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Analogies are interesting!

K.R.S. Sastry

K.R.S. Sastry obtained his Bachelor’s and Master’s degrees in mathematics from
the University of Mysore in India. He taught mathematics, initially in the State of
Karnataka in India, later on in Ethiopia. After his retirement in 1994 he returned
to the city of Bangalore in India, where he continues to work on mathematical
problems.

Let an equilateral triangle ABC be inscribed in a circle. Let P be any point on the
minor

�
BC (arc BC) as in Fig. 1. Then it is well-known that AP = BP + PC. (This can

be easily proved using Ptolemy’s theorem, trigonometry or by other means.) Is not this
property pretty? Obviously, we do not expect a non equilateral triangle to exhibit such a
property. However, in a given triangle ABC it seems reasonable to expect the existence
of at least one point P with the above property. Surprisingly, a non equilateral isosceles
triangle does not possess such a point. Our discussion examines the reason and considers
interesting special cases.
Next, we look at the right angled triangle ABC in which ∠BAC = π/2. If AD is drawn
perpendicular to BC (shown in Fig. 2), then it is well-known that AD2 = BD · DC.
In fact, if D′ is the mid point of BC of the same ∆ABC, then also it trivially follows
that AD′2 = BD′ · D′C because D′ is the center of the circle ABC. The second part of
our discussion focuses on the characterization of ∆ABC in which at least one point D
exists on BC with the property just mentioned. Before we begin the discussion, let us
recall the necessary background euclidean geometry results.

.

Analogien spielen bekanntlich eine wichtige Rolle beim Entdecken neuer Erkenntnisse
in der Mathematik. An diese Tatsache knüpft der Autor in der nachfolgenden Arbeit an.
Ausgehend von dem bekannten Ergebnis, dass für einen Punkt P auf dem Umkreis eines
gleichseitigen Dreiecks ABC zwischen B und C die Beziehung AP = BP+PC besteht,
wird in Umkehrung dazu nach notwendigen und hinreichenden Bedingungen an die
Seiten eines beliebigen Dreiecks ABC gesucht, so dass ein Punkt P auf dem Umkreis
des gegebenen Dreiecks zwischen B und C existiert, der der obigen Gleichung genügt.
Ausgangspunkt für das zweite Beispiel ist der Höhensatz im rechtwinkligen Dreieck.
Verallgemeinernd dazu wird nach notwendigen und hinreichenden Bedingungen an die
Seiten eines beliebigen Dreiecks ABC gefragt, so dass ein Punkt D auf der Seite BC
existiert, der die Beziehung AD2 = BD · DC erfüllt.
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Fig. 1 AP = BP + PC

�
�
�
�
�
�
�
��

�
�

�
�

�
�

�
�

�
�

�
��

		
		

		
		

		
		

B D′ C

A

D 				 				







Fig. 2 AD2 = BD · DC and AD′2 = BD′ · D′C

Background material

We use the standard notation throughout our discussion. In ∆ABC, a, b, c denote either
the sides or the lengths BC, CA, AB and A, B, C denote either the vertices or the
measures of ∠BAC, ∠CBA, ∠ACB, respectively. We assume the reader’s familiarity
with the angle bisector theorem, properties of similar triangles, intersecting chords of
a circle and so on. In addition, we need the result that is sometimes called Stewart’s
theorem. Therefore, we derive it below as an application of the cosine rule. This result
is central to our discussion.

Theorem 0 Let D be a point on the side BC of ∆ABC. If BD/DC = m/n, then

AD2 =
mb2 + nc2

m + n
− mn a2

(m + n)2
. (∗)
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Fig. 3 BD
DC = m

n , AD2 =?

Proof . We refer to Fig. 3. If BD/DC = m/n, then by the property of equal ratios
BD/(BD + DC) = m/(m + n), so BD = ma/(m + n) and DC = na/(m + n). We now
apply the cosine rule for ∆ABD. This gives

AD2 = AB2 + BD2 − 2 · AB · BD · cos(∠ABD)

= c2 +
m2 a2

(m + n)2
− 2 · c · m a

m + n
· c2 + a2 − b2

2c a
.

The simplification (left to the reader) of the above expression leads to the result given
in (∗). �

Remark 1 The result (∗) is true for any position of the point D on BC that is within
BC as in Fig. 3, on BC extended or CB extended. In such an extended case we should
observe the usual sign convention, i.e., BD > 0, DC > 0 if D is as in Fig. 3, BD > 0,
DC < 0 if D is to the right of BC and BD < 0, DC > 0 if D is to the left of BC.

The analogies
We first discuss the equilateral triangle analogy mentioned in the introduction. Theorem 1
shows that the sides of a ∆ABC must be expressible in a certain form for the existence
of a point P on the minor

�
BC with the property AP = BP + PC. We will then deduce

a number of corollaries. Except for Corollary 6, Theorem 1 and the Corollaries 1 to 5
are true for positive real numbers a, b, c, m and n.

Theorem 1 Let ∆ABC be inscribed in a circle. Then a point P exists on the minor
�
BC such that AP = BP + PC, if and only if the sides have the form a = mu2 + nv2,
b = u(mu + nv), c = v(mu + nv). Here u and v are positive real numbers and m/n is
the ratio in which AP divides the side BC.

Proof. We refer to Fig. 4. From (∗) we have

AD2 =
mb2 + nc2

m + n
− mn a2

(m + n)2
. (1)

Since the triangles BDP and ADC are similar, we find that

BD
AD

=
BP
AC

, i.e., BP =
mab

(m + n)AD
.
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Fig. 4 When AP = BP + PC?

Likewise from the similar triangles CDP and ADB we find that

PC =
nac

(m + n)AD
.

Hence AP = BP + PC, if and only if

AD · AP =
mab

m + n
+

nac
m + n

, or

AD2 + AD · DP =
a(mb + nc)

(m + n)
. (2)

In Fig. 4, AP and BC are intersecting chords of the circle. Therefore, AD · DP =
BD · DC = mna2/(m + n)2. Using the preceding result and substituting (1) into (2)
gives

a(mb + nc) = mb2 + nc2.

Hence, the sides a, b, c of ∆ABC must be expressible as a = (mb2 + nc2)/(mb + nc),
b, c. We now take b = u, c = v as arbitrary positive real numbers and multiply the sides
by (mu + nv). This similarity transformation enlarges AP, BP, PC also by the same
factor and hence the property AP = BP +PC still holds. This gives the characterization
mentioned in Theorem 1. �

We now deduce a number of corollaries from Theorem 1. Corollary 1 gives another but
simpler necessary and sufficient condition for ∆ABC to have the desired point P.

Corollary 1 Let ∆ABC be inscribed in a circle. A point P exists on the minor
�
BC such

that AP = BP + PC, if and only if the sides a, b, c satisfy the inequalities b > a > c or
c > a > b.

Proof . Theorem 1 tells us that the desired point P exists if and only if a = (mb2 +
nc2)/(mb + nc). This is equivalent to m/n = c(c − a)/b(a − b) or a = b = c, the
latter being excluded here. Since AP intersects BC internally, the ratio m/n > 0. This is
possible if and only if a, b, c satisfy b > a > c or c > a > b and the proof is complete. �

In fact, Corollary 1 provides greater insight into the subject under discussion as we see
below.
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Corollary 2 A non equilateral isosceles triangle ABC does not contain a point P on
the minor

�
BC such that AP = BP + PC.

Proof. The hypothesis of Corollary 2 implies exactly one of a = b, a = c, b =
c. This is neither b > a > c nor c > a > b. Hence, P does not exist. Alterna-
tively, Theorem 1 shows that if one of the three above equalities holds then the other
two must follow. This forces ∆ABC to be equilateral contradicting the hypothesis of
Corollary 2. �

Corollary 3 shows the uniqueness of the point P.

Corollary 3 If the sides of ∆ABC satisfy b > a > c or c > a > b, then there exists a
unique point P on the minor

�
BC such that AP = BP + PC.

Proof . In the proof of Corollary 1 we saw that m/n = c(c− a)/b(a−b). Hence the ratio
m/n is uniquely determined by a, b, c. Therefore, the point D on BC and hence P are
unique, too. �

Corollary 4 Suppose that a set of points Pi exists on the minor
�
BC of ∆ABC such that

APi = BPi + PiC, i = 1, 2, . . . Then, ∆ABC must be equilateral.

Proof . Since ∆ABC is fixed, a, b, c remain constant but the ratio m/n varies as P moves
over Pi . In other words, the equation mb(a− b) = nc(c − a) can hold for many pairs of
values of m, n, if and only if a = b and c = a implying that ∆ABC must be equilateral.

�

Corollary 5 (Hoppe triangles) Let AP (Fig. 4) bisect ∠BAC of ∆ABC. Then, AP =
BP + PC, if and only if the sides b, a, c are in arithmetic progression.

Proof . The angle bisector theorem states that AP, i.e., AD bisects ∠BAC, if and only if
m/n = c/b. Hence, AP = BP+PC, if and only if a = (mb2+nc2)/(mb+nc) = 1

2(b+c).
This establishes the corollary. In fact, here AP = 2BP and AD = 1

2

√
3bc. �

Remark 2 Dickson in his monumental work, History of the Theory of Numbers [1]
tells that Hoppe gives a complete discussion of Heron triangles (triangles with integer
sides and area) in which the sides are in arithmetic progression. To honour Hoppe we
call a triangle Hoppe triangle if the sides are in arithmetic progression. At this point we
mention that there is a vast literature on Heron triangles and the reader is invited to refer
to [3, 4, 6, 7] to get a glimpse of the many interesting Heron problems.

Corollary 6 Suppose the elements a, b, c, m, n of ∆ABC are positive integers. If AD
is a median of ∆ABC, then AP = BP + PC, if and only if AB + AC is either a square
or twice a square.

Proof . Since AD is a median it follows that BD = DC and m = n = 1. Therefore,
a = u2 + v2, b = u(u + v), c = v(u + v). Now, AB + AC = (u + v)2 is a (perfect)
square. However, if u and v are both odd integers, then gcd(a, b, c) = 2. The sides of
the reduced (but similar) triangle will have AB + AC twice a square. Conversely, if
AB + AC = w2 or 2w2, then we can always choose v = 1, u = w − 1 to get a desired
∆ABC. �
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An example. To make the argument clearer, suppose AB + AC = 36 = 62. Then,
u + v = 6. If u = 5, v = 1, then a = 26, b = 30, c = 6 and gcd(a, b, c) = 2. If
we divide the sides by 2, then the reduced similar ∆ABC has sides a = 13, b = 15,
c = 3 and AB + AC = 18 = 2(3)2 is twice a square. We remark that under a similarity
transformation, the property AP = BP + PC is invariant.

Next, we consider the right angled triangle analogue mentioned in the introduction.
Theorem 2 provides a characterization of ∆ABC in which there is a point D on the side
BC such that AD2 = BD ·DC. In other words, AD is the geometric mean between BD
and DC.

Theorem 2 In triangle ABC a point D on the side BC exists with the property AD2 =
BD · DC, if and only if the sides a, b, c satisfy the inequalities

√
2a ≥ b + c > a.
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Fig. 5 When is AD the geometric mean of BD and DC?

Proof . We refer to Fig. 5. From (∗) the equation AD2 = BD · DC is equivalent to

mb2 + nc2

(m + n)
− mn a2

(m + n)2
=

mn a2

(m + n)2
.

We rewrite the above equation as a quadratic in m/n. This yields
(m

n

)2
b2 + (b2 + c2 − 2a2)

(m
n

)
+ c2 = 0

with the solutions

m
n

=
−b2 − c2 + 2a2 ±

√(
(b + c)2 − 2a2

)(
(b − c)2 − 2a2

)

2b2
. (3)

By the triangle inequality it follows that b − c < a. Hence, (b − c)2 − 2a2 ≤ 0. To get a
real root for m/n we must therefore have (b + c)2 − 2a2 ≤ 0. That is

√
2 a ≥ b + c > a,

the characterization asserted by the theorem. �

Remark 3 In general, equation (3) yields two roots for m/n > 0 and hence two
positions for D on BC such that the cevian AD is the geometric mean of BD and DC.
D exists uniquely when m/n is a double root. This happens, if and only if

√
2 a = b + c.

Corollary 7 tells more about such triangles.
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Corollary 7 The point D on side BC of ∆ABC exists uniquely with the property
AD2 = BD · DC, if and only if AD bisects ∠BAC.

Proof . In Remark 3 we saw that D exists uniquely, if and only if
√

2 a = b + c. In this
case, equation (3) shows that m/n = (−b2 − c2 + 2a2)/2b2 = c/b. The angle bisector
theorem says that m/n, i.e., BD/DC = c/b, if and only if AD bisects ∠BAC. This

establishes Corollary 7. Moreover, in this case we find that AD =
√

1
2 bc. �

Corollary 8 gives the length of the tangent at the vertex A to the circle ABC intercepted
by the side BC.

Corollary 8 Let ∆ABC be inscribed in a circle. Suppose the tangent at A meets the
side BC (extended) at D. Then, AD = abc/|c2 − b2|.

Proof . The tangent-secant property says that AD2 = BD · DC. If c > b, then D lies
to the right of BC and if c < b, then D lies to the left of BC. If c = b, then AD is
parallel to BC and undefined as a length. In either case, BD/DC = |c2/b2|. Hence,
BD = c2a/|c2 − b2|, DC = b2a/|c2 − b2| and the assertion of the corollary follows. �

Conclusion
The reader witnessed an interesting discussion from the consideration of analogies of
known results. Euclidean geometry has been studied for thousands of years and yet
new results appear on the pages of mathematics journals around the world. We invite
the reader to make a new contribution to the following lovely but unsolved problem in
natural number solutions (as far as I am aware) on the equilateral triangle:

Let P be a point in the plane of an equilateral triangle ABC. Assume that PA = p,
PB = q, PC = r are natural numbers. Determine the length s in natural numbers
of a side of ∆ABC in terms of p, q, r.

This is a famous problem with rich history. Reference [2] gives the details. The numbers
p, q, r, s are inter-related by the equation

3(p4 + q4 + r4 + s4) = (p2 + q2 + r2 + s2)2 .

The remarkable symmetry exhibited by the above equation shows that any three of the
four values p, q, r, s may be taken as the distances of the point P and the fourth one
gives the side length of the equilateral triangle. The natural number solutions for p, q, r,
s are known in the special case when the point P lies on a side or on the circum circle
of the equilateral ∆ABC. These two instances are covered by setting p = q+ r and then
solving for s. Another special but new solution is found in [5]. Who is the lucky person
who finds the general solution of the above problem/equation in natural numbers?
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