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Abstract

The space ΓX of all locally finite configurations in a infinite covering X of a com-
pact Riemannian manifold is considered. The de Rham complex of square-integrable
differential forms over ΓX , equipped with the Poisson measure, and the correspond-
ing de Rham cohomology and the spaces of harmonic forms are studied. A natural
von Neumann algebra containing the projection onto the space of harmonic forms
is constructed. Explicit formulae for the corresponding trace are obtained. A regu-
larized index of the Dirac operator associated with the de Rham differential on the
configuration space of an infinite covering is considered.
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§1. Introduction

Let ΓX denote the space of all locally finite subsets (configurations) in a
complete, connected, oriented Riemannian manifold X of infinite volume with
a lower bounded curvature. In this paper, we study the de Rham complex of
square-integrable differential forms over the configuration space ΓX equipped
with the Poisson measure, in the case where X is an infinite covering of a
compact manifold.

The growing interest in geometry and analysis on the configuration spaces
can be explained by the fact that these naturally appear in different problems
of statistical mechanics and quantum physics. In [8], [9], [10], an approach to
the configuration spaces as infinite-dimensional manifolds was initiated. This
approach was motivated by the theory of representations of diffeomorphism
groups, see [31], [51], [32] (these references as well as [10], [12] also contain
discussion of relations with quantum physics). We refer the reader to [11],
[12], [48], [38] and references therein for further discussion of analysis on the
configuration spaces and applications.

Stochastic differential geometry of infinite-dimensional manifolds, in par-
ticular, their (stochastic) cohomologies and related questions (Hodge–de Rham
Laplacians and harmonic forms, Hodge decomposition), has also been a very
active topic of research in recent years. It turns out that many important ex-
amples of infinite-dimensional non flat spaces (loop spaces, product manifolds,
configuration spaces) are naturally equipped with finite measures (Brownian
bridge, Gibbs measures, Poisson measures). The geometry of these measures
is related in a nontrivial way with the differential geometry of the underlying
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spaces themselves, and plays therefore a significant role in their study. More-
over, in many cases the absence of a proper smooth manifold structure makes
it more natural to work with L2-objects (such as functions and sections, etc.)
on these infinite-dimensional spaces, rather than to define infinite dimensional
analogs of the smooth finite dimensional objects.

Thus, the concept of an L2-cohomology has an important meaning in
this framework. The study of L2-cohomologies for finite-dimensional mani-
folds, initiated in [18], is a subject of many works (whose different aspects are
treated in e.g. [26], [23], [29], see also the review papers [42], [40]). As for the
infinite-dimensional case, loop spaces have been most studied [33], [36], [28],
[37], the last two papers containing also a review of the subject. Hypersur-
faces in the Wiener space were considered in [35]. The de Rham complex on
infinite product manifolds with Gibbs measures (which appear in connection
with problems of classical statistical mechanics) was constructed in [1], [2] (see
also [19] for the case of the infinite-dimensional torus). We should also men-
tion the papers [49], [15], [16], [17], [7], where the case of a flat Hilbert state
space is considered (the L2-cohomological structure turns out to be nontriv-
ial even in this case due to the existence of interesting measures on such a
space).

In [3], [4], the authors started studying differential forms and the cor-
responding Laplacians (of Bochner and de Rham type) over the configura-
tion space ΓX . The main result of [4] is a description of the space K(∗) of
square-integrable (with respect to the Poisson measure) harmonic forms over
ΓX :

K(∗) � Asym(K(1), . . . ,K(d)),(1)

where Asym(K(1), . . . ,K(d)) is a super commutative Hilbert tensor algebra
generated by the spaces K(m) = K(m)(X) := Ker H

(m)
X , H

(m)
X denoting the

Hodge–de Rham Laplacian in the L2-space of m-forms on X, m = 1, . . . , d,

d = dim X − 1. In other words, K(n) is described in terms of symmetric
and antisymmetric tensor products of the spaces K(m)(X) (a version of the
Künneth formula). The spaces K(n) appear to be finite-dimensional, provided
so are all the K(m)(X) spaces. Their dimensions are given by the following
formula:

dimK(n) =
∑

s1, . . . , sd = 0, 1, 2 . . .
s1 + 2s2 + · · · + dsd = n

β
(s1)
1 · · ·β(sd)

d ,(2)
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where

β(s)
m :=



(
βm

s

)
, m = 1, 3, . . .(

βm + s − 1
s

)
, m = 2, 4, . . .

(3)

s �= 0, and β
(0)
m := 1. Here βm := dimKm(X), m = 1, . . . , d.

The finiteness of βm is however a rare phenomenon in the geometry of
non-compact manifolds. An important example of a manifold X with infi-
nite dimensional spaces K(m)(X) is given by an infinite cover of a compact
Riemannian manifold (say M). In this case, an infinite discrete group G acts
by isometries on X and consequently on the spaces of differential forms over
X. The projection Pm onto the space K(m)(X) of harmonic forms commutes
with the action of G and thus belongs to the commutant of this action which
is a von Neumann algebra (of II∞ type under certain conditions on G). The
corresponding von Neumann trace of Pm gives a regularized dimension of the
space K(m)(X) and is called the L2-Betti number bm of X (or M). L2-Betti
numbers were introduced in [18] and have been studied by many authors (see
[40], [42] and references given there).

It is natural to ask whether this approach can be extended to configura-
tion spaces over infinite coverings. In particular, is formula (3) valid in this
case (with βm replaced by bm)? In the present paper, we construct a von
Neumann algebra containing the projection P(n) onto K(n) and compute its
von Neumann trace bn . The result is different from (2) and is given by the
following exponential formula:

bn =
∑

s1, . . . , sd = 0, 1, 2, . . .
s1 + 2s2 + · · · + dsd = n

(b1)
s1

s1!
. . .

(bd)
sd

sd!
.(4)

The structure of the paper is as follows. In Section 2 we give (following [3],
[4]) a description of the de Rham complex over ΓX and the spaces of harmonic
forms.

Section 3 is independent of the theory of configuration spaces and plays the
central technical role in the paper. We study the following problem which can
be formulated in quite a general form. Let us consider a d-dimensional complex
Hilbert space H = Cd. It is easy to compute the dimensions of the symmetric
and antisymmetric n-th tensor powers H⊗̂n and H∧n of H respectively. We
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have obviously

dimH⊗̂n =

(
d + n − 1

n

)
=

d(d + 1) . . . (d + n − 1)
n!

,

(5)

dimH∧n =

(
d

n

)
=

d(d − 1) . . . (d − n + 1)
n!

.

Let H be a subspace of some Hilbert space X , which may in general
be infinite dimensional. Then H⊗̂n and H∧n are subspaces of X⊗n.
Let

P : X → H,(6)

P (n)
s : X⊗n → H⊗̂n(7)

and

P (n)
a : X⊗n → H∧n(8)

be the corresponding orthogonal projections. Then we have Tr P = d, and
formulae (5) can be rewritten in the form

Tr P (n)
s =

TrP (TrP + 1) . . . (TrP + n − 1)
n!

,

(9)

Tr P (n)
a =

TrP (TrP − 1) . . . (TrP − n + 1)
n!

.

Let now H be infinite dimensional. Then TrP = ∞ and formulae (9)
have no sense. Let us assume that the projection P has a finite trace as an
element of some von Neumann algebra A (different from the algebra B(X ) of
all bounded operators in X ), equipped with trace TrA. It is interesting to ask
whether analogues of formulae (9) involving TrA P hold. The answer seems
to be strongly dependent on the structure of the von Neumann algebra A the
projection P belongs to.

In Section 3, we discuss the situation where X = L2Ω(m)(X) is the space of
square-integrable m-forms on X and H = K(m)(X) (see above). We introduce a
natural von Neumann algebra A(n) containing the operators P

(n)
s and P

(n)
a and

state our main result: finiteness of the corresponding traces of P
(n)
s and P

(n)
a

and explicit formulae for them. We show by a finite dimensional approximation
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that our formulae for the traces of P
(n)
s and P

(n)
a are compatible with formulae

(9).
In the case n = 2, the results of Section 3 were proved in [25]. A different

approach, based on the general theory of factors, has been used in [24].
In Section 4, we apply the constructions of Section 3 and introduce L2-

Betti numbers of configuration spaces over infinite covers. We prove formula
(4) and apply it to computing of a regularized index of the Dirac operator
associated with the de Rham differential of the configuration space.

Let us remark that the spaces of finite configurations, which unlike ΓX

possess a natural manifold structure, have been actively studied by geometers
and topologists, see e.g. [21], [30] and references given therein. The relationship
between these works and our L2-theory, which is relevant for the spaces of finite
configurations too [24], is not clear yet.

The situation changes dramatically if the Poisson measure π is replaced
by a different measure (for instance a Gibbs measure). From the physical point
of view, this describes a passage from a system of particles without interaction
(free gas) to an interacting particle system, see [11] and references within.
For a wide class of measures, including Gibbs measures of Ruelle type and
Gibbs measures in low activity-high temperature regime, the de Rham complex
has been introduced and studied in [5]. The structure of the corresponding
Laplacian is much more complicated in this case, and the spaces of harmonic
forms have not been studied yet.

§2. De Rham Complex Over a Configuration Space

The aim of this section is to recall some definitions and known facts con-
cerning the differential structure of a configuration space and differential forms
over it. For more details and proofs, we refer the reader to [10], [3], [4].

§2.1. Differential forms over a configuration space

Let X be a complete connected, oriented, C∞ Riemannian manifold of
infinite volume with a lower bounded curvature.

The configuration space ΓX over X is defined as the set of all locally finite
subsets (configurations) in X:

ΓX := {γ ⊂ X | |γ ∩ Λ| < ∞ for each compact Λ ⊂ X} .(10)

Here, |A| denotes the cardinality of a set A.
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We can identify any γ ∈ ΓX with the positive, integer-valued Radon mea-
sure ∑

x∈γ

εx ⊂ M(X),(11)

where εx is the Dirac measure with mass at x,
∑

x∈∅
εx := zero measure, and

M(X) denotes the set of all positive Radon measures on the Borel σ-algebra
B(X). The space ΓX is endowed with the relative topology as a subset of the
space M(X) with the vague topology, i.e., the weakest topology on ΓX with
respect to which all maps

ΓX � γ 	→ 〈f, γ〉 :=
∫

X

f(x) γ(dx) ≡
∑
x∈γ

f(x)(12)

are continuous. Here, f ∈ C0(X)(:= the set of all continuous functions on X

with compact support). Let B(ΓX) denote the corresponding Borel σ-algebra.
Following [51], [10], we define the tangent space to ΓX at a point γ as the

Hilbert space

TγΓX =
⊕
x∈γ

TxX.(13)

The scalar product and the norm in TγΓX will be denoted by 〈·, ·〉γ and ‖·‖γ ,
respectively. Thus, each V (γ) ∈ TγΓX has the form V (γ) = (V (γ)x)x∈γ , where
V (γ)x ∈ TxX, and

‖V (γ)‖2
γ =

∑
x∈γ

〈V (γ)x, V (γ)x〉x,(14)

where 〈·, ·〉x is the inner product in TxX. The sections of the bundle TΓX will
be called vector fields or first order differential forms on ΓX . The sections of
the bundles ∧n(TΓX), n ∈ N, with fibers

∧n(TγΓX):= ∧n

(⊕
x∈γ

TxX

)
,(15)

where ∧n(H) (or H∧n) stands for the n-th antisymmetric tensor power of a
Hilbert space H, will be called differential forms of order n. Thus, under a
differential form W of order n over ΓX , we will understand a mapping

ΓX � γ 	→ W (γ) ∈ ∧n(TγΓX).(16)
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We will now recall how to introduce a covariant derivative of a differential
form W : ΓX → ∧n(TΓX).

Let γ ∈ ΓX and x ∈ γ. By Oγ,x we will denote an arbitrary open neigh-
borhood of x in X such that Oγ,x ∩ (γ \ {x}) = ∅. We define the mapping

Oγ,x � y 	→ Wx(γ, y):=W (γy) ∈ ∧n(Tγy
ΓX), γy := (γ \ {x}) ∪ {y}.(17)

This is a section of the Hilbert bundle

∧n(Tγy
ΓX) 	→ y ∈ Oγ,x.(18)

The Levi–Civita connection on TX generates in a natural way a connection on
this bundle. We denote by ∇X

γ,x the corresponding covariant derivative and use
the notation

∇X
x W (γ):=∇X

γ,x Wx(γ, x) ∈ TxX ⊗ (∧n(TγΓX))(19)

if the section Wx(γ, ·) is differentiable at x.
We say that the form W is differentiable at a point γ if for each x ∈ γ the

section Wx(γ, ·) is differentiable at x, and

∇ΓW (γ):=(∇X
x W (γ))x∈γ ∈ TγΓX ⊗ (∧n(TγΓX)) .(20)

The mapping

ΓX � γ 	→ ∇ΓW (γ):=(∇X
x W (γ))x∈γ ∈ TγΓX ⊗ (∧n(TγΓX))(21)

will be called the covariant gradient of the form W .
Analogously, one can introduce higher order derivatives of a differential

form W , the mth derivative (∇Γ)(m)W (γ) ∈ (TγΓX)⊗m ⊗ (∧n(TγΓX)).
Let us note that, for any η ⊂ γ, the space ∧n(TηΓX) can be identified

in a natural way with a subspace of ∧n(TγΓX). In this sense, we will use the
expression W (γ) = W (η) without additional explanations.

A form W : ΓX → ∧n(TΓX) is called local if there exists a compact
Λ = Λ(W ) in X such that W (γ) = W (γΛ) for each γ ∈ ΓX .

Let FΩn denote the set of all local, infinitely differentiable forms W :
ΓX → ∧n(TΓX) which together with all their derivatives are polynomially
bounded, i.e., for each W ∈ FΩn and each m ∈ Z+, there exists a function
ϕ ∈ C0(X) and k ∈ N such that

‖(∇(m)W )(γ)‖(TγΓX)⊗m⊗(∧n(TγΓX)) ≤ 〈ϕ⊗k, γ⊗k〉 for all γ ∈ ΓX ,(22)

where ∇(0)W := W .
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Our next goal is to give a description of the space of n-forms that are
square-integrable with respect to the Poisson measure.

Let dx denote the volume measure on X, and let π denote the Poisson
measure on ΓX with intensity dx. This measure is characterized by its Laplace
transform ∫

ΓX

e〈f,γ〉π(dγ) = exp
[∫

X

(ef(x) − 1)dx

]
, f ∈ C0(X).(23)

If F : ΓX → R is integrable with respect to π and local, i.e., F (γ) = F (γΛ) for
some compact Λ ⊂ X, then one has∫

ΓX

F (γ)π(dγ) = e− vol(Λ)
∞∑

n=0

1
n!

∫
Λn

F ({x1, . . . , xn})dx1 · · · dxn.(24)

We define on the set FΩn the L2-scalar product with respect to the Poisson
measure:

(W1, W2)L2
πΩn :=

∫
ΓX

〈W1(γ), W2(γ)〉∧n(TγΓX) π(dγ).(25)

The integral on the right hand side of (25) is finite, since the Poisson measure
has all moments finite. Moreover, (W, W )L2

πΩn > 0 if W is not identically zero.
Hence, we can define a Hilbert space L2(ΓX → ∧n(TΓX); π) as the completion
of FΩn with respect to the norm generated by the scalar product (25). We
denote by L2

πΩn the complexification of L2(ΓX → ∧n(TΓX); π).
We will now give an isomorphic description of the space L2

πΩn via the space
L2

πΩ0 := L2(ΓX → C; π) and spaces L2Ωn(Xm) of square-integrable complex

forms on Xm :=

m︷ ︸︸ ︷
X × . . . × X, m = 1, . . . , n.

For a finite configuration η = {x1, . . . , xm} we set

T
(n)
η Xm :=

⊕
1≤k1,...,km≤d

k1+···+km=n

(Tx1X)∧k1 ∧ · · · ∧ (Txm
X)∧km .(26)

By virtue of (15), we have

∧n(TγΓX) =
n⊕

m=1

⊕
η ⊂ γ

|η| = m

T
(n)
η Xm.(27)

For W ∈ FΩn, we denote by Wm(γ; η) the projection of W (γ) ∈ ∧n(TγΓX)
onto the subspace T

(n)
η Xm.
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Proposition 1 ([4]). Setting, for W ∈ L2
πΩn,

(InW )(γ, x1, . . . , xm) := (m!)−1/2 Wm(γ ∪ {x1, . . . , xm}, {x1, . . . , xm}),(28)

m = 1, . . . , n, one gets the isometry

In : L2
πΩn → L2

πΩ0
⊗[

n⊕
m=1

L2Ωn(Xm)

]
.(29)

Remark 1. Actually, formula (28) makes direct sense only for (x1, . . . ,

xm) ∈ X̃m, where

X̃m := {(x1, . . . , xm) ∈ Xm | xi �= xj if i �= j } .(30)

However, since the set Xm \ X̃m is of zero dx1 · · · dxm measure, (28) can be
interpreted to hold as it stands, for all (x1, . . . , xm) ∈ Xm.

Remark 2. The corresponding statement in [4] is more refined (the de-
scription of the image of In is given). In order to avoid unnecessary technical
details, we do not give the exact formulation there.

§2.2. Exterior differentiation

We define the linear operators

dn : FΩn → FΩn+1, n ∈ N,(31)

by

(dnW )(γ) := (n + 1)1/2 ASn+1(∇ΓW (γ)),(32)

where

ASn+1 : (TγΓX)⊗(n+1) → ∧n+1(TγΓX)(33)

is the antisymmetrization operator.
Let us now consider dn as an operator acting from the space L2

πΩn into
L2

πΩn+1. We denote by d∗
n the adjoint operator of dn.

Proposition 2. 1. d∗
n is a densely defined operator from L2

πΩn+1 into
L2

πΩn with domain containing FΩn+1.
2. The operator dn : L2

πΩn → L2
πΩn+1 is closable.
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Proof. The proof has been given in [3], [4].

We denote by d̄n the closure of dn. The space Zn := Ker d̄n is then a
closed subspace of L2

πΩn. Let Bn denote the closure in L2
πΩn of the subspace

Imdn−1 (of course, Bn =the closure of Im d̄n−1).
We have obviously dndn−1 = 0, which implies

Imdn−1 ⊂ Kerdn ⊂ Zn.(34)

Hence Bn ⊂ Zn and

d̄nd̄n−1 = 0.(35)

Thus, we have the infinite complex

· · · dn−1−→ FΩn dn−→ FΩn+1 dn+1−→ · · · ,(36)

and the associated Hilbert complex

· · · d̄n−1−→ L2
πΩn d̄n−→ L2

πΩn+1 d̄n+1−→ · · · .(37)

The homology of the complex (37) will be called the (reduced) L2-cohomology
of ΓX . We set in a standard way

Hn
π = Zn/Bn, n ∈ N,(38)

and call Hn
π the n-th L2-cohomology space of ΓX .

§2.3. Hodge–de Rham Laplacian of the Poisson measure

For n ∈ N, we define a bilinear form E(n)
π on L2

πΩn by

E(n)
π (W1, W2) :=

∫
ΓX

[
〈dnW1(γ),dnW2(γ)〉∧n+1(TγΓX )(39)

+ 〈d∗
n−1W1(γ),d∗

n−1W2(γ)〉∧n−1(TγΓX)

]
π(dγ),

where W1, W2 ∈ Dom E(n)
π := FΩn. The function under the sign of integral

in (39) is polynomially bounded, so that the integral exists.

Theorem 1. 1. For any W1, W2 ∈ FΩn, we have

E(n)
π (W1, W2) =

∫
ΓX

〈H(n)W1(γ), W2(γ)〉∧n(TΓX) π(dγ).(40)

Here, H(n) = dn−1d∗
n−1 +d∗

ndn is an operator in the space L2
πΩn with domain

DomH(n) := FΩn.
2. FΩn is a core for H(n).



�

�

�

�

�

�

�

�

660 Sergio Albeverio and Alexei Daletskii

Proof. See [3], [4].

From Theorem 1 we conclude that the bilinear form E(n)
π is closable in

the space L2
πΩn. The generator of its closure (being actually the Friedrichs

extension of the operator H(n), for which we preserve the same notation) will
be called the Hodge–de Rham Laplacian on ΓX (corresponding to the Poisson
measure π).

§2.4. Harmonic forms and L2-cohomologies

The aim of this section is to study the structure of the spaces Hn
π of L2-

cohomologies of ΓX . Let for a Hilbert space S,

S
k
s :=

{
S⊗̂s, k is even
S∧s, k is odd

.(41)

s ≥ 1. We will use the convention S
k
s = C1, s = 0.

Theorem 2. 1) Let H
(n)
Xm be the Hodge-de Rham Laplacian in L2Ωn

(Xm). Then:

InH(n) =

(
H(0) ⊗ 1 + 1 ⊗

(
n⊕

m=1

H
(n)
Xm

))
In,(42)

where In is the isometry given by (28).
2) The isometry In generates the unitary isomorphism of Hilbert spaces

K(n) := KerH(n) �
⊕

s1,... ,sd=0,1,2...

s1+2s2+···+dsd=n

(K1(X))
1
s1 ⊗ · · · ⊗ (Kd(X))

d
sd ,(43)

where Km(X) := Ker H
(m)
X , m = 1, 2, . . . , d, d = dimX − 1.

Proof. See [4].

Remark 3. More precisely,

In(K(n)) =

(
Ker H(0) ⊗ Ker

n⊕
m=1

H
(n)
Xm

)
In.(44)

It is proved in [10] that Ker H(0) consists of constant functions, i.e. Ker H(0) �
C1, implies (43).
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Remark 4. Formula (43) also holds for spaces of finite configurations,
see [24]. In fact,

Hn
π � Harn (B(n)

X ),(45)

where Harn(B(n)
X ) is the space of square-integrable harmonic n-forms on the

space B
(n)
X of configurations of no more than n points. Let us remark that

B
(p)
X =

⋃p
k=0 X̃k/Sk, where X̃k is defined by (30), and (43) is in this case a

symmetric version of the Künneth formula.

We see from (43) that all spaces K(n), n ∈ N, are finite dimensional pro-
vided the spaces Km(X), m = 1, . . . , d are so. In this case, it is easy to
compute the dimension of K(n). Indeed, for a finite dimensional space S we
have obviously

dim
(
S⊗̂s

)
=

(
dimS + s − 1

s

)
(46)

and

dim (S∧s) =

(
dimS

s

)
.(47)

Thus we have the following formula:

dimK(n) =
∑

s1, . . . , sd = 0, 1, 2 . . .
s1 + 2s2 + · · · + dsd = n

β
(s1)
1 · · ·β(sd)

d ,(48)

where

β(s)
m :=



(
βm

s

)
, m = 1, 3, . . .(

βm + s − 1
s

)
, m = 2, 4, . . .

(49)

s �= 0, and β
(0)
m := 1. Here and βm := dimKm(X), m = 1, . . . , d.

Remark 5. Standard arguments of the theory of operators in Hilbert
spaces (see e.g. [14, Proposition A.1] and [4]) show that

L2
πΩn = K(n) ⊕ Bn ⊕ Im d∗,

L2
πΩn = Zn ⊕ Im d∗.(50)

Thus we have the natural isomorphism of the Hilbert spaces

Hn
π � K(n).(51)
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§3. Von Neumann Dimensions of Symmetric and Antisymmetric
Tensor Powers

§3.1. Setting: Von Neumann algebras associated with
infinite coverings of compact manifolds

Let us describe the framework introduced by M. Atiyah in his theory of
L2-Betti numbers, which we will use during the rest of the paper. For a detailed
exposition, see [18] and e.g. [40]. We refer to [22], [50] for general notions of
the theory of von Neumann algebras.

We assume that there exists an infinite discrete group G acting freely on X

by isometries and that M = X/G is a compact Riemannian manifold. That is,

G −→ X −→ M(52)

is a Galois (normal) cover of M .
Throughout this section, we fix p = 1, . . . , d, d = dimX − 1, and use the

following general notations:
X := L2Ωp(X) - the space of square-integrable p-forms on X;
M := L2Ωp(M) - the space of square-integrable p-forms on M ;
H := Kp(X) ( = Ker H

(p)
X ) - the space of square-integrable harmonic p-forms

on X.
For a Hilbert space P, we denote by B(P) the space of bounded linear

operators in P.
For a von Neumann algebra S, we denote by TrS a semifinite faithful

normal trace on S.
The action of G in X generates in the natural way the action of G in X

which we denote

G � g 	→ Tg ∈ B(X ).(53)

Let A be the commutant of this action,

A = {Tg}′g∈G ⊂ B(X ).(54)

It is clear that the space X can be described in the following way:

X = M⊗ l2(G),(55)

with the group action obtaining the form

Tg = id ⊗ Lg,(56)
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g ∈ G, where Lg, g ∈ G, are operators of the left regular representation of G.
Then

B(X ) = B(M) ⊗ B(l2(G))(57)

and

A = B(M) ⊗R(G),(58)

where R(G) is the von Neumann algebra generated by the right regular repre-
sentation of G.

In what follows, we assume that G is an ICC group, that is,

all non-trivial classes of conjugate elements are infinite.(59)

This ensures that R(G) is a II1-factor (see e.g. [41]). Thus A is a II∞-factor.
Let us consider the orthogonal projection

P : X → H(60)

and its integral kernel

k(x, y) ∈ B(T p
x X, T p

y X).(61)

Then, because of the G-invariance of the Laplacian H
(p)
X , we have P ∈ A. It

was shown in [18] that

TrAP =
∫

M

tr k(m, m) dm,(62)

where tr is the usual matrix trace and dm is the Riemannian volume on M .
Let us remark that, because of G-invariance, k(m, m) is a well-defined function
on M . Moreover, it is known that H

(p)
X is elliptic regular, which implies that

the kernel k is smooth. Thus

bp := TrA P < ∞.(63)

The numbers bp, p = 0, 1, . . . , d, are called the L2-Betti numbers of X (or M)
associated with G. The following is known:

1)

d∑
p=0

(−1)pbp = χ(M),(64)

where χ(M) is the Euler characteristic of M ([18]);
2) L2-Betti numbers are homotopy invariants of M ([26]).
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§3.2. Permutations in tensor powers of von Neumann algebras

Let us consider tensor products X⊗n := X⊗. . .⊗X and H⊗n := H⊗. . .⊗H
of n copies of the spaces X and H respectively. Obviously

P⊗n := P ⊗ . . . ⊗ P : X⊗n → H⊗n,(65)

is the orthogonal projection. We have

P⊗n ∈ A⊗n =
{
T(g1,... ,gn)

}′
(g1,... ,gn)∈Gn ,(66)

the commutant of the action T(g1,... ,gn) := Tg1 ⊗ . . .⊗Tgn
of the product group

Gn = G × . . . × G in X⊗n, and

TrA⊗n

(
P⊗n

)
= (TrAP )n .(67)

Next, we consider the symmetric and anti-symmetric tensor powers

Xn
s := X ⊗̂n, Hn

s := H⊗̂n(68)

and

Xn
a := X∧n, Hn

a := H∧n(69)

respectively, and the corresponding orthogonal projections

Ps :=

∑
σ∈Sn

Uσ

2
: X⊗n → X ⊗̂n,

(70)

Pa :=

∑
σ∈Sn

sign(σ)Uσ

2
: X⊗n → X∧n,

where Sn is the symmetric group of order n, and for any σ ∈ Sn, Uσ : X⊗n →
X⊗n is the corresponding permutation operator. We have[

Ps, P
⊗n
]

=
[
Pa, P⊗n

]
= 0.(71)

Thus the operators

P (n)
s := PsP

⊗n = P⊗nPs : X⊗n → H⊗̂n(72)

and

P (n)
a := PaP⊗n = P⊗nPa : X⊗n → H∧n(73)

are orthogonal projections.
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It is clear that Uσ, σ �= e, does not commute with the action T(g1,... ,gn) of
Gn and thus neither Uσ nor Ps or Pa belong to A⊗n. Thus, the von Neumann
algebra

A(n) :=
{
A⊗n, (Uσ)σ∈Sn

}′′(74)

generated by A⊗n and (Uσ)σ∈Sn
does not coincide with A⊗n.

Now we can formulate the main result of this section.

Theorem 3. 1. A(n) is a II∞ factor.
2.

TrA(n)P (n)
s = TrA(n)P (n)

a =
(TrAP )n

n!
(75)

where TrA(n) is the unique trace on A(n) such that TrA(n)B = TrA⊗nB whenever
B ∈ A⊗n.

We prove this theorem in Section 3.4 using techniques developed below.

Remark 6. It is not clear whether the von Neumann algebra A(n) is the
minimal von Neumann algebra containing A⊗nand Ps or Pa. It will however be
shown in Section 3.5 that {A⊗n, Ps}′′ and {A⊗n, Pa}′′ are factors. Thus they
are subfactors of A(n) and

Tr{A⊗n,Ps}′′P (n)
s = TrA(n)P (n)

s ,

Tr{A⊗n,Pa}′′P (n)
a = TrA(n)P (n)

a ,(76)

where Tr{A⊗n,Ps}′′ and Tr{A⊗n,Pa}′′ are the unique traces on {A⊗n, Ps}′′ and
{A⊗n, Pa}′′ respectively such that their restrictions to A⊗n coincide with TrA⊗n .

In order to give an explicit description of A(n), we first remark that

Uσ = UM
σ UG

σ ,(77)

where

UM
σ : M⊗n → M⊗n,(78)

and

UG
σ : l2(G)⊗n → l2(G)⊗n(79)

are the corresponding permutation operators in M⊗n and l2(G)⊗n respectively
(cf. (55)).
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Let us introduce the von Neumann algebra

R(n) =
{
R(G)⊗n,

(
UG

σ

)
σ∈Sn

}′′
(80)

generated by the right regular representation of Gn and the operators UG
σ .

Lemma 1. The following decomposition formula holds:

A(n) = B(M)⊗n ⊗R(n)(81)

Proof. This follows from (58), (77) and the obvious fact that UM
σ ∈

B(M)⊗n = B (M⊗n).

§3.3. Tensor powers of the regular representation, and
their extensions by the symmetric group

Our next goal is to investigate the structure of the von Neumann algebra
R(n).

Let R(Gn) = R(G)⊗n be the von Neumann algebra generated by the right
regular representation

Gn � y 	→ Ry ∈ B
(
L2(Gn)

)
(82)

of Gn.

Lemma 2. The following commutation relation holds for any y ∈ Gn

and σ ∈ Sn:

RyUG
σ = UG

σ Rσ(y).(83)

Proof. We have obviously(
RyUG

σ f
)
(x) = Ryf(σ(x)) = f(σ(xy)).(84)

On the other hand,(
UG

σ Rσ(y)f
)
(x) = UG

σ f(xσ(y)) =

= f(σ(x)σ(y)) = f(σ(xy)).(85)
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Corollary 1. For any y1, . . . , yn ∈ Gn and σ1, . . . , σn ∈ Sn, there
exists y ∈ Gn and σ ∈ Sn such that

Ry1U
G
σ1

Ry2 . . . UG
σn−1

Ryn
UG

σn
=

{
Ry, n is even

RyUG
σ , n is odd

(86)

(because
(
UG

σ

)2 = id).

In what follows, we fix a natural basis {(g1, . . . , gn)}g1,... ,gn∈G in l2(G)⊗n.
We denote by (A)x,y the matrix elements of an operator A ∈ B

(
l2(G)⊗n

)
in

this basis. We have

(
UG

σ

)
x,y

=

{
1, x = σ(y)
0, x �= σ(y)

(87)

for any σ ∈ Sn.
The following two lemmas are crucial for our purposes.

Lemma 3. Let Rσ ∈ R(Gn), σ ∈ Sn be such that∑
σ∈Sn

RσUG
σ = 0.(88)

Then Rσ = 0 for any σ ∈ Sn.

Proof. Any R ∈ R(Gn) commutes with the left action of Gn on itself.
Thus by [41] its matrix elements satisfy the equality

(R)x,y = (R)zx,zy(89)

for any x, y, z ∈ G × G. It is easy to see that(
RUG

σ

)
x,y

=
(
RUG

σ

)
zx,σ(z)y

(90)

Rewriting (88) in the form ∑
σ∈Sn

(
RσUG

σ

)
x,y

= 0(91)

and setting z = y−1 and ξ = y−1x we see from (90) that∑
σ∈Sn

(
RσUG

σ

)
ξ,σ(y−1)y

= 0.(92)
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Let S(y) ⊂ Sn be the stationary subgroup of y. Then (92) obtains the form

(R)ξ,e =
∑

σ/∈S(y)

(
RσUG

σ

)
ξ,σ(y−1)y

,(93)

where R := −
∑

σ∈S(y) RσUG
σ .

Let us set y = (g, e, ...., e). Then S(y) ≡ S(n−1), the subgroup consisting of
all permutations which act only on n−1 last components in Gn and is obviously
independent of g. For any σ �= S(n−1) we have

σ(y−1)y ≡ g(σ) = (

k︷ ︸︸ ︷
g, e, . . . , e, g−1, e, . . . , e)(94)

for some k = 2, . . . , n. Let us define the set

G(σ) =
{

g(σ) : g ∈ G
}

.(95)

Obviously, g
(σ)
1 = g

(σ)
2 implies that g1 = g2. Thus G(σ) ⊂ Gn.

Next, (93) implies that

(R)ξ,e =
∑

σ/∈S(n−1)

(
RσUG

σ

)
ξ,g(σ) .(96)

Thus

∑
g∈G

(R)2ξ,e ≤
∑
g∈G

 ∑
σ/∈S(n−1)

(
RσUG

σ

)
ξ,g(σ)

2

≤ 2
∑
g∈G

∑
σ/∈S(n−1)

(
RσUG

σ

)2
ξ,g(σ)

≤
∑

σ/∈S(n−1)

∑
η∈G(σ)

(
RσUG

σ

)2
ξ,η

(97)

≤
∑

σ/∈S(n−1)

∑
η∈Gn

(
RkUG

σk

)2
ξ,η

= (n! − (n − 1)!)
∑

η∈Gn

(
RkUG

σk

)2
ξ,η

< ∞

because RσUG
σ ∈ B(L2(Gn)). This implies that

(R)x,y = (R)ξ,e = 0(98)
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for any x, y ∈ Gn. Thus ∑
σ∈S(n−1)

RσUG
σ = 0.(99)

The statement of the lemma follows by an obvious induction argument.

Corollary 2. The set

R(n) :=
{
(Rg1 ⊗ . . . ⊗ Rgn

) UG
σ

}
g1,... ,gn∈G,σ∈Sn

(100)

is a basis of the linear space R(n).

Proof. It is clear that R(n)is a total in R(n) set. (88) shows that R(n) is
linearly independent.

Let L(Gn) be the von Neumann algebra generated by the left regular
representation of Gn.

Lemma 4. Let R1, R2, . . . ,Rm ∈ R(Gn), σ1, . . . ,σm ∈ Sn, and

R1U
G
σ1

+ R2U
G
σ2

+ · · · + RmUG
σm

= L(101)

for some L ∈ L(Gn). Then L = αI for some constant α.

Proof. R ∈ R(Gn) implies that(
RUG

σ

)
x,y

=
(
RUG

σ

)
zx,σ(z)y

(102)

for any x, y, z ∈ Gn and σ ∈ Sn (cf. (90)). In particular, for ηg = (g, g), g ∈ G,
we have (

RUG
σ

)
x,y

=
(
RUG

σ

)
ηgx,ηgy

(103)

Consequently we obtain

m∑
k=1

(RkUG
σk

)x,y =
m∑

k=1

(RkUG
σk

)ηgx,ηgy.(104)

Similarly, for L ∈ L(Gn) we have

(L)x,y = (L)xz,yz(105)
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for any x, y, z ∈ Gn. Equality (101) together with (104) implies that

(L)ηgxη−1
g ,ηgyη−1

g
= (L)x,y .(106)

In particular,

(L)e,ηyη−1 = (L)e,y .(107)

Now, for any y = (g1, . . . ,gn) �= e the set

Gy =
{
ηgyη−1

g , g ∈ G
}

(108)

is infinite because of condition (59). But L ∈ B
(
l2(G)⊗n

)
. Thus∑

x∈Gy

(L)2e,y =
∑

x∈Gy

(L)2e,x(109)

≤
∑

η∈Gn

(L)2e,η < ∞

and

(L)e,y = 0(110)

for any y ∈ Gn, y �= e. By (105) we have

(L)x,y =

{
α, x = y

0, x �= y
(111)

for some constant α, or L = αI.

Let us consider the cross-product W ∗(R(G)⊗n, Sn) of the von Neumann
algebra R(G)⊗n and the group Sn, where Sn acts on R(G)⊗n by permutations.
The standard representation of W ∗(R(G)⊗n, Sn) (see e.g. [22], [50]) is the von
Neumann algebra

P =
{
π(A), π(σ) : A ∈ R(G)⊗n, σ ∈ Sn

}
(112)

generated by block-operator n! × n! matrices:

π(A) =


A

. . . 0
σk(A)

0 . . .

σn!(A)

 ,(113)
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and

π(σ) = [(σ)kjI]n!
k,j=1(114)

acting in L2(Gn)⊕n!, where I is the identity operator in L2(Gn) and [(σ)kj]
n!
k,j=1

is the matrix of the permutation σ as an element of the regular representation
of Sn. Thus any element of P is a matrix [Bkj ]

n!
k,j=1 with matrix elements

Bkj ∈ R(G)⊗n. P possesses the canonical trace TrP defined by the formula

TrP [Bkj ]
n!
k,j=1 =

1
n!

n!∑
k=1

TrR(G)⊗nBkk.(115)

In particular,

TrP(π(σ)) = 0.(116)

We have the following result.

Theorem 4. 1. The von Neumann algebras R(n) and P are isomorphic.
2. R(n) is a II1-factor.

Proof. 1. It is clear that operators

π(A) =


A

. . . 0
σk(A)

0 . . .

σn!(A)

 ,(117)

and π(A)π(σ), where A = Rg1 ⊗ . . . ⊗ Rgn
, g1, . . . , gn ∈ G, σ ∈ Sn, form a

basis (say, Π) of the linear space P. Let us define a map

π̃ : R(n) → Π(118)

setting

π̃(A) = π(A), π̃(AUG
σ ) = π(A)π(σ).(119)

It is easy to see that the map π̃ can be extended to a homeomorphism of the
Banach spaces R(n) and P. The comparison of the commutation relations for
the elements of R(n) and Π respectively shows that π̃ is an isomorphism of von
Neumann algebras.
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2. It follows from the definition of R(n) (formula (80)) that R(n) ⊃ R(Gn)
and thus

(
R(n)

)′ ⊂ L(Gn). By Lemma 4

R(n) ∩ L(Gn) = {αI, α ∈ C} .(120)

Thus R(n) is a factor. It possesses a trace TrR(n) generated by TrP . Thus it is
a II1-factor.

Corollary 3. TrR(n) is the unique finite faithful normalized trace on
R(n). It is compatible with the trace of the von Neumann algebra R(G)⊗n in
the sense that

TrR(n)B = TrR(G)⊗nB(121)

if B ∈ R(G)⊗n. It follows from (116) that

TrR(n)(UG
σ ) = 0(122)

and moreover

TrR(n)((Rg1 ⊗ . . . ⊗ Rgn
)UG

σ ) = 0(123)

for any g1, . . . , gn ∈ G and σ ∈ Sn.

Remark 7. We have

P � R(G(n)),(124)

where G(n) is the cross-product of the groups Gn and Sn. This gives an indirect
proof of the fact that R(n) is a factor (because G(n) obviously satisfies condition
(59) providing G does so).

§3.4. Dimensions of symmetric subspaces

In this section, we return to the study of the von Neumann algebra A(n).

We need the following general fact.

Lemma 5. Let M be a II∞ factor, that is,

M = B(K) ⊗N ,(125)

where K is a Hilbert space and N is a II1-factor. Let B ∈ B(K) and N ∈ N
be such that TrNN = 0. Then

TrM (B ⊗ N) = 0.(126)
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Proof. Consider a matrix representation {Bkj} of B. Then B⊗N can be
represented as a block-operator matrix with elements BkjN . By construction
of the trace in M (see e.g. [22], [50]), TrM (B ⊗ N) =

∑
k TrN (BkkN) =∑

k BkkTrNN = 0.

Proof of Theorem 3. We have shown that

A(n) = B(M)⊗n ⊗R(n).(127)

Moreover R(n) is a II1 factor by Theorem 4. Thus A(n) is a II∞ factor and
possesses a unique trace TrA(n) such that TrA(n)B = TrA⊗nB whenever B ∈
A⊗n.

It remains to prove that

TrA(n)P (n)
s = TrA(n)P (n)

a =
(TrAP )n

n!
,(128)

or equivalently

TrA(n)P⊗nUσ = 0(129)

for any σ ∈ Sn.
We have P ∈ B(M) ⊗ R(G). Thus P can be represented as a weakly

convergent series

P =
∑
g∈G

pg ⊗ Rg,(130)

where pg ∈ B(M). Then

P⊗n =
∑

g1,... ,gn∈G

pg1 ⊗ . . . ⊗ pgn
⊗ Rg1 ⊗ . . . ⊗ Rgn

(131)

and

P⊗nUσ = P⊗nUM
σ UG

σ

(132)

=
∑

g1,... ,gn∈G

[
(pg1 ⊗ . . . ⊗ pgn

)UM
σ

]
⊗
[
(Rg1 ⊗ . . . ⊗ Rgn

)UG
σ

]
.

where (pg1 ⊗ . . . ⊗ pgn
) UM

σ ∈ B(M)⊗n and (Rg1 ⊗ . . . ⊗ Rgn
)UG

σ ∈ R(n).
For any g1, . . . , gn ∈ G

TrR(n)

[
(Rg1 ⊗ . . . ⊗ Rgn

)UG
σ

]
= 0(133)
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by (123). It follows from the lemma above that

TrA(n)

([
(pg1 ⊗ . . . ⊗ pgn

)UM
σ

]
⊗
[
(Rg1 ⊗ . . . ⊗ Rgn

)UG
σ

])
= 0.(134)

Thus

TrA(n)P⊗nUσ =(135)

=
∑

g1,... ,gn∈G

TrA(n)

([
(pg1⊗. . .⊗pgn

)UM
σ

]
⊗
[
(Rg1⊗. . .⊗Rgn

)UG
σ

])
=0.

§3.5. Uniqueness of the dimension

As has already been noticed, the minimal von Neumann algebras {A⊗n,

Ps}′′ and {A⊗n, Pa}′′ containing Ps and Pa respectively are subalgebras of
A(n), but it is not clear whether they in general coincide with it.

Lemma 6. {A⊗n, Ps}′′ and {A⊗n, Pa}′′ are factors.

Proof. We have A⊗n ⊂ {A⊗n, Ps}′′ ⊂ A(n). Thus

(136) {
A⊗n, Ps

}′′ ∩ {A⊗n, Ps

}′ ⊂A(n) ∩
{
A⊗n

}′
⊂
(
B(M) ⊗R(n)

)
∩ (B(M) ⊗R(Gn))′

⊂
(
B(M) ⊗R(n)

)
∩
(
C

1 ⊗ L(Gn)
)

= C
1 ⊗

(
R(n) ∩ L(Gn)

)
= C

1

because R(n) ∩ L(Gn) = C1 by Lemma 4.

Thus {A⊗n, Ps}′′ and {A⊗n, Pa}′′ possess unique traces Tr{A⊗n,Ps}′′ and
Tr{A⊗n,Pa}′′ respectively such that their restrictions to A⊗n coincide with
TrA⊗n . Then obviously

Tr{A⊗n,Ps}′′P (n)
s = TrA(n)P (n)

s ,

Tr{A⊗n,Pa}′′P (n)
a = TrA(n)P (n)

a .(137)
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§3.6. Finite dimensional approximation

We shall discuss the relationship between formulae (9) and (75). The first
question is whether they are consistent. In some cases, positive answer can
be given by a finite dimensional approximation of the space X . The following
result is known.

Theorem 5 ([39], [40]). Suppose that the group G (see (52)) is residu-
ally finite and let

. . . Gm+1 ⊂ Gm ⊂ . . . ⊂ G1 ⊂ G(138)

be a nested sequence of normal subgroups of G of finite index such that ∩mGm

= {e}. Then we have

TrAP = lim
m→∞

Tr Pm

|G/Gm| ,(139)

where G/Gm → Xm → M is the corresponding sequence of finite covers, which
“approximate” X, and Pm is the corresponding orthogonal projection onto the
space Kp(Xm) of square-integrable harmonic p-forms on Xm (Kp(Xm) is finite-
dimensional because of the compactness of Xm).

Let us consider the spaces Kp(Xm)⊗̂n and Kp(Xm)∧n and let (Pm)(n)
s

and (Pm)(n)
a be the corresponding orthogonal projections. We remark that

Tr (Pm)(n)
s and Tr (Pm)(n)

a can be computed according to the formulae (9).
The following is an easy adaptation of the above theorem to our case.

Theorem 6. Under the conditions of Theorem 5, we have

TrA(n)P (n)
s = lim

m→∞

Tr (Pm)(n)
s

|G/Gm|n(140)

and

TrA(n)P (n)
a = lim

m→∞

Tr (Pm)(n)
a

|G/Gm|n .(141)

Proof. We have, according to (9),

lim
m→∞

Tr (Pm)(n)
s

|G/Gm|n

= lim
m→∞

(
1
n!

Tr Pm

|G/Gm|
Tr Pm + 1
|G/Gm| . . .

Tr Pm + n − 1
|G/Gm|

)
(142)

=
(TrAP )n

n!
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because |G/Gm| → ∞ and Tr Pm

|G/Gm| → TrAP, m → ∞. Formula (141) can be
obtained by similar arguments.

§4. L2-Betti Numbers of Configuration Spaces of
Infinite Coverings

In order to extend the notion of L2-Betti numbers to the case of ΓX , where
X is as in Section 3 (see (52)), we need to construct a natural von Neumann
algebra containing the orthogonal projection

P(n) : L2
πΩn → Hn

π(143)

and compute its von Neumann trace.

Remark 8. There are two group actions which we can try to use. One
is the diagonal action of G on ΓX :

g {. . . x, y, z, . . . } = {. . . gx, gy, gz, . . . } ,(144)

where g ∈ G, {. . . x, y, z, . . . } ∈ ΓX . This action commutes with H(n) and thus
P(n) belongs to it commutant. However, the factor-space ΓX/G is very big
(certainly not compact) and the corresponding trace of P(n) is therefore either
zero or infinite.

On the other hand, and we can try to employ the natural actions of the
product groups Gm on Xm in the right-hand side of (29). The corresponding
commutant B(n) has the form B(L2

πΩ0) ⊗ A(n), where

A(n) :=
∏

s1, . . . , sd = 0, 1, 2 . . .
s1 + 2s2 + · · · + dsd = n

A⊗s1
1 ⊗ . . . ⊗A⊗sd

d ,(145)

and Ap, p = 1, . . . , d, is the commutant of the action of G on L2Ωp(X). The
results of the previous section give us the possibility to construct the extension
of B(n), which contain P(n).

In what follows, we will use the notation A(m)
p for the von Neumann algebra

A(m) associated with the space X = L2Ωp(X), p = 1, . . . , d, d = dim X − 1.
and set P(m)

p := P
(m)
s , if p is even, and P(m)

p := P
(m)
a , if p is odd (cf. formulae

(72)–(74)). Thus,

P(m)
p :

(
L2Ωp(X)

)⊗m → (Kp(X))
p
m

,(146)
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m = 1, 2, . . . , where
p� m =

{
⊗̂m , p is even
∧m , p is odd

. We set A(0)
p = C1, P(0)

p

= id. Obviously, P(m)
p ∈ A(m)

p .
Let us introduce the von Neumann algebra

A(n) =
∏

s1, . . . , sd = 0, 1, 2, . . .
s1 + 2s2 + · · · + dsd = n

A(s1)
1 ⊗ . . . ⊗A(sd)

d .(147)

Since all algebras A(sp)
p , sp �= 0, are II∞-factors, so is A(n), with the trace

given by the product of the traces in A(sp)
p .

Let

P(n) = InP(n) (In)−1 ,(148)

where

In : L2
πΩn → L2

π(ΓX)
⊗[

n⊕
m=1

L2Ωn(Xm)

]
(149)

is the isometry defined by (28).

Theorem 7.

P(n) ∈ B(n) := B(L2
πΩ0) ⊗ A(n)(150)

and

TrB(n)P(n) =
∑

s1,... ,sd=0,1,2,...
s1+2s2+···+dsd=n

(b1)
s1

s1!
. . .

(bd)
sd

sd!
,(151)

where b1, . . . ,bd are the L2-Betti numbers of X.

Proof. Formula (42) implies that P(n) = P ′ ⊗ P ′′, where

P ′ : L2
πΩ0 → Ker H(0)(152)

and

P ′′ :
n⊕

m=1

L2Ωn(Xm) → Ker
n⊕

m=1

H
(n)
Xm(153)
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are the corresponding orthogonal projections. Moreover, according to formula
(43) we have

P ′′ =
∑

s1,... ,sd=0,1,2,...

s1+2s2+···+dsd=n

P(s1)
1 ⊗ . . . ⊗ P(sd)

d ∈ A(n).(154)

Thus

P(n) ∈ B(L2
πΩ0) ⊗ A(n)(= B(n))(155)

and

TrB(n)P(n) = Tr P ′ · TrA(n) P ′′.(156)

The result follows now from Theorem 3 and the fact that P ′ is just a 1-
dimensional projection.

We will use the notation bn := TrB(n)P(n) and call bn the n-th L2 Betti
number of ΓX .

Example 1. Let X = Hd, the hyperbolic space of dimension d. It is
known that the only non-zero L2-Betti number of Hd is bd/2 (provided d is
even). Then

bn =

{
(bd/2)k

k! , n = kd
2 , k ∈ N

0, n �= kd
2 , k ∈ N

.(157)

The precise value of bd/2 depends on the choice of the corresponding group G

of isometries of H
d, see [13].

Let us introduce a regularized index indΓX
(d + d∗) of the Dirac operator

associated with the de Rham differential of the configuration space setting

indΓX
(d + d∗)=

∞∑
k=0

(−1)kbk.(158)

We will use the convention b0 = 1.

Theorem 8. The series on the right hand side of (158) converges ab-
solutely, and

indΓX
(d + d∗) = eχ(M),(159)

where χ(M) is the Euler characteristic of M .
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Proof. We have

(160)

indΓX
(d + d∗) =

∞∑
n=0

(−1)n bn

=
∞∑

n=0

(−1)n
∑

s1,... ,sd=0,1,2,...

s1+2s2+···+dsd=n

(b1)
s1

s1!
. . .

(bd)
sd

sd!

=
∑

s1,... ,sd=0,1,2,...
s1+2s2+···+dsd=n

(−1)s1 (b1)
s1

s1!
. . . (−1)dsd

(bd)
sd

sd!

=
∞∑

s1=0

[(−1) b1]
s1

s1!
. . .

∞∑
sd=0

[
(−1)d

bd

]sd

sd!

= e−b1 · . . . · e(−1)dbd = e
∑d

k=0(−1)kbk

because b0 = 0. It is known that
∑d

k=0(−1)kbk = χ(M) [18], which implies
(159). To prove the absolute convergence of the series (158) let us remark that

∞∑
k=0

bk = e
∑d

k=0 bk(161)

(similarly to (160)).

Corollary 4. bk → 0, k → ∞.

Proof. This follows immediately from the convergence of
∑∞

k=0 bk.

Corollary 5. The L2-cohomology of ΓX is infinite provided χ(M) �= 0.

Proof. If χ(M) �= 0 then bk �= 0 for some k ≥ 1 (recall that b0 = 1).
Thus KerH(k) is infinite dimensional.
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