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On Quartic Surfaces and Sextic Curves with
Singularities of type Eg 71557 Eiw

By

Tohsuke URABE*

§0. Introduction

In this article we discuss normal quartic surfaces in /2% and reduced sextic
curves in 2. Especially we would like to treat the case where they have a simple
elliptic singularity Ey, a cusp singularity 7,3, or a unimodular exceptional
singularity E,,. (Cf. Arnold [1], Saito [19]). We show that when they have such
a singularity and other several singularities, the combination of singularities is
subject to a certain law explained from the viewpoint of Dynkin graphs. Indeed
we will verify the following theorems. Now in this article we assume that
every variety is defined over the complex number field C.

Definition 0.1. For a given set of several connected Dynkin graphs, the
following procedure is called an elementary iransformation of it.
(1) Replace each component by the extended Dynkin graph of the corres-
ponding type.
(2) Choose in arbitrary manner at least one vertex from each component (of
the extended Dynkin graph) and then remove these vertices together with the
edges issuring from them. (Cf. Bourbaki [3], Dynkin [7])

Note that any Dynkin graph without multiple lines is associated to a rational
double point on a surface. (Cf. Artin [2])

Theorem 0.2. Assume that a normal quartic surface X in the projective
space P® of dimension 3 has a simple elliptic singularity E,. Then the combination
of singularities on X is Eg plus one of the following.

(I) a combination of rational double points associaied to a set of Dynkin graphs
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which is obtained from the Dynkin graph By by elementary transformations re-
peated twice such that the resulting set of Dynkin graphs has no vertex cor-
responding to a short root.
(I1) a combination on rational double points associated to a set of Dynkin graphs
obtained from the Dynkin graph Eg by elementary transformations repeated
twice.
(IIT) another E;.

Conversely every combination appearing in the above (I), (II), (IIl) plus E,
can be realized on a normal quartic surface in P? as singularities.

Remark. 1. The singularity obtained by contracting a smooth elliptic
curve with self-intersection number —1 on a smooth surface is the singularity
E,. It has the next normal form of the defining equation (Cf. Saito [19]):
X4+y(y+2%) (y+az%)=0, a=£0, 1.

2. In case (III) two elliptic curves appearing in the resolution of singularities
on X are isomorphic. This is Y. Umezu’s result. (Cf. Umezu [22])

3. We can find the notion of the elementary transformation already in Dynkin
[71. However, his elementary transformation is slightly different from ours.
4. Consider the Dynkin graph B,.

o o o) O——soeses —0—0
@, ) @3 @, g @y

The vertex @, corresponds to a short root. Now we consider the following
case in particular. We erase a,, but keep a, in the extended Dynkin graph
of By,

B
ol
0&=0 O—tset0e—0—O—-0
@  qQ a3 @ & @
obtaining the graph
o) O—ocssses
a, a,
(here a;, -+, @y and B may or may not have been erased.) This is an elementary

transformation. Next, we apply another elementary transformation. In the
extended Dynkin graph, the new vertex 7 joined to @, must be regarded as a
short root.
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Thus both 7 and @; have to be erased in the second step of this elementary
transformation.

Theorem 0.3. (resp. Theorem 0.4.) Consider a normal quartic surface in
P3 with a cusp singularity T,s,. (resp. an exceptional singularity E;;) The
combination of singularities on X is T, 3 ; (resp. Ei;) plus one of the following.
(I) a combination of rational double points associated to a subgraph of the
Dynkin graph D,. (resp. a subgraph of the Dynkin graph Aj.)
(II) a combination of rational double points associated to a proper subgraph of
the extended Dynkin graph E,. (resp. a subgraph of the Dynkin graph E,.)
Conversely every combination in the above (I), (II) plus T, 3 (resp. Ey;) can
be realized on a normal quartic surface in P® as singularities.

Remark. 1. Note that two different objects are called by the same name
E;. One is a surface singularity and the other is the extended Dynkin graph.
2. Let D be an irreducible rational curve on a smooth surface S whose sin-
gularity is an ordinary double point (resp. an ordinary cusp). We assume that
self-intersection number D? is —1. The normal isolated singularity obtained
by contracting D to a point is T, 5 ; (resp. Ej;) with the following normal form
of the local defining equation (Cf. Arnold [1]): x*+4y°+2z"+xyz=0 (resp.
X 4y3+2"+ayz5=0, as C).
3. (D) is equivalent to saying “‘a set of graphs with no vertex corresponding to
a short root obtained from the Dynkin graph B, by one elementary trans-
formation™. (resp. ““a subgraph of the Dynkin graph B, with no vertex cor-
responding to a short root”) In Section 5 we see that the Dynkin graph B, is
the essential one.
4. Of course we can state (II) in a different way using the word “‘elementary
transformation”, too.
5. Indeed, we will see that the number of extensions 2, 1, 0 in Theorem 0.2,
Theorem 0.3, Theorem 0.4 respectively is the rank of the fundamental group
=, of the exceptional curve in the minimal resolution of the singularity Z,
T, 3,1, Ey; respectively.

Now recall that if two power series zZ2-+f(x, »), Z2+g(x, y) with f, g
C{x, y} can be transformed in C® to each other by an analytic coordinate
change around the origin, then f and g themselves can also be transformed in C?
to each other by an analytic coordinate change around the origin. Thus we
shall call the singularity defined by f(x, y)=0 by the same name as the one
defined by z2+4-f(x, y)=0. Under this convention, we can use such phrase as
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“a plane curve singularity of type £, etc.

Theorem 0.5. (i) Let B be a reduced sextic curve in the projective space P*
of dimension 2. Assume that B has a simple elliptic singularity E,, Then the
combination of singularities on B is Ey plus one of the following.

(A) a combination of rational double points associated to a set of Dynkin graphs
obtained from the Dynkin graph Es+ A, by elementary transformations repeated
twice.

(B) either another E, or another E, plus one A,.

Conversely every combination appearing in the above (A), (B) plus E; can
be realized on a reduced sextic curve as singularities.

(ii) The set of reduced curves with any one of the following combination of sin-
guralities has two or more connected components in the space of all sextic curves
P(H(P?, Op(6)))-

<1> E~8+A7 <2> E8+2A3 <3> E8+A5+Al <4> E8+A3+2A1
<5y Eg+44, 6> Egt+A;+4, <T)> Eq+24;+4;, <8 Eg+A5+24,
9> EA, 134, <10> E+54,

Theorem 0.6. (resp. Theorem 0.7.) Consider a reduced sextic plane curve
B with a cusp singularity T, 3 ;. (resp. a unimodular exceptional singularity E,.)
Then the combination of singuralities on B is T, 5, (resp. Ey;) plus a combination
of rational double points associated to a proper subgraph of Es-+ A, which is not
equal to E,. (resp. a subgraph of the Dynkin graph Ej.)

Conversely such combinations are realized on reduced sextic curves.

The study of projective varieties and their singularities has long history
and it has been done from various view-points. From among them let us pick
up some results deeply connected with this article. In 1934 Du Val found out
that combination of singularities on cubic surfaces, plane quartic curves and
sextic curves on a singular quadric surface in P® can be classified from the
view-point of so-called Coxeter groups and root systems of E-type. (Du Val
[6]). His result was rediscovered by modern mathematicians from a different
point of view during 1970’s. (Pinkham [17], Looijenga [12], Mérindol [15],
Urabe [24]). In particular in a paper treating related topics Looijenga has
established a Torelli-type theorem for rational surfaces with effective anti-
canonical divisors by the mixed Hodge theory and integration of rational 2-
forms. His theorem is a powerful tool to study them. (Looijenga [12]). On
the other hand Shah classified singularities on quartic surfaces from the view-
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point of the geometric invariant theory. (Shah [21]). An example of non-
ambient-isotopic sextic curves was given in Zariski [27].

The results in this article will be mainly obtained by developing the above-
mentioned Looijenga’s method further. Indeed, the fundamental idea in this
article is like the following. Firstly we reduce the case of sextic curves to
considering branched double coverings over P? branching along sextic curves
and we show that surfaces under our consideration are rational. Secondly we
apply Looijenga’s method to construct the moduli space of them. Thirdly
we deduce the necessary and sufficient condition for any point on the moduli
space to correspond exactly to a quartic surface or a branched double covering
along a sextic curve. Lastly we examine closely the action of the Weyl group
to the moduli space. With the aid of the theory of Weyl chambers of affine
Weyl groups, we get our theorems.

The contents of this article is like the following. Section 1 is the preliminary
part. We explain that the study of a sextic curve B is reduced to the study of
branched double covering X of P? branching along B and that such branched
coverings and quartic surfaces are rational surfaces with anti-canonical divisors
and ruled surfaces with positive irregularity. From Section 2 to Section 5 we
study rational surfaces. In Section 2 we explain a generalized version of
Looijenga’s Torelli-type theorem. As a result we have an algebraic group
Hom (I', E) as a moduli space of a certain class of rational surfaces, where I" is
a certain free Z-module with a bilinear form and £ is either an elliptic curve with
a group law, a multiplicative group C¥*, or an additive group C. In addition the
relation between our version, theory of integration and the mixed Hodge theory
is explained. Section 3 is devoted to studying properties of linear systems on
them. Section 4 is the Diophantine theoretic part. We determine the class
of the polarization in the Picard group. The action of the Weyl group on
Hom (I, E) is studied in Section 5.

I would like to express my heartly thanks to my teachers and colleagues.
In particular we thank Mr. T. Fukui for pointing out an error in the first version
of this article.

Now we guess that our theorem is a small part of a big theorem dominating
all quartic surfaces and all sextic curves, of course. There are two reasons we
discuss only surfaces with £y, T, 3,, Ej, here. One is that since most of them
are rational, they have a rather simple global structure. The other is that the
fundamental domain of the Coxeter group introduced in Section 2 is easier to
handle than that in other cases. Therefore the next problem should be the next
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step of our study. (Cf. Kato and Naruki [10], Umezu and Urabe [23])

Problem. Find out the general law explaining which singularities appear
on quartic surfaces and sextic curves.

For line bundles L, A and divisors 4, B on a smooth surface Z, the inter-
section number is denoted by LM, L<A, or A-B in this article. Sometimes
we write L2, A% instead of L-L, A-A. The complete linear system associated to
the line bundle L is denoted by |L|. The complete linear system | ,(4)]
associated to a divisor 4 is denoted by | 4| for brevity. If M is a dual line
bundle of L, we denote |M| by |—L|.

§1. Preliminaries

In this section we explain that quartic surfaces and branched double
coverings of P? branching along sextic curves are roughly classified into 3
types; K3 surfaces, rational surfaces and ruled surfaces with positive irregularity.

First of all, we consider sextic curves. Let B be a sextic curve in the 2
dimensional projective space P?. We introduce the branched double covering
X of P? branching along B. Let F(z, z;, z,) be the homogeneous defining
polynomial of B. We give weight 1, 1, and 1 to variables z,, z, and z, respec-
tively. Let z; be another variable with weight 3. Then zi—F(z, z,, z,)=0
defines a surface X in the weighted projective space P(1, 1, 1, 3) not passing
through the point (0, 0, 0, 1). Here recall that the quotient of C*— {(0, 0, 0, 0)}
by the following action of C*=C—{0} is P(1,1, 1, 3). Action: #(zy, z1, 2,, 25)
=(tz,, 12y, t2,, 1°z;) where t € C* and (z,, z;, 2,, 2;) € C*— {(0,0,0,0)}. P(1,1,1,3)
has a unique singular point at (0,0,0, 1). The restriction to X of the projection
z: P(1,1, 1,3)—{(0, 0, 0, D)} —=P?, (24, 21, 25, 25)—>(2,, 21, 2,) defines a finite mor-
phism of degree 2. We denote it by the same letter z: X—P?. The following
lemma is easily checked. (Cf. Arnold [1])

Lemma 1.1. A point x& X is singular if and only if ©(x) is a singular point
of B. Moreover the isomorphism class of a surface singularity (X, x) and that
of a curve singularity (B, n(x)) determine each other uniquely. Thus singular
points on X and those on B has one-to-one correspondence.

Thus the study of B is reduced to that of X. Note that X is normal if B
is reduced, since normality is equivalent to that X has only isolated singular
points in our case. (Cf. Matsumura [12])

The next lemma is easy to verify.
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Lemma 1.2. Let X denote either a quartic surface in P® or a branched
double covering over P? branching along a sextic curve B. Let Oy denote its
structure sheaf.

(1) The dualizing sheaf wy is a trivial invertible sheaf, i.e., @ y==Oy.

(2) HY(Ox)=0.

Note that Lemma 1.1 and Lemma 1.2 hold even if the sextic curve is not
reduced or the quartic surface is not normal. However, in the sequel we treat
only the case of reduced sextic curves and normal quartic surfaces. Let X be
as in Lemma 1.2. We assume moreover that X is normal.

Let o: Z—X be the minimal resolution of singularities of normal X. We
have the Leray spectral sequence

E}* = HNR'0,07) = H""(O;)

Thus we have the next lemma since normality implies R°0,O,=04. Here
the geometric genus of a singular point x € X is defined by p,(X, x)=
dim¢ (R'0407),. It is known that p (X, x) is well-defined. (Wagreich [26]).
Moreover p,(X, x)=0 if and only if x& X is either a smooth point or a rational
double point. (Artin [2])
Lemma 1.3. x(O,)+ P P(X, x)=2(0x)=2
xe X: singular points
where x(F) is the Euler-Poincaré characteristic of the sheaf F.

Note that the minimality of Z implies the next lemma, of which we omit
the proof.

Lemma 1.4. There exists an effective divisor D on Z with w,=QO,(— D).
Moreover
Supp D = U o7 (x).
x&€ X; singular points with pg(X, x)>0
Propesition 1.5. Let X be either a normal quartic surface in P® or a branched
double covering over P?® branching along a reduced sextic curve B. Set
P= > DX, x).

x€ X singular points
{1> If P=0, then the minimal resolution Z of X is a K3 surface.
(2> If P=1, then Z is a rational surface with an anti-canonical effective divisor D.
(3> If P=2, then Z is birationally equivalent to a ruled surface over a smooth
irreducible curve of genus P-1.

Proof. If P=0, w,=~(0, by Lemma 1.4. By the Leray spectral sequence
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and by Lemma 1.2 we have HY(O,) =0 since R0,0,=0. Thus Z is a K3
surface.

Assume P=1. By Lemma 1.4 one sees that w®" =@ ,(—mD) for an
effective divisor D==0. In particular the Kodaira dimension #(Z) of Z is —oo.
By the theory of classification of surfaces (Cf. Shafarevich [20]) one sees that
Z is birationally equivalent to P? or a ruled surface over a curve with positive
genus. On the other hand we have y(©,;)=2—P by Lemma 1.3. Since the
Euler-Poincaré characteristic of the structure sheaf is a birational invariant,
Z is rational.

In the case where P =2, we have {3)> by the same reason. Q.E.D.

Remark. In Umezu [22] Y. Umezu showed that if X is quartic and if
P =2, then P=2 or 4 and she gave the classification of quartic surfaces with P =2.
As for branched coverings, if P =2, then P=2 or 3.

We chiefly discuss in this article case <2 in Proposition 1.5.

Let X be as in Proposition 1.5. Assume further that X has unique E;
singularity plus several rational double points and no other singularities. The
minimal resolution Z of X is rational with a non-zero effective anti-canonical
divisor D. Moreover in this case D is an irreducible smooth elliptic curve with
self-intersection number D*=—1. If X has T,;, instead of E, then D is an
irreducible rational curve whose singularity is one ordinary double point with
self-intersection number D?=—1. If X has E,, instead of £;, then D is an
irreducible rational curve whose singularity is one ordinary cusp with D?=—1.

Proposition 1.5. Assume that Z is a smooth rational surface with an effective
irreducible anti-canonical divisor D. If Z is not a relatively minimal model,
then Z can be blown-down to P~

Proof. The proof is the same as in Looijenga [12], Theorem (1.1). There-
fore we omit it here. Q.E.D.

Lemma 1.6. A non-zero irreducible anti-canonical effective divisor D on
a smooth rational surface Z is either;

(a) an irreducible smooth elliptic curve

(b) an irreducible rational curve whose singularity is one ordinary double
point,
or (c) an irreducible rational curve whose singularity is one ordinary cusp.

In particular examples just before Proposition 1.5 exhaust all the possibili-
ties.
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Proof. 1Tt is an easy consequence of the adjunction formula. Q.E.D.

§2. A Theorem of Torelli Type

In this section, we would like to explain a theorem of Torelli type for
rational surfaces with an effective anti-canonical divisor. Most of the essential
ideas of this theorem are due to Looijenga. However the situation we treat
here is slightly different from Looijenga’s original one. (In Looijenga [12] it is
assumed that the anti-canonical divisor D is a cycle of rational curves. In this
article we assume that D is either (a), (b) or (c) in Lemma 1.6. Though (b) is
equivalent to a cycle of rational curves with length 1, the case (a) and (c) did not
be treated in [12].)

Because the proof of the theorem is the same as in [12], we omit it here.

Anyway we would like to begin this section by explaining several notions.—
Dynkin graphs, Weyl groups, roots, etc.

Let Z be a smooth rational surface with irreducible effective anti-canonical
divisor D. Moreover we assume in this section that the self-intersection number
of the dualizing sheaf % is less than or equal to 6. Set t=9—w?%. We have
t=3. Under this assumption, Z is not a minimal model. Thus by Proposi-
tion 1.8, we have a sequence

O Ot-1 92 it 2
Q) Z=2Z,—Z, \—>—Zy,—> L, —> Z, =P

where each o; is a blowing-up of a point z;&Z;_,. Note that the number of
blowing-ups is t=wh2—w%. We denote D,=D, D, ;=0,D,) 1<i=<t). We
have z;&D;_,CZ;_,. We consider the Picard group Pic (Z). Let ¢, be the
class of the total inverse image on Z of a line in Z,=P% Let e¢; (i=1) be the
class of the total inverse image on Z of the exceptional curve 67'(z;). Elements
ey €1, **+, €, EPic (Z) define a free Z-basis with the following mutual intersec-
tion numbers;

e§:+19 e%:‘”-l(léiét)’ ei°ej:0 (l=l=])'

We say that (2.1) is the blowing-down sequence along e,, e, ---, ¢;,, when each e;
is the above-mentioned class of effective divisors. Here we note that

Dz = @Z(_"D) = —3€0+€1-{-"'—|—€t .

Let P=Z¢ey+Ze,+---+Ze, be a Z-module with a bilinear form which is
isomorphic to Pic (Z) with the intersection form, where ¢, +-+, ¢, E P is a basis
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with
=41, e&=—-101=KiZ1), e-¢; =0 (i%j)).
We set £e=—3¢,+¢&,++--+¢,. Let I" be the orthogonal complement of Zx in

P. I'={x&P|x-£=0}. The restriction of the bilinear form of P to I' is
described by the following graph.

T2 73 Ta Ts Ti-1 T
o e f;~ O—eo0 000 —0O o)

|

e}

71

Here we denote r,=¢,—e,—e,—e3, 7, =¢;,—¢; (2=j=t) for simplicity.
Vertex o corresponding to 7; indicates a member of a basis of I" with the self-
intersection —2. (It is easily checked that the above 7, 7y, *+*, 7, defines a

basis of I and that y?=—2 if r=3.) Two vertices Q—Té are connected with
an edge—if r;-7;=1 and they are not connected if 7;-7;=0. In particular
I" is isomorphic to the root lattice (Cf. Bourbaki [3]) of type 4,+A4,, 4,, D5, Es,
E, or E;according as t=3,4, 5,6,7,8. Ift=9, then I" is not negative-definite.

Let r&P be an element with y*=—2. Let sy: P—P be a linear map
defined by sy(x)=x+(x-r)r for x&P. It is easily checked that s, is an iso-
morphism of order 2 preserving the bilinear form. In addition if 7-£#=0, then
Sy(k)=r. syis called the reflection associated to y. The group generated by
Sy,5 =", Sy, is called the Weyl group of P and it is denoted by W or Wp. (Note

that for we W, w(k)=r.) We call any element in LtJ Wy, (CT') aroot.
i=1
Indeed sy defines the reflection with respect to the hyperplane orthogonal
to 7 ie, {xEPQR|x-r=0} in PRR. (W, {s.,,], Sy, ***, Sy,t) defines a
Coxeter system. (Cf. Looijenga [12], Bourbaki [3]). Now let y&I" be a root.
¢
Writing r= > n;r; n;€ %), then we have either ;=0 for any i or n,<0 for
i=1
any i. If n;=0 for any i, we say that r is a positive root. Otherwise it is
called a megative root. Note that this notion depends on the choice of the
basis. Let R, (e, €, -+, €;) denote the set of positive roots.
For roots in Pic (Z) we can distinguish the following property. A root
r&Pic(Z) is called a nodal root if the restriction of r to D is a trivial line bundle.

(This terminology is due to Looijenga.)

Lemma 2.1. Let r &Pic(Z) be anodal root. Then either r or —r is effective.
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Proof. Assume that r’=—2, r|,~0, and H(—r)=0. By the Serre
duality we have H*r(—D))=0. Consider the exact sequence

0—=>r(—D)—r—r|,—0.

One sees that #(r)=0 and Hr)—>HYr|p)==C is surjective. Thus A'(r)>0.
By the Riemann-Roch formula

K(r) = (#2+D-r)2-+-1+H(r) >0,
ie., r is effective. Q.E.D.

Let S, denote the set of effective nodal roots. S=S, U(—S,) is the set of
nodal roots. Let Wy be the group generated by {s,|r&S}. W; isa subgroup
of Weicin- We call W the Weyl group of Z associated to nodal roots.

The following theorem is due to Demazure when 3 <t =<9 and itis essentially
due to Looijenga when t=10. (Demazure [5], Looijenga [12])

Theorem 2.2. Let Z be a rational surface with an ejfective irreducible anti-
canonical divisor D such that t=9—w%=3. Let e, e, -, e,&Pic(Z) be a
basis such that there exists a blowing-down sequence along ey, e, -+, e,. Let W
be the Weyl group of Pic(Z) defined depending on e, e, -+, e, and let weW.
Then there exists a blowing-down sequence along w(ey), w(e,), ---, w(e,) if and
only if every effective nodal root is a positive root, i.e., S, C R, (w(ey), w(ey, -+,
w(e,)). Moreover for any two basis e, e, -+, e,&Pic(Z) and e, el, -, e}
Pic(Z) such that there exist blowing-down sequences along both of them, there
exists an element we W with ei=w(e;) for 0=i<t.

Corollary 2.3. The set of roots R in Pic(Z) and the Weyl group W of Pic(Z)
do not depend on the choice of the blowing-down sequence (2.1).

Note that the positive cone {x= PR R|x-x>0} in PQR has two connected
components since the signature of the bilinear form of P is (1, 7).

Definition 2.4. Let ¢ be an integer with #=3. Let E be a one-dimensional
algebraic group isomorphic to either a smooth elliptic curve, C*=C— {0}, or
C. We call the following object Z=(Z, D, a, ¢) a marked rational surface over
E of degree 9—1.

(1) The first item Z is a smooth rational surface with @2=9—1.

(2) The second item D is an effective irreducible anti-canonical divisor on Z
which has the following isomorphism ¢.

(3) The third one a: P—Pic(Z) is a linear isomorphism satisfying the following
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conditions (i), (ii), (iii) and (iv), where P=Z¢,+Ze,+:--+Ze, is an abstract
free Z-module with a bilinear form defined by ei=-1, ¢i=—1 (1Zi<1),
g;0e;=0 (I=)).
(i) a preserves the bilinear form, i.e., x+y=a(x)-a(y) for any x, yc P.
(ii) a(r)=w, where £=—3¢,+¢&,+ -+ +¢,.
(iii) «@(T)=R where II and R are the sets of roots in P and Pic(Z)
respectively.
(iv) a(4,)=C, where A, (resp. C,) is a connected component of the
positive cone in PR R (resp. Pic(Z)Q R) containing &,. (resp. e,)
(4) The fourth one ¢: Pic®(D)— E is an isomorphism as algebraic groups,
where Pic’(D) is the connected component of Pic(D) containing the zero
element.

Definition 2.5. Two marked rational surface over E (Z, D, @, ¢) and
(Z',D',a, ") are isomorphic if there exists an isomorphism of varieties f:
Z—Z' satisfying the following conditions (A), (B), and (C).

(A) f(D)=D".
(B) The composition
a o F*
Pic (Z) < P — Pic (Z")— Pic (Z)
can be written as a composition of finite reflections corresponding to nodal

roots on Z.
f*
(C) The diagram Pic®(D’) — Pic®(D)
J \ ¢
E is commutative.

Definition 2.6. Let QCPic(Z) be the orthogonal complement of Zw,,
ie., Q={x&Pic(Z)|x-w,=0}. Note that the image of Q by the restriction
map Pic(Z)—Pic(D) is contained in Pic®(D). The following composition of
homomorphisms is called the characteristic homomorphism ¢ & of Z=(Z, D, a,1).

a _ restriction
r—-gQ

14
Pic®(D) - E
Here I' is the orthogonal complement of Zx in P.
It is easy to check the next lemma.

Lemma 2.7. The characteristic homomorphism ¢ depends only on the
isomorphism class of (Z, D, a, ¢).



QUARTIC SURFACES AND SEXTIC CURVES 1197

Now we can state the main theorem in this section. It gives a powerful
tool to study rational surfaces. Even though the situation treated by Looijenga
is slightly different from ours, this theorem is due to Looijenga, we think.

Theorem 2.8. (A4 theorem of Torelli type.) The map induced by associating
a marked rational surface (Z, D, a, ) to its characteristic homomorphism

{(Z, D, @, ¢): a marked rfztzonal sezrface over E of degree 9—t} — Hom (T, E)
isomorphisms
is bijective.

Next we would like to explain why this theorem is called one of Torelli type.
It is explained by the Deligne’s mixed Hodge theory. For simplicity we assume
that D is an irreducible smooth elliptic curve with D*= —1. Consider an
exact sequence of mixed Hodge structures (Cf. Deligne [4])

HD)(—1) — H(Z) — HYZ—D) — HY(D)(—1).

Note that FH(Z)=0 and FY(HY(D)(—1))= H%w,). Thus we have that
dimy FPHA(Z—D)=1. Now by definition FZH*Z—D) is represented by a
logarithmic 2-form v~ on Z with the pole along D, which is unique up to constant
multiple. Since this situation is very similar to that of the second cohomology
group of K3 surfaces, we can consider the periods of v». Here the periods are
nothing but the linear mapping

H(Z—D)— C; 4 — fd'%h v

Note that there is a submodule Im (H (D) 3 H (Z—D)). Since [,qmr=
27/ =1 [yRes (), we have that C/Im(H(D)—>H{Z—D)—>C)=D. Let Q be
the orthogonal complement of Zw, in Pic(Z). One sees easily that there exists
an exact sequence

0— H,(D) — H(Z—D)— Q0 —0.

Thus we have an induced group homomorphism Q—D. We can check that
this homomorphism is identified with the restriction of the mapping Pic(Z)—
Pic(D). Therefore the characteristic homomorphism ¢ can be regarded as

the periods of Z—D. This is the reason why the above theorem is called one
of Torelli type.

§3. Properties of Line Bundles

This section is devoted to study properties of line bundles on a smooth
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rational surface Z with an effective irreducible anticanonical divisor D. We
owe ideas in this section to Saint-Donat [18] very much. However, in [18]
two assumptions that the canonical bundle is trivial and that the second coho-
mology group is an even lattice are frequently used since K3 surfaces are treated.
Though our situation in this article is very similar to that in [18], we can use
neither assumption. Therefore in this section, though it is slightly lengthy, we
carefully give proofs to analogous assertions to those in [18] one after one.

Recall that a line bundle L (resp. a divisor C) on Z is numerically effective
if for any curve 4 on Z, the intersection L+ A (resp. C-A) is non-negative.

Definition 3.1. A line bundle L on Z with the following properties are
called a polarization of Z.
(1) The self-intersection number LZ is positive.
(2) L is numerically effective.
(3) The restriction of L to D is a trivial line bundle, i.e., L| ,==<O).
(4) For every exceptional curve of the first kind A4, the intersection L-A4 is
strictly positive. (L-A4>0)

The number L? is called the degree of L.

Lemma 3.2. (1) If Z has a polarization, then t=9 — w%=10.
(2) For any polarization L, hN(L)=1 and W(L)=(L?*/2)+2. Moreover the linear
system |L| has no fixed points on D.

Proof. (1) If t<9, for every element M &Pic(Z) with M-w,=0, M*<0
holds. However L?>0 and L-w,=0 for any polarization.
(2) By the Kawamata-Ramanujan vanishing theorem (Kawamata [11]), we
have HY(L(— D))= H¥L(—D))=0. Thus the mapping H(L)— H(L|p)==
HO,)=C is surjective, and A(L)=HM(O,)=1, F(L)=0. Surjectivity implies
that |L| has no fixed points on D. On the other hand by the Riemann-Roch
formula we have

M(L) = (I’—L-w;)/2+ 2(0)+H(L)—h(L) = (I*/2)+2. QE.D.

If X is a normal quartic surface in P® and p: Z—X C P? is its minimal
resolution of singularities, then L=p*©p3(1) is a polarization of degree 4.
Similarly for a branched double covering branching along a sextic curve we can
define a polarization of degree 2. However note that conversely the polarization
L does not necessarily define a generically one-to-one morphism ¢, : Z—P¥,
The linear system |L| may have fixed components. Even if it has no fixed
components, it may have isolated fixed points. Even if it has no fixed points,
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it may define a morphism whose degree is greater than 1.
In this section we give a necessary and sufficient condition in order that L
does not define a generically one-to-one morphism in the case L?=2 or 4.

Proposition 3.3. Let M be a line bundle on Z satisfying
(a) HY(M)=+0
(b) The linear system | M| has no fixed components. And
(c) the intersection M - D is zero.
(1) If the image of the rational map @, associated to M is a curve, then M*=0.
(2) One of the following (i), (ii) holds.
(i) M?>0, any generic member of |M| is an irreducible curve with ari-
thmetic genus (M?*2)+1 and K\(M)=1.
(ii) M?*=0 and there exists a smooth irreducible elliptic curve F and a positive
integer k with M==©,(kF). Moreover h"(M)=k. Every member of |M| can
be written in the form F,+F,~+---+F,, where F;< | F|.

Proof. Firstly assume that the image I'’ of the rational map ¢,: Z---—PV
associated to M is a curve. Let v: I'>I" be the normalization of I". For a
suitable choice of a birational morphism r: Z—Z, there exists a morphism

Z
RN
Z I

TN v
1'|/

o Z—I' with PuT=v.

If the genus of I' is positive, we have a non-zero global regular 1-form a on I.
Since ¢*a defines a non-zero global regular 1-form on Z, we have H%(23')==0,
which contradicts that Z is rational. Thus I" is a smooth rational curve. It
implies that for every point p, p’ € I', divisors 7(¢~*(p)) and =(¢~'(p’)) are
linearly equivalent. Choose a general point g&I" and set F=1(¢"*(g)). One
sees that M= (kF) for some integer k. If dim|F|=2, then we have a
member F;&|F| such that for any point p&I', F,= (¢ %(p)). Choose
points =gy, ¢, ***, ¢, €I such that 7(¢~(q:)) + (¢ (g2) + - +2(¢7(gn) E M.
Since 7(¢7'(qy)=F~ F,, we have G=F+7(¢7X(q,)++1(¢7(qy)) € | M|
since | M| is a complete linear system. However, by the choice of F; and
the definition of ¢, we have G & |M|, a contradiction. Therefore we have
dim|F|=1.
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We have kD-F=D-M=0 and thus D-F=0. We can conclude that
DN F=¢. Consider the exact sequence

0—> Oy (—F—D)— 0O, — O0rP0O, —0.

It implies A(O,(—F—D))=1. By the Serre duality, we have AY(O,(F))=1.
Moreover H(QO,(F))=M(O,(—F—D))=0. It follows from the Riemann-Roch
formula
2 = 1+dim| F| = BA(O(F))
= 2(02)+(F*+F-D)2+H(O,(F)) = F?2+2

that F?=0 and M*=k?F?=0. In particular the linear system |F| has no fixed
points and F is smooth by the Bertini theorem. By adjunction formula Fis an
elliptic curve.

Next we would like to compute A'(M). Let F,, F,, -+, F,& | F| be general
members. We can assume that Fj, ---, F, and D are mutually disjoint since
D-F=0 and F’=0. Using the exact sequence

00— @Z(—Fl—“'-—Fk——D) - Oz —> 6:910}7,'®OD -0

and the Serre duality, one sees that AO,(F;+ - +F,))=h(M)=k.

Secondly assume that the image of ¢,, is not a curve. We have 42=0 since
| M| has no fixed components. If 4?=M?=0, then |M| has no fixed points
and the image of the morphism ¢, is a curve. Thus A*=M?>0. By the
Bertini theorem A is irreducible. We have p,(4)=4%2-+1 by the adjunction
formula. It follows that AN D=¢ from M-D=A-D=0. Thus

0> 0,(—A4—D)— 0, — 0,80,—>0
is exact and one sees that AY(O,(4))=1. Q.E.D.

Lemma 3.4. Let C be an effective divisor on Z with Supp C N D=¢ and
K (O¢)=1. Then we have KO ,(C))=1.

Proof. Consider the exact sequence
0— Oz(_C—D) - @z - @c@@p —-0.

We have B(O,(—C—D))=1. By the Serre duality we have the conclusion.
Q.E.D.

Lemma 3.5. Let 4 be a non-zero effective divisor on Z with KO ,(4))=1
and Suppd N\ D=¢. We have W(O,(4))=1 and £=—21O4(4)< —2.



QUARTIC SURFACES AND SEXTIC CURVES 1201

Proof. Consider the sequence
0 —> @Z(—A_‘D) - Oz i OAGB@D —_> 0 .
By assumption Suppd N D=¢, it is exact. We have A(O,4)) =
RO (—4—D)=hr(O,) =1 since iNO,)=r(O,)=1, I(O;)=0. Note that
H(O4(4)=h(O,(—4—D))=0. By the Riemann-Roch theorem, we have

1 = 10 ,(4)) = 2(07)+(L+D-4)[2+4h(O z(4))—H(O4(4))
— 1-(L12) - {O4(4)) - Q.E.D.

Corollary 3.6. Let © be an irreducible curve on Z with K(O,(0))=1
and ©-D=0. We have ©*=—2 and O is a smooth rational curve.

Proof. Since © and D are irreducible, ©®-D=0 implies @ N D=4.
Obviously 2°(@Qg)=1. Thus by Lemma 3.4 and Lemma 3.5, we obtain 6*=—2,
Moreover by the adjunction formula, © is smooth and rational. Q.E.D.

Propositien 3.7. Let L be a polarization on Z. If |L| has a fixed compo-
nent, then |L| contains a divisor with the following form; kF+I" where F is an
irreducible smooth elliptic curve on Z with F?*=0 and D-F=0, I' is an irreducible
smooth rational curve with I'’=-—2, I -D=0 and I" - F=1 and k is an integer
with k=2. The divisor I' is the fixed part of |L]|.

Proof. The proof is slightly complicated. By Lemma 2.2 the linear
system |L| is non-empty. Let C&|L| be a general member. Let 4 be the
fixed part of the linear system |L|=|C|. We set C=A4-4 where 4 is the
moving part. By Lemma 3.2 one sees SuppdND=¢ and 4-D=0. We
also have by Lemma 3.2, (2)

(OAC)=2-+(C?2)=2

and thus 43=0. One may assume that Supp4 N D=¢. Note that 4>=0 since
A is the moving part.
Case 1. A2>0.

By Proposition 3.3 any general member of | 4] is an irreducible curve with
arithmetic genus (4%2)--1 and A(O,(4))=1. One has

H(O£(4)) = 2(07)+(4*+D-A)2+1(O4(4)) = (47/2)+2
by the Riemann-Roch formula. On the other hand one has also
M(O(A+4) = (A+4)'/2)+2
since MO A4+ 4)=1 by Lemma 3.2, (2). It implies that A%*=(4 -+ 4)
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since A0 4(A)) = h(O,(A+4)). We have 24-4+4=0. Now recall that C
is numerically effective. Thus

0<Ced = (A+d)ed = —A-4.

However 4-4=0 since A4 is the moving part of |C|. In conclusion we have
A-4=0 and 4*=0.

If 450, then £2=—21(O,(4))<0 by Lemma 3.5. Therefore 4=0, i.e.,
| C| has no fixed components.
Case 2. A*=0.

By Proposition 3.3, there exists a smooth irreducible elliptic curve F and a
positive integer k with @,(4) = O,(kF) and F-D=0. Let 4, 4,, -+--, 4, be
connected components of 4.

We divide the rest of the proof into several lemmas.

Lemma 3.8. For every i, F-4;>0.
Proof. 1If for some i, F-4,=0, then by Lemma 3.5
0= C+d, = (kF+334))-4; = 42 = —21O,(4) <0,
which is a contradiction. Q.E.D.
Lemma 3.9. k=2.

Proof. If k=1, then by the same reason as in case 1, we have 4-4=
F-4=0. However we have just proved that F-4=3> F+4;>0, which is a
contradiction. Thus k=2. Q.E.D.

Let I"; be an irreducible component of 4; with F-I";>0.
Lemma 3.10. N=1.

Proof. Assume N=2. Choose general members Fy, -+, F,& | F| and set
P=F+--+F,+I. Q=P~+T, Obviously SuppPND=SuppQ@ND=¢
and A(Op)=h(Oy)=1. We have B(O,(P))=HI(0O,(Q))=1 by Lemma 3.4.
By the Riemann-Roch formula we have

IOL(P)) = (P*[2)+2, HK(OLQ) = (@*2)+2.
Since F%(O4(P))=H(O,(Q)) by definition, it implies that
PP = Q= (P+ T, = P>12P-T'y—2.

Here note that I's=—2 by Corollary 3.6. We have
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| = P-I'y = (kF-+T')-T', = kF-T',=k =2,

which is a contradiction. Thus N=I1. Q.E.D.

J
Set 4,=4= 3} a;0; where ©; is a mutually different irreducible curve
j=1

and g; is a positive integer. We assume that ©,- F>0. By Corollary 3.6 every
6, is a smooth rational curve with &%=—2 and D-6,=0.

Lemma 3.11. F-6,=1.

Proof. First note that %O ,(kF))=1+k by Proposition 3.3 and by the
Riemann-Roch formula. Since A%OQ,(P))=h%(O,(kF)) for the divisor P in
the proof of l.emma 3.9, we have

2k+2 = (kF+06,+4 = 2kF-0,+2,
which implies the lemma. Q.E.D.
Lemma 3.12. F-6,=0 if i=+1.

Proof. Fix an integer i with i&=1. There exists a subset S of {1,2, -+, J}
with 1S, ig S, such that 4¢=>10; and 43+6; are connected. Set P=
jies
kF+4s and Q=kF+45+60,. By the Riemann-Roch formula, we have
K(O(P)) = (PY2)+2, K(OLQ) = (@*2)+2.
We have P2=Q? since h%(O,(P))=H(O,Q)). It implies (kF-+-45)-0,=P-60;,=
—6%2=1. By the choice of 45, we have 45-0,>0. Thus F-6,=0. Q.E.D.

Lemma 3.13. Assume that there is a subset S of {1,2,--,J} with 1€S
such that 43= 3] O; is connected and k--45-0,=2. Then a,=1.

jes

Proof. Set P=kF+4s, Q=P+6, and N=0,(Q)|e,, Note that
deg N=(kF+43+6)):0,=k-+45,-0,—2=0 by assumption. One sees easily
H(O,(P))=1. Consider the exact sequence

We have #4(©,(Q)) <1 since A(N)=0. Consider the sequence
0 - 02(““Q—D) - @Z - @Q@@D - 0 o

It is exact since SuppQND=¢. Thus IO,Q))=HO,(—Q— D))=
ROy =1. Tt follows that A(O,(Q))=1. By Riemann-Roch

K(O(P)) = P*[242, K(O4(Q) = @*2+2.
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Assume that @,=2. Then AY(O4(P))=Hh(O,(Q)). We have P’=Q?= P?4
2P-0,—2. Thus P-0,=1.

On the other hand by definition of P and by assumption P-0,=(kF+4g)-
«0,=k-+45-0,=2. We get a contradiction. Q.E.D.

Lemma 3.14. If a,=1, then F-4=1 and £2=—-2.

Proof. Assume a,=1. We write 4=60,+4". Since 4'-F=0 by Lemma
3.12, we have F-4=F-6,=1. By Riemann-Roch we have h°(O,(kF))=1+k
and KO (kF+4))=(kF+4)*/2+2. Since these two numbers are equal, we
have (kF-4)?=2k—2. It implies 4>=—2 since F?=0 and F-4=1. Q.E.D.

Lemma 3.15. If k=4, then 4=06,.

Proof. We assume k=4. Set S={1}. The assumption of Lemma 3.13
is satisfied. Thus we have ¢,=1 and 4= —2 by Lemma 3.13 and Lemma
3.14. Set 4'=4—6,. The divisor 4’ does not contain ;. Assume 4'==0.
Then 4’-6,>0 since 4 is connected. It follows from the equality

2= = (6L = —244-60,+4-4

that 4-4'<0. However, since C is numerically effective and F-4'=0 by
Lemma 3.12, we have that 0 < C-d4'=(kF+ 4)-4"=4-4’, a contradiction.
Thus 4'=0. Q.E.D.

Lemma 3.16. If k=3, then 4=06,.

Proof. We assume k=3. Moreover assume 4'=4—aq,0,=0. There exists
asuffix i==1 with ©,-0,=%0. Set S={1,i}. Since k+45-0,=3+6,-0,—2, the
assumption of Lemma 3.13 is satisfied. Thus we have a;=1 and 4*=-—2.
By the same reasoning as in Lemma 3.15, one obtains a contradiction. Thus
4=a,0,.

By the same reasoning as in Lemma 3.14 one sees 4 =(3F+4)°=(3F+
@,0,)*=06a,—2a? since F-©,=1 and ©i=—2. We have a;=1or 2. If g,=2,
then C-0,=(3F+420,)-0,=—1, that is, C is not numerically effective. We
have consequently 4=6,. Q.E.D.

Lemma 3.17. If k=2, then 4=06,.

Proof. We assume that k=2. Moreover assume that @, =1. Set
4'=4—6,. We have 4'-60,=0 since 4’ does not contain ;. By Lemma 3.12
we have also 4-4'=Q2F-+4)-4'=C-4’=0. On the other hand by Lemma 3.5
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A£<—2. We have
2= = (O, +-4V = —244"-0,+4-4'=—-2.
It implies that 4'+©,—=4-4'=0, £##=—2. We have 4”=4+4'—6,-4'=0. But
4*<0if 4’40 by Lemma 3.5. Thus 4'=0.
Next assume that ¢,=2. Since 0<L-6,=(2F+a,0,)-0,+ glai@i-@:
2—2a,—|—’_¢z‘i a;0,;-0, there is an index { with i¥1, 6,-0,>0. If t};re are two

indices i, j, 1s=i=kj=£1 with 6,-0,>0, 8;-0,>0, setting S={1, i, j} we have
a,=1 by Lemma 3.13. Thus for some unique index i, 6,:0,>0. By
renumbering if necessary we can assume i,—2. We have that 6,-0,=1 since
0>(0,+6,2=—4+426,-0, by Lemma 3.5. We have the next inequality.

(B a,—2a+2 = L-6,=0.
In particular g,=2. Now since 0=<L-0,=a,—2a,+ > 9,0,-0,, there is an
i>2
index i>2 with ©,:0,>0. Assume that for mutually different three indices
is>2, a=1,2,3, 6,,60,>0 holds. Set P,=2F+6,+6,+316,, and
@=1
0,=P,+06, Since 040)]es,==0s, and ©,=P" and since h(O,HP))=
(O ,(Q,)) it follows from the exact sequence
0 — O(P) = O,(0) — @@2 —0
that #Y(©,(Q,))=0. However by the exact sequence
0—0,(—0,—D)—> 0, — @Q,@@D -0

we have #(04(Q))=HI(O,(—01—D))=1, a contradiction. Thus renumbering
if necessary we can assume that one of the following two assertions holds for
k=3.

1), 0,6, ,=1and 0,:6,_,=0 for i >k.

2), 0,:60,.,=6,,,-0, ,=1and 6,-0,_,=0 for i >k+1.

For a moment assume that case (1), takes place. Since

{3.2> L-0,=a;—2a,+a,=0

and by {3.1>, we have g;=2. Repeating the similar argument as just the
above one sees that we can assume that (1), or (2), holds. If (1), takes place,
inequalities

3.k L6, = a, ,—2a,+0,,,=0
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k=2, 3 and <3.1> imply that q,=2 and we can repeat the similar discussion
further. Since inequalities {3.k) 1=<k=K implies ay,; =2 and since the
number of irreducible components of 4 is finite, we can consequently assume
that (2)., takes place for some K=2. Set >1=6,+6,+:--+ 60y, P,=2F4> 1+
Ox 11Ok and O,=P,+>]. We can see easily that ©0,(Q,)| =0y, I (O5)=1
and AY(O5)=0. Now A(O,(P,)=1 by Lemma 3.4 and A%O,(P,))=h"(O,(Q,))
since 4 is a sum of 2>)+46,,+6,, and some effective divisor. It follows
from the exact sequence

0 — Ox(Py) = 0,(Q) = 05 —0
that #(®,(Q,)=0. On the other hand since the sequence
0—>0,(—0,—D)—>0;—> 0q,B0p, -0

is exact, we have h"(O0(Q,))=m(Oy(—Q,—D))=H(Oq,)=1, a contradiction.
Thus the case a,=2 never takes place. Q.E.D.

The above lemma completes the proof of Proposition 3.7.

Proposition 3.18. Let C be an effective divisor on Z with C+-D=0. Assume
that the linear system |C| has no fixed components and that C*=2 or 4. Then
|C| has no fixed points.

Proof. Assume that |C| has no fixed components but it has isolated
fixed points.
By induction we define a sequence of blowing-ups,
A Tk Th-1 T2 71
L=Zp—=>Zy-y—>—>Ze>Zy>Zg=2
an integer m; for 1 =j=<k and a line bundle L; on Z; for 0<j<k as
follows. First of all set Zy=Z and L;=0,(C). Next assume that Z;, ;, m;,
L; have been constructed for 0<i< j—1. If |L; ;| has no fixed points, then
setting k=j—1 and Z =Z(-1y, we terminate the procedure. If |L;_;| has
fixed points, then let 7;: Z;—Z;_,) be the blowing-up of one of the fixed
points z; & Z¢;_;. Set m,—=min{mult,i (A)|A<|L;,|}, where mult,(4)
denotes the multiplicity of the curve 4 at z. We define L;=(r¥L;_)®
Oz(j)(—mjryl(zj)). We have L%=0 for every j since |L;| #=¢ and|L;| has no
fixed components. Since L%=L; %—m? this procedure terminates in finite
steps.
Set L.=L,. If [2=0, then the image of the rational map @i Z-—PN
associated to the line bundle L= ,(C) has dimension<1. We have L?=C?=0
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by Proposition 3.3, which contradicts the assumption. Thus L2>o0.

Next we show that p,(4)=<1 for any general member 4 of Iﬁ |-
Case 1. C*=2.

Note that A'(L)=1 by Proposition 3.3. We have 2(L)=H(L)=C?2+4-2=3
by Riemann-Roch. We have a morphism ¢3: Z—>P?. On the other hand /2=1
since 0< [2<2=C? Thus any general member A of |L| has a morphism of
degree 1 to a line in P?.  Thus p,(4)=0.

Case 2. C?=4.

We have a morphism ¢3: Z—P® since h%(L)=H(L)=4 by Riemann-
Roch. Since 0< £?< I?=C2=4, one sees that ¢} is a generically one to one
morphism whose image is an irreducible cubic surface or an irreducible
quadratic surface. Then any general member A of lﬁ] has a morphism of
degree 1 to either a plane irreducible cubic curve or a plane irreducible
quadratic curve. Thus p,(4)<1.

We know p,(4)=<1 in any case.

Now let E,, -+, E, be the total inverse image on Z of the curve 77}(z,),
-, 77 X(z;). We have

L= (*LY(—mE,—m,E,— -« —m,E}), wi = (r*a)z)(El—i—Ez_I_..._'_Ek)

where T=1,7,---7,. Thus we have f.-co%———C-coz—l—ZmizEm,-. By the ad-
junction formula

pA) = (LP+oz-D)2+1 = E2)+H(Sm/)+122.
We obtain a contradiction. Thus |C| has no fixed points. Q.E.D.

Lemma 3.19. Let L be a polarization on Z.
(1) If an irreducible curve A on Z satisfies L- A=0, then either A coincides with
D or it is a smooth rational curve with A*>=—2 and AN D=¢.
(2) Let & be the union of irreducible curves A with L-A=0 and &, be a con-
nected component of £. Let Ay, A,, -+, A, be all the irreducible curves contained
in &,. Then the intersection matrix (A;>A;)<; j<x IS negative definite.
(3) Unless Ey=D, &, is the support of the exceptional curves in the minimal
resolution of a rational double point.

Proof. We can assume that A==D. Under this assumption we have
A-D=0. By the Hodge index theorem we have also 42<0. By the adjunction
formula 0= p,(4)=(4*—A4-D)/2+1. We have either 4>=—1 and 4-D=1 or
A*=—2and 4-D=0. In any case p,(4)=0. It is well-known that if p,(4)=0,
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then A is a smooth rational curve. If 42=—1 and A-D=1, then 4 is an ex-
ceptional curve of the first kind. Since L is a polarization we have 4-L>0,
which contradicts the choice of 4. Thus A*=—2 and A4-D=0. The last
equality implies A N D=¢. (2) is an easy consequence of the Hodge index
theorem. (3) follows from (1) and (2). (Cf. Artin [2]) Q.E.D.

By the well-known Grauert’s theorem, (Cf. Grauert [8]), we can contract
all the connected components of & to isolated normal singular points. Let
0: Z—X be the contraction morphism. Here X is a normal surface with a
unique singular point with positive geometric genus at w=p(D) and several
rational double points.

Proposition 3.20. Assume that a polarization L on Z defines a morphism
¢o=¢,: Z—>P". Then we have a finite morphism &: X—P" with g=gop.

Z———)PN

o\, /'

Proof. Set p(€)=S. Note that p|Z—&: Z—E—-X—S is an isomor-
phism. Thus we can define a morphism &= go(o|Z—&)™. Since ¢(€) is
a set of isolated points and X is normal, we can extend @ to whole X.
Obviously the resulting morphism X—P¥ is proper. Assume that there
exists a point z& PV such that $7'(z) has dimension 1. Let 4 be an irredu-
cible curve contained in #7(z). Let A be the strict inverse image of 4 by p.
We have L-A=0. Thus 4c& and o(4d)=4 is a point, which is a con-
tradiction. Thus & is a finite morphism. Q.E.D.

Proposition 3.21. Assume that a polarization L on Z defines a morphism
p=9,: Z—P® of degree 2 whose image is a quadratic surface. We have a
smooth irreducible elliptic curve F on Z with L-F=2, F N\ D=¢ and F*=

Proof. Case A. Assume the image of ¢ is a smooth quadratic surface >..
Let p: >1—P' be the composition of an isomorphism >1—>P'x P! and the
projection to a factor P'xP'—P'. Choose a general point z&P" and set
G=p*(z) and F=¢*(G). F is irreducible. We have F N D=¢ since ¢(D) and
po(D) are isolated points by assumption L|,=,. Wehave L+ F=20p(1)-G=2
and F?2=2G?=0. Obviously the linear system |F| has no fixed components.
By Proposition 3.3, one sees that F is a smooth elliptic curve.
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Case B. Assume that the image of ¢ is a quadratic surface >}, with a
unique singular point v&>],.

Lemma 3.22. If (D)= {v}, then ¢~ (v)=D.

Proof. Set {w}=p(D), weX. Note that @(w)={v} by assumption.
Let U be a sufficiently small neighbourhood of veUCX],. Let V be the con-
nected component of ¢ Y(U) containing w. Let SC V— {w} be the discriminant
of | V—{w}.
Case 1. Assume that the closure of @(S) in U does not contain v. By choosing
a smaller U, we can assume that @|V—{w} is unramified. Note that
) (U—{v}) = Z/2Z since the A,-singularity (U, v) is the quotient of (C% 0)
by the action of Z/2Z defined by (x,y)—(—x, —y). Thus z,(V—{w}) is
either a trivial group {e} or Z/2Z. If = (V—{w})={e}, then weX is a
simple point by a Mumford’s theorem. (Cf. Mumford [16]). If it is Z/2Z,
@| V—{w} is an isomorphism. Since ¥ and U are normal, it induces an iso-
morphism @ | V: V—U. Thus weX is a A,-singular point. However by the
construction we have p (X, w)=1. Therefore one sees that our Case 1 never
takes place under our assumption.
Case 2. Next we assume that the closure of @(S) in U contains v. Since @ isa
finite morphism of degree 2, the set {x& U|#@ '(x)=1} coincides with the
closure of @(S) in U. Thus #z '(v)=1. Here # denotes the number of
elements in the set. We have {w}=¢(v). It implies ¢ *(v)=p '(w).
Under the assumption of the lemma DC¢ }(v). However since p  o(D)=D
by the definition of o, we have ¢~'(v)=D. Q.E.D.

Lemma 3.23. Let G be a general member of the ruling P'-family of >, and
F be the strict inverse image of G by ¢. We have dim|F|=1 and |F| has no
fixed components.

Proof. We define a linear system 4 on Z by A={¢*P|P is a plane in
P? with veP}. Let 4 be the fixed components of 4. Obviously we have
Supp4C e~ (v). Let P, be a general plane in P*® passing through v. We set
P,N>3=GUG" where G and G’ are members of the ruling P'-family of >3,
Let F (resp. F’) be the strict inverse image of G (resp. G') by ¢. We have
F+F+4e 4.

Next we define a 1-dimensional linear system &5 by

5 = {¢*P—F'—4|P is a plane in P? with PDOG'} .
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We have |F| D& since FE&. Let A< |F| be an arbitrary member. A-+F'+
de|L| since F+F' +4&|L|. Thus there is a plane P, in P® with A4+F'+
4=¢*P; because |L| is a complete linear system. P, necessarily contains G'.
It implies that A€ £. Thus | F|=2&, which concludes the proof. Q.E.D.

Lemma 3.24. ¢(D)=={v}.

Proof. Assume that ¢(D)={v}. We will deduce a contradiction.
Let F be the divisor as in Lemma 3.23. By the Riemann-Roch formula and
by Lemma 3.23, we have

2 = 14+-dim| F| = (F?+F-D)/2++ 1+ 1O ,(F)) .

Lemma 3.23 also implies F2=0. Since ¢~ }(¥)=D by Lemma 3.22, we have
F-D>0. Thus if A1(O,(F))=1, this equality yields a contradiction.

Now note that A*O,(F—D))=h"(Oz(—F))=0 by the Serre duality. It
implies that the map HYO,(F))—H O ,(F)|p)=H"O,)==C is surjective. Thus
(O ,(F))=1 and ¢(D)=+ {v}. Q.E.D.

Now we go back to the proof of Proposition 3.21, Case B. By Lemma
3.24, we can choose a general member G of the ruling P-family of >, with
GNe(D)=¢. Let F be the strict inverse image of G by ¢. We have O,(F)|p=
©,. By Riemann-Roch 2=(F%2)+1+4(O4(F)). Since h(O,(F))=1, we have
F?=0.

The equality L-F=2 is obvious by definition. It concludes the proof of

Proposition 3.21. Q.E.D.

Theorem 3.25. Let L be a polarization of degree 4 on a rational surface Z
with an irreducible effective anti-canonical divisor D. The following conditions
are equivalent.

(1) The rational map ¢, associated to L defines a birational morphism to a
quartic surface in P,
(2) There exists no element M Pic(Z) with M*=0, M «L=2 and M | ,=0),,.

Besides if one of the above equivalent conditions holds, then the induced
morphism @: X —P® by ¢, is an embedding.

Proof. First we show (2)=>(1). Assume that |L| has fixed components.
By Proposition 3.7 there exists a smooth irreducible elliptic curve F and a
smooth irreducible rational curve I' with F?=0, F-D=0, I'’=—2, I - D=0,
I'<F=1 and L=0,3F+TI). The line bundle M= Q,(F-+TI) satisfies the
conditions in (2). Next assume that |L| has no fixed components. By Pro-
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position 3.18 |L| has no fixed points. Thus ¢, is a morphism. By Lemma
3.2 one sees ¢, maps Z to P3. Since L*=4, the image of ¢, is either a quadratic
surface or a quartic surface. Assume moreover that Im ¢, is a quadratic
surface. By Proposition 3.21 we have a smooth elliptic curve F on Z with
F?=0, F-D=0 and L-F=2. The line bundle M=0,(F) satisfies (2). Thus
(2) implies (1).

Next we show (1)=>(2). Assume that there is an element M Pic(Z) with
M?*=0, M-L=2, M|,=0), and that ¢, is a birational morphism to a quartic
surface in P2 We will deduce a contradiction. By Riemann-Roch we have
P +-B(M)=1. If P(M)=h(—M+ v;)+0, we have (—M + w,)-L=0
since L is numerically effective. However we have (—M+wj;) L=—2+40=—2,
a contradiction. Thus A (M)=0 and A(M)=£0, i.e. M is effective. Let A4 be
an effective divisor with M= ,(4). We set

&
=1

where k, m, ny, -+, n, are integers with k=0, m=0, n,=1 (1=i<k), 4,, ---, 4,
are mutually different irreducible curves with 4;==D, A4,-D>0 for every i and
F is an effective divisor with Supp F N D=¢. Let & be the union of exceptional
curves of o: Z—X. Since D is a connected component of € and since 4,-D >0,
0(4;) has dimension 1 for every i. Thus L-A4,>0 for every i. Since

k
2= ML =mD-L4 S\ A L+F-L = Snd;- [+ F-L
i=1 i=1

we have 4 cases.

1> k=0.

{2> k=1 and n,=1 for every i.

B3> k=1, m=2, m=1, A2=0.

4> k=1,m=2, m=1, 43<0.

(Note that k=0 if and only if m=0.)
Now we need two lemmas.

Lemma 3.26. Consider an effective divisor A= mD- Ek‘, A;+F satisfying
the following conditions. =
(i) k=1, m=1
(i) D-A;>0 for every i and A,, -++. A, are mutually different irreducible divisors.
(iii) SuppF N D=¢ and F is an effective divisor.
(iv) OyA4)|p=0p.
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Then A is linearly equivalent to an effective divisor containing no D.

Proof. By induction we show that H*(© Z(EA )=0. If j=0, it is trivial.
Consider the exact sequence

0— 0,35 4) > 0,31 4) = O Z 4D 4y, = 0

o1 ;
Since deg 02(12 4|4 455+ é A A >A5.3—DA;122p,(411)—2,

o1
we have HI(OZ(Z A)| A,+1) 0. By the above sequence and by induction
hypothesis we have HY (O L 5‘__, A4,))=0.

Next by induction we show that HYO,(nD-+ ilAi)) =0 for 0<n<m.
We have just shown it when n=0. Assume n§m:2. Set N=0,(n+1)D+
;f:l 4)|, Since deg N—=deg Oy(— (m—n—1)D)|p= —(m—n—1)D*>0, we
1"1_3.V€ H'(N)=0. By the exact sequence of sheaves

0 — @,(nD+ él 4) = O, (n+1)D+ gA,.) SN0

we have inductively HY(O,((n+1)D+ Ek} A4,))=0.

Note that in particular HYO,((m —1)D + E A;))=0. It implies that
HYO,(A)—H O ,(A4)| p)=HYOp)=C is surjectlve where A'=mD++ Z A;
Surjectivity implies that there exists an effective divisor 4’/ linearly equlvalent to

A’ which contains no D. Since A~ A’ F, we have the desired result. Q.E.D.

Lemma 3.27. Let A be an effective divisor with O4A)|,=0, and with
A*=0. We have %O 4(4))=2.

Proof. Note that A(Oy(4— D)) = i°(O,(— A)) =0. It implies that
HY O ,(A)—=H O,(A)| p)=H"Op)==C is surjective. Thus #(O,(4))=1. By
Riemann-Roch, we have

H(OA)) = (A*+A4-D)2+1+H(O4) =2 . Q.E.D.

We continue the proof of Theorem 3.25.
Case {1>. In this case Supp AND=¢. Let 4 be the fixed components of
the linear system |A4|. Set C=A—4. By Lemma 3.27, we have C=+0 and
C?=0. We first consider the case C2=0. By Proposition 3.3 we have a smooth
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irreducible elliptic curve G with G*=0, GND=¢ and an positive integer p
with C& |pG|. We have 4-L=0 and G-L=0 since L is numerically effective.
Since the condition G+ L=0 implies G?*<0 by the Hodge index theorem, we have
moreover G-L>0. Now since 2=A4-L=pG-L+4-L, one sees that G-L=1
or 2. Secondly we consider the case C2>>0. By Proposition 3.3 we can assume
that C is an irreducible curve with p,(C)=(C%2)+1. Since the condition
C-L=0 implies C?<0, we have C-L>0. Thus it follows from the equality
Ce.L+4-L=2 that C<L=1 or 2.

Anyway one sees that there exists an irreducible curve C; on Z with
pC)=1, C;ND=¢ and C;-L=1 or2. Since ¢: Z—P*is generically one-to-
one, and since dim|C;| =1, we can assume that ¢|c : C;—>P® is a birational
morphism. The image of ¢|c, is a line or a curve of degree 2 in P3 since
C;eL=1 or 2. Because such curves have arithmetic genus 0, we have
p(C) =0, a contradiction.

Case {2>. This case is reduced to Case <1> by Lemma 3.26.

Case {3>. First we show HYO,(l4,))=0 for /=0, 1,2 by induction. Since
Z 1is rational, the case /=0 is trivial. Assume /=0 and consider the exact
sequence

0 — O (I4)) = Ox((I+1)4) = Ox((+1D4)] 4, — 0.

We have HYO,((I+1)41)],,)=0 because deg O ((+1)4;)| 5, =(+1)Ai=A7>
A2—A,-D=2p,(A4;)—2. By induction hypothesis we have HY(O,((/+1)4,))=0.
Secondly we show HY(O,(nD-+2A4,))=0 for 0=n<m by induction as well. The
case n=0 has been verified. Assume 0=n<m—1 and consider the sequence

0 — O,(nD+24,) = O,(n+1)D+4-24;) = O,((n+1)D+24,))|, — 0.

Note that D*=w%=9—¢<0 by Lemma 3.2, (1) and that ©,(4)|,=~O,. Thus
we have deg©@,((n+1)D+24,)|,=deg O ,(—(m—n—1)D)| p=—(m—n—1)D*>0
and HY{(O,(n+1)D-+24,)|,)=0. By the last equality and by the induction
hypothesis, we have HY(O,((n+1)D-+24,))=0.

Now in particular HYO,((m—1)D+24,)) = 0. This implies that
HYO,(mD+-24,))—HYO ,(mD+24)) | p)=H*Op)==C is surjective. Thus there
exists a member A'e |mD-+24,| which contains no D. We have an effective
divisor A'+F& | 4| containing no D.

Case {4>. Thisis the last case. Since 42<<0and 4,-D>0, 4, is an exceptional
curve of the first kind. Since there are on Z at most countably many divisors
with the form mD-2F where E is an exeptional curve of the first kind, if
mD—-2A4, is not contained in the fixed components of | 4|, then there is a divisor
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A’e | A| with the form in cases <1>, {2> and {3>.

Assume that mD+24, is a part of the fixed components of [4]|. Since
A=mD--2A4,+F, we have KO ,(F))=h(O,(4))=2 by Lemma 3.27. However
since for a numerically effective line bundle L, A«L=2, D-L=0 and 4,-L>0,
we have F-L=0. It implies that every component of a divisor linearly equi-
valent to F is an exceptional curve of p: Z—>X. Thus #%(O,(F))=1, whichis a
contradiction. Therefore this case <4 is reduced to other cases.

Here in all cases we have got a contradiction. Thus (1) implies (2).

It remains to show that ¢ is an embedding.

Let Y be the image of . By assumption Y is a quartic surface. Assume
that Y has the one-dimensional singular locus S. Let H be a general hyperplane
in P3. The intersection YN H has singularities at SN H. The arithmetic
genus of YN H is (4—1) (4—2)/2=3. Now let CC Z be the strict inverse image
of YNH. ¢|c: C—YNH is a birational morphism. We have p,(C) =<
p.(Y N H)=3 and the equality holds if and only if ¢|. is an isomorphism. On
the other hand since any general member of |L| is irreducible by Proposition
3.3, we have Ce|L|. Moreover C is smooth by the Bertini theorem. Thus
@|c is not an isomorphism and we have p,(C)<3. However by the adjunction
formula p,(C)=(L?*—D-L)/2+1=3, which is a contradiction. One sees that the
singular locus of Y is O-dimensional.

Note that every local ring of Y is Cohen-Macaulay of dimension=2 since
Y is a hypersurface. The singular locus of ¥ has codimension=2. Thus by the
Serre’s criterion of normality (Cf. Matsumura [14]), the local ring Oy, is normal
for every yeY. The morphism X—Y is a birational finite one to a normal
variety and therefore it is an isomorphism. Q.E.D.

Theorem 3.28. Let L be a polarization of degree 2 on a rational surface Z
with an irreducible effective anti-canonical divisor D. The following conditions
are equivalent.

(1) The rational map ¢, associated to L defines a surjective morphism of degree
2 to P2

(2) The linear system |L| has no fixed components.

(3) There exists no element M EPic(Z) with M*=0, M-L=1 and M |,=0O),.

Besides if one of the above equivalent conditions holds, then with the induced
morphism @: X—P? by ¢,, X has the structure of the branched double covering
of P? branching along a reduced sextic curve B.

Proof. First we show (3)=>(2). Assume that |L| has fixed components.
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Then |L| contains a divisor kF4I" where k is a positive integer, F is an
irreducible smooth elliptic curve with F2=0, F- D=0, I is an irreducible smooth
rational curve with I'!'=—2, I'-D=0, I'-F=0, by Proposition 3.7. Since
(kF+T'Y=2, we have k=2. Set M=QO,(F+TI). This M satisfies the
conditions in (3). Thus (3) does not hold.

The implication (2)=>(1) follows from Proposition 3.18.

Next we show (1)=>(3). Assume that there exists M &Pic(Z) with M2=0,
M.L=1and M|,=0,. We will deduce a contradiction under the assumption
that ¢, is a morphism. By the same reason as in the proof of Theorem 3.25
one sees that the linear system | M| is not empty. Let A€ |M| and set

A = mD+3) m A, +F

where k, m, ny, -+, n, are integers with k=0, m=0 and n;=1 (1< j=<k), Fis an
effective divisor with Supp FND=¢, and A4,, :--, A, are mutually different
irreducible curves with 4;#D and 4;-D>0 for 1<i<k. Now we have 4;-L>
0 for every i by the same reason as in Theorem 3.25. Since

k
1= M-L=mD-L+> n,d;sL+F-L
i=1

only one of the following two cases takes place.

1> k=0

2> k=1,m=1, L-A4,=1 and F-L=0. ] ,

Note that condition k=0 is equivalent to that m=0 because 0=mD2—|—Z1 n,A;-D,

A;» D=0 and D?0. The case <2> is reduced to {1> by Lemma 3.26. Thus
we can assume that A=F, namely Supp AN D=¢. Let 4 be the fixed com-
ponent of |[A| and C=A—4. By Lemma 3.27 C=0 and C?*=0 since it is the
moving part. For the moment we assume C?=0. By Proposition 3.3 there is
a smooth elliptic curve G with G D=¢ and a positive integer p with C< | pG|.
If G- L=0, then G*< 0 by the Hodge index theorem. By the adjunction formula
P.G=(G*—G-D)[2++1=(G*2)+1=0, which is a contradiction since G is an
elliptic curve. Thus G-L>0. We have p=1, G-L=1 and 4-L=0 since
1=M.L=pG-L+4-L. Thus ¢|;: G—P?is a generically one-to-one morphism
and its image is a line in P2 We have p,(G)<0, a contradiction again. Next
we treat the case C2>0. By Proposition 3.3, we can assume that C is an ir-
reducible curve with p,(C)=(C?%2)+1=2. By the same reason as just the
above, one has C-L=1. Thus ¢|;: C—P?is a generically one-to-one morphism
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to a line. We have p,(C)<0, a contradiction.

Thus conditions (1), (2) and (3) are equivalent.

Now we show the latter half of the theorem. By the Kawamata-
Ramanujam vanishing theorem one sees easily that A'(mL)=1 and A*(mL)=0
for any positive integer m. By Riemann-Roch we have AX(mL)=m?+42. Let
u,, Uy, U be a basis of H(L). Let S, be the subspace of H%mL) generated by
monomials of u;’s of degree m. Since ¢; is a surjective morphism to P?, there
is no non-zero homogeneous polynomial P(U,, U,, U;) with P(u,, u,, us)=0.
Thus dimg S, =(m+2) (m+1)/2. One sees that H(L)=S,, H'(2L)=S, and
that there is a non-zero element we H%3L) such that H(3L) is a direct sum of
Cw and S,. Let @: Z—P (1, 1, 1, 3) be the morphism to the weighted pro-
jective space defined by z—(u(2), uy(2), us(z), w(z)). Let Y be its image. Note
that since u,’s do not vanish simultaneously on Z, the image ¥ does not contain
the point (0, 0, 0, 1). Thus the composition #® with the projection P (1, 1, 1, 3)
-{(0, 0, 0, 1)} =P (1, 1, )=P? has the meaning and z®@=¢; by definition.
Moreover we can show that @: Z—P (1, 1, 1, 3) factors through po: Z—X by
the same reason as in Proposition 3.20. Let @: X—=YCP(l, 1, 1, 3) be the
induced morphism.

Lemma 3.29. If P(uy, u,, us)+wQ(uy, u,, u3)=0 for homogeneous poly-
nomials P(Uy, U,, U,), Q(U,, U,, U;) with deg P=deg Q-+3, then P=Q=0.

Proof. First assume that P and Q has a common non-constant divisor
R. Set P,=P/R and Q,= Q/R. . They are homogeneous polynomials with
deg P,=deg Q,+3. Moreover under the assumption of the lemma we have P, (u;,
Uy, Us)+wWQ:(uy, Uy, us)=0 since R(u,, u,, uz)#=0. Thus one sees that one can
assume that P and Q has no non-constant common divisor and that one of P and
Q is non-zero. Then the polynomial P(U,, U, U)+WQ(U,, U, U,) is ir-
reducible and non-zero. Besides its zero-locus Y'={(a;, a,, a5, b)) P(1, 1, 1, 3)
| P(ay, a,, a3)+bQ(ay, a, a)=0} is irreducible. We have Y=Y since YC Y’
by definition. However if deg Q>0, we have (0, 0, 0, )& Y=Y", which is
a contradiction. If deg Q=0, Q=0, then we&S,, a contradiction. Q.E.D.

By the above lemma and by dimensional reasons one sees that H%(4L)=
S,+wS,, H'SL)=S;+wS, and HY6L)=S;+wS,;. (Here -~ denotes a direct
sum.) Now since w*e& H%6L), there are homogeneous polynomial P of degree
6 and Q of degree 3 such that

WA wO(uy Uy, tz)-+P (1, Uy, tz) = 0.
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By replacing w by w—Q(uy, u,, u5)/2, we can assume moreover that 0=0. Here
by construction Y agrees with the hypersurface in P(1, 1, 1, 3) defined by
W?—P(U,, U, U,)=0, which is nothing but the branched double covering
branching along the sextic curve B; P(U,, U,. U;)=0.

It remains to show that ®: X—Y is an isomorphism. Note that every
local ring of Y is Cohen-Macaulay since Y is a hypersuvrface of a smooth manifold
P, 1,1, 3)-{(0, 0, 0, 1)}. Thus it suffices to show that the singular locus S
of Y is 0-dimensional by the same reason as in the proof of Theorem 3.25. It
is equivalent to that B is reduced by Lemma 1.1. Now let A be a general line
in P2 The inverse image = }(H) by z: Y—P? has singularities at z"'(H) N S.
The arithmetic genus of z YH) is (z*(H )+ wy-n*(H))2+1=2. Let CCZ
be the strict inverse image of = Y(H) by @. @|.: C—r"'(H) is a birational
morphism. We have p,(C)< p (=~ Y(H))=2 and the equality holds if and only
if @ | is an isomorphism. However Ce& |L| and C is smooth. Thus p,(C)=<1
if dim S=1. On the other hand we have p,(C)=(L*—L-D)/2+1=2 and thus
dim S=0. Q.E.D.

Before concluding this section we would like to give one more proposition
and a lemma. The next lemma is due to Looijenga. We omit the proof here.
(Cf. Looijenga [12])

Lemma 3.30. (Looijenga) Let A be an irreducible curve on Z with AN D=¢
and A*=—2. Then O,(A)EPic(Z) is an effective nodal root.

Remark. Since the conditions &= —2 and a-w,=0 for a=Pic(Z) do not
imply that @ is a root, this lemma is not a trivial one.

Proposition 3.31. Let SCPic(Z) be the set of nodal roots orthogonal to
the polarization L. Then S is a root system. Moreover singularities on X are
a unique point with positive geometric genus at w=p(D)E X plus combination of
rational double points consisted of p, of A,-points, q, of Dpoints, and r,, of E,-
points (k=1, [=4, m=6,7, 8) if and only if S is isomorphic to the direct sum of
D, of irreducible root systems of type A, for every k, q, of ones of type D, for every
! and r,, of ones of type E, for m=6, 1, 8. Here p: Z—>X is the contraction
defined just after Lemma 3.19.

Proof. Let R be the set of all roots in Pic(Z). It is obvious by definition
that (S+S)NRc S and §=—S. Since the orthogonal complement of L in
Pic(Z) is negative-definite, the former half of the proposition follows from the
definition of the root system. (Cf. Bourbaki [3])
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Let us proceed to the latter half. Let £ be the union of exceptional curves
of p: Z—X. Let & be the union of D and the support of effective nodal
roots orthogonal to L. In view of Lemma 2.1, it suffices to show that £=&”.

Let 4 be an irreducible curve on Z such that po(4) is a point. If 4=D,
then AC &’ by definition. Assume A+D. By Lemma 3.19, we have A?=—2
and AND=¢. By Lemma 3.30, we have ACE&’. Thus £c&’. Conversely
let A be an irreducible component of &'. If A=D, then ACE by Lemma
3.19. Assume A=+D. There exists an effective divisor >} n,4; O<mEZ, 4;
is an irreducible curve) containing A4 as a component such that @,(3) n;4,)e
Pic (Z) is a nodal root orthogonal to L. We may assume A=4,. It follows that
A;«L=0 for every i from >)n;A;-L=0 since L is numerically effective. By
Lemma 3.19 we have A=A4,C&. Thus £=&'. Q.E.D.

Now according to Theorem 3.25 and Theorem 3.28 we can decide whether
Z represents a reduced sextic curve or a normal quartic surface by studying
the morphism Pic(Z)—Pic(D). Proposition 3.31 shows that the morphism
Pic(Z)—Pic(D) contains information about singularities on the objects we are
considering. Therefore if we had a criterion written with group-theoretic
words about Pic(Z)—Pic(D) by which we could decide L =Pic(Z) were a polari-
zation or not, then classification of all singularities of objects under consideration
would be accomplished.

In the next section, we show that this is the case when t=9—w»%=10.

8§4. Determination of the Polarization Class (when ¢=10)

In Sections 1, 2 and 3, we assumed only that r=9—w%=3. In Section 4
restriction appeared; existence of polarization implies t =10. However in this
section and the next one, we restrict ourselves to the case t=10. There are
two reasons to do so. First if #=10, we can easily determine all elements A< P
with 2.£=0 and 2>=2 or 4 compared with the case 1=11. Secondly we have
a group-theoretic criterion by which we can decide L&Pic(Z) with Lew,=0
and L?=2 or 4 is a polarization or not.

In this section we always assume that t=10 (i.e. ®%=—1) even if we do
not mention it.

Proposition 4.1.  Assume that o3 =—1. (i.e. t=10). Anelement L =Pic(Z)
with L| ,=0)p and [*>0 is a polarization if and only if LE V5N C, where C, is
the connected component of the positive cone C={x & Pic(Z) R R|x*>0} containing
ample line bundles and
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Vs = {x& Pi(Z)QR|x-w,=0, x-r = 0 for any effective nodal
root r Pic(Z)} .

Proof. ““Only if” part is trivial since L is numerically effective. To show
“if”” part, we have to check conditions in Definition 3.1. The conditions (1)
and (3) are obvious by assumption. We show (2), i.e., L is numerically effective.
It suffices to show that for every irreducible curve A4, the inequality L-4=0
holds.

Recall that the positive cone C has just two connected components. One
is C,. The otheris C_=—C,.

If 4*>0, the restriction to the orthogonal complement (BA)- of 4 in
Pic(Z)® R of the intersection form is negative definite since the intersection
form on Pic(Z) has signature (1, 10). Thus (BA4A)"NC={0}. (- denotes
the closure.) It implies that C, lies in a half space bounded by the hyperplane
(RA)*-. Since both L and any ample line bundle belong to C,, we have
L-A>0. Moreover by a similar argument we have L-4 >0 for any curve 4
with 4%?=0. Here note that we did not use that A4 is irreducible until now.
Assume that 42<0. By the adjunction formula, one sees that there are only
three cases.

(i) A=D.
(ii) A%*=-—2and AN D=¢.
(iii) A*=—1and 4-D=1.

If A=D, then L-D=0 by assumption L|,=O,. In case (ii), O,(4) is
an effective nodal root by Lemma 3.30. Thus it follows from the assumption
LeVs that A-L=04A4)-L=0. In order to manipulate case (iii), we need
the assumption D*=—1. Set C=A4-+D. We have C*=—1+4+2—1=0. Thus
by the above argument we have L-(4A+D)=L-A>0. We obtain not only
numerical effectiveness but also condition (4) in Definition 3.1. Q.E.D.

Next we determine elements 2& P=Zey+ Ze,+---+Ze,, with =2 or 4
and 2-£=0 up to the action of the Weyl group W. Here e=—3¢,+¢,+-+- ¢y,
Let I be the orthogonal complement of Zx in P. We denote

U= {xe€I'QR|x*>0}
T, = {x&U|x-¢,>0}
U. = {xeU|x-¢,<0} .

It is easy to see that U, are connected components of J and U=0U, U U..
Moreover we denote
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V= {xeI'QR|x-r,;=0 for 1<i<10}
where ry=¢e,—&,—¢,— &3, 7; = ¢;_1—¢; for 2<i=<10. The following lemma is
due to Looijenga. (Cf. Looijenga [12])
Lemma 4.2. U, cWV.

The rest of this section is devoted to verify the following.

Propesition 4.3. Assume t=10. Any element A€ P with 3*=4 and 2-£=0
is conjugate to one of the following elements with respect to the action of W.

+(9e,—36,—3e,—3e3—3¢,—3e;— 36— 36,— 3eg—2e4—¢1)
+(Tey—3e,—2e,—2e3—2e,—2e5—264—26,—265— 26— 26,) .

Proposition 4.4, Assume t=10. Any element 2 P with 2*=2 and 2-£=0
is conjugate to one of the following elements with respect to the action of W.

+(6ep—26,—26,—2e3—2¢6,—2e,— 26— 26,— 26— €g—Eyp) .

Proof of Proposition 4.3.

If 2 belongs to U_, then obviously —2a belongs to U, (—2)*=4 and (—2)-«
—0. Besides every element in U, is conjugate to an element in ¥ by Lemma
4.3. Thus we have only to show that the following system of equalities and
inequalities holds for integers x, yy, -+, ¥y, if and only if (x, yy, =+, y10)=(9, 3,
32, Dor(7,3,2, -, 2).

10
X =3 yi+4
i=1

10
4.1) 3x =2y
XZy1+y,trs

NEVZENZ N2 Vs Z Ve = V1= Ve Z Vo= V1o -

We need several steps.
STEP 1.

Lemma 4.5. [f(4.1) holds, then x=17 and y;>0 for 1<i<10.

Proof. By the Schwartz inequality we have for 1=<a=<10 (Bx—y,)=
(‘E VP<9(x*—yZ—4). Thus 5(yw——l%x)2—596x2—l—18§0. One sees that x==0
and that y,>0 or <0 according as x>0 or <0. Assume x<0. We have
Y10<0. It implies that 3xg3(y1+yz—}—y3)gj§91 yj>;2=01 y;=3x, a contradiction.
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Therefore x>0 and y,>0 for 1=<ae=<10. Moreover by the Schwartz inequality
we have 9x’=(3] ;P <1032 y)=10(x*—4). Thus x=7. Q.E.D.

Lemma 4.6. If (4.1) holds and if x=<10, then (x, y1, ***, Y10=(, 3, -+,
3,2,)o0r(7,3,2,--,2).

Proof. We can assume 7<x=10 by Lemma 4.5. First assume x=7.
By the Schwartz inequality we have (21—3,)?<9(45—y%). It implies 5y2—21y,
+18<0 and thus 0< y,<3. If y,=3, then y,+---+y,,=18 and yj+---+yi=
36. Since 182=9 x 36, the equality in the Schwartz inequality (E D) = 9(§2 ¥H)
holds. Thus y,=---=y,,=2. We have the solution (7, 3, 2, ---, 2). If <2,
then 21=y,+y,+ -+ 4+, =20, which is a contradiction. Secondly assume x=
8. We can show similarly that there is no solution in this case. Thirdly
assume x=9. By the Schwartz inequality we have 5y?—27y,+18=<0. Thus
0<»,=<4. Assume y,=4. We have (23—1,)* = (y3-F -+’ <8 %}3 y2=8(61

—y3%), which implies y,<3. If y,<2, then 23=3)y,;<18, a contradiction.
iz2

Thus y,=3. Since y;+y,+y,=x=9 we have moreover y;<2. We have 20=
S1y:=16, a contradiction again. Thus 0<y;=<3. Now we assume that k& of
i=3

{y1> Vo ***» Yot are 3, [ of them are 2 and m of them are 1. We have k+4/+
m=10, 3k+2l4+m=27 and 9k-+4/+m=77. One sees easily that k=8, /=1
and m=1. We have the solution (9, 3, 3, ---, 2, 1). Lastly assume x=10.

Similarly we see that there is no solution in this case. Q.E.D.

STEP 2.
Next we set
x = 3z+4e¢, y;=2z+40; (1=i=9), y,,=0y,-

Equalities and inequalities (4.1) are equivalent to the next ones.

1) ez=0,+0,+3;

2> 01 Z0,=-- =0,

3> z+0,=0y

4.2) 4> 6,4,>0

5> 8140, + - +0,,=3¢

6> 2z(8;+ 0,0 +0g) (02 85+ --- +62) 0%
= bez}+e2—4 .

Lemma 4.7. If e, 8y, -++, 8,9 are 0 or -1, then the solution of (4.2) is z=3,
e=0, §;=0,=+--=0,=0, 03=—1, 0;=-+1.
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Proof. By <4> we have 6,,=1. First assume ¢=0. If §,=1, then by
<{1>, {2> we have only two cases; (a) 0,=0, §;=---=0,=—1, (b) 6,=0;="---=
8,=—1. 1In both cases {5) does not hold. If 8,=0, then by <2, {5) d,=++-=
0,=0, d,=—1. Substituting them to <6», we have z=3. Thus {3> is also
satisfied. We have the desired solution. If §;=—1, by {2) §,=+--=8,=—1.
They do not satisfy {5>. Secondly assume e=-+1. If §;<0, then by <2,
(5> 1=268,+08,++--+08;,=3, which is a contradiction. Thus §,=1. By <I>,

<{2> we have only three cases. (c) 8,=1, 8;="-+-=0,=—1, (d) §,=0;=0, 9, 05,
-ee, 8,20, () 6,=0, 8,=-.-=08,=—1. In any case <5) does not hold. Thirdly
assume e=—1. If §,=1, then 6,=d;=—1 by {I>. By <{2) we have moreover
0,=---=0,=—1. In this case <5)> does not hold. If §,=0, then there are
only two cases by <1>, <20, (f) ,=0, 0;="++-=0,=—1, (g) 0,=05="++-=0y=—1.
Anyway <5> does not hold. If §,=—1, then we have 8,=:--=8,=—1 by {2>
and <5> does not hold. Q.E.D.

Lemma 4.8. Assume one of e, 0, +++, 0y is 42, at most one of them is

+1 and the rest are 0. Then (4.2) has no solution.

Proof. First assume e=-+2. By <{4> we have d,=1. By assumption
we have 8,=--+=08,=0. Then <{5> does not hold. Secondly assume e=41.
By <4> we have 8,;=2. By assumption one sees 6;=:--=0,=0. Then <{5)
does not hold. Thirdly assume e=0. We have 3 cases: (a) 0;="---=0,=0,
8y=—2, 6;p=1 (b) 8,=+--=03=0, d;=—1, 0,,=2 (c) 0;="--=03=0,=0, 0,,=2.
In any case <5) is not satisfied. Q.E.D.

By the next lemma we can complete the proof of Proposition 4.3.

Lemma 4.9. If an integral solution of (4.1) satisfies x=11, then there exist
integers z, &, 0;, -+, 0y satisfying x=3z-+e, y;=z4+0; (1=i<9), y,,="0u
10
equalities and inequalities (4.2) and &2+ 62<5.
i=1

Since inequality €2+ 3] 62 <5 implies that one of the assumptions in Lemmas

4.7 and 4.8 is satisfied, it follows from Lemmas 4.7, 4.8 and 4.9 that (4.1) has
no solution with x=11. Thus by Lemma 4.6 we have Proposition 4.3.

Q.E.D.

STEP 3.

Now we have to show Lemma 4.9. Here we introduce an Euclidean
metric (,) on PQR by (¢;, ¢;)=1 (0=<i<10) and (¢;, ¢;)=0 for i==j. By this
metric we can define the distance dist(4, B) of two subsets 4, BCPQRQR. Let
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P; denote the orthogonal complement of the set {«, 7y, 75 ***, 7rof —{r;} In
PQR with respect to the intersection form, i.e., P;={xSPQR |x-£=0, x-r;=
O0for 1<7<10, j=i}. Set T,={x€PQR|x-£=0, x.x=c¢, x-7;=0 for | <i<
10} CI'QR, H;={xcPQR|x-¢,=g} and 0H,={x&PQR|x-¢,=g}, where
¢, g are positive real numbers. We would like to show that T, N H} lies too near
to P, to have lattice points on it. We need further several lemmas.

The following one treats a general situation.

Lemma 4.10. Let F be a three-dimensional real vector space equipped with
an intersection form < , > of signature (1, 2) and with a positively definite inner
product ( , ). Let L be a line in F passing through the origin. For a positive
real number a we set Q={x&F|<{x, x>=a}. Let ECF be a two-dimensional
linear subspace of F with ENQ=+¢. Then ENQ has two connected component
each of which is diffeomorphic to R. Let ¢: R—EN Q be a diffeomorphism to
one connected component. Then for any closed interval [b, c]C R and for every
2e€lb, ],

dist (¢(2), L)<max{dist (¢(b), L), dist (¢(c), L)}.

Proof. Since the restriction of the intersection form < , > to E has sig-
nature (1, 1), ENQ is a hyperbolic curve. Therefore EN Q is diffeomorphic

Figure 4.1.
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to two copies of B. We divide the rest of the proof into two cases.
Case 1. LCE.

For every non-negative real number e R, set D,={x<E |dist (x, L)<e}.
D, is a closed connected set bounded by two lines parallel to L. Note that D,
o ([b, c]) is always connected. Set d,=dist (¢(), L) and assume d,>max{dist
(¢(d), L), dist (¢(c), L)}. There exists a sufficiently small positive real number
¢>0 such that D, _.2¢(b), ¢(c). Since D, _.N (b, c]) is connected, Dy, N
o([b,c])=¢(b,c]). It implies p()ED,,—.. We have dy=dist(p(2), L)=dy—¢, a
contradiction.
Case 2. LQE.

Similarly we set for non-negative real number e R, D,= {x< E|dist(x, L)<
e}. In this case D, is the interior and the boundary of an oval. Since D,N
o([b, c]) is always connected, we get the desired inequality by the same reason
as in Case 1. Q.E.D.

ENQ
o([b, c)

Figure 4.2.

We now return to our case. For every subset 7C{l, 2, 3, ---, 10}, we set
P;=(N F)N(Rx)" where I’ is the complement of I, F; is the orthogonal
ielc

complement of 7; in PQR, and (Rr)"- is the orthogonal complement of «.
Note that Py3=P;. Next we define linear functions u, v, +-+, v,y PQR—R
by u(x)=x-¢, and v,(x)=x-r; for 1<i<10. By direct calculation we obtain;

Lemma 4.11. P;N T, is a unique point for 1<i<9 and we have u(x;)<11
for {x;}=P,NT, 1=<i<9. P,yNT,is empty. (Indeed max {u(x,)|1=i<9}=
u(x)=6v/2)

The next lemma is the key part of this section.

Lemma 4.12. For every subset IC {1, 2, ---, 10} with $1=3 and for every
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xEP;NT,N Hy, there exist a subset JCI with $J=#I—1 and a point ye P; N
T, N Hy; with dist(y, P;p)=dist(x, Pyp).

Proof. First note that unless /={10} or I/=¢, the restriction of the
intersection form of PQR to the space spanned by r;, i€{l, 2, ---, 10} —1 is
negatively definite. Thus the intersection form has signature (1, k—1) on P,
unless 7= {10} or I=¢ where k=#1. Assume k=3. One sees easily that P, N
T,N Hy+¢. Assume that there exists i/ with v (x)=0 for x&P,NT,N Hy,.
Then x=P;_;y N T, N Hy, and setting J=I— {i}, y=x we get the lemma. Thus
in what follows we assume that v;(x)==0 for every il. Since x&T,, we have
v{x)>0for i€l We denote Q={z€PRXR|z-z=4}. P,NQ is a quadratic
hypersurface spanning P,. P;( Q has two connected components. Let (P;N
0), be the connected component of P, N Q containing x. Set cy=min{u(y)]|
ye(PNQO),t. Wehave ¢,>0and ¢,<11 by Lemma 4.11. If —¢,<g<c¢,then
P,NONOH,=¢. If g=+c, then P,NQNOIH,isone point. If |g|>c, then
P;NQNJOH, is a smooth (k—2)-dimensional manifold. In particular P,N QN
9H,, is a smooth (k—2)-dimensional manifold. Let S’ be the tangent space
of PLLNONOH,, at x. If 0S5, then 08" CoH,(,) and O=u(0)=u(x)=11.
It is a contradiction. ThusOeS'. Let V= {z&P,;|v,(z)=0 for icI}. Visa

convex cone in P, and x belongs to the interior of V. Since dimS'=1, §’

\

MO Prgige.

Figure 4.3.
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intersects some wall of I}, ie., S’n(I}n P;_(;p)+¢ for some i;&I. Note that
there exists y,&S8' N (I}n P;_y;) with y523,>0. Otherwise S'N (I}n P,_;)C
P,y and moreover the tangent space S’ of P, QN8H, at x intersects Py,
which is impossible. Thus such y, always exists. Let M’ be the line passing
through x and y, If 0€M’, then x&M'CP;_y;) and we have v, (x)=0, a
contradiction. Let A be the linear span of x, y, and 0. Note that dimM=2.
Since x&M and x.x=4, the restriction of the intersection form to A has
signature (1, 1). We have the figure 4.3.

Next we would like to show (M N Q), C H,(y, i.€., u(y)Zu(x) for every y&
(M N Q), where (M N Q), is the connected component of M N Q containing x.
If M C6H,,), we have nothing to prove. Thus we assume M - 0H,,). MN
0H,, is a line containing x and y,, that is, M N8 H,,y=M'. Recall that M’
is the tangent line of M N Q at x by definition. Since M N Q is a hyperbolic
curve, (M N Q), lies on one side of M’. We have either u(y)=u(x) for every
ye(MNQ), or 0<u(y)=u(x) for every y=(M N Q), Since obviously u(y) is
unbounded on (M N Q),, we have (M N Q),CH,,)- Now M NP;_y; is a line
in M passing through the origin for every i/ since P;_y3=Ker v;N P;Px.
One sees that M N T, coincides with the closure of the connected component of
MNQo— U MnP, (i} containing x. Since y,E P;_(;) and y,-3,>0, M N P;_y;
1ntersects w1th (M NQ), It implies that M N T, is a connected closed proper
subset of (M NQ),. Thus we have Y=8(M NT,)N(UM NP;_(3)=+¢, where
a(MNT,) is the boundary of MO T, Pick y,&¥. There exists &l with
neEIMNTY)NPr_y;y. SetJ=I—{i}. Theny€P;NT,and y (M NQ),C
H,,,CH,. Moreover by Lemma 4.10, dist(y,, P,p) =dist(x, Py,). Q.E.D.

Lemma 4.13. For every subset IC {1, 2, 3, ---, 10} with $I=2 and 10& 1, we
have P,NHy,NT,=¢. (see figure 4.4)

Proof. Set I={i, j}. Since i#10, j#10, we have P,—{0}, P;—{0}C
{yeP;|y-y>0}. Thusif T,N P, is not empty, it is a compact connected arc
contained in a hyperbolic curve. However, for a point y in P;N 7, and P;N
T,, u(y)<11 by Lemma 4.11. Thus for every y& T, N P;, u(y)<11. Itimplies
T,NP;NH;=¢. (See figure 4.4). Q.E.D.

Lemma 4.14. For a subset I={k, 10} with 1<k<9, the function P, N T, N
Hy, = x—dist(x, Py) attains its maximal value on the set PN T, N 6 H;.

Proof. Since P,,C{yeP;|y-y=0} and P,— {0} Cc{y=P;|y-y>0}, P, N
T, is an arc as in the following figure 4.5. Since u(y;) <11 for y, P, N T, y, and



QUARTIC SURFACES AND SEXTIC CURVES 1227

Figure 4.4.

Figure 4.5.
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the origin lie on the same side with respect to 8H;;,. It implies that there are
not two connected components of 7, N P, N Hy but there is only one. In view of
the fact that P,,N 7T, is the asymptotic line of T, N P; N Hy;, one sees that the

distance to Py, attains the maximal value at 7, N P; N 8 Hy; by Lemma 4.10.
Q.E.D.

Lemma 4.15. The set T, Py, 10 N 0Hy, consists of a unique point {y,} for
1=<k=9. Besides we have dist(y,, P,j))<1 for 1=<k=<09.

Proof. The former half is trivial. By direct calculation we have
max dist (y, Py)=dist(yg, Pig)=+/70/9<1. Q.E.D.
k

Corollary 4.16. For every point x& T, N Hy, dist(x, P)<1.

9
Proof of Lemma 4.9. First note that the set {z (3¢,—>] ¢;)|zEZ} ex-
i=1

hausts the lattice points (points whose coordinates are all integers) on Py,
The minimum distance of lattice points on Py, is \/18. Thus for every point
x&E P, there exists a lattice point we& Py, with dist(x, w)<1/18/2.

Let y,&T,N Hy, be an arbitrary lattice point. Let x,&P,, be the point
on P,, which attains the distance between y, and Py, i.e., dist(y,, Pio)=dist(y,,
x,). The line passing through x, and y, is perpendicular to Py, Let w,EP,
be the lattice point with dist(x,, w,)<+/18/2. By the Pythagorean theorem
and by Corollary 4.16 dist(y,, w,)’<18/4-4-1=5.5. Since dist(y,, w,)* is an
integer, we have dist(y,, w,)?’<35, which is the desired result. Q.E.D.

By the same method we can also verify Proposition 4.4. Indeed it is easy
to check the following lemmas.

Lemma 4.17. The system of equalities and inequalities
10
X =3 yi+2
i=1

10
3 = .
4.3) x gl Bz
Lx?_%""yz‘l‘ya
NZNZ V3= 2 n

is satisfied by integers x, y;, -, ¥y, With x<10 if and only if (x, y;, «**, ¥10)=(6,
2,2,-+,2,1,1).

Lemma 4.18. (1) For every point yeT,N Hy, dist(y, Pip)<1l. (2) If an
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integral solution of (4.3) satisfies x=11, then there exist integers z, €, 03, -+,
0y, Satisfying
1> ez0,+0,+0,
2> 0y=0,=-+=0,
3> z+8,=0y
4> 0,,>0
5> 01ty - +0y=3e
6> 22(8,+0,4 - 4-09)+- (0 +03+ -+ +05)+-0%,
= 6ezt¢€2—2
Ty 3 85

4.4

such that x=3z+e¢, y;=2z+0; (1=i£9), y1,=>0k,.

Lemma 4.19. If ¢, 8, -+, 8,y are 0 or =1, then the solution of (4.4) is
z=2, e=0, 0;="-+-=0,=0, d,=—1, 0;=1.

Lemma 4.20. Assume that one of ¢, 0y, -*+, 0y, is +2, at most one of them
is +1, and the rest are 0. Then (4.4) has no solution.

Here we complete the proof of Proposition 4.3 and Proposition 4.4.

§5. The Action of the Weyl Group

In this section we give the proof to the main part of our main theorems.

Let XC P® be a normal quartic surface [resp. Let z: X—/P? be a branched
double covering over P? branching along a reduced sextic curve B.] with a
singularity Ey, T3, or Ey, at x,&X. We assume that other singularities on X
than x,& X are rational double points. Let o: Z—X be the minimal resolution
of singularities. Let D=p"%x,). Then for a suitably chosen a and ¢, Z=(Z,
D, @, ¢) is a marked rational surface of degree —1. (Cf. Lemma 1.4, Proposition
1.5, Definition 2.4.) Moreover by exchanging « by aw with a suitable we W,
we can assume that either a(2,)=L or a(2,)=L holds, where 1,=7¢;—3e;—2¢,—

e —2ey0, =9¢)—3e,— - —3e;—2e9—ey, and L=p*Ops (1). (Cf. Proposition
4.3.) [resp. we can assume that a(1;)=p*7*Ops (1)=L holds where 2;=6¢,—2¢,
—2e,— - —2eg—eg—ey,.  (Cf. Proposition 4.4)]. Since the restriction of L to D

is trivial, the characteristic homomorphism ¢g-: I'—E satisfies ¢ (2;)=0 and
belongs to the subset Hom(I"/Z2,, E) of Hom(I", E) where i=1 or 2 according
as a(2)=L or a(d,)=L. [resp. the characteristic homomorphism ¢g: I'—>E
satisfies ¢ (2;)=0 and belongs to the subset Hom(I"/Z2;, E) of Hom(I", E).]
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(Cf. Definition 2.6). Furthermore the kernel Ker ¢ contains no element u&1I"
with #*=0 and #-2;=2. (i=1, 2) (Cf. Theorem 3.25.) [resp. the kernel Ker ¢ &
contains no element u&I" with #?=0 and u-2A;=1. (Cf. Theorem 3.28.)]
Conversely for a fixed i=1 or 2 choose an element p=Hom(I", E) such
that
(1) ¢@(2)=0 and
(2) Ker ¢ contains no element z with #2=0 and z-1,=2.
[resp. Conversely choose an element ¢ = Hom(I', E) such that
(1) 9(25)=0 and
(2) Ker ¢ contains no element g with #*=0 and x-2,=1.] Then by theorem
2.8 there exists a marked rational surface Z=(Z, D, @, ) with ¢o=9¢g.
Exchanging a by wa where we Wy is an element of the Weyl group associated
to nodal roots, we can assume that @(2,)€ Vs C, [resp. ¢(2)E VN C,] and
P=@g, since VN C, is a fundamental domain of #s. By Proposition 4.1 and
since it follows from the above condition that L|,=@, for L=a(l;,)&Pic(Z)
[resp. L=a(2;)=Pic(Z)], the line bundle L is a polarization of Z. Moreover
by the above condition (2) and by Theorem 3.25, L defines a morphism ¢, : Z—
XCP? to a normal quartic surface [resp. Moreover by the above condition (2)
and by Theorem 3.28, L defines a morphism @: Z—XCP(l, 1, 1, 3) to a
branched double covering over P? branching along a reduced sextic curve B]
with singularity E, T, 3, or Ey, according as E is an elliptic curve, C* or C.
Note that by Proposition 3.31, singularities on X are described by I N
Kerpg N(Z2,)*" (i=1, 2, 3) where IT is the set of roots in P and (Z2,)" is the
orthogonal complement of 2; in I'=(Zk)™".
Thus classification of singularities of surfaces under consideration is reduced
to studying the abelian group Hom(I'/Z2;, E). (i=1, 2, 3)
Let A denote the orthogonal complement of Z2; in I'. We define a
homomorphism

u: I' - Hom(4, Z) = A*

by u(a) (§)=a-& for eI and £ 4. 1t is easy to see that its kernel is A=
Z?2; and it is surjective since I" is a unimodular lattice. Thus it induces an
isomorphism #: I'/Z2,—>A*. In what follows we sometimes consider &
Hom(A¥*, E) instead of = Hom(I", E) with ¢(1,)=0. Since # is bijective they
are equivalent. Note that the composition A—I"—I"/Z2,—> A* is injective
since AN Z2,={0}. We regard A as a subset of A* by this injective mapping.
Conversely A* is regarded as a subset of 4®Q. We can define a bilinear form
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on A* with values in rational numbers by extending that on 4. For any element
0460 AQQ, the reflection s, with respect to the hyperplane orthogonal to @ is

2(x-6)
fi
defined by sy(x)=x— an

preserving the linear form. (In what follows an affine automorphism of order 2
of an affine space whose set of fixed points has codimension 1 is called a
reflection.)

Now we would like to give a remark. Let 4 be an arbitrary abelian
group. When a group G acts on 4 we define an action of G on Hom(4, 4) by
(gF) (§)=F(g™'(¢)) for g&G, FEHom(4, A), and £ 4. With this definition
the inclusion A< A* is an equivalent homomorphism if the action preserves
the bilinear form.

Next we consider the case concerning A,=7e,—3e;—2¢,—-++—2¢;,. Set
E\=Zr+Zrs+Zr,+Zrs+ Zrg+ Zr,+Zrg+ Zrg+ Zrp. (1, does not appear.)
It is easy to see that the orthogonal complement of Z2, in I' is 5, (i.e., A=25,)
and that &, is the root lattice of type D,.

0 for x€ AQQ®. Itisan automorphism of order 2
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Let Wg, be the group generated by sy, Sy, ==+, Sy, It is the Weyl group of type

~— [l 1
Dy. Wp, acts on 5y and 5¥. Set o, =4 47'3—} n—!— re—!— 78—]— 7w

Wecan check that ¥ =5, +Zw,. Set 51=%?’1—%?’3- One can see easily

0, 5% and 6?=—1. Moreover 20, 5FC.Z since 6+ wlz—% and 6,-5,CZ.

Note that it implies that the reflection s, (x)=x+-2(x-6,)6; defines a homomor-
phism Z¥ to £¥. Let G, be the subgroup of the orthogonal group of =¥ gener-
ated by Sp,, Syy Sy, Syg Svg Sy Sy, and Sy . The group G, is the Weyl group of
type B, since the mutual intersection numbers of 6y, r5, -++, 71, give the following
Dynkin graph.

o [o] o [o] [o} [o] o

6, rs re s re T Ts Te T

Lemma 5.1. Every element €€ E¥ with &2=—1 is conjugare to 6, with
respect to the action of G,. Moreover every element £ € E¥ with £2=—2 is con-
Jjugate to rs with respect to the action of W,
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Proof. We first show that every element £ € 5¥ with £2=—1 or £2=—-2
belongs to the free submodule I'” generated by 0y, 73, 7, ***, 71- Otherwise we
have an element y &I’ with é=y-+tw, since [E¥: I'"]=2. It is easily checked
that the restriction of the intersection form to I’ has values in Z. Thus y? and
2y-w,; are integers since 2o,&I". It follows that w?=£%2—3p?—2y.w, is an
integer. However we have w?=—9/4, a contradiction. Secondly we show that
every element £ € £¥ with £2=—2 belongs to ;. We may assume that £ I".
Assume moreover that £ 5;. Then we have an element z€ 5, with £=z-+}0,
since [I"': Z,]=2. It follows that §?=£%—2z2—26,-z is an even integer. How-
ever 2=—1, which is a contradiction. Since I"" and Z; are the root lattices of
type B, and D, respectively one obtains the desired claim by the theory of root
systems. Q.E.D.

Corollary 5.2. (1) Every element y&E,CI' with y*=—2 is a root.
(Recall that an element y & I'conjugate to some r; (1=i=<10) with respect to W
is called a root.)

(2) For every element 0 € E¥ with 6*=—1, the reflection s, belongs to G,.

(3) For every element 0 € E¥ with 02=—1, we have an element £ = E¥ with
26.0=1.

(4) For every element n=E¥ with 7*=—2, we have an element £ € E5¥ with
Eop=1.

Proof. (1) Since G,C W, it is obvious.
(2) There is g G, with 6=g(6,). Thus s,=gs, g EG.
(3) Since 2(w,+73)°0,=1, 2g(w,+713)-0=1 for 6=g(0,).
(4) We can assume that 7=g(7;) for g&G,. Then g(7,) has the desired proper-
ty. Q.E.D.

Let I, be the set of all elements £ 5¥ with é2=—1 or —2. II, is the
root system of type B,. =, is identified with the co-root lattice Q(IIY), i.e., the
free module generated by co-roots. =¥ is the weight lattice P(I7;). Moreover
I'=QI,)=P(I)).

Let us proceed to the case concerning to 2,=9¢,—3¢6;—3¢6,—-+- —365—26,—
e Set By=Zr+Zr;+Zrs+Zr,+Zrs+ Zrg+ Zr,+Zry and w,=3¢,—e,—¢,
—e&3—&,—65—eg—E,—eg—264+¢6y. &, is the root lattice of type E; and it is

easy to see that the orthogonal complement 4 of Z2, in I' is the orthogonal
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direct sum of Zw, and Z,, i.e., A=Zw,+ 5, Thus we have 4¥=Z(w,/4)+
E¥, since wj=—4. Let G} be the Weyl group of type E generated by sy, sy,
Syp Sv,5 Syg> Syg Sy, and sy, G acts on Zw, trivially. Let T be a cyclic group
of order 2 generated by the reflection s, acting on A*=Z(w,/4)+ 5% .
T acts on E¥ trivially and acts on Z(w,/4) as the change of the sign; a——a.
We set G,=TX G3.

Lemma 5.3, (1) If 0°=—1 for 0 € Z(w,/4)+EF, then 0=-w,/2.
Q) If P*=—=2 for € Z(w,/4)+E¥, then n=E¥ and such an element 7 is con-
Jjugate to each other with respect to the action of Gj.

Proof. (1) Set 0=(mw,/4)-+¢ with meZ, EcEf. We have —1=—
(m?/4)+-£? since w3=—4. Since &% is a negative even integer unless £=0, one
sees that m=--2 and £=0.

(2) We set n=(mw,/4)+& with meZ, E€E¥f. We have —2=—(m?/4)+£2
Thus m=0 and 7€ Z¥ since &2 is a non-positive even integer and since 8=2x4
is not a square of any integer. Every element 7€ 5¥ with »2=—2 is conjugate
with respect to G} since 5F is the root lattice of type Ejg. Q.E.D.

Corollary 5.4. (1) Every element r € Z(w,/4)-+EFCT with r’=—2 is a
root.
(2) For every element 0 € Z(w,/4)+ EF with 6= —1, the reflection s, belongs to
7.
(3) For every element 0 € Z(w,/4)+EF with 0*°=—1, we have an element £
Zwyf8) - 5F with 26-6=1.
(4) For every element 7S Z(w,/4)+EF with n°=—2 we have an element £ S
Z(wy/d)+EF with E-n=1.

Let 17, be the set of elements & € Z(w,/4)+ 55 with £2=—1 or —2. II,is
the root system of type 4;+E,. The irreducible component of type 4, is con-
sisted of {4+ w,/2} and they are regarded as short roots compared with those in
the system of type E;. Equalities Q(II)=Zw,+5¥, QI )=P(II})=Z(w,/2)+-
B¥, P(I)=Z(w,/4)+E¥ holds.

Lemma 5.5. Assume i=1 or 2. Let A be the orihogonal complement of
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Z2, in I'. The following conditions are equivalent for &Hom(A*, E).
(@) There exists an element u<T with ©*=0, u-2,=2 and Yyu(x)=0.

(b) There exists an element 6 € A* with 6%=—1 and y(6)=0.

() There exists an element 0 € A* with 0°= —1 such that sy(y)=.

Proof. (a)=(b). Recall the definition of u. Since I' C Z(1;/4)+ A*, every
element @ =1I" can be written uniquely as a=(m2,/4)+a’ with me Z, o' € 4*.
Then a'=u(a). Thus setting 0=u(x), we have x=(2;/2)+6 since u-2,=2. We
have 6?=((2;/2)—#)*=1—2+0=—1 and y(6)=vu(x)=0.

(b)=(a). Since u is surjective, there is an elemnt #'&I" with 6=u(x'). Then
there is an integer me Z with p'=(m2;/4)+60. We have (¢')’=m?/4—1, which
implies that m=4n--2 for some integer n, since (#")? is an even integer. (I" is
an even lattice.) Set u=u'—nl;. Then u&TI', =0, p-2,=2 and yru(x)=0.
(b)=>(c). If(b)is satisfied, then for x & A%, (so(1)) (x)=v(so(x))=1(x+2(x-0)6)
=Yr(X)+2(x+ 0) Y ()= (x).

(c)=(b). Note that there is an element & € A* with 26.6=1. (Corollary 5.2,
Corollary 5.4.) If (c) is satisfied, then y~(§)=rsy(§)=++(&)+(6). Thus ¢~6)
=0. Q.E.D.

The above lemma implies that the criterion for whether the marked
rational surface can be realized as a quartic surface or not can be interpreted with
group-theoretic words.

To help reader’s understanding we write down one more lemma.

Lemma 5.6. For every element yr & A with r*=—2, the following conditions
are equivalent.
(@) yu(r)=0.
(®) ¥()=0.
©) sy(¥)=vy.

Proof. Here we only give the proof of (c)=>(b). The other parts are
trivial. Recall that there is an element & € A* with £-y=1. (Corollary 5.2,
Corollary 5.4) If (c) is satisfied, then y/(€)=vrsy(§)=v(£)+ (7). Thus ¥ (7)
=0. Q.E.D.

Summing up the above results we have the following proposition.

Proposition 5.7. Assume i=1 or 2. Let A be the orthogonal complement
of Z2; in I and u: I'—A* be the canonical surjection. Let G; be the group
generated by all reflections s, corresponding to elements 5 & A* with n*=—1 or
—2.  The following conditions are equivalent for & Hom(A4¥, E).
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(A) There exists a marked rational surface %=(Z, D, a, ¢) over E of degree
—1 such that
(i) the characteristic homomorphism ¢ of % coincides with yru;
(ii) the line bundle L=a(2,) defines a generically one-to-one morphism
@, Z—>XCP® to a normal quartic surface X; and
(iii) the combination of singularities on X is a unique Eg, T, 44, or Ey, (It
depends on whether E is an elliptic curve, C*, or C.) plus a combination of
rational double points associated ic the set of Dynkin graphs > p,A,+
2 qD+> r,E,.
(B) The kernel Ker + contains no element 6 € A* with 6°=—1 and the set of
elements n < A* with 7*=—2, y(7)=0 is the root systerm of type > p,A,-+
> 9D+ ,E,.
(©) The isotropy group I, (y)={g=G;|g(y)=} of + with respect to G; con-
tains no reflections associated to any element 6 € A* with 6°=—1 and moreover
the maximal subgroup of I () generated by reflections is the Weyl group of type
> At 4D+ 1, E,,.

Remark. The group G, is the Weyl group of type B, and G, is the Weyl
group of type 4,4+ FE;. In the latter case the irreducible component of type
A, corresponds to the elements § € 4* with 2= —1,

Now our classification is reduced to the classification of subgroups of G;
which can be realized as the maximal subgroup generated by reflections of
I)=1{g €G;| g)=} for some y=Hom(4¥, E).

Definition 5.8. The following procedure which associates a root system
R to its root subsystem R’ is called the elementary transformation of the root
system.
(1) We divide R into the direct sum of irreducible root system, say R=@DR;.

(2) We choose a fundamental system of roots for every i, say 4,CR,.

(3) For every i, we choose a proper subset 4; of the union 4;U {—7,} where 7,
is the highest root associated to 4,.

(4) We set R'=@R] where R] is the root system generated by 4,

Proposition 5.9. When E is an irreducible smooth elliptic curve (resp.
C*), the following conditions are equivalent for any subgroup H of the Weyl
group W=WI(R) associated to a fixed root system R. We denote by Q the co-
root lattice of R, i.e., the free Z-module generated by co-roots {7 |nE R}.

(1) The group H coincides with the maximal subgroup generated by reflections
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of the isotropy group Iy, (y) for some v+ =QQE.

(2) The group H is generated by a set of reflections {s,|n< R’} where R
is a root subsystem of R which is obtained by elementary transformations re-
peated twice (resp. only once.) from R.

Proof. Let Q be the root lattice of R. The vector space QQ R is regarded
as the dual space of Q@R. We denote the canonical pairing QQ R X Q@R—)
Rby< , D

We first assume that E is an elliptic curve. We have representation
E=C|Z+Zr where r=C and Im z>0. We fix such repreentations. The
covering mapping z=: C— C/Z-+Zz induces the covering mapping z: QQC—
ORE. Set W=W [X (QD0) where X denotes the semi-direct product with
respect to the diagonal action of W to 0B Q. (.e.,lorgeW, (6,0 P Q,
g(&’, &")=(gé’, g€"").) The group W acts on QQC by (g, &', &) (v'+ry'")=
(&) +E)+(g(¥")+¢") where gEW, &', £”€Q and ¥/, v EQQR. We
have a canonical isomorphism of isotropy groups. Iy(¥)=2I,(z(¥)) for &
Q®C. Thus we can consider the action of W on QQ®C instead of that of W
on OQRE.

Set W,=W:X Q. The group W, is the affine Weyl group of R. We have
a diagram

0
W—2sW,

N

W—W
¢!
where p,(g, &', £)=(g, &), og, &', €)=(g, ") and v; (g. £)=g (i=1, 2).
Set v=v'+ry” with ', v"€QQR. Let(g,¢)<EL, (). We have g(v)+
&'=+" and one sees that £’ is uniquely determined by g and y'. Thus the
restriction v | I, (y) of v, is injective. Set J(y")=v(Ily (¥). J(¥') is iso-
morphic to I, (y) and v3* J(¥)=J(¥") [X Q is isomorphic to o1’ Iy (¥') via
0. We have

(5.1) Iy(F)=p1" Iy (@) N 07 (") 214y o) -

We claim here that there is a root subsystem R’ of R which is obtained
from R by one elementary transformation and J(y') is the Weyl group generated
by {s,|7<R’} and that conversely for any root subsystem R’ obtained by one
elementary transformation from R, there is a point ¢ & Q@ R such that J(y')
coincides with the Weyl group generated by {s,|7n=R’}.
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To see this recall that the action of W, on Q Q R has a fundamental domain
C,. G, is called a small Weyl chamber. (Cf. Bourbaki [3]). Since every small
Weyl chamber is conjugate we can assume that v/ &C, (- denotes the
closure.) Now let s, denote the reflection of QQ R in W, whose set of fixed
points coincides with a hyperplane H. Let M be the set of all hyperplanes H
with s, W,. The domain C, is a connected component of Q®R—HLEJ 1;{1' Set

My={HcM|dim(HNC,)=dimH}. M, is the set of walls of the small
chamber C,. It is known that for every H& M, there is a unique root 7R
perpendicular to H and such that {x, >>0 for x&,. We denote it by 7»(H).
Let R= R; be the decomposition into irreducible root systems. Then there is

a fundamental system of roots 4,C R; for each i such that the union U4;U

{—7,} coincides with the set {#(H)|H& M,} where 7, is the highest root of R,
associated to 4;. Let My )={HeM,|yv' =H}. It is the set of walls of C,
passing through . Then it is also known that the isotropy group I (v)
coincides with the subgroup of W, generated by {s,| H= M, (y")}, the set of
reflections corresponding to walls of C, passing through . Since the intersec-
tion of all walls of the small Weyl chamber of an irreducible root system is
empty, for every i, (4;U {—=»,}) N {n(H)| HE M)} is a proper subset of 4;U
{—=;}. Let R’ be the root system generated by {7(H)| He< My(y')}, the set of
roots perpendicular to some wall of C; passing through v’ and in the direction
of the inside of C,. By the construction R’ is the one obtained by one ele-
mentary transformation from R and J(y') is the Weyl group generated by
{s,|nER}.

Conversely let R’ be a root subsystem of R=@@ R; obtained by one elemen-

tary transformation from R. Choosing the fundamental system of 4,C R; of
the irreducible root system R; is equal to choosing a Weyl chamber C; of W(R))
in Q;Q R where Q; is the'co-root lattice of R;. Let C,, be the small Weyl chainber
contained in C; and such that 0=C,,, which is the fundamental domain of
WA(R)=FW(R)IXQ; Let My={H: hyperplane in Q,QR|s,=W/(R),
dim (HNC,)=dim H}. M, is the set of walls of ;. Then the set {7(H)|
He M} coincides with 4,U {—»,} where 7; is the highest root. For the
specified proper subset 4; of 4, U {—7;} let v} be a general point in the intersec-
tion N {H|HE M, n(H)4,;}. The isotropy group Iy zp(¥?) coincides with
the Weyl group generated by {s,|7< R}} where R} is the root system generated
by 4,. Let ' be the image of @} by the inclusion @Q,QRCORR. One
knows that the isotropy group I, (v') is the Weyl group generated by {s,|7E
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EBR§=R’}. Thus we have the above claim.

In what follows we assume that v € Q® R and R’ has the relation mention-
ed in the above claim.

Let Q' be the co-root lattice associated to R’. Then J(yv') X Q' is the
affine Weyl group associated to R'. Thus applying the above claim to R’ one
sees that subgroups H of W with the property (2) in Proposition 5.9 coincide
with subgroups which can be written as Iy o(y”) for some ', v’ € 0QR.
Therefore by the equality (5.1) and by the next-lemma we conclude that (1) and
(2) are equivalent when E is an elliptic curve.

Lemma 5.10. Any reflection in Iy x (") belongs to  Irqnx o(¢").
(Note that in general Q=20'".)

Proof. Any reflection in W X Q can be written as (s,, &) where 7 &R and
£=0Q. Assume (5. §) Ly o(yr”). We have n= R and "' — g, " >pV+¢
=", Thus {={7,1"">7". Note that we have an element we& P(R) such that
<{w, 7" >=1. One sees that {w, £>={7, ¥""> is an integer since P(R) is the dual
lattice of Q. Thus we have {=Q’ and (s,, §)J () X Q. Q.E.D.

Next assume E=C*. Let n: C—C* be the covering mapping. It induces
the covering mapping 7: QRQC—>Q0QRXC*. If #(y)=v then I, (¥)=I;(y),
where W,=W X Q. Thus the problem is reduced to the classification of
isotropy groups cf the action by W, to Q®QC. However note that the answer
never changes by replacing C by R since the condition g(+)=+ for g W,,
v QQC is written with an affine equation whose coefficients are all real

numbers.
Pick y€QQ®R. Let C, be a small Weyl chamber whose closure contains

z. Then as mentioned above, I (x) is the Weyl group generated by reflections
associated to walls of C, passing through » and moreover the set of generating
reflections corresponds to a root system R’ which is obtained by one elementary
transformation from R.

We conclude the proof of both cases in Proposition 5.9.

The next proposition deals with the case E=C.

Proposition 5.11. Let W=W/(R) be the Weyl group associated to a fixed
root system R. Let Q be the co-root lattice of R. Then for any subgroup HC W,
the following conditions are equivalent.

(1) For some v=QQC, H=I,(y).
(2) For some fundamental system of roots 4 C R and for some subset 4'C 4, H
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is the Weyl group generated by {s,|7<= R’} where R’ is the root system generated
by 4'.

Proof. For ge W and v QR C, the condition g(y)=vyr is described by a
linear equation whose coefficients are all real numbers. Therefore we can
replace C by R. Pick y€QO®R. Let C be the Weyl chamber of W such that
the closure of C contains y. Let M be the set of hyperplanes HC Q® R such
that for some reflection in W its fixed-point-set equals to H. A connected
component of Q®R~HLEJMH is C. Let M, be the set of walls of C, i.e., M,=

{Hc M|dimH=dim(HN €)}. For H< M, we have a unique root 7&R
perpendicular to H and <{x, 7>>0 for x&C. If we denote it by 7(H), the set
{n(H)| He M} is a fundamental system of roots of R. Moreover it is known
that choosing a Weyl chamber C is equivalent to choosing a fundamental system
of roots. Setd'={n(H)|HE M, x=H}. A4'isthe set of walls passing through
x. Itis also known that I,(x) is the Weyl group generated by reflections {s, |
nER'}, where R’ is the root system generated by 4. Thus (1) and (2) are
equivalent. Q.E.D.

Now by Proposition 5.7, Remark just after Proposition 5.7, Proposition
5.9 and Proposition 5.11, the main parts of Theorem 0.2, Theorem 0.3 and
Theorem 0.4 are obvious.

Recall that the intersection numbers of elements in the union of a
fundamental system 4 of an irreducible root system and (—1) times its as-
sociated highest root are described by the extended Dynkin graph. Thus the
elementary transformation of root systems corresponds to the elementary
transformation of the Dynkin graphs. The series (I) in Theorem 0.2, Theorem
0.3 and Theorem 0.4 corresponds to A;=7e,—-:-—2¢;, and the series (II)
corresponds to 2,=9¢,—--+—e,,. However we did not necessarily use the expres-
sion containing B, or 4,+FE; in those theorems. We used a simpler expres-
sion to say the same contents.

The part left unproved is the following proposition.

Proposition 5.12. (Umezu [22]) Assume that a normal quartic surface X
has singularity Eg, T, 3, or Ey, and that 33 p(X, x)=2. Then X has only 2
reX

singular points and both of them are of type E, Conversely a normal quartic
surface with 2 singular points of type Eg exists.

However this is Y. Umezu’s result.
Let us proceed further to the case of branched double coverings.
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In this case it is obvious that the orthogonal complement 4 of Z2, is the
orthogonal direct sum of Zr,, and 5,=Zr,+Zr,+Zry+Zr,+Zrs+Zre+ Zry
+Zrs. (A3=06y—26,—2e,—2e3—2¢,—2e5—2e4—2e,—2eg—eg—&y,.) E, is the
root lattice of type E;. Let II, be the set of all elements & € Zy,,-+ 5, with £2=
—2. II, is the root system of type 4;+E, The lattice Zr,,+ &, is its root
lattice and Z(r,,/2)+ &, is its weight lattice. Moreover we have that Q(J/7;)=
QUTY)=2Zr,y-+8, and P(IIy)=P(II3{)=Z(r/2)+E,= A*. Thus Hom(I'/Z2,,
E) is identified with Hom(Z(r,,/2)+ &,, E). We denote by G, the Weyl group
generated by sy, Sy, Syp Sy,s Sygs Syg Sy Syg Sy (Sy, doOes not appear.) The
group G; acts on Zry,+ 5, and Z(r,/2)+ &, and it is of type 4,4 Eg.
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The next lemma is easily checked.

Lemma 5.13. (1) Every element r & Zr,y+ 8, with y*=—2 is a root.
(2) For every r € Z(r1/2)+ 5, with r*=—2, we have £ € Z(r[2)+ 5, with r-¢
=1.

Thus Lemma 5.6 holds even when i=3.

Lemma 5.14. The following conditions are equivalent for & Hom(Z(r,/2)
—I"Ez, .E)-
(@) There exists an element n&T" with £*=0, p-2;=1 and u(u)=0.
() m(y)=0 where z;: Hom(Z (r1,/2)+ &5, E)—>Hom(Z (r,/2), E) is the projec-

tion.

Proof. Llet u=TI be an element with #2=0 and x-2;,=1. Since I'C
Z(23)2)+Z (r1y/2)+E, we have an integer m and £ €5, such that u=(2,/2)+
(mr/2)+€&. (The coefficient of 23 is 1/2 since #-2;=1.) It yields the equality
0=?=(1/2)—(m?2)+£% Thus m=+1 and £=0 since £ is a negative integer
unless £=0. One knows u=(24/2)4(ry,/2). Since u(x)=-47r,/2, we have the
desired equivalence. Q.E.D.

We have the following proposition.

Proposition 5.15. The following conditions are equivalent for + &
Hom(Z (r1/2)+ &5, E). Let n: Hom(Z (ry/2)+ &;, E)—>Hom(Z (r1/2), E) be
the projection and G; be the Weyl group of the root lattice Zr,,+5, (G, is of
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fype A,+Eyg.)
(A) There exists a marked rational surface %=(Z, D, a, ¢) over E of degree
—1 such that
(i) the characteristic homomorphism ¢ & of Z coincides with yru;
(ii) the line bundle L=a(2;) defines a generically one-to-one morphism ©@:
Z—XcP(,1,1,3) io a branched double covering over P? branching along
a reduced sextic curve B; and
(iii) the combination of singularities on X is a unique E,, T3, or Ey, (It
depends on whether E is an elliptic curve, C* or C.) plus a combination of
rational double points associated to the set of Dynkin graphs > p,A,~+
g DA W E,.
B) ()0 and the set of elements 1€ Z(ry,/2)+E, satisfying n*=—2 and
Ww(n)=0 is the root system of type > p,A,+2>) ¢.D;+>3 1, E,.
(©) m{y)=£0 and the maximal subgroup generated by reflections of the isotropy
group I () is the Weyl group of type 3] pAy+21 ;D +20 ryky.

Lemma 5.16. (1) Assume that E is an elliptic curve or C*. If m(yr)=0
for yyeHom (Z(r1y/2)+ E,, E), then we liave another element ' € Hom (Z (7,0/2)
+ &y, E) such that m(y')+0 and I (¢ ) =1 ().
(2) Assume E=C. Let G} be the subgroup of Gy generated by sy, sy,, **
If () =0 for yy&Hom (Z(r1y/2)+ 53, C), then I () =Igy(y).

Y S-ys.

Proof. Let T be the cyclic group of order 2 generated by sy and z,:
Hom (Z(r/2)+Z&,, £)—=Hom(Z,, E) be the projection. Note that the equality
1, (f) =I(m(y) X Igy(ms(y)) holds.

(1) Let yeHom (Z(r,/2)+ =, £) be the element with x(&Z,)=0, x(r,,)=0 and
2(r/2)=E0. If £ is an elliptic curve or C*, such yx exists. The element =
-+ x satisfies the above condition.

(2) If E=C, then the condition x(ry,)=0 and x(r,,/2)=0 are equivalent. Thus
if 7 (y)==0, then I(7;(y)) is the trivial group. Q.E.D.

The important parts of Theorem 0.5, Theorem 0.6 and Theorem 0.7 follow
from Proposition 5.15, Lemma 5.16, Proposition 5.9 and Proposition 5.11.
The parts left unproved are disconnectedness of strata in P (H(P%, Op2(6)))

and the case 3 p, (X, x)=2. As for the case > p, (X, x) =2, please see the last
remark in this section.

The basis of disconnectedness is the following fact.

Fact 5,17. (Cf. Dynkin [7]) The root system R of type E; with the
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action of the Weyl group W(R) contains two non-conjugate root subsystems
of the following types.
(1) 4, (2) 245 () 4s+4, (D A31+24, (5) 44,

Moreover both of non-conjugate ones of each type can be obtained by
elementary transformations repeated twice from R.

According to this fact one knows for 10 cases in Theorem 0.5, (ii) there are
two root subsystems R;, R, of I, of the same type such that for any automorphism
of lattices f: P—P satisfying f(x)=« and B(4;)=2;, F(R;) never coincides with
R,. Indeed if we have a homomorphism g with A(R,)=R,, then (R, N Z,)=R,
N &, since the root subsystem /13N 5, of II; is the unique one of type Ej.
However for type E; the Weyl group coincides with the automorphism group.
Thus RN &, and R,N &, are conjugate with respect to W(&,N II5).

Let E be a fixed elliptic curve. By Proposition 5.15, there are two marked
rational surfaces of degree —1 over E, &,=(Z,, D,, @, ¢;) and %,=(Z,, D,, @, t,)
such that L;=a,(2,) defines a morphism @;: Z,— X to a branched double cover-
ing 7;: X;—P? and Ker ¢ 2, N3=R; (i=1, 2). Thus for any intersection
preserving homomorphism #: Pic (Z))—Pic (Z,) satisfying f(e z,) =z, and
Blay(2;))=ay(25), two root subsystems g (Ker (Pic (Z,)—Pic (D1))) N ay(II,) and
Ker (Pic (Z,) — Pic (D,)) N a,(/I;) never coincide. However if the set of sextic
curves with a combination of singularities under consideration is connected, we
get a contradiction by the following lemma.

Lemma 5.18. Let BCUXP? be a family of reduced sextic curves over a
connected analytic variety U, i.e., a subvariety of codimension 1 of UXP? such
that for every t€U, B,=3N {t} xP? is a reduced sextic plane curve. We
assume that B, has a unique E, singular point and other several rational singular
points. We assume moreover that the number of each type of rational singular
points is independent of t=U. Let t' and t” be arbitrary points on U. We
define varieties X', X", Z', Z", D', D" and morphisms ©', =", o', o’ as follows.
The branched double coverings over P? with the branch locus B'= B, and B"' =B,
are o': X'—P? and o"': X""—P? respectively. The minimal resolution of singu-
larities are denoted by p': Z'—>X' and po"”: Z""—X". Let D' and D" be the
exceptional curves of the simple elliptic singularities in X' and X'’ respectively.
We set II ={M &Pic (Z"")| M*=—2, M- w@,+=0, M-p"*n""*Op2(1)=0}. Then
there is an intersection-form-preserving homomorphism (: Pic (Z')—Pic (Z")
satisfying f(wz)=wyr, B0 *x'*Opz (1))=p"*n""*COpz (1) and II N B (Ker (Pic
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(Z')—Pic (D')))=1II N Ker (Pic (Z/)—Pic (D).

Proof. 1If U is connected, we can choose finite points 7, #,, -+, £,& U with
t'=t, t"’=t, and analytic morphisms f;: T—U, 1<i<q from the unit disc
T={z=C| |z] <1} such that ¢; and ¢, belong to the image f;(7). Con-
sidering the pullback of the family B by f; instead of B itself, we can assume
that U is the unit disc T without loss of generality.

Let X,CcP(1, 1, 1, 3) be the branched double covering along B,C P~
Obviously the set %zt’lEJT{t} XX, CTxP(1, 1, 1, 3) is an analytic variety. Let

Z, be the minimal resolution of singularities of X,. The set 3= U {t} X Z, also
ter

has the structure of analytic variety. The relative Picard group Picg,r is a
constant sheaf over T of free Z-modules equipped bilinear forms. Let a: Pr—
Picg/7 be an isomorphism from the constant sheaf with values in P. Let 8 be
the composition

&, Qs
Pic(Z")="Pic(Z,/) <~ (Picg 1)y —> P < (Picg 1)y —>
PiC(Zt//) = PlC(Z I) .

Note that for any 7 €Pic(Z;) with ?=—2 such that 7 is orthogonal to the
dualizing sheaf and the polarization, either 7 or —7 is effective if and only if
7 or —7 is the class of a exceptional divisor of the resolution of Z,—X;. By
assumption that the combination of singularities on B, and thus that on X; is
independent of t& T, one sees that the above 8 has the desired property.

Q.E.D.

Remark. Applying the same method as in Umezu [22], we can also deduce

the next proposition. We omit the proof here, since we can find essential parts
in [22].

Proposition 5.19. Assume that the branched double covering X over P?
branching along a reduced sextic curve has a singularity of type Ey, T, 4, or Ey,
and that Z}‘,{ pg(X, X)=2. Then the combination of singularities on X is either 2E,
or ZE‘S—i—le. Conversely the branched double covering along a reduced sextic
curve with 2E;, singularities and that with 2E,+ A, exist.

Recall that the existence of X with given combination of singularities is
equivalent to the existence of the sextic curve with the same combination by
Lemma 1.1. The next figure gives the example of curves with 2E; and 2E,+A4,.
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