈ {1, . . . , n},(3)

with O = (0,∞)n and where B = (Bij) ∈ Rn×n, λ = (λi) ∈ (0,∞)n are such that
the product BD(λ) is symmetric positive semidefinite, D(λ) := diag (λ1, . . . , λn).
Thus, in this application, Aij(u) = uiBij , and the system is no longer para-
bolic if rankB < n. We are thus faced with a borderline case, where local well-
posedness cannot directly be inferred from classical literature, but might still be
expected given the non-negativity of all eigenvalues of A(u). To gain insights in
the Cauchy problem, it is necessary to better understand the structure of the
system. In the context of fluid dynamics a systematic procedure has been devel-
oped by Kawashima and Shizuta [2] for quasi-linear second-order systems with
an entropy structure, who introduced a normal form, i.e. a change of the depen-
dent variables that brings the PDE system in the form of a composite symmetric
hyperbolic–parabolic system. The classical theory on normal forms strongly relies
on a null-space/range invariance property of the matrix associated with the diffu-
sive effects, which is not satisfied in the above model (with rankB < n) because
rangeM(u) = rangeD(u)B depends on the state u. Nevertheless, in the specific
example considered above, explicit calculations detailed in [1] allow us to identify
a change of variables u 7→ w that brings system (2) in the form of a symmetric
hyperbolic–parabolic system

AI

0(w)∂twI +

d∑

ν=1

AI

1(w, ∂xνwII) ∂xνwI = f I(w,∇wII),

AII

0∂twII −∇ ·
(
AII

∗(w)∇wII

)
= 0,

where the matrices AI
0(w) ∈ R(n−r)×(n−r), AII

0 ,A
II
∗(w) ∈ Rr×r, r := rankB, are

symmetric positive definite, and AI
1(w, ∂xνwII) ∈ R(n−r)×(n−r) is symmetric. At

this point, established methods for symmetric hyperbolic and symmetric parabolic
systems can be applied separately to the respective subsystem in order to construct
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short-time classical solutions emanating from initial data in Hs(Td), s > d
2 + 1,

that are positive componentwise.
Finally, consider more generally system (2) with rankA(u) = r < n. The

following question arises naturally: under which conditions can it be recast in a
normal form that ensures local well-posedness for smooth data?
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The large-data limit of the MBO scheme for data clustering

Tim Laux

(joint work with Jona Lelmi)

The MBO scheme is an efficient algorithm for data clustering, the task of partition-
ing a given dataset into several meaningful clusters. Vaguely speaking, a clustering
is considered meaningful if all elements in a given cluster are similar to each other
while they differ from those in others. Quantitatively, this is often interpreted as
finding minimal cuts in an associated graph. However, nonlinear methods (like
finding minimal graph cuts) have the disadvantage of being computationally in-
efficient, sometimes even giving rise to NP-hard problems. On the other hand,
there are plenty linear algorithms, such as k-Means, which find some clustering,
but cannot resolve the possibly nonlinear structure of the data set without suit-
able pre-processing of the data. The MBO scheme mediates between those two
extreme cases: One merely solves a linear problem and then applies a pointwise
nonlinearity which is computationally trivial. Therefore, it is as performant as a
linear method but is not blind to nonlinear effects in the data structure. In this
talk, I present the first rigorous analysis of this scheme in the large-data limit.

Given a point cloud X = {x1, . . . , xN} ⊂ Rd, we encode a clustering by a
partition X = Ω1 ∪ . . . ∪ ΩP for some P ∈ N. Equipping the set X with a graph
structure (for example by setting x ∼ y if and only if |x−y| < ε for some fixed scale
ε > 0), one can exploit the (say, random walk) graph Laplacian ∆ to understand
the geometry of the data set X .

The MBO scheme improves an initial guess (for example given by k-Means
or a random assignment) by alternating between linear diffusion and pointwise
thresholding. More precisely, given an (artificial) time-step size and an initial

clustering Ω
(0)
1 ∪ . . . ∪ Ω

(0)
P , for ℓ = 1, 2, . . ., compute

Diffusion: u
(ℓ)
i := e−h∆χ

Ω
(ℓ−1)
i

(1 ≤ i ≤ P ),(1)

Thresholding: Ω
(ℓ)
i :=

{
x ∈ X : u

(ℓ)
i (x) = max

1≤j≤P
u
(ℓ)
j (x)

}
(1 ≤ i ≤ P ),(2)
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until some stopping criterion is met, such as only few points changing their label
from Step L − 1 to Step L. The partition in the last step then is the proposed

clustering X = Ω
(L)
1 ∪ . . . ∪ . . .Ω(L)

P .
The starting point of the analysis is that each iteration of the MBO scheme can

be viewed as one step of minimizing movements for the thresholding energy on the
similarity graph of the dataset, i.e., writing Ω = (Ω1, . . . ,ΩP ), the combination
of (1) and (2) is equivalent to

Ω(ℓ) ∈ arg min
Ω

{
EN,εh (Ω) +

1

2h

(
dN,εh

(
Ω,Ω(ℓ−1)

))2}
,

where the energy EN,εh is defined on partitions Ω = (Ω1, . . . ,ΩP ) of X via

EN,εh (Ω) :=
1√
h

∑

1≤i<j≤P

〈χΩj , e
−h∆χΩj 〉(3)

with 〈·, ·〉 a suitable scalar product on functions on X that makes the graph Lapla-

cian ∆ = ∆N,ε self-adjoint, and dN,εh is a suitable distance function on partitions.

It is then natural to think that outcomes Ω(L) of the MBO scheme are (local)
minimizers of this energy. In [2], we prove that for large data sets the algorithm
is consistent with the original task of finding minimal cuts in the sense that these
(local) minimizers converge to (local) minimizers of the optimal partition problem
given by the continuum limit of the minimal cut problem.

More precisely, we employ the so-called manifold assumption postulating that
the points (xn)n are independent samples of some probability measure µ = ρVolM ,
where (M, g) is a closed k-dimensional submanifold of the high-dimensional feature
space Rd and ρ : M → (0,∞) is a smooth function. Then, the first result in [2]
establishes the large-data limit of the energies for fixed time-step size h.

Theorem. Under the manifold assumption, as the sample size N goes to infinity,
almost surely and in a suitable scaling regime for the length scale εN → 0, we have

EN,εNh → Eh in the sense of Γ-convergence w.r.t. the weak TL2-topology.

Here, the continuum energy Eh is defined on relaxed partitions, i.e., maps
u : M → [0, 1]P such that

∑
i ui = 1, and is of the form

Eh(u) =
1√
h

∑

1≤i<j≤P

∫

M

uie
−h∆

ρ2uj ρ
2dVolM

(modulo some constants), where ∆ρ2f = − 1
ρ2∇ · (ρ2∇f) is the natural Laplacian

on the weighted manifold (M, g, ρ2).
The main ingredient for this result is the following natural fact that the diffusion

equation upgrades weak to strong convergence.

Proposition. In the situation of the theorem above, for any t > 0, we have

uN ⇀ u weakly in TL2 =⇒ e−t∆N,εN uN → e−t∆ρ2u strongly in TL2.(4)

Indeed, the proposition implies that the Γ-convergence in the theorem is in fact
continuous convergence: Every weakly converging sequence is a recovery sequence
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for its limit. Furthermore, the proposition even implies that the whole minimizing
movements functional (3) Γ-converges and hence we answer positively a question
of Bertozzi:

Theorem. Under the assumption of the above theorem, the iterates of the MBO
scheme on the graph converge to the corresponding iterates of the MBO scheme on
the weighted data manifold.

The proposition is shown in [2] via the stability principle of gradient flows and
exploiting the fact that the diffusion equation on the weighted manifold (M, g, ρ2)
is well-behaved so that the chain rule holds.

Finally, in the limit of vanishing time-step size, the problem converges to the
desired optimal partition problem.

Theorem. As h ↓ 0, we have Eh → E in the sense of Γ-convergence w.r.t. the
L1 topology, where the sharp-interface energy is the following weighted optimal
partition energy

E(u) =
∑

1≤i<j≤P

∫

∂∗Ωi∩∂∗Ωj

ρ2 dHk−1 if u = (χΩ1 , . . . , χΩP )(5)

and E(u) = +∞ otherwise.

This confirms that the MBO scheme indeed places small cuts in regions of low
data density. The work [2] is the first result on the large-data limit of the MBO
scheme and still the only one valid for more than two clusters. In the case of
two clusters, however, one can use the theory of viscosity solutions to get a more
precise understanding of the dynamics, see [1]. This is a crucial next step as the
non-convex energy (5) has many local minimizers. Understanding the effective
behavior of the dynamics of the scheme gives insight into the path taken by the
scheme in the energy landscape and therefore the selection of local minimizers.

The main ingredients for this analysis are (i) a new abstract convergence result
for arbitrary discrete structures based on quantitative estimates for heat operators
and (ii) the derivation of these estimates in the setting of random geometric graphs.

Overall, the results in [1] roughly state that the following.

Theorem. Under the manifold assumption and in the joint limit N → ∞,
ε → 0, h → 0, in a suitable scaling regime, the MBO scheme for two clusters
converges to the viscosity solution of mean curvature flow in the weighted data
manifold (M, g, ρ2), satisfying the level set equation

∂tu =
1

ρ2
∇ ·
(
ρ2
∇u
|∇u|

)
= ∇ ·

( ∇u
|∇u|

)
+
∇u
|∇u| · ∇ log ρ2.

Formally, this means that the limit is a solution to the geometric evolution equation

V = −H − ν · ∇ log ρ2,(6)

which shows that the evolution is driven by both surface tension and data den-
sity. Naturally, this flow is the L2-gradient flow of (the two-phase version of) the
energy (5) which wants to straighten the cut and move it to low-density regions.
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Remarkably, this proof also applies in case of a frequency cut-off, i.e., when re-
placing the diffusion semigroup e−h∆ with the computationally much simpler pro-
jected version e−h∆P〈ψ1,...,ψK〉, where ψk denotes the k-th eigenfunction of ∆N,ε.
The lower bound for the frequency cut-off which still guarantees convergence to (6)
is of the form K & (logN)q for some (explicit) exponent q > 0.
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Globally Lipschitz transport maps

Max Fathi

(joint work with Dan Mikulincer, Yair Shenfeld)

This talk presented some results of [1] on existence of globally Lipschitz transport
maps between probability measures, including in the Riemannian setting, as well
as some conjectures on global Lipschitz regularity for optimal transport maps. An
extended abstract on these results previously appeared in [2]
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On convergence of the fully discrete JKO scheme

Anastasiia Hraivoronska

(joint work with Filippo Santambrogio)

We study the convergence of the JKO scheme discretized on a regular lattice,
motivated by application to developing numerical schemes. The JKO scheme
introduced in [1] proved to be a powerful tool for analysis of evolutionary equations
with gradient structure in the space of probability measures P(Ω) endowed with
the L2-Wasserstein distance W2. We recall that it is an iterative scheme that for
a given energy functional F : P(Ω)→ R ∪ {+∞}, initial datum ρ0 ∈ P(Ω), and a
time step τ > 0 produces a sequence of probability measures {ρτk} as

(JKO) ρτk+1 ∈ arg min
ρ∈P(Ω)

{
F(ρ) +

1

2τ
W 2

2 (ρ, ρτk)
}
.
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The theory initiated in [1,2] and further developed in [3] allows to prove under ap-
propriate assumptions on F that the sequence of minimizers from (JKO) converges
to a solution of

(1) ∂tρ− div
(
ρ∇δF

δρ

)
= 0 (0, T )× Ω,

with non-flux boundary condition on ∂Ω. In this work, we focus on the energy
functionals including internal and potential energy:

(2) F(ρ) =





∫
Ω
f
(
dρ
dLd

)
dLd +

∫
Ω
V dρ, ρ≪ Ld,

+∞, otherwise.

The JKO scheme is a natural time discretization that preserves structural fea-
tures of the equation such as conservation of mass and energy dissipation, as well as
some properties of solutions of the corresponding PDEs. It is tempting to come up
with a numerical scheme based on (JKO) that enjoys similar properties. The chal-
lenging part is dealing with the Wasserstein distance term. Existing approaches
to this problem include the methods exploiting the Benamou-Brenier dynamic
formulation [4], using entropic regularisation and Sinkhorn algorithm [5, 6], and
semi-discrete approaches [7]. We explore a new approach based on discretizing the
JKO scheme on a regular lattice.

Let Ω ⊂ Rd be a bounded domain discretized with T h := hZd ∩ Ω. We notice
that any probability measure on T h can be represented as

ρh =
∑

x∈T h

ρhxδx,
∑

x∈T h

ρhx = 1.

We call the fully discrete JKO scheme, the iterative scheme

(JKOh) ρh,τk+1 ∈ arg min
ρ∈P(T h)

{
Fh(ρh) +

1

2τ
W 2

2 (ρh, ρh,τk )
}
.

The problem we want to address is convergence of the sequence of minimizers
in (JKOh) to a solution of (1) in a joint limit h→ 0 and τ → 0. The first question
is what is an appropriate relation between h and τ . We illustrate the importance
of this relation for convergence on a toy example with the potential energy.

Example (Movement driven by a potential). Let the energy functional include
only potential energy with V ∈ C1,1(Rd):

Fh(ρh) =
∑

x∈T h

V (x)ρhx.

In this case, it is reasonable to consider separately the movement of the Dirac
masses ρh0 (x)δx for x ∈ spt(ρh0 ), because they move independently in absence of
diffusion. Consider the movement of δx0 , x0 ∈ T h. If x1 is the minimizer of
V (x) + |x− x0|2/2τ restricted to T h, then

V (x0) ≥ V (x1) +
|x1 − x0|2

2τ
,
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which implies h/τ ≤ 2‖∇V ‖Lip. We see that if asymptotically h/τ > 2‖∇V ‖Lip,
then we cannot expect convergence to the continuous solution, because every sub-
sequent minimizer is equal to x0 and the discrete evolution is ”frozen”.

Moreover, one can derive that the accumulated error between minimizers {xk}
restricted to T h and minimizers on the full space {xk} for T = kτ is bounded as

|xk − xk| ≤ Ckh = CT
h

τ
.

Therefore, the convergence holds only if h/τ → 0.

Now we turn to a more interesting case of (JKOh) with the internal energy

Fh(ρh) =
∑

x∈T h

f
(ρhx
hd

)
hd,

with convex and differentiable f such that f ′ is monotone. Let {ρh,τk }k=0,...,N be a
sequence of minimizers of (JKOh) and T = Nτ . The goal is to prove convergence

of {ρh,τk }k=0,...,N to a solution of (1). Our strategy is to show that there exists a
limit curve [0, T ] ∋ t 7→ ρt which is a solution of (1) in the EDI sense. This means
that there exists a velocity field v such that (ρ, v) satisfies the continuity equation

∂tρ+ div(ρv) = 0 on (0, T )× Ω

and the energy-dissipation inequality (EDI) holds true

(3) F(ρT )−F(ρ0) +
1

2

∫ T

0

{∫

Ω

|vt|2dρt +

∫

Ω

|∇ℓ(ut)|2dLd
}
dt ≤ 0, ρt = utLd,

where ℓ related to the energy density f in the following way:
√
sf ′′(s) = ℓ′(s) and

ℓ(0) = 0.
For the standard JKO scheme, the analogous convergence result is proven using

the variational interpolation [3, Chapter 3]. The idea is to prove the inequality

(4) F(ρτk+1)−F(ρτk) +
W 2

2 (ρτk, ρ
τ
k+1)

2τ
+

∫ τ

0

W 2
2 (ρτk, ρ

τ
r )

2r2
dr ≤ 0,

where ρτr is variational interpolant between ρτk and ρτk+1. Combining (4) with the
lower bound on the Wasserstein distance with a slope of the energy

(5)
1

τ
W2(ρτk+1, ρ

τ
k) ≥ SlopeF(ρτk+1),

one gets a sharp inequality which is convenient to pass to the limit to recover (3).
The crucial step in the discrete setting is to find an appropriate replacement

for (5). Note that we cannot use the metric slope, because it blows up as h → 0.
Instead of the slope, we use the discrete Fisher information defined as

Sh(ρh) :=
1

4

∑

x∈T h

∑

y∼x

|ℓ(uhy)− ℓ(uhx)|2
h2

hd, uh =
ρh

hd
.
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Second, we do not expect the discrete counterpart of (5) to hold exactly. An
intuitive reason for that is that we know that we expect the inequality to fail if
h/τ does not tend to 0.

The lower bound on the Wasserstein distance with the discrete Fisher informa-
tion we find for the fully discrete case is presented in the following lemma.

Lemma. Let ρh0 ∈ P(T h) be given and ρτ,h is the minimizer of (JKOh). Then

1

τ2
W 2

2 (ρτ,h, ρh0 ) ≥
(

1− h

2τ

)
Sh(ρτ,h)− dh

2τ
.

This abstract presents ideas on convergence of the fully discrete JKO scheme.
There are plenty of related questions that have to be explored, in particular: extend
the result to different energies such as interaction energy and energy appearing in
crowd motion models, where f becomes a constraint ρ ≤ 1; establish the rate of
convergence; and develop the numerical algorithm.
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[4] J.-D. Benamou, G. Carlier, and M. Laborde, An augmented Lagrangian approach to Wasser-
stein gradient flows and applications, ESAIM: Proceedings and surveys 54 (2016), 1–17.
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Stability in Gagliardo-Nirenberg-Sobolev inequalities.

Nikita Simonov

(joint work with Matteo Bonforte, Jean Dolbeault and Bruno Nazaret)

In some functional inequalities, best constants and minimizers are known. The
next question is stability: suppose that a function “almost attains the equality”,
in which sense it is close to one of the minimizers? We will address a recent result
on the quantitative stability of a subfamily of Gagliardo-Nirengerg-Sobolev. The
approach is based on the entropy method for the fast diffusion equation and allows
us to obtain completely constructive estimates.

We consider the family of Gagliardo-Nirenberg-Sobolev inequalities given by

(1) ‖∇f‖θ2 ‖f‖1−θp+1 ≥ CGNS(p) ‖f‖2p ∀ f ∈ Hp(Rd) ,
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for simplicity we focus on the case d ≥ 3, but d = 1, 2 can be treated (see [1]).
The invariance of (1) under dilations determines the exponent

θ =
d (p− 1)(

d+ 2− p (d− 2)
)
p
,where p ∈ (1, p⋆] and p⋆ := d

d−2 .

The space Hp(Rd) is defined as the completion of C∞
c (Rd), with respect to the

norm f 7→ (1 − θ)‖f‖p+1 + θ‖∇f‖2, where ‖f‖q =
(∫

Rd
|f |qdx

)1/q
for any q > 1.

In the limit case where p = p⋆, for which θ = 1, we are left with the space

Hp⋆(Rd) :=
{
f ∈ L2 p⋆(Rd) : |∇f | ∈ L2(Rd)

}
and the Sobolev’s inequality

(2) ‖∇f‖2 ≥ Sd ‖f‖2p⋆ ∀ f ∈ Hp⋆(Rd) .

Optimality in both (1) and (2) is achieved on the manifold of the Aubin-Talenti
functions (see, for instance [2] and [3] )

M :=
{
gλ,µ,y : (λ, µ, y) ∈ (0,+∞)× R× Rd

}

where g(x) =
(

1 + |x|2
)− 1

p−1 ∀x ∈ Rd ,

and gλ,µ,y(x) := λ
d
2p µ

1
2p g
(
λ (x − y)

)
with the convention µq = |µ|q−1 µ if µ < 0.

We can rewrite inequalities (1) and (2) in the form of a positive, non-scale-invariant
functional which we shall call the deficit functional

δ[f ] := (p− 1)2 ‖∇f‖22 + 4 d−p (d−2)
p+1 ‖f‖p+1

p+1 −KGNS ‖f‖2p γ2p ≥ 0

with γ = d+2−p (d−2)
d−p (d−4) and KGNS chosen so that δ[g] = 0. Up to a scaling, the fact

that δ[f ] ≥ 0 is equivalent to (1) and (2) with optimal constants. In particular
KGNS can be computed in terms of CGNS.

Let us explain how fast diffusion equation enter into play. In self-similar vari-
ables, the fast diffusion equation, posed on Rd, d ≥ 3, with exponent m ∈ [m1, 1)
and m1 := 1− 1/d, is

(FDE)
∂v

∂t
+∇ ·

(
v∇vm−1

)
= 2∇ · (x v) , v(t = 0, ·) = v0 .

By applying this flow to the relative entropy (see [2])

F [v] :=
1

m− 1

∫

Rd

(
vm − Bm −mBm−1 (v − B)

)
dx

where B(x) :=
(
1 + |x|2

) 1
m−1 ,

we have d
dtF [v(t, ·)] = −I[v(t, ·)] where the relative Fisher information functional

I defined by

I[v] :=
m

1−m

∫

Rd
v
∣∣∇vm−1 −∇Bm−1

∣∣2dx .
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It is a key step to recognise that we are dealing with the same quantities as in the
variational approach. With

p =
1

2m− 1
⇐⇒ m =

p+ 1

2 p
, v = f2p , B = g2p

and in particular with the condition 1 < p ≤ d/(d− 2), d ≥ 3, which is equivalent
to m1 ≤ m < 1. Indeed, it turns out that , as observed in [2],

(EEP)
p+ 1

p− 1
δ[f ] = I[v]− 4F [v] ≥ 0

for v = |f |2 p. Inequality (EEP) is called entropy-entopy production inequality
and its optimal constant is 4. In particular, one of the main observations of [2]
is that inequalities (1) and (2) are equivalent to (EEP). At the same time, by
applying (EEP) and Gronwall’s lemma, we get

(3) F [v(t, ·)] ≤ F [v0] e−4t ∀ t ≥ 0

if v solves (FDE) . Here the main observation is that the exponential decay
estimate with factor 4 in (3) is equivalent to the optimal constant in (EEP), see [1].
In the same spirit, if we are able to obtain a better convergence rate than the one
in (3) (for instance under some moment condition), this would translate into an
improved entropy-entropy prodcution inequality and, therefore, into a stability
result.

Our overall strategy is now to prove that under some moment conditions on v,
we can improve the decay with the rate F [v(t, ·)] ≤ F [v0] e−(4+ζ)t for all t ≥ 0
using the properties of (FDE). In a word, we look for improved decay rates of the
entropy in order to establish an improved entropy - entropy production inequality.
Details are given in [1, Chapter 2]. Why is it that we can expect to obtain an
improved decay rate of F [v(t, ·)] ? This can be obtained by a careful analysis
of the asymptotic time layer regime (that is, as t → +∞). It is of standard
knowledge, see for instance [4], that solutions to (FDE) converge to B in strong
topologies. Hence, it makes sense to consider the Taylor expansions of the entropy
and the Fisher information around B. This expansion give us two quadrativ forms
defined by

F[h] = lim
ε→0

ε−2 F
[
B + εB2−m h

]
and I[h] = lim

ε→0
ε−2 I

[
B + εB2−m h

]
.

By a Hardy-Poincaré inequality detailed in [1, Chapter 2], we have

I[h] ≥ Λ F[h]

with Λ = 4 if
∫
Rd
hB2−mdx = 0 and Λ = 4

(
1 + d (m − m1)

)
if, additionally,

we assume that
∫
Rd
xhB2−mdx = 0. In other words, the optimal decay rate of

F [v(t, ·)] is characterized in the asymptotic time layer regime as t → +∞ by the
spectral gap Λ = 4. Under the additional moment condition on the center of mass,
we obtain ζ = Λ − 4 > 0 if m > m1. Recall that m > m1 means p < d/(d − 2)
and covers the whole subcritical range of inequality (1), inequality (2) can also
be treated but the method is more involved. Altogether, we have an improved
decay rate on an asymptotic time layer [T⋆,+∞), that has been explored in [4]
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and subsequent papers. An important feature is that the estimates on Λ are
explicit but require strong regularity conditions, i.e., (1 − ε)B(x) ≤ v(t, x) ≤
(1 + ε)B(x) for all x ∈ Rd and t ≥ T⋆. This condition is ensured only if the
initial datum v0 satisfies the following moment condition (see [1, Chapters 3 and

7]) supR>0 R
2

1−m−d
∫
|x|>R

v0(x)dx ≤ A <∞.

Once an improved decay rate is obtained in the asymptotic time layer, by using
a nonlinear nonlinear generalization of the carré du champ method of D. Bakry and
M. Emery, we are able to obtain an imporved decay rate in the initial time layer
[0, T⋆], which is also explicit. Combining the two layers, we are able to obtain the
improved entropy-entropy production inequality I[v] ≥ (4+ζ)F [v] for a functions
v which satisfy the above moment conditions.

In terms of the variational language introduced in the beginning, we can say
that for d ≥ 3 and 1 < p < p⋆, for any f ∈ L2p(Rd) with ∇f ∈ L2(Rd) such that

A := supr>0 r
d−p (d−4)

p−1
∫
|x|>r

|f |2p dx <∞ we have the estimate

δ[f ] ≥ κ inf
ϕ∈M

∫

Rd

∣∣(p− 1)∇f + fp∇ϕ1−p
∣∣2dx

for some explicit positive constant κ which depends only on d, p, ‖f‖2p, A, and
takes positive values on M. In the case p = p⋆ the above result still holds true
under a stonger moment assumption.
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Minimal Acceleration for the Multi-Dimensional Isentropic

Euler Equation

Michael Westdickenberg

We consider the multi-dimensional isentropic Euler equations

(1)

∂t̺+∇ · (̺u) = 0

∂t(̺u) +∇ · (̺u⊗ u) +∇π = 0

}
in [0,∞)×Rd,

(̺,u)(0, ·) =: (¯̺, ū) initial data.
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This system expresses local conservation of mass and momentum. To close system
(1) one needs to specify the pressure. We consider polytropic gases, for which

π(t, ·) = P
(
r(t, ·)

)
Ld for all t ∈ [0,∞),

where U(r) := κrγ with constants κ > 0 and γ > 1 and

P (r) = U ′(r)r − U(r) for r ≥ 0.

Here r is the Radon-Nikodym derivative of ̺ w.r.t. the Lebesgue measure Ld.
Smooth solutions (̺,u) of (1) satisfy the additional conservation law

(2) ∂t

(
1
2̺|u|2 + U(̺)

)
+∇ ·

((
1
2̺|u|2 + U ′(̺)̺

)
u

)
= 0,

which expresses local conservation of total energy

E(̺,u) := 1
2̺|u|2 + U(̺),

which is the sum of kinetic and internal energy. Since solutions of (1) may become
discontinuous in finite time, solutions must be considered in the weak sense and
energy conservation (2) must be relaxed to an ≤ inequality.

Global existence of weak solutions to (1) is still an open problem in several
space dimension. A useful relaxation with guaranteed existence is the notion of
dissipative solutions, introduced by [1]. Dissipative solutions are defined as tuples
of (̺,m) and defect measures R, φ that satisfy the continuity equation and

∂tm +∇ ·
(
m⊗m

̺
+ P (̺)1

)
+ ∇ · (R + φ1) = 0,

d

dt

∫

Rd

(
1
2̺|u|2 + U(̺) +

1

2
tr(R) +

1

γ − 1
φ

)
(t, dx) ≤ 0.

Here R, φ are measures taking values in the symmetric, positive semidefinite ma-
trices and the non-negative numbers, which form closed convex cones. Dissipative
solutions become weak solutions of (1) iff the defect measures vanish.

The construction of infinitely many weak solutions to (1), pioneered by De
Lellis-Székelyhidi [2], starts from so-called subsolutions, which can be interpreted
as dissipative solutions with defect measures nonvanishing in open sets. Superim-
posing over (̺,m) highly oscillatory waves, one can then remove the discrepancy
between dissipative and weak solutions. To the extent that abstract arguments
like the Baire category theorem are used to ensure the convergence of the iterative
procedure, this result is based on the axiom of choice.

In contrast, our goal is to construct dissipative solutions to the isentropic Euler
equations (1) that minimizes the defect measures from the start. It may very well
be possible that for certain configurations, such as Kevin-Helmholtz instabilities,
nonvanishing defect measures must occur. Indeed, since no viscosity is present,
oscillatory features may persist at arbitrarily small length scales. In such cases,
the best one can hope for is to construct solutions that are as close to being a weak
solution as possible. One can speculate that in regions where defect measures do
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not vanish a variant of the De Lellis-Székelyhidi method could be used to repair
the dissipate solution to become a (or infinitely many) weak solution(s).

In order to construct dissipative solutions with minimal defect measures we
consider the acceleration functional, defined as

(3) |m′|(t) =

∫

Rd

tr
(
U(t, dx)

)
for a.e. t ∈ [0,∞),

with momentum flux

U :=

(
m⊗m

̺
+ P (̺)1

)
+ R + φ1 .

As the notation suggests, (3) can be understood as the metric derivative of the
momentum curve t 7→m(t, ·) with respect to the dual Lipschitz norm, which is the
natural topology for the momentum field, given its finiteness in total variation due
to the energy bound. Notice that (3) is nonnegative because the defect measures
R and φ are in closed convex cones. Since minimizing (3) for all times amounts to
a multi-objective optimization problem, which typically does not have minimizers,
we instead look for Pareto-optimal solutions, i.e., for minimal elements with respect
to a suitable quasi-order defined in terms of comparing the acceleration (3) of
different dissipative solutions at all times. A quasi-order is a binary relation that
is reflexive and transitive, but not necessarily antisymmetric. If this quasi-order
is compatible with a topology, one can use the following result by Wallace [3]:

Theorem (Wallace). Suppose that X is a nonempty compact set with a quasi-
order R such that the set of predecessors P (x) of x is closed for every x ∈ X .
Then X has a minimal element, i.e., an element m ∈ X with the property that,

if y ∈ X and m can be compared at all, then (m, y) ∈ R.

This result can be applied with X the set of dissipative solutions of (1) to given
initial data, and with the quasi-order defined in terms of the acceleration functional
(3). A suitable topology can be chosen as weak* convergence of Young measures.
Note that Wallace’s existence result constructs minimal elements starting from to-
tally ordered subsets of X , which exist because of the Hausdorff maximal principle.
Ultimately, it it therefore again an application of the axiom of choice.
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Transport meets variational inference

Nikolas Nüsken

(joint work with Francisco Vargas, Shreyas Padhy and Denis Blessing)

Given probability measures µ, ν ∈ P(Rd) and a fixed terminal time T > 0, our
objective is to (algorithmically) construct vector fields a : [0, T ]× Rd → Rd with
appropriate growth and regularity properties, such that the diffusion process

(1) dXt = at(Xt) dt+ dWt, X0 ∼ µ
transports µ to ν, that is, XT ∼ ν. More precisely, we aim to construct func-
tionals L : a 7→ R≥0 whose minimisers provide solutions to the stated transport
problem. Clearly, neither a nor L will be unique without imposing further con-
straints. Building on a parameterisation θ 7→ aθ, typically in terms of neural
networks, such functionals allow us to approximate transporting diffusions of the
form (1) by applying gradient-descent type algorithms to θ 7→ L(aθ).

In the recent preprint [1], we propose a framework based on augmenting (1) to
forward and reverse time diffusions,

dXt = at(Xt) dt+
−→
dWt, X0 ∼ µ,(2a)

dXt = bt(Xt) dt+
←−
dWt, XT ∼ ν,(2b)

where
−→
d and

←−
d denote forward and backward Itô integrals, respectively. 1 The

diffusions (2a) and (2b) induce path measures
−→
P µ,a,

←−
P ν,b ∈ P(C([0, T ];Rd)) , and

we consider mappings of the form

(3) (a, b) 7→ D(
−→
P µ,a|←−P ν,b),

where D is a divergence (meaning that D(Q|P) ≥ 0 for all Q,P ∈ P(C([0, T ];Rd)),
with equality if and only if P = Q), for example the Kullback-Leibler divergence

DKL(Q|P) = EX∼Q

[
log

dQ

dP
(X)

]
.

The simple but key observation is that D(
−→
P µ,a|←−P ν,b) = 0 if and only if the pair

(a, b) produces diffusions that transport µ to ν (and back), and therefore modifica-
tions of (3), such as imposing further constraints on a and b, allow us to approach
the transport problem stated at the beginning. In [1], we thereby recover entropic
interpolations, stochastic optimal control problems, as well as the recently intro-
duced score matching and action matching objectives from machine learning. We
also develop a novel loss functional for the Bayesian sampling problem,

φ 7→ E

[∫ T

0

|∇ log πt(Xt)|2 dt+
1√
2

∫ T

0

(∇ log πt −∇φt)(Xt) ·
←−
dWt − log πT (XT )

]
.

1The notions of stochastic integration in (1) and (2a) are the same; we use
−→
d in (2a) to

promote the symmetry of the framework.
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In the above, (πt)0≤t≤T ⊂ P(Rd) is a fixed curve of probability measures, and
at optimality, the diffusion driven by a = ∇φ∗ reproduces these time-marginal
laws. Motivated by excellent numerical results and relationships to the Crooks
and Jarzinksy identities from statistical physics, future work will aim at a deeper
understanding of this nonstandard control functional (nonstandard because of the
backward Itô integral), and extensions to kinetic diffusions.
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Gradient flow characaterisation of the heat flow with Dirichlet

boundary conditions

Matthias Erbar

(joint work with Giulia Meglioli)

In a bounded domain Ω ⊂ Rd we consider the porous medium equation

(1)





∂tρ = ∆ρα in (0,∞)× Ω;

ρ(0, ·) = ρ0 in Ω

ρ = λ on(0,∞)× ∂Ω ,

with constant Dirichlet boundary condition λ ∈ (0,∞) and α ≥ 1. Our goal is
to give a variational characterisation of solutions in terms of gradient flows in the
space of measures. While a large number of results characterising various evlution-
ary PDEs with Neumann boundary conditions as gradient flow w.r.t. the Wasser-
stein distance is available, little is known to date concerning other types of bound-
ary conditions. Figalli and Gigli [1] have introduced a variant of the Wasserstein
distance allowing for change of mass by letting the boundary ∂Ω act as a reservoir.
For µ, ν positive measures in Mp(Ω) := {µ ∈ M+(Ω) :

∫
Ω
d(·, ∂Ω)pdµ <∞} they

define a distance Wbp(µ, ν) via

Wbp(µ, ν)p := inf
γ∈Adm(µ,ν)

∫

Ω×Ω

|x− y|pdγ(x, y) ,

where Adm(µ, ν) is the set of admissible transport plans and consists of all γ ∈
M+(Ω× Ω) such that π1

#γ|Ω = µ and π2
#γ|Ω = ν.

Figalli and Gigli [1] for the heat flow (α = 1) and later Kim, Koo, and Seo [2] for
the porous medium equation (α > 1) showed the following. Consider the internal
energy functional

Eα(µ) =

{∫
Ω
Uα(ρ)dx , µ = ρLeb|Ω ,

+∞ , else ,
,
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with

Uα(s) =

{
s
[

log s− logλ− 1
]

+ λ , α = 1, λ > 0 ,
s

α−1

[
sα−1 − αλα−1

]
+ λα , α > 1, λ ≥ 0 .

Then we have

Theorem 1 ( [1, 2]). Solutions of the JKO-scheme

ρτn+1 = argmin
ρ

Eα(ρ) +
1

2τ
Wb2(ρ, ρn)2

converge in Wb2 as the time step τ goes to zero to weak solutions (ρt)t of (1), i.e.
t 7→ ρα−1/2 − λα−1/2 belongs to L2

loc

(
[0,∞), H1

0 (Ω)
)
and it holds

∫

Ω

φ(ρt − ρs) =

∫ t

s

∫

Ω

∆φραr dr ∀φ ∈ C∞
c (Ω), s < t .

This is strong evidence that (1) should be regarded as the gradient flow of
Eα with respect to Wb2. We also mention the work of Profeta and Sturm [3]
who give a description of the heat flow with boundary condition λ = 0 as a
contraction of a larger auxiliary system of positive and negative densities which
can be characterised as a gradient flow.

We show that the porous medium equation can indeed be characterised as the
gradient flow of Eα w.r.t. Wb2 in the sense of curves of maximal slope. To this end,
we first give a dynamic characterisation of the transport distance Wb2. We denote
by CEΩT the set of all pairs (µ, v) of time-dependent measures and vectorfields such
that

(i) [0, T ] ∋ t 7→ µt ∈M2(Ω) is vaguely continuous,

(ii)
∫ T
0

∫
A |vt|dµtdt <∞ for all compact A ⊂ Ω,

(iii) the continuity equation holds in the following sense:

d

dt

∫
φdµt =

∫
∇φvtdµt ∀φ ∈ C∞

c (Ω) .

Note that the choice of test functions in the continuity equation above allows
for transport to and from the boundary. We obtain the following characterisation
of absolutely continuous curves w.r.t. the distance Wbp in terms of solutions to
the continuity equation.

Theorem 2. A curve (µt)t∈[0,T ] in (Mp(Ω),Wbp) is absolutely continuous if and
only if there exists a Borel family (vt)t of vector fields with

∫ T

0

∫
|vt|pdµtdt <∞ ,

such that (µ, v) ∈ CEΩT . In this case, the family of vector fields with minimal Lp-
norm satisfies |µ′|(t) = ||vt||Lp(µt) for a.e. t ∈ [0, T ], where |µ′| denotes the metric
derivative w.r.t. Wbp.

As an immediate consequence we obtain a dynamic characterisation of the dis-
tance Wbp in the spirit of the Benamou-Brenier formula for the Wasserstein dis-
tance.
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Corollary 1 (Benamou-Brenier formula). For µ0, µ1 ∈Mp(Ω) we have

Wbp(µ0, µ1) = inf

{∫ 1

0

∫
|vt|pdµtdt

}

where the infimum is taken over all pairs (µ, v) ∈ CE1 connecting µ0 and µ1.

We define the energy dissipation functional Iα :M2(Ω)→ [0,+∞] as follows:

Iα(µ) :=





C(α)
∫
Ω

∣∣∇
(
ρα−1/2

)∣∣2 if µ = ρLeb|Ω and ρα−1/2 − λα−1/2 ∈ H1
0 (Ω),

+∞ otherwise ,

for a numerical constant C(α). Note that the boundary condition λ for the density
of ρ of µ is encoded in finiteness of Iα(µ). We then obtain the following varia-
tional characterisation of the porous medium equation (1) with Dirichlet boundary
condition λ.

Theorem 3. For any curve (µt)t∈[0,T ] in (M2(Ω),Wb2) with Eα(µ0) < +∞ we
have

LT (µ) := Eα(µT )− Eα(µ0) +
1

2

∫ T

0

[
|µ′|2(r) + Iα(µr)

]
dr ≥ 0 .

Moreover, LT (µt) = 0 if and only if µt = ρtLeb|Ω with (ρt) a weak solution to the
porous medium equation (1).

In the framework of gradient flows in metric spaces the claim that LT (µ) ≥
0 states that Iα is a strong upper gradient of the functional Eα. The second
claim states that weak solutions to (1) are precisely the curves of maximal slope
w.r.t. this strong upper gradient. Note that the Dirichlet boundary condition is
encoded through finiteness of L though the appearance of Iα. This is consistent
with the observation that the De Giorgi functional L of a gradient flow PDE is
strongly related with the path level large deviation rate functional of an underlying
particle dynamics. In boundary driven particle systems leading to a macroscopic
limit described by a PDE with Dirichlet boundary conditions, the rate function is
typically infinite unless the boundary condition is satisfied for positive times.

We conclude by noting that the dissipation functional can be related to the
metric slope of Eα w.r.t. Wb2.

Proposition 1. For any µ ∈M2(Ω) we have

Iα(µ) ≤ |∇−Eα|(µ) := lim sup
ν→µ

(
Eα(µ)− Eα(ν)

)+

Wb2(µ, ν)

In particular, this shows that finiteness of the metric slope |∇−Eα|(µ) implies
that µ = ρLeb|Ω and ρ satisfies the Dirichlet boundary condition. Moreover, we
note that by abstract results for gradient flows in metric spaces together with the
last Proposition allow us to recover Theorem 1, i.e. the convergence of the JKO
scheme to a a weak solution, from the variational characterisation in Theorem 3.
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Poincaré and Logarithmic Sobolev Inequalities for Brownian Motion

with Sticky-Reflecting Boundary Diffusion

Max von Renesse

(joint work with Marie Bormann and Feng-Yu Wang)

Brownian motion on domains with sticky-reflecting boundary diffusion appears
naturally as a microscopic model for heat flow in solids with surface coating or
in interacting particle systems with sticky-reflecting zero-range interaction. A
rigorous construction of the such processes can be given efficiently via Dirichlet
forms, where both the invariant measure and the energy form are mixtures from
corresponding bulk and boundary contributions [5, 6]. The question of the speed
of convergence to equilibrium arises naturally. For convergence in quadratic mean
this question was addressed in a previous work [10], where we derived upper bounds
for the Poincaré constant under strict positivity assumptions on the Ricci curvature
of the manifold and the second fundamental form of the boundary. The central
method is an interpolation in the decomposition of the total variance into partial
variances. The latter can then be estimated by the bulk energy through (variants
of) the Steklov eigenvalue problem. In positive curvature one can get explicit
quantitative bounds from application of the Reilly formula to the corresponding
minimizers.

The talk presents new work [2] which extends the previous estimates in two ways.
First we extend the interpolation method to the case of general curvature bounds.
Instead of the Reilly formula the main tool in this case is based on integration
by parts with a properly chosen test function of specific boundary behaviour and
controlled energy contribution in the interior. As a side result we obtain new
explicit estimates for the Steklov eigenvalue in this case. The second extension
gives also bounds for the logarithmic Sobolev constant, where a similar type of
interpolation in the decomposition of the entropy of mixtures is used. As another
side result we obtain new explicit estimates for the norm of the boundary trace
operator for Sobolev functions and a corresponding boundary trace logarithmic
Sobolev inequality which was studied before in the special case of Euclidan balls
by Beckner [1].
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Regularized Stein Variational Gradient Flow

Bharath K. Sriperumbudur

(joint work with Ye He, Krishnakumar Balasubramanian, Jianfeng Lu)

Given a potential function V : Rd → R, the sampling problem involves generating
samples from the density

π(x) := Z−1e−V (x), with Z :=

∫

Rd
e−V (x) dx

being the normalization constant, which is typically assumed to be unknown or
hard to compute. The task of sampling arises in several fields of applied mathemat-
ics, including Bayesian statistics and machine learning in the context of numerical
integration. There are two widely-used approaches for sampling: (i) diffusion-
based randomized algorithms, which are based on discretizations of certain dif-
fusion processes, and (ii) particle-based deterministic algorithms, which are dis-
cretizations of certain approximate gradient flows. A central idea connecting the
two approaches is the seminal work [1] which provides a variational interpretation
of the Langevin diffusion as the Wasserstein Gradient Flow (WGF),

∂tµt = ∇ ·
(
µt ∇W2F (µt)

)
= ∇ ·

(
µt ∇ log

µt
π

)
,
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where the term ∇W2F (µt) = ∇ log µt
π is the Wasserstein gradient of the relative

entropy functional (also called as the Kullback–Leibler divergence), defined by

F (µt) = KL(µt|π) :=

∫

Rd
log

µt(x)

π(x)
µt(x)dx,

evaluated at µt. This leads to the idea that sampling could be viewed as optimiza-
tion on the space of densities/measures.

The Wasserstein gradient of the relative entropy, i.e., ∇ log µt
π is related to the

Stein operator by noting that, for any v ∈ Ld2(µt),

〈∇W2KL(µt|π), v〉Ld2(µt)

=

〈
∇ log

µt
π
, v

〉

Ld2(µt)

= 〈∇ logµt, v〉Ld2(µt) − 〈∇ log π, v〉Ld2(µt)

= −
∫

Rd

(
∇ · v + 〈∇ log π, v〉2

)
µt(x) dx =: −

∫

Rd
Sπv dµt,

where Sπ is called the Stein operator and Ld2(µt) := {f = (f1, . . . , fd), fi ∈
L2(µt), ∀i :

∑d
i=1 ‖fi‖2L2(µt)

<∞}. Since

KL
(
(I + hv)#µt|π

)
= KL(µt|π) + h〈∇W2KL(µt|π), v〉Ld2(µt) + o(h),

we have

∇W2KL(µt|π) = − arg inf
‖v‖

Ld
2
(µt)

≤1
KL
(
(I + hv)#µt|π

)
= arg sup

‖v‖
Ld2(µt)

≤1

∫

Rd
Sπv dµt.

Recently, in the machine learning community, the Stein Variational Gradient
Descent (SVGD) [2,3] is proposed as a deterministic space-time discretization—in
contrast to the Langevin diffusion which is a randomized space-time discretization
of WGF—of the Stein Variational Gradient Flow (SVGF) [4] defined as

∂tµt = ∇ ·
(
µt Tk,µt∇ log

µt
π

)
,

where Tk,µ : Ld2(µ) → Ld2(µ) is the integral operator defined as Tk,µf(x) =∫
Rd
k(x, y)f(y)µ(y)dy for any function f ∈ Ld2(µ), and k : Rd × Rd → R is the

reproducing kernel (r.k.) of a reproducing kernel Hilbert space, H. By defin-
ing idµ : Hd → Ld2(µ), f 7→ f as the inclusion operator, it can be shown that
Tk,µ = idµid∗

µ, which yields Tk,µt∇ log µt
π = idµt id

∗
µt∇ log µt

π , where

−id∗
µt∇ log

µt
π

= arg sup
‖v‖

Hd
≤1

∫

Rd
Sπv dµt.

SVGD given by

x
(n+1)
i = x

(n)
i − h

N

N∑

j=1

k(x
(n)
i , x

(n)
j )∇V (x

(n)
j )−∇k(x

(n)
i , x

(n)
j ), i = 1, . . . , N

is an interactive particle system (unlike Langevin diffusion), whereN is the number
of particles, h > 0 is the step-size, and n is the time index. However, SVGD (which
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is based on SVGF) only provides a discretization of a constant-order approximation
to WGF due to the presence of the kernel integral operator in its vector field.
Indeed, if supp(µt) = Rd and k is a bounded continuous translation invariant
characteristic kernel [5] on Rd (e.g., Gaussian and Laplacian kernels), then

‖Tk,µt − I‖op = sup{‖Tk,µtf − f‖Ld2(µt) : ‖f‖Ld2(µt) = 1} ≥ ‖Tk,µt1− 1‖Ld2(µt)
≥ ‖1− ∫ k(·, x)µt(x) dx‖L2(µt) > 0,

where 1 = (1, d. . ., 1)⊤.
To overcome the above issue with the SVGF, we propose the Regularized Stein

Variational Gradient Flow (R-SVGF) [6] where the vector field is obtained as

(1) − arg sup
(1−ν)‖v‖2

Ld
2
(µt)

+ν‖v‖2

Hd
≤1

∫

Rd
Sπv dµt,

where 0 ≤ ν ≤ 1 interpolates between WGF and SVGF. Clearly, ν = 0 corresponds
to the vector field in WGF while ν = 1 yields that of SVGF. The vector field in (1)
can be shown to be ((1−ν)Tk,µt +νI)−1Tk,µt∇ log(µt/π) when seen as an element
of Ld2(µt), which satisfies

‖((1− ν)Tk,µt + νI)−1Tk,µt∇ log(µt/π)−∇ log(µt/π)‖Ld2(µt) → 0 as ν → 0

if ∇ log(µt/π) ∈ Ran(Tk,µt). Additionally, if ∇ log(µt/π) is sufficiently smooth,
i.e., there exists γ ∈

(
0, 12

]
such that ∇ log(µt/π) = T γk,µth, for some h ∈ Ld2(µt),

then

‖((1−ν)Tk,µt+νI)−1Tk,µt∇ log(µt/π)−∇ log(µt/π)‖Ld2(µt) = O(ν2γ) as ν → 0.

In other words, ((1− ν)Tk,µt + νI)−1Tk,µt∇ log(µt/π) is a good approximation to
∇ log(µt/π) for small ν. With this motivation, the corresponding gradient flow

∂tµt = ∇ ·
(
µt
(
(1− ν)Tk,µt + νI

)−1 Tk,µt
(
∇ log

µt
π

))
,(2)

is referred to as R-SVGF, where ν ∈ (0, 1]. Clearly, R-SVGF interpolates between
WGF and SVGF. The key advantage is that (2), which approximates WGF, can be
discretized to yield a deterministic interacting particle system (similar to that of
SVGD but with modifications involving the inverse of regularized Gram matrix),
R-SVGD:

x̄n+1 = x̄n − hn+1K
−1
n


 1

N
Kn(Ln∇V )− 1

N

N∑

j=1

Ln∇k(x
(n)
j , ·)




where (hn)∞n=1 is the sequence of step-sizes, x̄n = [x
(n)
1 , · · · , x(n)N ]T ,

Kn :=

(
(1 − νn+1)

N
Kn + νn+1IN

)

with Kn being the Gram matrix, (Kn)ij = k(x
(n)
i , x

(n)
j ) for all i, j ∈ {1, . . . , N},

and Lnf := [f(x
(n)
1 ), . . . , f(x

(n)
N )]⊤ for f : Rd → RN .
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Our contributions in this work [6] are as follows:

(1) For the R-SVGF, we provide rates of convergence to the target density,
π in two cases: (i) in the Fisher Information metric under no further
assumptions on π and (ii) in the relative entropy under an LSI (log Sobolev
inequality) assumption on π. We also establish similar results for the time-
discretized R-SVGF.

(2) We characterize the existence, uniqueness, and stability of the solutions
to the R-SVGF in the mean-field limit.

(3) We provide preliminary numerical experiments demonstrating the superi-
ority of R-SVGD over SVGD in estimating certain functionals involving π
based on their respective particle approximations.
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The superposition principle for BV curves of measures

Riccarda Rossi

(joint work with Stefano Almi, Giuseppe Savaré)

The evolution equations of diffusive type whose gradient-flow structure, in the
space of probability measures metrized by the Wasserstein distance, was unveiled
by Jordan, Kinderleher & Otto more than 25 years ago, all share a common
structure. The cornerstone of such structure is the continuity equation

(1a) ∂tµ+ div(ν) = 0 in (0, T )× Rd,

where µ = (µt)t∈(0,T ) is a Borel family of probability measures on (0, T ), and the
flux measure ν disintegrates into a family of measures absolutely continuous with
respect to µt, namely

(1b) νt = vtµt for L-a.a. t ∈ (0, T ).

The vector field v : (0, T ) × Rd → Rd is usually referred to as velocity field ;
equation (1a) is understood in the sense of contributions. The central role of (1)
in the variational approach to diffusion has motivated a thorough study of its
properties. In particular, we mention the deep results in [1, Chap. 8], where
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(i) it was proved that The continuity equation characterizes absolutely contin-
uous curves of measures with values in Wasserstein spaces. More precisely,
it was shown in [1, Thm. 8.3.1] that, in the case p > 1, for any given curve
of probability measures (with finite pth-moment) µ : [0, T ] → Pp(Rd),
p-absolutely continuous w.r.t. to the Wasserstein metric Wp with (Wp)-
metric derivative |µ′| ∈ Lp(0, T ), there exists a velocity field v : (0, T ) ×
Rd → Rd such that vt ∈ Lp(Rd;µt) for L-a.a. t ∈ (0, T ), the pair (µ,v)
solves the continuity equation (1), and the velocity field satisfies the ‘op-
timality condition’

(2) ‖vt‖Lp(Rd;µt) ≤ |µ′|(t) = lim
h→0

Wp(µt, µt+h)

|h| for L-a.a. t ∈ (0, T ).

Conversely, in [1, Thm. 8.3.1] it was also proved that for any solution
(µ,v) of the continuity equation, the curve (0, T ) ∋ t 7→ µt ∈ Pp(Rd) is
p-absolutely continuous and (2) holds as an equality.

(ii) A probabilistic representation of solutions of the continuity equation via
the superposition principle was provided.

We have extended the above results to curves of measures with values inW1(Rd),
that are just with bounded variation as functions of time. Simple examples show
that it is not to be expected that, with a curve µ ∈ BV([0, T ];W1(Rd)), a flux
measure ν absolutely continuous w.r.t. µ as in (1b) may be associated. We have
thus focused on the investigation of (1a) per se, understanding as solution of (1a)
a pair (µ,ν) such that

- µ is a finite positive Borel measure on (0, T )× Rd;
- the flux measure ν has finite variation on (0, T )× Rd;
- (µ,ν) solve (1a) in the distributional sense.

Hence, we have proved the following analogue of [1, Thm. 8.3.1], namely that
For any µ ∈ BV([0, T ];P1(R

d)) there exists a Borel measure ν ∈ M([0, T ]×Rd;Rd)
solving the continuity equation (1a) in the sense above specified, such that, more-
over,

(3) |ν|([0, T ]×Rd) = VarW1(µ; [0, T ])

(which is the counterpart to (2)), and the singular part of ν w.r.t. µ, ν⊥, is minimal
in a suitable sense. Conversely, let µ ∈M+([0, T ]×Rd) and ν ∈ M([0, T ]×Rd;Rd)
solve the continuity equation (1a) in the BV sense. Then, µ disintegrates w.r.t. the

Lebesgue measureL on (0, T ), i.e. µ =
∫ T
0
µt dt, such that the curve (0, T ) ∋ t 7→ µt

is in BV([0, T ];P1(R
d)), and (3) holds.

We have also provided a ‘BV’ counterpart to the superposition principle, by

• associating with (1a) a continuity equation in an augmented state space,
• resorting to the superposition principle for the ‘augmented continuity

equation’
• obtaining therefrom a probabilistic representation for the measures µ and
ν in terms of trajectories with values in the extended phase space.
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Graph limits for nonlocal interaction PDEs

Antonio Esposito

(joint work with Georg Heinze, Francesco Patacchini, André Schlichting,
Dejan Slepčev)

The study of evolution equations on graphs and networks has been receiving in-
creasing interest in view of possible applications in several real-world phenomena
where individuals interact if they are interconnected in specific ways. In social
networks, for example, one can model the spread of opinions, or behaviours, by
assigning probabilities for individuals to adopt certain attitudes based on their
neighbours’ choices. This is useful to model polarisation and formation of echo
chambers, cf. for example [1]. Another possible application concerns transporta-
tion networks, where the flux from one vertex to a connected one depends on some
scalar quantities at the neighbour vertices, see e.g. [7]. Graphs are also used in
applications to data science, as they are indeed a suitable mathematical structure
to classify and represent data by studying clustering, as in [6, 8] and the refer-
ences therein. In [5], we introduce nonlocal dynamics relevant to detecting local
concentrations in networks. The class of partial differential equations (PDEs) we
consider can be specified through three elements: a nonlocal continuity equation,
an upwind flux interpolation, and a constitutive relation for a nonlocal velocity.
The nonlocal continuity equation is concerned with the time-evolution of a prob-
ability measure ρt ∈ P(Rd), for t ∈ [0, T ], where mass located at a vertex x ∈ Rd

can be nonlocally transported to y ∈ Rd along a channel with capacity, referred to
as weight, given by an edge weight function η : Rd × Rd \ {x = y} → [0,∞). The
nonlocal continuity equation on a time interval [0, T ] is of the form

(1a) ∂tρt + divjt = 0, with divjt(dx) =

∫

Rd\{x}

η(x, y)djt(x, y),

where the flux is a time-dependent antisymmetric measure, jt ∈ M(G), on the set
G = {(x, y) ∈ R2d \ {x = y} : η(x, y) > 0}.

The relation constituting the flux depends on a σ-finite absolutely continuous
measure µ ∈M+(Rd), wherein µ acts as an abstract notion of vertices of a graph.
More precisely, we associate to a nonlocal time-dependent velocity field vt : G→ R

the induced flux by using an upwind interpolation as follows

(1b) djt(x, y) = vt(x, y)+d(ρ⊗ µ)(x, y) − vt(x, y)−d(µ⊗ ρ)(x, y).

Here, for a ∈ R, we denote with a+ = max{a, 0} and a− = max{−a, 0} the positive
and negative part, respectively. Intuitively, the support of µ defines the underlying
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set of vertices, i.e. V = supp µ. In particular, any finite graph can be represented
by choosing µ = µN = δxi/N , for x1, x2, . . . , xN ∈ Rd.

The last element is the identification of the velocity field in terms of a symmetric
interaction potential K : Rd × Rd → R and a potential P : Rd → R by

(1c) vt(x, y) = −∇K ∗ ρt(x, y)−∇P (x, y),

where the nonlocal gradient is defined by ∇f(x, y) := f(y)− f(x).
In [5] we show that system (1) is a Finslerian gradient flow of the interaction

energy

(2) E(ρ) =
1

2

∫∫

R2d

K(x, y)dρ(y)dρ(x) +

∫

Rd
P (x)dρ(x),

with respect to a nonlocal Wasserstein quasi-metric based on the upwind interpo-
lation. In this framework we show existence of weak solutions, curves of maximal
slope with respect to a specific strong upper gradient, and estabilish a discrete-
to-continuum limit as the number of vertices n goes to ∞, so called graph limit.
Different types of flux interpolations are considered in [4].

An intriguing problem is to understand the limiting behaviour of weak solutions
to (1) as the graph structure localises, i.e. the range of connection between vertices
decreases, while the weight of each connecting edge increases, so called graph-to-
local limit. One expects to approximate weak solutions of the more standard
nonlocal interaction equation on Rd. However, the intrinsic geometry of the graph
impacts the limiting gradient structure of the equation. Accordingly, the main
goal of [3] is to provide a rigorous proof of the local limit of the system (1) along
a sequence of edge weight functions ηε : Rd × Rd \ {x = y} → [0,∞) defined by

ηε(x, y) :=
1

εd+2
ϑ

(
x+ y

2
,
x− y
ε

)
,(3)

in terms of a reference connectivity ϑ : Rd × Rd \ {0} → [0,∞) satisfying suitable
assumptions. The scaling in (3) leads to the local evolution

(NLIET) ∂tρt = div(ρtT(∇K ∗ ρt +∇P )),

where the tensor T : Rd → Rd×d depends on the nonlocal structure encoded
through the reference measure µ and the connectivity ϑ.

Following a heuristic argument based on several approximations and smoothness
assumptions, which are not a priori satisfied by solutions to (1) and (NLIET), one
can show the link between the two equations. This is made rigorous in [3] by using
a variational framework, allowing to handle measure-valued solutions.

An interesting byproduct of this result is the link between Finslerian and Rie-
mannian gradient flows. More precisely, (1) is shown to be a gradient flow of the
nonlocal interaction energy in the infinite-dimensional Finsler manifold of proba-
bility measures endowed with a nonlocal upwind transportation quasi-metric, T ,
peculiar of the upwind interpolation (1b). Due to the loss of symmetry the un-
derlying structure of P(Rd) does not have the formal Riemannian structure, but
Finslerian instead. On the other hand, following [9], we establish a chain-rule in-
equality for the nonlocal interaction energy in a 2-Wasserstein space defined over



3214 Oberwolfach Report 57/2023

RdT, which is Rd endowed with a metric induced by T−1. Upon considering the
corresponding Wasserstein scalar product on the tangent space of P2(RdT), at some
probability measure with bounded second moment, one can notice the underlying
Riemannian structure, thereby making the connection between the weak and vari-
ational formulations of (NLIET). We stress that not only do we connect the graph
and tensorized local gradient structures using the notion of curves of maximal slope
for gradient flows after De Giorgi, but, upon identifying weak solutions of (NLIET)
with curves of maximal slopes, we also obtain an existence result for (NLIET) via
stability of gradient flows. This is indeed another interesting property of the graph,
as it represents a valuable space-discretisation for the PDE under study, working
in any dimension, in addition to other methods, e.g. particle approximations and
tessellations. Indeed, our result can be also seen as a deterministic approximation
of (NLIET). The results in [3] are extended to the multi-species case in [2].
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An adversarial mean curvature flow

Leon Bungert

(joint work with Tim Laux, Kerrek Stinson)

In this talk we discuss how mean curvature flows appear in the context of training
adversarially robust classifiers in machine learning. Such classifiers can be obtained
using an algorithm called adversarial training. To set the scene, let Ω ⊂ Rd denote
an open and bounded set and let µ ∈ P(Ω × {0, 1}) be a probability measure,
modeling the distribution of training data with the labels 0 and 1 in Ω. Adversarial
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training finds a binary classifier A in the Borel subset B(Ω) of Ω by solving the
following robust optimization problem

inf
A∈B(Ω)

E(x,y)∼µ

[
sup

x̃∈Bε(x)

|1A(x̃)− y|
]
,(1)

parameterized by the so-called adversarial budget ε > 0.

E(x,y)∼µ

[
sup

x̃∈Bε(x)

|1A(x̃)− y|
]

= E(x,y)∼µ

[
|1A(x) − y|

]
+ εPerε(A;µ),(2)

where Perε(A;µ) denotes a nonlocal perimeter functional. This rewriting, the
asymptotic results in [3], and the fact that Perε(·;µ) Gamma-converges to a local
perimeter as ε→ 0 [2] suggest that (1) can be interpreted as time discretization of
mean curvature flow, where ε acts both as time step and non-locality scale of the
perimeter functional. To make this connection rigorous, we consider the following
iteration for k ∈ N0:

A0 ∈ arg min
A∈B(Ω)

E(x,y)∼µ

[
|1A(x) − y|

]
(3a)

Ak+1 ∈ arg min
A∈B(Ω)

∫

Ω

|1A(x)− 1Ak(x)| dist(x, ∂Ak) d̺(x) + εPerε(A;µ).(3b)

Here the set A0 in (3a) is a so-called Bayes classifier which acts as initial condition.
Starting from there, the iteration (3b) performs adversarial training using the label
distribution from the previous classifier Ak and modifying (2) by means of the
distance function dist(·, ∂Ak) to the decision boundary of the previous classifier.
The probability measure ̺ ∈ P(Ω) in (3b) is the first marginal of µ, that is
̺ := µ(· × {0, 1}). The presence of the distance function is necessary to obtain
the correct normal velocity for mean curvature flow [7]. Since the minimization
problem in (3b) does not have unique solutions, we take the approach of [5] to select
a solution using a strongly convex minimization problem. For this we replace (3b)
by Ak+1 := Tε(Ak), where the operator Tε : B(Ω)→ B(Ω) is defined as

Tε(A) := {u∗ ≤ 0} where u∗ solves

u∗ := arg min
u∈L2(Ω)

1

2

∫

Ω

|u(x)− sdist(x,A)|2 d̺(x) + εTVε(u;µ).
(4)

Here TVε(u;µ) :=
∫
R

Perε({u ≥ t};µ) dt denotes a total variation functional and

sdist(·, Ak) := dist(·, Ak)−dist(·,Rd \Ak) is the signed distance function of the set
Ak. It can indeed be shown that Ak+1 := Tε(Ak) is a solution of the minimization
problem in (3b).

The goal is to prove that (4) is a monotone and consistent scheme for the
weighted mean curvature flow t 7→ A(t) with normal velocity

v(t) := −1

̺
div
(
̺ νA(t)

)
,(5)
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where νA(t) is the outer unit normal to the boundary ∂A(t). The abstract results
of [6] then imply that (3) converges to a so-called barrier solution of the weighted
mean curvature flow as ε→ 0.

Monotonicity of (4) in the sense of set inclusion (i.e., A ⊂ B implies Tε(A) ⊂
Tε(B)) is a straightforward consequence of a comparison principle for the mini-
mization problem in (4).

To verify consistency, one works with smooth super- / subflows, i.e., smooth
evolutions of smooth sets t 7→ A(t) which move strictly faster / slower than mean
curvature flow. Consistency of Tε then means that for ε > 0 small enough it holds
Tε(A(t)) ⊃ A(t + ε), meaning that the superflow also moves strictly faster than
the scheme (and vice versa for subflows).

To show this we follow the strategy developed in [4] and utilize a superflow
t 7→ A(t) in order to construct a supersolution of the minimization problem in (4).
The signed distance function d(t, x) := sdist(x,A(t)) of a smooth superflow satisfies
the partial differential inequality

∂td(t, x) >
1

̺(x)
div
(
̺(x)∇d(t, x)

)
, x ∈ ∂A(t).(6)

Considering the rescaled function vε(x) := ψ(d(t + ε, x)) with an appropriately
chosen function ψ : R → R that satisfies ψ(s) ≥ s for all s ∈ R and ψ(s) = s for
|s| small, one then gets for small ε > 0 that:

vε(x)− d(t, x) >
1

̺(x)
div

(
̺(x)

∇vε(x)

|∇vε(x)|

)
.(7)

The main ingredient for proving consistency is a careful analysis of the subdif-
ferential of the total variation u 7→ TVε(u;µ) and the proof that for functions u
with non-vanishing gradient and ε→ 0 it is consistent with the 1-Laplace operator

− div
(
̺ ∇u
|∇u|

)
. Applying this expansion to the function u = vε yields that on a

neighborhood of the interface ∂A(t) we have
(
vε(x) − d(t, x)

)
̺(x) + εp(x) ≥ 0(8)

for a subgradient p ∈ ∂ TVε(vε;µ). Inequality (8) together with a careful analysis
of boundary conditions imply that vε is a supersolution of the problem (4) which
implies Tε(A(t)) ⊃ {vε ≤ 0} = {d(·, t+ ε) ≤ 0} = A(t+ ε) and hence consistency.

These results have interesting theoretical and practical implications: First, the
minimizing movement scheme (3) can be modified to build discrete approximations
to mean curvature flow on grids. The corresponding discrete perimeter functional
was already investigated in [2]. Following a similar approach as in the continuum
setting, we expect that such schemes are also monotone and consistent with mean
curvature flow, yielding a novel discretization method. Second, on the applied
side, the schemes (3b) or (4) give rise to novel adversarial training methods that
involve the distance function to the decision boundary. The interpretation of
(3b) is that—in contrast to (2)—the adversarial budget ε is replaced by a data
dependent budget ε

dist(x,∂Ak)
which becomes large for points x which are close to

the decision boundary and small for points far away.
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Minimizing movements along families of energies and dissipations

Andrea Braides

This is a short user’s guide for the analysis of evolution for families of energies and
dissipations, and its connection with Γ-convergence. For applications I have found
it convenient to use a flexible version of the minimizing-movement approach as in
the following definition.

Definition (see e.g. [5]). Given sequences ε = εk → 0 and τ = τk → 0 of positive
numbers, X a topological space, Fε : X → R ∪ {+∞} and Dε : X ×X → [0,+∞],
a minimizing movement along Fε with dissipations Dε at scale τ with initial data
uε0 → u0 is a function u : [0,+∞) → X such that u(t) is the pointwise limit of
uk(t) for all t ≥ 0, and uk(t) = uk⌊t/τk⌋, where uk0 = uεk0 and uki is a minimizer of

v 7→ Fεk(v) + 1
τk
Fεk(v, uki−1).

We note that the usual conditions ensuring the existence of a minimizing move-
ment for a single functional and dissipation (see [2]) allow to prove the existence
of a minimizing movement along Fε with dissipations Dε. In particular this is
achieved when (X, d) is a complete metric space, Fε are lower semicontinuous and
coercive, and Dε(u, v) = 1

2d
2(u, v) (in which case we use the shorthand Dε = 1

2d
2).

However that is an extremely abstract result and must be coupled with some char-
acterization of u. A way to characterize u is in terms of curves of maximal slope.

Theorem (commutativity in terms of curves of maximal slope). Let
(X, d) be a complete metric space, Dε = 1

2d
2, Fε a family of functionals, and F0

a functional on X such that the following property holds.

(H) if vε → v is such that supε(Fε(vε) + |∂Fε|(vε)) < +∞, then we have
lim
ε→0

Fε(vε) = F0(v) and lim inf
ε→0

|∂Fε|(vε) ≥ |∂F0|(v).

Then every minimizing movement along Fε is a curve of maximal slope for F0.

We note that, while implied by convexity (and valid also under more general
assumptions), condition (H) is unlikely to hold when we have many local minima
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vε, for which |∂Fε|(vε) = 0. Indeed, if such families are dense, we obtain that
|∂F0| is identically 0, and F0 is a constant.

Link with Γ-convergence. If |∂Fε| are equibounded in a neighbourhood of v
then F0(v) coincides with the Γ-limit of Fε at v. An example by M. Solci shows
that this equality in general may fail at all points even if |∂F | is everywhere finite
(see [5]). Here and below we give as understood that Γ-limits are computer with
respect to the topology of X .

We now consider the minimizing-movement scheme in terms of convergence of
minimum problems, which are compatible with Γ-convergence.

Theorem (extreme regimes). Let (X, d) be a complete metric space, let Fε be a
equi-coercive family, Dε = 1

2d
2, and u0ε → u0, and let u be a minimizing movement

along Fε with dissipations Dε at scale τ with initial data uε0 → u0. Then
(i) there exists τε such that if τk ≤ τεk then any such minimizing movement u

is a limit of minimizing movements for Fεk with initial datum uεk0 ;
(ii) there exists τ ε such that, if τk ≥ τ εk and F0 is the Γ-limit of Fεk , any such

minimizing movement u is a minimizing movements for F0 with initial datum u0.

Critical scales. If the minimizing movements in the two extreme cases described
by items (i) and (ii) above do not coincide, then there exist one or more critical
scales at which we have a “change of regime”. The simplest such case is when the
domain of Fε is a discrete space, in which the only possible minimizing movements
in regime (i) are constant (pinning). In this case there exists a minimal scale
τ = τε for which the evolution is not trivial for some initial datum (depinning
regime). Conversely, if the minimizing movements in cases (i) and (ii) coincide, it
is not clear if all possible u are characterized by (ii) (or (i)).

The following result states that in the convex case minimizing movements are
independent of the scale (see [3]).

Theorem (the convex case) Let (X, d) be a complete metric space, let Fε be a
equi-coercive family of convex energies and Dε = 1

2d
2, and u0ε → u0. Let F0 be

the Γ-limit of Fεk . Then every minimizing movement u along Fε with dissipations
Dε at scale τ with initial data uε0 → u0 is a minimizing movement u for F0 with
initial datum u0, and is also a limit of minimizing movements for Fεk with initial
data uεk0 .

This theorem states in a sense that the convex case is ‘trivial’ since the limit is
the same at all scales. Nevertheless it may be useful to characterize the limits of
gradient flows of convex energies through the study of their discrete-in-time ap-
proximations obtained by solving the Euler-Lagrange equations of the incremental
problems. As such it has been applied for example to prove the convergence of
non-local gradient flows to standard parabolic equations [1], and of gradient flows
of double-porosity models to parabolic equations with memory [4].
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Diffusive transport: geodesics, convexity, and gradient flows

Daniel Matthes

(joint work with Eva-Maria Rott, André Schlichting, Giuseppe Savaré)

1. The diffusive transport metric

On the space X := {ρ ∈ L1(S1)|ρ ≥ 0,
∫
ρ dx = 1} of probability densities on the

circle, introduce the Hellinger distance H, the L2-Wasserstein metric W, and the
diffusive transport distance D, respectively, by

H(ρ0, ρ1)2 = inf

{∫ 1

0

∫

S1

w2
s

ρs
dx ds

∣∣∣∣∣ ∂sρs − ws = 0

}
,

W(ρ0, ρ1)2 = inf

{∫ 1

0

∫

S1

w2
s

ρs
dx ds

∣∣∣∣∣ ∂sρs + ∂xws = 0

}
,

D(ρ0, ρ1)2 = inf

{∫ 1

0

∫

S1

w2
s

ρs
dx ds

∣∣∣∣∣ ∂sρs − ∂xxws = 0

}
,

where the infima are taken over all parametrized pairs (ρs, ws)s∈[0,1] of probability

densities ρs and Radon measures ws on S1, respectively, that connect ρ0 to ρ1
by means of the (generalized) continuity equation. It is known that (X,H) is a
complete metric space with the L1-topology, and that (X̄,W) is a complete metric
space, where the completion X̄ is the space of probability measures on S1, with
the narrow topology. We show:

Theorem 1. (X̄,D) is a complete metric space with the narrow topology. More
precisely:

∥∥µ1 − µ0

∥∥
(Ẇ 2,∞(S1))′

≤ D(ρ0, ρ1) ≤ 2

− log
∥∥µ1 − µ0

∥∥
(Ḣ1(S1))′

.

Geodesics w.r.t D are currently little understood. Formally, the geodesic equa-
tions for H, W and D read, respectively, as follows:
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∂sρs − ρs ψs = 0, ∂sψs +
1

2
ψ2
s = 0,

∂sρs + ∂x(ρs ∂xψs) = 0, ∂sψs +
1

2
(∂xψs)

2 = 0,

∂sρs − ∂xx(ρs ∂xxψs) = 0, ∂sψs +
1

2
(∂xxψs)

2 = 0.

While the first system is solvable by plain linear interpolation w.r.t.
√
ρs, and the

second one is solvable in principle by the method of characteristics, the third one
appears inaccessible to explicit solution.

2. Contractive and gradient flows

Observation 1. The linear diffusion equation ∂tρ = ∂xxρ induces on X . . .

• . . . a contractive flow w.r.t. H,
• . . . a contractive gradient flow w.r.t. W,
• . . . a contractive flow w.r.t. D.

The contractivity properties are essentially consequences of Jensen’s inequality
and the fact that linear diffusion is a linear averaging process. The potential for
the gradient flow w.r.t. W is Boltzmann’s entropy functional H(ρ) =

∫
ρ log ρ dx.

Observation 2. The DLSS equation ∂tρ = −∂xx(ρ ∂xx log ρ) induces on X . . .

• . . . a contractive flow w.r.t. H [2],
• . . . a (non-contractive) gradient flow w.r.t. W [1],
• . . . a (non-contractive) gradient flow w.r.t. D [5].

There is apparently no easy explanation for the contractivity in H. The poten-
tials for the gradient flows w.r.t. W and D are, respectively, the Fisher information
F(ρ) =

∫
ρ (∂x log ρ)2 dx and the entropy H.

3. Discretization

Consider an equidistant discretization of S1 of mesh width δ > 0, denote the
space of piecewise constant probability densities by Xδ. A mere restriction of the
distances W or D to Xδ would produce metric spaces with pathological proper-
ties. Instead, the definitions of H, W and D can be modified to provide adapted
distances Hδ, Wδ and Dδ on Xδ: replace the derivative(s) in the continuity equa-
tions by difference quotients, and replace the denominator in w2

s/ρs by a suitable
mean value of the neighboring densities — simply ρk for Hδ, a two-point average
m(ρk−1/2, ρk+1/2) for Wδ, and a three-point average M(ρk−1, ρk, ρk+1) for Dδ.

Observation 3. The discretization ρ̇k = (ρk+1 − 2ρk + ρk−1)/δ2 of the linear
diffusion equation by central finite differences induces on Xδ . . .

• . . . a contractive flow w.r.t. Hδ,
• . . . a contractive gradient flow w.r.t. Wδ [3,4]
• . . . a contractive flow w.r.t. Dδ [5].
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Contractivity follows again by the linear averaging effect of the (discretized)
diffusion. For the appropriate mean in the definition of Wδ, one uses the logarith-
mic mean m(ρκ−1/2, ρκ+1/2) = (ρκ+1/2−ρκ−1/2)/ log(ρκ+1/2− log ρκ−1/2), and in

the definition of Dδ, one uses M(ρk−1, ρk, ρk+1) = ρk.

Observation 4 ( [5]). The following discretization of the DLSS equation

ρ̇k =
(
Fk+1 − 2Fk + Fk−1

)
/δ2, Fℓ =

(√
ρℓ+1ρℓ−1 − ρℓ

)
/δ2(1)

induces on Xδ . . .

• . . . a contractive flow w.r.t. Hδ

• . . . a (non-contractive) gradient flow w.r.t. Wδ

• . . . a (non-contractive) gradient flow w.r.t. Dδ.

Differently from Observation 3, we choose m(ρκ−1/2, ρκ+1/2) =
√
ρκ+1/2ρκ−1/2 for

Wδ, and for Dδ:

M(ρk−1, ρk, ρk+1) =

√
ρk+1ρk−1 − ρk

log
√
ρk+1ρk−1 − log ρk

.

These choices of m/M appear to be crucial to guarantee the contractivity in Hδ.
Indeed, the proof uses that (1) can be re-formulated as

∂t
√
ρk = −uk+1 − 2uk + uk−1

δ2
+

u2k√
ρk

with uk =

√
ρk+1 − 2

√
ρk +

√
ρk−1

δ2
.

Our main result is about the convergence of the scheme (1).

Theorem 2 ( [5]). Let an initial condition ρ̂ ∈ X be given. For each mesh width
δ, consider a strictly positive approximation ρ̂δ ∈ Xδ of ρ̂. Then the initial value
problem for (1) possesses a unique solution ρδ : [0,∞)→ Xδ, and

ρδ → ρ∗ in L1
loc

(
(0,∞)× S1

)
∩ Cα

(
[0,∞); (W 2,∞(S1))′

)
as δ → 0,

where ρ∗ is a weak solution to the DLSS equation.

The proof heavily uses the properties stated in Observation 4, particularly the
contractivity in Hδ and the monotonicity of H. The key a priori estimate is

− d

dt
H(ρδ) ≥ δ

∑

k

(√
ρk+1 − 2

√
ρk +

√
ρk+1

δ2

)2

,

which provides weak compactness of the
√
ρδ in L2

(
(0,∞);H2(S1)

)
.
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Damage in viscoelastic materials at finite strains

Marita Thomas

(joint work with Manuel Friedrich, Martin Kruž́ık, and Riccarda Rossi)

This contribution reports on an ongoing work in progress dedicated to the math-
ematical analysis of a model for the evolution of damage in viscoelastic materials
with physical and geometrical nonlinearities and under the influence of dynamic
effects due to the propagation of elastic waves.

1. Challenges related to dynamic effects at finite strains

As has been already observed in existing literature, cf. e.g., [1,2], one major chal-
lenge in this setting is the correct treatment of the axiom of material frame indif-
ference ensuring that a model is independent of orthogonal rotations of the chosen
coordinate system. Firstly, this requires static material frame indifference, i.e.,
W (QF ) = W (F ) for all (d×d)-matrices F ∈ GL+(d) and Q ∈ SO(d), for a hyper-
elastic material with a stored elastic energy density W : GL+(d)→ R. Yet, due to
the presence of dynamic effects, this static condition is not enough to ensure the
independence of the model of orthogonal rotations. Additionally, also dynamic
material frame indifference is required, cf. [1], i.e., V (QF ; ∂t(QF )) = V (F ; ∂tF )
for all sufficiently smooth maps F : [0, T ]→ GL+(d) and Q : [0, T ]→ SO(d), and
where V : GL+(d)× Rd×d → [0,∞] denotes a dissipation potential to account for
viscous effects of Kelvin-Voigt-type rheology. A simple, suitable choice is given by

(1) V (F ; Ḟ ) =
1

2
V(F )∂t(F

⊤F ) : ∂t(F
⊤F ) ,

with V(F )G : G ≥ cV|G|2 for all F,G ∈ Rd×d and with a constant cV > 0. Suppose
now that certain a priori estimates result in a bound on the corresponding integral
functional, i.e. that V(∇ϕ;∇ϕ̇) :=

∫
Ω
V (∇ϕ;∇ϕ̇) dx ≤ C. Then (1) directly

results in the bound cV
2 ‖Ḟ⊤F + F⊤Ḟ‖2L2 ≤ C, but it does not provide a separate

estimate on the partial time derivative Ḟ = ∂tF = ∇ϕ̇. In turn, this can be
achieved thanks to generalized Korn’s inequalities [3, 4] of the form

(2) ‖∇ϕ̇(t)‖L2 ≤ CK‖∇ϕ̇⊤(t)∇ϕ(t) +∇ϕ⊤(t)∇ϕ̇(t)‖L2

with a constant CK > 0. Yet, (2) to be valid requires that, firstly, ∇ϕ(t) ∈
C0(Ω;Rd×d) with ‖∇ϕ(t)‖∞ ≤ C, and secondly, that

(3) det∇ϕ(t) ≥ c > 0 on Ω, uniformly for all t ∈ [0, T ].
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The first condition can be achieved by adding a higher order gradient term to the
energy density in the spirit of second grade non-simple materials, i.e., a term

(4) H(ϕ) :=

∫

Ω

H(∇2ϕ) dx

will ensure the required regularity. Secondly, the term (4), given that W + H
additionally satisfies a growth estimate of the form

(5) W (F ) +H(G) ≥ cW
(
|F |s +

1

(detF )q
)

+ cH |G|p

for all F ∈ GL+(d) and G ∈ Rd×d×d with fixed constants cW , cH > 0 and fixed

exponents p > d, q ≥ pd
p−d , s > 1, will also provide condition (3) thanks to a result

by Healey and Krömer [5]. The above considerations motivate the structure of the
stored elastic energy density and of the viscoelastic dissipation potential.

2. The damage model

The effects of an evolving damage process on the elastic behavior of a body with
reference configuration Ω ⊂ Rd are further modeled with the aid of a damage
variable z : [0, T ] × Ω → [0, 1], where z(t, x) = 1 means that the material is
undamaged and z(t, x) = 0 that the material is maximally damaged in the material
point x ∈ Ω at time t ∈ [0, T ]. The energy functional is of the form

E(t, z, ϕ) :=





∫
Ω

(
E1(z, ϕ,∇ϕ,∇2ϕ)− 〈ℓ(t), ϕ〉+ E2(z,∇z)

)
dx

if E1(z, ϕ,∇ϕ,∇2ϕ)− 〈ℓ(t), ϕ〉+ E2(z,∇z) ∈ L1(Ω) ,
∞ otherwise,

(6)

with E1(z, ϕ,∇ϕ,∇2ϕ) := W (z,∇ϕ) + H(z,∇2ϕ) , E2(z,∇z) := 1
2 |∇z|2 + φ(z) .

Here, the energy term E2 serves as a regularization for the damage variable and
the function φ is chosen such that z ∈ [0, 1] can be ensured for a solution of the
problem. The densities W and H are assumed to be suitably smooth, equipped
with suitable analytical and physically reasonable growth properties, e.g., in the
line of (5) and to ensure that a decrease of the damage variable (corresponding to
an increase of damage) leads to a decrease of the stored elastic energy and, hence,
the elastic stresses. A further ingredient to the model is the dissipation potential
for the damage variable, which is assumed to be of the form

R(ż) :=

∫

Ω

(
R1(ż) +R2(ż) + I(−∞,0](ż)

)
dx(7)

with R1(ż) := a1|ż|, R2(ż) := a2
2 |v|2, with constants a1, a2 > 0, and the indicator

function I(−∞,0], i.e., I(−∞,0](ż) = 0 if ż ∈ (−∞, 0] and I(−∞,0](ż) =∞ otherwise.
The presence of two convex but non-smooth terms, the rate-independent dissipa-
tion R1 and the indicator function I(−∞,0] to prevent healing of damage, leads to
an evolution law for the damage variable in terms of a subdifferential inclusion

(8) a1Sign(ż) + a2ż + ∂I(−∞,0](ż) + φ′(z) + DzW (z,∇ϕ)−∆z ∋ 0 ,
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where Sign and ∂I(−∞,0] denote the subdifferentials of the absolute value function
and the indicator function in the sense of convex analysis.

3. Existence of weak solutions and improved results

By means of a staggered time-discrete scheme one can prove the existence of weak
solutions (z, ϕ), which are defined by the following three ingredients:

1. Weak formulation of the momentum balance:

〈ϕ̈(t), η〉W 2,p +

∫

Ω

(
DḞV (z(t),∇ϕ(t);∇ϕ̇(t)) + DFW (z(t),∇ϕ(t))

)
:∇η dx

+

∫

Ω

DGH(z(t),∇2ϕ(t)) : ∇2η dx = 〈ℓ(t), η〉W 2,p

(9a)

for almost all t ∈ (0, T ) and for all η ∈W 2,p(Ω;Rd) ∩H1
0 (Ω;Rd), together with

min
(t,x)∈[0,T ]×Ω

det(∇ϕ(t)) > 0 and ϕ(t)|∂Ω(t, ·) = Id for all t ∈ [0, T ].

2. Damage flow rule in terms of a one-sided variational inequality, cf. also [6]:
∫

Ω

(
a1 + a2ż(t) + φ′(z(t)) + DzW (z(t),∇ϕ(t)) + DzH(z(t),∇2ϕ(t))

)
ζ dx

+

∫

Ω

∇z(t) · ∇ζ dx ≥ 0
(9b)

for almost all t ∈ (0, T ) and for all ζ ∈ H1(Ω) ∩ L∞(Ω) with ζ ≤ 0 a.e. in Ω.
3. Upper energy-dissipation estimate:

E(t, ϕ(t), z(t)) +K(ϕ̇(t))

+ 2

∫ t

s

(
V(z(r), ϕ(r); ϕ̇(r)) +R2(ż(r))

)
dr +

∫ t

s

R1(ż(r)) dr

≤ E(s, ϕ(s), z(s)) +K(ϕ̇(s)) +

∫ t

s

∂tE(r, ϕ(r), z(r)) dr ,

(9c)

for all t ∈ [0, T ] and almost all s ∈ [0, t) and where K(ϕ̇) :=
∫
Ω
ρ
2 |ϕ̇|2 dx denotes

the kinetic energy with a constant mass density ρ > 0.
Under the additional assumption that H : (z,G) 7→ H(z,G) is convex, it can be

further shown that the inequality (9c) improves to an equality. Moreover, if the
regularization term H does not depend on z, then one obtains z ∈ H1(0, T ;H1(Ω))
and (9b) can be replaced by the subdifferential inclusion (8).
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Gradient flow: yes or no?

Jan Maas

(joint work with Morris Brooks)

Let X ∈ Γ(TM) be a vector field on a smooth manifold M and let f : M → R be
a smooth function. Does there exist a Riemannian metric g on M such that the
evolution equation u̇ = X(u) is the gradient flow equation for f with respect to
the metric g? In order words, using standard index notation, does there exist a
metric gαβ such that gαβX

β = −Dαf?
Some assumptions are clearly needed:
Firstly, Df should be zero at every stationary point of the evolution: the vector

field X and the co-vectorfield Df should have the same set of zeroes.
Secondly, X and −Df should “agree on the sign” outside the set where they

vanish: for all x ∈ M with X(x) 6= 0, they should satisfy XαDαf(x) < 0 (since
XαDαf = −gαβXαXβ and g is positive definite.) This requirement reflects the
fact that f should decrease along the evolution.

Thirdly, at every point x where X(x) = 0, one should have that DαDγf =
ḡαβDγX

β , for some scalar product ḡαβ on TxM . This somewhat less obvious
condition is obtained by differentiating the equation Dαf = gαβX

β at x, using
the assumption that X(x) = 0.

Our main result asserts that these conditions are not only necessary, but also
sufficient, under mild regularity conditions.

Theorem 1. Let f : M → R be a function and Xα ∈ Γ(TM) be a vector field.
We assume that f and X are real-analytic (in some coordinate chart). Suppose
further that Df has a unique zero, x̄ ∈M , at which f attains its minimum. Then
there exists a Riemannian metric gαβ ∈ Γ(T ∗M ⊗ T ∗M) satisfying

∇βf = gαβX
α,

if and only if the following conditions hold:

(1) DXαf(x) < 0 for all x ∈M with x 6= x̄;
(2) Xα|x̄ = 0;
(3) The linear map Λ := DαX

β|x̄ : Tx̄M → Tx̄M is positive and symmetric
with respect to the Hessian scalar product hαβ := DαDβf |x̄ on Tx̄M .

In fact, [3] contains a more general version of this result, in which Df is replaced
by an arbitrary co-vector field Y . We also prove a variant of this result in which
X and Y are of class Ck+1 for k ≥ 0. In this case, the metric g is of class Ck. The
case k = 0 was proved earlier in [2].

The existence of a metric with the desired properties is easy to prove outside the
set of critical points; see, e.g., [1]. The nontrivial part of the proof is to establish
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the existence of a smooth metric in a neighbourhood of every point where X
vanishes. This is done using a power series construction by an iterative argument,
in which each iterative step involves the solution of a certain tensor equation.

As an application of Theorem 1 we solve a problem that arose in joint work with
Carlen on gradient flow formulations of Lindblad equations, which describe the
time-evolution of open quantum systems. It was shown earlier [4, 9] that Lind-
blad equations with a certain symmetry condition (GNS-detailed balance) can be
formulated as gradient flow equation for the quantum relative entropy. The no-
tion of GNS-detailed balance is one among several quantum generalisations of the
notion of detailed balance for classical Markov chains. Subsequently, a different
notion of detailed balance (BKM-detailed balance) was shown to be necessary for
the existence of an entropic gradient flow structure for Lindblad equations [5].
However, as the notion of BKM-detailed balance is strictly weaker than the notion
of GNS-detailed balance, there was a gap between the necessary and sufficient
conditions above. As a consequence of Theorem 1, we close this gap: the notion
of BKM-detailed balance is also sufficient for the existence of an entropic gradient
flow structure. This result provides a quantum analogue of earlier work on the
sufficiency of detailed balance [6] in gradient flow structures for classical Markov
chains [7, 8].

References
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Shape Optimisation for nonlocal anisotropic energies

Lucia Scardia

(joint work with R. Cristoferi, M.G. Mora)

In this work we consider shape optimisation problems for sets of prescribed mass,
where the driving energy functional is nonlocal and anisotropic. More precisely, for
a given mass m > 0, we are interested in the minimisation of the energy functional

(1) I(Ω) =

∫

Ω

∫

Ω

(
W (x− y) +

1

2
|x− y|2

)
dxdy,

over the class of sets with mass m,

Am =
{

Ω ⊂ Rd : Ω measurable, |Ω| = m
}
,

for d = 2, 3. In (1), the interaction potential W is defined for x 6= 0 as

(2) W (x) =





− log |x|+ κ

(
x

|x|

)
if d = 2,

1

|x|κ
(
x

|x|

)
if d = 3,

and W (0) = +∞. For the profile κ : Sd−1 → R we require that it is even, and

that both W and Ŵ are continuous on Sd−1. Additionally, if d = 3, κ is assumed
to be strictly positive on Sd−1. The potential W is an anisotropic extension of the
classical, radially symmetric Coulomb potential, which corresponds to the special
case of a constant profile κ. The anisotropy is fully encoded in the profile κ, which
introduces an additional dependence on the directions of interaction.

The energy I is the sum of two competing terms: an attractive, quadratic inter-
action, that dominates at large distances, and a repulsive, Coulomb-like interac-
tion, driven by the anisotropic potential W . The additional positivity requirement
for κ in the three-dimensional case is there to preserve the repulsive nature of W ;
this is not needed for d = 2 since κ is bounded, and hence at short range the
repulsive nature of − log | · | is not affected by the additional anisotropy κ.

1. Main result

Our main result is the characterisation of the minimiser of I in the class of sets
Am, for any mass m > 0. This is done under the sole assumption that the Fourier

transform Ŵ of the potential W on the sphere Sd−1 is nonnegative.

In fact we have two main results, depending on whether Ŵ is strictly positive
or not. In the first case we show that above a given threshold for the mass the
unique minimiser of I is a d-dimensional ellipsoid. Uniqueness has to be intended
up to translations, since the functional I is translation-invariant.

In the case of degeneracy of Ŵ , instead, we have the following dichotomy: either
there exists a threshold value for the mass as in the case above, or the minimiser
is an ellipsoid for any positive value of the mass.
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The occurrence of one or the other possibility is related to the minimisation
problem for the energy (1) in the wider class of measures (rather than sets) with
prescribed mass (see [2, 3, 5]).

2. Method of proof

For the proof of existence, we consider the relaxed energy

(3) I(ρ) =

∫

Rd

∫

Rd

(
W (x− y) +

1

2
|x− y|2

)
ρ(x)ρ(y) dxdy,

which extends (1) to the class of densities

(4) Am,1 =
{
ρ ∈ L1(Rd) ∩ L∞(Rd) : ‖ρ‖L1 = m, 0 ≤ ρ ≤ 1 a.e.

}
.

It was proved in [1] that a set Ω ∈ Am is a minimiser of (1) if and only if its
characteristic function χΩ ∈ Am,1 is a minimiser of the relaxed energy (3), and
the same holds true in our case. Since for small mass m the minimising densities
are not the characteristic functions of a set, our original problem on sets can only
have a solution for large enough mass.

For large mass we then (equivalently) study the problem on densities, for which
existence and compact support of minimisers can be proved by standard argu-
ments. Uniqueness, up to translations, follows by the sign condition on the Fourier
transform of W , which implies that the energy I is strictly convex (on measures
with barycentre at the origin). Strict convexity of the energy, in its turn, guar-
antees that the minimiser can be characterised as the only solution of the Euler-
Lagrange optimality conditions.

Motivated by the results in [2,3] and [5] we look for a candidate ellipsoid E ⊂ Rd

centred at the origin, with |E| = m, such that its characteristic function χE
satisfies the Euler-Lagrange conditions

(W ∗ χE)(x) +m
|x|2
2

= λ if x ∈ ∂E,(5)

(W ∗ χE)(x) +m
|x|2
2
≤ λ if x ∈ E◦,(6)

(W ∗ χE)(x) +m
|x|2
2
≥ λ if x ∈ Rd \ E,(7)

for a constant λ ∈ R. To evaluate the potential of a generic ellipsoid E we use
the representation of the potential in Fourier form proved in [5, 6] for d = 2, 3.
Following [5, 6] one can see that condition (7) is automatically satisfied by any
solution E of (5)–(6).

The key idea to solve (5)–(6) is to rewrite (5) as the stationarity condition for
an auxiliary scalar function f defined on symmetric and positive definite matrices
M (encoding the information on the semi-axes and orientation of E), under the

determinant constraint detM = m2

|B|2 (encoding the mass constraint |E| = m).

One of the main advantages of this alternative formulation is that (6) corresponds
to a condition on the sign of the Lagrange multiplier associated to the constraint.
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The strategy is then to first show that the auxiliary minimisation problem
for f obtained by replacing the equality constraint for the determinant with the

unilateral condition detM ≥ m2

|B|2 admits a solution. As a final step we show that

this solution in fact satisfies the equality constraint. This immediately gives the
required sign condition for the multiplier, and concludes the proof of (5)–(6).

2.1. Motivation and comparison with the radially symmetric case. The
problem we consider can be interpreted as a first shape optimisation result for
nonlocal anisotropic energies with competing attractive and repulsive terms.

The isotropic counterpart of this problem is well-studied. The closest analogue
to our energy I is the energy considered in [1, 4], namely

(8) E(Ω) =

∫

Ω

∫

Ω

K(x− y) dxdy, Ω ∈ Am,

where K is a power-law potential of the form

(9) K(x) =
|x|q
q
− |x|

p

p
, −d < p < 0, q > 0.

In the special case of Coulomb repulsion and quadratic attraction there is a thresh-
old for the mass, given by the volume of the unit ball B, such that the energy E
admits no minimiser if m < |B|, while for m ≥ |B| the minimiser of E is a ball
of mass m. While this is similar to our main result, the corresponding proofs are
substantially different. In particular, the radial symmetry of the interactions in
E allows immediately to identify a (unique) ball as the candidate minimiser and
greatly simplifies the proof.

Another important class of isotropic attractive/repulsive energies is given by

EP(Ω) =

∫

Ω

∫

Ω

1

d− 2

1

|x− y|2−d dxdy + Per(Ω), Ω ∈ Am,

where Per denotes the classical perimeter. The energies EP have been first intro-
duced by Gamow in his liquid drop model and widely studied since.

Considering an anisotropic analogue of EP is a very natural direction of inves-
tigation, but this is not a direction we will pursue in this work.

References

[1] A. Burchard, R. Choksi, I. Topaloglu, Nonlocal shape optimization via interactions of at-
tractive and repulsive potentials, Indiana Univ. Math. J. 67 (2018), 375–395.

[2] J.A. Carrillo, R. Shu, Global minimizers of a large class of anisotropic attractive-repulsive
interaction energies in 2D, Comm. Pure Appl. Math. 77 (2024), 1353–1404.

[3] J.A. Carrillo, R. Shu, Minimizers of 3D anisotropic interaction energies, Preprint
arXiv:2206.140546.

[4] R. Frank, E. Lieb, Proof of spherical flocking based on quantitative rearrangement inequal-
ities, Ann. Sc. Norm. Super. Pisa Cl. Sci. 22(3) (2021), 1241–1263.

[5] J. Mateu, M.G. Mora, L. Rondi, L. Scardia, J. Verdera, Explicit minimisers for anisotropic
Coulomb energies in 3D, Adv. Math. 434 (2023), no.109333, 28pp.

[6] M.G. Mora, Nonlocal anisotropic interactions of Coulomb type, Preprint arXiv:2305.14474.



3230 Oberwolfach Report 57/2023

Existence and uniqueness in law for some doubly nonlinear SPDEs

Ulisse Stefanelli

(joint work with Carlo Orrieri, Luca Scarpa)

Assume to be given a stochastic basis (Ω,F , (Ft)t≥0,P) satisfying the usual con-
ditions, a bounded Lipschitz domain O ⊂ Rd, and a cylindrical Wiener process W
on L2(O) =: H . The progressive σ-algebra associated with (Ft)t≥0 is indicated by
P . We are interested in the doubly nonlinear parabolic SPDE

du = (∂tu
d)dt+GdW,(1a)

α(∂tu
d)−∆u+ β(u) = f(u).(1b)

Relation (1a) entails that ud is the absolutely continuous part of the Ito process
u. The Hilbert-Schmidt operator G ∈ L2(H,H) is given. Moreover, α, β ∈ C0(R)
are nondecreasing, with β bounded, α−1 ∈ C0,η(R) for some η ∈ (0, 1), and
r ∈ R 7→ α−1(r) − κr bounded for some κ > 0. This in particular entails that α
is nondegenerate: there exists c > 0 such that α(r)r ≥ cr2 − 1/c for all r ∈ R.
Eventually, we ask f ∈ W 1,∞(R).

Equation (1b) is posed in the space-time cylinder O × (0,∞) and is comple-
mented with boundary and initial conditions

u = 0 on ∂O × (0,∞),(1c)

u(·, 0) = u0 in O.(1d)

In particular, the Laplacian −∆ in (1b) is seen as an unbounded, linear, selfadjoint
operator in H with domain D(−∆) := H2(O) ∩ H1

0 (O). Via spectral decompo-
sition, one classically defines the powers (−∆)σ and the corresponding domains
D((−∆)σ) for any σ > 0. Eventually, we ask G to have kerG = {0} and to
commute with −∆. Problem (1) is a concrete example for the abstract theory
developed in [4,5], where indeed the above assumptions are somewhat generalized.

In the deterministic caseG ≡ 0, a general well-posedness theory covering (1) has
been obtained by Akagi [2], see also Colli & Visintin [3] for the unperturbed case of
f ≡ 0. Solutions to the deterministic problem are unique for β Lipschitz continuous
and α strongly monotone. In case α is not strongly monotone, uniqueness may
fail, also for β = 0, see [1].

In the stochastic case G 6≡ 0, we are able to give two distinct results, relating
to two different regularity setting for the initial datum u0 and the noise G. Corre-
spondingly, we consider two different type of solutions to (1), both of probabilistic-
weak type. For more regular data, we focus on analytically strong solutions. In
the less regular setting, we resort to Friedrichs weak solutions instead. We record
our findings in the two theorems below.

Theorem 1 (More regular setting). Let u0 ∈ H1
0 (O) and G ∈ L2(H,H1(O)).

Then, there exists an analytically strong solution to (1), namely,

(Ω,F , (Ft)t≥0,P,W, u, u
d)
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where (Ω,F , (Ft)t≥0,P) is a filtered probability space, W is a cylindrical Wiener
process on H, and, for all T > 0, u ∈ L2

P(Ω;C0([0, T ];H) ∩ L∞(0, T ;H1
0 (O)) ∩

L2(0, T ;H2(O))), and ud ∈ L2
P(Ω;H1(0, T ;H)) solve

u(t) = u0 +

∫ t

0

∂tu
d(s) ds+

∫ t

0

GdW (s) a.e. in O, ∀t ≥ 0, P− a.s.,

α(∂tu
d)−∆u+ β(u) = f(u) a.e. in O × (0,+∞), P− a.s.

In addition, if α is strongly monotone and β is Lipschitz continuous we have that
analytically strong solutions are unique and (Ω,F , (Ft)t≥0,P) and W can be a-
priori chosen.

This result is proved in [5] by means of an approximation procedure: for all
λ > 0 one solves the approximate problem

duλ = (∂tu
d
λ)dt+GdW,(2a)

λ∂tu
d + αλ(∂tu

d) +Bλu = f(u),(2b)

along with the boundary and initial conditions (1c)-(1d). In (2b), Bλ is the Yosida
approximation of −∆+β at level λ > 0: for all u ∈ H we define Bλu = (u−vλ)/λ,
where vλ ∈ H2(O) ∩ H1

0 (O) is the unique solution to vλ − λ∆vλ + λβ(vλ) = u
a.e. in O. The well-posedness of (2) for all λ > 0 follows from the Lipschitz
continuity of (λ id + αλ)−1, Bλ, and f . One derives λ-independent estimates on
uλ and udλ, extracts suitably converging subsequences, and passes to the limit
λ→ 0 in (2a)-(2b) obtaining an analytically strong solution. Pathwise uniqueness
in case α is strongly monotone and β is Lipschitz is straightforward. Based on
such uniqueness, the possibility of a-priori fixing (Ω,F , (Ft)t≥0,P) and W follows
by classical arguments.

Before moving on, let us remark that (1) can be equivalently rewritten as

du− κ∆u dt+ κβ(u) dt = κf(u) dt+ C(u) dt+GdW

where the operator C : H2(O) ∩H1
0 (O) is defined as

C(u) = α−1(f(u) + ∆u− β(u)) − κ(f(u) + ∆u− β(u)).

Note that the range of C is bounded in H . For all λ > 0, we also define Cλ(u) =
α−1(f(u)−Bλu)− κ(f(u)−Bλu) for all u ∈ H .

Theorem 2 (Less regular setting). Let u0 ∈ H and G(H) ⊂ D((−∆)σ) for some
σ with

(3) 0 < σ < min

{
η

4− 2η
,

1

6

}
.

Then, for any sequence λn → 0 there exists a Friedrichs-weak solution to (1),
namely, (Ω,F , (Ft)t≥0,P,W, u, y) where (Ω,F , (Ft)t≥0,P) is a filtered probability
space satisfying the usual conditions, W is a cylindrical Wiener process on H,
and, for all T > 0, u ∈ L2

P(Ω;C0([0, T ];H) ∩ L2(0, T ;H1
0 (O))), and y ∈ L∞

P (Ω ×
(0, T );H) such that there exists a not relabeled subsequence λn, a sequence of data
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(u0n, Gn) ∈ H1
0 (O)×L2(H,H1

0 (O)), and a sequence of analytically strong solutions
to

dun − κ∆un dt+ κβ(un) dt = κf(un) + Cλn(un) dt+Gn dW

with boundary condition (1c) and initial condition un(·, 0) = u0n such that, for all
T > 0,

u0n → u0 in H, λ−1/2−σ
n ‖Gn −G‖L2(H,H) → 0,

un
∗
⇀ u in L2

P(Ω;L∞(0, T ;H) ∩ L2(0, T ;H1
0 (O))),

un → u in L2(0, T ;H) P-a.s., Cλn(un)
∗
⇀ y in L∞

P (Ω× (0, T );H).

Two such Friedrichs-weak solutions u1 and u2 with the same (Ω,F , (Ft)t≥0,P),
W , and initial datum u0 coincide in law in C0([0, T ];H), namely,

(4) E[g(u1(t))] = E[g(u2(t))] ∀g ∈ Cb(H), ∀t ≥ 0,

where Cb(H) are the bounded continuous functions on H and E denotes the expec-
tation w.r.t. P.

This result is proved in [4], as a subcase of a more general abstract theory.
The existence statement follows by an approximation argument via analytically
strong solutions. The uniqueness-in-law statement results from the analysis of the
associated Kolmogorov equation. For given γ > 0 and g ∈ Cb(H) one considers

γϕ(h)− 1

2
Tr(G∗GD2ϕ(h)) = g(h) +

∫

O

(∆h− β(h) + f(h))Dϕ(h) dx,

to be solved for all h ∈ H2(O) ∩ H1
0 (O). Assuming ϕ ∈ C2

b (H) to solve such
Kolmogorov equation, an application of the Ito formula to ϕ ◦ u on the time
interval [0, t] and a limit for t→∞ formally entail that

∫ ∞

0

e−γsE[g(u(s))] ds = ϕ(u0).

By establishing the latter for any Friedrichs-weak solution, as γ > 0 is arbitrary,
basic properties of the Laplace transform and the a.s. continuity of g ◦u imply (4).
In order to make the above argument rigorous, one has to argue at the approximate
λn level, where the corresponding Kolmogorov equation is solved by ϕλn . Then,
one proves estimates on ϕλn and its derivatives, applies the Ito formula to ϕλn ◦un,
and passes to the limit. In the process, the qualification (3) on σ is used.

References

[1] G. Akagi, On some doubly nonlinear parabolic equations, GAKUTO International Series,
Mathematical Sciences and Applications, Gakko-Tosho, vol. 32 (2010), pp. 239–254.

[2] G. Akagi, Doubly nonlinear evolution equations with non-monotone perturbations in reflex-
ive Banach spaces, J. Evol. Equ. 11 (2011),1:1–41.

[3] P. Colli, A. Visintin, On a class of doubly nonlinear evolution equations Comm. Partial
Differential Equations 15 (1990), 5:737–756.

[4] C. Orrieri, L. Scarpa, U. Stefanelli, Stability by noise for a class of doubly nonlinear sto-
chastic evolution equations, in preparation (2024).

[5] L. Scarpa, U. Stefanelli, Doubly nonlinear stochastic evolution equations II, Stoch. Partial
Differ. Equ. Anal. Comput. 11 (2023), 1:307–347. Correction, ibid. 11 (2023), 4:1740–1743.



Variational Methods for Evolution 3233

Quantum computing with Rydberg-atom quantum processors:

A personal journey

Oliver Tse

(joint work with Robert de Keijzer, Servaas Kokkelmans, Luke Visser)

Recent advancements in Rydberg atoms along with the spectacular degree of ex-
perimental control of state-of-the-art platforms have made it possible to realize
quantum gates with high fidelity, thereby drawing the advent of universal quantum
computers closer to reality. Yet, quantum computing is still in the so-called noisy
intermediate-scale quantum (NISQ) era, where the number of available error-free
qubits is modest, and quantum algorithms have yet to outperform their classical
counterparts in practice.

This talk introduces and reports on progress in the following research topics:

Variational Quantum Optimal Control (VQOC). The development of hybrid and
near-term quantum algorithms, such as Variational Quantum Eigensolvers (VQEs)
based on digital quantum circuits, has been progressing at an enormous pace to
allow for quantum advantage in the NISQ era. This development, however, has
mostly been independent of the developments in quantum computing hardware,
where the physical control of qubits in Rydberg systems is governed by inherently
analog laser pulses. In this talk, we introduce the VQOC framework, which brings
together recent progress in the understanding and control of Rydberg platforms
and the well-developed theory of quantum optimal control, and show applications
of VQOC on examples related to the electronic structure problem.

Learning quantum channels. The state of a closed quantum system evolves under
the Schrödinger equation, where the reversible evolution of the state is propa-
gated from initial time by an action of a unitary operator. However, realistic
quantum systems are open, i.e. they interact with their environment, resulting in
non-reversible evolutions, described by quantum semigroups on density matrices.
To simulate an open quantum system using an ideal quantum computer, which is
intrinsically closed, thus requires one to model an open quantum system with a
closed one. We do this by invoking the Stinespring dilation theorem, allowing us to
learn a target quantum semigroup by approximating equivalent unitary evolutions
on an extended system. We further report on an experimentally feasible method
to extrapolate the quantum evolution at later times using only data from the first
few time steps.

Towards understanding noisy qubits. Noise on a controlled quantum system is
generally introduced via the non-reversible Lindblad equation. This equation
describes the average state of the system via the density matrix. One way of
deriving this Lindblad equation is by taking a sample average of states evolving
under the stochastic Schrödinger equation (SSE) driven by white noise. However,
white noise, where all noise frequencies contribute equally in the power spectral
density, is not a realistic noise profile as lower frequencies commonly dominate the
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spectrum. For this reason, we provide analytical solutions to the full fidelity distri-
bution for important cases of the SSE driven by more realistic noise. This allows
for predictions of the mean, variance, and higher-order moments of the fidelities of
these qubits, which can be of value when deciding on the allowed noise levels for
future quantum computing systems, e.g. deciding what quality of control systems
to procure. Furthermore, these methods will prove to be integral in the optimal
control of qubit states under (classical) control system noise.
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Discrete to continuous crystalline curvature flows

Antonin Chambolle

(joint work with Daniele DeGennaro, Massimiliano Morini)

The talk described a work in progress, where we investigate a fully discrete version
of the Almgren-Taylor-Wang / Luckhaus-Sturzenhecker scheme [1, 7] for building
mean curvature flows. This scheme, after some rewriting, can be described as
follows: given a set E0, and dE0 the signed distance function to its boundary, we
solve in Rd, for h > 0 small and each n ≥ 1:

(1)

{
−hdiv zn + un = dEn−1 ,

|zn| ≤ 1, zn ·Dun = |Dun|

which is formally the Euler-Lagrange equation of

min
u

∫
|Du|+ 1

2h

∫
(u− dEn−1)2dx

(yet this energy is infinite in the whole space). We let then En = {x : un(x) ≤ 0}.
By translational invariance and comparison, un is trivially 1-Lipschitz (since dEn−1

is), in particular the second condition in (1) reads z ∈ ∂| · |(∇d) a.e. in Rd (the
subgradient of the Euclidean norm). One also deduces that dEn ≥ un in {un > 0},
and dEn ≤ un in {un < 0}. Hence,

dn − dn−1

h
≥ div zn

out of En. Getting some control on dn in time and div zn in space allows then to
pass to the limit and deduce the existence of E ⊂ Rd× [0,∞) (the Hausdorff limit
of
⋃
n≥0E

n × {nh}) a closed set such that

(2) ∂td ≥ div z in D′((Rd × (0,∞)) \ E), z ∈ ∂| · |(∇xd) a.e.
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with d(x, t) = dist(x,E(t)) for all x, t. Reasoning with the complement, one
finds a similar equation for A ⊂ E, the complement of the Hausdorff limit of⋃
n≥0(Rd \ En)× {nh}).
This equation, which holds in the distributional or measure sense, is seen to

hold also in the viscosity sense [5, 6] and hence characterizes the mean curvature
flow (with a possible, but exceptional, fattening of the set E \A), as shown in [8].
An important step in proving the convergence is an estimate of the solution of (1)
with the right-hand side replaced with |x|, first computed in [3], this is crucial to
estimate the variation of dn in time as well as div zn from above where dn > 0.

Now, in [4, 6], it is also shown that the same scheme (and the same proof)
can be applied to build and characterize anisotropic, or crystalline flows. Sticking
to the simpler case of [6], and given ϕ a convex norm (with possibly polyhedral
level sets) we replace Du above with ϕ(Du), the distance with the ϕ◦ distance
(ϕ◦(x) = sup{x ·ν : ϕ(ν) ≤ 1}), the condition on zn in (1) with zn ∈ ∂ϕ(∇un) and
end up with a distributional definition of a well posed crystalline mean curvature
flow (see [6] for a comparison result which guarantees the uniqueness, in general,
of the limit—when A is the interior of E). In this case, the motion is still described
by (2) yet the second condition is z ∈ ∂ϕ(∇xd) and d is the ϕ◦-distance to E.

In this work, with M. Morini (Parma) and our student D. DeGennaro (Cere-
made), we propose a to solve a fully discrete equation, which reads (for h, ε > 0,
small time and space steps)




h(D∗zn)i + uni = dn−1

i for i ∈ εZd
|zni,j| ≤ β j−i

h
, zni,j(uj − ui) = β j−i

h
|uj − ui|

where D : RZd → RZd×Zd is defined by (Du)i,j = (uj − ui)/h, D∗ is its adjoint
(for the standard scalar product), and βk, k ∈ Zd, is a finitely supported family of
positive weights (positive at least on a basis of Zd). One then sends h, ε→ 0. In
case ε ≪ h, but more interestingly and somewhat surprisingly in case ε = h, one
may then adapt the techniques above to show again the convergence to (2), for the
crystalline anisotropy ϕ(p) =

∑
k∈Zd βk|k · p|. Interestingly, in case ε = h, we may

define dn from un with a sort of interpolation scheme (defined by suitable inf/sup
convolutions with the distance ϕ◦), so that the limiting evolution is precisely given
by (2) without any drift, contrarily to the dicrete scheme introduced previously
in [2], which was the starting point for our study, and where a rounding occurs at
each step which accumulates in the limit.
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Coarse-graining to GENERIC

Johannes Zimmer

(joint work with Alexander Mielke, Mark A. Peletier)

We study a model system on two different scales, called microscopic and macro-
scopic, with the aim of deriving the macroscopic description from the microscopic
one.

The macroscopic description is governed by a thermodynamic formulation in
form of GENERIC, the General Equation for the Non-Equilibrium Reversible-
Irreversible Coupling [3], sometimes also called metriplectic evolution. It takes
the form

(1) ẏ = J(y)DE(y) + K(y)DS(y);

here y ∈ Y is the macroscopic variable defined on a state space Y, J : Y∗ → Y is a
symplectic operator, K : Y∗ → Y is a positive semidefinite operator, E ,S : Y → R

are the energy and entropy functionals and D denotes a derivative. The structure
of GENERIC immediately implies that the energy E is constant along trajectories
and the entropy S is non-decreasing. Thus, GENERIC ensures thermodynamic
consistency, and very different thermodynamic systems can be put in this frame-
work [2].

The aim is to derive (1) as macroscopic description of a microscopic model,
i.e., give a mathematically rigorous coarse-graining procedure. We choose a clas-
sic microscopic system, which has been investigated in detail [1], though to our
knowledge not in connection with GENERIC. The model is purely Hamiltonian,
to reflect the description of atoms and molecules by Newtonian mechanics. It
consists of a finite-dimensional Hamiltonian system (System A) coupled to an
infinite-dimensional heat bath (System B) via a coupling C. Both System B and
the coupling are linear, while system A can be nonlinear. Specifically, with z ∈ Z

denoting the state of system A and η ∈ H denoting the state of system B, the
total Hamiltonian of the microscopic system is

(2) Htotal(z, η) = HA(z) +HB(η) +HC(z, η),
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where the Hamiltonian for the heat bath is

HB(η) =
1

2
‖η‖2

H
for all η ∈ H,

and the coupling is described by the Hamiltonian

HC = (Az|Pη)
H

;

here (·|·)
H

is the inner product in H, A : Z→ H is a linear embedding operator and
P is an orthogonal projection operator discussed later. Below, we write B := PA.

One can show that, due to the linearity of the heat bath, the corresponding
evolution satisfies for t ∈ R

ż(t) = JA(DHA(z(t)) + B∗η(t)),(3a)

η(t) = eJBt
(
η(0) + Bz(0)

)
− Bz(t) +

∫ t

0

eJB(t−s)Bż(s)ds,(3b)

where JA and JB are the sympletic operators associated with HA and HB.
So far, we have not specified the initial condition of the heat bath B. While the

coupled microscopic system evolves deterministically, we introduce randomness
through the initial data η(0) for the heat bath. Then (3b) involves a memory
term, namely the time integral in the right, and a stochastic term stemming from
the initial data. One can show that one can rephrase this equation as a generalized
(i.e., non-Markovian) Langevin equation.

Such non-Markovian equations are often encountered in a Mori-Zwanzig reduc-
tion procedure, where suitable projections of an infinite-dimensional microscopic
system are considered [6]. Often, when dealing with non-Markovian systems, one
tries to rephrase them as Markovian ones by augmenting the state space.

The GENERIC equation (1) is Markovian (in the sense that it is a nonlinear
semigroup, hence in particular local, i.e., memoryless in time). Abstractly, due to
the presence of the dissipative term K(y)DS(y), one expects GENERIC systems
to be given by a (nonlinear) contraction semigroup. The evolution given by (3),
however, corresponds to a unitary group on Z×H. To link these two, we use the
concept of compressions. Compressions can be seen as the ‘inverse’ of dilations;
the theory of dilations provides an embedding of a given contraction semigroup
e−tD defined on a Hilbert space W into a strongly continuous unitary group etJ

defined on a bigger space such that the restriction of the unitary group to W

agrees with the given contraction semigroup,

(4) PetJ
∣∣
W

=

{
e−tD t ≥ 0

etD
∗

t ≤ 0
on W,

where P is the orthogonal projection on W. A minimal dilation is unique up to
Hilbert space isomorphism [5, Chapter 1].

The existence of a compression means that given the unitary group etJ, a sub-
space W and an orthogonal projection P onto W and a contraction semigroup e−tD

exist such that (4) holds. For existence of compressions we refer to [4, Section 5].
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The coarse-graining to go from the microscopic evolution (3), i.e., the unitary
group associated with (2), to a GENERIC evolution, i.e., a macroscopic evolution
which can be cast in the general form (1), that involves as key step finding a
(finite-dimensional) compression subspace Y of Z×H such that the compression
of the unitary group on Y is defined. It is natural that the compression subspace
Y contains Z.

Here a compression of the heat bath can be interpreted as reduction to ob-
servables, as elements of W. For the coupled system, a compression subspace is
given by Z ×W, where W = PH. Thus observables are (z, w) with w = Pη. A
GENERIC evolution can be formulated if this state space is augmented by a suit-
ably defined energy e. The GENERIC form has the following structure. For the
contraction semigroup D, we consider the split in symmetric and skew-symmetric
parts,

D = Dsym + Dskw with Dsym =
1

2
(D+D∗) and Dskw :=

1

2
(D−D∗).

Then the symplectic operator J of the GENERIC evolution (1) in y := (z, w, e)
involves JA and Dskw, while Dsym enters the positive semi-definite operator K of
GENERIC. The random initial data of the heat bath enters the entropy S and
the dissipative operator K. In passing from the stochastic microscopic system via
compression to GENERIC, an interim stage is a stochastic version of GENERIC,
which includes a noise term Σ. One can show that a fluctuation-dissipation state-
ment linking K and Σ holds.

References
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Analytic properties of the sliced Wasserstein distance

Sangmin Park

(joint work with Dejan Slepčev)

Given two probability measures µ, ν ∈ P2(Rd) := {µ ∈ P(Rd) :
∫
|x|2dµ(x) <

∞}, recall that the 2-Wasserstein distance W2 between them is defined as follows:

W2(µ, ν) := inf
γ∈Γ(µ,ν)

(∫

Rd×Rd
|x− y|2 dγ(x, y)

)1/2

where Γ(µ, ν) =
{
γ ∈P(Rd × Rd) : π1

#γ = µ, π2
#γ = ν

}
.

The sliced Wasserstein distance, introduced by Rabin, Peyré, Delon, and Bernot
[4], compares probability measures on Rd by taking averages of the Wasserstein
distances between projections of the measures to each 1-dimensional subspaces of
Rd. To be more precise, for each θ ∈ Sd−1 define the projection πθ : Rd → R by

πθ(x) = θ · x.
The 2-sliced Wasserstein distance SW2 is defined by

SW2(µ, ν) =

(
1

|Sd−1|

∫

Sd−1

W 2
2 (πθ#µ, π

θ
#ν) dθ

) 1
2

where # denotes the pushforward of a measure.
Thanks to its lower sample and computational complexities relative to the

Wasserstein distance especially in high dimensions, the sliced Wasserstein dis-
tance has recently expanded its applications in statistics and machine learning as
a tool to compare measures and construct paths in spaces of measures.

In this talk we presented a number of analytic properties of the SW2 and the
sliced Wasserstein length metric ℓSW , defined as the infimum of the lengths of
curves between measures in the SW2-space. Moreover, we discussed their impli-
cations on the sliced Wasserstein gradient flows and statistical estimation rates in
the metrics.

Comparison of sliced Wasserstein metric with negative Sobolev norms and Wasser-
stein metric. To understand the metric properties of the sliced Wasserstein dis-
tance, we establish the comparison theorems of SW2 with negative Sobolev norms
near absolutely continuous measures and comparisons of SW2 with the Wasserstein
metric W2 near discrete measures. In particular, consider an absolutely continuous
measure µ bounded away from zero and infinity on some bounded open convex do-
main Ω. For all measures µ, ν which are within constant multiples of the Lebesgue
measure restricted to Ω, we show
(1)
‖µ−ν‖Ḣ−(d+1)/2(Rd) . SW2(µ, ν) ≤ ℓSW (µ, ν) . SW2(µ, ν) . ‖µ−ν‖Ḣ−(d+1)/2(Rd),

where the rightmost inequality additionally requires ν to coincide with µ near the
boundary of Ω. In other words, near µ, SW2 is equivalent to Ḣ−(d+1)/2.
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On the other hand, we show that

(2) SW2(µn, ν) ≤ ℓSW (µn, ν) ≤ 1

d
W2(µn, ν) ≤ (1 + o(1))SW2(µn, ν)

for ν near discrete measures of the form µn =
∑n

i=1miδxi .
These two results provide interesting insights about the SW2 measure. Near

smooth measures it behaves like a highly negative Sobolev space, in contrast to the
Wasserstein metric which for such measures behaves like the Ḣ−1 norm as noted by
Peyre [3], while near discrete measures SW2 behaves like the Wasserstein distance.

Approximation by discrete measures in sliced Wasserstein length. It is known that
finite-sample estimation of measures with respect to maximum mean discrepancy
(MMD) also enjoys parametric rate [5, Theorem 3.3]. MMD distance is nothing but
the norm in the dual of a reproducing kernel Hilbert space (RKHS). In particular
the results of [5] apply to the dual of the Sobolev space Hs with s > d

2 (when
the spaces embeds in the spaces of Hölder continuous functions and are RKHS).
The comparison (1) says that near absolutely continuous measures, SW2 behaves

like Ḣ−(d+1)/2-norm; as the associated norm ‖ · ‖H−(d+1)/2(Rd) is an MMD, we
can formally understand SW2 to exhibit behaviors like an MMD. Thus MMD
parametric estimation can be seen as a tangential or a linearized analogue of the
finite sample estimation rates in SW2 distance. Indeed, Manole, Balakrishnan,
and Wasserman [2, Proposition 4] have shown that a finite random sample (i.e.
the empirical measure of the set of n random points) of a probability measure on
Rd estimates the measure in the sliced Wasserstein distance at a parametric rate,
1√
n

, for a large class of measures.

We establish that finite sample approximation in ℓSW happens at the parametric
rate up to a logarithmic correction, namely that

SW2(µ, µn) ≤ ℓSW (µ, µn) .

√
logn

n
with high probability,

where µn = 1
n

∑n
i=1 δXi with Xi

i.i.d.∼ µ. This is in stark contrast with the Wasser-
stein distance where the approximation rate is poor in high dimensions and scales
like n− 1

d .

Implications on gradient flows. The comparison results on ℓSW , SW2 can be used
to obtain comparisons for the metric slopes. Given a metric space (X,m), recall
that metric slope |∂E|m of a functional E : X → R is defined by

(3) |∂E|m(u) = lim sup
v
m−→u

[E(u)− E(v)]+
m(u, v)

.

Consider the potential energy V(µ) :=
∫
Rd
V (x) dµ(x). When V is smooth and

compactly supported, for suitable absolutely continuous µ ∈P2(Rd) it holds that

(4) |∂V|Ḣ(d+1)/2(Rd)(µ) . |∂V|ℓSW (µ) ≤ |∂V|SW (µ) . |∂V|Ḣ(d+1)/2(Rd)(µ)
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whereas the slope behaves quite differently at discrete measures, µn =
∑n
i=1miδxi ,

namely that

(5) |∂V|SW2(µn) = |∂V|ℓSW (µn) =
√
d |∂V|W (µn).

Hence |∂V|SW2 (resp. |∂V|ℓSW ) is not lower-semicontinuous in SW2 (resp. ℓSW )
in general, even when V ∈ C∞

c (Rd). This implies that the potential energy is
not λ-geodesically convex in (P2(Rd), ℓSW ). Consequently, the curves of maximal
slope in the Wasserstein space starting from discrete measures with finite number
of particles, after a constant rescaling of time, is the curve of maximal slope in
SW2 space.

On the other hand, for smooth measures, the curves of maximal slope with
respect to the Wasserstein metric are not curves of maximal slope in SW2 space.
We formally show that SW2 gradient flow of potential energy is a higher order
equation given by a pseudodifferential operator of order d, which is consistent
with the rigorous results (4).
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Entropic propagation of chaos for population dynamics

Jasper Hoeksema

Interacting particle systems where particles can be created and deleted form the
backbone of several models in ecology, with the particular example of the Bolker-
Pacala-Dieckmann-Law (BPDL) model [1], which was originally introduced to
study the evolution of and pattern formation in populations of plants, but which
turned out to accurately describe models involving mutation of traits.

Various methods exist to derive mean-field limits for these systems, but these
sometimes require stringent assumptions on the interactions and use weak notions
of convergence. In this talk, we discuss past [6] and current work to alleviate
both these restrictions for weakly interacting birth/death processes where, using
techniques inspired by convergence of gradient flows for interacting particle sys-
tems [3–5], we prove entropic propagation of chaos for the BPDL model.
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We model the particles as a collection of points {Xn,1
t , . . . , Xn,Nt

t } in a compact
Polish space X , where the parameter n will control the order of the number of
particles in the system. We are interested in convergence in a suitable sense of the
rescaled empirical measure νnt ∈ Γ :=M(X ) given by

νnt :=
1

n

Nt∑

i=1

δXn,it
.

Formally, νnt is a measure-valued jump process with generator

QnF = n

∫

X

(
F (ν + 1

nδx)− F (ν)
)
χ+
ν (dx) + n

∫

X

(
F (ν − 1

nδx)− F (ν)
)
χ−
ν (dx)

with F ∈ Cc(Γ) and the measure-dependent birth/death rates χ±
ν , which in the

case of the BPDL model looks like

χ+
ν (dx) =

(∫

X

m(x, y)ν(dy)

)
γ(dx), χ−

ν (dx) =

(∫

X

c(x, y)ν(dy)

)
ν(dx)

where m, c are the mutation and competition kernels, and γ ∈ Γ is some reference
measure.

It is the corresponding forward Kolmogorov equation that is our object of study.
It describes the law of νnt , and for a path of measures (Pnt )t∈[0,T ] over some time
horizon [0, T ] it satisfies

∂tP
n
t = Q∗

nP
n
t .

After a Taylor expansion of QnF , with F a suitable cylindrical function, one can
expect that under suitable conditions

lim
n→∞

QnF = Q∞F =

∫

X

(∇ΓF )(ν, x)Vν(dx),

where Vν(dx) := χ+
ν (dx) − χ−

ν (dx), and would surmise that limn→∞ Pnt = Pt
narrowly, where Pt satisfies the corresponding Liouville equation with velocity
field V . In particular, if Pn0 → P0 := δν̄t then one would expect that

(1) Pnt → δν̄t

where ν̄t satisfies the mean-field equation

∂tν̄t = Vν̄t .

The convergence (1) is known as propagation of chaos, and implies narrow con-
vergence of the corresponding correlation functions. However, we are interested
in a strictly stronger notion, called entropic propagation of chaos, which implies
vanishing relative entropy. For suitable bounds on ν̄t the latter can be shown to
be equivalent to the statement

lim
n→∞

1

n
Ent(Pn0 |Πn) =

∫

Γ

Ent(ν|γ)P0(dν) =⇒ lim
n→∞

1

n
Ent(Pnt |Πn) =

∫

Γ

Ent(ν|γ)Pt(dν)

for all t ∈ [0, T ], with Πn a rescaled Poisson point measure induced by γ.
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In our work we prove this property, using large deviation techniques for the
rescaled entropies, lower semicontinuity of the entropy dissipation, and the Sandier-
Serfaty approach [2] to obtain convergence.

A key tool is the fact that the rescaled entropy dissipation, in the reversible
setting where m = c and c(x, x) = 0 for all x ∈ X , reduces to (with a slight abuse
of notation)

Kn(P) = 2Ent

(
P(dν)χ+

ν (dx)
∣∣∣P
(
d(ν + 1

n )
)
χ−

ν+
1
n

(dx)

)
,

and is related to the convergence of the associated gradient flow structures as
shown in [6]. In current work we extend this to the irreversible setting.
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schetz property for spheres, and, more generally, for pseudomanifolds and cy-
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Introduction by the Organizers

The 2023 Oberwolfach meeting “Geometric, Algebraic, and Topological Combina-
torics” was organized by Gil Kalai (Hebrew University, Jerusalem), Isabella Novik
(University of Washington, Seattle), Francisco Santos (University of Cantabria,
Santander), and Volkmar Welker (Philipps-Universität Marburg, Marburg).

The conference featured three 1-hour talks by Federico Ardila on “Intersec-
tion theory of matroids”, Eran Nevo on “Rigidity expander graphs”, and by Tom
Braden on “The intersection cohomology module of a matroid”, two back-to-back
35-minute talks by Vasiliki Petrotou and Stavros Papadakis “Lefschetz properties
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via anisotropy”, a 50-minute talk by Nati Linial on “Some stories about graphs
and geometry”, and 23 additional talks, ranging from 30 to 40 minutes. On Thurs-
day evening we held a problem session. After and before the lectures many small
groups embarked in discussions, some of which initiated new collaborations. All
together it was a very productive, intense and enjoyable week.

The conference covered a broad spectrum of topics from Algebraic Combina-
torics (intersection cohomology modules, Lefschetz theorems, Koszul duality),
Topological Combinatorics (configuration spaces, envy-free partitions, random
complexes), and Geometric Combinatorics (face enumeration, polytope theory,
matroid polytopes, lattice polytopes, rigidity theory).

In the next paragraphs we summarize the richness and depth of the work and
the presentations, concentrating on some of the highlights.

The first lecture on Monday, by Federico Ardila (based on his Clay lecture at
the British Combinatorial Conference 2024, see F. Ardila-Mantilla, Intersection
theory of matroids: Variations on a theme, in: Surveys in Combinatorics 2024,
pp. 1-30, Cambridge University Press, 2024) discussed four different ways to
define the Chow ring of a toric variety due to Billera, Brion, Fulton–Sturmfels,
and Allermann–Rau. Federico also explained how the different representations of
the Chow ring enable different proofs of recent spectacular combinatorial results
such as unimodality of the coefficients of chromatic polynomials.

Gaku Liu’s talk then presented an ingenious inductive proof that every matroid
base polytope has a regular unimodular triangulation.

The rest of Monday was devoted to a variety of topics in algebraic and geometric
combinatorics. For instance, Eran Nevo discussed a proof of the existence of
an infinite family of k-regular d-rigidity-expander graphs for every d ≥ 2 and
k ≥ 2d+ 1.

Tuesday morning focused on topological combinatorics. Florian Frick talked
about topological methods in zero-sum Ramsey theory. Pablo Soberon discussed
high-dimensional envy-free partitions. Kevin Piterman talked about fixed-point-
free actions of finite groups on contractible spaces. More specifically, Kevin pre-
sented a solution to a central problem about the existence of fixed points for every
finite group acting on a compact 2-complex. Finally, Roy Meshulam’s lecture
on random balanced Cayley complexes was a very rich blend of combinatorial,
topological, Fourier-theoretical, and algebraic methods.

On Tuesday afternoon we had several talks related to polytope theory and in
particular to lattice polytopes.

Wednesday morning started with an hour lecture by Tom Braden. This lecture
complemented Ardila’s talk from Monday morning reporting on recent fascinating
developments in the matroid theory; this time via the lens of Algebraic Geometry.

The second part of Wednesday morning consisted of two back-to-back talks by
Stavros Papadakis and Vasiliki Petrotou. They discussed their notion of anisotrop-
icity of simplicial spheres which led to their proof of the Lefschetz property for
spheres, and, more generally, for pseudomanifolds and cycles (this second part is
joint with Adiprasito). The Lefschetz property, in turn, leads to a simpler proof of
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the g-conjecture for spheres. Their talks were followed by Christos Athanasiadis’
talk on face enumeration and real-rootedness.

On Thursday, the focus returned to topological questions, a highlight being
Geva Yashfe’s talk about the number of triangulations of homology 3-spheres.

Friday morning was devoted to a mixture of topics in polyhedral geometry and
hyperplane arrangements. The final lecture of the conference was given by Nati
Linial who discussed recent progress on geodetic and metrizable graphs.

It bears repeating that numerous breakthrough results were announced and
presented during the conference.

We are extremely grateful to the Oberwolfach institute, its directorate and to
all of its staff for providing a perfect setting for an inspiring, intensive week of
“Geometric, Algebraic, and Topological Combinatorics”.

Gil Kalai, Isabella Novik, Francisco Santos, Volkmar Welker
Jerusalem/Seattle/Santander/Marburg, April 2024

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Intersection theory of matroids: techniques and examples

Federico Ardila

Chow rings of toric varieties, which originate in intersection theory, feature a rich
combinatorial structure of independent interest. We survey four different ways of
computing in these rings, due to Billera, Brion, Fulton–Sturmfels, and Allermann–
Rau. We illustrate the beauty and power of these methods by giving four proofs
of Huh and Huh–Katz’s formula µk(M) = degM (αr−kβk) for the coefficients of
the reduced characteristic polynomial of a matroid M as the mixed intersection
numbers of the hyperplane and reciprocal hyperplane classes α and β in the Chow
ring of M . Each of these proofs sheds light on a different aspect of matroid com-
binatorics, and provides a framework for further developments in the intersection
theory of matroids. Our presentation is combinatorial, and does not assume pre-
vious knowledge of toric varieties, Chow rings, or intersection theory.

Face enumeration of order complexes and real-rootedness

Christos A. Athanasiadis

(joint work with Katerina Kalampogia-Evangelinou)

Given a finite poset P , the order complex ∆(P ) is the abstract simplicial complex
which consists of all chains in P . Order complexes of Cohen–Macaulay posets form
a class of flag simplicial complexes with especially nice properties [12, Section III.4].
Somewhat unexpectedly, their face enumeration is far from being well understood.
We aim to show that their f -polynomials (equivalently, their h-polynomials) tend
to be real-rooted surprisingly often by discussing examples and methods that can
be applied.

Let us denote by ck(P ) the number of k-element chains in P . The f -polynomial
and the h-polynomial of ∆(P ) are then defined as

f(∆(P ), x) =

n∑

k=0

ck(P )xk,

h(∆(P ), x) =

n∑

k=0

ck(P )xk(1 − x)n−k = (1 − x)nf

(
x

1 − x

)
,

where n is the largest cardinality of a chain in P . The polynomial f(∆(P ), x)
is also called the chain polynomial of P . We recall that h(∆(P ), x) has nonneg-
ative coefficients for every Cohen–Macaulay poset P (see [12, Chapter II]) and
that f(∆(P ), x) is real-rooted (meaning, all its roots are real) if and only if so is
h(∆(P ), x).

Our motivation comes from the following two conjectures. The first was posed
as a question by Brenti–Welker [9] and claims that barycentric subdivisions of
convex polytopes have real-rooted h-polynomials.
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Conjecture 1. (cf. [9, Question 1]) The polynomial h(∆(P ), x) is real-rooted if
P is the face lattice of a convex polytope.

Conjecture 2. ([3, Conjecture 1.2]) The polynomial h(∆(P ), x) is real-rooted for
every geometric lattice P (equivalently, if P is the lattice of flats of a matroid).

The latter conjecture would imply the unimodality of the h-polynomials of
order complexes of geometric lattices. These two conjectures naturally raise the
following question.

Question 3. ([3, Question 1.1]) For which finite Cohen–Macaulay posets P is
h(∆(P ), x) real-rooted? Equivalently, which finite Cohen–Macaulay posets have a
real-rooted chain polynomial?

Let us briefly discuss some answers to Question 3 which are known in interesting
special cases. For distributive lattices the question is known to be equivalent to
the Neggers conjecture [10] (see also [5] [11, Conjecture 1]), which claims the real-
rootedness of poset Eulerian polynomials. Thus, there exist distributive lattices
which fail to have real-rooted chain polynomials [13]. On the other hand, classes of
Cohen–Macaulay posets with real-rooted chains polynomials include some classes
of distributive lattices [8, 14] and:

• Cohen–Macaulay simplicial posets [9] (in particular, face lattices of sim-
plicial or simple polytopes) and all their rank-selected subposets [4];

• CL-shellable cubical posets [2] (in particular, face lattices of cubical poly-
topes);

• the face lattices of the pyramid and the prism over polytopes which have
a face lattice with real-rooted chain polynomial [3];

• partition lattices of types A and B and subspace lattices [3];
• the lattices of flats of paving matroids [7] and those of near-pencils, uniform

matroids and all matroids on at most nine elements [3];
• all noncrossing partition lattices associated to irreducible finite Coxeter

groups [4].

A popular method of proof is to express h(∆(P ), x) as a nonnegative linear com-
bination of real-rooted polynomials with positive leading coefficients which form
an interlacing sequence (or, more generally, which have a common interleaver); see
[6, Section 7.8] and references therein for the relevant background. We illustrate
this method in two cases in which it has been successful, namely those of simplicial
and cubical posets (see [12, Section II.6] and [1] for background on simplicial and
cubical posets and their h-vectors).

Theorem 4. (cf. [9, Theorems 1 and 2]) For every positive integer n, there exists
an interlacing sequence (pn,k(x))0≤k≤n of real-rooted polynomials with nonnegative
coefficients such that

h(∆(P ), x) =

n∑

k=0

hk(P )pn,k(x)
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for every simplicial poset P of rank n, where (hk(P ))0≤k≤n is the simplicial h-
vector of P . In particular, h(∆(P ), x) is real-rooted for every simplicial poset P
with nonnegative simplicial h-vector.

The polynomial pn,k(x) can be defined by the formula

∑

m≥0

mk(1 +m)n−kxm =
pn,k(x)

(1 − x)n+1
,

or as the descent enumerator of permutations w of {1, 2, . . . , n + 1} such that
w(1) = k + 1.

Theorem 5. ([2]) For every nonnegative integer n, there exists an interlacing
sequence (pBn,k(x))0≤k≤n+1 of real-rooted polynomials with nonnegative coefficients
such that

h(∆(Q), x) =
n+1∑

k=0

hk(Q)pBn,k(x)

for every cubical poset Q of rank n + 1, where (hk(Q))0≤k≤n+1 is the cubical h-
vector of Q. In particular, h(∆(Q), x) is real-rooted for every cubical poset Q
which has a nonnegative cubical h-vector.

The polynomials pBn,k(x) can be defined by the formula

pBn,k(x)

(1 − x)n+1
=





∑

m≥0

(2m+ 1)nxm, if k = 0,

∑

m≥0

(4m)(2m− 1)k−1(2m+ 1)n−kxm, if 1 ≤ k ≤ n,

∑

m≥1

(2m− 1)nxm, if k = n+ 1.
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Convex partitions in a slice

Pavle V. M. Blagojević

(joint work with Michael C. Crabb)

1. Convex partitions of Euclidean spaces

Problems related to the existence of convex partitions of a Euclidean space of a
desired type have a long and rich history, starting with the 1930’s ham-sandwich
theorem of Steinhaus and Borsuk as the most famous example. The ham-sandwich
theorem claims that for every collection of d proper convex bodies C1, . . . , Cd in
Rd there exists a convex partition of Rd into 2 pieces A1 and A2 such that

vold(C1 ∩ A1) = vold(C1 ∩ A2) , . . . , vold(Cd ∩ A1) = vold(Cd ∩ A2).

Here, the closed convex sets A1 and A2 with non-empty interior form a convex
partition of Rd if A1∪A2 = Rd and int(A1)∩int(A2) = ∅, (hence vold(A1∩A2) = 0).

A natural extension is the question: For given integers d, k, j ≥ 1 and an
arbitrary collection C of j proper convex bodies in Rd is it possible to find k affine
hyperplanes such that every orthant Ω determined by them contains the same piece
of each convex body in C, that is vold(C ∩ Ω) = 1

2k
vold(C) for every C ∈ C. The

work on this generalisation of the ham-sandwich theorem, the so called Grünbaum–
Hadwiger–Ramos problem, was pioneered by Grünbaum [11], Hadwiger [12] and
Avis [2], and a bit later continued by Edgar Ramos [16]. Topological challenges
emerging in the process of solving this problem were recently discussed in [7].

In 2006 Nandakumar & Ramana-Rao asked for a solution of the following in-
triguing problem: Is it true that for every integer n ≥ 2 and every proper convex
body C in the plane there is a convex partition of the plane into n pieces A1, . . . , An
having equal area and equal perimeter, that is

vol2(C ∩ A1) = · · · = vol2(C ∩ An) and per(C ∩ A1) = · · · = per(C ∩ An),

where “per” denotes the plane perimeter function. This naive-looking question
caught a lot of attention and many authors contributed to its better understand-
ing. For more details see the work of Bárány, Blagojević & Szűcs [3], Soberón
[17], Karasev, Hubard & Aronov [14], Blagojević & Ziegler [10], and Blagojević
& Sadovek [8]. Recently a promising work of Akopyan, Avvakumov & Karasev
offered a new insight into a complete solution of the original, plane, Nandakumar
& Ramana-Rao problem [1]. The work on a solution of this problem brought into
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Figure 1. Convex partitions of the plain by orthants into 4
pieces, by generalised Voronoi diagram into 6 pieces, and by iter-
ation of depth 2 into 6 = 2 · 3 pieces.

focus convex partitions generated by generalised Voronoi diagrams of Rd which
in addition equipart a fixed convex body into pieces of equal volume. Surpris-
ingly such convex partitions can be completely parametrised by the configuration
space of pairwise distinct points in Rd. Each point in the space corresponds to a
collection of the so-called “sites” of a generalised Voronoi diagram.

Iterated convex partitions appeared for the first time in context of the Gromov’s
waist of the sphere theorem. Gromov worked with the partitions into 2i pieces,
which can be parametrised by the wreath products of spheres. For a different
waist of the sphere result, Palić with Blagojević and Karasev in [15] considered
iterated convex partitions into pk pieces indexed by the kth wreath product of the
configuration spaces. Iterated partitions appeared also in the work of Blagojević &
Soberón [9], where they were parametrised by the join of the configuration space.
The most general iterated convex partition in the context of the Nandakumar &
Ramana-Rao problems were recently considered by Blagojević & Sadovek in [8].

A general convex equipartition problem can be formulated as follows.

Problem (Convex partitions of a Euclidean space) Let d, j, n ≥ 1 be fixed in-
tegers, C an arbitrary collection of j proper convex bodies in Rd and let P be
a predetermined class of convex partitions of Rd, like partitions by orthants, by
(generalised) Voronoi diagrams, or by iterated convex partition (see Figure 1 for
an illustration). Is there a partition (A1, . . . , An) of Rd from the class P with the
property that vold(C ∩ A1) = · · · = vold(C ∩ An) for every convex body C ∈ C.

2. Convex partitions of Euclidean vector bundles

Motivated by the classical problems of convex partitions of a Euclidean space we
ask whether a similar result can be obtained if instead of one (ambient) Euclidean
space we consider a (parametrised) family of Euclidean spaces and look for a
convex partition of at least one of these spaces satisfying the desired property. A
prototype of the problems we want to address can be phrased in the following way.

Problem (Convex partitions of tautological vector bundles) Let d, j, n, k ≥ 1 be
fixed integers, C a collection of j proper convex bodies in Rd with the origin in
their interiors and let P be a predetermined class of convex partitions of Rk. Is
there an ℓ-dimensional linear subspace L of Rd and a partition (A1, . . . , An) of L
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from the class P with the property that vold(C ∩L∩A1) = · · · = vold(C ∩L∩An)
for every convex body C ∈ C.

In the case of partitions by orthants in a tautological vector bundle Blagojević,
Calles Loperena, Crabb & Dimitrijević Blagojević, using the parametrised Fadell–
Husseini index theory and delicate spectral sequence computations, proved the
following result [4, Thm. 1.5].

Theorem 1. Let d, j, n, k, ℓ ≥ 1 be fixed integers, C a collection of j proper
convex bodies in Rd with the origin in theirs interiors such that 1 ≤ k ≤ ℓ and
d ≥ 2⌊log2 j⌋(2k−1 − 1) + j. There exists an ℓ-dimensional linear subspace L of Rd

and k affine hyperplanes in L such that volℓ(C ∩L∩Ω) = 1
2k

volℓ(C ∩L) for every
C ∈ C and every orthant Ω ⊆ L determined by the affine hyperplanes.

In the followup work, Blagojević & Crabb [5] gave the complete treatment of
a problem of convex partitions by orthants on Euclidean vector bundles. Using a
new insight they reprove known results and extend them to arbitrary Euclidean
vector bundles putting various types of constraints on the solutions. Furthermore,
the developed methods allowed them to give new proofs and extend results of Guth
& Katz, Schnider and Soberón & Takahashi.

Levinson, in collaboration with Blagojević & Crabb, considered the problem
of convex partitions in Euclidean vector bundle by generalised Voronoi diagrams
[6, 13]. An example of the results they obtained is the following theorem.

Theorem 2. Let d ≥ 2, j ≥ 1, and 1 ≤ ℓ ≤ d be integers and let n an odd prime.
Consider an arbitrary collection C of j proper convex bodies in Rd with the origin
in theirs interiors. If j ≤ d− 2, then there exists an ℓ-dimensional linear subspace
L of Rd and a convex partition A1, . . . , An of L by a generalised Voronoi diagram
such that volℓ(C ∩L∩A1) = · · · = volℓ(C ∩L∩An), for every convex body C ∈ C.
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The intersection cohomology module of a matroid

Tom Braden

(joint work with June Huh, Jacob Matherne, Nicholas Proudfoot, Botong Wang)

Let M be a matroid of rank d on the ground set [n], and let L = L(M) be its lattice
of flats. The number of flats of rank k is Wk = Wk(M), the kth Whitney number
of the second kind of M. In the 1975 paper [8], Dowling and Wilson proved that
if k ≤ d/2 then

W0 +W1 + · · · +Wk ≤Wd−k +Wd−k+1 + · · · + Wd.

They also made the stronger conjecture that

Wk ≤Wd−k,

which has become known as the Dowling–Wilson or “top-heavy” conjecture for
matroids. It was proved for d = 3 by de Bruijn and Erdős [6], and for k = 1 by
Basterfield and Kelly [1]. When M is realizable it was proved by Huh and Wang
[9] using the intersection cohomology of an associated algebraic variety, and it is
proved in general in [4], by defining the intersection cohomology combinatorially
for an arbitrary matroid, and showing that it has the required properties.

If M is realized by vectors v1, v2, . . . , vn spanning a vector space V over C, then

ξ 7→ (ξ(v1), . . . , ξ(vn))

gives an injection V ∗ →֒ Cn. Huh and Wang considered the singular variety Y
which is the closure of the image of V ∗ inside (P1)n. It has a decomposition into
affine spaces indexed by elements of L, which implies that its odd cohomology
vanishes, and that dimQH

2k(Y ;Q) = Wk. Its intersection cohomology IH∗(Y ;Q)
is a module over the cohomology ring, and the hard Lefschetz theorem says that
for an ample class ℓ ∈ H2(Y ;Q) and k ≤ 2d, the multiplication

ℓd−2k : IH2k(Y ;Q) → IH2d−2k(Y ;Q)
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is an isomorphism. Huh and Wang then appeal to a theorem of Björner and
Ekedahl [2], which says that the cohomology of Y injects into the intersection
cohomology IH∗(Y ;Q) as H∗(Y ;Q)-modules. This implies that the multiplication

ℓd−2k : H2k(Y ;Q) → H2d−2k(Y ;Q)

is an injection, proving the Dowling–Wilson conjecture in this case.
In [4] we consider combinatorial avatars of the cohomology ring and intersection

cohomology module which make sense for any matroid M. The cohomology ring
is replaced by the graded Möbius algebra H(M), which has a Q-basis the symbols
yF , with multiplication

yF yG =

{
yF∨G if rank(F ∨G) = rankF + rankG

0 otherwise.

It is the associated graded of the usual Möbius algebra under the filtration by rank.
If M is realized by vectors as above, then H(M) is isomorphic to the cohomology
ring of Y , with degrees halved.

The main result of [4] is the construction of a graded H(M)-module IH(M), the
intersection cohomology module of M. It satisfies the following properties:

(1) There is an element 1 ∈ IH0(M) so that y 7→ y · 1 defines an injection of
H(M) into IH(M),

(2) its graded dual IH(M)∗ is isomorphic to IH(M)[d],
(3) it satisfies hard Lefschetz: if ℓ =

∑
rankF=1 cF yF where all cF > 0, then

ℓd−2k · : IHk(M) → IHd−k(M)

is an isomorphism for k ≤ d/2,
(4) the Hodge–Riemann bilinear relations: the restriction of the pairing

(a, b) 7→ (−1)k〈ℓd−2ka, b〉
to the kernel of multiplication by ℓd−2k+1 in IHk(M) is positive definite,
where 〈, 〉 is the pairing on IH(M) induced by an isomorphism as in (2),
normalized so that 〈y[n] · 1, 1〉 = 1.

Properties (1) and (3) are enough to deduce the Dowling–Wilson conjecture, but
the proof of (3) involves a complicated induction in which all four statements are
needed for all matroids on smaller ground sets.

The module IH(M) is constructed as a direct summand of the augmented Chow
ring CH(M), which was defined in [3]. It is the graded algebra generated over Q
in degree 1 by xF , F ∈ L(M) \ {[n]} and yi, i ∈ [n], subject to the relations

• xFxG = 0 if F,G are not comparable,
• yi =

∑
i/∈F xF , and

• yixF = 0 if i /∈ F .

There is an injection H(M) →֒ CH(M) which sends yF to
∏
i∈B yi, where B is

any basis of F . By Krull-Schmidt, the direct summands of CH(M) as a graded
H(M)-module are unique up to isomorphism and permutation. Up to isomorphism,
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IH(M) is the unique direct summand which contains 1. In [4], a particular sum-
mand representing IH(M) is defined by a complicated inductive procedure which
does not depend on any choices.

A more intrinsic characterization of IH(M) is given by the following forthcoming
result. For an upwardly closed subset Σ ⊂ L(M), ΥΣ := span{yF | F ∈ Σ} is an
ideal of H(M).

Theorem ([5]). Up to isomorphism, IH(M) is the unique graded H(M)-module
satisfying:

(1) IH(M) is indecomposable and y[n]IH(M) 6= 0,

(2) IH(M)
∗ ∼= IH(M)[d], and

(3) for any upwardly closed sets Σ1,Σ2 ⊂ L(M),

ΥΣ1
IH(M) ∩ ΥΣ2

IH(M) = ΥΣ1∩Σ2
IH(M).
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Local h∗-polynomials for one-row Hermite normal form simplices

Benjamin Braun

(joint work with Esme Bajo, Giulia Codenotti, Johannes Hofscheier,
Andrés R. Vindas-Meléndez)

This talk is based on the preprint [2]. The local h∗-polynomial of a lattice poly-
tope is an important invariant arising in Ehrhart theory. When the polytope S is
a simplex, the local h∗-polynomial is often called the box polynomial and denoted
B(S; z). Our focus in this work is the study of B(S; z) for lattice simplices pre-
sented in Hermite normal form with a single non-trivial row, i.e., simplices S such
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that the vertices of S are the rows of a matrix of the form



0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0
a1 a2 a3 · · · ad−2 ad−1 N




with 0 ≤ ai < N for all i. We prove that when the off-diagonal entries are fixed,
the distribution of coefficients for the local h∗-polynomial of these simplices has a
limit as the normalized volume N goes to infinity. More precisely, we prove the
following:

Theorem 1. Fix a1, . . . , ad−1 ∈ Z≥1 and let

M := lcm
(
a1, . . . , ad−1,−1 +

d−1∑

i=1

ai
)
.

Let SN denote the simplex defined by the matrix above, where the values of ai are
held constant for varying N . Let k be a positive integer and 0 ≤ r ≤M − 1. Then
we have that

lim
k→∞

B(SkM+r ; z)/B(SkM+r; 1) = B(SM+1; z)/B(SM+1; 1) .

It follows that if B(SM+1; z) is strictly unimodal, i.e., if the coefficients are uni-
modal with strict increases and strict decreases, then B(SkM+r ; z) is strictly uni-
modal for all sufficiently large k.

It is known by work of Adiprasito, Papadakis, Petrotou, and Steinmeyer [1]
that if a lattice polytope P has the integer decomposition property, then the local
h∗-polynomial has unimodal coefficients. One notable aspect of Theorem 1 is that
experiments with random simplices in one-row Hermite normal form suggests that
unimodality is frequently present even when S does not have the integer decom-
position property. It would thus be interesting to further investigate unimodality
of local h∗-polynomials for SM+1 for various sequences a1, . . . , ad−1.

References

[1] K. Adiprasito, S. Papadakis, V. Petrotou, J. Steinmeyer, Beyond positivity in Ehrhart the-
ory, Preprint, 2022, https://doi.org/10.48550/arXiv.2210.10734.

[2] E. Bajo, B. Braun, G. Codenotti, J. Hofscheier, A. Vindas-Meléndez, Lo-
cal h

∗-polynomials for one-row Hermite normal form simplices, Preprint, 2023,
https://doi.org/10.48550/arXiv.2309.01186.



Geometric, Algebraic and Topological Combinatorics 3265

Poincaré-extended ab-index

Galen Dorpalen-Barry

(joint work with Joshua Maglione, Christian Stump)

Grunewald, Segal, and Smith introduced the subgroup zeta function of finitely-
generated groups [8], and Du Sautoy and Grunewald gave a general method to
compute such zeta functions using p-adic integration and resolution of singulari-
ties [6]. This motivated Voll and the second author to examine the setting where
the multivariate polynomials factor linearly. They found that the p-adic inte-
grals are specializations of multivariate rational functions depending only on the
combinatorics of the corresponding hyperplane arrangement [10]. After a natu-
ral specialization, its denominator greatly simplifies, and they conjecture that the
numerator polynomial has nonnegative coefficients.

In this work, we prove their conjecture, which is related to the poles of these
zeta functions. Specifically, we reinterpret these numerator polynomials by intro-
ducing and studying the (Poincaré-)extended ab-index, a polynomial generalizing
both the Poincaré polynomial and ab-index of the intersection poset of the ar-
rangement. These polynomials have been studied extensively in combinatorics,
although from different perspectives. The coefficients of the Poincaré polynomial
have interpretations in terms of the combinatorics and the topology of the ar-
rangement [5, Section 2.5]. The ab-index, on the other hand, carries information
about the order complex of the poset and is particularly well-understood in the
case of face posets of oriented matroids—or, more generally, Eulerian posets. In
those settings, the ab-index encodes topological data via the flag f -vector [1].

We study the extended ab-index in the generality of graded posets admitting
R-labelings. This class of posets includes intersection posets of hyperplane ar-
rangements and, more generally, geometric lattices and geometric semilattices.
We show that the extended ab-index has nonnegative coefficients by interpret-
ing them in terms of a combinatorial statistic. This generalizes statistics given
for the ab-index by Billera, Ehrenborg, and Readdy [3] and for the pullback ab-
index (defined below) by Bergeron, Mykytiuk, Sottile and van Willigenburg [2].
This interpretation proves the aforementioned conjecture [10], as well as a related
conjecture from Kühne and the second author [9].

Motivated by the proofs of these conjectures, we describe a close relationship
between the Poincaré polynomial and the ab-index by showing that the extended
ab-index can be obtained from the ab-index by a suitable substitution. This
recovers, generalizes and unifies several results in the literature. Concretely, special
cases of this substitution were observed by Billera, Ehrenborg and Readdy for
lattices of flats of oriented matroids [3], by Saliola and Thomas for lattices of flats
of oriented interval greedoids [11], and by Ehrenborg for distributive lattices [7].
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Discrete homotopy theory

Daniel Carranza

(joint work with Chris Kapulkin)

Discrete homotopy theory, introduced by H. Barcelo and collaborators, is a homo-
topy theory of (simple) graphs. Homotopy invariants of graphs have found numer-
ous applications, for instance, in the theory of matroids, hyperplane arrangements,
topological data analysis, and combinatorial time series analysis. Discrete homo-
topy theory is also a special instance of a homotopy theory of simplicial complexes,
developed by R. Atkin, to study social and technological networks.

I will report on joint work with C. Kapulkin on developing a new foundation
for discrete homotopy theory, based on the homotopy theory of cubical sets. To
demonstrate the robustness of this foundation, we use it to prove a conjecture of
Babson, Barcelo, de Longueville, and Laubenbacher from 2006 relating homotopy
groups of a graph to the homotopy groups of a certain cubical complex associated
to it.
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Topological methods in zero-sum Ramsey theory

Florian Frick

(joint work with Jacob Lehmann Duke, Meenakshi McNamara, Hannah
Park-Kaufmann, Steven Raanes, Steven Simon, Darrion Thornburgh, and

Zoe Wellner)

A 1961 result of Erdős, Ginzburg, and Ziv [4] guarantees that any sequence
a1, . . . , a2n−1 ∈ Z/n of length 2n − 1 of integers modulo n has a subsequence
of length n that sums to zero. Algebraic techniques, such as the Chevalley–
Warning theorem, have proven fruitful in deriving numerous variants and ex-
tensions of the original Erdős–Ginzburg–Ziv theorem; see Caro [3] for a survey
of these results, which are collectively known as zero-sum Ramsey theory. We
develop an equivariant-topological framework to derive zero-sum results in combi-
natorial number theory; see [5] for full details.

Observe that general zero-sum Ramsey results may be phrased as follows: Let H
be an n-uniform hypergraph on ground set V and let c : V → Z/n; decide whether
there is a σ ∈ H with

∑
v∈σ c(v) = 0. We refer to any function c : V → Z/n as

a Z/n-coloring of H and call σ ∈ H with
∑
v∈σ c(v) = 0 a zero-sum hyperedge.

The original Erdős–Ginzburg–Ziv theorem in this language states that any Z/n-
coloring of the complete n-uniform hypergraph on ground set {1, 2, . . . , 2n − 1}
has a zero-sum hyperedge.

Comparing the setup above to that of classical hypergraph colorings, where
one is interested in the existence of a coloring that avoids monochromatic hyper-
edges (that is, hyperedges where c is constant), observe that avoiding zero-sum
hyperedges is a stronger condition. Equivariant-topological techniques, as first
developed in this context by Alon, Frankl, and Lovász [1] and Kŕıž [6], provide
strong obstructions for the existence of colorings without monochromatic hyper-
edges. It is thus natural to ask, whether these methods may also be applied in
the more restrictive setting of obstructing colorings without zero-sum hyperedges.
Our work shows that this is indeed possible.

To each n-uniform hypergraph H on ground set V associate a topological space
that is symmetric with respect to a natural action by Z/n, and in fact by the
symmetric group, although we will not make use of this generality. This symmetric
space is built as a simplicial complex, the box complex B(H): For pairwise disjoint
A0, . . . , An−1 ⊆ V let A0 × {0} ∪ · · · ∪ An−1 × {n − 1} be in B(H) if for all
a0 ∈ A0, . . . , an−1 ∈ An−1 we have that {a0, . . . , an−1} ∈ H . Thus B(H) is a
simplicial complex on V ×Z/n that is symmetric with respect to the natural Z/n-
action on the second factor. Denote the d-dimensional sphere by Sd. For odd d we
fix a free action by the cyclic group Z/n on Sd. The following gives a topological
criterion for existence of zero-sum hyperedges for any Z/p-coloring of a hypergraph
for p a prime:

Theorem 1. Let p ≥ 2 be a prime, and let H be a p-uniform hypergraph. If
there is no Z/p-equivariant map B(H) → S2p−3, then any Z/p-coloring of H has
a zero-sum hyperedge.
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In particular, if B(H) is homotopically (2p−3)-connected then any Z/p-coloring
of H has a zero-sum hyperedge. If H is the complete p-uniform hypergraph on
{1, . . . , 2p− 1} then the faces of B(H) consists of p-tuples of pairwise disjoint sets
in {1, . . . , 2p − 1}. This simplical complex is (2p − 3)-connected, which recovers
the result of Erdős, Ginzburg, and Ziv for p a prime. In the same way as for the
standard algebraic proofs of this theorem, the general case then follows by a simple
induction on prime divisors.

A Z/p-coloring of H without zero-sum hyperedge induces a simplex-wise linear
Z/p-equivariant map B(H) → R2p−2 \ {0}. Using this same approach now for an
arbitrary finite group G instead of Z/p and convex-geometric results to ascertain
the existence of zeros of G-equivariant simplex-wise linear maps, yields Olson’s
generalization [7] of the Erdős–Ginzburg–Ziv theorem to arbitrary finite groups G.

The topological criterion above has a sufficient condition that may be easily
phrased in purely combinatorial terms. Let F be a set family on ground set X .
The n-colorability defect cdn(F) is min |X \⋃ni=1 Ai|, where the minimum is taken
over all n-tuples of sets A1, . . . , An that each have no subset in F . The Kneser
hypergraph KGn(F) has F as its ground set and a hyperedge {A1, . . . , An} ∈
KGn(F) if the Ai are pairwise disjoint.

Theorem 2. Let n ≥ 2 be an integer, and let F be a set family with cdn(F) ≥
2n− 1. Then any Z/n-coloring of KGn(F) has a zero-sum hyperedge.

For example, if F is the family of all k-element subsets of {1, 2, . . . , (k+1)n−1}
then cdn(F) = 2n−1. Thus the theorem above recovers that for any f : F → Z/n
there are n pairwise disjoint A1, . . . , An ∈ F with

∑
f(Ai) = 0; see Bialostocki

and Dierker [2]. The colorability defect bound gives a more general criterion for
the existence of zero-sum matchings.

The version of box complex introduced above differs from that of Kŕıž and
provides stronger obstructions. We refer to [5] for proofs and further consequences
of the topological approach to zero-sum Ramsey results.
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Random order types

Xavier Goaoc

(joint work with Emo Welzl)

Labeled order types are geometric models of realizable uniform acyclic oriented
matroids of rank 3 of particular relevance in discrete and computational geometry.
The typical number of extreme points in a simple labeled order type can be deter-
mined exactly, and this number reveals bias in the labeled order types of several
standard models of random point sets. This analysis can be extended to unlabeled
simple order types, that is, to relabeling classes of simple realizable uniform acyclic
oriented matroids of rank 3, via a combinatorial analogue of Klein’s classification
of the finite subgroups of SO(3). We refer to the full paper [1] for details.

1. Labeled order types

The orientation χ(p, q, r) of an ordered triple (p, q, r) of points in R2 is defined as 1
(resp. −1, 0) if r is to the left of (resp. to the right of, on) the line through p and
q, oriented from p to q. Two point sequences (p1, p2, . . . , pn) and (q1, q2, . . . , qn)
have the same labeled order type if

(1) ∀1 ≤ i, j, k ≤ n, χ(pi, pj , pk) = χ(qi, qj , qk).

This is an equivalence relation, and a labeled order type is an equivalence class for
that relation. A labeled order type is simple if no three points are aligned in a
member of that class. We denote by LOTn the set of simple labeled order types of
size n.

2. A combinatorial version of Sylvester’s problem

A famous question of Sylvester asked for the average number of extreme points in a
“random” planar point set. Since the notion of extreme point can be defined at the
level of labeled order type, Sylvester’s question makes sense in the combinatorial
setting. We prove:

Theorem 1. For n ≥ 3, the number of extreme points in a random simple labeled
order type chosen equiprobably in LOTn has average 4 − 8

n2−n+2 and variance less
than 3.

Our approach is to divide up the simple planar labeled order types into projectively
equivalent classes, and average the number of extreme points within each class.

3. Labeled order types of random point sets

Before we elaborate on the proof of Theorem 1, let us mention that it reveals that
the labeled order types of several models of random point sets are rather biased.
Formally, a family {µn}n∈N, where µn is a probability measure on LOTn, exhibits
concentration if there exist subsets An ⊆ LOTn, n ∈ N, such that µn(An) → 1 and
|An|/|LOTn| → 0.
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Theorem 2. Let µ be a probability distribution on R2 that is Gaussian or uniform
on a compact convex set K, with K smooth or polygonal. The family of probabilities
on LOTn induced by the labeled order type of n random points chosen independently
from µ exhibits concentration.

We prove Theorem 2 by comparing the typical number of extreme points given by
Theorem 1 to the typical number of extreme points in random point sets estab-
lished in stochastic geometry.

4. Projective classes of labeled order types

To divide up labeled order types into classes under projective equivalence, it is
convenient to identify R2 with an open hemisphere of S2, the unit sphere of R3.
Let S be a point sequence, labeled from 1 to n, in an open hemisphere of S2, and
let ω denote its labeled order type. We let P = S ∪ −S, where antipodal points
have the same labels, and we define an affine hemiset of P as an intersection of
size n between P and a closed hemisphere of S2. Like S, every affine hemiset of P
contains exactly one point from each antipodal pair. For a labeled order type τ ,
the following statements are equivalent:

(i) there exist projectively equivalent point sequences that realize τ and ω,
(ii) there exists a point sequence projectively equivalent to S that realizes τ ,

(iii) there exists an affine hemiset of P that realizes τ .

It turns out that for n ≥ 4, any two affine hemisets of P have distinct labeled
order types. The affine hemisets of P are therefore in bijection with the labeled
order types projectively equivalent to ω.

5. Averaging via duality

For any point p ∈ S2 let p∗ = {u ∈ S2 : p ·u = 0} denote the great circle orthogonal
to p. Note that a hemisphere of S2 centered in x intersects P in an affine hemiset if
and only if x lies in a 2-dimensional cells of the arrangement of P ∗ = {p∗ : p ∈ P}.
This in fact defines a bijection between the affine hemisets of P and the 2-cells of
the arrangement of P ∗. A key observation is that in this bijection, the number
of extreme points of the affine hemiset equals the number of edges of the 2-cell.
Among the labeled order type projectively equivalent to ω, the average number
of extreme points is therefore the average number of edges in a 2-cell of P ∗. For
every ω, this average is equal to

8
(
n
2

)

2
(
n
2

)
+ 2

= 4 − 8

n2 − n+ 2
,

so the average is the same over LOTn. The upper bound on the variance follows
from the zone theorem.

6. Unlabeling

A coarser classification of n-point sets identifies P and Q when there exists a bi-
jection f : P → Q that preserves orientations. An equivalence class for this coarser
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relation is called an order type. Again, any point set S in an open hemisphere of
S2 gives rise to a set P = S ∪ −S that is projective in the sense that P = −P .
Again, the order types of the affine hemisets of P are exactly the order types τ
that are projectively equivalent to the order type ω of S (in the sense that τ and
ω admit projectively equivalent realizations). In the unlabeled setting, however,
several affine hemisets of P may have the same order type...

7. Symmetries

... and how many is a matter of symmetries. Formally, a symmetry of a point
set S ⊆ S2 is a bijection S → S that preserves orientations. Any symmetry of a
projective point set P maps every affine hemiset of P to an affine hemiset of P .
In the action of the symmetry group of P on its affine hemisets, the orbit of an
affine hemiset A is exactly the set of affine hemisets of P with the same order type
as A, and the stabilizer of A is isomorphic to the symmetry group of A. By the
orbit-stabilizer theorem, the number of affine hemisets of P with order type ω is
therefore

#symmetries of P

#symmetries of ω
To control these ratios, and establish an analogue of Theorem 1 for unlabeled
order type, we actually characterize the possible symmetry groups of affine and
projective subsets of S2.

8. Classifying symmetry groups

The symmetry group of an affine point set acts on its convex hull (and, actually, on
any layer of its “convex peeling”) by a circular permutation. This readily implies
that every affine point set has a cyclic symmetry group. The key insight to analyze
the symmetries of projective point sets is the following analogue of the fact that
any rotation ρ ∈ SO(3) leaves exactly two hemispheres of S2 globally invariant.

Proposition 3. For n ≥ 3, every non-trivial symmetry of a 2n-point projective
point set P leaves exactly two affine hemisets of P globally invariant.

With Proposition 3, Klein’s approach to classifying the finite groups of rotations
can be implemented and it yields that the symmetry group of any projective set
of 2n points in general position is a finite subgroup of SO(3).

Theorem 4. The symmetry group of any projective set of 2n points in general
position is Z1 (trivial group), Zm (cyclic group) or Dm (dihedral) with m dividing
n or n− 1, S4 (octahedral = cubical), A4 (tetrahedral), or A5 (icosahedral).

Each of these groups occurs as the symmetry group of some projective order type.

References

[1] Goaoc, X. and Welzl, E., Convex hulls of random order types, Journal of the ACM 70(1)
(2023), 1–47.



3272 Oberwolfach Report 58/2023

Generalized recursive atom ordering and equivalence to CL-shellability

Patricia Hersh

(joint work with Grace Stadnyk)

1. Introduction

This abstract describes joint work with Grace Stadnyk. We introduce a new tech-
nique for studying the topological structure of order complexes of finite partially
ordered sets (posets), namely we introduce generalized recursive atom orderings.
This is a relaxation of the fundamental and widely used technique known as recur-
sive atom ordering that was introduced several decades ago by Björner and Wachs
in [BW83].

We establish a number of fundamental properties of these generalized recur-
sive atom orderings (GRAOs), including the property that any generalized recur-
sive atom ordering may be transformed into a traditional recursive atom ordering
(RAO) by a process we call the atom reordering process. Since GRAOs are easier
to construct than RAOs, this may give a useful new pathway to proving a poset
is CL-shellable. These generalized recursive atom orderings further allow us to
prove that several different forms of lexicographic shellability (in the not necessar-
ily graded case) are all equivalent to each other, by which we mean that a finite
bounded poset admits any one of these types of lexicographic shelling if and only
if it admits each of the others. One might expect this to imply the stronger state-
ment that any instance of any one of these types of lexicographic shelling is also an
instance of any other of these types of lexicographic shelling, but this is not always
true. For instance, one may deduce that not every “self consistent CC-shelling” is
a CL-shelling from the fact that not every generalized recursive atom ordering is
a recursive atom ordering.

We prove that a finite bounded poset admits a recursive atom ordering (RAO)
if and only if it admits a generalized recursive atom ordering (GRAO).

A chain-atom ordering Ω of a finite bounded poset P is a choice of ordering
on the atoms of each rooted interval [u, 1̂]r of P . Now we are ready to state our
main new definition.

Definition 1. A finite bounded poset P admits a generalized recursive atom
ordering (GRAO) if the length of P in in P ) is 1 or if the length of P is greater
than 1 and there is an ordering a1, a2, . . . at on the atoms of P satisfying:

(i) (1) For 1 ≤ j ≤ t, [aj , 1̂] admits a GRAO. sive atom ordering
(ii) For any atom aj and any x,w ∈ P satisfying aj⋖x⋖w, the following

property holds when the chain-atom ordering given by the GRAO from
(i)(a) is restricted to [aj , w]: either the first atom of [aj , w] is above
an atom ai with i < j, or no atom of [aj , w] is above any atom ai
with i < j.

(iii) For any y ∈ P and any atoms ai, aj satisfying ai < y and aj < y with
i < j, there exists an element z ∈ P with z ≤ y and an atom ak with k < j
such that aj ⋖ z and ak < z.
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The statement about cover relations in condition (i)(b) in the definition of
GRAO can be strengthened to a corresponding statement about all order relations:

Lemma 2. Let P be a finite bounded poset, and let Λ be a GRAO for P with
atom ordering a1, a2, . . . at. For each 0̂⋖ aj < v, restricting Λ|[aj ,1̂] [aj , v] yields a

GRAO, denoted Λ|[aj,v], for [aj , v] with the following property: either (a) the first
atom of [aj , v] is greater than some atom ai satisfying i < j or (b) no atom of
[aj , v] is greater than any atom ai satisfying i < j.

Our atom reordering process will take any chain-atom ordering and output
a chain-atom ordering that will satisfy condition (i)(b) from the defini tion of
recursive atom ordering; moreover, it is set up to do so in such a way that when
applied to a GRAO, it preserves the property of being a GRAO. Broadly, the
algorithm starts at the bottom of the poset P and works its way to the top,
reordering the atoms of each rooted interval in a way that takes into account the
reordering that has already occurred lower in the poset.

Proposition 3. Let P be a finite bounded poset with a chain-atom ordering Λ. Let
Λ|[0̂,v] (resp. Λre|[0̂,v]) be the chain-atom ordering for [0̂, v] obtained by restricting

Λ (resp. Λre) to [0̂, v]. Then Λre|[0̂,v] equals the chain-atom ordering for [0̂, v]

obtained by applying the atom reordering process to Λ|[0̂,v].

Lemma 4. Let P be a finite, bounded poset with Λ a GRAO for P . Then for any
u < v in P and any root r for [u, v], the first atom of [u, v]r in Λ is the first atom
of [u, v]r in Λre, namely in the atom reordering of Λ.

These results allow us to prove:

Theorem 5. A finite bounded poset admits a generalized recursive atom ordering
(GRAO) if and only if it admits a recursive atom ordering (RAO).

Definition 6. Consider a chain-edge labeling λ such that each rooted interval has
a unique lexicographically earliest saturated chain. We define such λ to be self-
consistent if for any rooted interval [u, v]r we have the following condition: if a
is the atom in the lexicographically first saturated chain of [u, v]r and b 6= a is also
an atom of [u, v]r, then for any [u, v′]r containing a and b all saturated chains of
[u, v′]r containing b come lexicographically later than all saturated chains of [u, v′]r
containing a.

The following condition implies self-consistency and is more readily checkable :

Definition 7. A chain-edge labeling λ of a finite bounded poset P has the unique
earliest (UE) property if for each rooted interval [u, v]r in P , the smallest label
occurring on any cover relation upward from u only occurs on one such cover
relation.

Equipped with these definitions, we are ready to state one of our main results:
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Theorem 8. Let P be a finite, bounded poset. Then the following are equivalent:

(1) P admits a recursive atom ordering
(2) P admits a generalized recursive atom ordering
(3) P admits a CL-labeling
(4) P admits a CL-labeling with the UE property
(5) P admits a self-consistent CC-labeling.
(6) P admits a CC-labeling with the UE property
(7) P admits a self-consistent topological CL-labeling
(8) P admits a topological CL-labeling with the UE property

Moreover, all of these implications are proven constructively. That is, for each
implication either it is shown how to construct the latter type of object from the
former or else the former type of object is proven also to be the latter type of object.

We apply our results to deduce that a class of posets previously shown to be
CC-shellable in [HK] is in fact CL-shellable. That is, we prove that the dual posets
to the uncrossing orders (conjectured to be lexicographically shellable by Lam in
[La14a]) are CL-shellable. These uncrossing orders arise naturally as face posets
of stratified spaces of planar electrical networks (see e.g. [La14a], and references
therein). The fact that they are shellable posets combines with Lam’s result from
[La14a] that they are Eulerian posets to imply that they are CW posets, i.e. face
posets of regular CW complexes with finitely many cells. Thus, the shellability
of uncrossing orders provides an important step in understanding the topological
structure of these spaces of planar electrical networks.
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Flies and regular subdivisions

Michael Joswig

(joint work with Holger Eble, Lisa Lamberti, Will Ludington)

Genetic epistasis is a biological concept for an interaction between two genetic
loci as the degree of non-additivity in their phenotypes. This idea goes back as
far as 1909, when Bateson analyzed the landmark results by Mendel [1]. If there
are more than two loci, things get considerably more complicated. Beerenwinkel,
Pachter and Sturmfels proposed to read a suitable regular subdivisions of some
convex polytope, called the genotope, as a fitness landscape [2]; see Figure 1 for
an example. In their framework genetic populations which are fittest correspond
to points in that polytope, and fitness is expressed in terms of linear programs.
The monograph [3] is recommended for background on the relevant concepts from
polyhedral geometry.
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Figure 1. Biallelic genetic system with two loci. The genotope is
the unit square [0, 1]. The phenotype maps each vertex in {0, 1}2
to a real number; this induces a regular subdivision of the square.

Our contribution is a general method for processing such fitness landscapes,
taking statistical aspects into account. For conciseness, we sketch the procedure
for an n-biallelic system, where the genotype is the unit cube [0, 1]n. Our input are
samples of measurements for each genotype, i.e., vertex in {0, 1}n, and we assume
that this input is generic.

(1) Their average values are read as the phenotypes which give rise to a regular
subdivision S, which is computed via the convex hull. Due to genericity,
S is a triangulation of [0, 1]n.

(2) Let Γ be the dual graph of S. For each edge we compute an epistatic
weight. Sorting these real numbers gives rise to a filtration of Γ into a
sequence of subgraphs, the epistatic filtration.

(3) To take the empirical distribution of measurements for each genotype into
account, we devised a one-sided significance test for each edge of Γ.

(4) The epistatic filtration with the epistatic weights and their significance
form the output.
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The theoretical underpinnings have been worked out in [4]. That reference also
features a synthetic experiment to explain why our method works. In our new
article we report on processing actual data sets from biology [5]. This includes
the analysis of classical data, where we can confirm previous findings by other
researchers. This also includes the analysis of one new data set, which was obtained
in the lab of Will Ludington at Carnegie Science. Those data are concerned with
the microbiome of Drosophila. We consider n = 5 different species of bacteria
which may or may not exist in the gut of any fly. So the genotype is the unit
cube [0, 1]5. It turns out that the fitness landscape for the lifespan of these flies
changes dramatically when certain bacteria are there or not. In biological terms,
our results suggest that the co-evolution in this experiment is considerably more
complicated than in a simple antagonistic scenario.
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Some Stories of Geometry and Graphs

Nati Linial

(joint work with Daniel Cizma and Maria Chudnovsky)

A consistent path system in a graph G is an intersection-closed collection of paths,
with exactly one path between any two vertices in G. We call G metrizable if every
consistent path system in it is the system of geodesic paths defined by assigning
some positive lengths to its edges. Our work shows that metrizable graphs are, in
essence, subdivisions of a small family of basic graphs with additional compliant
edges. In particular, every metrizable graph with 11 vertices or more is outerplanar
plus one vertex.

Let G = (V,E) be a connected graph, and let w : E → R>0 be a positive weight
function on its edges. This induces a metric on V , where the distance between any
two vertices is the least w-length of a path between them. What can be said about
such a system of geodesics? E.g., what does the collection of w-geodesics tell us
about w? Is it possibly true that every collection of paths in a graph constitute
the system of geodesics corresponding to some graph metric? To simplify matters,
suppose that w is such that the shortest path between any two vertices is unique.
Clearly, any subpath of a geodesic in G is itself a geodesic. This leads us to define
the notion of a consistent path system P in G - a collection of paths that is closed
under taking subpaths, with a unique uv path in P for each pair u, v ∈ V . So,
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we ask if every consistent path system coincides with the set of geodesics that
corresponds to some positive weight function on the edges. Our first paper on
this subject [1] showed that this is far from the truth, and that metrizable graphs
are in fact quite rare. E.g., all large metrizable graphs are planar and not 3-
connected. On the other hand, that paper also showed that all outerplanar graphs
are metrizable. Still, [1] did not provide a satisfactory description of metrizable
graphs, and in [3] we made further progress on this question.

Call a path in G flat if every internal vertex in it has degree 2 in G, and call
an edge xy compliant if x and y are also connected by a flat path. We show in
particular that every large 2-connected metrizable graph can be obtained starting
from one of some basic graphs, and iteratively subdividing edges and adding a
compliant edge between its end vertices. This, in particular, implies that every
large metrizable graph can be made outerplanar by removing at most one vertex.

Here are some of the main ingredients of these studies.

Proposition 1 ([1]).

• The family of metrizable graphs is closed under topological minors.
• If e is a compliant edge in G, then G is metrizable if and only if G \ e is
metrizable.

Consider a consistent path system P in a graph G = (V,E). Associated with P
is a system of linear inequalities, and P is metric iff this system is feasible. So if
the chosen P is non-metric, we can use LP-duality to create a hand-checkable cer-
tificates of this. Thus, using a computer, we created a “zoo” of 16 non-metrizable
graphs along with such path systems and the corresponding certificates. The basic
methodology developed in [1] is to prove that a graph at hand is non-metrizable
by showing that it contains a subdivision of some graph from the zoo.

Theorem 2 ([3]). If a 2-connected metrizable graph G with at least 11 vertices
has no compliant edges, then it is either K2,n for some n ≥ 4 or a subdivision of
one of the following: K2,3, K4, W4 or K5 \ e.

Consequently

Theorem 3 ([3]). If a graph G with at least 11 vertices is (i) 2-connected, (ii) has
no compliant edges, (iii) has at least two disjoint cycles, then G is non-metrizable.

Corollary 4. Every 2-connected metrizable graph with at least 11 vertices can be
made outerplanar by removing at most one vertex.

Many open questions are mentioned in [1, 3], e.g., the notion of irreducible path
systems introduced in [2].
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A regular unimodular triangulation of the matroid base polytope

Gaku Liu

(joint work with Spencer Backman, Gaku Liu)

A lattice triangulation of a lattice polytope is unimodular if all of its simplices
have minimal volume. A triangulation is regular if there is a convex, piecewise
linear function whose regions of linearity are exactly given by the triangulation.
We give the first construction of regular unimodular triangulations for matroid
base polytopes. This construction extends to integral generalized permutahdera.
Previously, it was not known whether matroid polytopes admitted covers by uni-
modular simplices.

The construction is motivated by a set of conjectures collectively known as
White’s conjecture in matroid theory. Given a matroid M with ground set E
and set of bases B, define the toric ideal of M to be the kernel of the R-algebra
homomorphism

R[xB : B ∈ B] → R[xe : e ∈ E]

sending xB to
∏
e∈B xe. The weakest version of White’s conjecture states that the

toric ideal of a matroid is generated by quadratic binomials. A stronger version
of this conjecture is that the toric ideal of a matroid has a quadratic Gröbner
basis. The latter conjecture is equivalent to the statement that the matroid base
polytope has a flag, regular unimodular triangulation. (A triangulation is flag is
its minimal non-faces have size 2.) We hope our construction may shed light on
this conjecture and lead to future work in this direction.
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Polyhedral Geometry of ReLU Neural Networks

Georg Loho

(joint work with C. Haase, C. Hertrich; M. Brandenburg, G. Montúfar,
H. Tseran)

We show new insights in the structure of ReLU Neural Networks based on poly-
hedral geometry. On one hand, we describe natural subdivisions of the space of
piecewise-linear classifiers represented by a ReLU neural network. On the other
hand, we show lower bounds on the number of layers for representing integral
piecewise-linear functions. The advances involve (generalizations of) oriented ma-
troids, Newton polytopes of tropical polynomials and the use of geometric invari-
ants, in particular normalized volume of lattice polytopes.
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First, we give an introduction of two basic concepts, linear classification and
tropical rational functions. The geometric point of view on linear classification is
captured by the oriented matroid of the hyperplane dual to the vector arrangement
associated with data points. This idea is generalized to classifiers arising from
continuous piecewise-linear functions. These are exactly the functions represented
by ReLU Neural Networks, or equivalently, the functions represented by tropical
rational functions (with real ‘tropical’ exponents). Grouping linear classifiers by
the dichotomy imposed on the data points leads to a subdivision of their parameter
spaces. This subdivision equals the normal fan of the zonotope given by the
Minkowski sum of the line segments associated to the data points. We generalize
this to the setting of tropical rational functions with a fixed number of terms in the
numerator and denominator [3]. Here, subdividing by the classification pattern
yields the normal fan of a sum of simplices, one for each data point.

Second, we look at the expressivity of ReLU neural networks depending on
their depth. We recall the known duality between neural networks and Newton
polytopes via tropical geometry [1]. Imposing an integrality assumption on the
weights in the network implies that these Newton polytopes are lattice polytopes.
Using a parity argument on the normalized volume of faces of such polytopes, we
show that ⌈log2(n)⌉ hidden layers are indeed necessary to compute the maximum of
n numbers, matching known upper bounds. This implies that the set of functions
representable by ReLU neural networks with integer weights strictly increases with
the network depth while allowing arbitrary width [4].
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Random Balanced Cayley Complexes

Roy Meshulam

The Laplacian L(C) of a graph C = (V,E) is the V ×V positive semidefinite matrix
whose (u, v) entry is given by

L(C)uv =





degC(u) u = v,
−1 {u, v} ∈ E,
0 otherwise.

Let 0 = λ1(C) ≤ λ2(C) ≤ · · · ≤ λ|V |(C) be the eigenvalues of L(C). The second
smallest eigenvalue λ2(C), called the spectral gap of C, is a parameter of central
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importance in a variety of problems. In particular it controls the expansion prop-
erties of C and the convergence rate of a random walk on C (see e.g., Chapters
XIII and IX in [3]).

Let G be a finite group of order n and let T ⊂ G be symmetric subset, i.e.
T = T−1. The Cayley graph C(G, T ) of G with respect to T is the graph on the
vertex set G with edge set {{g, gt} : g ∈ G, t ∈ T }. The seminal Alon-Roichman
theorem [1] is concerned with the expansion of Cayley graphs with respect to
random sets of generators.

Theorem 1 (Alon-Roichman). For any ǫ > 0 there exists a constant c(ǫ) > 0
such that for any group G, if S is a random subset of G of size ⌈c(ǫ) log |G|⌉ and
m = |S ∪S−1|, then λ2(C

(
G,S ∪ S−1)

)
is asymptotically almost surely (a.a.s.) at

least (1 − ǫ)m.

This talk is based on [4] and concerns higher dimensional counterparts of Theo-
rem 1. We briefly recall some terminology. For a simplicial complex X and k ≥ −1
let X(k) denote the k-dimensional skeleton of X . For k ≥ −1 let Ck(X) denote
the space of real valued simplicial k-cochains of X and let dk : Ck(X) → Ck+1(X)
denote the coboundary operator. For k ≥ 0 define the reduced k-th Laplacian of
X by Lk(X) = dk−1d

∗
k−1 + d∗kdk. The minimal eigenvalue of Lk(X), denoted by

µk(X), is the k-th spectral gap of X .
Let k ≥ 1. For 1 ≤ i ≤ k + 1 let Vi = {i} ×G. Let YG,k denote the simplicial

join V1 ∗ · · · ∗ Vk+1, where each Vi is viewed as 0-dimensional complex. Thus

YG,k is homotopy equivalent to an N -fold wedge
∨N

Sk of k-dimensional spheres,
where N = (n − 1)k+1. The balanced k-dimensional Cayley Complex associated
with a subset ∅ 6= A ⊂ G is the subcomplex YA,k ⊂ YG,k whose k-simplices
are all {(1, y1), . . . , (k + 1, yk+1)} ∈ YG,k such that y1 · · · yk+1 ∈ A. Note that

YA,k ⊃ Y
(k−1)
G,k .

Let 1A denote the indicator function of A ⊂ G. Let Ĝ = {ρ} be the set of
irreducible unitary representations of G, where ρ : G → U(dρ). Let D(G) =∑

ρ∈Ĝ dρ. Let 1 ∈ Ĝ denote the trivial representation of G and let Ĝ+ = Ĝ \ {1}.

For ρ ∈ Ĝ let 1̂A(ρ) =
∑

x∈A ρ(x) ∈ Md(C) be the Fourier transform of 1A at ρ.
For a matrix T ∈Md(C) let ‖T ‖ = max‖v‖=1 ‖Tv‖ denote the spectral norm of T .

Let ν(A) = maxρ∈Ĝ+
‖1̂A(ρ)‖. Our first result is a lower bound on µk−1(YA,k) in

terms of ν(A).

Theorem 2.

µk−1(YA,k) ≥ |A| − k · ν(A).

Our main result is the following k-dimensional analogue of the Alon-Roichman
Theorem.

Theorem 3. Let k and ǫ > 0 be fixed. Let G be a finite group of order n and fix

an integer m such that 9k2 logD(G)
ǫ2 ≤ m ≤ √

n. Let A be a random subset of G of
size m. Then

Pr
[
µk−1(YA,k) < (1 − ǫ)m

]
<

6

n
.
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Remark 4. It is straightforward to check that µk−1(YA,k) ≤ |A|+k for any A ⊂ G
(see Eq. (2) in [2]). Theorem 3 thus implies that if A is a random subset of G
and log |G| = o(|A|), then YA,k is a.a.s. a near optimal spectral expander.

Our final result concerns the homotopy type of YA,k when A is a subgroup of
G. For 1 ≤ m let

γ0(m, k) = (n−m)nk +
( n
m

)k
(m− 1)k+1 − (n− 1)k+1,

γ1(m, k) =
( n
m

)k
(m− 1)k+1.

Theorem 5. Let A be a subgroup of G of order |A| = m. Then
(i)

(1) YA,1 ≃
n/m∐ (m−1)2∨

S1.

(ii) For k ≥ 2

(2) YA,k ≃
γ0(m,k)∨

Sk−1 ∨
γ1(m,k)∨

Sk.

Remark 6. As γ0(m, k) > 0 for all m < n, it follows from Theorem 5 that if
A ⊂ G generates a subgroup 〈A〉 of order m < n then

β̃k−1(YA,k) ≥ β̃k−1(Y〈A〉,k) = γ0(m, k) > 0

and therefore µk−1(YA,k) = 0. As there are families of groups G (e.g. elementary
abelian groups of fixed exponent) that cannot be generated by o(log |G|) elements,
this implies that the logD(G) = Θ(logn) factor in Theorem 3 cannot in general
be improved.
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Rigidity expander graphs

Eran Nevo

(joint work with Alan Lew, Yoval Peled, Orit Raz)

Jordán and Tanigawa recently introduced the d-dimensional algebraic connecti
vity ad(G) of a graph G. This is a quantitative measure of the d-dimensio nal
rigidity of G which generalizes the well-studied notion of spectral expans ion of
graphs. We present a new lower bound for ad(G) defined in terms of the spectral
expansion of certain subgraphs of G associated with a partition of i ts vertices into
d parts. In particular, we obtain a new sufficient condition for the rigidity of a
graph G. As a first application, we prove the existence of an infinite family of k-
regu lar d-rigidity-expander graphs for every d ≥ 2 and k ≥ 2d+1. Conjectural ly,
no such family of 2d-regular graphs exists. Second, we show that ad(Kn) ≥ 1

2

⌊
n
d

⌋
,

which we conjecture to be essentially tight. In addition, we study the extremal
values ad(G) attains i f G is a minimally d-rigid graph.

Context. Graph expansion is one of the most influential concepts in mod ern
graph theory, with numerous applications in discrete mathematics and compute
r science (see [4, 7]). Intuitively speaking, an expander is a “highly-connected”
graph, and a standard way to quantitatively measure the connectivity, or expan-
sion, of a graph uses t he spectral gap in its Laplacian matrix. A main theme in
the study of expander g raphs deals with the construction of sparse expanders. In
particular, bounded-de gree regular expander graphs have been studied extensively
in various areas of m athematics. This paper studies a generalization of spectral
graph expansion that was recentl y introduced by Jordán and Tanigawa via the
theory of graph rigidity [5].

A d-dimensional framework is a pair (G, p) consisting of a graph G = (V,E) an
d a map p : V → Rd. The framework is called d-rigid if every contin uous motion
of the vertices starting from p that preserves the distance betwee n every two
adjacent vertices in G, also preserves the distance between every pair of vertices;
see e.g. [2, 3] for background on framework rigidity. Asimow and Roth showed in
[1] that if the map p is generic (e.g. if the d|V | coordinates of p are algebraically
independent over the rationales), t hen the d-rigidity of (G, p) does not depend on
the map p. Moreover, they s howed that for a generic p, rigidity coincides with
the following stronger lin ear-algebraic notion of infinitesimal rigidity.

Definitions. For every u, v ∈ V we define duv ∈ Rd by

duv =

{
p(u)−p(v)

‖p(u)−p(v)‖ if p(u) 6= p(v),

0 otherwise,

and
u v

bTu,v =
[

0 . . . 0 dTuv 0 . . . 0 dTvu 0 . . . 0
] .

The (normalized) rigidity matrix R(G, p) ∈ Rd|V |×|E| is the matrix whose
columns are the vectors bu,v for all {u, v} ∈ E. Rd. For p generic and |V | ≥ d+ 1,
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rank(R(G, p)) ≤ d|V |−
(
d+1
2

)
; see [1]. The framework (G, p) is called infinitesimally

rigid if this bound is attained, that is, if rank(R(G, p)) = d|V | −
(
d+1
2

)
.

A graph G is called d-rigid, if it is infinitesimally rigid with resp ect to some
map p (or, equivalently, if it is infinitesimally rigid for all ge neric maps [1]).

For d = 1 and an injective map p : V → R, the rigidity matrix R(G, p) is equal
to the incidence matrix of G, hence both notions of rigidity coincid e with graph
connectivity. One can extend this analogy and define a higher dimen sional version
of the graph’s Laplacian matrix, that is called the stiffne ss matrix of (G, p), and
is defined by

L(G, p) = R(G, p)R(G, p)T ∈ Rd|V |×d|V |.

We denote by λi(A) the i-th smallest eigenvalue of a symmetric matrix A. Since

rank(L(G, p)) = rank(R(G, p)) ≤ d|V | −
(
d+1
2

)
, the kernel of L(G, p) is of di-

mension at least
(
d+1
2

)
. Therefore, λ(d+1

2 )+1(L(G, p)) 6= 0 if and only if (G, p) is

infinitesimally rigid.
In [5], Jordán and Tanigawa defined the d-dimens ional algebraic connectivity

of G, ad(G), as

ad(G) = sup
{
λ(d+1

2 )+1(L(G, p))
∣∣∣ p : V → Rd

}
.

For d = 1, L(G, p) coincides with the graph Laplacian matrix L(G), and a1(G) =
a(G) is the usual algebraic connectivity, or Laplacian spectral gap, of G. For every
d ≥ 1, ad(G) ≥ 0 since L(G, p) is positive semi-definite, and ad(G) > 0 if and only
if G is d-rigid.

The following notion of rigidity expander graphs extends the classical no tion of
(spectral) expander graphs, corresponding to the d = 1 case: Let d ≥ 1. A family
of graphs {Gi}i∈N of increasing size is called a family of d-rigidity expander graphs
if there exists ǫ > 0 such that ad(Gi) ≥ ǫ for all i ∈ N.

Results. It is well known that, for every k ≥ 3, there exist families of k-regular
(d = 1-rigid) expander graphs (see e.g. [4]). Our main result is an extension of
this fact to general d:

Theorem 1. Let d ≥ 1 and k ≥ 2d + 1. Then, there exists an infinite family of
k-regular d-rigidity expander graphs.

It was conjectured by Jordán and Tanigawa that families of 2d-regular d-ri gidity
expanders do not exist (see [5, Conj. 2] for the statement in the d = 2 case, and
see [6, Conj. 6.2] for the general case), and clearly families of k-regular d-rigidity
expanders do not exist for k < 2d since, for n large e nough, such graphs have less
than dn −

(
d+1
2

)
edges, and are therefore n ot even d-rigid. Therefore, assuming

this conjecture, our result is sharp.
Our main tool for the proof of Theorem 1 is a new low er bound on ad(G), given

in terms of the (1-dimensional) algebraic connecti vity of certain subgraphs of G
associated with a partition of its vertex set i nto d parts. For convenience, we let
a(G) = ∞ if G consists of a single vertex.



3284 Oberwolfach Report 58/2023

Let G = (V,E) be a graph, and let A,B ⊂ V be two disjoint sets. We denote
by G[A] the subgraph of G induced on A, and by G(A,B) the subgraph of G with
vertex set A ∪ B and edge set E(A,B) = {e ∈ E : |e ∩ A| = |e ∩ B| = 1}. Recall
that a partition of V is a set {A1, . . . , Ad} of n on-empty subsets of V such that
V = A1 ∪ · · · ∪ Ad is a disjoint union .

Theorem 2. Let d ≥ 2. For every graph G = (V,E) and a partition {A1, . . . , Ad}
o f V there holds

ad(G) ≥ min

({
a(G[Ai])

}

1≤i≤d

⋃{
1

2
a(G(Ai, Aj))

}

1≤i<j≤d

)
.

In particular, if G[Ai] is connected for all i ∈ [d] and G(Ai, Aj) is co nnected for
all 1 ≤ i < j ≤ d, then G is d-rigid.

Remark 3. In the d = 2 dimensional case, the statement in Theorem 2 can be
slightly improved (by removing the constant 1/2) to

a2(G) ≥ min{a(G[A1]), a(G[A2]), a(G(A1, A2))},
for every partition A1, A2 of V .

For another application of Theorem 2, we derive a slight improvement of the
previously known lower bound for ad(Kn) from [6, Theorem 1.5].

Corollary 4. Let d ≥ 3 and n ≥ d+ 1. Then

ad(Kn) ≥ 1

2

⌊n
d

⌋
.

Conjecturally, under these conditions, ad(Kn) ≤ n
d . The upper boun d given

in [Thm.1.6][6] is ad(Kn) ≤ 2n
3(d−1) + 1

3 .

Problems and comments. Many parallels to classical graph expansion are
sill missing: find optimal d-rigidity expander graphs. For d = 1 these were co
nstructed, known as Ramanujan graphs. The Alon-Boppana bound is valid also
for ad(G), as we prove that:

Theorem 5. Let d ≥ 2, and let G be a graph. Then,

ad(G) ≤ a(G).

Jordán and Tanigawa [5, Theorem 4.2] proved Theorem 5 for d = 2, and in [8] it
was proved indep endently for all d. Our proof is different, using the probabilistic
method, an d we believe it to be of independent interest.

Regarding the Cheeger inequality, it remains a challenge to find a lower bound
o n ad(G) in terms of combinatorial invariants of G.
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Framed polytopes and higher cellular strings

Arnau Padrol

(joint work with Guillaume Laplante-Anfossi and Anibal M. Medina-Mardones)

Higher categories offer a framework for systematizing complex hierarchies in math-
ematics, physics, and computer science. To illustrate this, we mention Grothen-
dieck’s homotopy hypothesis in topology, Baez–Dolan’s cobordism hypothesis in
quantum field theory, and the extensive applications of higher category theory in
computer science, particularly in language semantics, concurrency calculus, and
type theory.

Polytopes in higher category theory were first introduced to organize coherence
relations. Kapranov and Voevodsky significantly expanded the connection between
convex geometry and higher category theory announcing several intriguing results
in [1], including the following insightful idea. Consider a convex d-polytope P ⊆ Rd

and a generic ordered basis B of Rd, which we refer to as a frame. Using the frame
we define, for each face F , two distinct subsets of its k-faces: its k-source sk(F )
and k-target tk(F ). Kapranov and Voevodsky conjectured [1, Thm. 2.3] that the
data consisting of all sources and targets, referred to as the globular structure of
(P,B), defines a d-dimensional pasting diagram, a special and important type of
d-dimensional categories. Using ideas of Steiner [3], we show that this claim holds
if and only if the framed polytope has no cellular loops, a notion we now define. A
cellular k-string in a framed polytope is a sequence F1, . . . , Fℓ of faces such that
two consecutive faces Fi and Fi+1 share a k-face G with tk(Fi) ∩ sk(Fi+1) = G.
We say it is a cellular loop if and Fi = Fj for some i 6= j.

The first contribution we discuss are counterexamples to [1, Thm. 2.3]. More
precisely, we provide examples showing the following.

Theorem 1. Starting in dimension 4 there exist framed polytopes with cellular
loops.

We also considered whether the following weaker version of their claim could
be true: For any polytope there is a frame making it into a pasting diagram.
However, this weaker version also fails since we provide a construction establishing
the following.
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Theorem 2. Starting in dimension 4 there exist polytopes for which all frames
lead to cellular loops.

An important infinite family of framed polytopes, which was studied by Ka-
pranov and Voevodsky, is given by the canonically framed cyclic simplices (C(d),
{ek}), where {ek} is the canonical frame of Rd and C(d) is the convex closure
of d + 1 distinct points in the moment curve t 7→ (t, t2, . . . , td). In an insightful
observation [1, Thm. 2.5], they announced that (C(d), {ek}) has no cellular loops
and recover Street’s free d-category on the d-simplex, a fundamental object in
higher category theory [4]. We were able to verify this claim after replacing the
canonical frame by {e1,−e2, e3,−e4, . . . }.

These framed simplices are rare and special in the following probabilistic sense.
A Gaussian d-simplex is the convex hull of d+1 independent random points in Rd,
each chosen according to a d-dimensional standard normal distribution. We prove
the following.

Theorem 3. The probability that a canonically framed Gaussian d-simplex has a
cellular loop tends to 1 as d tends to ∞.

We next turn our attention to the moduli of frames of a simplex ∆d under the
equivalence relation induced by globular structures. Our aim is to quantify the
complexity of the realization space of a globular structure on ∆d, that is, the set
of all frames of ∆d inducing it. Using a celebrated result of N. E. Mnëv [2], we
show the following.

Theorem 4. For every open primary basic semi-algebraic set S defined over Z
there is a globular structure on some simplex ∆d whose realization space is stably
equivalent to S.

A key step in the proof of this result is the following theorem, which we consider
noteworthy in its own right.

Theorem 5. Globular structures of framed simplices are in bijection with uniform
acyclic realizable full flag chirotopes.
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Lefschetz properties via anisotropy for simplicial spheres and cycles

Stavros Papadakis and Vasiliki Petrotou

(joint work with Karim Adiprasito)

1. Introduction

An important recent breakthrough in Discrete Geometry was the 2018 proof of
McMullen’s g-conjecture for simplicial spheres by Karim Adiprasito [1]. Two years
later, the paper [3] appeared, which gave a substantially different second proof of
the conjecture based on the notion of generic anisotropy and certain characteristic 2
differential identities. Finally, the 2021 paper [2] proved Lefschetz type properties
in the setting of pseudomanifolds and simplicial cycles and gave an application to
2-Cohen-Macaulay simplicial complexes.

2. Generic Artinian Reduction

Assume m ≥ 1 and k is a field. We consider the polynomial ring k[x1, . . . , xm],
where the degree of the variable xi is equal to 1, for all 1 ≤ i ≤ m. Assume
I ⊂ k[x1, . . . , xm] is a homogeneous ideal. We denote by d the Krull dimension of
the quotient ring k[x1, . . . , xm]/I. We assume d ≥ 1, and denote by E the field of
fractions of the polynomial ring

k[ai,j : 1 ≤ i ≤ d, 1 ≤ j ≤ m].

For 1 ≤ i ≤ d, we set

fi =

m∑

j=1

ai,jxj .

Definition 1. We define the generic Artinian reduction of k[x1, . . . , xm]/I to be
the Artinian E-algebra

E[x1, . . . , xm]/((I) + (f1, . . . , fd)),

where (I) denotes the ideal of E[x1, . . . , xm] generated by I.

3. Generic Anisotropy of simplicial spheres

Assume k is a field and D is a simplicial sphere of dimension d− 1 with vertex set
{1, . . . ,m}. We denote by k[D] = k[x1, . . . , xm]/ID the Stanley-Reisner ring of D
over k and by A the generic Artinian reduction of k[D] defined above. We remark
that A is an Artinian Gorenstein standard graded E-algebra with socle degree d,
where E as above.

Definition 2. We call D generically anisotropic over k, if for all integers j with
1 ≤ 2j ≤ d and all nonzero elements u ∈ Aj we have u2 6= 0.

Three of the main results of [3] are the following:

Theorem 3 ([3]). Assume that k is any field and D is a simplicial sphere of
dimension 1. Then D is generically anisotropic over k.
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Theorem 4 ([3]). Assume that k is any field of characteristic 2 and D is any
simplicial sphere. Then D is generically anisotropic over k.

Remark 5. It is easy to see that by clearing denominators the previous theorem
implies that any simplicial sphere D is generically anisotropic over the field of
rationals Q.

Theorem 6 ([3]). Assume k is any field and D is a simplicial sphere.

(1) If the suspension S(D) of D is generically anisotropic over k, then E[D]
has the Weak Lefschetz property.

(2) If both D and the suspension S(D) of D are generically anisotropic over
k, then E[D] has the Strong Lefschetz property.

Question 7. Is any simplicial sphere generically anisotropic over any field?

Question 8. Identify classes of Gorenstein standard graded algebras which have
the generic anisotropy property.

4. Lefschetz properties for cycles

As mentioned above, the paper [2] contains Lefschetz type theorems for pseudo-
manifolds and simplicial cycles. An interesting application of them is the following:

A simplicial complex D of dimension d− 1 is called 2-Cohen-Macaulay over the
field k if k[D] is Cohen-Macaulay, and for any vertex v of D the following hold for
the simplicial complex

C = D \ {v}.
It has dimension d− 1 and the Stanley-Reisner ring k[C] is Cohen-Macaulay.

Theorem 9 ([2]). Assume D is a 2-Cohen-Macaulay simplicial complex of dimen-
sion d − 1 over an infinite field k and denote by A a sufficiently general Artinian
reduction of k[D]. Then, there exists ω ∈ A1 such that the multiplication by ωd−2i

from Ai to Ad−i is injective for all 0 ≤ i ≤ d/2.
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Acyclonestohedra

Vincent Pilaud

(joint work with Chiara Mantovani and Arnau Padrol)

We use classical terminology on building sets and their nested complexes [FK04,
FS05, Pos09] and on oriented matroids [BLS+99].

Motivated by recent work of P. Galashin on poset associahedra [Gal21], we
consider the acyclic part of a given nested complex with respect to a given oriented
matroid in the following sense.

Definition 1. An oriented building set on a ground set S is a pair (B,M)
where B is a building set on S and M is an oriented matroid on S such that B
contains the support of any circuit of M.

Definition 2. A nested set N on B is acyclic if M/
⋃

N ′ is acyclic for any N ′ ⊆
N . The acyclic nested complex A(B,M) is the simplicial complex of acyclic
nested sets on B.

Our main results concern realizations (as boundary complexes of oriented ma-
troids or polytopes) of these acyclic nested complexes.

Theorem 3. The acyclic nested complex A(B,M) of any oriented building set (B,
M) is the boundary complex of the positive tope of an oriented matroid obtained
by stellar subdivisions of M.

Theorem 4. The acyclic nested complex A(B,M(A)) of any realizable oriented
building set (B,M(A)) is the boundary complex of the acyclonestohedron, a
polytope obtained as the section of a nestohedron of B with the evaluation space of
the vector configuration A.

Our original motivation was the following graphical situation.

Definition 5. The graphical oriented building set of a directed graph D with
edge set S is given by

• the graphical building set of the line graph of D, and
• the graphical oriented matroid of D.

Proposition 6. The acyclic nested complex of the graphical oriented building set
of D is isomorphic to the piping complex of the transitive closure of D, defined
by P. Galashin in its his work on poset associahedra [Gal21].

Corollary 7. The piping complex of a poset P is isomorphic to the boundary
complex of the graphical acyclonestohedron, obtained as a section of a graph
associahedron of the line graph of the Hasse diagram of P .

This corollary is illustrated in Figure 1 and answers a question open by P. Gala-
shin in [Gal21], and independently settled by A. Sack in [Sac23] with a more specific
method.
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Figure 1. The poset associahedra of two posets, obtained as
sections of the graph associahedra of their line graphs with their
cycle spaces.

Finally, we show that acyclic nested complexes of oriented building sets essentially
correspond to F(M)-nested complexes of F(M)-building sets in the sense of E.-
M. Feichtner and D. Kozlov [FK04], where F(M) is the Las Vergnas face lattice
of the oriented matroid M.

We use this observation for two further applications:

• type B nestohedra, starting from the oriented matroid whose positive tope
is a cross-polytope,

• iterated nestohedra, recovering in particular the permuto-permutahedra.
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Fixed points on contractible spaces

Kevin I. Piterman

For a group G and a G-contractible G-complex X , both X and its fixed point set
XG are contractible. In particular, there is a fixed point by the action of G. We
ask then for suitable topological conditions that also imply the existence of a fixed
point in a wide family of spaces and groups.

For example, by Smith theory, a finite p-group acting on a mod p acyclic
finite-dimensional regular simplicial complex has a fixed point. We also know
by Brouwer’s fixed point theorem that a cyclic group acting on a disc has a fixed
point. Hence, p-groups and cyclic groups always act with fixed points on discs.
In the seventies, B. Oliver classified the finite groups that can act without fixed
points on discs. In fact, he showed that a finite group G acts without fixed points
on a disc if and only if G does not contain subgroups P ≤ H ≤ G such P is a
p-group normal in H , H/P is cyclic, and H is a normal subgroup of G such that
G/H is a q-group, where p, q are some primes.

On the other hand, a famous theorem by J.P. Serre in the eighties states that
a finite group acting on a tree has a fixed point. However, it is known that finite
groups can act without fixed points on contractible complexes of dimension at
least 3. The first example of this nature was constructed by E. Floyd and R.W.
Richardson [5]. That is, there is an action of the alternating group A5 on the 2-
skeleton XP of the Poincaré homology 3-sphere, and XP is acyclic and fixed point
free. Then the join X = A5 ∗ XP is a 3-dimensional compact and contractible
complex with XA5 = ∅. In dimension 2, it was conjectured by C. Casacuberta and
W. Dicks that a finite group acting on a contractible 2-complex has a fixed point,
and they proved this for solvable groups by using Smith theory [4]. Independently
and at the same time, M. Aschbacher and Y. Segev raised this question but only
for compact complexes [2]. Moreover, they proved that if a finite group G acts
without fixed points on a compact acyclic 2-complex then G has a composition
factor isomorphic to the Janko group J1 or to one of the simple group of Lie type
and Lie rank 1. In 2002, B. Oliver and Y. Segev achieved substantial progress
on this problem by classifying finite groups acting without fixed points on finite
acyclic 2-complexes [6]. One of their main theorems states that a finite group G
has an essential action without fixed points on a finite acyclic 2-complex if and
only if G is one of the simple groups PSL2(q) or Sz(22k+1), with some restrictions

on q and k. We refer to the beautiful exposition by A. Ádem [1] for more details
on these theorems.

In this talk, we review some of these results on fixed points. We also take
a look at the case of finite T0 topological spaces, where a result by R.E. Stong
shows that a contractible finite T0-space always has a fixed point. This relates to
a conjecture raised by D. Quillen [10]: for a fixed prime p and a finite group G,
the poset of nontrivial p-subgroups is contractible if and only if it is contractible
as a finite space. This conjecture remains open, and we briefly comment on recent
developments [3, 7, 9, 10]. We also present a sketch of the proof of the Casacuberta-
Dicks conjecture for compact complexes, a joint work with Sadofschi Costa [8, 11].
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This work is based on a previous article [12] which establishes the case G =
A5 of this conjecture. In this work, Sadofschi Costa reduced the study of the
conjecture to the simple groups G in the theorem of Oliver-Segev (namely, the 2-
dimensional finite linear groups and Suzuki groups), and also to a very particular
family of 2-complexes related to the examples constructed in [6]. Once we have
these reductions for the group G and a fixed point free finite acyclic 2-dimensional
G-complex X , we construct a manifold M encoding representations of the group
extension π1(X) : G, obtained by lifting the maps g ∈ G to the universal cover of
X . For the rest of the proof, we show that there is a differential map f : M → N
between orientable connected and compact manifolds of the same dimension and
conclude by a degree argument that at least one of the points in a preimage
f−1(x0), for a particular point x0 ∈ N , must correspond to a representation of
π1(X) : G that does not factor through G. This implies that π1(X) is nontrivial,
that is, X is not contractible.

Finally, we mention that the non-compact case of the Casacuberta-Dicks con-
jecture remains open.
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Stirling numbers and Koszul algebras with symmetry

Victor Reiner

(joint work with Ayah Almousa, Sheila Sundaram)

Stirling numbers c(n, k), S(n, k) of the first and second kind give the answers to
two basic counting problems:

• How many permutations of {1, 2, ..., n} have k cycles?
• How many set partitions of {1, 2, ..., n} have k blocks?

Although they have no simple product formulas, they do have triangular recursions

c(n, k) = c(n− 1, k − 1) + (n− 1) · c(n− 1, k),(1)

S(n, k) = S(n− 1, k − 1) + k · c(n− 1, k),(2)

and closely related generating functions

n−1∑

k=0

c(n, n− i)ti = (1 + t)(1 + 2t) · · · (1 + (n− 1)t),(3)

∞∑

k=0

S((n− 1) + i, n− 1)ti =
1

(1 − t)(1 − 2t) · · · (1 − (n− 1)t)
.(4)

We re-interpret c(n, k)S(n, k) as Hilbert functions for certain well-studied Koszul
algebras A and their less-studied Koszul duals A!, in the sense of Priddy [4].

The algebras A are the cohomology rings H∗X for the configuration space

X = Confn(Rd) = {(x1, . . . , xn) ∈ Rd)n : xi 6= xj for 1 ≤ i < j ≤ n}
of n labeled points in Rd, where d = 2, 3, 4, 5, . . .. For d = 2, 4, 6, . . . even, this
cohomology algebra A is isomorphic to the usual Orlik-Solomon algebra of the type
An−1 reflection hyperplane arrangement, also known as the braid arrangement. For
d = 3, 5, 7, . . . odd, A is isomorphic to the associated graded Varchenko-Gelfand
ring of the same hyperplane arrangement. Both rings have simple presentations,
either as quotients of an exterior algebra or a commutative polynomial algebra on
generators {xij}1≤i<j≤n, with simple quadratic relations found by V.I Arnold (for
d = 2) and F. Cohen (for general d ≥ 2).

These quadratic presentations actually form quadratic Groebner bases for the
defining ideals, showing that these algebra A are Koszul, and that the Hilbert
series Hilb(A, t) is given by the generating function in (3). This implies also that
their Koszul dual algebrasA! have Hilbert series Hilb(A!, t) given by the generating
function in (4), related by

(5) Hilb(A!, t) =
1

Hilb(A,−t) .

It is also known that A! is the homology ring H∗(ΩX) of the loop space ΩX .
All of these algebra A,A! carry actions of the symmetric group Sn via graded

automorphisms. We are interested in the describing and decomposing the actions
on each graded component Ai, A

!
i, or equivarlant versions of the above Hilbert

series. For the original algebras A, good descriptions of the Sn-characters on Ai
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in terms of generating functions are known via work of Sundaram and Welker [5].
The characters of the Koszul duals {A!

i} can be computed recursively in terms of
the {Ai}, but we currently lack simple generating function descriptions for {A!

i}.
Nevertheless, they enjoy nice properties, considered as families {A(n)}, {A(n)!}

depending on n. For example, there are branching rules that restrict A(n) or
A(n)! from Sn to Sn−1, giving representaiton-theoretic lifts of the recursions (1),
(2). As another example, when one fixes some i = 0, 1, 2, , . . ., the sequences of
Sn-representations {A(n)i}, {A!(n)i} both turn out to be representation stable in
the sense of Church and Farb [2].

Many of their properties and the results come from general facts about Koszul
algebras, and generalize from the type A reflection arrangement to all supersolvable
hyperplane arrangements.
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Tropical Ideals

Felipe Rincón

Tropical ideals are combinatorial objects introduced in [3] with the aim of giv-
ing tropical geometry a solid algebraic foundation. They can be thought of as
combinatorial generalizations of the possible collections of subsets arising as the
supports of all polynomials in an ideal. In general, their structure is dictated by
an infinite sequence of ‘compatible’ matroids. In this talk I will introduce and
motivate the notion of tropical ideals, and I will discuss work over the last decade
studying some of their main algebraic properties, the structure of their associated
varieties, and the tropical Nullstellensatz.
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From pivot rules to colliding particles

Raman Sanyal

(joint work with A. Benjes, A. Black, J. De Loera, N. Lütjeharms, and
G. Poullot)

Geometrically, a linear program can be viewed as a convex polytope P ⊂ Rd to-
gether with a unique-sink orientation of its graph that induced by a linear function
x 7→ 〈c, x〉 for some fixed c ∈ Rd. For a given starting vertex v ∈ V (P ), the sim-
plex algorithm follows a directed path from v to the unique sink vopt. Which path
is taken is dictated by the pivot rule adopted by the simplex algorithm. A pivot
rule is memory-less, if it chooses the next vertex on the path utilizing only v and
its c-improving neighbors N+(v) ⊂ V (P ). The behaviour of a memory-less pivot
rule is completely determined by an arborescence (or rooted tree), that is, a map
A : V (P ) → V (P ) with A(vopt) = vopt and A(v) ∈ N+(v) for v 6= vopt.

In [2] we introduced the max-slope pivot rule that for a given generic ω ∈ Rd

corresponds to the arborescence

(1) Aω(v) = argmax

{ 〈ω, u− v〉
〈c, u− v〉 : u ∈ N+(v)

}

for v 6= vopt. The max-slope pivot rule generalizes the well-known shadow ver-
tex simplex algorithm: if r is the vertex of P that maximizes ω, then r, Aω(r),
(Aω)2(r), . . . , vopt is precisely the shadow path associated to ω. It is straight-
forward to see that the collection of ω that give rise to the same max-slope ar-
borescence form an open polyhedral cone and the closures of these cones yield a
complete fan in Rd.

In [2] we associate to every arborescence A of the linear program (P, c) a point
ψ(A) ∈ Rd and define the max-slope pivot rule polytope Π(P, c) as the convex hull
of these points for all A.

Theorem 1 ([2]). Π(P, c) is a polytope of dimension dimP − 1 with the following
property: for any generic ω ∈ Rd, ψ(Aω) is the unique maximizer of ω over
Π(P, c).

Our pivot rule polytopes are related to certain fiber polytopes [1]: the monotone
path polytope Σ(P, c) that parametrizes coherent monotone paths on (P, c) is a
weak Minkowski summand of Π(P, c). Note that the construction of pivot rule
polytopes works for the more general class of normalized weight pivot rules as
explained in [2].

While our constructions where motivated by studying ‘spaces of pivot rules’,
it turns out that max-slope pivot rule polytopes have fascinating and surprising
applications to geometric combinatorics.

Let ∆n ⊂ Rn+1 be the standard n-simplex with vertices e1, . . . , en+1 equipped
with a generic objective function c = (c1 < c2 < · · · < cn+1). An arborescence
can be viewed as a map A : [n + 1] → [n + 1] with A(n + 1) = n + 1 and
A(i) > i for i < n + 1. Of the n! many arborescences, it turns out that exactly
Cn are max-slope arborescences, where Cn is the n-th Catalan number. The
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max-slope arborescences can be characterized as the non-crossing arborescences,
where a crossing is a pair i, j ∈ [n + 1] with i < j < A(i) < A(j). It is not too
difficult to see that non-crossing arborescences satisfy the same recurrence as the
Catalan numbers. Stasheff’s associahedron Asson−1, which is the poset of partial
parenthesizations of a product of n + 1 letters and which is the face poset of a
(n− 1)-dimensional polytope, famously embodies the Catalan numbers.

Theorem 2 (Black, Lütjeharms, Sanyal’23+). If P is an n-simplex and c a
generic objective function, then Π(P, c) is combinatorially isomorphic to Asson−1.

This result is quite fascinating in that simplices are trivial from an optimization
point of view. However, the simplex method is a sophisticated algorithm that can
exhibit complex behaviour even on trivial instances.

If ρ is a linear projection for which (P, c) and (P ′ := ρ(P ), c′ := ρ(c)) have the
same directed graph, then Π(P ′, c′) = ρ(Π(P, c)). Thus, if P is a simplex and P ′

has a complete graph, then Π(P ′, c′) is a projection of an associahedron. A partic-
ularly nice case is when P = Cycn(t1, . . . , tn+1) is a cyclic polytope, c = e1, and ρ
is the projection onto the first d coordinates. The projection P ′ is again a cyclic
polytope and Π(P ′, e1) is a (generic) projection of an associahedron parametrized
by t1, . . . , tn+1. In joint work with Aenne Benjes and Germain Poullot, we are
currently investigating these polytopes that we call cyclic associahedra.

If P = prism(∆n) = ∆n × ∆1 is the prism over the simplex and c is a generic
objective function, then Π(P, c) turns out to be combinatorially isomorphic to
the multiplihedron Muln. The multiplihedron was also described by Stasheff. It
encodes the evaluations of f(a1a2 · · · an+1), where f is a morphism between two
non-associative structures. For example for n = 1, Muln is a segment with end-
points labelled by f(a1a2) and f(a1)f(a2). For n = 2, Muln is a hexagon whose
vertices are labelled by the evaluations of f(a1a2a3). A generalization to more
morphisms was introduced by Chapoton and Pilaud [4] under the name (n, k)-
multiplihedron.

Theorem 3 (Black, Lütjeharms, Sanyal’23+). If P = ∆n×∆k
1 is the k-fold prism

over ∆n and c is a generic objective function, then Π(P, c) is combinatorially
isomorphic to the (n, k)-multiplihedron.

Finally we consider products of simplices P = ∆m × ∆n.

Theorem 4 (Black, Lütjeharms, Sanyal’23+). For m,n ≥ 1, Π(∆m × ∆n, c) is
combinatorially isomorphic to the (m,n)-constrainahedron.

The (m,n)-constrainahedron was introduced by Bottman and Poliakova [3] to
capture the collisions of mn particles that sit at the intersections of m horizontal
and n vertical lines in the plane. The (1, n)-constrainahedra are associahedra, the
(2, n)-constrainahedra are multiplihedra.

In order to show the stated combinatorial isomorphism to the associahedron, we
make a connection between max-slope arborescences and particles with locations
and velocities. We consider n particles at locations −ω1 ≤ −ω2 ≤ · · · ≤ −ωn
at time t = 0. For t > 0, the particles travel at constant velocities −c, where
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0 < c1 < · · · < cn. In this model one can interpret Aω(i) as the earliest particle
that will collide (and then absorb) with particle i.
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Hardness of linearly ordered 4-coloring of 3-colorable

3-uniform hypergraphs

Uli Wagner

(joint work with Marek Filakovský, Tamio-Vesa Nakajima, Jakub Opršal, and
Gianluca Tasinato)

Deciding whether a given finite graph is 3-colorable (or, more generally, k-colorable,
for a fixed k ≥ 3) was one of the first problems shown to be NP-complete [7]. Since
then, the complexity of approximating the chromatic number of a graph has been
studied extensively, and it is known that, in general, the chromatic number cannot
be approximated in polynomial time within a factor of n1−ε, for any fixed ε > 0,
unless P = NP [14]. However, this hardness result only applies to graphs whose
chromatic number grows with the number of vertices, and the case of graphs with
bounded chromatic number is much less well understood. The approximate graph
coloring problem concerns the computational complexity of the following problem:
Given an input graph that is either k-colorable or not ℓ-colorable, for some integers
ℓ ≥ k ≥ 3, how hard is it to distinguish between the two cases? Khanna, Linial,
and Safra [8] showed that this problem is NP-hard for (k, ℓ) = (3, 4), and it is a
long-standing conjecture that the problem is NP-hard1 for all constants ℓ ≥ k ≥ 3;
to date, this is known for ℓ ≤ 2k− 1 for all k ≥ 3 [3], and for k ≥ 6, the bound on

ℓ has been improved to ℓ ≤
(

k
⌊k/2⌋

)
[13].

For hypergraphs, it is known [5] that given a c-uniform hypergraph that is ei-
ther k-colorable or not ℓ-colordable, it is NP-hard to distinguish between the two
cases, for all constants c ≥ 3 and ℓ ≥ k ≥ 2. Here, we consider the following
variant of hypergraph coloring, focusing on 3-uniform hypergraphs. A linearly
ordered k-coloring (LOk-coloring, for short) of a (3-uniform) hypergraph H is an
assignment of elements (“colors”) in [k] = {1, . . . , k} to the vertices of H such
that, for every hyperedge, the maximal color assigned to elements of that hyper-
edge occurs exactly once in the hyperedge. Linearly ordered hypergraph coloring

1There are conditional hardness results (assuming different variants of Khot’s Unique Games
Conjecture) for approximate graph coloring for all ℓ ≥ k ≥ 3, see [4].
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generalizes both classical graph coloring and certain versions of the boolean satis-
fiability problem and has recently received a lot of attention [1, 11, 12]. Our main
result (see [6] for more details) is the following:

Theorem 1. The following problem is NP-hard: Given a 3-uniform hypergraph
H, distinguish between the case that H is LO3-colorable and the case that H is
not LO4-colorable.

More generally, it is conjectured [1, Conjecture 27] that distinguishing between
LOk-colorable hypergraphs and not LOℓ-colorable hypergraphs is NP-hard for all
constants ℓ ≥ k ≥ 2. (We remark that, for k ≥ 4, an easy reduction shows that
this conjecture is true whenever the approximate graph coloring problem with
parameters (k − 1, ℓ − 1) is NP-hard, but our hardness result cannot be obtained
this way.)

The proof of Theorem 1 builds on and extends a topological approach for study-
ing approximate graph colouring introduced by Krokhin, Opršal, Wrochna, and
Živný [9] and has two main parts. LOk-colorability of a hypergraph H is equiva-
lent to the existence of a homomorphism from H to a certain relational structure
LOk. For a natural number n, let (LO3)n be the n-fold power of the relational
structure LO3. In the first part of the proof, we use topological methods to show
that with every homomorphism f : (LO3)n → LO4, we can associate an affine
map χ(f) : Zn3 → Z3 (i.e., a map of the form (x1, . . . , xn) 7→∑n

i=1 αixi, for some
αi ∈ Z3 and

∑n
i=1 αi ≡ 1 (mod 3)); moreover, the assignment f 7→ χ(f) preserves

natural so-called minor relations that arise from maps π : [n] → [m], i.e., χ is a
so-called minion homomorphism.

In the second part of the proof, we show by combinatorial arguments that the
maps χ(f) : Zn3 → Z3 form a very restricted subclass of affine maps: They are
projections, i.e., maps of the form Zn3 → Z3, (x1, . . . , xn) 7→ xi. Theorem 1 then
follows from a hardness criterion obtained as part of a general algebraic theory
so-called promis constraint satisfaction problems [2].

In a nutshell, topology enters in the first part of the proof as follows. First, with
every homomorphism f : (LO3)n → LO4 we associate a continuous map f∗ : T n →
P 2, where T n is the n-dimensional torus (the n-fold power of the circle S1) and
P 2 is a suitable target space; moreover, the cyclic group Z3 naturally acts on both
T n and P 2, and the map f∗ preserves these symmetries (it is equivariant). This
first step uses homomorphism complexes (a well-known construction in topological
combinatorics that goes back to the work of Lovász [10]). Second, using equivariant
obstruction theory, we show that equivariant continuous maps T n → P 2, when
considered up to a natural equivalence relation of symmetry-preserving continuous
deformation (equivariant homotopy), are in bijection with affine maps Zn3 → Z3.
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adjunction in promise constraint satisfaction. SIAM Journal on Computing, 52(1):38–79,
2023.
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Counting triangulations of homology 3-spheres

Geva Yashfe

(joint work with Karim Adiprasito, Marc Lackenby, Juan Souto, and (separately)
with Yuval Peled)

M. Gromov popularized the following problem.

Problem 1. Let tN be the number of (combinatorial isomorphism types of) tri-
angulations of S3 with N facets. Is tN exponential or superexponential in N?

This problem remains unsolved.

Known results and related work.

• For triangulations of S2 Tutte [9] proved that there are exponentially many
triangulations with N triangles.
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• It is known that exp (cN) ≤ tN ≤ exp (c′N logN) for some1 constants
c, c′ > 0.

These bounds are relatively straightforward to prove. The upper bound
exp (c′N logN) actually holds for triangulations of d-manifolds for any
fixed d (with an appropriate constant c′ depending on d).

It seems there is no hope for a very precise answer, so rough asymptotic
results are all we aim for.

• Benedetti–Ziegler [3] showed that shellable spheres are at most exponen-
tially many in N (in any fixed dimension). They also did this for a larger
class spheres called “locally-constructible” (or LC). Benedetti–Pavelka [2]
later extended this to a significantly larger class called 2-LC, but only in
dimension 3.

• If we parametrize sphere triangulations by the number of vertices (call it
M) instead, the problem has a different character. Some main results are:

– Alon and Goodman–Pollack [1, 4] showed that there are relatively
few (approximately exp (cM logM)) polytopes in M .

– Kalai [6] showed that most triangulations (in terms of M) are not
polytopal, and Lee [7] showed that Kalai’s triangulations are shellable.

– Nevo–Santos–Wilson [8] found still more triangulations than Kalai,
and Yang [10] showed the families they produced are constructible.

Here we mainly consider the following relaxation of Problem 1.

Problem. Let tN be the number of triangulations of 3-dimensional homology
spheres with N facets. Is tN exponential or superexponential in N?

For this we consider homology with coefficients in a fixed field F. This problem
also remains unsolved, with the best bounds remaining of the form exp (cN) ≤
tN ≤ exp (c′N logN) for some c, c′ > 0. This talk is about very modest progress
and currently still-unsuccessful attempts.

1. Dual graphs and short graphs

Gromov and Nabutovski suggested reducing the problem to a problem about
graphs. Gromov explains roughly what the result should be without describing
the reduction in [5]. This section is based on joint work with K. Adiprasito, M.
Lackenby, and J. Souto, and contains a sketch of our implementation of (part of)
this idea and of two applications.

Dual graphs and enumeration. Suppose X is a triangulated 3-manifold with
N facets, but we only have access to its dual graph G consisting of one vertex per
facet, with an edge for every two facets that intersect in a triangle. Then there
are at most exp (cN) possibilities for X given G: we have to put one tetrahedron
in place of every vertex of G, and the only information missing is the manner in
which adjacent tetrahedra are glued to each other. This leaves us with constantly
many possibilities per facet of X , of which there are N .

1We don’t care very much about the constants, and different occurences of “c” in this abstract
do not refer to the same number.
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Given the bounds we have on tN , we may consider just the dual graphs of tri-
angulated homology 3-spheres rather than the entire triangulations: asymptotics
remain essentially unchanged (exponential factors only change our constants).

Remark. This discussion explains the upper bound exp (c′N logN) for the num-
ber of triangulated d-manifolds: the dual graphs of triangulated d-manifold have
constant degree d+ 1, and there are only exp (c′N logN) constant-degree graphs
on N vertices (with c′ depending on the degree).

Properties of dual graphs. The family of dual graphs G of triangulated ho-
mology d-spheres over F has the following pleasant properties:

(1) It has bounded degree.
(2) For each G in the family there exists an F-homology basis (given by taking

a maximal independent subset of the dual cells of (d− 2)-faces of the
triangulated homology sphere) such that:
(a) The average cycle length (in terms of the number of edges) in the

basis is bounded by a constant. Equivalently, if G has N vertices
then the total length of cycles in the basis is bounded by cN for some
c.

(b) Each edge of G participates in boundedly many of the cycles in the
basis.

Definition. A class of graphs satisfying properties 1, 2(a), and 2(b) with some
fixed constants is called a class of short graphs. These classes are parametrized
by the field F, the degree bound, and the constants in conditions 2(a) and 2(b)
above.

Basically, one can think of classes of short graphs as a “soft / approximate” versions
of dual graphs of triangulated homology spheres.

Theorem (Adiprasito, Lackenby, Souto, Yashfe). For each class C of short graphs
there is a “machine”

C →֒ (triangulated homology 3-spheres over F)

taking each N -vertex graph in C to a triangulated homology 3-sphere with at most
c ·N tetrahedra (for c depending on C).
Corollary. If there exists d > 3 such that there are superexponentially many N -
facet triangulated homology d-spheres over F, then the same holds for d = 3.

Proof. Take the dual graphs of these superexponentially many homology d-spheres
to obtain a family of graphs contained in a class C of short graphs, and apply the
machine to this class. �

The machines of the theorem preserve some of the geometry of the input graphs.
This can also be applied to prove the following.

Theorem (Originally proved in unpublished work of M. Lackenby and J. Souto
by slightly different methods.). There is a family of triangulations of S3 for which
the dual graphs form an expander family.
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(Getting triangulations of S3 and not just some homology spheres requires an
additional idea and a special family of short graphs.)

A sketch of the machine. Given a graph G together with a “short” homology
basis over F, construct a 2-complex by pasting cells along basis elements. Then
thicken this complex to a triangulated 4-manifold in a geometrically controlled way
(so as not to increase degrees or face numbers by too large a factor; this process is
not canonical). Finally, pass to the boundary, which is a homology 3-sphere over
F. Injectivity of this process is not automatic and requires that we locally encode
some combinatorial data in the resulting triangulation.

In the talk some additional ideas were sketched, mainly on the relation between
problems here and problems about subgroup growth.

References

[1] N. Alon, The number of polytopes, configurations and real matroids, Mathematika 33.1
(1986), 62–71.

[2] B. Benedetti and M. Pavelka, 2-LC triangulated manifolds are exponentially many, arXiv
preprint arXiv:2106.12136 (2022).

[3] B. Benedetti and G.M. Ziegler, On locally constructible spheres and balls, Acta Mathematica
206 (2011), 205–243.

[4] J.E. Goodman and R. Pollack, Upper bounds for configurations and polytopes in Rd, Discrete
& Computational Geometry 1 (1986), 219–227.

[5] M. Gromov, Spaces and questions, Visions in Mathematics: GAFA 2000 Special Volume,
Part I (2010), 118–161.

[6] G. Kalai, Many triangulated spheres, Discrete & Computational Geometry 3 (1988), 1–14.
https://doi.org/10.1007/BF02187893

[7] C.W. Lee, Kalai’s squeezed spheres are shellable., Discrete & Computational Geometry 24
(2000), 391-396.

[8] E. Nevo, F. Santos, and S. Wilson, Many triangulated odd-dimensional spheres, Mathema-
tische Annalen 364.3 (2016), 737-762.

[9] W.T. Tutte, A census of planar triangulations, Canadian Journal of Mathematics 14 (1962),
21–38.

[10] Y. Yang, On the constructibility of the Nevo–Santos–Wilson spheres, arXiv preprint
arXiv:2305.03186 (2023).

Stress spaces, reconstruction problems and lower bound problems

Hailun Zheng

(joint work with Satoshi Murai and Isabella Novik)

What partial information about a simplicial d-polytope P allows one to determine
P up to certain equivalences? Specifically, consider the following two equivalences:
Given two polytopes P and P ′, we say that P and P ′ are combinatorially equivalent
if they have isomorphic face lattices, and they are affinely equivalent if there is
an affine map that sends P to P ′. Perles (unpublished) and Dancis [3] proved
that to determine the combinatorial type of a simplicial d-polytope P , it suffices
to know the ⌊d/2⌋-skeleton of P . This result is optimal in the sense that distinct
simplicial d-polytopes may have isomorphic (⌊d/2⌋−1)-skeleta. (For example, it is
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known that there are 2Θ(n logn) combinatorial types of neighborly d-polytopes with
n vertices [12].) On the other hand, the space of affine dependencies among the
vertices of P determines the affine type of P (and hence also the combinatorial type
of P ). This observation is at the heart of the theory of Gale diagrams developed
by Perles [15, Chapter 6].

A common ground of the above two results lies in the theory of stress spaces
developed by Lee [6]. To see it, note that for a simplicial d-polytope P , the space
of affine dependencies of vertices of P is equivalent to the space of affine 1-stresses
on P , while the space of affine k-stresses is trivial for any k ≥ ⌊d/2⌋ + 1. Hence
these two results are precisely the k = ⌊d/2⌋ + 1 and k = 1 cases of the following
conjecture of Kalai [4].

Conjecture 1. Let P be a simplicial d-polytope and let 1 ≤ k ≤ ⌊d/2⌋ + 1. Then
the (k−1)-skeleton of P and the space of affine k-stresses of P uniquely determine
the combinatorial type of P .

Another conjecture concerning the affine types of polytopes is the following

Conjecture 2. Let d ≥ 2k ≥ 4 and let P be a simplicial d-polytope with the
natural embedding and with no missing faces of dimension ≥ d− k + 1. Then the
space of affine k-stresses uniquely determines P up to affine equivalence.

We present two partial results of the above two conjectures. The first result
verifies the case of k = 2 of Conjecture 1, namely

Theorem 3 ([10]). Let d ≥ 3. The graph of a simplicial d-polytope P together
with the space of affine 2-stresses on P uniquely determine the combinatorial type
of P .

The proof is geometric-combinatorial. The idea is to use the rigidity theory
of frameworks to show that the missing faces of P can be identified by the sign
patterns of the coefficients of the squarefree terms in certain affine 2-stresses on
P .

The second result deals with Conjecture 2 and more generally the structures of
affine stress spaces of polytopes with no large missing faces.

Theorem 4 ([8]). Let 1 ≤ j < k ≤ d−1
2 and let P be a simplicial d-polytope with

no missing faces of dimension ≥ d− k+ 1. Then the space of affine k-stresses on
P determines the space of affine j-stresses on P .

In particular, Theorem 4 verifies the k ≤ d−1
2 case of Conjecture 2 (by letting

j = 1). At the moment, the d = 2k ≥ 4 case remains open.
The proof of Theorem 4 is algebraic. In particular, it relies on identifying the

space of affine stresses on P with the Matlis dual N of the Stanley-Reisner ring
of P modulo the linear system of parameters and the Lefschetz element. (Hence,
the condition on the missing faces translates into a condition on the degrees of
generators of N .)

Three comments are in order. First, prior to Theorem 4, Conjecture 2 was
proved by Cruickshank, Jackson and Tanigawa [2] in the case that P is a simplicial
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polytope whose vertices have generic coordinates, and by Novik and Zheng [11]
for all simplicial d-polytopes that have no missing faces of dimension ≥ d− 2k+ 2.
Second, with the proof of the g-theorem for simplicial spheres [1, 13, 5], Theorem
4 not only applies to simplicial d-polytopes with natural embeddings but also
simplicial (d − 1)-spheres with generic embeddings. Finally, Theorem 4 leads to
two corollaries on the g-numbers of simplicial (d− 1)-spheres that are interesting
in their own right. For a simplicial complex ∆, denote by mi(∆) the number of
missing i-faces of ∆. Recall that the g-theorem [14, 1, 13, 5] states that the g-
numbers of a simplicial (d− 1)-sphere form an M -sequence, i.e., 0 ≤ gk+1 ≤ g<k>k

holds for all 1 ≤ k ≤ ⌊d2⌋. The following corollary is a strengthening of the
g-theorem; part of the inequality appeared first in [9].

Corollary 5. Let d ≥ 4 and let ∆ be a simplicial (d − 1)-sphere. Then for all
1 ≤ k ≤ ⌈d/2⌉ − 1, gk(∆) ≥ md−k(∆). Furthermore, 0 ≤ gk+1(∆) ≤

(
gk(∆) −

md−k(∆)
)<k>

.

Recall also that the Generalized Lower Bound Theorem [7] asserts that for 2 ≤
k ≤ ⌊d/2⌋, a simplicial (d−1)-sphere has gk+1 = 0 if and only if it is k-stacked. The
following corollary gives a second characterization of spheres attaining a minimal
g-number.

Corollary 6. Let ∆ be a simplicial (d− 1)-sphere. Then for 1 ≤ k ≤ ⌊d/2⌋ − 1,
∆ is k-stacked if and only if gk(∆) = md−k(∆). Moreover, if d is odd and ∆ is
d−1
2 -stacked, then g d−1

2

(∆) = m d+1

2

(∆).
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Open Problems in Geometric, Algebraic and Topological

Combinatorics

Collected by Edward Swartz

PROBLEM 1 (Nati Linial, joint with Jordan Smith). Computing certain

invariants of topological spaces of dimension three

Say that a graph is geodesic if between every two vertices there is a unique shortest
path. Ore (1960) defined this class of graphs and asked for a characterization, but
this quest seems way out of hand. It suffices, of course to consider only 2-connected
graphs. There is a known infinite family of (i) geodesic, (ii) 2-connected graphs
(iii) in which all vertex degrees are at least 3 and have diameter 5, but nothing
beyond. Question: Can such graphs have arbitrarily large diameter?

PROBLEM 2 (Benjamin Braun, joint with Kaitlin Bruegge). Bounding facet

numbers for symmetric edge polytopes

Let G be a finite simple graph and let PG = conv{ei−ej, ej−ei : ij ∈ E(G)} be the
symmetric edge polytope of G. Determining properties of the facets of symmetric
edge polytopes is of interest both in combinatorics and in applications. To this
end, the authors made the following conjecture regarding bounds on the number
of facets for symmetric edge polytopes of connected graphs on a fixed number of
vertices.

Conjecture. (1) (Braun and Bruegge [1]). Let n ≥ 3.

(1) For n = 2k + 1, the maximum number of facets for PG for a connected
graph G on n vertices is 6k, which is attained by a wedge of k cycles of
length three.

(2) For n = 2k, the maximum number of facets for PG for a connected graph
G on n vertices is 14 · 6k−2, which is attained by a wedge of K4 with k− 2
cycles of length three.

(3) For n = 2k + 1, the minimum number of facets for PG for a connected
graph G on n vertices is 3 · 2k − 2, which is attained by Kk,k+1.

(4) For n = 2k, the minimum number of facets for PG for a connected graph
G on n vertices is 2k+1 − 2, which is attained by Kk,k.

Partial progress on this conjecture was announced in a preprint by Mori, Mori,
and Ohsugi [2].
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PROBLEM 3 (Benjamin Braun, joint with Matias von Bell, Derek Hanely,
Khrystyna Serhiyenko, Julianne Vega, Andrés Vindas-Meléndez and Martha Yip).
Enumerating regular triangulations of order polytopes for snake

posets

For n ∈ Z≥0, a generalized snake word is a word of the form w = w0w1 · · ·wn
where w0 = ε is the empty letter and wi is in the alphabet {L,R} for i = 1, . . . , n.
The length of the word is n, which is the number of letters in {L,R}. Given a
generalized snake word w = w0w1 · · ·wn, we define the generalized snake poset
P (w) recursively in the following way:

• P (w0) = P (ε) is the poset on elements {0, 1, 2, 3} with cover relations
1 ≺ 0, 2 ≺ 0, 3 ≺ 1 and 3 ≺ 2.

• P (w0w1 · · ·wn) is the poset P (w0w1 · · ·wn−1) ∪ {2n+ 2, 2n+ 3} with the
added cover relations 2n+ 3 ≺ 2n+ 1, 2n+ 3 ≺ 2n+ 2, and

{
2n+ 2 ≺ 2n− 1, if n = 1 and wn = L, or n ≥ 2 and wn−1wn ∈ {RL,LR},
2n+ 2 ≺ 2n, if n = 1 and wn = R, or n ≥ 2 and wn−1wn ∈ {LL,RR}.

In this definition, the minimal element of the poset P (w) is 0̂ = 2n + 3, and the

maximal element of the poset is 1̂ = 0.
As part of a more extensive investigation of triangulations of order polytopes

related to generalized snake posets, the authors made the following conjecture re-
garding the order polytope of the following poset: for the length n word εLRLR · · · ,
Sn := P (εLRLR · · · ) is the snake poset.

Conjecture. (2) (von Bell, Braun, Hanely, Serhiyenko, Vega, Vindas-Meléndez,
Yip [1]). The number of regular triangulations of the order polytope of Sn is
2n+1Cat(2n+ 1), where Cat(2n+ 1) denotes the 2n+ 1-st Catalan number.

[1] M. von Bell, B. Braun, D. Hanely, K. Serhiyenko, J. Vega, A. Vindas-Meléndez, M. Yip,
Triangulations, Order Polytopes, and Generalized Snake Posets Combinatorial Theory 2(3)
(2022)

PROBLEM 4 (Raman Sanyal, joint with Sebastian Manecke). Strongly in-

scribable arrangements and reflection arrangements

Consider an arrangement A = {H1, . . . , Hn} of n hyperplanes in Rd, all passing
through the origin. Choosing a normal vector zi for each hyperplane Hi gives rise
to an associated zonotope

Z(A) = [−z1, z1] + · · · + [−zn, zn] = {µ1z1 + · · · + µnzn : −1 ≤ µ1, . . . , µn ≤ 1}.
Z(A) is a convex polytope whose combinatorics faithfully represents that of A.
We call A strongly inscribable if there is a choice of normal vectors such that Z(A)
is inscribed, that is, has all vertices on the unit sphere. For example, reflection
arrangements obtained from finite reflection groups are strongly inscribable.
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In [4], we showed that the restriction of a strongly inscribable arrangement
to any of its hyperplanes is again strongly inscribable. Thus, further examples
are provided by restrictions of reflection arrangements, which generally are not
reflection arrangements themselves.

Conjecture. (3) ([4, Conj. 1.7]). An arrangement of hyperplanes in Rd with d ≥ 3
is strongly inscribable if and only if it is linearly isomorphic to the restriction of a
reflection arrangement.

An important structural property that we observe in [4] is that every strongly
inscribable arrangement is simplicial, that is, every connected component of Rd \⋃A is linearly isomorphic to Rd>0. Simplicial arrangements are fascinating but
rare. There is a conjecturally complete catalog of simplicial arrangements in R3

due to Grünbaum and Cuntz [1, 2, 3]. We verify that the only strongly inscribable
arrangements in this catalog are restrictions of reflection arrangements. Assuming
the completeness of the Grünbaum–Cuntz catalog, this proves the conjecture in
dimension 3.

[1] M. Cuntz, Simplicial arrangements with up to 27 lines, Discrete & Computational Geom-
etry, 48 (2012), pp. 682–701.

[2] M. Cuntz, A greedy algorithm to compute arrangements of lines in the projective plane,
Discrete & Computational Geometry, 68 (2021), pp. 107–124.

[3] B. Grünbaum, A catalogue of simplicial arrangements in the real projective plane, Ars
Mathematica Contemporanea, 2 (2009).

[4] S. Manecke, R. Sanyal, Inscribable Fans II: Inscribed zonotopes, simplicial arrangements,
and reflection groups, arXiv preprint arXiv:2203.11062, (2022).

PROBLEM 5 (Georg Loho). Realizable M-convex functions

A generalized permutahedron is a polytope whose edge directions are of the form
ei− ej for standard unit vectors ei, ej. An integral generalized permutahedron is a
generalized permutahedron that is also a lattice polytope. An M-convex set is the
set of lattice points in an integral generalized permutahedron. Let f : S → R be a
function for some finite subset S ⊆ Zn. It is M-convex if argminx∈S (f(x) − 〈c, x〉)
is an M-convex set for each c ∈ Rn.

Matroids are special M-convex sets, namely those contained in the unit cube
{0, 1}n. Furthermore, valuated matroids are special M-convex functions, namely
those with a matroid as domain. Matroids are realizable if they arise from the
independence structure of a matrix. Valuated matroids are realizable if they arise
as tropicalization of a Pluecker vector of a linear space. M-convex sets are real-
izable if their defining integral generalized permutahedron can be described by a
submodular function arising from a subspace arrangement.

However, it is not clear when an M-convex function should be called realizable.
There are some potential candidates. One could argue that M-convex functions
arising from realizable valuated matroids by induction through a directed graph
should be called realizable. Furthermore, M-convex functions arise by tropical-
ization from Lorentzian polynomials. For the latter, one could argue that those
arising as volume polynomials should be realizable, giving rise to another notion
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of realizability for M-convex functions. Still, the notion does not seem clear com-
pared to the nice picture for (valuated) matroids and M-convex sets, leaving the
following questions open.

What is a ‘realizable’ M-convex function?
What is a ‘Pluecker vector’ of a subspace arrangement?

[1] L. Lovász, Flats in matroids and geometric graphs, Comb. Surv., Proc. 6th Br. comb. Conf.
(1977), 45–86.

[2] K. Murota, Discrete convex analysis, SIAM Monographs on Discrete Mathematics and Ap-
plications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003.

PROBLEM 6 (Germain Poullot). Is log-concavity arising through ma-

trix recursion?

The problem presented here arises when studying the monotone path polytope of
the hypersimplex ∆(n, 2). After numerous pages of tedious proofs, one can count
the number of coherent monotone paths of ∆(n, 2) thanks to the following matrix
recursion. Similar problems give rises to similar question, but we present here a
very concrete occurrence, hoping from someone to develop tools to address the
general setting.

Let’s define the sequences of polynomials Tn, Qn and Cn satisfying the following
recursive formula:

∀n ≥ 4,



Tn+1

Qn+1

Cn+1


 = M



Tn
Qn
Cn




with M =




z 1 + z 1 + z
0 1 + z z

z + z2 0 1 + z


 ,



T4
Q4

C4


 =



z4 + 2z3

z4

2z4 + 2z3




and the polynomial Vn = Tn +Qn + Cn =
∑
k vn,kz

k.

Conjecture: For all n ≥ 4, the sequence (vn,k)n is (ultra-)log-concave.

The value vn,k counts the number of coherent monotone paths of ∆(n, 2), and
a good combinatorial model allows to exhibit this recursion, but I haven’t able to
extract log-concavity from this combinatorial interpretation (yet).

This conjecture have been checked for all n ≤ 300 (and one can easily go further,
but where to stop?), please prove it!

Obviously, the question can be posed more generally: given a starting vector
X0 ∈ N[z]m and a matrix M ∈ Matm×m

(
N[z]

)
, what kind of tools can we develop

to address (ultra-)log-concavity and unimodality questions for (the polynomials of
the vector) Xn = MnX0 and the polynomial

∑m
r=1Xn,r?

Note that, for n ≤ 300:

• Tn, Qn, Cn and Vn are ultra-log-concave (so homogenizing each of them
gives lorentzian polynomials).

• (in general) Tn, Qn, Cn and Vn are not symmetric.
• (in general) Tn, Qn, Cn and Vn are not real-rooted.
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• Properties of M (left- or right-kernel and eigenvectors) seems not helpful:
one computes Mn, but then extracting log-concavity it out of my reach...

• Starting with different polynomials for T4, Q4 and C4, its seems that Vn
becomes ultra-log-concave after a certain rank.

One can mathematically prove that:

• deg Vn = d =
⌊
3
2 (n− 1)

⌋
(with vn,d = 1 if n odd ; vn,d = d if n even).

• the ”constant coefficient” of Vn is 4 (i.e. vn,4 = 4).
• Vn(1) =

∑
k vn,k = 1

3 (25 × 4n−4 − 1)
• for a fixed k, the value of vn,k is a polynomial in n (of degree k − 3),

mimicking slightly the behavior of binomial coefficients.

PROBLEM 7 (Bruno Benedetti, joint with Matteo Varbaro). The dual graph

of Cohen–Macaulay algebras

In the following, S = K[x1, . . . , xn] is the polynomial ring with n variables over
some field K. Let I be any ideal of S. Let ℘1, . . . , ℘s be the minimal primes of I
that have height equal to the height of I. We define the dual graph G(I) on the
vertex set [s] = {1, . . . , s} as follows: there is an edge [i, j] if and only if

height(Pi + Pj) = 1 + height I.

There are two motivations for this definition:

(1) When I is radical and height-unmixed, I = ℘1 ∩ . . . ∩ ℘s. Passing to the
Zariski sets, this means that Z(I) = Z(℘1)∪ . . .∪Z(℘s). Thus G(I) coin-
cides with the dual graph of Z(I), where an edge connects two irreducible
components iff their intersection has codimension one.

(2) When I = I∆ is the Stanley-Reisner ideal of some simplicial complex ∆
on n vertices, then G(I) coincides with the dual graph of ∆. In this case
height I = n− dim ∆ − 1.

Recall that in a connected graph G, the distance between two vertices is the
number of edges in a shortest path connecting them, and diamG is the maximum
distance between any two of its vertices.

Conjecture. [Benedetti–Varbaro [2], 2014]: Let I ⊆ S be an ideal generated in
degree two. If S/I is Cohen–Macaulay, then diamG(I) ≤ height(I).

In the meantime, the conjecture has been proven true for many interesting cases,
cf. e.g. [3], [4], [5], [6], [7]. It holds for squarefree monomial ideals: This follows from
the result by Adiprasito–Benedetti that “flag normal complexes satisfy the Hirsch
conjecture” [1]. In fact, when I = I∆, the upper bound height I = n− dim ∆ − 1
reflects exactly the Hirsch bound.

A final comment: The condition “generated in degree two” is not really restric-
tive. Via Veronese embeddings, if the Conjecture above is true, one automatically
gets a polynomial bound of the type

diamG(I) ≤ height(I)⌈k/2⌉

for all ideals I generated in degree ≤ k and such that S/I is Cohen–Macaulay [2].
Thus in particular the Conjecture above would imply the following:
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Conjecture. If ∆ is a normal simplicial complex of dimension d, with n vertices,
and no missing face of dimension ≤ k, then the dual graph of ∆ has diameter at
most P (n), where P is a polynomial in n of degree ⌈k/2⌉.

[1] K. Adiprasito, B. Benedetti, The Hirsch conjecture holds for flag normal complexes, Math.
Oper. Research 39, Issue 4 (2014), 1340–1348.

[2] B. Benedetti, M. Varbaro, On the dual graphs of Cohen–Macaulay algebras, Int. Math. Res.
Notices 2015 (2015), 8085–8115.

[3] D. Bolognini, A. Macchia, M. Strazzanti, Binomial edge ideals of bipartite graphs, Eur. J.
Combin. 70 (2018), 1–25.

[4] M. Di Marca, M. Varbaro, On the diameter of an ideal, J. Algebra 511 (2018), 471–485.
[5] A. Conca, M. Varbaro, Square-free Gröbner degenerations, Invent. Math. 221, No. 3 (2020),

713–730.
[6] A. D’Aĺı, L. Venturello, Koszul Gorenstein Algebras from Cohen–Macaulay simplicial com-

plexes, Int. Math. Res. Notices 2023 (2023), 4998–5045.
[7] B. Holmes, On the diameter of dual graphs of Stanley-Reisner rings and Hirsch type bounds

on abstractions of polytopes, Elec. J. Comb. 25 (2018), P1.60.

PROBLEM 8 (Felipe Rincón). Tensor products of matroids

If M is a matroid on the ground set E and N is a matroid on the ground set F , a
quasi-product ofM andN is a matroid T on the ground set E×F satisfying: for any
f ∈ F , the natural bijection between E and E×{f} induces a matroid isomorphism
between M and the restriction T |E×{f}, and similarly, for any e ∈ E, the natural
bijection between F and {e} × F induces a matroid isomorphism between N and
the restriction T |{e}×F .

It is a simple exercise to show that the rank of any quasi-product T of M and
N has rank at most rank(M) · rank(N). The quasi-product T is called a tensor
product if in fact we have the equality rank(T ) = rank(M) · rank(N).

To my knowledge, there are only very few things that we know about tensor
products:

• If M and N are realizable over the same field K then M and N admit
a tensor product. This is due to the fact that, for subspaces LM ⊂ KE

and LN ⊂ KF that represent M and N , respectively, we can construct
the tensor product LM ⊗LN ⊂ KE ⊗KF , which then represents a tensor
product T of M and N . The resulting tensor product T might depend on
the realizations chosen, though.

• The matroids V8 and U2,3 do not admit a tensor product! This is one of
the main results of [2].

• If M and N admit a tensor product, M ′ is a minor of M , and N ′ is a
minor of N , then M ′ and N ′ admit a tensor product. This is not too
difficult – for details, you can see, for instance, [1].

The research problem I am proposing is to study further the class of matroids
M,N that admit a tensor product. For instance, can you construct more matroids
that admit a tensor product? Can you describe tensor products combinatorially
for particular classes of matroids? Can you say something about forbidden minors
for the existence of tensor products (see [1])?
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[1] N. Anderson, Matroid products in tropical geometry, preprint, arXiv:2306.14771.
[2] M. Las Vergnas, On products of matroids, Discrete Mathematics 36 (1) (1981).

PROBLEM 9 (Pablo Soberón). A problem in the plane

Given a family F of lines in the plane such that no two are parallel, we can
determine the size of a set A ⊂ R2 as follows:

µ(A) = max{k ∈ N : there exists a set of k lines of F whose pairwise

intersections are all in A.}
If A does not contain any intersection of lines of F , we define µ(A) := 1.
Let (A,B,C) be a convex partition of the plane into three parts. In other words,

each of A,B,C is a closed convex set in R2, their interiors are pairwise disjoint,
and their union is R2.

Show that

µ(A)µ(B)µ(C) ≥ |F|.
The case when one of A,B,C is a half-plane is easy to prove. The best known

bound is [1]:

µ(A)µ(B)µ(C) ≥
(

2

3

)
|F|.

[1] A. Xue, P. Soberón, Balanced convex partitions of lines in the plane, Discrete & Computa-
tional Geometry 66 (2021), 1150–1167.

The homogenized Linial arrangement and Genocchi numbers

Michelle Wachs

(joint work with Alexader Lazar)

The braid arrangement (or type A Coxeter arrangement) is the hyperplane ar-
rangement in Rn defined by

An−1 := {xi − xj = 0 : 1 ≤ i < j ≤ n}.
Note that the hyperplanes of An−1 divide Rn into open cones of the form

Rσ := {x ∈ Rn : xσ(1) < xσ(2) < · · · < xσ(n)},
where σ is a permutation in the symmetric group Sn. Hence the braid arrangement
An−1 has |Sn| = n! regions.

A classical formula of Zaslavsky [11] gives the number of regions of any real
hyperplane arrangement A in terms of the Möbius function of its intersection
(semi)lattice L(A). Indeed, given any finite, ranked poset P of length ℓ, with a

minimum element 0̂, the characteristic polynomial of P is defined to be

(1) χP (t) :=
∑

x∈P

µP (0̂, x)tℓ−rk(x),
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where µP is the Möbius function of P and rk(x) is the rank of x. Zaslavsky’s
formula for the number of regions r(A) of A is

(2) r(A) = (−1)ℓχL(A)(−1).

It is well known and easy to see that the lattice of intersections of the braid
arrangement An−1 is isomorphic to the lattice Πn of partitions of the set [n] :=
{1, 2, . . . , n}. It is also well known that the characteristic polynomial of Πn is given
by

(3) χΠn
(t) =

n∑

k=1

s(n, k)tk−1,

where s(n, k) is the Stirling number of the first kind, which is equal to (−1)n−k

times the number of permutations in Sn with exactly k cycles; see [10, Example
3.10.4]. Hence χΠn

(−1) = (−1)n−1|Sn|. Therefore, from (2), we recover the result
observed above that the number of regions of An−1 is n!.

In this talk, we consider a hyperplane arrangement introduced by Hetyei [5].
The homogenized Linial arrangement is the hyperplane arrangement in R2n de-
fined, for n ≥ 2, by

H2n−3 := {xi − xj = yi : 1 ≤ i < j ≤ n}.
Note that by intersecting H2n−3 with the subspace y1 = y2 = · · · = yn = 0 one gets
the braid arrangement An−1. Similarly by intersecting H2n−3 with the subspace
y1 = y2 = · · · = yn = 1, one gets the Linial arrangement in Rn,

{xi − xj = 1 : 1 ≤ i < j ≤ n}.
Postnikov and Stanley [8] show that the number of regions of the Linial arrange-
ment is equal to the number of alternating trees on node set [n+ 1].

Hetyei [5] shows that the number of regions of the homogenized Linial arrange-
ment is equal to a number known as the median Genocchi number. He uses the
finite field method of Athanasiadis [1] to obtain a recurrence for χL(H2n−1)(−1) and
shows that the recurrence reduces to a known formula for the median Genocchi
number hn. The result then follows from Zaslavsky’s formula (2). The Genocchi
numbers gn and the median Genocchi numbers hn can be characterized by the
Barsky and Dumont [2] generating function formulas:

∑

n≥1

gnx
n =

∑

n≥1

(n− 1)!n!xn∏n
k=1(1 + k2z)

(4)

∑

n≥0

hnz
n =

∑

n≥0

n! (n+ 1)! zn∏n
k=1(1 + k(k + 1)z)

.(5)

In [6] we further study the intersection lattice L(H2n−1) and its characteristic
polynomial χL(H2n−1)(t) using an approach quite different from Hetyei’s. We prove

(6)
∑

n≥1

χL(H2n−1)(t)x
n =

∑

n≥1

(t− 1)n−1(t− 1)n x
n

∏n
k=1(1 − k(t− k)x)

,
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where (a)n denotes the falling factorial a(a− 1) · · · (a−n+ 1). By setting t = −1,
we recover Hetyei’s result. Moreover, by setting t = 0, we relate the (non-
median) Genocchi numbers to the homogenized Lineal arrangement. Indeed, since
χL(H2n−1)(0) is the Möbius invariant of L(H2n−1), we have

(7) µL(H2n−1)(0̂, 1̂) = −gn.
Our proof of (6) has the following steps.

1. Show that tχL(H2n−1)(t) equals the chromatic polynomial chΓn
(t) of a cer-

tain graph Γn.
2. Using the Rota-Whitney NBC theorem, show that the coefficients of chΓn

(t)
can be described in terms of a certain class of alternating forests.

3. Construct a bijection from this class of alternating forests to a new class of
permutations similar to those introduced by Dumont [3] to study Genocchi
numbers. This yields a result analogous to (3) involving cycles of Dumont-
like permutations.

4. Construct a bijection from the Dumont-like permutations to a certain
class of objects called surjective staircases. Results of Randrianarivony [9]
and Zeng [12] on generating functions for surjective staircases are used to
complete the proof.

We also introduce a Dowling analog of the homogenized Linial arrangement.
Let ω = e2πi/m be a primitive mth root of unity. The homogenized Linial-Dowling
arrangement is the complex hyperplane arrangement in C2n, defined by

Hm
2n−1 = {xi − ωℓxj = yi : 1 ≤ i < j ≤ n, 0 ≤ ℓ < m} ∪ {xi = yi : 1 ≤ i ≤ n}.

Note that when m = 2, the arrangement Hm
2n−1 is a complexified version of the

type B homogenized Linial arrangement. When m = 1, the arrangement Hm
2n−1 is

the complexified version of the arrangement obtained by intersecting H2n−1 with
the coordinate hyperplane xn+1 = 0. The resulting arrangement on the coordinate
hyperplane has the same intersection lattice as H2n−1.

Using similar techniques as for the homogenized Linial arrangement, we prove
in [7] the following generalization of (6):

(8)
∑

n≥1

χL(Hm
2n−1

)(t)x
n =

∑

n≥1

(t− 1)n,m(t−m)n−1,m x
n

∏n
k=1(1 −mk(t−mk)x)

.

where (a)n,m = a(a−m)(a− 2m) · · · (a− (n− 1)m).
There is a well-studied polynomial analog of the Genocchi numbers known as the

Gandhi polynomials Gn(x); see [4, Section 3]. We obtain the following m-analog
of (7):

χL(Hm
2n−1

)(0) = µL(Hm
2n−1

)(0̂, 1̂) = −m2n−1Gn(m−1).

The polynomials χL(Hm
2n−1

)(0) and χL(Hm
2n−1

)(−1) can be viewed as m-analogs of

the Genocchi and median Genocchi numbers, respectively. It would be interest-
ing to generalize known relationships between the Genocchi numbers and median
Genocchi numbers to these m-analogs.
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Introduction by the Organizers

The Arbeitsgemeinschaft QFT and Stochastic PDEs, organized by Roland Bauer-
schmidt (New York), Massimiliano Gubinelli (Oxford), Martin Hairer (London/
Lausanne), and Hao Shen (Wisconsin-Madison) was attended by 44 participants
(as well as a few remote participants). There was a broad geographic represen-
tation from all continents. Most of the participants were in early stages of their
careers, with background mostly in the areas of probability theory, analysis, and
theoretical physics. All the in-person participants delivered talks, with a total of
22 talks, each coordinated and presented by two speakers.

The talks were organized in a progressive order. The talks on Monday focused
on general introductions to Euclidean QFT, and local solutions to SPDEs in the
Da Prato–Debussche regime. The example of the stochastic quantisation of the
Φ4

2 model (which is the simplest nontrivial case of a nonlinear SPDE from Eu-
clidean QFT) was discussed. The talks on Tuesday then discussed global solution
theory to the stochastic quantisation of Φ4

2. The talks on Wednesday provided
more applications of the Da Prato–Debussche argument, and examples of using
PDE methods to study some qualitative behaviors of these QFTs such as integra-
bility of the Φ4

2 measure, as well as connections with the corresponding statistical
physical models. The Wednesday talks introduced the Yang-Mills model and its
Langevin dynamics, in continuum and on lattice. On Thursday, the theory of reg-
ularity structures was introduced by the participants, and some of the cornerstone
theorems of this theory were proved; an application to the stochastic quantisation
of the Φ4

3 model was given. The talks on Friday were focussed on the Wilsonian
renormalisation group approach, log-Sobolev inequalities and their implications,
and the connections between these topics and SPDEs.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Towards Euclidean quantum field theory

Wei Huang, Weile Weng

The talk consists of two parts: the first part focus on the Feynman-Kac formula
that leads to Euclidean quantum mechanics and the second part is about the
Ostwalder-Schrader axioms in Euclidean quantum field theory, with a focus on
reflection positivity.

We begin our first part with a brief introduction on the basic postulates of quan-
tum mechanics. Then we have a look at one of the simplest quantum mechanics
systems, the quantum harmonic oscillator. After rescaling, we get the Hamiltonian
H = 1/2(P 2 + Q2), where P = i∂x, Q = x. Note that H = A∗A + 1/2, where
A = 1√

2
(Q + iP ), A∗ = 1√

2
(Q − iP ). A is called the annihilation operator, as

for any eigenvector Ω of H with eigenvalue λ, A∗Ω(if non-zero) is an eigenvector
of H with eigenvalue λ − 1. A∗ is called the creation operator as it increases
the eigenvalue by 1 when acting on eigenfunctions. There is a unique ground
state which has the lowest eigenvalue 1/2, and the corresponding eigenfunction

is Ω0(x) = π−1/4e−x
2/2. The other eigenvectors can be obtained by acting A∗

on it and Ωn = (n!)−1/2A∗nΩ0 = (n!)−1/2Pn(Q)Ω0, where Pn are the Hermite
polynomials. The eigenvectors forms an ONS of H, and they can all be obtained
from the ground state by multiplying polynomials of Q.

The Feynman path integral expresses the integral kernel of the Schrödinger
propagator in terms of a path integral

e−itH/~(x, x′) =
1

Z

∫

γ0=x,γt=x′

e−
i
~

∫
t

0
1
2 γ̇

2
s−V (γs)dsdγ.

It reveals a physical intuition that the particle takes all the possible path with
weights given by the classical action, but mathematically the integral is very prob-
lematic as it cannot be defined with a measure. We can avoid the problem by
running the dynamics in imaginary time(also called Wick rotation). We then get
the Feynman-Kac formula(we set ~ = 1):

e−tH(x, x′) =

∫
e−

∫
t

0
V (γ)dsdWx,x′(γ),

where Wx,x′ is the Wiener measure conditioned on starting at x and ending at
x′. The Feynman-Kac formula implies the positivity of kernel and uniqueness and
positivity of ground state, which are necessary to construct the measure in the
renormalized Feynman-Kac formula.

Assume there exists a ground state Ω and assume the ground state energy
to be E0. Then we subtract the energy to get Ĥ = h − E0. The ground state
transformation(×Ω−1) is a isometry from L2(R) to L2(R,Ω2dm) and we can trans-

fer Ĥ to a self-adjoint operator H∧ = ΩĤΩ−1 on L2(R,Ω2dm). Since e−tH
∧

has
positive kernel and H∧1 = 0, it generates a Markov process on R and we denote
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its distribution by µ. By the ground state transformation we get the following
renormalized Feynman-Kac formula,

(1) 〈Ω, A1e
−(t2−t1)ĤA2e

−(t3−t2)Ĥ . . . AnΩ〉 =
∫
A1(qt1) . . . An(qtn)dµ(q),

which enables us to express the Wightman function(ground state correlation in
Euclidean quantum mechanics) in terms of correlation of a stochastic process. If
we construct the measure µ, then we can compute the Wightman function and get
Schwinger function(ground state correlation in quantum mechanics) by analytic
continuation, and finally retrieve all the information of the quantum dynamics
from the Schwinger function.

We now turn our focus to the Euclidean fields. A EQFT is a certain probability
measure µ on real distributions D′ ≡ D′(Rd), where d is the space-time dimension.
Let D ≡ C∞

0 (Rd) be the space of test functions. For φ ∈ D′, f ∈ D, we write
φ(f) = 〈φ, f〉 to be the canonical pairing on Rd. The probability measure µ is
characterized by the generating functionals {Sf , f ∈ D}, with

Sf : φ 7→
∫
eiφ(f)dµ(φ), φ ∈ D′.

Osterwalder-Schrader axioms impose five conditions on µ:

(OS0) Analyticity: Sf is entire analytic. It ensures the super-exponential decay
of dµ.

(OS1) Regularity: log |Sf | ≤ c(||f ||L1 + ||f ||pLp), for p ∈ [1, 2], and some constant
c . If p = 2, then the second-order Schwinger function should be locally
integrable.

(OS2) Invariance: Sf is invariant under Euclidean symmetries of Rd, i.e. trans-
lation, rotation, and reflection. This is equivalent to the Euclidean invari-
ance of dµ.

(OS3) Reflection positivity (RP): for every finite sequence (fi) ⊂ Dreal, the ma-
trix Mij = Sfi−θfj has non-negative eigenvalues, where θ is the time re-
flection over the point 0.

(OS4) Ergodicity: the measure space (D′, dµ) is ergodic with respect to the time
translation subgroup T (t).

(OS0)-(OS2) are meant for all test function f . For (OS3), there is an equivalent
formulation. Let

A+ = {A : φ 7→
N∑

j=1

cje
φ(fj), for some cj ∈ C, fj ∈ C0(R

d
+), N ∈ N},

with Rd+ the half-space of positive time. Let E = L2(D′(Rd), dµ), then RP is
equivalent to

〈θA,A〉E ≥ 0, ∀A ∈ A+.

The reflection positivity axiom helps us to construct a quantum mechanical Hilbert
space H. The construction is based on A+, and the bilinear form b(A,B) :=
〈θA,B〉E . Specifically, it is constructed in three steps: first, take closure ofA+ in E ,
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and denote it by E+; second, thanks to the RP, observe that || · ||b := b(·, ·) 1
2 defines

a semi-norm on E+, and thus a norm on E+/N , with N := {A ∈ E+, ||A||b = 0} the
null-set; finally, define H as the closure of the equivalent class E+/N in (E , || · ||b),
and check the Parallelogram identity, and conclude that H is a Hilbert space.

For A ∈ E+, let A∧ := A + N ∈ H. To this point, we have 〈A∧, B∧〉H =
〈θA,B〉E . Next, we wish to transfer an operator S on E to S∧ on H. In order for
the following equality to hold, 〈A∧, S∧B∧〉H = 〈θA, SB〉E , where S∧B∧ := (SB)∧,
S must map D(S) ∩ E+ to E+, and D(S) ∩N to N .

Now we are ready to construct the Hamiltonian H via the time translation
semi-group T (t).

Theorem (Construction of H). Suppose (OS3) and (OS2) hold (in particular, the
time translation invariance of dµ). Then for t ≥ 0, T (t)∧ is well-defined, and it
can be written as T (t)∧ = e−tH , where H is some positive self-adjoint operator,
with ground state Ω = 1∧.

The idea of the proof is to first show that R(t) := T (t)∧ maps N to N , and
satisfies the properties of semi-group, Hermitian, contraction and strong continu-
ity. Hence there exists a positive self-adjoint operator H satisfying the desired
relation. H has a ground state 1∧, i.e. H1∧ = 0, which follows from T (t)1 = 1.

For the lattice models where the space-time is Zd instead of Rd, under suitable
modified assumptions, we may apply above theorem to construct a self-adjoint
matrix K on H, such that Kn := T (n)∧, for n ∈ N. In addition, 1∧ is an invariant
vector for K. Here, K in the lattice model plays the role of e−H in the continuous
model.

Reflection positivity for lattice models is a sophisticated topic (see [2], [3, Chap.
10]). To enumerate examples, it is convenient to consider the space-time on a torus
TL, as it has natural reflection symmetry along planes orthogonal to one of the
lattice directions. In a broader language, we speak of reflections over one of such
hyperplane Π that splits the torus into two halves, and the splitting is either
through sites or through edges. The most simple case is the product measure, it
is RP with respect to all reflections. Gibbs measure of a class of lattice spin sys-
tems also possess reflection positivity, such as Ising, Potts and Heisenberg models.
We mention a more general result. Given a fixed plane of reflection Π, with the
corresponding reflection operator θ, let A+(θ) be the algebra of all bounded and
measurable functions supported on the positive half of the reflection plane. Now,
suppose the torus Hamiltonian takes the form −HL = A+ θA+

∑
α CαθCα, with

A,Cα ∈ A(θ)+, then the torus Gibbs measure is RP with respect to θ (for any
inverse-temperature). Such examples include the torus Hamiltonian for nearest
neighbor (ferromagnetic) interaction, Yukawa potentials, and the power-law decay-
ing potentials, which are RP with respect to any plane.
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Gaussian free field and the φ4

2
measure on torus

Aleksandra Korzhenkova

Our goal is to construct a probability measure P on the space D′(T2) of distribu-
tions on the two-dimensional torus heuristically given by

P(dφ) ∝ exp

(
−
∫

T2

|φ|4dx− 1

2

∫

T2

(|∇φ|2 +m2|φ|2)dx
︸ ︷︷ ︸

=〈φ,(−∆+m2)φ〉

)
“dφ”

for m2 > 0.

Step 1: Absolute continuity w.r.t. massive GFF measure.
The alternative description of the second integral directly suggests we rewrite P
as P(dφ) ∝ e−

∫
|φ|4dxQ(dφ) for a centered Gaussian measure Q with the inverse

of −∆+m2 as covariance, called massive Gaussian free field (GFF). One way to
define Q rigorously is by diagonalizing −∆ + m2. More precisely, let 0 = λ1 <
λ2 ≤ λ3 ≤ . . . be the eigenvalues of minus Laplacian and (ej)j∈N be a family of
the corresponding eigenfunctions that forms an orthonormal basis of L2(T2). In
this basis, the desired covariance, called massive Green’s function, is given by

Gm2(x, y) =
∑

j≥1

1

λj +m2
ej(x)ej(y) for all x 6= y ∈ T2,

where the right-hand side is a convergent series in L2(T2 ×T2). Let further (αj)j
be a sequence of i.i.d. standard normal random variables. We set

Γ :=

∞∑

j=1

1√
λj +m2

αjej .(1)

By Weyl’s law or alternatively since when re-indexed by Z2 ∋ k, λk = |k|2 and
ek(x) = ei〈k,x〉 are explicit, we can easily check that almost surely Γ ∈ H−ε(T2) =
{f =

∑
j〈f, ej〉ej |

∑
j≥1|〈f, ej〉|2(λj+m2)−ε <∞} for any ε > 0. That is, almost

surely Γ is a random distribution, and its covariance is clearly Gm2 , hence, we can
set Q to be the law of Γ.

Remark. One can also define (massive) GFF in higher dimensions as well as on
more general domains [1, 4], e.g., on regular subsets of Rd (for d = 2, proper
subsets) with various boundary conditions. The distinguishing feature of the di-
mension two, which is of immense importance to our construction of P, is that
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Gm2 has a logarithmic singularity at the diagonal compared to the polynomial
ones in higher dimensions. More precisely, for d = 2

Gm2(x, y) ∼ −c log(m|x − y|) as |x− y| → 0

for an explicit constant c (some finite power of 2π).

Step 2: Renormalization of power.

Now that we have Q, for e−
∫
|φ|4dxQ(dφ) to be defined we at least need that

φ ∈ L4(T2) for Q-almost every φ. However, EQ[|φ|2] =
∑

k∈Z2
1

|k|2+m2 = ∞. To

cancel this divergence we perform a renormalization of power: instead of 〈φ4, 1〉
we consider 〈: φ4 :, 1〉, where for a centered Gaussian random variable X , : X4 : is
given by

: X4 := X4 − 6Var[X ]X2 + 3Var[X ]2 = (X2 − 3Var[X ])2 − 6Var[X ]2,

such that E[: X4 :] = 0. As φ ∼ Q is only a random distribution, we still have
to make sense of 〈: φ4 :, 1〉 rigorously. For this, consider the truncated Fourier

series (cf. (1)) φN
law
=
∑

k∈Z2:
|k|≤N

1√
λk+m2

αkek. It is almost surely a smooth centered

Gaussian field with variance on the diagonal Gm2,N (0, 0) ∼ c log(N) as N → ∞
for a constant c > 0. For simplicity set χN := 〈: φ4N :, 1〉. Using Wick’s formula
[2, Lemma 2.4 & Proposition 3.1], [5, Theorem I.3] and the aforementioned fact
that Gm2 has a logarithmic singularity at the diagonal one can show [2, Section
3] that (χN )N is uniformly bounded and convergent in L2(Q). Let us denote the
limit by χ = 〈: φ4 :, 1〉 (it is just notation, : φ4 : is not well-defined on its own). An
important observation is that each : φ4N : by definition is an element of the so-called
4th Wiener chaos (on the Gaussian probability space generated by φ) [2, Section
2.1], which is a closed subspace of L2(Q) spanned by “4th Hermite polynomials of
the white noise”. This in particular implies that also all χN and the limit χ are
elements of the 4th Wiener chaos, which allows us to use the hypercontractivity
result (2) stated below to conclude that the convergence also takes place in Lp(Q)
for any p ≥ 2.

Step 3: EQ[e
−〈:φ4:,1〉] <∞.

Now it only remains to verify that e−〈:φ4:,1〉 is integrable w.r.t. Q. We follow
Nelson’s argument’66 (cf. [3, Section 9]); the idea is to split the field φ ∼ Q into
its truncated Fourier series φN and the remaining part ψN and verify that the
latter is negligibly small. The key ingredient of this strategy is the aforementioned
hypercontractivity result that states that for any element X of the nth (n ∈ N)
Wiener chaos,

E[X2p] ≤ (2p− 1)npE[X2]p for any p ≥ 1.(2)

One can prove (2) either purely combinatorially [5, Lemma I.18], [2, Section 4.1] or
even in greater generality using tensorisation property and log-Sobolev inequality
[3, Section 7].

By the previous step we know that 〈: φ4 :, 1〉 := Lp(Q) − limN 〈: φ4N :, 1〉 (for
any p ≥ 2) is an element of the 4th Wiener chaos (as well as 〈: φ4N :, 1〉). Define
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YN = 〈: φ4 :, 1〉 − 〈: φ4N :, 1〉. It is possible to show (see [3, Section 9] for a sharper
bound or [2, Section 3]) that

EQ[|YN |2] ≤ C/N for some C > 0.

Then, by (2), for all p ≥ 1,

EQ[|YN |2p] ≤ (2p)4pCp/Np.

Combining this estimate with the observation that

: φ4N :≥ −6Var[φN ]2 ≥ −c(logN)2,

we get for all N, t > 1 sufficiently large such that log t− c(logN)2 > 0,

Q[e−〈:φ4:,1〉 ≥ t] ≤ Q[YN ≤ − log t+ c(logN)2] ≤ (2p)4pCp/Np

(log t− c(logN)2)2p
.

We can now adjust p and N to get a faster than polynomial decay for all t suffi-
ciently large, which in turn would conclude our construction. For instance, take

N such that log t− c(logN)2 ∈ [1, 2] and p =
⌊

1
25C e

√
(log t−2)/c

⌋
.
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Hölder-Besov spaces and space-time white noise

Alberto Bonicelli, Fabrizio Zanello

The study of stochastic PDEs encompasses equations with a random forcing to
model the behaviour of systems with a large number of interactions, whose evolu-
tion displays unpredictable features. Examples of paramount relevance in physics
are the KPZ equation, which suitably describes interface dynamics of two com-
peting media, or the so called stochastic ϕ4

d equation on Rd, which enters into
play when performing the stochastic quantization of a Euclidean self-interacting
scalar quantum field theory, as well as to describe phase transitions for systems
around the critical threshold. For a pedagogical exposition of these and many
more examples of stochastic PDEs we refer the interested reader to the review [3].

The first part of the talk is devoted to defining the random source for the class
of stochastic PDEs we are interested in, the so called space-time white noise, as a
centred Gaussian random tempered distribution. Starting from its covariance, a
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https://doi.org/10.1007/978-3-031-14031-0_1
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direct calculation characterizes its behaviour under scaling. This scaling invariance
in law prompts the choice of suitable spaces of functions (and distributions) upon
which to construct a suitable solution theory. Focusing on parabolic problems, it
is natural to introduce Hölder spaces Cαs , α ∈ (0, 1) defined in terms of a scaled
distance, where time counts twice as space. Yet, as mentioned above, space-time
white noise is a distribution, hence we need a natural extension of such spaces
of function for negative exponents. The natural candidates are the Hölder-Besov
spaces, which with a slight abuse of notation we denote as Cαs and whose definition
heavily relies on scaling. The second part of the talk focuses on key results of
harmonic analysis. An important question is whether a pair of functions with low
regularity can be multiplied. The answer goes under the name of Young theorem
and states that the product of smooth functions can be extended to a continuous
bilinear map over Cαs ×Cβs if and only if α+ β > 0. Another fundamental result is
a Schauder estimate for parabolic operators characterizing the gain of regularity
in Hölder-Besov spaces.

The final step consists of individuating the space of distributions in which the
white noise lies. One has to resort to a Kolmogorov-like criterion that relates the
behaviours under scaling of the Lp norm of a distribution to its Hölder regularity.
To wit, a direct calculation entails that the space-time white noise lies in Cαs for
all α < − d+2

2 .
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The linear stochastic heat equation and some non-linear perturbations

Christopher Janjigian, Xuan Wu

This talk introduces the linear stochastic heat equation (SHE) with additive white
noise forcing through its mild (Duhamel) formulation. A proof of existence of so-
lutions in an appropriate Besov space will be sketched based on a version of Kol-
mogorov’s continuity theorem. During this portion of the presentation, graphical
notation will be introduced for certain stochastic integrals and associated non-
random integrals which appear in the moment estimates. These estimates will be
seen to suggest that solutions to the SHE should be functions only in dimensions
strictly less than two.

The second portion of the talk will discuss a class of non-linear perturbations
of the SHE, introduce the idea of scaling of SPDEs and how this relates to when
we should expect to be able to find non-trivial solutions to this class of non-
linear SPDEs. In particular, we will discuss what is meant by sub-criticality,
criticality, and super-criticality and will state a “meta-theorem” about existence
of solutions to sub-critical equations. With this concept in hand, we will see
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how the mild formulation of a non-linear equation leads to a fixed-point problem
that necessitates some renormalization if the solution to the linear SHE is not a
function.
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The Da Prato-Debussche argument

Peter Morfe, Florian Schweiger

For some semilinear stochastic PDEs it is possible to construct a solution if one can
make sense of the nonlinearity when applied to the solutions of the corresponding
linear equation. This method goes back to Da Prato and Debussche [2]. We explain
the details using the example of the dynamical Φ4

d model, where the method can
be applied for d = 2, but not for d = 3. Our presentation follows the review article
[1].

In more detail, consider the SPDE formally given by

(1) ∂tϕ(t, x) = ∆ϕ(t, x) − ϕ(t, x)3 + ξ(t, x)

on R+ × Td, where ξ is space-time white noise. Formally, this evolution should
have Φ4

d as its stationary measure, and in fact the idea of parabolic (or Parisi-Wu)
stochastic quantization is to construct Φ4

d as the stationary measure of (1).
The equation (1) is a nonlinear variant of the stochastic heat equation

(2) ∂tϕ(t, x) = ∆ϕ(t, x) + ξ(t, x).

As soon as d ≥ 2, solutions of (2) are only distributions, and the same should
be true for solutions of (1). However, this means that some renormalization is
required to make sense of the term ϕ(t, x)3 in (1). The approach we will take is
to renormalize by replacing ϕ(t, x)3 by the Wick power : ϕ(t, x)3 :.

To formalize this, consider a regularization ξδ of ξ (given by convolution with
a suitable mollifier), and consider the SPDE

∂tϕδ(t, x) = ∆ϕδ(t, x) − : ϕδ(t, x)
3 : + ξδ(t, x)

= ∆ϕδ(t, x) − ϕδ(t, x)
3 + 3Cδ(t)ϕδ(t, x) + ξδ(t, x),

(3)

where Cδ is a suitable renormalization constant. It is clear that for each fixed δ
there is a well-defined solution. The key result of the talk is that in dimension 2
and for short times one can pass to the limit δ → 0.

Theorem 1 ([2]). Let d = 2. For any κ > 0 there is an almost surely positive
random variable T such that the solutions of (3) on [0, T ]×T2 converge, as δ → 0,
in the parabolic Hölder space C−κ

s to a nontrivial limit ϕ.
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The key idea of the proof due to Da Prato and Debussche is that the most
troublesome part of (3) comes from the solution of the stochastic heat equation.
Its powers can be defined via Wick’s theorem, and one can hope that the difference
of the two solutions has better properties, and can be constructed by a standard
fix-point argument.

Sketch of proof. Consider the solution δ of the regularized stochastic heat equation

∂t δ(t, x) = ∆ δ(t, x) + ξδ(t, x)

and its Wick powers δ = 2
δ − Cδ and δ = 3

δ − 3Cδ δ. We make the ansatz
ϕδ = δ + vδ. Then vδ should solve

(4) ∂tvδ(t, x) = ∆vδ(t, x)− v3δ − 3 δv
2
δ − 3 δvδ − δ.

It turns out that the inhomogeneities on the right-hand side of (4) all take values

in C−κ′

s for any κ′ > 0. This allows to construct a solution of (4) via a fix-point
argument in C2−κ

s . The reason this is possible is that we can combine Young’s
theorem on products of distributions with the Schauder estimate for the heat
equation. �

In the case that d = 3, one might be tempted to use the same method to
construct solutions of (1). The Wick powers up to order 4 still exist, however
their Hölder regularity is not good enough to close the fix-point argument to solve
(4). One might try to address this with a more elaborate ansatz that includes
more terms than just δ, however it turns out that one cannot eliminate all the
problematic terms. In fact, more elaborate methods like the theory of regularity
structures are necessary to solve (1) in d = 3.
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Global solutions and coming down from infinity, I.

Simon Gabriel, Ruoyuan Liu

This session, based on the article [1] by Mourrat–Weber, concerns the well–posed-
ness of the dynamic Φ4

2 model

(1) ∂tX = ∆X −X3 + ξ , X(0, ·) = X0 ,

globally in time on R2. Here ξ denotes a space–time white noise and X0 lies in a
suitable space of distributions.

In previous sessions, we saw that this SPDE is locally well–posed in time on
compact tori, using the DaPrato–Debussche trick X = Z + Y , i.e. by expanding
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around the solution of the stochastic heat equation Z. This allowed to reduce the
study of (1) to

(2)
∂tY = ∆Y − (Y 3 + 3ZY 2 + 3Z(2)Y + Z(3))

=: ∆Y − Y 3 +Ψ′(Y, Z, Z(2), Z(3)) ,

with vanishing initial datum, where Z(k) are the (renormalised) Wick powers of Z.
Likewise, we first present an argument that yields global in time well–posedness
on a torus T2

M := [−M
2 ,

M
2 ]2, of arbitrary size M .

Figure 1. Given a time T and an initial condition Y0, we have the
a priori estimate with the constant C(T ) (the red line). Moreover,
we find a solution up to time T ∗(‖Y0‖ + C(T )), using the local
well–posedness, which will lie below the red threshold. Hence,
once more we find a solution on the interval [T ∗, 2T ∗]. Gluing
together the two trajectories yields a solution on [0, 2T ∗], which
by the a priori estimate must again lie below the red line. Thus,
a grey trajectory as depicted above is not possible. Iterating this
procedure until exhausting the interval [0, T ] yields unique solu-
tions on arbitrary large intervals.

In order to convey the general idea of the argument, the following two ingredi-
ents are necessary: Considering a suitable norm ‖·‖ on the state space of solutions
(which we shall fix below), we require local in time well–posedness of the type

∀K > 0 ∃T ∗ > 0 ∀Y0 with ‖Y0‖ ≤ K ⇒ ∃! solution (Yt)t∈[0,T∗] .

and an a priori estimate:

∀T > 0 ∃C > 0 ∀T ∗ ≤ T ⇒ ∀ solutions (Yt)t∈[0,T∗] : sup
t∈[0,T∗]

‖Yt‖ ≤ ‖Y0‖+ C .

Note that the local in time well–posedness result is slightly stronger than the one
presented previously, because the random time T ∗ only depends on the upper
bound K of ‖Y0‖. Now, having these two results at hand, the global in time
well–posedness can be summarised pictorially, see Figure 1.
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The underlying function spaces used in the well-posedness argument are Besov
spaces defined by the norm

‖f‖Bα
p,q

=
∥∥(2αk‖δkf‖Lp

)
k≥−1

∥∥
ℓq
,

where δ−1 is a smooth frequency cutoff onto {|ζ| ≤ 1} and δk for k ≥ 0 is a
smooth frequency cutoff onto {|ζ| ∼ 2k}. The Besov spaces enjoy the following
useful properties:

(1) Embeddings: For 1 ≤ p, q1, q2 ≤ ∞ and α1, α2 ∈ R with q1 ≥ q2 and
α1 ≤ α2, we have

‖f‖Bα1
p,q1

≤ ‖f‖Bα2
p,q2

.

For 1 ≤ p, q, r ≤ ∞ and α, β ∈ R with p ≥ r and β = α + d(1r − 1
p ), we

have
‖f‖Bα

p,q
≤ C‖f‖Bβ

r,q
.

(2) Interpolation: For 1 ≤ p, p1, p2, q, q1, q2 ≤ ∞, α, α1, α2 ∈ R, and θ ∈
[0, 1] satisfying 1

p = θ
p1

+ 1−θ
p2

, 1
q = θ

q1
+ 1−θ

q2
, and α = θα1 + (1− θ)α2, we

have
‖f‖Bα

p,q
≤ C‖f‖θBα1

p1,q1
‖f‖1−θ

B
α2
p2,q2

.

(3) Multiplicative inequalities: For 1 ≤ p, p1, p2, q ≤ ∞ with 1
p = 1

p1
+ 1

p2
and α > 0, we have

‖fg‖Bα
p,q

≤ C‖f‖Bα
p1,q

‖g‖Bα
p2,q

.

For 1 ≤ p, p1, p2 ≤ ∞ with 1
p = 1

p1
+ 1

p2
, 1 ≤ q ≤ ∞, and β < 0 < α with

α+ β > 0, we have

‖fg‖Bβ
p,q

≤ C‖f‖Bβ
p1,q

‖g‖Bα
p2,q

.

(4) Duality: For 1 ≤ p1, p2, q1, q2 ≤ ∞ with 1
p1

+ 1
p2

= 1
q1
+ 1
q2

= 1 and α ∈ R,
we have

|(f, g)| ≤ C‖f‖Bα
p1,q1

‖g‖B−α
p2,q2

.

(5) Smoothing of the heat flow: For 1 ≤ p, q ≤ ∞, α, β ∈ R with α ≥ β,
t > 0, and f supported on an annulus, we have

‖et∆f‖Bα
p,q

≤ Ct
β−α

2 ‖f‖Bβ
p,q
.

We shall now focus on the a priori estimate only. Using a classical Schauder
estimate, one can guess that mild solutions (Yt)t∈[0,T∗] of (2) take values in B2−

p,q .
Indeed, Yt will be function–valued and it suffices to consider ‖ · ‖ := ‖ · ‖Lp , the Lp

norm on the torus with periodic boundary condition. The a priori estimate then
requires control of the difference

1

p
(‖Yt‖pLp − ‖Y0‖pLp) =

∫ t

0

(Ψ′
s, Y

p−1
s )−

(
(p− 1)(|∇Ys|2, Y p−2

s ) + ‖Y p+2
s ‖L1

)
ds ,

where p is an even, large natural number. Here, we conveniently expressed the
difference in terms of an Lp–energy identity, derived by testing a mild solution Yt
against Y p−1

t , cf. [1, Proposition 6.8].
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The a priori estimate is an immediate consequence, once we show integrability
of the right–hand side of the above energy identity. To this end, we analyse each
summand in Ψ′

s separately. As an example, we use duality, interpolation and
Young’s inequalities to obtain

(3)

|(ZsY 2
s , Y

p−1
s )| ≤ C‖Y p+1

s ‖Bε
1,1
‖Zs‖B−ε

∞,∞

≤ C
(
‖Y p+1

s ‖1−εL1 ‖Y ps ∇Ys‖εL1 + ‖Y p+1
s ‖L1

)
‖Zs‖B−ε

∞,∞

≤ c
(
(p− 1)(|∇Ys|2, Y p−2

s ) + ‖Y p+2
s ‖L1

)
+ f(s) ,

for some integrable function f and c < 1 small enough. Equivalently, we find
bounds for the other terms in (Ψ′

s, Y
p−2
s ) such that the sum of all such c’s lies

in (0, 1). Lastly, exploiting the two negative terms in the integrand of the energy
identity together with estimates of the form (3), we conclude integrability of the
bound for the a priori estimate. Here we shall stress the importance of the term
−‖Y p+2

s ‖L1 in the energy identity, which is due to the negative sign of the non–
linearity −X3 in (1).

On the other hand, global well-posedness of (1) on the whole plane R2 can be
proved in three main steps. Firstly, one shows global well-posedness of (1) on the
large torus T2

M , where we d enote the global solution by YM . Secondly, one estab-
lishes a priori estimates for YM in (weighted) Besov spaces, uniformly in M . By
using compact embeddings of weighted Besov spaces, one can extract a converg-
ing subsequence of {YM}M∈N as M → ∞. Lastly, one proves uniqueness of the
solution Y to the equation on the whole plane, which then shows the convergence
of the whole sequence {YM}M∈N.

References

[1] J.-C. Mourrat, H. Weber, Global well-posedness of the dynamic Φ4 model in the plane, Ann.
Probab. 45(4): 2398-2476 (July 2017).

Global solutions and coming down from infinity, II.

Juraj Foldes, Jaeyun Yi

We discuss the “coming down from infinity” property for the Φ4
2 model on R2

based on [1]. In other words, we establish a priori estmates for the global-in-
time solution of Φ4

2 in suitable weighted Hölder spaces, uniformly over the initial
data. This problem is strongly related to the construction of Φ4 measure since
global-in-time bounds for the solution can be applied to the construction.

In order to prove the global bounds, we introduce localization operators to de-
compose the solution into singular and regular parts. In particular, the regular
part can be controlled by the help of a minus cubic term of Φ4 model. We then
show the uniform bounds on solutions to regularised equation driven by a regu-
larised white noise, with renomalization constants which diverges as regularising
parameter ǫ → 0. Using compactness argument, we shall prove the existence of a
solution and its uniform bounds.
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In the end, we use a further time weight to get the coming down from infinity
property. One of key ideas is that the time weight is zero at the initial time so that
it removes in some sense the dependency of the time from estimates. However,
we should modify the tools such as the Schauder estimate to be fit with the time
weights.
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Tightness via the energy method for the ϕ4

2
measure

Azam Jahandideh

Formally the measure of the dynamical ϕ4
2 model on S ′(R2) is given by

(1) ν(dϕ) =
1

Z exp
[
−
∫

R2

(
1

4
λϕ4 − 3

2
λ∞ϕ2)

]
µ(dϕ) ,

where λ > 0 is the coupling constant, Z ≥ 1 is normalization factor, µ(dϕ) is
the Gaussian measure with covariance (m2 − ∆)−1 and ∆ is the Laplacian on
R2. The corresponding semilinear parabolic partial differential equation to the
measure ν(dϕ) according to the Langevin dynamics is given by

(2)

{
(∂t −∆+m2)Φ(t, x) = −λΦ3(t, x) + 3λ∞Φ+ ξ(t, x)

Φ(0, x) = ϕ(x) ,

where ξ(t, x) is the unique space-time Gaussian white noise on S ′(R+ ×R2). The
above SPDE has the ϕ4

2 measure, i.e., ν(dϕ) as its invariant measure. This implies
that if Φ is a solution to Eq. (2) with the initial condition Φ(0, ·) = ϕ(·) distributed
according to the measure ν(dϕ), then for all t ∈ R the random field Φ(t, ·) is
also distributed according to this measure. Consequently, one has Law(Φ(t, ·)) =
Law(Φ(0, ·)) = ν(dϕ) .

By the parabolic scaling, the sample paths of ξ belong almost surely to the
space of regularity −2 − κ for all κ > 0. The heat kernel is 2 regularizing, which
implies that the solution to SPDE (2) has regularity −κ. Hence, we expect the
regularity of the renormalized non-linear term to be −κ for all κ > 0.

Observe that the measure of the dynamical ϕ4
2 model as given in (1) is ill-

defined. Firstly, a typical field ϕ in the support of the Gaussian measure µ(dϕ)
lacks integrability, i.e., it does not decay at infinity. Secondly, such a field does
not have enough regularity as oftentimes it is a distribution. Consequently, the
non-linear term, in Eq. (2) is ill-defined. These two problems are known as IR
and UV problems, respectively. To get around these problems, we first introduce
the discrete family of measures (νM,ǫ)M,ǫ corresponding to the ϕ4

2 model on lattice
ΛM,ǫ = (ǫZ)2 ∩ [−M/2,M/2)2, where ǫ and M play the role of UV and IR cut-offs
respectively.
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The lattice approximation of the ϕ4
2 measure

Let ΛM,ǫ be a periodic lattice with mesh size ǫ and size length M . Consider the
scalar filed φ : ΛM,ǫ → R. The corresponding regularized family of measures to
the ϕ4

2 model on RΛM,ǫ is given by

(3) νM,ǫ(dϕ) :=
1

ZM,ǫ
exp

[
− 2ǫ2

∑

x∈ΛM,ǫ

UM,ǫ(ϕ)
]
µM,ǫ(dϕ) ,

where ZM,ǫ is normalization factor, UM,ǫ(ϕ) = λ
4 |ϕ|4 − 3

2 λaM,ǫ |ϕ|2 + 3
4a

2
M,ǫ,

µM,ǫ(dϕ) is the discrete Gaussian measure with mean zero and covarianceKM,ǫ :=
(m2 − ∆ǫ)

−1, ∆ǫ is the discrete Laplacian, and aM,ǫ = Tr(KM,ǫ) = (m2 −
∆ǫ)

−1(x, x), which diverges like log(ǫ−1) . Observe that aM,ǫ is independent of
t ∈ R as we deal with the stationary solutions.

Remark 1. For fixed ǫ,M the measure νM,ǫ(dϕ) is well-defined.

Definition 2. A ϕ4
2 measure is any non-Gaussian, Euclidean invariant and re-

flection positive accumulation point of the family of regularized measures νM,ǫ(dϕ)
as ǫ → 0 and M → ∞, where UM,ǫ(ϕ) is any 4-th order polynomial, which is
bounded from below with ǫ, M dependent coefficient [Gub21].

Discrete stochastic quantization equation

Utilizing the parabolic stochastic quantization, we obtain the discrete stochastic
quantization equation corresponding to the measure νM,ǫ(dϕ) on S ′(R×ΛM,ǫ) as
follows

(4) (∂t +m2 −∆ǫ)ΦM,ǫ(t, x) = −λΦ3
M,ǫ(t, x) + 3λaM,ǫ ΦM,ǫ + ξM,ǫ(t, x)

such that Law(ΦM,ǫ)(t, ·) = Law(ΦM,ǫ)(0, ·) = νM,ǫ(dϕ) for all t ∈ [0,∞) and ξM,ǫ

is the discrete space-time Gaussian white noise defined on R × ΛM,ǫ, which is of
regularity −2− κ for all κ > 0.

Our aim is to show the existence of the infinite volume measure associated to the
ϕ4
2 model using tightness of the family of the regularized Gibbs measures νM,ǫ(dϕ)

defined on S ′(ΛM,ǫ). To this end, we shall utilize the energy method in L2(ΛM,ǫ).
Note that we cannot apply the energy method directly to the Eq. (4), since as
ǫ → 0 it becomes singular. That is why we need to come up with an appropriate
decomposition of the random field ΦM,ǫ .

Decompose the solution into singular and regular parts

Using the Da Prato and Debussche decomposition [DD03], one writes ΦM,ǫ =
XM,ǫ + ηM,ǫ with XM,ǫ solving

(5) (∂t +m2 −∆ǫ)XM,ǫ(t, x) = ξM,ǫ(t, x) .

Set X :2:
M,ǫ := X2

M,ǫ − aM,ǫ and X
:3:
M,ǫ := X3

M,ǫ − 3 aM,ǫXM,ǫ , where aM,ǫ is chosen

in a such way that for all κ > 0 the stochastic objects XM,ǫ, X
:2
M,ǫ and X

:3
M,ǫ can

be almost surely bounded in some Besov space of regularity −κ for all κ > 0. Let
ρ denote a polynomial weight of the form ρ(x) = 〈hx〉−ν = (1+ |hx|2)−ν/2, where
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ν ≥ 0 and h > 0, Bα,ǫp,q (ρ) denote the discrete weighted Besov spaces on ΛM,ǫ and

X = {XM,ǫ, X
:2:
M,ǫ, X

:3:
M,ǫ}.

Proposition 3. Let p ∈ [2,∞), κ > 0 and aM,ǫ = E
[
XM,ǫ(t, x)

2
]
. There exists

C > 0 such that for all ǫ, M and t ∈ R it holds E
[
‖ρX(t, ·)‖p

B−κ,ǫ
p,p

]
≤ C .

Proof. The proof follows from the Kolmogorov type estimate and hypercontrac-
tivity estimate with the use of the discrete semigroup property. Similar bounds
can be found in [GH18, MWX16]. �

For later use let

QM,ǫ(X)(t) = ‖ρXM,ǫ(t, ·)‖8B−κ,ǫ
8,8

+ ‖ρX :2:
M,ǫ(t, ·)‖4B−κ,ǫ

4,4

+ ‖ρX :3:
M,ǫ(t, ·)‖2B−κ,ǫ

2,2

.

Observe that by Prop. 3 one has E[QM,ǫ(X)(t)] ≤ C , where C ∈ (0,∞) is some
constant independent of ǫ and M .

Application of the energy method

In this section we aim to show that for all κ > 0 there exists C > 0 such that for
all ǫ, M and t ∈ R it holds

(6) E
[
‖ηM,ǫ(t, ·)‖2B−κ,ǫ

2,2 (ρ)

]
≤ C .

The remainder ηM,ǫ(t, x) solves

(7) (∂t +m2 −∆ǫ)ηM,ǫ(t, x) = −λ
[
η3M,ǫ(t, x) + 3 ηM,ǫ(t, x)X

:2:
M,ǫ(t, x)

+ 3 η2M,ǫ(t, x)XM,ǫ(t, x) +X :3:
M,ǫ(t, x)

]
.

Observe that in the limit as ǫ→ 0 all the product terms in Eq. (7) are well-defined
as the sums of their regularities are positive. To obtain the uniform bound (6), we
shall apply the energy method to Eq. (7) in L2(ΛM,ǫ). To this end, we multiply
both sides of Eq. (7) by ρ(x)4 ηM,ǫ(t, x) and perform the sum over ΛM,ǫ .

Proposition 4. There exist κ ∈ (0,∞), δ ∈ (0, 1) sufficiently small, C ∈ (0,∞),
p ∈ [2,∞), an appropriate polynomial weight ρ such that for all ǫ and M it holds

(8)
1

2
∂t‖ρ2 ηM,ǫ(t, .)‖2L2,ǫ

+ λ(1− δ)‖ρ ηM,ǫ(t, .)‖4L4,ǫ + (m2 − Cδ C
2
ρ)‖ρ2 ηM,ǫ(t, ·)‖2L2,ǫ

+ (1− δ − λ δ)‖ρ2 ∇ǫηM,ǫ(t, ·)‖2L2,ǫ ≤ λCQM,ǫ(X)(t) .

Proof. The proof is an application of the energy method in L2(ΛM,ǫ) as outlined
above, integration by part, the discrete Leibniz rule, Hölder’s and Young’s in-
equalities. To conclude one uses Lemma 5 with n = 3 for X = XM,ǫ, n = 2 for
X = X :2:

M,ǫ, n = 1 for X = X :3:
M,ǫ . This finishes the proof. �
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Lemma 5. Let n ∈ {1, 2, 3}, δ ∈ (0, 1) and κ > 0. There exists Cδ ∈ (0,∞) such
that for p ∈ [2,∞) it holds

∣∣∣〈ρ4 ηnM,ǫ, X〉L2,ǫ

∣∣∣ ≤ δ‖ρ2∇ǫ ηM,ǫ‖2L2,ǫ + δ‖ρ ηM,ǫ‖4L4,ǫ + Cδ‖ρX‖p
B−κ,ǫ

p,p

.

Proposition 6. Let κ ∈ (0,∞). There exists a constant C ∈ (0,∞) such that for
all ǫ, M , λ > 0 and all t ∈ R it holds

E
[
‖ηM,ǫ(t, ·)‖2B−κ,ǫ

2,2 (ρ2)

]
≤ C .

Proof. By Prop. 4 combined with the fact that ΦM,ǫ, XM,ǫ and ηM,ǫ are jointly
stationary one has

(9) E
[
‖ηM,ǫ(t, .)‖2L2,ǫ(ρ2)

]
≤ C EQM,ǫ(X)(t) ,

where we used the fact that for suitably chosen ρ and δ, all the coefficients in the
LHS of Eq. (8) are positive. To conclude, recall that E[QM,ǫ(X)(t)] ≤ C , and
‖ · ‖B−κ,ǫ

2,2 (ρ2) . ‖ · ‖B0,ǫ
2,∞(ρ2) . ‖ · ‖L2,ǫ(ρ2) . This finishes the proof. �

Tightness

In this section we aim to verify that the family of measures (νM,ǫ)M,ǫ is tight,
i.e., it is sequentially compact in the topology of weak convergence of measures.
Specifically, we want to prove the following.

Theorem 7 (Main Result). Let k ∈ (0,∞). There exists a choice of the sequence
(aM,ǫ)M,ǫ such that the family of measures (νM,ǫ)M,ǫ appropriately extended to
S ′(R2) is tight. In particular, for every accumulation point ν it holds

(10)

∫
‖ϕ‖2

B−3κ
2,2 (ρ2+κ)

ν(dφ) <∞.

Proof. Using Prop. 3 with X = XM,ǫ for p = 2, Prop. 6 and the triangle inequality
one has

(11) E
[
‖(ΦM,ǫ)(t, ·)‖2B−κ,ǫ

2,2 (ρ2)

]
≤ C

for some constant C ∈ (0,∞) uniformly in ǫ and M and for any κ > 0. To go
from S ′(ΛM,ǫ) to S ′(R2), one utilizes the extension operator Eǫ, which is bounded
uniformly in ǫ [GH21, Lemma A.15]. Hence,

(12) E
[
‖EǫΦM,ǫ(t, ·)‖2B−κ

2,2 (ρ
2)

]
≤ E

[
‖(ΦM,ǫ)(t, ·)‖2B−κ,ǫ

2,2 (ρ2)

]
≤ C .

Note that up to a subsequence one can pass to the limits as ǫ → 0 and M → ∞.
Evoking the fact that Law(ΦM,ǫ)(t, ·) = νM,ǫ for all t ∈ [0,∞) yields

(13)

∫
‖ϕ‖2

B−κ
2,2 (ρ

2)
ν(dφ) = lim

ǫ→0
M→∞

E
[
‖EǫΦM,ǫ(t, .)‖2B−κ

2,2 (ρ
2)

]
≤ C
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uniformly in ǫ and M . Note that B−κ
2,2 (ρ

2) →֒ B−2κ
2+2κ,2(ρ

2+κ) continuously and

B−2κ
2+2κ,2(ρ

2+κ) →֒ B−3κ
2,2 (ρ2+κ) compactly. It holds

(14)

∫
‖ϕ‖2

B−3κ
2,2 (ρ2+κ)

ν(dφ) <∞ .

Use Prokhorov’s theorem to infer the tightness. This concludes the proof. �

Let Eǫ : Bα,ǫp,q (ρ) → Bαp,q(ρ). By Eǫ♯νM,ǫ we indicate the measure on S ′(R2)
obtained from the measure νM,ǫ on S ′(ΛM,ǫ).

Reflection Positivity

Let F be some cylindrical function on S ′(R2) depending on ϕ’s which are supported
in {(x1, x2) ∈ R2 ; x1 > 0}. We denote the algebra of all such functionals by F+.
Let ϕ ∈ S ′(R2) and f ∈ C∞(R2). We set 〈Θϕ, f〉 := 〈ϕ,Θf〉 and (Θf)(x1, x2) =
f(−x1, x2) for all f ∈ C∞(R2).

Proposition 8. Let ν be a weak limit of a subsequence of the sequence of measures
(Eǫ♯νM,ǫ)M,ǫ on S ′(R2). For all F ∈ F+ it holds

∫
F (Θϕ)F (ϕ) ν(dϕ) ≥ 0 .

The preceding proposition implies the reflection positivity axiom in [OS75]. To
prove it, one can start off by verifying an analogous property on ΛM,ǫ . Then, use
the extension operator Eǫ and take the limits M → ∞, ǫ → 0. It is believed that
one needs to start from finite volume lattice measures, as the only concrete way,
to prove the reflection positivity axiom for the infinite volume measure [GH21].
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Integrability of Φ4
2

Lucas Broux, Wenhao Zhao

This talk is a survey of the article [5] by Martin Hairer and Rhys Steele. In the
talk we show that the Φ4

2 measure1 on the 2-dimensional torus T2
M := (R/MZ)2 of

length M admits quartic exponential tails, as expected from its formal expression

µ ∼ exp

(
−
∫

T2

(1
2
|∇Φ|2 + 1

4
Φ4
)
dx

) ∏

x∈T2

dΦ(x), over Φ ∈ S ′(T2
M ).

Even though this expression is purely formal, it is known since the 1970’s that
µ can actually be rigorously constructed via a suitable procedure of regularization
and renormalization. Now, the main theorem of [5] reads as follows.

Theorem 1 ([5, Theorem 1.1]). For any ψ ∈ C∞
c (R2), M > 0 large enough to

accomodate the support of ψ, and β > 0 small enough depending only on ψ,

EΦ∼µ

[
exp

(
β〈Φ, ψ〉4

)]
<∞.

Let us quickly comment on this result:

(1) Such a bound was already known in the QFT literature, although with
different methods [2]. The novelty of [5] is to establish this result in the
three-dimensional case of the Φ4

3 measure.
(2) This implies that the Φ4

2 measure is not gaussian, since no gaussian mea-
sure satisfies such a quartic exponential integrability estimate.

(3) The same method would in principle apply to other quartic functionals of
Φ, for instance also EΦ∼µ

[
exp

(
β|Φ|4−κ

)]
< ∞ would hold for any κ > 0,

where |Φ|−κ denotes the (homogeneous) Sobolev norm.
(4) In the context of QFT, such estimates are used for estabishing the regu-

larity axiom of Osterwalder–Schrader.
(5) The bound is independent of the size of the torus, which may give some

result for the Φ4 measure on the full space.

In the remainder of this extended abstract, we wish to sketch some ideas of the
proof.

A first attempt by stochastic quantization of Φ4
2. A first idea is to argue by

stochastic quantization, namely to realize µ as an invariant measure to the SPDE

∂tΦ = ∆Φ− Φ3 +∞Φ + ξ, (t ∈ R+, x ∈ T2),(Φ4
2)

where ξ denotes space-time white noise. Rigorously, one takes mollifiers (ρǫ)ǫ>0 ⊂
C∞
c (R2) and considers rather the equation with smooth noise

∂tΦǫ = ∆Φǫ − Φ3
ǫ + cǫΦǫ + ξ ∗ ρǫ.

As is by now well-known, by suitably choosing the diverging sequence (cǫ)ǫ>0

of deterministic constants, one can make (Φǫ)ǫ>0 converge (in probability in a
suitable Hölder space of distributions) as ǫ→ 0 to a random distribution Φ which

1in fact the article presents the (more difficult) case of the Φ4

3
measure
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does not depend on the choice of (ρǫ)ǫ>0, and which admits µ as a unique invariant
measure. See e.g. [1, 7] for the two-dimensional case of Φ4

2. One crucial point is
that Φǫ is controlled by a finite number of stochastic objects, given for Φ4

2 by the
random distributions

Zǫ
def
= (∂t −∆)−1ξ ∗ ρǫ, :Z2

ǫ :
def
= Z2

ǫ − cǫ, :Z3
ǫ :

def
= Z3

ǫ − 3cǫZǫ.

One may now use PDE techniques to deduce properties of the measure µ. For
instance, by combining (amongst other) techniques of Schauder theory and a max-
imum principle for the damped heat operator u 7→ ∂tu−∆u + u3, the authors of
[6] were able to obtain a priori estimates of the form: for all N > 0, R ∈ (0, 1),
κ > 0 small,

sup
t∈(R2,1)

x∈[−N+R,R−N ]2

|(Φ− Z)(t, x)|

≤ Cmax
(
R−1, lim sup

ǫ→0
‖Zǫ‖

2
1−κ

C−κ , lim sup
ǫ→0

‖:Z2
ǫ :‖

2
2−2κ

C−2κ , lim sup
ǫ→0

‖:Z3
ǫ :‖

2
3−3κ

C−3κ

)
,

where the Hölder norms are over t ∈ (0, 1), x ∈ [−N,N ]2. Let us denote by Y
the right-hand side of this display. It is possible to bound the stochastic objects
appearing in Y and obtain E

[
exp(βY 1−κ)

]
< ∞ for any κ > 0 and β > 0 small

enough. Then, starting Φ at time t = 0 according to its invariant measure µ,
at later times Φ(t, ·) is still distributed according to µ and it is straigtforward to
deduce from the above the stretched-exponential estimate

EΦ∼µ

[
exp

(
β〈Φ, ψ〉1−κ

)]
<∞.

Unfortunately, this approach only yields the exponent 1 − κ rather than the
desired 4.

The Hairer–Steele argument. The idea at this point is to focus instead on the
tilted measure

dν := exp
(
β〈Φ, ψ〉4

)
dµ,

so that the theorem reduces to proving that ν is a finite measure. One naturally
argues by stochastic quantization on ν: Formally, it should be invariant for

∂tΨ = ∆Ψ−Ψ3 +∞Ψ+ β〈Ψ, ψ〉3ψ + ξ,(Ψ4
2)

which can be seen as a perturbation of the Φ4
2 equation. In particular, when β > 0

is small enough, the contribution of β〈Ψ, ψ〉3ψ should be absorbed in that of the
damping term −Ψ3, which motivates that the same a priori estimates as for Φ
should hold.

In fact, it is convenient to rather work with a sequence (νn)n of probability
measures where the fourth power is replaced by a bounded approximation:

dνn := Z−1
n exp

(
βFn(〈Φ, ψ〉)

)
dµ,
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for some smooth Fn : R → R with

Fn(x) =

{
x4

4 , |x| ≤ n
n4

4 + 1, |x| ≥ n+ 1
, 0 ≤ F ′

n ≤ n3,

and where Zn = EΦ∼µ

[
exp

(
βFn(〈Φ, ψ〉)

)]
denotes the corresponding normaliza-

tion. By Fatou’s lemma,

EΦ∼µ

[
exp

(
β〈Φ, ψ〉4

)]
≤ lim inf

n→∞
Zn,

so that the theorem follows once one establishes the boundedness of (Zn)n. The
article [5] proceeds to prove the following properties:

(1) The measure νn is invariant for the SPDE

∂tΨ
(n) = ∆Ψ(n) − (Ψ(n))3 +∞Ψ(n) + β〈Ψ(n), ψ〉3ψ + ξ.(Ψ4,n

2 )

(2) The following a priori estimate holds for all N > 0, R ∈ (0, 1), and β > 0
small enough:

sup
t∈(R2,1)

x∈[−N+R,R−N ]2

|(Ψ(n) − Z)(t, x)| ≤ Y,

where Y is the same right-hand side as in the a priori estimate of Φ above.

The proof of property (1) follows from a discretisation argument, which is also
used to prove that the Φ4

3 measure is an invariant measure of the corresponding
SPDE in [3]. At this point it is convenient to work with a bounded density, which
is a reason to introduce νn rather than to work with ν. The exponential mixing
property proved in [4] is used in the argument to prove the convergence of the
discretised measure.

As for property (2), it follows along the same argument as in [6]. Note that the
bound is independent of the size of the torus, which is the key for the independence
in the torus size of the tail bound for the measure.

We may conclude from there. Starting Ψ(n) from its invariant measure νn, and
appealing to the a priori estimate (2) and the fact that the stochastic objects in Y
are almost surely finite, we deduce that for someK > 0, denoting BK the centered
ball of radius K in the Hölder space C−κ,

1

2
≤ P

[
‖Ψ(n)‖C−κ ≤ K

]
= νn(BK) = Z−1

n

∫

BK

exp
(
βFn(〈Φ, ψ〉)

)
dµ.

But for Φ ∈ BK one bounds Fn(〈Φ, ψ〉) ≤ CK4 for some constant C uniform
in n, yielding the desired uniform bound Zn ≤ 2 exp(βCK4), and concluding the
proof of the theorem.
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More Applications of the Da Prato-Debussche Argument

Xiaohao Ji, Younes Zine

Besides the effectiveness of the Da Prato-Debussche trick for the stochastic quanti-
zation equations, it can also be adapted to several other singular SPDEs to derive
local existence and uniqueness. The first example we discuss is the parabolic sine-
Gordon model in the range 0 < β2 < 4π following [1], where the regularity of
imaginary Gaussian multiplicative chaos is assumed. Another variation of the Da
Prato-Debussche trick is the exponential Ansatz initiated in [2], where it is applied
to prove local existence and uniqueness of the parabolic Anderson model (PAM)
on R2 in a relatively simple way. The exponential Ansatz is then further modified
in [3] for the simple construction of the Φ4

3 model on 3d torus.
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[2] Martin Hairer and Cyril Labbé. A simple construction of the continuum parabolic Anderson
model on R2. Electron. Commun. Probab., 20:1-11, 2015.

[3] Aukosh Jagannath and Nicolas Perkowski. A simple construction of the dynamical Φ4

3
model.

arXiv preprint arXiv:2108.13335, 2021.

Convergence of the Two-Dimensional Dynamic Ising-Kac Model to Φ4
2

Benoit Dagallier and Markus Tempelmayr

The Ising model with Kac interactions is a model of magnetism on a lattice, where
elementary components of magnetism called spins interact in a way made precise
below. Let ΛN = (Z/NZ)2 denote the two-dimensional discrete torus with linear
size N ≥ 1. The Ising model is a measure on spin configurations, i.e. elements
σ ∈ {−1, 1}ΛN , defined for γ ∈ (0, 1) and β ≥ 0 by:

λγ(σ) ∝ exp
[
− βHγ(σ)

]
,

where β plays the role of an inverse temperature and Hγ is the Hamiltonian:

Hγ(σ) = −1

2

∑

i,j

σiσjKγ(i− j) = −1

2

∑

i

σihγ(σ, i).
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Above, Kγ : R2 → [0, 1] is the kernel encoding the Kac interaction, defined by
Kγ(x) = K(x/γ) for some smooth, compactly supported K : R2 → [0, 1] with unit
integral. The quantity hγ(σ, i) = (Kγ ∗ σ)(i) (i ∈ ΛN ) is called the magnetisation
field, with ∗ the discrete convolution on ΛN .

The parameter γ tunes the range of the interaction. For fixed γ, it is well
known that the above Ising model admits a phase transition at a certain value
βc(γ) of the inverse temperature. It is expected, with known partial results [2],
that the magnetisation field has non-Gaussian fluctuations close to βc(γ), and
that this critical point satisfies βc(γ) = 1 + cγ2 log γ−1 + O(γ2) for an explicit
constant c = c(K) (βc = 1 is the mean-field value, corresponding to the model with
γ = 1/N). Following [1], we explain how the γ2 log γ−1 shift in the critical inverse
temperature naturally arises as the appropriate counterterm for a suitably rescaled
version of the magnetisation field undergoing Glauber dynamics to converge, when
γ is small and N is large, to the solution of the dynamical Φ4

2 model on the torus.

The Glauber dynamics is defined as follows. Put independent Poisson clocks on
all sites of ΛN , and if the clock rings at position j ∈ ΛN flip the corresponding
spin with the jump rate

cγ(σ, j) =
λγ(σ

j)

λγ(σ) + λγ(σj)
.

Here, σj denotes the spin configuration that coincides with σ except for a flipped
spin at position j. This defines a (jump) Markov process (σ(t))t≥0 with λγ as its
reversible measure.

With the slight abuse of notation hγ(t, k) = hγ(σ(t), k), we write for t ≥ 0 and
k ∈ ΛN the Martingale decomposition

hγ(t, k) = hγ(t = 0, k) +

∫ t

0

Lγhγ(s, k) ds+mγ(t, k),

where Lγ denotes the generator of the Markov process σ(·), and mγ(·, k) is a
martingale. We remark that a short calculation using the definitions of λγ , Hγ

and hγ yields

Lγhγ(σ, k) = −hγ(σ, k) +Kγ ∗ tanh(βhγ(σ, k)).
By Taylor’s approximation tanh(βh) = βh− (βh)3/3 + . . . , we obtain

Lγhγ(σ, k) = −hγ(σ, k) + βKγ ∗ hγ(σ, k)− β3

3 Kγ ∗ h3γ(σ, k) +Kγ ∗ . . . ,
and plugging this into the Martingale decomposition yields

hγ(t, k) = hγ(t = 0, k) +

∫ t

0

(
Kγ ∗ hγ(s, k)− hγ(s, k) + (β − 1)Kγ ∗ hγ(s, k)

− β3

3 Kγ ∗ h3γ(s, k) +Kγ ∗ . . .
)
ds+mγ(t, k).

We now aim to rescale the lattice ΛN to a box of size 1. Hence for ǫ = 1/N we
denote Λǫ = ǫΛN ≈ T2. Furthermore, let α, δ > 0. Then for t ≥ 0 and x ∈ Λǫ the
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rescaled locally averaged field Xγ(t, x) := δ−1hγ(α
−1t, ǫ−1x) satisfies

Xγ(t, x) = Xγ(0, x) +

∫ t

0

(
ǫ2

γ2α∆γXγ(s, x) +
β−1
α K(ǫ)

γ ∗ǫ Xγ(s, x)

− β3

3
δ2

αK
(ǫ)
γ ∗ǫ X3

γ(s, x) +K(ǫ)
γ ∗ǫ Eγ(s, x)

)
ds

+ 1
δmγ(

t
α ,

x
ǫ ),(1)

where ∗ǫ denotes convolution on Λǫ, K
(ǫ)
γ is a kernel at scale ǫ/γ approximating a

Dirac in the regime ǫ≪ γ, ∆γX = γ2/ǫ2(K
(ǫ)
γ ∗ǫX−X) is an approximation of the

Laplacian, and Eγ(t, x) = (αδ)−1(tanh(βδXγ(t, x)−βδXγ(t, x)+(βδXγ(t, x))
3/3).

In order for the scaling factors in front of the discrete Laplacian and the cu-
bic term to stay of order one, imposes ǫ2/(γ2α) ≈ 1 ≈ δ2/α. Similarly, one can
check that the predictable quadratic co-variation of the martingale term approxi-
mates a cylindrical Brownian motion which is delta-correlated in space, provided
ǫ2/(δ2α) ≈ 1. We thus choose the scaling

ǫ = γ2, α = γ2, δ = γ, N = 1/γ2.

Note that Eγ ≈ (αδ)−1(βδXγ)
5, which is of the order δ4/α = γ2 provided βXγ is

of order one, and is thus expected to disappear in the limit γ → 0.
It remains to control the linear term in (1) with the pre-factor (β − 1)/α. This

is where the inverse temperature needs to be chosen in a suitable window around
the critical temperature. A naive guess would be to take β = 1 + αA = 1 + γ2A
(A ∈ R) for this term to be of order 1. However if one believes that the limit X
of Xγ as γ → 0 should solve the dynamical Φ4

2 model, then we know a diverging
counterterm must be added to (1) for X to be non-trivial. This corresponds to
taking β = 1 + c(K)γ2 ln γ−1 +Aγ2 as guessed earlier.

The main result of [1] can be paraphrased as follows.

Theorem. Under the above scaling, the rescaled locally averaged field Xγ con-
verges in law1 to the dynamical Φ4

2 model X on T2, i.e. the solution of

(2) ∂tX = ∆X − 1
3

(
X3 − 3∞X

)
+AX +

√
2ξ on R+ × T2,

provided the respective initial conditions converge2. Here, ξ denotes a space-time
white noise.

We refer to [1, Section 3] for details on how to interpret (2) and conclude with
some ideas of the proof in [1]. The main idea is to use a suitable version of the
Da Prato-Debussche decomposition, writing Xγ as a deterministic function of the
solution Zγ of a discrete heat equation:

dZγ = ∆γZγ dt+ dMγ ,

with Mγ(t, x) = γ−1mγ(γ
−2t, γ−2x) the rescaled martingale appearing in (1). A

careful study allows one to obtain tightness for Zγ and its suitably interpreted Wick

1w.r.t. the Skorokhod topology of C−ν -valued cadlag functions for ν > 0 small enough
2in C

−ν , and are uniformly bounded in C
−ν+κ for an arbitrarily small κ > 0
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powers (special care has to be taken as Zγ is not Gaussian). Convergence to a
solution of the stochastic heat equation then relies on a martingale characterisation
of such solutions. This convergence is the main input. The convergence for Xγ

then follows, after a number of technical steps, by checking how close the discrete
convolution and Laplacian appearing in the right-hand side of (1) are to their
continuous counterparts.
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Gaussian Multiplicative Chaos and Liouville Quantum Gravity

Xingjian Di and Michael Hofstetter

Let (Σ, g) be a Riemannian manifold. It is possible to derive the area measure
vg(dx), the scalar curvature Rg and other quantities from the metric. We take

ĝ to be the round metric on the Riemann sphere Ĉ. Following [1, Section 2], we
define the Gaussian Free Field (GFF) on the Riemann sphere to be the zero-mean
Gaussian process with covariance function

(1) Gĝ(z, z
′) := E[Xĝ(z)Xĝ(z

′)] = ln
1

|z − z′| −
1

4
(ln ĝ(z) + ln ĝ(z′)) + ln 2− 1

2
.

The celebrated Gaussian Multiplicative Chaos (GMC) theory defines in great
generality the following measure as a weak limit (for 0 < γ < 2)

(2) µh(dx) = lim
ǫ→0

ǫγ
2/2eγhǫ(x)σ(dx),

where h is a log-correlated Gaussian field (in particular the GFF), hǫ the ǫ-circle
average of h and σ some reference Radon measure. We take h to be the GFF on
the Riemann sphere and σ the area measure associated to the spherical metric,
and refer to µh the quantum area measure.

Tentatively, the Liouville action functional is defined as

(3) S(X, g, µ) =
1

4π

∫

Σ

(
|∂gX |2 +QRgX + 4πµeγX

)
dvg,

and the path integral measure is defined as

(4) 〈O(X)〉tent.g,µ =

∫
O(X)e−S(X,g,µ)DX,

where O is some generic observable associated to the field.
It has been known to physicists via renormalization arguments that if we take

Q = γ/2 + 2/γ, the resulting quantum field theory is conformally invariant. We
keep this choice. Note that GFF on the Riemann sphere is defined up to a global
additive constant. We now let φ = h + c where φ is required to have zero mean.
The key construction in [1, Section 3.1] is to integrate out c with respect to the
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Lebesgue measure. Also observe that in the spherical metric, Rg ≡ 2. Let P be the
law of zero-mean GFF on the Riemann sphere. We have the rigorous definition

(5) 〈O(X)〉ĝ,µ =

∫ ∞

−∞

∫
O(φ)e−µφ(C)+2QcP(dh)dc.

The observables of physical interest are the vertex operators eαφ(x) for some
α ∈ R and x ∈ C. Since φ not defined pointwise, we follow a similar regularization
and renormalization process. It follows that the convergence and nontriviality
criterion of the partition function is the Seiberg bounds,

(6) αi < Q, and
∑

i

αi > 2Q.

The latter inequality follows easily as we analyze the integral near c = ±∞, while
the former follows essentially states the condition that the quantum area of an
infinitesimal neighborhood of an insertion point does not blow up. The proof uses
the multifractal spectrum estimate [2, Section 3.8]

(7) E[µh(Br)
q] ≍ r(2+γ

2/2)q−γ2q2/2

and the Chebyshev inequality to bound µφ(Br) as r → 0.
We also briefly presented some properties of the resulting measure, including the

KPZ formula and Weyl anomaly, which allows us to generalize to other background
metrics. Lastly, we discussed some recent development and application of the
theory, including the compactified imaginary Liouville theory [3] and the backbone
exponent in critical percolation [4].
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Introduction to continuum and lattice Yang Mills theory

Léonard Ferdinand, Sarah-Jean Meyer

Yang-Mills (YM) theory is central to the description of elementary particles in the
standard model but unfortunately a rigorous mathematical foundation is lacking.
As such, the rigorous construction of YM in the physically relevant 3 + 1 dimen-
sional space-time is an important unsolved problem in mathematics [8]. The goal
of this talk is to introduce the core ideas to understand the problem of constructing
a (Euclidean) YM theory and present some interesting open questions concerning
the mass gap, quark confinement, the area law as well as the large N -factorization.
As even the correct spaces to consider are up to debate, the discussions are almost
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exclusively at an informal level. We mainly follow [4], but also refer to the surveys
[9, 6] and the recent works [3, 2, 1, 5, 10, 7] for more details and further reading.

The Yang-Mills measure. Fix a semi-simple Lie group G ⊂ SU(N) and denote
its Lie algebra by g. We equip g Ad-invariant inner product 〈·, ·〉 and the induced
norm. Here, the adjoint action is given by g ·X = AdgX := gXg−1. For example,
in the case g = su(N), we may use 〈X,Y 〉 = −Tr(XY ). Consider a trivial G-
principal bundle P over Rd, where G ⊂ SU(N). The space of g-connections A is
the affine space of all elements of the form dA := d + A for A a g valued 1-forms
A = (A1, . . . , Ad) : Rd → gd, and d an arbitrarily fixed trivial connection. On the
Euclidean space Rd, the Yang-Mills measure is formally defined on A for β > 0 as

µβ(dA) := Z−1
β exp

(
− βSYM(A)

)
dA ,

where d formally corresponds to the Lebesgue measure on A, and Z is a normal-
ization constant. Here, SYM is the YM action formally defined as

SYM(A) :=

∫

Rd

|F (A)|2g ,

where F (A) := dAA is the curvature 2-form of the connection A, in coordinates
given by Fij(A) = ∂iAj−∂jAi+[Ai, Aj ], and | · |g is the Euclidean norm associated
with the Ad-invariant inner product.

In addition to the usual UV and IR problem arising in the definition of any
singular EQFT, the Yang-Mills action turns out to be invariant under an infinite
dimensional group of “gauge transformations”, the group of G valued 0-forms cor-
responding to the changes of coordinates on P . This last fact makes its definition
even more subtle, since it involves working on the non-linear(!) quotient space of
connections modulo these gauge transformations.

Lattice Yang-Mills theories. As for the scalar theories, one attempt to rigor-
ously define the Yang-Mills measure is to start from a finite dimensional approx-
imation defined on the discrete torus Λ = Λǫ,L. In this setting, the connection is
approximated by its holonomies Uxy along the edges of Λ. The discrete Yang-Mills
measure is defined by

µβ,Λ(dU) := Z−1
β,Λexp

(
β
∑

p

χǫ(Up)
)
dU ,

where the sum runs over all plaquettes p, that over all squares with edges in Λ and
χǫ is suitably chosen to recover the continuum Yang-Mills measure in the limit.
Finally, dU denotes the Haar measure on the field configuration. Some examples
of discrete actions are given by

χǫ(g) =

{
ǫd−4RTr(id− g) (Wilson action) ,

− log e
1
4 ǫ

4−d∆G(id, g) (Villain action) .

The discrete measure is invariant under the action of the discrete gauge group GΛ

that acts on Uxy via conjugation g · Uxy = gxUxyg
−1
y . To make the connection to



Arbeitsgemeinschaft: QFT and Stochastic PDEs 3349

the continuous setting, one can heuristically always identify U with a connection
A in the continuum via Ux,x+ǫei ≈ eǫAi(x).

Wilson loops. The invariance of the Yang-Mills measure under the group of
gauge transformations makes it necessary to work with gauge invariant observables.
A natural choice is to consider the traces of the holonomies of the connection along
closed loops γ : [0, 1] → Rd, known as Wilson loops, and often denoted by Wγ(A).
An important conjecture (see also [8]) about non-Abelian Yang-Mills theories,
known as “mass gap”, is that, in the infinite volume limit Lր ∞, the correlation
length of the Wilson loops

ξ−1(ǫ, β) := − lim
d(γ1,γ2)→∞

log
(
Cov(Wγ1 ,Wγ2)

)

d(γ1, γ2)

takes a finite non-zero value for all finite β, and diverges as β ր ∞. This indicates
that it should be possible to obtain non-trivial correlations in the continuum limit.

Parabolic stochastic quantisation for YM. A nice reference for this part is
[6]. One way to try to rigorously define the continuous Yang-Mills measure is by
studying its Langevin dynamic, or noisy gradient descent, that formally reads

∂tA = −∇ASYM(A) + ξ ,

where ξ is a space-time white-noise. A consequence of gauge invariance is that the
linear part of ∇ASYM(A) = d∗AdAA is not elliptic. One way to circumvent this
issue is to introduce by hand a DeTurck-Zwanziger-term −dAd

∗
AA on the r.h.s. In

coordinates, the new equation (noisy YM heat flow) reads

(∂t −∆)Ai = [Aj , 2∂jAi − ∂iAj + [Aj , Ai]] + ξi .

While this equation is no longer gauge invariant, since the gauge breaking term
is tangent to the gauge orbits at A, the equation still exhibits a gauge covariance
property. Indeed, denoting by ΦtA the flow of some initial condition A under the

noisy YM-heat flow, we verify that Φt(A
g0 )

Law
= (ΦtA)

g(t) provided we choose the
gauge g(t) dynamically, so that

(∂tg)g
−1 = −d∗Ag ((dg)g−1).
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Langevin Dynamics of Lattice Yang-Mills Model

Jiasheng Lin, Kihoon Seong

The goal of the talk is to introduce Yang-Mills measures and Langevin dynamics for
the lattice Yang-Mills model in [9, 10]. We first explain the set-up and preliminaries
required to understand this lattice Yang-Mills model. Let ΛL ⊂ Zd be (vertices
of) a finite lattice with side length L and unit lattice spacing. Orient the edges
in lexographic direction (for a careful description see Chatterjee [1] section 2).
Denote by E+

ΛL
the set of positively oriented edges whose end points belong to ΛL.

Denote by P+
ΛL

the set of positively oriented plaquettes, concatenation of four

edges tracing out the boundary of a unit square (in d = 2 positively oriented
means going anticlockwise viewed from the reader). Let N ∈ N and G be the Lie
group SO(N), U(N) or SU(N). We work in the so-called configuration space

(1) QL := G
E+

ΛL = {(Qe)e∈E+
ΛL

| Qe ∈ G}

of “configurations” of matrices from the Lie group, one for each edge. Given a
configuration Q = (Qe)e∈E+

ΛL

and for ℓ = e1e2 · · · en a path or loop consisting of

concatenation of successive edges, we impose the matrix Qℓ := Qen · · ·Qe1 , where
we also set Qe := Q−1

e−1 if e is negatively oriented. Let g be the Lie algebra of G
and we note that a tangent vector to QL at a configuration (Qe)e∈E+

ΛL

would be

a configuration of the form (XeQe)e∈E+
ΛL

=: XQ, where Xe ∈ g, lying in the full

space MN(C)
E+

ΛL which is finite dimensional Euclidean and where QL embeds.
For two such tangent vectors XQ, Y Q we define the inner product 〈XQ, Y Q〉 :=∑

eTr(XeY
∗
e ) where A

∗ denotes the adjoint of A.
The main object of study is the probability measure µΛL,N,β on QL given by

the density expression

(2) dµΛL,N,β(Q) := Z−1
ΛL,N,β

eSΛL,N,β(Q)
∏

e∈E+
ΛL

dσG(Qe),

where ZΛL,N,β is the normalization constant, β > 0 is the inverse coupling con-
stant, σG is the Haar measure on the Lie group G, and SΛL,N,β is the Yang-Mills
action

(3) SΛL,N,β(Q) := Nβ
∑

p∈P+
ΛL

ReTr(Qp).
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The main method of study is to exhibit (2) as the invariant measure of a stochastic
differential equation (SDE) on QL,

(4) dQt =
1

2
∇SΛL,N,β(Qt)dt+ d ~Bt,

called the lattice Yang-Mills SDE, where ∇SΛL,N,β(Qt) is the gradient of SΛL,N,β

valued at Qt, taken under the inner product described above, and ~Bt an edgewise
independent tuple of Brownian motions onG, discussed below. This SDE describes

the stochastic gradient flow of SΛL,N,β with noise produced by ~Bt.
To show long time stochastic well-posedness of (4) one first show it in the

Euclidean space MN(C)
E+

ΛL following the ordinary procedure and then use Itô
formula to show the solution lies a.s. in QL. To show µΛL,N,β is invariant is also a
standard argument, by computing explicitly the Feller generator, see Shen, Smith
and Zhu [9]. These are in parallel with the treatment of Brownian motion on G.

To define Brownian motion (BM) on G (starting at the identity IN ) first define
the BM, Bt, on g (with the above inner product) which is the ordinary BM, starting
at zero. Then the BM on G is defined by solving in MN(C) the SDE

(5) dBt =
1

2
cgBtdt+ dBt · Bt,

where cg is the constant making
∑

i e
2
i = cgIN for an o.n. basis {ei}i of g, and the

solution lies a.s. in G. This corresponds to the following intuitive picture: com-
pare G to a sphere and g to a tangent plane to the sphere at a point denoted 0; pick
a trajectory of Bt starting at 0, roll the sphere without slipping on the plane so
that the contact point traces out the trajectory, then the corresponding trajectory
on the sphere would be one of the BM on G. This picture is made rigorous by the
McKean “injection method”, see McKean [8] sections 4.7-4.8. More comprehen-
sively see the monograph by Liao [7]. See also the first section of Dahlqvist [3] (in
French) for a nice, shorter summary and an Itô formula.

By applying Itô’s formula to the dynamics of (4) Shen, Smith and Zhu [9]
managed to obtain a version of the so-called Makeenko-Migdal (MM) equations
on the lattice. We explain (MM) in the continuum which is simpler. There, instead
of on QL one considers a measure on A, the space of connections on the (trivial)
principal G-bundle over R2, which is formally µYM ∝ exp(− 1

2SYM(A))dL(A), SYM

being the Yang-Mills action defined in the previous talk and L the nonexistent
“Lebesgue” measure on A. For a piecewise smooth loop ℓ in R2, the matrix Qℓ is
defined accordingly to be the holonomy matrix along ℓ.1 Then Eµ[Tr(Qℓ)] defines
a function of ℓ. If on ℓ we perform a “surgery” turning it into finitely many
loops ℓ1, . . . , ℓn, then (MM) gives a set of PDEs relating the function Eµ[Tr(Qℓ)]
to Eµ[Tr(Qℓ1) · · ·Tr(Qℓn)]. The key to the formal derivation lies in writing down a
formal integration-by-parts formula for µYM and differentiating a clever functional
in a clever direction. But in finite dimensions integration-by-parts formula of the
ordinary Gaussian measure is also a consequence of it being the invariant measure

1In fact, our lattice matrix configuration Q should be seen as the parallel transport matrices
induced by a connection over the background continuum.
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of the Ornstein-Uhlenbeck process and Itô’s formula. Inspired by this fact, [9]
obtain a new proof of lattice (MM) which was previously obtained by Chatterjee
[1]. Another interesting aspect is that when the matrix size N tends to infinity,
the random variable Tr(Qℓ) converge in law to a deterministic number Φ(ℓ), thus
defining a function Φ on the space of loops, called the master field. The (MM)
equations turn then into PDEs describing Φ. For fuller treatment of (MM) in the
continuum see Lévy [5] and [6], on the lattice [1], and also Singer [11] for a broader
perspective.

Let us explore additional outcomes related to the lattice Yang–Mills measure.
As long as the smallness assumption for β holds (i.e. strong coupling regimes),
the infinite volume (tight) limit µYM

β,N of the finite volume Yang–Mills measures
µΛL,β,N as L→ ∞ is unique, which is also the unique invariant measure under the
solution to the Yang-Mills SDE (on entire Zd). The proof of uniqueness is obtained
by a variation of the Kendall–Cranston coupling. In addition to uniqueness, we
can obtain various properties of the infinite volume measure µYM

β,N by establishing
functional inequalities associated with the measure. We first consider the finite
volume Yang–Mills measures µΛL,β,N . Then, under the smallness assumption for

β, the Bakry–Émery condition is satisfied: for any tangent vector v (of the product

of Lie group i.e. QL = G
E+

ΛL ),

Ricc(v, v)−HessS(v, v) ≥ KS |v|2

where KS > 0 does not depend on the volume parameter size L. In these ap-
proaches, the Ricci curvature properties of the Lie groups are importantly used
through the verification of the Bakry–Émery condition. In other words, in strong
coupling regimes, the Hessian of the Yang Mills action S can be controlled by the

Ricci curvatures of the configuration spaceQL = G
E+

ΛL to guaranteeKS > 0. Note
that the Barkly Émery criterion implies the log-Sobolev and Poincaré inequalities
for the measure µΛL,β,N . This gives that the dynamics (lattice Yang-Mills SDE)
on QL is exponentially ergodic. Moreover, the log-Sobolev and Poincaré inequali-
ties for the measure µΛL,β,N extend to the infinite volume measure µYM

β,N as they
are independent of dimension. We point out that in the strong coupling regime
one of the important parts is to be able to take β small uniformly in the large
N parameter, which allows us to take the large N limit with the infinite volume
measure µYM

β,N in the below applications.
We present various applications of the Poincaré inequality. For cylinder func-

tions F ∈ C∞
cyl(Q), we have

VarµYM
β,N

(F ) =

∫
|F −

∫
Fdµβ,N |2dµYM

β,N ≤ 1

KS

∫
|∇F |2dµYM

β,N ,

which implies that (i) the rescaled Wilson loop converges to a deterministic limit
and (ii) the factorization property of Wilson loops holds as follows:
∣∣∣∣
Wℓ

N
→ EµYM

β,N

Wℓ

N

∣∣∣∣→ 0 and

∣∣∣∣EµYM
β,N

Wℓ1 · · ·Wℓm

Nm
−

m∏

i=1

EµYM
β,N

Wℓi

N

∣∣∣∣→ 0
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in probability as N → ∞, where Wγ = Tr(Qe1 · · ·Qen) with a loop γ = e1e2 · · · en
is called a Wilson loop.

The other application is to exhibit the existence of mass gap for lattice Yang–
Mills. By exploiting the Poincaré inequality, one obtains the mass gap as follows:
for any f, g ∈ C∞

cyl(Q) with supports Λf ∩ Λg = ∅, we have the exponential decay
of correlations

CovµYM
β,N

(f, g) ≤ c1e
−c2d(Λf ,Λg)

where d(A,B) means the distance between A and B ∈ E+. In particular, selecting
the functions f and g as Wilson loops is of particular interest in physics.
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Basic Concepts and Reconstruction Theorem

Sefika Kuzgun, Ilya Losev

Theory of regularity structures is a very important tool in the modern theory
of Stochastic Partial Differential Equations, which allows one to make sense and
study basic properties of certain SPDEs. In particular, they play crucial role in
the solution theory of KPZ and Φ4

3 equations.
The notion of regularity structures is a generalization of such well-known things

as Taylor polynomials and rough paths. In our talk we discuss the basic concepts
in the theory of regularity structures and illustrate them using an example of poly-
nomial regularity structure, which is a regularity structure designed to describe
the theory of Taylor polynomials.

https://users.sussex.ac.uk/~and22/
https://users.sussex.ac.uk/~and22/
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A regularity structure consists of a structure space (a graded linear Banach
space) together with a structure group, which encodes how elements of the struc-
ture space change when one shifts an argument. In the case of polynomial regular-
ity structure the structure space consists of all polynomials with a natural grading
given by degree.

A regularity structure is an abstract notion, and it needs to be endowed with
a model, which allows one to represent elements of its structure space as concrete
distributions on Rd. A model consists of realisation map and reexpansion map.
Realisation map turns elements of structure space into distributions which form an
expansion around a given point. For polynomial regularity structure the realisation
map returns a Taylor polynomial with given coefficients around a given point. The
reexpansion map, in turn, tells you how to turn a given expansion around a point
into a similar expansion around a different point.

Finally, we introduce a notion of modelled distribution. Essentially, a modelled
distribution is an analogue of a function in the theory of regularity structures. In
the case of polynomial regularity structure we have that the space of modelled
distributions exactly coincides with the classical Hölder class.

In our talk we also discuss the Reconstruction Theorem. This theorem allows
one to represent any modelled distribution as a concrete distribution on Rd.

Theorem 1 ([2]). Let T be a regularity structure and let (Π,Γ) a model for T on
Rd. Then for γ > 0, there exists a unique linear map R : Dγ → D′(Rd) such that

|(Rf −Πxf(x))(ψ
Λ
x )| . λγ(1)

uniformly over ψ ∈ Br and λ ∈ (0, 1], and locally uniformly in x.

The second part of our presentation is devoted to proving this fundamental
theorem. We closely follow the proof as presented in second edition of the book
[1], which is based on the proofs given in [5] and [4]. Hairer’s original proof in [2]
is based on the wavelength analysis, the former presentation is self-contained.

Let α > 0. The proof relies on the existence of an even smooth function
ρ : Rd → R that is compactly supported in the unit ball and satisfies∫

Rd

xkρ(x)dx = δk,0, 0 < |k| ≤ α,

where k denotes a d-dimensional multi-index and δ Kronecker’s delta. Detailed
construction of such a function can be found in [6].

To construct an approximation scheme, define ρn(x) := 2ndρ(2nx) for n ∈ N,
and ρn,m := ρn ∗ · · · ∗ ρm for n,m ∈ N, m ≥ n. It can be shown that ϕn :=
limm→∞ ρn,m exists, is compactly supported and satisfies a similar scaling as ρ.

Using these smooth functions, it is possible to construct a two layer approxi-
mation to obtain Rf as limit of

Rn,m := ρn,m−1 ∗
(
(Πyf(y))

(
ϕmy
))

first sending m→ ∞ and then n→ ∞. The final step in the proof is to show that
the distribution constructed this way satisfies (1). Some details of these steps are
provided in our presentation.
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Fixed point problem in the space of modelled distributions

Sky Cao, Fabian Höfer

A standard way to solve a semilinear parabolic PDE

(1)

{
∂tu = Au+ F (u)

u(0) = u0

locally in time, where A generate a semigroup S(t) = eAt, is to set up a fixed-point
problem. By Duhamel’s formula the mild form of (1) is

u(t) = S(t)u0 +

∫ t

0

S(t− s)F (u(s))ds =: (Mu)(t).

The strategy then is to find a complete metric space XT consisting of space-time
functions up to time T , such that M : XT → XT is a contraction for sufficiently
small T .

In many cases the same methodology can be applied when we are looking for
solutions in the space of modelled distributions. To motivate the necessary ingre-
dients needed for this, we consider the Φ4

3 model

(2) ∂tΦ = ∆Φ− Φ3 + ξ

where ξ denotes space-time white noise and the spatial variable takes values in the
3-dimensional torus. The mild formulation of (2) is then given by

(3) Φ = K ∗ (ξ − Φ3) +KΦ0

where K denotes the heat kernel, ∗ the space-time convolution and KΦ0 the
harmonic extension of the initial data Φ0, i.e. the solution to the linear heat
equation with initial data Φ0.

The “abstract” formulation of (3), where Φ is now a modelled distribution,
should then be given by

(4) Φ = K(Ξ− Φ3) +KΦ0.
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Here Ξ is a symbol representing the noise ξ and K is a linear operator acting on
the space of modelled distributions correspoding to the convolution with the heat
kernel.

In order to make sense of (4) we need

(1) Make sense of products of modelled distributions, e.g. of Φ 7→ Φ3.
(2) Schauder theorem: Given a β-regularising kernel K, build K : Dγ → Dγ+β

such that RKf = K ∗ Rf .
HereR denotes the reconstruction operator. The Schauder theorem will be the key
ingredient to get a gain T κ in estimates for M and thus making it a contracting
self-map for small T .

In order to state the multiplication theorem, we need to assume that our regu-
larity structure is equipped with a product itself.

Definition 1. Given a regularity structures (T,G) and two sectors V, V̄ ⊂ T ,
a continuous bilinear map ⋆ : V × V̄ → T is called a product on (V, V ) if for
any τ ∈ Vα and τ̄ ∈ V̄β, one has τ ⋆ τ̄ ∈ Tα+β and if for any Γ ∈ G one has
Γ(τ ⋆ τ̄) = Γτ ⋆ Γτ̄ .

Using the notation f ∈ Dγ
α(V ) iff f ∈ Dγ and f(x) ∈ V≥α for all x ∈ Rd and

letting Q<γ denote the projection onto T<γ , we have

Theorem 1. Let f1 ∈ Dγ1
α1
(V ) and f2 ∈ Dγ2

α2
(V̄ ) . Then the function

f(x) := Q<γ(f1(x) ⋆ f2(x))

belongs to Dγ
α with

α = α1 + α2, γ = (γ1 + α2) ∧ (γ2 + α1).

In the second half of the talk, we discussed the multilevel Schauder theorem
for modelled distributions. In particular, we defined β-regularizing kernels and
admissible models. Then given such a model, we described how to realize convo-
lution with a regularizing kernel on the space of modelled distributions. Finally,
we stated the multi-level Schauder estimate.

Theorem 2 (Multi-level Schauder estimate). Let K be a β-regularizing kernel.
Let T be a regularity structure satisfying certain assumptions. Let (Π,Γ) be an
admissible model for T . For γ > 0, there exists a bounded operator K : Dγ → Dγ+β

such that RKf = K ∗ Rf for all f ∈ Dγ .

We emphasize the two key features of this operator K: (1) it increases “homo-
geneity” by β, and (2) it plays well with the reconstruction operator, so that we
may indeed think of K as an abstract version of convolution with K.
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Stochastic quantisation of Φ4
3

Salvador Cesar Esquivel Calzada, Huaxiang Lu

In this tall, we will provide a concise overview of the Φ4
3 model, highlighting

the main result [1, Proposition 4.9] and the renormalization constants. Then we
will explain how to associate a regularity structure to this SPDE, referring to [1,
Section 4.1-4.5]. We will introduce the model for mollified noise and discuss the
non-convergence of the mollified model, which leads to the brief introduction to
the renormalisation group. Then we will derive the renormalization equations for
the Φ4

3 model, with a focus on proving [1, Proposition 4.9].
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Convergence of renormalized models

David Lee, Harprit Singh

We recall the notion of Wiener chaos and Nelson’s hypercontractive estimate.
Then, after introducing some diagrammatic notation, we explain how this can be
used to obtain convergence of renormalised models for the φ43 equation.
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Hyperbolic stochastic quantization

Petri Laarne, Rui Liang

1. Background

In this talk, we will initially transition from the concept of path integrals to Gibbs
measures by incorporating fictitious time and formulating a new Lagrangian [1].
Following this, we will delve into the concept of canonical stochastic quantization
[6], presenting a heuristic argument that anticipates the invariance of the Gibbs
measure under the flow of the canonical stochastic quantization equation. Subse-
quently, we will examine the hyperbolic ϕ4

2 model as a specific case study.
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By these considerations (see also the introduction of [7]), it is possible to show
that the corresponding Gibbs measure is formally invariant under the stochastic
damped nonlinear wave equation

(∂2t + ∂t + 1−∆)u+ u3 = ξ,

which is posed on R×T2, where ξ is the spacetime white noise. A related question
is to solve the undamped equation

(∂2t + 1−∆)u + :u3 : = ξ,

where such an invariance does not hold.

2. Solving the damped equation

2.1. Local-in-time solution. This is based on Sections 1.3 and 4 in [5]; see also
Section 4 in [2], which presents the similar deterministic equation in detail.

The idea is to apply the Da Prato–Debussche trick. We decompose the solution
as u = v + w, where w solves the linear equation ∂ttw + ∂tw + (1 −∆)w =

√
2ξ

with the given initial data (u0, u1). This equation is solved in H−ε by

w(t) = Dtu0 +D′
t(u0 + u1) +

√
2

∫ t

0

Dt−sξ(s) ds, Dt =
e−t/2 sin(t

√
3/4−∆)√

3/4−∆
,

for arbitrarily large times. The remainder v solves the coupled nonlinear equation
∂ttw+∂tw+(1−∆)w = :(v + w)3 : with zero initial data. We solve this part with
a fixed-point argument in the more regular space C([0, τ ], H1−ε(T2)).

There is only the Duhamel term in v, and we can estimate its norm by

sup
0≤t≤τ

∥∥∥∥
∫ t

0

Dt−s: (v + w)3 :(s) ds

∥∥∥∥
H1−ε

≤ Cτ1/2
∥∥: (v + w)3 :

∥∥
L2([0,τ ]; H−ε)

.

Here we used Cauchy–Schwarz in time and uniform boundedness of Dt from H−ε

to H1−ε. We then apply the binomial formula and estimate each term with Besov
space properties (as presented by Gabriel and Liu); for example

∥∥v2w
∥∥
L2([0,τ ]; H−ε)

≤ C ‖v‖2L∞([0,τ ]; B2ε
6,6)

‖w‖L2([0,τ ]; B−ε
6,6)

≤ C ‖v‖2L∞([0,τ ]; H1−ε) ‖w‖L2([0,1]; B−ε
6,6)

.

In the end, we see that a radius-R ball is mapped into a radius Cτ1/2M(1 + R3)
ball, where M is sum of L2([0, 1]; B−ε

p,p) norms of Wick powers of w. We can then

choose R =M and local solution time τ = cM−10. Contractivity follows similarly.

2.2. Global-in-time solution. Bourgain’s argument [3] gives almost sure solu-
tion up to time T > 0. If the stochastic linear part w has norms bounded by
M > 0, then u exists on [0, τM ]. If we restart the linear part from u(τM ), and
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the norm bound also holds on [τM , 1 + τM ], then we can continue u to [τM , 2τM ].
Repeating this, we can estimate the probability of finding a solution by

P(u exists on [0, T ]) ≥ 1− P



T/τM⋃

j=0

3⋃

k=1

‖:wk :‖L2([kτM ,1+kτM ]; B−ε
p,p)

> M




≥ 1−
T/τM∑

j=0

3∑

k=1

P
(
‖:wk :‖L2([0,1]; B−ε

p,p)
> M

)

≥ 1− CTM10
3∑

k=1

E ‖:wk :‖p
L2([0,1]; B−ε

p,p)

Mp
.

Here we used invariance of measure, the choice of τ , and Markov’s inequality. The
Wick powers of φ4 have bounded moments for any p <∞, and this also translates
to the linear part w. Thus we can choose p and M large to get an arbitrarily high
probability of solution.

To be precise, the invariance only holds in a finite-dimensional system. All
of the previous estimates are uniform in Fourier truncation. It then remains to
perform a (technical) limit argument; see Section 4.4 in [2].

3. Solving the undamped equation

Apart from Bourgain’s globalisation argument, we will also see how combining the
I-method in a stochastic setting with a Gronwall-type argument can establish the
norm’s double exponential growth. We will go over the difficulties encountered in
this process and then present the ideas used to overcome these challenges.

By using the Da Prato–Debussche trick,

u = v +Ψ,

where Ψ is the stochastic convolution, we then consider the following equation:

(∂2t + 1−∆)v + v3 + 3v2Ψ+ 3v:Ψ2 : + :Ψ3 :︸ ︷︷ ︸
perturbation

= 0.

There are two difficulties coming from the perturbation and roughness of v. If
there is no perturbation, then we can use conservation of the Hamiltonian

H(∂tv, v) =
1

2

∫
(|v|2 + |∇v|2)dx+

1

2

∫
(∂tv)

2dx+
1

4

∫
v4dx
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to get the globalisation. However, we have perturbation here. Nevertheless, we
can see how the the Hamiltonian grows by taking derivative

∂tH(v) =

∫

T2

∂tv ((∂
2
t + 1−∆)v︸ ︷︷ ︸
=−(v+Ψ)3

+v3)

︸ ︷︷ ︸
∼v2Ψ+vΨ2+Ψ3

dx

C-S

. (H(v))
1
2

(
‖Ψ‖2CTL∞

x

∫
v4dx+ ‖Ψ‖6CTL6

x

) 1
2

≤ C(T,Ψ)(1 +H(v)),

provided that the noise is smoother. Then by Gronwall’s inequality, we have

‖v(t)‖2H1 ≤ H(t) ≤ H(0) e2C(T,Ψ)T , for 0 < t ≤ T,

which gives global solution. However, as v is not in H1, we need to remedy by
using the I-method [4] given by an operator I = IN such that

‖v‖Hs . ‖Iv‖H1 . N1−s‖v‖Hs ,

from which we are led to try using Iv to replace the role of v in the Gronwall-
type argument stated above. After some estimates for some commutators and
some analytical techniques, we get the norm’s double exponential growth which
contradicts the blowup criteria.
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On the Polchinski Equation

Zhituo Wang

The Polchinski equation [1] is a partial differential equation for the renormalized
effective action in quantum field theory. It is a powerful tool for proving renor-
malizability of quantum field theory models and has been applied successfully in
the study of the scalar φ44 model [1, 2], the QED [3], the Gross-Neveu model [4],
the noncommutative Grosse-Wulkenhaar model [5], ect. In this short presentation
I will derive the Polchinski equation for the scalar Φ4 model. An explicit smooth
cutoff function for the momentum has been introduced and the integration-by-
parts formula has been used.
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Stochastic control approach to Φ4

2
measure

Abdulwahab Mohamed

We discuss the stochastic control approach for Φ4
2 measure in [1]. We introduce a

convenient way of regularising the measure which naturally leads to a stochastic
process. The regularised measure is given by νt and has the form

νt(dϕ) = Z−1
t e−Vt(ϕt)µ(dϕ),

where ϕt = ρt∗ϕ is a mollified distribution with ρt → δ0, µ is the Gaussian free field
on T2, Zt is the partition function and Vt is a suitable function. We construct a
probability space (Ω,F ,P) and a process (Yt)t≥0 such that LawP(Yt) = Lawµ(ϕt).
With this formulation, we have for any A ∈ F

νt(A) = Z−1
t E[1A(Yt)e

−Vt(Yt)].

From there we see that it is enough to study the process (Yt)t≥0 and the density

Z−1
t e−Vt(Yt).
The process (Yt)t≥0 is constructed by an Itô integral with respect to a Brownian

motion which enables us to use techniques from stochastic calculus. For instance,
using Girsanov’s transform, we establish a direct link between the measure νt
and a stochastic control problem. The control problem is based on Boué–Dupuis
formula which allows us to express − logE[e−pVt(Yt)] in terms of a minimisation
problem. The functional that we minimise can be easily bounded from above and
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below after suitable renormalisation. These bounds are based on fairly standard
inequalities in Sobolev spaces, for example duality, product rule and interpolation.
In the bounds, we exploit the fact that the Gaussian free field on T2 has all its
Wick powers in C−κ for any κ > 0. The bounds obtained for the minimisation
problem then leads to a lower and upper bound for the quantity E[e−pV (Yt)]. From
there we can show that the Radon-Nikodym derivative Z−1

t e−V (Yt) is bounded in
Lp(P) uniformly in t ≥ 0. This yields tightness of the measure νt for which the
limit as t→ ∞ is going to be a candidate for the Φ4

2-measure.
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Log-Sobolev Inequality

Henri Elad Altman, Chunqiu Song

Consider our models on finite lattice Λ = Λε,L ⊂ LTd∩εZd and field configurations
are denoted by ϕ : Λ → R. The Hamiltonian H(ϕ) is of the form H(ϕ) =
1
2 (ϕ,Aϕ) + V (ϕ) where (f , g) := εd

∑
x∈Λ fx · gx, V (ϕ) = εd

∑
x∈Λ V (ϕx) with V

bounded below, and A is positive. The statistical property of the system is given
by the Gibbs measure 1

Z e
−H(ϕ)dϕ, where dϕ is the Lebesgue measure on RΛ, and

Z =
∫
RΛ e

−H(ϕ)dϕ. The Gibbs measure is attained by the equilibrium measure of
the Glauber-Langevin dynamics

dϕt = −∇H (ϕt) dt+
√
2dWt

whose solution is a Markov process with the Markovian semigroup Pt. How fast
does it equilibrate? Denote Law (ϕt) = νt, hence ν∞ = 1

Z e
−H(ϕ)dϕ. For a positive

function G, a probability measure ν and Φ(x) = x ln(x), define the entropy and
Fisher information to be

Entν(G) := Eν [Φ(G)]− Φ (Eν [G]) , Iν(G) := 4Eν
[
(∇

√
G)2

]
.

The log-Sobolev inequality

Entν∞

(
dνt
dν∞

)
= H (νt | ν∞) ≤ 1

2γ
I (νt | ν∞) =

1

2γ
Iν∞

(
dνt
dν∞

)

implies that te dynamics equilibrates exponentially fast with rate γ:

‖νt − ν∞‖2TV ≤ 2H (νt | ν∞) ≤ 2e−2γtH (ν0 | ν∞)

where the first inequality is given by Pinsker.
Definition 1. (Log-Sobolev Inequality) A probability measure ν on RΛ is said

to satisfy the log-Sobolev inequality with constant γ, if for all bounded smooth
positive function G : RΛ → R+, the inequality Entν(G) ≤ 1

2γ Iν(G) is true. The

largest choice of γ is called the log-Sobolev constant of ν.
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One natural question is: when does the Gibbs measure satisfy the log-Sobolev
inequality? By decomposing the entropy along the Langevin dynamics, one can
show the following:

Theorem 2. (Bakry-Emery) If there is a constant λ > 0 such that for all ϕ ∈ RΛ,
the inequality Hess H(ϕ) ≥ λ id (where id denotes the identity matrix) is true,
then the Gibbs measure satisfies the LSI with log-Sobolev constant γ ≥ λ.

In the UV limits of continuum models, the divergent counterterms break the
convexity of the Hamiltonian, hence the theorem does not apply. One way to
generalise the theorem is given by decomposing the entropy along another process
inspired byWilson’s RG (see [1], [2]). The kinetic part 1

2 (ϕ,Aϕ) in the Hamiltonian

provides a Gaussian in the Gibbs measure with covariance A−1. We assume there
is a scale decomposition of covariance A−1 with the form A−1 = C∞ =

∫∞

0
Ċsds

where Ċt are assumed to be positive definite with C0 = 0. The idea is to build up
a dynamical system by keep averaging out the part of the field with smaller scale
interactions (corresponding to Cs ) which result in an updating of the effective
interaction in large scale (corresponding to C∞ − Cs ), and hence an updating of
the measure. That is to consider the renormalised measure νs defined as

1

Z
e−

1
2 (ϕ,(C∞−Cs)

−1ϕ)
∫
e−V (ϕ+ψ)e−

1
2 (ψ,C

−1
s ψ)dψdϕ

=
1

Z
e−

1
2 (ϕ,(C∞−Cs)

−1ϕ)−Vs(ϕ)dϕ

where we define the renormalised potential

Vs(ϕ) = − ln

∫
e−V (ϕ+ψ)e−

1
2 (ψ,C

−1
s ψ)dψ.

Theorem 3. (Bauerschmidt&Bodineau 21) Suppose Ċt is differentiable, and

there is some real-valued functions λ̇t such that

ĊtHessVt(ϕ)Ċt −
1

2
C̈t ≥ λ̇tĊt ∀ϕ ∈ RΛ and t > 0

and define λt =
∫ t
0 λ̇sds and

1
γ =

∫∞

0 e−2λtdt. Then ν0 satisfies the LSI Entν0 [G] ≤
1
2γ Iν0(G)Ċ0

.

The above result, known as a multi-scale Bakry-Emery criterion, can be used
to derive log-Sobolev inequalities for the continuum Sine-Gordon model, which is
a 2-dimensional model (d = 2) described by the probability measure on RΛ given
by

νε,L ∝ exp

(
−1

2
(ϕ,Aϕ) − V0(ϕ)

)
dϕ,

where Aϕ = (−∆εϕ+m2ϕ), with ∆ε the discrete Laplacian on RΛ and

V0(ϕ) = 2ε2
∑

x∈Λ

ε−β/4πz cos(
√
βϕx).

Here, m > 0 is a mass term, z ∈ R is the coupling constant, and β ∈ (0, 8π).
The above potential is highly non-convex, all the more so as the non-convexity is
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amplified by the diverging renormalisation parameter ε−β/4π entering the picture
as we take the continuum UV limit ε → 0. However, for β < 6π, the multi-scale
Bakry-Emery criterion applies to the effective potential Vt associated with the
renormalisation semi-group, and provides a LSI with a constant that is uniform in
ε. To show the required bounds on HessVt one exploits the fact that this effective
potential solves the so-called Polchinski PDE, in order to represent it using an
Ansatz due to Brydges and Kennedy [3], with coefficients that can be bounded
uniformly in ε.
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Pavle V. M. Blagojević . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3258
Alberto Bonicelli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3328
Laura Bonn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3130
Tom Braden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3261
Andrea Braides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3217
Vasco Brattka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3056
Benjamin Braun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3263
Alberto Bressan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2958
Yvonne Alama Bronsard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3084
Lucas Broux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3340
Yvain Bruned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3098
Detlev Buchholz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2870
Leon Bungert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3214
Dietrich Burde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2688
Daniela Cadamuro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2861
Piermarco Cannarsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2967
Sky Cao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3355
Daniel Carranza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3266
Claudia Ceci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2620



3372

Antonin Chambolle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3234
Valérie Chavez-Demoulin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2573
Gui-Qiang G. Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2968
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Filip Lindskog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2563
Nati Linial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3276
Gaku Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3278
Ruoyuan Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3331
Shuaipeng Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3146
Georg Loho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3278
Stèphane Loisel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2571
Roberto Longo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2860
Samuel A. Lopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2702
Ilya Losev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3353
Huaxiang Lu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3357
Maria Giulia Lugaresi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2739
Jani Lukkarinen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2826
Jan Maas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3225
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Maria Emilia Maietti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3048
Bianca Marchionna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3124
Elio Marconi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2983
Daniel Matthes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3219
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Thilo Meyer-Brandis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2595
Nicolas Michel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2733
Charles Miranda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2792
Tadahiro Miyao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2839
Abdulwahab Mohamed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3361
Lewis Molyneux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3132
Peter Morfe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3330
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Gerardo Morsella . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2876
Kaveh Mousavand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2644
Elisabeth Mühlhausen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2754
Moritz Müller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3025
Cosimo Munari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2602
Muhammad Usama Nadeem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3096
Karl-Hermann Neeb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2873
Sara Negri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3026
Morenikeji Neri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3025
Berenice Anne Neumann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2607
Eran Nevo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3282
Yoon Jae Nho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2660
Merik Niemeyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2650
Anthony Nouy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2799
Nikolas Nüsken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3202
Alexandru Oancea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3151
Katharina Oberpriller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2587
Isabel Oitavem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3019
Gestur Ólafsson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2867
Paulo Oliva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3041
Ivan Oseledets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2778
Mathias Oster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2777
Arnau Padrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3285
Gudmund Pammer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2608
Yu Pan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2648
Stavros Papadakis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3287
Lorenzo Pareschi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2985
Sangmin Park . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3239
Vincent Perrollaz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2988
Silvana M. Pesenti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2560
Vasiliki Petrotou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3287
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Christine Phili . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2765
Peter Pickl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2831
Vincent Pilaud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3289
Théo Pinet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2641
Pedro Pinto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3051
Nicholas Pischke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3030
Kevin I. Piterman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3291
Eckhard Platen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2604
Thomas Powell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3023
Rosa Preiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3092
Matthew Pressland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2666
Pavel Pudlák . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3022
Simone Rademacher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2841
Ludwig Rahm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3083
Grodecz Alfredo Ramı́rez Ogando . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2759
Alessio Ranallo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2891
Holger Rauhut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2794
Victor Reiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3293
Frank Riedel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2578
Konstantin Riedl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2990
Felipe Rincón . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3294
Emanuela Rosazza Gianin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2559
Massimiliano Daniele Rosini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2993
Riccarda Rossi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3210
David E. Rowe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2724
Agniva Roy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2653
Blazej Ruba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2824
Manfred Salmhofer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2843
Luca Saluzzi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2784
Ko Sanders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2896
Sam Sanders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3035
Yuri Santos Rego . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3121
Raman Sanyal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3295
Lucia Scardia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3227
André Schlichting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3185
Michael Schmutz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2564
Katharina Schratz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3086
Peter Schuster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3042
Janina Schütte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2803
Florian Schweiger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3330
Tonie Scroggin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2672
Chiara Segala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2995
Kihoon Seong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3350
Salvatore Siciliano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2703
Reinhard Siegmund-Schultze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2744
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Susan J. Sierra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2705
Nikita Simonov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3196
Harprit Singh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3357
Andrei Sipoş . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3050
Gil Solanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2935
Chunqiu Song . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3362
Peter Spacek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2659
Bharath K. Sriperumbudur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3207
Ulisse Stefanelli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3230
Mogens Steffensen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2584
Brigitte Stenhouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2751
Hendrik Süß . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2915
Maud Szusterman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2919
Alex Takeda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3164
Luca Talamini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2997
Pedro Tamaroff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3090
Yoh Tanimoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2886
Peter Tankov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2556
Nikolas Tapia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3094
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