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Abstract. We study algebraic loop groups and affine Grassmannians in positive character-
istic. The main results are normality of Schubert-varieties, the construction of line-bundles
on the affine Grassmannian, and the proof that they induce line-bundles on the moduli-stack
of torsors.

1. Introduction

The present note aims to explain some basic facts about algebraic loop groups.
Some are well known in characteristic zero, but not so in positive characteristics,
and the paper started as an attempt to check them in full generality. The topics are

• construction of loop groups and their central extensions,
• the infinite Grassmannians and flag spaces,
• the theory of Schubert varieties,
• integrable representations,
• moduli spaces and line-bundles on them,
• the Suguwara construction.

Most of the facts are neither surprising nor difficult to prove. Maybe the Suguwara
construction in positive characteristics comes as a little surprise, because its usual
definition involves complicated denominators. It should be mentioned that normal-
ity of Schubert varieties has been shown (at about the same time as the research for
our paper) for the groups SLn by Pappas and Rapoport, using a different method
([12]). Also I learned that P. Littelmann gave a general proof ([9]). In general there
seems to be some confusion because several definitions of “Schubert varieties” seem
possible. Although logically it suffices to use ours I have tried to explain the relation
to others as well as I can understand it. I thank V. Drinfeld for useful comments.

2. Construction of loop groups

Suppose G is a linear algebraic group defined over Z (or over any other base). For
an indeterminate t R((t)) denotes the ring of Laurent-series.
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Definition 1

• The positive loop group L+G is the affine group scheme representing the functor

L+G(R) = G(R[[t]]).
• The strict positive loop group L++(G) ⊂ L+(G) is the kernel of the reduction

map to G.
• The negative loop group L−G is the ind-affine group scheme representing

L−G(R) = G(R[t−1]).
• L−−(G) ⊆ L−G is again the kernel of reduction.
• LG is the ind-affine group with

LG(R) = G(R((t)).

That these functors are indeed representable (or, for L−G, L−−G, LG, ind-
representable) by affine schemes is easily seen (see also [1, Prop. 1.2]). For example
for H = SLd L H(R) is the union of its subfunctors Ln H(R) consising of matrices
of determinant 1

A =
∑

i≥−n

Ai · ti,

with the Ai d × d matrices with coefficients in R. Obviously Ln H is representable
by a closed subscheme of infinite affine space, and the inclusion Ln H ⊆ Ln+1 H
is a closed immersion. Also

Lm(H ) · Ln(H ) ⊆ Lm+n H

and (Ln H )−1 ⊆ Ln(d−1)H . These assertions also hold for proper closed G ⊆
H = SLd .

Now recall the construction of the infinite Grassmannian. Consider (for H =
SLd) the functor DH which associates to a ring R the set DH(R) consisting of
projective R[[t]]-modules L ⊂ R((t))d with

1. tn · R[[t]]d ⊆ L ⊆ t−n · R[[t]]d for n � 0

2. det(L) = R[[t]].
DH is an ind-algebraic scheme, increasing union of the closed subschemes where
the value of n in the first condition above is fixed. Also it admits a natural action by
L H = LSLd . This action is transitive (locally in the Zariski-topology of Spec(R)

any L is free and thus a transform of R[[t]]d), and the stabiliser of the origin R[[t]]d

is L+ H .
One defines on DH a very ample line bundle L = detR(L)⊗−1. In fact what is

naturally defined is the “difference”

detR(L1) ⊗ detR(L2)
⊗−1.

For example choose an n with tn · R[[t]]d ⊆ L1,2 and consider the quotient of the
R-determinants of the quotients L1,2/tn · R[[t]]d. It is independant of n.
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Fixing L1 and varying L2 = L then defines L. Because of this procedure the
action of L H extends only to a projective action on L. However the stabiliser of
a fixed lattice (like L+(H )) acts honestly on L.

Dually this also holds for L− H : Namely consider the submodule M = t−1 ·
R[t−1]d ⊂ R((t))d . Then detR(L)⊗−1 is equal to the determinant of cohomology
of the complex

0 → L ⊕ M → R((t))d → 0,

or more precisely to the determinant of the quotient complex obtained by dividing
both terms by

tn · R[[t]]d ⊕ M.

Hence an action of the stabiliser L− H of M. Also the actual determinant of the
map above (i.e. of the quotient) defines a section

ϑM ∈ �(DH,L)

invariant under L− H . Namely choose an integer n such that L contains tn · R[[t]]d.
Then the determinant of cohomology is equal to that of the complex

L/tn · R[[t]]d → R((t))d/(tn · R[[t]]d ⊕ M),

and ϑM is the determinant of the boundary map in this complex.
(One can show that its transforms under L H define a projective embedding,

but we do not need that.)
Now consider the complementDH − � of the zero-set � of ϑM .

Lemma 2 The action of L−− H on the origin L0 = R[[t]]d defines an isomorph-
ism

L−− H→̃DH − �.

Proof Suppose L ∈ DH(R) lies in the complement of �, that is L ⊕ M = R((t))d .
If {e1, . . . , ed} denotes the standard base of L0 = R[[t]]d , then there exists a unique
d × d-matrix

h ∈ 1 + t−1 · R[t−1]d×d

with h(ei) ∈ L. We claim that these elements generate L, that is that L = h(L0):
Namely choose a large integer n with tn · h ∈ R[t]d×d integral and such that

tn · L0 ⊆ t · L. Then it suffices that the h(ei) generate L/tn · L0 as R[[t]]-module.
Each element in this quotient can be represented by an element f ∈ L ⊆ R((t))d =
L0 ⊕ M such that its projection to L0 is a linear combination of t j · ei with j < n.
However the projection of h(t j · ei) is of the form t j · ei modulo terms with lower
t-powers. Thus by decreasing induction one can make the L0-projection of f and
thus also f itself vanish.

Now as L and L0 have the same R[[t]]-determinant the determinant of h must
be a unit in R[[t]]. Especially it contains no negative t-powers, thus it is 1 and
h ∈ L−− H . It is clear that the map

h : DH − � → L−− H

is an inverse to the L−− H-action on L0.
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It follows from the lemma that the multiplication map

L−− H × L+ H → L H

is an open immersion. We claim that this also holds for certain subgroups.

Corollary 3 Suppose G ⊆ H is a closed subgroup, which is the stabiliser of an
element e ∈ E for an algebraic representation of H = SLd on a finitely generated
projective R-module E. (For example this holds if G is defined and flat over the
integers Z, and admits no non trivial characters G → Gm.)

Then the multiplication map

L−−G × L+G → LG

is an open immersion. An element g ∈ LG(R) lies in the image iff g(L0) ∈ DH −�.

Proof We obviously must show that if a product g = g−·g+ with g− ∈ L−− H(R),
g+ ∈ L+ H(R) lies in LG(R), then also both factors are in LG. But g−1− (e) =
g+(e) ∈ E((t)) lies both in e + t−1 · E[t−1] and in E[[t]], thus must be equal to e.

As a consequence one easily constructs the quotient DG = LG/L+G: It is
an ind-scheme which has an open covering by translates of L−−G. Also the map
DG → DH is a closed immersion. The orbits of L−G on DG form an interesting
“stratification with strata of finite codimension”. As this is not used we refrain from
elucidating what this should mean. However for completeness we list the orbits in
a special case.

Namely assume that G is a connected split reductive algebraic group, and
T ⊆ G a split maximal torus, Y = Hom(Gm, T ) its group of one parameter
subgroups. Any ρ ∈ Y defines an element ρ(t) ∈ LT ⊆ LG. Also our base ring R
is a field k.

Lemma 4 We have a disjoint union

LG(k) =
⋃

ρ∈Y

L−G(k)ρ(t)L+G(k).

Proof Any g ∈ LG(k) defines a G-torsor P on P1
k by gluing trivial torsors on

P
1 − {∞} = A1 and on the formal completion along {∞}. The assertion amounts

to the fact that this torsor reduces to the T -torsor defined by some ρ ∈ Y , or that it
just reduces to a T -torsor.

We know that the associated group-scheme GP contains a Borel, since this is
true over A1 and the space of Borels is proper over P1. If we divide the Borel by
its uniponent radical we obtain a torus, isomorphic to the constant torus T . The
choice of a Borel reduces the structur group of P to the standard Borel B ⊂ G,
and by pushout we obtain a T -torsor. This torsor is given by a one parameter group
ρ ∈ Y . We claim that we can chose these data such that α(ρ) ≥ 0 for any positive
root (occuring in the unipotent radical).

Namely it suffices to do this for simple roots. Number these as {α1, ..., αl}, and
denote by εi the dual weights (that is dual weights on the maximal torus of the
semisimple part, and trivial on the connected center). Some multiples of them are
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weights of T , so some power of the associated line-bundle L(εi) is defined on P1,
and we can define its degree ( a rational number) by linearity.

We define an operation which for a simple root αi makes the degree of L(αi)

positive, while not changing the degrees ofL(ε j ) for j �= i. If we reply it repeatedly
as long as some L(αi) has negative degree, we increase in each step the degree
of some L(εi) by a positive integer. However the line-bundle L(2

∑
i εi) is a sub-

bundle of the vectorbundle E associated to the G-representation of highest weight
2

∑
i εi , thus has its degree bounded independantly of our choice of a Borel. Thus

the process must stop.
If for such a simple αi αi(ρ) is negative, we remedy this by change of Borels,

without affecting the other ε j(ρ)’s. Namely in Gad we have a parabolic Pi (as-
sociated to αi ) and a quotient Pα � PGL2. The associated PGL2-torsor is an
Azumaya-algebra of the form End(E) for a vectorbundle E on P1 of rank 2. The
Borel in there corresponds to a quotient line bundle L, and the degree αi(ρ) is the
difference of the degree of the kernel and that of L, that is

αi(ρ) = deg(E) − 2 · deg(L).

If this is negative we write E = O(a) ⊕ O(b) with a ≤ b, and replace L by the
quotientO(a). Its normaliser defines the new Borel in GP . As some power ofL(ε j )

( j �= i) is defined by a character of Pi which is not changed by our operation, its
degree remains the same.

Thus assume that ρ is dominant. Then the unipotent radical of the Borel (in GP)
has a filtration, with successive quotients isomorphic to twisted additive groups,
namely to O(α(ρ)), α running through the positive roots. As these have trivial H1

the same is true for the whole unipotent radical. This means that the fibre over ρ

of the pushforward
H1(P1, B) → H1(P1, T ) = Y

is trivial, and our torsor is indeed defined by ρ.
Similarly one can consider double classes for the subgroups

B− ⊂ L−G,B+ ⊆ L+G

which are the preimages of the Borels B± ⊂ G. Now the double classes are indexed
by Y ∝ W , the semidirect product of Y and the Weyl-group. IfN− ⊂ B− denotes
the preimage of the unipotent radical N− ⊂ B−, then the map

N− × B+ → LG

is an open immersion.
Thus we define the affine flag-variety

XG = LG/B+.

TheN−-orbit trough the origin ∗ is an open subset of XG isomorphic toN−.
For the group H = SLd XH classifies R[[t]]-lattices L ⊂ R((t))d with deter-

minant R[[t]], together with a complete flag in L/t · L:

F0 = t · L ⊂ F1 ⊂ . . . ⊂ Fd = L.
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It admits L+ H- and L− H-equivariant line-bundles Li = detR(Fi)
⊗−1. Further-

more if we choose a complete flag in M = R[t−1]d

G0 = M ⊃ G1 ⊃ . . . ⊃ Gd = t−1 · M,

we obtain global sections

ϑi = det
(
Fi → R((t))d/Gi) ∈ �(XG ,Li).

These are invariant underN−, T acts on them via the inverse of the i-th fundamental
character εi , and they generateLi on the “big cell”N−∗. By pullback via G → H
we obtain such line-bundles and sections also over XG .

3. Geometry of orbits

From now on we assume that G is split, simply connected, semi-simple and simple.
That is G is the Chevalley group associated to an irreducible root system �, and Y
is generated by the coroots Hα, with α running through the simple roots � ⊆ �+.
Unless otherwise mentioned we choose R = Z as basering. Let θ ∈ �+ denote the
highest root.

We denote affine roots by n + α, with the corresponding root-vector tn · Xα in
the Lie-algebra L(g) = g((t)). Such a root is positive if either n > 0, or n = 0
and α ∈ �+, otherwise negative. Thus the Lie-algebra of N− is generated by
root-vectors belonging to negative roots. Also number the simple roots of G as
� = {α1, . . . , αl}, and denote by α0 = 1 − θ the remaining affine simple root. For
each affine simple root we have an associated inclusion SL2 ⊂ LG which factors
over a parabolic (or “parahoric”?) group Pi ⊂ LG. that is Pi contains the Borel
B+. We denote by U+

i ⊂ B+ the corresponding unipotent subgroup (∼= Ga), by
U−

i ⊂ N− its opposite. By conjugation with Waff we obtain an Uα for any affine
root α.

The affine Weyl-group Waff is a Coxeter group generated by the reflections
{si | 0 ≤ i ≤ l}. For each w ∈ Waff its length l(w) is the minimal number of factors
in a product of si ’s representing w. Any such product realising the minimum is
called a reduced decomposition of w.

The Bruhat-order on Waff is defined as follows: Suppose w = s1 · s2 · · · sr is
a reduced decomposition. Then the elements w′ ≤ w are obtained by replacing
some factors by 1 (after that one has to remove further pairs of factors to get
a minimal representation). It is known that this is independant of the choice of
reduced decomposition.

Now for a moment we work over an algebraically closed field k. It is known
that Waff parametrises the double classes of B+ in LG (Bruhat decomposition),
that is the B+-orbits in XG . We have seen that the same holds for N−-orbits. If
we order orbits by inclusions of closures, this order will be the Bruhat-ordering
respectively its inverse. To prove this we need some preparation:

Definition 5 For w ∈ Waff the Schubert-variety C(w) ⊂ XG is the closure of
B+w∗.
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To describe C(w) recall that for each reduced decomposition w = s1 · s2 · · · sr we
obtain a B+-equivariant (Demazure) resolution

D(w) → C(w)

(The notation does not quite reflect the complexity of the situation). It is defined as

D(w) = P1 ×B+
P2 ×B+ · · · ×B+

Pr/B.

Here “×B+
” denotes the contraction. If w = w1 · si then D(w) is a fiber-bundle

over D(w1) with fibre Pi/B+ = P1. Thus by induction it is smooth, proper, and
irreducible. We usually define subschemes of D(w), or more generally schemes
mapping to D(w), by giving conditions on the “factors” (which lie in Pi).

Also D(w) has a stratification where closed strata are defined by requiring that
the some factors lie in B+. The image in XG of such a closed stratum contains
the element w′ ∈ Waff which is the product of the remaining si ’s. Also from the
theory of Tits-systems (see for example [11, II]) one knows that only such elements
of Waff can lie in the image. The open stratum maps isomorphically onto B+w∗.
From this follows the assertion about the ordering on B+-orbits, as well as the
independance of the Bruhat-order from the choice of reduced decomposition.

To go further we need some notation: For an element w ∈ Waff define subgroups
N−

w ⊆ N−, N+
w ⊆ N+ as

N−
w = N− ∩ wN−w−1,

N+
w = N+ ∩ wN−w−1.

One easily shows that

N− ∼= N−
w ×

∏
Uα,

where the product is over the negative affine roots α for which w−1(α) is positive.
Also N+

w is the product of the their w-conjugates w−1Uαw.
For example choose a strictly dominant one-parametergroup ρ ∈ Y , and choose

a very large positive constant c. This defines a linear form on affine roots by the rule

l(α) = l((m + β)) = m · c + β(ρ).

Thus α is positive iff l(α) is. NowN− is obtained fromN−
w by adding affine roots

α with l(α) < 0, l(w−1(α)) > 0. Order these by the value l(α), and multiply from
the right (with Uα) in that order.

For later use we also need the subgroup N−(n) ⊂ N− whose R-points are
elements in L−G(R) = G(R[t−1]) which lie modulo t−n in L−T . Here n should
be big enough so thatN−(n) ⊆ N−

w . One then finds again

N−
w

∼= N−(n) ×
∏

U−
α ,

where the product is over the negative affine roots α = (−m + β) which occur in
N−

w but not inN−(n).
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Also one checks that

wN−∗ ∼= N−
w ×N+

w w ∗ .

Next we claim that the closure of an N−-orbit N−w′∗ meets C(w) iff it
contains w iff w ≥ w′:

Firstly if w ≥ w′ consider the the first factor si missing in w′. Consider the
affine line in D(w) which is U−

i in the corresponding factor, and which has the
same coordinates as W ′ in all other positions. This maps to the N−-orbit through
w′∗ and contains a bigger w′′ ≤ w in its closure. Continue by induction.

Conversely assume the Bruhat cell C(w) meets theN−-orbit through w′. There
exists a Gm-action on XG which contracts N− and fixes all w∗: It is the product
of a strictly dominant one-parameter group ρ : Gm → G, and a power of the
Gm-action on LG which scales t (Virasoro-action via L0), as in the linear form l
used above. On the one hand this action respects the Bruhat-cell C(w), on the other
the limit of an element in N−w′∗ is w′. Thus w′ ≤ w, which is already close to
the converse.

To derive this converse completely assume that C(w) meets the closure of the
N−-orbit through w′∗. We may replace w by a smaller element and assume that
the closure meets B+w∗. However this is contained in the openN−-invariant set

N−wN−∗ = N−N+
w w∗ = N−B+w∗,

which must contain w′, and we already know that this means w′ ≤ w.
Finally this result implies that the order on N−-orbits is indeed the inverse

Bruhat-order.
Next choose a finite set of w ∈ Waff. We assume that it contains with each w

also any w′ ≤ w. This implies that the set

� =
⋃

wN−∗ ⊂ XG

is open and N−-stable. We can chose an integer n such that for each chosen w

and each negative affine root α = (−m + β) (β ∈ �) with m ≥ n w−1(α) is also
negative, that isN−(n) ⊆ N−

w .
Then

Lemma 6 There exists an open covering of � by N−(n)-invariant open subsets
equivariantly isomorphic to

N−(n) × Ar .

Especially the quotient
N−(n)\�

exists, is smooth, and covered by affine spaces.

Proof We have

wN−∗ ∼= N−
w ·N+

w w∗ ∼= N−(n) ×Aa × Ab.
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What this lemma tells us is that ourXG behaves very much like usual flag varieties.
To wit:

Theorem 7 • Choose �,N−(n) as before. TheN−-orbits in � are pullbacks of
locally closed subschemes of N−(n)\� isomorphic to affine spaces.

• These orbits are parametrised by the chosen set of w’s. The codimension of
the w-orbit is l(w). Especially the orbits of codimension one correspond to
the elementary reflections si . Call the corresponding orbit �i .

• There exist on XG line bundles Li (0 ≤ i ≤ l). These are equivariant under
L+G and L−G. They have a global section ϑi invariant under N−, with
divisor �i , and transforming under T with the inverse of the fundamental
character εi (1 ≤ i ≤ l) respectively trivially (i = 0).

• For each i consider the embedding

P
1 = Pi/B

+ → XG .

The degree of the pullback of Li to it is 1 if i = j , 0 else.

Proof The images in N−(n)\� of orbits are isomorphic to N−(n)\wN−
w , thus

affine spaces of codimension l(w). Furthermore the N−-action on � is described
by the groupoid

N− × � → � × �.

Dividing byN−(n) gives the smooth groupoid

N−(n)\N− ×N−(n) � → N−(n)\� ×N−(n)\�.

As the orbits are stable under it so are their closures, and they define line-bundles
Li with sections ϑi equivariant with respect to the groupoid. That means we get
N−-equivariant such objects on �. As � can be made arbitrarily big we obtain
them on all of XG .

To compute the degree of Li on the j-th P1, we first note that for i �= j the
projective line does not meet �i , so the degree is zero. For i = j the intersection
is transversal and the result is 1:

Let P1 ⊂ XG denote the projective line corresponding to SLi . To compute the
intersection multiplicity with �i can use the open set

� = N− · P1 ∼= N−
si

× P1.

Then �i = N−
si

× {∞} has degree 1.
For equivariance under L+G we use thatXG is the inductive limit of Schubert-

cells C(w) which are flat, geometrically normal, and irreducible over Z and have a
B+-equivariant resolution D(w) → C(w). Especially over each field k

�(C(w) ⊗ k,O) = �(D(w) ⊗ k,O) = k.

This is shown in the next section, of course without making use of our present
theorem. Furthermore one knows that line-bundles on D(w) are characterised by
their degrees on certain B+-invariant lines P1. By direct image this also holds
for line-bundles on C(w), and the lines in question are the P1’s corresponding to
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simple affine roots α̃i with si ≤ w (see [11, Ch. 12, Prop. 6]). Thus a line-bundle
on C(w) is uniquely determined by the degree of its restriction to these lines.

A cofinal system of C(w)’s is G-invariant and thus L+G-invariant. As the
degrees on lines P1 must be invariant (L+G is connected) any line-bundle on these
C(w) is equivariant under a central extension of L+G and thus (uniquely) under
L+G as G is simply connected. Passing to the inductive limit it follows that any
line-bundle on XG is L+G-equivariant.

Finally the actions of G and N− on Li must coincide on the intersection N−
because they can only differ by a character which must be trivial on that unipotent
group. Thus equivariance under L−G.

Remark. In fact these actions are induced from that of a central Gm-extension
L̃G of LG. This follows because L+(G) and L−(G) generate LG (as sheaf in
the Zariski-topology), and because over each algebraically closed field k all global
sections �(XG ⊗ k,O) = k are constant. Also note that equivariance is already
known for the line-bundles obtained by pullback via representations G → H =
SLd (which will generate a subgroup of finite index in the Picard-group).

Remark. An alternative construction of the Li uses that the stack L−G\XG is
the moduli stack of G-bundles on P1, and the construction of line-bundles on this
moduli-stack, which however is not necessarily easier than our geometric approach.

Also for the construction of the Li we could have replaced the groupsN−(n)

by the congruence subgroups of L−G, that is those elements which are the identity
modulo t−n .

4. Normality of Schubert-varieties

The main result is

Theorem 8 Each C(w) is normal, Cohen-Macaulay, and has rational singulari-
ties. Also they form an ind-scheme (using the Bruhat order) isomorphic to XG.

Remark. In characteristic zero this is completely shown in [8]. We review these
facts below after first establishing some properties of the Schubert-cells.

In positive characteristics most of it is in [11, Ch. 18]. However as I could
not quite follow the proof of Lemma 134 (perhaps because of deficiencies in
my French), I repeat the arguments. Note that in [11] there is no problem about
normality of Schubert cells because the flag variety itself is defined as the inductive
limit of normalised Schubert cells (in our terminology) C̃(w). What is new here is
that C(w) itself is normal. Also Littelmann gives a representation-theoretic proof
for normality. It is a little bit difficult to decide which definition of “Schubert-cell”
he uses, but it seems to be ours.

Begin of Proof. We assume that k has positive characteristics p > 0. By [11,
Lemma 135] the variety D(w) is Frobenius-split, compatible with the inclusions
D(w′) ⊂ D(w) for w′ < w: Namely the splitting is given by a global section of the



Algebraic loop groups and moduli spaces of bundles 51

(p −1)-st power of the determinant of the logarithmic tangent bundle (vectorfields
tangential to the boundary). However this determinant is the pullback of a line-
bundle on XG which is just the product of all Li . As this product is generated near
the origin by the product of θi’s we get a splitting.

Denote by C̃(w) the normalisation of C(w), so that πw : D(w) → C(w) factors
as

D(w) → C̃(w) → C(w).

The first map is a Stein-map, the second finite and birational. Furthermore the
inclusions D(w′) ⊂ D(w) for w′ < w define maps C̃(w′) → C̃(w).

We have the following result, combining Lemmas 32, 136, and Assertion 6 in
Th. 5. of [11]:

Lemma 9 a) All higher direct images Riπw,∗(OD(w)) vanish, and the fibres of πw

are geometrically connected.
b) The normalisation C̃(w) → C(w) is a universal homeomorphism.
c) For w′ < w the map

C̃(w′) → C̃(w)

is a closed immersion.

Proof Use induction over l(w). If w = si ·w′ with l(w′) = l(w)− 1 we can factor
πw as

D(w) = Pi ×B D(w′) → Pi ×B C(w′) → C(w).

The first map satisfies a) by induction. For the second consider the reducedPi-stable
subscheme

Z =
⋃

C(w′′) ⊂ C(w′) ⊂ C(w),

where the union is over all w′′ < w′ with l(si · w′′) < l(w′′). Then our map is
a stratawise isomorphism (thus a universal homeomorphism) over C(w)− Z . Over
a point in z ∈ Z the fibre is isomorphic to P1.

This already implies geometric connectedness, which in turn trivially implies b).
For c) then note that the maps C̃(w′′) → C̃(w) are universally injective. As C̃(w′)
and its image are compatibly Frobenius-split they must be closed immersions
(the extension of function-fields is purely inseparable, thus trivial because of the
splitting).

Finally for the direct images of πw we now factor it as

D(w) = Pi ×B D(w′) → Pi ×B C̃(w′) → C̃(w),

and denote by Z̃ ⊂ C̃(w′) the reduced subscheme which is the union of all C̃(w′′),
for w′′ < w′ and l(si · w′′) = l(w′′) − 1. Then the map is isomorphic over the
complement of Z̃, while for any z ∈ Z̃ the fiber is isomorphic to P1, as a scheme.
To check that the higher direct images are trivial in such a z it suffices by the
comparison theorem for proper maps that the formal completion of Pi ×B C̃(w′)
along the fibre P1 has trivial cohomology. However this follows easily from the
fact that globally generated sheaves on P1 have trivial higher cohomology.

As remarked in [11, Th. 5] the proof of Ramanathan in [13] carries over, so also
all higher Rπ i

w,∗(ωD(w)) vanish,and C̃(w) is Cohen-Macaulay. Also we obtain flat



52 Gerd Faltings

models for the C̃(w) over the integersZ: Namely obviously the D(w) are naturally
defined as smooth projective schemes overZ. Although we do yet not know thatXG
is flat over Z, nevertheless we may define C̃(w) as the affine scheme over it whose
algebra is πw,∗(OD(w)). The vanishing of higher direct images implies that this is
flat over Z and commutes with base-change. Also for w′ ≤ w C̃(w′) is a closed
subscheme of C̃(w), and the C̃(w)’s (indexed by Waff with its Bruhat-order) form
an ind-scheme C̃G mapping to XG . Also for each simple affine roots αi there is
a cofinal set of w’s with C(w) stable under the corresponding SL2, that is with
l(si · w) = l(w) − 1. It follows that the corresponding SL2 also operates on C̃G .

We shall finish the proof of the theorem by showing that it is a closed subscheme
of XG . We already know that this holds in characteristic zero, by [8]. As his
definition of Schubert-varieties is also a little bit complicated we repeat his basic
argument here:

Choose a line-bundle L on XG which is equivariant under a central extension
of LG and has positive degree on each line P1 corresponding to a simple affine
root. Such an L can be obtained by pullback via an embedding G ⊆ SLd . Form
(over the base Q) the inductive limits

E(L) = Lim→ �(C(w),L)dual

and
Ẽ(L) = Lim→ �(C̃(w),L)dual.

These are both integrable modules (over the Lie-algebra) with a highest weight
vector of multiplicity one. Thus they are irreducible and coincide, so (by duality)
L(λ̃) has the same global section over XG as over the inductive limit of all C̃(w).
As the transition maps are surjective for the latter it follows that also for each
individual w the global sections of L over C(w) and C̃(w) coincide. As L can be
chosen such that is very ample on C(w) the assertion follows.

Also for each n the multiplication of sections defines a homomorphism

E(L⊗n) → E(L)⊗n,

which is injective because of irreducibility. It follows that for each w �(C(w),L)⊗n

surjects onto �(C(w),L⊗n). As for big n the latter space defines a projective em-
bedding this holds true already for �(C(w),L), and the global sections �(XG,L)

(equal to the dual of E(L)) define a projective embedding of XG . Thus our XG
coincides with the one defined in [8] via such a projective embedding. This finishes
our excursion into characteristic zero.

For the general case consider the formal completion N̂− of N−. It is the ind-
scheme whose R-valued points are elements of G(R[t−1]) which are ≡ 1 modulo
a nilpotent ideal of R, and whose constant term lies in N−. It is defined over the
integers Z. We claim that it is indrepresented by a power-series ring R = Z[[ui]]
in infinitely many variables {u j |i = 1, 2, . . . }. That is if we call ideal J ⊂ R open
if it contains almost all of the {u j}, and some power of the remaining ones, thenR
represents the ind-scheme

Lim→ Spec(R/J ).
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Lemma 10 a) N̂− is indrepresented by a ring of formal power-series.
b) For any g ∈ N̂−(R) the image of g in LG(R) lies in the subgroup generated

by the images of elements of SL2(R), under the maps SL2 → LG associated to
the simple affine roots.

Proof Assertion a) follows easily from the fact that N̂− is the product of the
completions of L−−T and of formal additive groups associated to negative affine
roots. For b) the subgroup of LG(R) generated by the images of SL2(R) contains
the affine Weyl-group and thus all the additive groups Uα(R) corresponding to
affine roots. Also L−−T(R) is generated by the images of one-parameter groups
Hα, hence we can reduce to G = SL2. There everything comes down to the famous
all important formula (u a unit)

(
u 0
0 u−1

)
=

(
1 u
0 1

)(
1 0

−u−1 1

)(
1 u
0 1

)(
0 −1
1 0

)
.

Now finally we can finish the proof of the theorem. Consider a torsion-free
Z-algebra R and an element g ∈ N̂−(R), or equivalently its image
z = g∗ ∈ XG(R). As g lies in the subgroup of LG generated by SL2(R)’s
and as these operate on C̃G , z lifts to a point z̃ ∈ C̃G(R), that is to a z̃ ∈ C̃(w̃).
As C̃(w̃) → C(w̃) is a universal homeomorphism this point also lies in the formal
completion at the origin. Equivalently, if we denote byA the topologicalZ-algebra
which is the projective limit (with surjective transition maps) of the formal comple-
tions A of the local rings of C̃(w) at the origin, the mapR→ R lifts to a continuous
A→ R. Furthermore this lift is unique, as R is torsion-free and C̃(w)Q → C(w)Q
is an isomorphism. Thus in the limit the natural map R → A admits a section
A→ R.

We claim that the composition A→ R→ A is equal to the identity as well.
For this denote by A the ring of the completion of some C̃(w). Lifting the origin to
a Z-valued point of D(w) defines an injection A ⊆ B, with B the ring of the formal
completion at the lift which is a ring of formal powerseries overZ. Now it suffices if
the two endomorphisms ofA become equal after composingA→ A → B → Bn ,
where Bn is the quotient of B modulo some power of its defining ideal. However
these two compositions correspond to Bn-valued points of C̃(w) which become
equal in C(w). But then they are actually equal, as Bn is torsion-free and the map
C̃(w)Q → C(w)Q is an isomorphism.

We derive that R ∼= A, and that the normalisation C̃(w) → C(w) is an
isomorphism near the origin, because it induces a surjection on completed local
rings.

Finally over any algebraically closed field k the locus where C(w) is not normal
is Zariski-closed and stable under B+. If it is non-empty it must contain a B+-
fixedpoint, which must be ∗.

Remark. The result implies normality of Schubert-varieties also in incomplete
flag-varieties, like DG . Namely their preimage in XG is also a Schubert-variety.

Corollary 11 The closed immersion C̃G ⊆ XG is an isomorphism.
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Proof We must show that for any finitely generated Z-algebra R any element
x ∈ XG(R) lies in some C(w)(R). Equivalently pullback by x gives decreasing
sequence of ideals Iw ⊂ R, and we must show that some Iw = (0).

We show this for any noetherian ring R. The annihilators of the ideals Iw form
an increasing sequence which stabilises. If they stabilise to a proper ideal localise
in a minimal prime over it. So we may assume that R is local, and the Iw are
modules of finite length, for large w. Then they must also stabilise to a non-zero
subideal of finite length. Dividing by a suitable power of the maximal ideal m we
then can assume that R is artinian.

Now we use that C̃G is invariant under SL2’s. If k = R/m denotes the residue-
field the induced x(k) ∈ XG(k) lies in the orbit of the origin ∗, under the group
generated by SL2(k)’s. Elements of this group lift to SL2(R), so we may assume
that x(k) = ∗. But then we have seen in the proof of the previous lemma that the
group generated by SL2(R)’s transforms x into the origin ∗.

Corollary 12 The Picard-group of rigidified line-bundles on XG is (over any
connected base) isomorphic to Zl+1, with the isomorphism defined by degrees on
the lines P1 corresponding to simple affine roots. The Picard-group of DG is Z.

Proof The degree-map is surjective (by Theorem 7). IfL has trivial degree on each
P

1 its pullback to each D(w) is trivial, as D(w) is a successive P1-fibration and
elements of its Picard-group are determined by their degrees on fibres. It follows
that L is trivial on each C(w) and also on XG .

The assertion for DG follows by pullback.
Another application is the construction of integrable representations. Namely

consider an “ample” line-bundle L on XG (the restriction to each C(w) is ample),
that is L is the tensor product of strictly positive powers of the fundamental Li .
Then by Frobenius-splitting in characteristic p for w′ ≤ w the restriction map
�(C(w),L) → �(C(w′),L) is surjective, that these modules are torsion-free, and
that all higher cohomology vanishes. We then form the module (with discrete
topology)

E(L) = Lim→ �(C(w),L)dual.

It is an inductive limit of finite free Z-modules, with split injective transition maps,
and a suitable central extension L̃G of LG will act on it. Also it admits a canonical
B+-eigenvector e(L), the “highest weight” vector, given by evaluation at ∗. It
generates E(L) as module over the L̃G. More precisely each �(C(w),L)dual

is generated over Z by B+w · e(L) (as B+w · ∗ is dense in C(w)). The dual
�(X̃G,L(λ̃)) is the projective limit of free Z-modules, with surjective transition
maps. It is naturally a topological module, and E(λ̃) is its continuous dual. Finally
the ϑ’s define anN−-invariant element of the dual, which takes the value 1 on e(L).

Some more details: The class of the central extension associated to L is linear
in L, and trivial if L is defined by a character of B+ (induced from a character
of T ). It follows that there exists one central extension

Gm → L̃G → LG
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which operates on all L’s. The preimage of T in it is a torus T̃ of dimension
l + 1, and the one-parameter group H1,−θ + Hθ defines an isomorphism between
Gm and the kernel of T̃ → T . Thus T̃ is the product of one-parameter sub-
groups corresponding to simple affine roots, theL’s are parametrised by characters
λ̃ : T̃ → Gm , and for each simple affine root α λ̃(Hα) is the degree of L(λ̃) on
the associated P1 ⊂ XG . For dominant λ̃ (that is λ̃(Hα) ≥ 0 for each affine sim-
ple α) the cohomology Hi(XG ,L(λ̃)) vanishes in positive degrees, while in degree
0 we obtain the dual of the integrable module E(L(λ̃)) = E(λ̃). E(λ̃) contains
a canonical B̃+-eigenvector e(λ̃) of T̃ -weight λ̃, which generates it as L̃G-module.
Furthermore LG, L̃G,XG and allL(λ̃) admit aGm-action. A unit u acts by sending
t to u · t. This action is expanding on L−G, so it follows that the global sections
�(XG ,L(λ̃)) have all weights ≥ 0, und dually E(λ̃) has weights ≤ 0 (the dual is the
product of itsGm-eigenspaces). Furthermore the elements of weight 0 are the global
sections �(G/B+,L(λ)), respectively their duals. Finally for affine roots (n+α) the
L0-weight is n. Thus it is natural to speak of extended affine weights (n + λ̃). These
additional gradings should not be confused with those defined by the kernelGm of
L̃G → LG: These are on E(λ̃) always equal to c, and on its dual to −c.

We denote these weights L0-weights, since our Gm will appear as a subgroup
of the Virasoro-group. Each L0-weight in E(λ̃) has finite multiplicity, that is the
eigenspace is a finite free Z-module. Dually �(XG ,L(λ̃)) is the product of their
duals, and has the product topology. It is naturally a topological module which
is the projective limit of discrete finitely generated free modules. Similarly after
base-extension to an arbitrary ground-ring R. Note that the construction of E(λ̃)

commutes with basechange, while for the dual we need to use the completed
tensorproduct. It is precisely to avoid such topological difficulties that we prefer to
use E(λ̃).

Finally we return to loop-groups.

Proposition 13 E(λ̃) contains a maximal proper submodule, with irreducible
quotient F(λ̃). The image f(λ̃) of e(λ̃) is the unique non-trivial B+-eigenvector in
F(λ̃), and it generates it asN−-module.

Also the L̃G-submodule of �(XG,L(λ̃)) generated by ϑ(λ̃) is topologically
irreducible, and already generated by the B+-transforms of ϑ(λ̃). It is the dual
of F(λ̃).

Proof e(λ̃) is the only T̃ -eigenvector of conformal weight 0 in E(λ̃). Thus ony
L̃G-submodule of not containing it is annihilated by ϑ(λ̃). Hence the perpendicular
of the closed subspace generated by ϑ(λ̃) is the maximal submodule not containing
e(λ̃). In the quotient F(λ̃) any non-trivial submodule contains f(λ̃), and thus must
coincide with F(λ̃) as f(λ̃) is a generator.

Now the L̃G-submodule generated by anotherB+-eigenvector f �= 0 coincides
with the N−-submodule generated by it: Namely for any linear form v in the
dual the function v(g( f )) defines an element of �(XG,L(λ̃)) (λ̃ the associated
character). This vanishes identically if it vanishes on the dense orbit N− · ∗. By
irreducibility this must be all of F(λ̃), and by considering weights it follows that f
must coincide with f(λ̃).
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Finally the dual of F(λ̃) is topologically irreducible, thus generated by ϑ(λ̃).
Also since this element isN−-invariant the dual is already topologically generated
by its B+-transforms, by a similar reasoning to the above.

5. Virasoro-action

We define the Virasoro-group Vir as a central extension of the ind-groupscheme
Aut of automorphisms of the punctured formel disk. For each R Aut(R) is the set
of continuous R-automorphisms of R((t)). Such an automorphism φ is determined
by φ(t), which must be a Laurent-series

φ(t) =
∑

an · tn,

with a1 invertible, an nilpotent for n ≤ 0, and almost all an with negative index n
vanish. It is obvious that this is representable by an affine ind-scheme.

The subgroup Aut+ ⊂ Aut is the subgroup of automorphisms of R[[t]] re-
specting the ideal (t). It is the subscheme defined by an = 0 for n ≤ 0, and is
an honest scheme, the product of Gm and an infinite number of copies of A1. It
contains as subgroup the Borel BV ⊂ PGL2 of automorphisms of P1 respecting
{∞} (Recall that t is a local coordinate at ∞). Although we make no use of it this
is the place to mention the subgroup P̂GL2 ⊂ Aut (an ind-scheme), the formal
completion of PGL2 along BV .

Another important subgroup Aut− ⊂ Aut is the group of automorphisms of
the affine line P1 − {∞} respecting {0}. Such an automorphism φ sends t−1 to
a finite sum

φ(t−1) =
∑

n≥1

bn · t−n,

with b1 invertible, bn nilpotent for n ≥ 2, and almost all of them = 0. It is
the semidirect product of Gm (giving L0-weights) and the normal subgroup de-
fined by b1 = 1. The latter is a formal group, ind-represented by a powerseries-
ring in infinitely many variables. In terms of the coordinates an it is defined by
a1 = 1, an = 0 for n ≥ 2. Finally

Aut = Aut− ·Aut+,

and
Aut− ∩Aut+ = Gm .

Obviously Aut acts (by change of variables) on LG, fixing G. Also Aut±
respects B±. The main result of this section is that this action extends to an action
on L̃G, and to a projective action on each irreducible integrable module F(λ̃). The
corresponding central extension of Aut will be called Vir (Virasoro-group).

Theorem 14 a) Aut+ acts on E(λ̃) such that the action fixes the highest weight-
vector e(λ̃), and intertwines the original with the conjugated B+-action.

b) Aut− acts on the closed submodule of �(XG,L(λ̃)) generated by the theta-
function θ(λ̃), and intertwines the original with the conjugated B−-action.
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c) These two actions coincide on Gm. Furthermore, over an algebraically closed
field k, they they induce a projective action of Aut on F(λ̃) which intertwines
the action of L̃G with a conjugate action.

Proof We already know the action of the groupGm fixing e(λ̃) and ϑ(λ̃).
For the rest of the proof we use that all these facts are already known in

characteristic 0, thanks to the Suguwara-construction ([7, Ex. 18.8], [16, Lemma
1.2.2.]): This gives in characteristic 0 an action of the Lie-algebra of a central
extension of Aut on the integrable modules and thus on XG . However apart from
the L0-factor Gm Aut± is prounipotent, respectively a formal group, and the
actions integrate (for Aut+ one also needs that L0-weights are bounded above).
Note however that we have normalised in such a way that e(λ̃) becomes L0-
invariant, which does not hold for the Sugawara-formula. The two actions differ
by chosing different lifts of Aut± into the central extension Vir.

Also Aut±is flat over Z, that is is an inductive limit of affines Spec(R) with R
torsion-free. It then suffices to construct functorial actions ofAut±(R) on E(λ̃)⊗R,
respectively the closed subspace of sections generated by ϑ(λ̃), for such torsion-free
rings R.

To prove a) use that (R torsion-free) the action of Aut+(R) on E(λ̃) ⊗ RQ
respects E(λ̃) ⊗ R, because it is generated by L̃G · e(λ̃).

For b) use the “dual” argument with ϑ(λ̃).
Finally for c) we may assume that k has characteristic p > 0. Then the action

of Aut+ on E(λ̃) stabilises e(λ̃) and must respect the unique irreducible quotient
F(λ̃). Its dual is the unique irreducible quotient of the subspace of �(XG,L(λ̃))

generated by ϑ(λ̃), and is respected by Aut−. As both actions coincide on the
intersection we obtain a map from Aut = Aut+ · Aut− into the automorphisms
of F(λ̃), which intertwines the L̃G-action with its conjugate. By irreducibility this
defines a projective representation ofAut, or a representation of a central extension
(which splits as a map of schemes) Vir → Aut.

Remarks. a) One can construct Vir-stable lattices in E(λ̃)Q, for example the
Aut−-span of E(λ̃).

b) TheAut+-action can also be defined via its geometric action on XG . It follows
that it respects the comultiplication-map

E(λ̃ + µ̃) → E(λ̃) ⊗ E(µ̃),

dual to multiplication on global sections. Also for weights λ̃ with λ = 0 (that
is parametrised by the central charge c) the geometric action of P̂GL2 on DG
defines an action on E(λ̃).

6. Moduli-stacks of G-bundles

For the beginning G can be again an arbitrary reductive connected group-scheme,
but at the end we shall restrict to simple, semisimple, and simply connected G’s.
Suppose C → S is a smooth projective curve, with geometrically irreducible fibres
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of constant genus g. The moduli-stackMG classifies principal G-bundles P on
base-changes C ×S S′.

It is shown in [5] (Th. 1) that one can find a Borel B ⊂ GP . Thus the structure-
group reduces to B ⊂ G, and we call B “generic” if for each simple positive root α

the associated line-bundleL(−α) is generated by its global sections and has trivial
first cohomology. For example this holds if deg(L(α)) ≤ −2g. That there exists a
“generic” Borel follows also from [5].

Remark. If GP contains a Borel after basechange S′ → S, it defines a classifying
map

S′ ×S C → (G/B)P.

This map is smooth if S′ is the classifying space of “generic” Borel’s, by infinites-
imal calculations as in [5] (Lie(GP)/Lie(B) is globally generated).

Now assume that C → S has a section. We denote its image by {∞} ⊂ C, and
let C0 = C − {∞} denote the complement.

Proposition 15 Suppose G is semisimple. For any G-torsor P on C, there exists
a flat finitely presented covering S′ � S such that the pullback of P to C0 ×S S′ is
trivial. Moreover if G is simply connected we may use an étale covering.

Proof See [5] (Th. 3).

As an application note that the sections of G over C0 ×S S′ are representable
by an ind-group-scheme RC0/S(G) (Weil-restriction). That one obtains an ind-
groupscheme is an easy generalisation of the discussion after Definition 1. RC0/S(G)

is the inductive limit of its closed subschemes where one restricts the pole-order at
infinity of an element of G and of its inverse.

Also suppose we have chosen an isomorphism between the formal completion
of C along {∞} and Spf(OS[[t]]). This is possible locally in the Zariski-topology
of S. Recall thatMG denotes the algebraic ind-stack of principal G-torsors on C
(in either flat, smooth or étale topology).

Corollary 16 Suppose G is semisimple. ThenMG = RC0/S(G)\DG . More pre-
ciselyDG is an RC0/S(G)-torsor overMG, in the flat topology (étale if G is simply
connected).

Proof We show that DG represents the functor “G-bundles trivialised on C0”.
Firstly if we have a trivialised G-bundle P we can (flat locally) trivialise its

restriction to {∞} and also Spf(OS[[t]]). Then we obtain by projective limits also
a trivialisation on the pullback to Spec(OS[[t]]), and on Spec(OS((t))) the two
trivialisations differ by an element of g ∈ LG(OS), so that g · ∗ ∈ DG(OS) is
welldefined.

Conversely any point inDG = LG/L+G lifts Zariski-locally to g ∈ LG. This
g defines a G-torsor on C, by gluing the trivial torsors on C0 and Spec(OS[[t]]).
For example for G-module E (over Z) we obtain an associated sheaf EG such
that EG |C0 = E ⊗ O, and for an affine neighbourhood U of {∞} a section
e ∈ �(U ∩ C0, EG ) extends to all of U iff g−1 · e ∈ E[[t]]. (That this gluing
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works is easily seen for noetherian rings, which suffices for us since everything
can be defined over finitely generated Z-algebras, and DG is the inductive limit
of schemes of finite type over Z. For non-Noetherian bases this is still true, but
requires more thought. See [1], [2] for details)

For G = GLd this suffices to construct a torsor. In general we have defined
a tensor-functor from finitely generated torsion-freeZ-G-modules to vectorbundles
on C, and extends by inductive limit to all torsion-free G-modules. Especially for
a closed embedding G ⊆ H = GLd the ideal defining G in OH is stable under G
acting by left translations. Thus in the H-torsor PH (with right H-action) it defines
a closed subscheme PG ⊆ PH , stable under G-multiplication from the right. One
checks that it is faithfully flat and a G-torsor, and that it defines the tensorfunctor.
Thus our inverse map.

7. Linebundles onMG

In this section S denotes a noetherian base-scheme, C → S a smooth projective
geometrically connected curve, with a section {∞}, and G a semisimple simply
connected split groupscheme. We want to compute the group of linebundles L on
MG which are rigidified, that is trivialised over the origin (which corresponds
to the trivial torsor). By the previous this is the same as RC0/S(G)-equivariant
linebundles on DG , trivialised at the origin. These have as obvious invariant their
central charge, that is the degree on the projective line P1 ⊂ DG corresponding to
the affine root α0 = 1 − θ . We claim that the central charge classifies linebundles:

Theorem 17 Suppose S is a connected noetherian base-scheme. Then the central
charge defines an isomorphism from the group of rigidified linebundles on MG

to Z.

Remarks. a) In characteristic zero this has been shown by C. Sorger ([14]), fol-
lowing [10], [3]. Because of uniqueness his line-bundles must coincide with
ours. Alternatively once the line-bundles are known to exist the arguments of
[6] prove (in characteristic zero) the Verlinde-formula for them, so their global
sections coincide with the spaces of conformal blocks. As Sorger’s construction
starts from these he gets the same bundles as we do.

b) It would be nice to remove the hypotheses “noetherian”.
c) For any representation E of G one obtains an L as determinant of cohomology.

Its central charge can be computed as c = trE(H2
θ )/2. Also if E is orthogonal it

has a square-root, the “Pfaffian”. These suffice to construct all central charges
for classical groups and for G2. However for E8 there remains a factor 30.

Proof We first construct a linebundle with central charge 1. Denote by
{α1, . . . , αl} the simple roots of G (semisimple, simple, and simply connected).
We choose an invariant product on the cocharacters of the maximal torus T such
that

< Hαi , Hαi >= 2 · ai,

with ai = 1 for long roots αi , and ai = 2 or ai = 3 for short roots. Also we
define a symmetric matrix ai j =< Hαi , Hα j >. If w0 ∈ W denotes the longest
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element in the Weyl-group, we define an involution on simple roots by the rule
αi∗ = −w0(αi).

Next we need some geometry on the space X = G/B, B = T · N+ the
Borel formed with the positive roots. On X we have canonical G-equivariant
line-bundles L(λ) corresponding to weights λ : T → Gm . The space of global
sections �(X,L(λ)) is identified with the space of regular functions f on G
satisfying f(g · b) = λ(b) · f(g). Evaluation at the origin defines a linear form lλ
on �(X,L(λ), which is a B-eigenvector (in the dual) of weight λ. Also it contains
a highest weight-vector vλ of weight −w0(λ), normalised so that lλ(w0(vλ)) = 1.
Denote its zero-divisor by V(vλ). Especially important are the fundamental weights
εi with εi(Hα j ) = δi j .

Next consider the product X × X, with the diagonal action of G. The G-orbits
in it are indexed by the Weyl-group. The function

di(g1, g2) = lεi

(
g−1

2 g1(vεi )
)

defines a G-invariant global section

di ∈ �(X × X,L(εi∗ , εi)).

We denote its divisor by Di ⊂ X × X. It is the closure of the G-orbit through
(w0, si). Furthermore if W�=i ⊂ W denotes the subgroup generated by reflections
s j with j �= i, di takes the value 1 on (w0, W�=i).

Next we define a G-invariant section

ei ∈ �(Di ,L(εi∗ , εi − αi))

by the function
ei(g1, g2) = lεi

(
si g

−1
2 g1(vεi )

)
.

(one checks without much difficulty that this is well-defined on Di ). It is normalised
by the rule ei(w0, W�=i · si) = 1. Note that

εi − αi = −εi −
∑

j �=i

αi(Hα j ) · ε j .

Similarly we can define

ẽi ∈ �(Di ,L(εi∗ − αi∗ , εi ))

by
ẽi(g1, g2) = lεi

(
g−1

2 g1si∗ (vεi )
)
,

and ẽi(w0, si · W�=i) = 1. Finally one has the following equality (both sides are
G-invariant and coincide on (w0, si)):

(ei · ẽi)
ai =

∏

j �=i

(s j |Di)
−ai j ,

as section of ⊗

i �= j

L(ε j∗, ε j )
−ai j .
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The divisor of ei is contained in the union of the closures of the G-orbits through
(w0, sis j), where j �= i and si and s j do not commute (These are the only possible
codimension-2 orbits in Di not excluded by the previous). Similarly for ẽi we get the
orbits through (w0, s j si). From the equation above one sees that the multiplicities
of these orbits are equal to −ai j/ai times the multiplicities in Di ∩ D j .

Finally we shall need a T -invariant deformation. Consider the strictly dominant
one-parameter group ρ : Gm → T with αi(ρ) = 1, 1 ≤ i ≤ l. It acts on X × X via
(ρ(t), 1). We show that the limits limt→0,∞ of our objects exist, that is we obtain
sections of line-bundles on (X × X) × P1. We only consider t → ∞, the other
limit being similar. Also note that the conjugate (ρ(t), 1)(G) ⊂ G × G extends to
a flat subgroup, whose fibre at {∞} is the product of the diagonal T with N+ × N−.
The limits of our sections will be invariant under this group, which will determine
them up to a constant factor.

Lemma 18 (ρ(t), 1)(di) extends to a global section of L(εi∗ , εi)�O(2εi(ρ)) on
X × X × P1. Its divisor Di is flat over P1, and regular outside a closed subset
of codimension ≥ 2 in each fibre. Its intersection with X × X × {∞} has two
irreducible components, namely V(vεi∗ ) × X and X × w0(V(vεi )). Similarly the
intersection with X × X ×{0} has two components w0(V(vεi∗ ))× X and X ×V(vεi ).

Proof In the limit

limt→∞t−εi∗ (ρ)(ρ(t), 1)(di) = vεi∗ �w0(vεi ) :

Namely firstly the limit exists and has first component vεi∗ . Next it is N+ × N−-
invariant, and takes value 1 on (w0, 1). This (and the analogous assertion at {0})
implies everything except regularity in relative codimension ≤ 1.

That could only fail over {0} or {∞}. Over {∞} this can only happen if Di is
not regular along the generic point of V(vεi∗ ) × w0(V(vεi )), the intersection of the
two irreducible components. One point in this intersection is (w0, si). But

t−εi∗ (ρ)(ρ(t), 1)(di)(w0, si) = t−εi∗ (ρ)lεi (siw0ρ(t)si(vεi )) = t−αi (ρ) = t−1,

so the equation forDi has order one on the constant section (w0, si). This ends the
proof of the lemma.

Similarly the limit

limt→∞t−εi∗ (ρ)(ρ(t), 1)(ei)

exists, vanishes on the first component and is equal to (vεi∗ � siw0(vεi ) on the
second. However if we remove this component from the divisor both restrictions
become non-zero.

Note that after this operation we obtain a reflexive sheaf on Di , which will
be locally free outside a closed subset of relative codimension ≥ 2. Especially
it makes sense to restrict to the fibre at {∞}. Also the restrictions of the line-
bundle (better:reflexive sheaf) to the components of the fibre will change by the
normal-bundle, so we obtain L(εi∗ )�

∏
j �=i L(ε j )

−αi (Hα j ), and O � Li .
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Lemma 19 t−εi∗ (ρ)(ρ(t), 1)(ei) extends to a global section of

L(εi∗ , εi − αi)�O(2εi(ρ))(−(w0(V(vεi∗ )) × X × {0})) − (V(vεi∗ ) × X × {∞})))
onDi . At {∞} its restriction to the two components are non-zero, and proportional
to the products of the unique N±-invariant sections.

Proof We only have to show that the restrictions do not vanish. For this compute
the value on (w0, si) (which we did already in the previous proof).

This lemma will be applied to the product of four copies of X. We consider
the pullback of the situation of the previous lemma (divisor with section of a line-
bundle over it) once via the coordinates (1, 3) and (2, 4), and once via (1, 4) and
(2, 3). After the degeneration (t → ∞) we shall obtain in totality the same (four)
irreducible components, and the same sections of line-bundles over them.

Now finally we can construct our line-bundle L with central charge 1. It suf-
fices to do this for curves over a regular base-scheme S (compatible with base-
change), since the moduli-stack of curves is smooth. We have to associate to any
G-torsor P on C → S a line-bundle L(P) on S. We first do this if GP admits a
“generic” Borel, and then use descent to show that the construction is independant
of it.

We use the Borel as follows: The G-equivariant line-bundlesL(εi) on X define
line-bundles on the twist XP (a scheme over C). The Borel gives a section of XP ,
and by pullback we obtain line-bundles Li on C.

Next recall ([4, 6.1]) that from two line-bundles A and B on C one can con-
struct a line-bundle < A,B > on the base S (assumed regular), as follows:
Choose isomorphisms α : OC(A) ∼= A, β : OC(B) ∼= B, for two coprime
divisors A and B on C. Then we can form the intersection-cycle A · B and
its pushforward π∗(A · B) on S. (For an irreducible cycle Z ⊂ C, its direct
image π∗(Z) vanishes if Z is not generically finite over its image π(Z). Oth-
erwise π∗(Z) = [k(Z) : k(π(Z)] · π(Z).) Then α and β define an isomorph-
ism

< α, β >: OS(π∗(A · B)) ∼=< A,B > .

Multiplying α by a local function f on S multiplies < α, β > by f deg(B), and
similar for β. More generally an isomorphism between OC(A)’s or OC(B)’s is
given by a rational function, and induces an isomorphism on the bracket. From this
it follows that the bracket is well-defined. It is bilinear and symmetric in A and B,
with no difficulty about signs except that the symmetry on < A,A > is equal to
(−1)deg(A). Also if A is finite over S , < O(A),B > is isomorphic to the norm
of B|A.

More generally one can define the meromorphic section < α, β > if β is only
a generator of B in the generic points of the irreducible components of the divisor
A of α. Also the construction < A,B > behaves well under base-change S′ → S.
The same holds for < α, β > if the basechange is smooth.

Now, going back to torsors, we choose a covering S′ → S and a Borel
in GP ×S S′ such that the associated map C ×S S′ → XP is smooth. For ex-
ample S′ might classify “generic” Borel’s. Then define the line-bundle L(P) on S′
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as
L(P) = −

∑

i

ai < Li ,Li > −
∑

i< j

ai j < Li ,L j > .

(For simplicity we have switched to additive notation.)
If S′′ = S′ ×S S′, we define an isomorphism

φ : pr∗
1 (L(P)) ∼= pr∗

2 (L(P)),

as follows:
As the divisors Di ⊂ X × X as well as the sections di , ei are all G-invariant,

they define divisors respectively sections of line-bundles on (X × X)P , and by
smooth pullback on C ×S S′′. Especially we pullback the linear combination (using
again additive notation)

∑

i

ai < di, ei > +
∑

i< j

ai j < di, d j > .

It defines a meromorphic section of
∑

i < L(1)
i∗ + L(2)

i , ai
(
L(1)

i∗ − L(2)
i

) − ∑
j �=i ai jL

(2)
j >

+
∑

i< j

ai j < L(1)
i∗ + L(2)

i ,L(1)
j∗ + L(2)

j > .

One notes that the “mixed terms” < L(1)
i∗ ,L(2)

j > cancel because of symmetry
(of ai j and <,>). What remains is
∑

i ai
(

< L(1)
i ,L(1)

i > − < L(2)
i ,L(2)

i >
)

+
∑

i< j

ai j
(

< L(1)
i ,L(1)

j > − < L(2)
i ,L(2)

j >
)

= pr∗
2 (L(P)) − pr∗

1(L(P)).

Furthermore the divisor of this meromorphic section is the projection of the sum
of the divisors of ai · ei (on Di ) and of ai j (Di · D j). We claim that this sum
vanishes:

This can be checked on X × X. However then all these divisors are linear
combinations of the closures of G-orbits through (w0, si s j), for different (and non-
commuting) reflections si ,s j . The multiplicities have been computed before, and
they cancel indeed.

Hence the conclusion is that we have defined an isomorphism

φ : pr∗
1(L(P)) ∼= pr∗

2(L(P)).

Before constructing a descent-datum out of φ we need some transitivity. For this
consider the product S(4) of 4 copies of S′, classifying a 4-tuple of generic Borel’s.
On it we have various isomorphisms

φab : pr∗
a(L(P)) ∼= pr∗

b(L(P)).
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Lemma 20

φ13 · φ24 = φ14 · φ23.

Proof It suffices to check after faithfully flat base-change, so we may assume that
GP admits a Borel (not to be confused with the four Borel’s classified by S(4)).
Furthermore over S ×A1 we can deform P into a T -torsor. As the desired equality
holds up to an invertible function (which is constant on the second factor A1) we
may thus assume that P is actually a T -torsor. Thus all T -invariant constructions
on X and its powers make sense on XP , and we can use our previous deformation-
procedure. Also it now suffices to check over a generic point of S(4), that is we
may assume that C and P are defined over a field k, and our base is a field K ⊃ k.
Furthermore the k-map C ⊗k K → X4

P is generic over k, that is dominant and its
image avoids all subvarieties of codimension ≥ 2 which are defined over k.

Next we perform our deformation-procedure on X4 × P1, that is we transform
over Gm with (ρ(t), ρ(t), 1, 1), and take the closure. Then di,ab = pr∗

a,b(di) (a =
1, 2, b = 3, 4) extend to sections of

L(εi∗ , εi)
(a,b) �O(2εi(ρ)),

with divisor Di,ab. Furthermore the section ei,ab gives a global section of the
restriction to Di,ab of

L(εi∗ , εi + αi)
(a,b) �O(2εi(ρ)),

which vanishes on pr−1
b (w0(V(vεi∗ )) × {0} and pr−1

b ((V(vεi∗ ) × {∞}. These are
Cartier-divisors on D1,ab outside a k-defined closed subset of sufficiently high
codimension, thus after pullback to (C × P1) ⊗k K we can substract them, and
the ei,ab become sections of a certain line-bundle on the pullback of Di,ab. This
pullback will be finite and flat over P1 ⊗k K , and thus we may form the norm of
these sections, which become global sections of a certain line-bundle on P1 ⊗k K .
This is the basic idea, although its execution will turn out a little different. Namely
we do not modify the line-bundles and work instead with meromorphic sections.

We repeat the same with d j,ab|Di,ab, only that now there is no need to substract
any divisors over {0} or {∞}. Finally we multiply these with ai respectively with
ai j , take the product of these sections once for the pairs (a, b) = (1, 3), (2, 4), and
once for (a, b) = (1, 4), (2, 3), and then form the quotient φ13 · φ24/φ14 · φ23. It
defines a regular section of the trivial line-bundle on Gm ⊗k K , that is a function.
We claim that this function is regular with value 1 in {0,∞}. This implies our claim
(evaluate at t = 1).

Let us check at {t = ∞}: Over the formal completion of P1 ⊗k K at {t = ∞}
the divisors Di,ab are the disjoint sum of two disjoint divisors specialising to the
two components over {t = ∞}. Modify the sections ei,ab by multiplying them by
tεi∗ on the the part specialising to pr−1

b (V(vεi∗ )× X). We thus get new sections ẽi,ab

which are regular and everywhere (on the formal completion) nonzero. Thus if we
replace in the definition of φab each ei,ab by ẽi,ab, the result will be a regular nonzero
section of the corresponding constant line-bundle. It differs from the original φab
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by some power of t which is easily computable from the degrees of the divisors
pr−1

b (w0(V(vεi∗ )). It follows that these t-powers cancel in φ13 ·φ24/φ14 ·φ23. Hence
this function is also regular at {t = ∞}.

To see that it takes the value 1 we use the modified ẽi . Consider each summand
< di, ẽi > respectively < di, d j > separately. In each case the restriction to {∞}
of the divisors Di,ab have two irreducible components which are pullbacks of the
divisors V(vεi∗ ) respectively V(w0(vεi )) on the factors. Thus we obtain the product
(over 1 ≤ a ≤ 4) of (the pullbacks of) the N±-invariant meromorphic section of
a certain line-bundle (the same in both cases) on the a-th factor. These are only
determined up to a factor, but these ambiguities cancel out.

Thus the quotient is 1 at {∞},and the lemma is shown.
Now going back to S′′ = S′ ×S S′ the restriction of φ to the diagonal S′

defines an automorphism of L(P). Multiply (say from the left) φ with its inverse
to obtain a new isomorphism φ∗ between pr∗

1 (L(P) and pr∗
1 (L(P). I claim that φ∗

is a descent-datum:
We have to show (with hopefully obvious notation) that

φ∗
13 = φ∗

12 · φ∗
23,

which means

φ13 · φ22 = φ12 · φ23,

and this follows from the lemma by setting “2 = 4”, that is restricting to a partial
diagonal.

So finally we obtain our L(P) on S. That it is independant from the choice of
S′ is clear (for two of them consider their disjoint union). Also we can rigidify it by
substracting its value on the trivial torsor. It remains to show that L(P) has central
charge 1. It suffices to do this over a field k, so we can forget about rigidification.

To compute the central charge we form the G-torsor P over C × P1 obtained
from the projective line P1 ⊂ DG corresponding to α̃0 = 1−θ , and try to compute
the degree of the line-bundle L(P) on P1. Evidently this depends only on the
pullback of L(P) to the moduli-space of SL2-torsors.

On this space we have a wellknown line-bundle of central charge 1: Namely
an SL2-torsor over C → S is a rank-2-bundle E with trivial determinant. Then
det(H∗(C,O2)) ⊗ det(H∗(C, E))⊗−1 is the desired line-bundle on S. To see that
its central-charge is indeed 1 one computes for the SL2-torsor on C×P1 mentioned
in the beginning:

It is given a sub-bundle E of the constant bundleOC ⊕OC(∞), with quotient
concentrated on {∞} × P1 and isomorphic to O(1). Thus the determinant of
cohomology of E has degree −1.

Finally we finish by showing that the restriction of L(P) to SL2-torsors is
isomorphic to the determinant of cohomology. For this we use that line-bundles are
uniquely determined by their central charge, that is the second half of the theorem
(which we show next, of course without using the following arguments). Thus the
Picard-group is infinite cyclic, and it suffices if both line-bundles have the same
non-zero degree on one curve.
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To construct such an example consider an SL2 torsor on C × P1 of the form
E =M⊕M⊗−1, withM a very ample line-bundle on C ×P1. For its determinant
of cohomology we obtain − < M,M >, whose degree is the negative self-
intersection ofM (and non-zero).

The computation of the degree of L(P) is more complicated. We know that
the structure-group of P reduces to B (even to T ), and thus by pullback from XP
we obtain as before a candidate L(P)naiv. We do not yet know that it coincides
with L(P) because our Borel will not be “generic”. However we easily construct
a covering S′ → S = P1 as needed for the definition of L(P), as follows:

For each positive root α of G the line-bundle Lα is a positive power of M.
Its global sections (over C × P1) are affine spaces, and the product of these affine
spaces is isomorphic to the space of global sections of the unipotent N−

P opposite
to the unipotent radical of BP . Conjugating BP by these sections defines the desired
family of “generic” Borel’s over the product S′ of S and this affine space.

Thus over S′ L(P) is given by our formula. Pulling back via the zero-section
we derive that this also holds over S. Note that rigidification does not change this
picture because C is constant.

Now finally the map SL2 → G induces an embedding P1 ⊆ X, and the
pullback of L(λ) under it is O(λ(Hθ)). It follows that L(P) becomes a multiple of
<M,M >, where the factor is the negative of

∑

i

aiεi(Hθ)
2 +

∑

i< j

ai jεi(Hθ)εi(Hθ)

= 1/2
∑

i, j

< Hαi , Hα j > ·εi(Hθ)εi(Hθ).

But this quadratic form is W-invariant, so it takes the same value on Hθ as on Hαi ,
for any long simple root αi . And finally this value is 1.

All in all we have finished the constructive part of the proof, and can pass to
uniqueness.

Suppose a line-bundle L onMG = RC0/S(G)\DG has trivial central charge,
that is comes from an operation of RC0/S(G) on the trivial line-bundle on DG . It
then corresponds to a character of RC0/S(G), and we have to show that all such
characters are trivial. We do this following an argument communicated to me by
A. Beilinson, who (as I remember) attributes it to V.G. Drinfeld.

As we are working over a noetherian base and as RC0/S(G) is inductive limit
of algebraic schemes over this base, it suffices to show that the character is trivial
on any point with values in an artinian local ring R, with algebraically closed
residue-field k. We also may assume that our base is S = Spec(R).

For any finite set T ⊂ C of k-points containing {∞} we may form the open
affine subscheme C − T ⊂ C. As G-torsors are étale locally trivial on CT the
moduli-stackMG can be represented as

MG = RC−T/S(G)\
∏

x∈T

DG,x .
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The product is over copies of DG indexed by x ∈ T , and one has to choose local
parameters at all x ∈ T .

Thus L defines an RC−T/S(G)-equivariant line-bundle on the product. The
isomorphism class of this line-bundle (forgetting equivariance) is given by a tuple
of central charges c(x) ∈ Z. These do not change if we enlarge T , thus define
a function from C(k) to Z, which extends to a linear function on divisors. I claim
that this function vanishes on principal divisors:

This can be checked over the base k. Assume div( f ) = ∑
x∈T n(x)x is a prin-

cipal divisor. Define two homomorphisms SL2 → RC−T/S(G) as follows: One is
the constant homomorphism defined by the highest root θ , the other one is its twist
by f (with root-vectors fX−θ , f −1 Xθ). They coincide on diagonal matrices, that
is they share the same one-parameter group Hθ : Gm → RC−T/S(G). However if
we choose the unique lifts (of SL2’s) into the product of central extensions L̃Gx ,
the two characters differ by central characters n(x), and the actions of the diagonal
matrices on the fibre of L at the origine differ by

∑
x∈T n(x)c(x). But these two

actions are induced from the same action of RC−T/S(G), thus must coincide, and
the sum vanishes.

So finally our map c(x) factors over the Picard-group of C. As the Jacobian of
C is divisible it must be trivial on divisors of degree 0. As it is also trivial on ∞ all
c(x) vanish.

It follows (now again over R) that L is defined by an action of RC−T/S(G) on
the trivial bundle, that is by a character. That is the original character of RC0/S(G)

extends to all RC−T/S(G). It is necessarily trivial on the constants G, and also on
all unipotents RC−T/S(Ga) parametrised by roots, as these lie in the commutator.

To show that it is trivial on an arbitrary g ∈ RC−T/S(G)(R) we denote by K
the function-field of C ⊗R k, and note that G(K ) is generated by its unipotent
subgroups. Thus the image of g in G(K ) can be written as the product of unipo-
tent elements. These lie in some RC−T ′/S(G)(k) (T ′ sufficiently big) and lift to
RC−T ′/S(G)(R). Hence we may assume that g reduces to 1 modulo the maxi-
mal ideal of R, that is it lies in the formal group. But by the usual infinitesimal
arguments (as in Lemma 10 b)) this is contained in the subgroup generated by
unipotents.

This finishes the proof of the theorem.

Remark. Everything works for twisted inner forms, and I think also for outer
forms.

Remark. Suppose P is a G-torsor in C. Then the center Z(G) of G acts triv-
ially on the fibre of L in P. Namely Z(G) ⊂ RC0/S(G) acts trivially on DG , so
its action on the line-bundle L is given by a character. Considering the fibre in
the origin one sees that this character extends to G, thus must be trivial. How-
ever other automorphisms may act non-trivially, even for stable torsors. This
happens if the centralisers of elements of G are not simply connected. The sim-
plest example occurs for Spin(6) (where L is the Pfaffian). As a consequence
L does not descend to a line-bundle on the coarse moduli-space of stable G-
torsors.
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