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Abstract. LetF=Q be a totally real extension andf an Hilbert modular cusp form of level n, with
trivial central character and parallel weight 2, which is an eigenform for the action of the Hecke
algebra. Fix a prime } j n of F of residual characteristic p. Let K=F be a quadratic totally
imaginary extension and K}1 be the }-anticyclotomic Zp-extension of K. The main result
of this paper, generalizing the analogous result [5] of Bertolini and Darmon, states that, under
suitable arithmetic assumptions and some technical restrictions, the characteristic power series
of the Pontryagin dual of the Selmer group attached to .f;K}1/ divides the p-adic L-function
attached to .f;K}1/, thus proving one direction of the Anticyclotomic Main Conjecture for
Hilbert modular forms. Arithmetic applications are given.
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1. Introduction

Let F=Q be a totally real extension of degree d WD ŒF W Q� and n a square-free
integral ideal of the ring of integers OF of F . Let f 2 S2.n/ be a Hilbert modular
cusp form for the �0.n/ level structure with trivial central character and parallel
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weight 2. Let Tn be the Hecke algebra generated over Z by the Hecke operators
acting on S2.n/. Assume that f is a normalized eigenform for the action of Tn and
denote by �f W Tn ! xQ the morphism corresponding to f . Let aq.f / WD �f .Tq/

(respectively, aq.f / WD �f .Uq/) be the eigenvalue of the Hecke operator at prime
ideals q − n (respectively, q j n). Define

Kf WD Q
�
aq.f /;q a prime ideal of OF

�

to be the field generated (over Q) by the eigenvalues of the Hecke algebra acting on
f and denote by Of its ring of integers. Since the character of f is trivial, Kf is
totally real by [44], Proposition 2.5.

Fix p � 5 a rational prime and assume for simplicity that p does not ramify in
F=Q and Kf =Q. Fix an embedding �p W xQ ,! xQp . Denote by � the prime ideal of
Of corresponding to �p and denote by Of;� the completion of Of at � .

Say that f is ordinary at a prime ideal p j p if there exists a root ˛p of the Hecke
polynomial at p such that �p.˛p/ is a unit. In this paper we assume that f is ordinary
at all prime ideals p j p.

Suppose that there exists a prime ideal } j p such that } j n. Suppose that either
f is a newform or it comes from a newform of level n=} which is ordinary at all
primes p dividing p via the procedure of p-stabilization. In the totally real case, see
Section 12.5.2 in [35] for this procedure; see also Nekovář [35] (Chapter 12), [36],
[37], Zhang [48], [49], [50], Cornut–Vatsal [9], [8], Howard [21] and Goren [16]
for references on recent developments and results on the arithmetic theory of Hilbert
modular forms.

LetK=F be a totally imaginary quadratic extension. Assume that the discriminant
of K=F and pn are prime to each other. Then K determines a factorization

n D }nCn�

where a prime ideal q divides nC if and only if q is split in K=F while divides n�
if and only if it is inert in K=F . We also assume that the number of prime ideals
q � OF dividing n� has the same parity as d D ŒF W Q�. Finally, if d is even, we
assume that n� ¤ OF .

Remark 1.1. The condition d even ) n� ¤ OF is assumed to obtain the iso-
morphism (10). See Remark 7.15. For the case of d even and n� D OF , see the
discussions and the results of [29] and [30].

As a consequence of the assumption on the parity of the number of ideals dividing
n�, the special value at 1 of the complexL-functionLK.f; �; s/ of f overK twisted
by � is non zero for infinitely many ramified ring class characters � of conductor }m

(see [8], Theorem 1.4).
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Using the notion of Gross points it is possible to associate tof ap-adicL-function
L};�.f =K/ relative to } and � . This is an element of the Iwasawa algebra

ƒ};� WD Of;� ŒŒG}1 ��;

where
G}1 WD Gal.K}1=K/ ' Z

ŒF} WQp�
p

is the Galois group of the anticyclotomic Zp-extensionK}1=K associated to}. See
Section 2 for the definition ofK}1 and Section 4 for the construction ofL};�.f =K/.
The p-adic L function L};�.f =K/ is characterized by its interpolation properties of
the complexL-functionsLK.f; �; s/, where� is as above: see Section 4.4 for details.

On the other hand, there is a notion of Selmer group attached to f . Denote by

�f;�1 W GF WD Gal. xF=F / �! GL2.Of;�/

the�-adic Galois representation attached to f and define �f;�n WD �f;�1 .mod �n/.
Denote by Tf;�1 the GF -module associated to the representation �f;�1 . Let

Vf;�1 WD Tf;�1 ˝Of;�
Kf;�

(where Kf;� WD Frac.Of;�/). Define finally Af;�1 WD Vf;�1=Tf;�1 and Af;�n WD
Af;�1 Œ�n� for all n � 1. The Selmer group

Sel�1.f =K}1/ � H 1.K}1 ; Af;�1/

is defined in Section 5 by imposing suitable local conditions on global cohomology
classes. Its Pontryagin dual Sel_�1.f =K}1/ is a finitely generated ƒ};� -module.
Denote by

Char};�.f =K/ 2 ƒ};�

the characteristic power series of Sel_�1.f =K}1/. This element is well-defined only
up to units, while the ideal

�
Char};�.f =K/

�
of ƒ};� generated by Char};�.f =K/

depends only on Sel_�1.f =K}1/.
TheAnticyclotomic Iwasawa Main Conjecture relates the ideals ofƒ};� generated

by L};�.f =K/ and Char};�.f =K/; it can be stated as follows:

Conjecture 1.2 (Anticyclotomic Iwasawa’s Main Conjecture). The ideals of ƒ};�

generated by L};�.f =K/ and by Char};�.f =K/ are equal.

For any prime ideal q � OF , choose

GFq D Gal. xFq=Fq/ � Gal. xF=F /
a decomposition group and denote by IFq its inertia subgroup. To state the main
result, suppose that the following technical conditions are verified:
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Assumption 1.3. (1) �f;� is surjective.
(2) The morphism �f W Tn ! Of is surjective.
(3) Define mf;� to be kernel of the morphism Tn ! Of;�=� associated to f .

The completion Tf of Tn at mf;� is isomorphic to Of;� (we say that f is �-isolated
if this condition holds).

(4) Let q j n and q − p be a prime ideal. The maximal IFq-invariant submodule
of Af;�1 is free of rank one over Kf;�=Of;� .

(5) If p D 5 then ŒF .	5/ W F � ¤ 2, where 	5 is a 5-th root of unity.
(6) The prime number p does not divide the class number hK ofK and the index

ŒO�
K W O�

F � of O�
F in O�

K . Further, p does not ramify in F and Kf .

Remark 1.4. Some of the conditions in Assumption 1.3 could probably be relaxed.
In particular, (1) could be replaced by a less strong condition as in [38]. Condition
(2) also could be relaxed by using arguments in [39]. Condition (3) will be used in
Lemma 7.7 to control a certain Selmer group associated to the adjoint representation
of �f;� and to obtain the isomorphism (10). Condition (4) will be used in § 5.2 to
describe the local conditions at primes q j n, q − p appearing in the definition of
Sel�1.f =K}1/. In the case of a modular abelian variety A defined over F , whose
associated Hilbert modular form is f (in the sense of Definition 6.3), these conditions
will be compared in § 6.2 with the image of the local Kummer map at the primes
dividing n but not dividing p. Condition (5) is used in §7.3 to apply a result by
Fujiwara [15]. Finally, (6) could certainly be relaxed and is assumed mainly to get a
simpler description of the extension K}1 in Section 2 and, consequently, a simpler
construction of L};�.f =K/ in Section 4.

The main result, corresponding to Theorem 6.1, can be formulated under the
technical conditions in Assumption 1.3 as follows:

Theorem 1.5. Suppose that Ihara’s Lemma for Shimura curves over totally real
fields, as stated in Assumption 7.18, holds. Then the characteristic power series
Char};�.f =K/ divides the p-adic L-function L};�.f =K/.

Under our arithmetic assumptions, the p-adic L-function does not vanish identi-
cally by Theorem 1.4 of [8]: see Section 4.4. This shows that (see Corollary 6.2):

Corollary 1.6. Assumptions as in Theorem 1.5. Then Sel_�1.f =K}1/ is pseudo-
isomorphic to a torsion ƒ};� -module.

Remark 1.7. Unlike the conditions in Assumption 1.3, Ihara’s Lemma in the state-
ment of Theorem 1.5 seems to be considerably harder to remove. This is the most
substantial obstruction to an unconditional result. It consists in a version of Ihara’s
Lemma for Shimura curves over totally real fields. It will be used in the proof of



Vol. 87 (2012) Anticyclotomic Iwasawa’s Main Conjecture for Hilbert modular forms 307

Lemma 7.20 below. If F D Q, the result we need is Theorem 2 in [12]. The re-
sults contained in [12] and successively refined in [13] are partially generalized to
the totally real case in [25]. However, [25] does not cover the full generalization of
[12], Theorem 2. In this paper we follow [15], which assumes the generalization of
Ihara’s Lemma as an hypothesis in [15] (Hypothesis 5.9). Similar results for Hilbert
modular varieties hold thanks to [14]. For further discussions, see Remark 7.19.

The proof of the main result is a generalization of the methods in [5], where the
case of F D Q and Of;� D Zp is considered. In Section 7 the main steps of the
proof are recalled and the necessary technical adaptations are performed. Among
the difficulties arising in the totally real context is that we work with an Iwasawa
algebra isomorphic to a power series ring in several (not just one) variables. In
particular, we need to generalize the divisibility criterion in [5] (Proposition 3.1) to
this more general setting. The needed generalization is provided by Proposition 7.4,
which might be viewed as an algebraic result of independent interest in the context of
Iwasawa theory. An other technical difficulty arises from the fact that we deal with
normalized newforms f with arbitrary (non necessarily integers) Fourier coefficients
and we need to discuss the local conditions defining Selmer groups in order to relate
them to the usual description of Selmer groups via classical Kummer map when f is
associated to an abelian variety (in the sense of Definition 6.3). See § 6.2 for details.

Remark 1.8. If the above condition on the number of primes dividing n� is not
satisfied (excluding from this discussion the case ŒF W Q� even and n D OF for
simplicity), then Sel_�1.f =K}1/ is not pseudo-isomorphic to a torsionƒ};� -module
and the growth of Sel�1.f =K}1/ is forced by the presence of Heegner points coming
from a Shimura curve parametrization of the abelian variety Af associated to f (see
Remark 6.4 for details on Af and its parametrization by the Jacobian variety of a
suitable Shimura curve). For precise statements and results in this case, see [1] (over
Q), [21] and [36] (over totally real number fields).

Remark 1.9. Using the techniques announced by Skinner–Urban, it should be possi-
ble to prove the opposite divisibilityL};�.f =K/ j Char};�.f =K/. Thus, combining
with Theorem 1.5, it may be possible to obtain a proof of Conjecture 1.2. An other
application of the methods of Skinner–Urban concerns the full p-adic L-function
(and not just its anticyclotomic part as in Conjecture 1.2). It should be possible to
prove that the p-adicL-function of the maximal Zp-extension ofK divides the char-
acteristic ideal of the Pontryagin dual of the �-Selmer module attached to f and this
extension. If this were the case, one could combine such a result with Theorem 1.5
to prove the main conjecture for the full p-adic L-function and therefore for the cy-
clotomic p-adic L-function. Such a result would generalise work of Kato over Q
to the case of totally real fields. (Kato’s construction of an Euler system does not
generalize.)
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Theorem 1.5 can be used to study the arithmetic of abelian varieties of GL2-type.
The simplest case is that of an elliptic curve. LetA be an elliptic curve defined overF ,
of conductor n, without complex multiplication, which is ordinary at each prime ideal
p j p. Suppose also thatA is modular in the sense that there exists a Hilbert modular
form f for the �0.n/-structure, of parallel weight 2 and trivial central character,
such that the `-adic representation of A is isomorphic to the `-adic representation
associated to f , where ` is a rational prime. In this case, Of D Z, � D p and
Of;� D Zp . Suppose finally that f satisfies all the above assumptions. Note in
particular that, since A does not have complex multiplication, there are only a finite
number of primes ` such that the Galois representation on the `-torsion points ofA is
not surjective. Theorem 1.5 can be used to study the characteristic power series of the
Pontryagin dual Sel_p1.A=K}1/ of the p-primary Selmer group Selp1.A=K}1/

of A over K}1 . Theorem 1.5 and the non-vanishing of L}.f =K/ established in
Theorem 1.4 of [8] show that Sel_p1.A=K}1/ is always pseudo-isomorphic to a
torsion ƒ};p-module. The first application, corresponding to Corollary 6.11, is the
following:

Corollary 1.10. Assumptions as in Theorem 1.5. Moreover, suppose ŒF} W Qp� D 1
and letA=F be amodular elliptic curve as above. ThenA.K}1/ is finitely generated.

For any ƒ};p-module M and any finite order character � W G}1 ! O, where
O is the ring of integers of a finite extension of Qp , extend � to a homomorphism,
denoted by the same symbol, � W ƒ};p ! O and set M� WD M ˝� O, the tensor
product being taken over ƒ};p via �. Let Шp1.A=K}1/ be the p-primary part of
the Shafarevich–Tate group of A over K}1 . The second application, corresponding
to Corollary 6.9, is the following:

Corollary 1.11. Assumptions as in Theorem 1.5. Moreover, suppose ŒF} W Qp� D 1
and letA=F be amodular elliptic curve as above. IfLK.A; �; 1/ ¤ 0, thenA.K}1/�

and Шp1.A=K}1/� are finite.

Acknowledgements. The author thanks the referee for the careful reading of the
manuscript and for useful comments which led to some corrections and an improve-
ment of the exposition.

2. Anticyclotomic Zp-extensions

Let the assumptions and notations be fixed as in Section 1. In particular, recall that p
does not divide the class number of K and the index of O�

F in O�
K . For any integral

ideal c � OF , let
Oc WD OF C cOK
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be the order of conductor c inK and define the ring classfield zKc=K ofK of conductor
c to be the Galois extension of K such that the Artin map induces an isomorphism:

Gal. zKc=K/ ' Pic.Oc/ ' yK�= yO�
c K

�:

Denote by j � j the norm on ideals of OF and set hc WD #Pic.Oc/, so that hK WD h.1/

is the class number of K. By the Dedekind formula:

hc D
hK jcjQqjc

�
1 �

�
K
q

�
jqj�1

�
ŒO�

K W O�
c �

; (1)

where q denotes a prime ideal of OF and
�

K
q

�
D 1 (respectively, �1; 0) if q is split

(respectively, inert, ramified) in K=F . The extension zK}m=K is unramified outside
the places dividing }. Thanks to the fact that p does not ramify in K and does not
divide hK ŒO

�
K W O�

F �, it follows from (1), that Œ zK}m W zK}m�1 � D j}j for all integers

m � 2 and that p − Œ zK} W K�. Define zK}1 WD lim�!
m

zK}m .

Definition 2.1. The }-anticyclotomic Zp-extension K}1=K is defined to be the
unique subfield K}1 of zK}1 such that

G}1 WD Gal.K}1=K/ ' Z
ŒF} WQp�
p :

The extension K}1=F is Galois and non abelian. More precisely, the quotient
Gal.K=F / acts by conjugation on the normal subgroup Gal.K}1=K/ by the formula

 7! �
� D 
�1, where � is the choice of a complex conjugation raising the non
trivial automorphism of Gal.K=F /. For any integer m � 1, define the extension
K}m=K by requiring that

G}m WD Gal.K}m=K/ ' .Z=pmZ/ŒF} WQp�:

It follows from the above assumptions on p that K}m is the maximal p-power sub-
extension of zK}m=K. Denote by ƒ};� the Iwasawa algebra of G}1 :

ƒ};� WD Of;� ŒŒG}1 �� D lim �
m

Of;� ŒG}m �

where the inverse limit is with respect to the canonical projection maps G}m !
G}m�1 .

Remark 2.2. There are other definitions of ring class fields of conductor c in the
literature. Nekovář [36], Section 2.6 (see also Zhang [50]), defines the ring class field
of conductor c to be the Galois extension K�

c corresponding via class field theory to
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yK�=K� yO�
c
yF �. On the other hand, [8] uses the definition given in this paper for

the ring class field zK}n , denoted KŒP n� therein. However, note that the quotient
yK�=K� yO�

c
yF � is isomorphic to Pic.Oc/=Pic.OF /, so, since p − hK , the maximal

Zp-extension contained in
S1

nD1K
�
}n is exactly the extensionK}1 in Definition 2.1.

3. CM points on quaternion algebras

This section is devoted to fixing the notation for CM-points on quaternion algebras.
Since we will need this notions both for totally definite quaternion algebras (in Sec-
tion 4) and for quaternion algebras which are split in exactly one archimedean place
(in Section 7.4), we will adopt a quite general view-point.

3.1. Optimal embeddings and CM-points. Let k denote a global or local field and
D=k a quaternion algebra. Let O be an Eichler order of D. Let k0=k be a quadratic
extension and denote by r an order in k0. Say that  is an optimal embedding of r
into O if  W k0 ,! D is an injective homomorphism of k-algebras such that

 .r/ D  .k0/ \O:

Two optimal embeddings  1 and  2 of r into O are said to be equivalent if there
exists ˛ 2 O� such that  1.x/ D ˛�1 2.x/˛ for all x 2 r . The conductor of an
optimal embedding  is the conductor of the order r . For more details, see [47],
Chapitre II, when k is a local field and [47], Chapitre III, when k is a global field.

Suppose now that k is a global field and, for any valuation v of k, let kv , k0
v , rv ,

Dv and Ov denote the completions of k, k0, r , D and O , respectively, at v. In the
following, by an abuse of notation, we will identify v with the integral prime ideal of
k corresponding to it. Let d denote the discriminant of k0=k, c the conductor of the
quadratic order r , n the discriminant of the quaternion algebra D and m the level of
the Eichler orderO , and assume thatm is square-free, c is prime to n and d is prime
to cmn. Suppose that if v j n then v is inert in k0. Suppose also that if v j m and
v − c (so rv is maximal) then v is split in k0=k. This conditions ensure that the set of
optimal embeddings of r into O is non-empty: see [47], page 94.

Following [17] and [3], define

X.k0/ WD D�n yD� � Hom.k0;D/= yO�

where the action ofb 2D� andx 2 yO� on a pair .g;  / isb.g;  /x WD .bgx; b b�1/.
Say that a point .x;  / 2 X.k0/ is a CM-point of conductor c if  is an optimal
embedding of r into Ox WD xOx�1 \D. Write CM.c/ for the set of CM-points of
conductor c in X.k0/.
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Fix an embedding N W k0 ,! D which allows to view k0 as a subfield of D.
Following [8], the set CM.c/ can also be described as follows. Define

Y.k0/ WD N .k0/�n yD�= yO�:

Say that a point x 2 Y.k0/ has conductor c if k0 \ Ox D r . The set CM.c/ can
be identified with the set of points in Y.k0/ of conductor c. To see this, note that
there is a map from the set of points in Y.k0/ of conductor c to X.k0/ defined by
x 7! .x; N /. This map is a bijection. Injectivity: Suppose .x1; N / D .x2; N /.
Then there exists b 2 D� and x 2 yO� such that x1 D bx2x and N D b N b�1.
Since N .k0/ is a maximal commutative subfield of D, it follows that b 2 N .k0/
and so x1 and x2 represent the same element in N .k0�/n yD�= yO�: Surjectivity: Fix
.x;  / 2 X.k0/ of conductor c. By the Skolem–Noether theorem, there exists b 2 D�
such that  .k0/ D b�1 N .k0/b. It follows that b�1 N .r/b D b�1 N .k0/b \ x yOx�1,
so N .r/ D N .K/ \ bx yO.bx/�1. Hence, .bx; N / belongs to the image of the set of
points in CM of conductor c. Finally, note that .bx; N / D .x; b�1 N b/ D .x;  /.

The Galois group

G.c/ D Pic.r/ D yk0�=k0� Or�

acts on CM.c/ by left translation: for every g 2 G.c/ and .x;  / 2 CM.c/, the
action is given by x 7! .gx;  /. Equivalently, if x 2 Y.k0/ has conductor c, the
Galois action is given by x 7! gx.

3.2. The trace formula. Fix representatives g1 D 1; : : : ; gh of D�n yD�= yO� and
defineOj WD gj

yOg�1
j \D, so thatO1 D O . Note that the number of CM-points of

X.k0/ is equal to the number of non-equivalent optimal embeddings of r into one of
the Eichler ordersOj . Write Emb.r;Oj / for the set of equivalence classes of optimal
embeddings of r into Oj .

For any place v of k, let mv be the number of non-equivalent local optimal
embeddings of rv into Ov . Then mv is finite and mv D 1 for those v which do not
divide mn. The following trace formula holds ([47], Chapitre III, Théorème 5.11
and page 94):

jCM.c/j D
hX

j D1

jEmb.r;Oj /j D h.r/
Y

vjmn

mv; (2)

where h.r/ is the class number of r .

3.3. Orientations and Gross points. An orientation at v of a local optimal embed-
ding  W kv ! Dv of rv into Ov is the choice of an equivalence class of optimal
embeddings. This can be made precise as follows.
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If v j nm and v − c, thenmv D 2. The choice of an orientation can be performed
as follows. For v j nm and v − c, define

Uv.r;O/ WD Hom.rv; Ov/=O
�
v :

The choice of an orientation ov at the primes v j nm and v − c is the choice of an
element in Uv.r;O/. Say that a point .x;  / 2 CM.c/ is oriented at a prime v j nm
and v − c (with respect to the chosen orientation ov) if x�1 x and ov define the
same element in Uv.r;O/. For more details, see Section 2.1.1 in [48].

Let now v j m and v j c, so rv is not maximal. In this case too, mv D 2 (see
[47], page 94). The choice of an orientation can be performed as follows. The set of
maximal orders (respectively, Eichler orders of level v) of GL2.kv/ can be identified
with the set of vertices Vv (respectively, unoriented edges Ev) of the homogeneous
tree Tv of degree jvj. Let v0 (respectively, e0) denote the vertex (respectively, the
edge) corresponding to the maximal order GL2.rv/ (respectively, the Eichler order
�0.v/ � GL2.rv/ of level v consisting of matrices which are upper triangular modulo
v). Say that a vertex v is even (respectively, odd) if its distance from v0 is even
(respectively, odd) and define an orientation s; t W Ev ! Vv by requiring that for any
edge e, s.e/ D veven and t .e/ D vodd, where e is the edge joining veven and vodd and
veven and vodd are even and odd, respectively.

Let .x;  / 2 CM.c/. Then  W kv ! Dv is an optimal embedding of rv into
Ox . Fix an isomorphism �v W Dv ! M2.kv/. Then Ox can be identified with an
edge eOx

D �
s.eOx

/; t.eOx
/
�

is such a way that Ox is the intersection of the two
maximal orders represented by s.eOx

/ and t .eOx
/. Finally, let r 0 be the quadratic

order containing r of conductor c=v. Say that .x;  / is oriented (with respect to the
chosen orientations s; t ) if the v-component  v of  is an optimal embedding of r 0

v

into the maximal order corresponding to s.eOx
/. Note that, in this case,  must be

an optimal embedding of rv into the maximal order corresponding to t .eOx
/.

Fix orientations ov 2 Uv.r;O/ for v j mn and v − c and orientations s; t W Ev !
Vv for v j m and v j c. A Gross point of conductor c is a CM-point .x;  / 2 CM.c/
which is oriented at all v j mn.

4. p-adic L-functions

4.1. Modular forms on definite quaternion algebras. Let B=F be the quaternion
algebra of discriminant n� which is ramified at all archimedean places. Fix an Eichler
order R � B of level }nC.

Let f 2 S2.n/ be a Hilbert modular cuspform of parallel weight 2 and trivial
central character with respect to the �0.n/-level structure. Let Tn be the Hecke
algebra acting faithfully on S2.n/ (see Section 3.1 in [48] for precise definitions).
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Denote by SB
2 .}nC/ the C-vector space of functions

B�n yB�= yR� �! C:

There is an action of the Hecke algebra Tn on SB
2 .}nC/ defined as usual via double

cosets. The Jacquet–Langlands correspondence implies that (up to scaling) there is a
unique modular form f B 2 SB

2 .}nC/ having the same eigenvalues as f under the
action of the Hecke algebra. If the Hecke eigenvalues on a Hilbert modular form f

are contained in a ring O, them f B can be normalized to take values in O.

4.2. CM points on definite quaternion algebras. Since all primes dividing the
discriminant of B are inert in K, there exists an embedding K ,! B , so that K can
be regarded as a subfield of B via this fixed embedding x‰. Following the notation in
Section 3, define the set of CM-points by R to be

CMR WD x‰.K/�n yB�= yR�

and say that a point x 2 CMR has conductor c if

x‰.K/ \ x yRx�1 D Oc:

Denote by CMR.c/ the set of CM points of conductor c. Following Section 3, the set
CMR.c/ can also be described as the set of points in

XR.K/ WD B�n� yB� � Hom.K;B/
�
= yR�

such that ‰ is an optimal embedding of Oc into the Eichler order B \ x yR�x�1;
explicitly,

‰.K/ \ x yR�x�1 D ‰.Oc/:

Since all primes dividing nC are split inK, CMR.}
m/ is non empty for allm � 1.

The group zG}m ' yK�=K� yO�
}m acts on CMR.}

m/ by left translation, as described
in Section 3.

Fix a positive integerm. Choose orientations for the optimal embeddings of O}m

intoR as in Section 3 for all primes q dividing n: this amounts to choose orientations
oq 2 Uq.O}m ; R/ for all primes q j nCn� and an orientation s; t W E} ! V} at the
prime }. Let Gr.}m/ denote the set of Gross points of conductor }m with respect
to these orientations and define

Gr.}1/ WDS1
mD1 Gr.}m/:

If P D .x;‰/ 2 Gr.}m/, then the local component ‰} W K} ! B} of ‰ is an
optimal embedding of the completion O}m;} of O}m at} into xR}x

�1, whereR} is
the completion of R at }. Let eP D

�
s.eP /; t.eP /

� 2 E} be the edge corresponding
to xR}x

�1 as described in Section 3. Say that a sequence .Pm/m�1 of points in
Gr.}1/, with Pm 2 Gr.}m/, is compatible if t .ePm

/ D s.ePmC1
/ for all integers

m � 1.
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Remark 4.1. IfP D .x;‰/ 2 Gr.}m/withm � 1, then the pair .x;‰/ also defines
a CM-point of conductor }m�1 in XR0

.K/, where R0 � R is an Eichler order of B
of level nC chosen is such a way that R0;} corresponds to s.eP /.

4.3. Anticyclotomic }-adic L functions. Let f B be the modular form on the
quaternion algebraB associated to f via the Jacquet–Langlands correspondence and
define the following map:

� W N .K/�n yB�= yR� ��! B�n yB�= yR� f B

�! Of ;

where 
 is the canonical projection. Choose points xm 2 CMR.}
m/ in such a way

that the sequence .xm/m is compatible. The orientation s; t W E} ! V} being fixed
as above, the action of U} on an edge e 2 E} can be described as U}.e/ DP

e0 e0,
where the sum is over all edges e0 such that s.e0/ D t .e/. The choice of the compatible
sequence of Gross points made before shows then that for m � 2,

X
g2Gal. zK}m = zK

}m�1 /


.gxm/ D U}

�

.xm�1/

�
: (3)

Define the theta elements for m � 1:

Q�f;m WD
X

g2 zG}m

˛�m
} �.gxm/g 2 Of;� Œ zG}m �:

Denote by �mC1;m W Of;� Œ zG}mC1 � ! Of;� Œ zG}m � the homomorphisms induced by

the projection maps zG}mC1 ! zG}m . By Equation (3), the elements Q�f;m verify the
following relation:

�mC1;m. Q�f;m/ D Q�f;m�1:

Taking the inverse limit with respect to the projection maps �mC1;m yields an element

Q�f WD lim �
m

Q�f;m 2 Of;� ŒŒ zG}1 �� WD lim �
m

Of;� Œ zG}m �:

The group ring Of;� ŒŒ zG}1 �� is endowed with a canonical involution x 7! x� defined
to be the extension by Of;� -linearity of the involution 
 7! 
�1 of zG}1 . Define

zL};�.f =K/ WD Q�f Q��
f 2 Of;� ŒŒ zG}1 ��:

Since Q�f is well defined up to multiplication by an element of zG}1 , the definition
of zL};�.f =K/ is independent on the choice of the Gross points xm. Set zƒ};� WD
Of;� ŒŒ zG}1 �� and denote by � W zƒ};� ! ƒ};� the projection induced by the inclusion
K}1 � zK}1 .
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Definition 4.2. Define the anticyclotomic }-adic L-function attached to f andK to
be the element

L};�.f =K/ WD �
�zL};�.f =K/

� 2 ƒ};� :

Furthermore, define �f;n WD �. Q�f;n/ and �f WD �. Q�f /, so that L};�.f =K/ D �f �
�

f

and �f D lim �
n

�f;n:

4.4. Interpolation properties. Let � W zG}1 ! O� be a ramified finite order char-
acter, where O is the ring of integers of a finite extension of Qp . Extend � to an
homomorphism, denoted by the same symbol, � W Of;� ŒŒ zG}1 ��! O. Zhang, gener-
alizing [17], proves in Theorem 1.3.2 of [49] the following interpolation formula:

L.f; �; 1/ D C � j`.�/j2

where

`.�/ WD ��zL};�.f =K/
�

and C WD 2gd
�1=2

K=F
.jjf ]jj=jjf B jj/2:

In the above formulas we use a fixed embedding xQp ,! C to view `.�/ as a complex
number; furthermore, dK=F is the discriminant ofK over F , the symbol jj � jj denotes
the L2-norm in SB

2 .}nC/ with respect to a suitable measure (defined in [49], Theo-
rem 1.3.2) on the idele ring B�

A of B and, finally, f ] is the quasi newform associated
to f defined in [49], §1.1. In particular, C ¤ 0 and we obtain (see also Theorem 6.4
in [46]):

`.�/ ¤ 0 if and only if LK.f; �; 1/ ¤ 0:
The arithmetic assumptions we are working with imply that the sign of the functional
equation of LK.f; �; 1/ is C1 and, by [8], Theorem 1.4, that LK.f; �; 1/ ¤ 0 for
infinitely many characters � as above. Hence zL};�.f =K/ ¤ 0. Since zG}1 '
G}1 ��} and �} is finite, it follows that L};�.f =K/ ¤ 0.

5. Selmer groups attached to Hilbert modular forms

5.1. Galois cohomology groups

5.1.1. Galois representations. Let Tf;�1 be theGF D Gal. xF=F /-module, free of
rank 2 over Of;� , associated to the representation �f;�1 W Gal. xF=F /! GL2.Of;�/;
define Kf;� WD Frac.Of;�/ and

Vf;�1 WD Tf;�1 ˝Of;�
Kf;� I Af;�1 WD Vf;�1=Tf;�1 I

Tf;�n WD Tf;�1=�nTf;�1 I Af;�n D Af;�1 Œ�n�:
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As Of;� -modules, Af;�1 ' .Kf;�=Of;�/
2 while both Tf;�n and Af;�n are Of;�=�

n-
modules free of rank 2 and there is an isomorphism of GF -modules Tf;�n ' Af;�n .
Furthermore,

Af;�1 ' lim�!
n

Af;�n and Tf;1 ' lim �
n

Tf;�n

with respect to the canonical maps.

5.1.2. Global cohomology groups. Let � denote a positive integer or1. Define
the following groups:

H 1.K}1 ; Af;�� / WD lim�!
m

H 1.K}m ; Af;�� /;

where the direct limit is with respect to the restriction maps, and

yH 1.K}1 ; Tf;�� / WD lim �
m

H 1.K}m ; Tf;�� /;

where the inverse limit is with respect to the corestriction maps.

5.1.3. Local cohomology groups. For each prime q � OF , letK}m;q WD K}m˝F

Fq D L
q0jqK}m;q0 where the sum is over the prime ideals q0 j q of the ring

of integers OK}m of K}m and K}m;q0 is the completion of K}m at q0. For any
Gal. xK=K}m/-moduleM , defineH 1.K}m;q;M/ WDL

q0jqH 1.K}m;q0 ;M/. Then
define as above for � a positive integer or1,

H 1.K}1;q; Af;�� / WD lim�!
m

H 1.K}m;q; Af;�� /;

where the direct limit is with respect to the restriction maps, and

yH 1.K}1;q; Tf;�� / WD lim �
m

H 1.K}m;q; Tf;�� /;

where the inverse limit is with respect to the corestriction maps.

5.2. Selmer groups. The definitions of Sel�n.f =K}1/ and Sel�1.f =K}1/ re-
quire the introduction of the following finite/singular and ordinary structures. For
any prime ideal q of OF and any prime ideal q0 of OK}m above q, choose a decom-
position subgroup Gm;q0 � GK}m at q0 and let Im;q0 � Gm;q0 denote the inertia
subgroup.
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5.2.1. Primes q − np. Let M denote Af;�n or Tf;�n . Fix q � OF a prime ideal
such that q − np. The singular part of H 1.K}m;q;M/ is

H 1
sing.K}m;q;M/ WDL

q0jqH 1.Im;q0 ;M/
Gal.Kunr

}m;q0 =K}m;q0 /
;

where the sum is over all prime ideals q0 of OK}m dividing q. The kernel of the residue
map @q W H 1.K}m;q;M/ ! H 1

sing.K}m;q;M/ is the finite part of H 1.K}m;q;M/

and is denoted by H 1
fin.K}m;q;M/. Define

H 1
fin.K}1;q; Af;�n/ WD lim�!

m

H 1
fin.K}m;q; Af;�n/;

H 1
sing.K}1;q; Af;�n/ WD lim�!

m

H 1
sing.K}m;q; Af;�n/;

where the direct limits are with respect to restriction maps, and

yH 1
fin.K}1;q; Tf;�n/ WD lim �

m

H 1
fin.K}m;q; Tf;�n/;

yH 1
sing.K}1;q; Tf;�n/ WD lim �

m

H 1
sing.K}m;q; Tf;�n/;

where the inverse limits are with respect to the corestriction maps. The cohomology
groupsH 1

fin.K}1;q; Af;�n/ and yH 1
fin.K}1;q; Tf;�n/ are the exact annihilators of each

other under the local Tate pairing h; iq (for a proof, see [34], Theorem 2.6). If
q D q1q2 is split in K=F , the Frobenius element at qi topologically generates a
finite index subgroup in G}1 . Hence there are only a finite number of prime ideals
q0 of K}1 over q and for each of them, K}1;q0 is the unramified Zp-extension of
Kq. It follows that any unramified class of H 1.K}m;q; Af;�n/ becomes trivial after
restriction to H 1.K}r ;q; Af;�n/ for r sufficiently large. Hence, if q is split in K=F ,

H 1
fin.K}1;q; Af;�n/ D 0 and yH 1

sing.K}1;q; Tf;�n/ D 0;
where the second assertion follows from the non-degeneracy of the local Tate pairing.
If q is inert in K=F , then it splits completely in K}1 (this observation is due to
Iwasawa [23]). It follows that, if q is inert in K=F ,

yH 1
sing.K}1;q; Tf;�n/ ' H 1

sing.Kq; Tf;�n/˝ƒ};�

and

H 1
fin.K}1;q; Af;�n/ ' Hom.H 1

sing.Kq; Tf;�n/˝ƒ};� ; Kf;�=Of;�/:

Remark 5.1. To explain the above definitions, let ` be a prime number, K=Q` a
finite extension and A=K an abelian variety with good reduction. Let p ¤ ` a prime
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and denote by GK and IK the absolute Galois group of K and its inertia subgroup,
respectively. Finally, let

� W A.K/ �! H 1.K;AŒpn�/

denote the Kummer map, where n is a non-negative integer. Then

Im.�/ D H 1.GK=IK ; AŒp
n�/ D ker

�
H 1.GK ; AŒp

n�/ �! H 1.IK ; AŒp
n�/GK=IK

�
:

For a proof, see [34] (Chapter 1, Proposition 3.8) or Lemma 7 in [18].

5.2.2. Primes q j n and q − p. Fix a prime q − p which divides n. By Assump-
tion 1.3,

A
.q/

f;�n WD AIFq

f;�n ' Kf;�=Of;� :

The ordinary part of the group H 1.K}m;q; Af;�n/ is defined to be the unramified
cohomology

H 1
ord.K}m;q; Af;�n/ WD H 1.GK}m;q

=IK}m;q
; A

.q/

f;�n/:

Define
H 1

ord.K}1;q; Af;�n/ WD lim�!
m

H 1
ord.K}m;q; Af;�n/;

where the direct limit is with respect to the restriction maps. Note that if q j nC and
q − p, then, by an argument similar to that of Section 5.2.1,H 1

ord.K}1;q; Af;�n/ D 0.

Remark 5.2. To explain the above definitions, let ` be a prime number, K=Q` a
finite extension and A=K an abelian variety with purely toric reduction. Suppose
that there exists an extension E=Q such that ŒE W Q� D dim.A/ and an embedding
OE ,! End.A/, where OE is the ring of integers of E. Let p ¤ ` a prime and p a
prime ideal of OE of residual characteristic p. Denote by GK and IK the absolute
Galois group of K and its inertia subgroup, respectively. Suppose that the inertia
invariants AŒpn�IK of AŒpn� are one-dimensional over the field OE=p. Finally, let

� W A.K/ �! H 1.K;AŒpn�/

denote the Kummer map, where n is a non-negative integer. Then

Im.�/ D H 1.GK=IK ; AŒp
n�IK /:

For a proof in the case n D 1, see Lemma 4, Lemma 6 and Section 3.3 in [18]. The
general case (n > 1) can be obtained by a direct generalization of the arguments used
in the case n D 1.
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5.2.3. Primes p j p. Let p j p be a prime ideal. Let IFp � GFp WD Gal. xFp=Fp/

denote the inertia subgroup. Since f is ordinary at p, there is an exact sequence of
IFp-modules

0 �! A
.p/

f;�1 �! Af;�1 �! A
.1/

f;�1 �! 0 (4)

such that the submodule A.p/

f;�1 and the quotient A.1/

f;�1 are both isomorphic to

Kf;�=Of;� as groups and IFp acts on A.p/

f;�1 via the cyclotomic character

�p W Gal. xF=F /! Aut.
p1/

describing the action of Gal. xF=F / on the group 
p1 of p-power roots of unity, and

acts trivially on A.1/

f;�n . Let

�p;m W H 1.K}m;p; A
.p/

f;�1/ �! H 1.K}m;p; Af;�1/

be the map of cohomology groups induced by the inclusionA.p/

f;�1 � Af;�1 . Define

the ordinary part H 1
ord.K}m;p; Af;�1/ of H 1.K}m;p; Af;�1/ to be the maximal

divisible subgroup of Im.�p;m/. Then define

H 1
ord.K}1;p; Af;�1/ WD lim�!

m

H 1
ord.K}m;p; Af;�1/;

where the direct limit is with respect to the restriction maps.

Remark 5.3. To justify the above definition, let AŒp1� be the maximal p-divisible
group of A. xK/, where A=K is an ordinary abelian variety defined over a finite ex-
tension K of Qp . Let F be the formal group over OK attached to the Néron model
for A over OK and define C WD F . xm/Œp1�, where xm is the maximal ideal of the al-
gebraic closure of K. Finally, define the map: � W H 1.K;C / ! H 1.K;AŒp1�/
induced by the inclusion C ,! AŒp1�. Then the image of the Kummer map
� W A.K/˝Qp=Zp ,! H 1.K;AŒp1�/ is equal to the maximal divisible subgroup�
Im.�/

�
div of Im.�/. For proofs, see [7], Proposition 4.5. Moreover, if K1=K is a

deeply ramified extension (see [7], Section 2, for definitions), then the image of the
Kummer map A.K1/˝Qp=Zp ,! H 1.K1; AŒp1�/ coincides with the image of
� W H 1.K1; C /! H 1.K1; AŒp1�/ by [7], Proposition 4.3.

Note that for each prime p0 of K}1 over p, the extension K}1;p0=Kp is deeply
ramified. The last lines of Remark 5.3 show that one could equivalently define
H 1

ord.K}1;p; Af;�1/ to be the image of

�p;1 W H 1.K}1;p; A
.p/

f;�1/ �! H 1.K}1;p; Af;�1/:

Define

H .p; m; n/ WD H 1
ord.K}m;p; Af;�1/ \H 1.K}m;p; Af;�n/:
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For any subgroup H � H 1.K}m;p; Af;�n/, use the isomorphism Af;�n ' Tf;�n

to define a subgroup H � � H 1.K}m;p; Tf;�n/ such that H ' H �. Then define
H 1

ord.K}m;p; Af;�n/ to be the maximal subgroup of H 1.K}m;p; Af;�n/ containing
H .p; m; n/ and such thatH 1

ord.K}m;p; Af;�n/ andH 1
ord.K}m;p; Af;�n/� are the exact

annihilators of each other under the local Tate pairing at p. Finally, set

H 1
ord.K}1;p; Af;�n/ WD lim�!

m

H 1
ord.K}m;p; Af;�n/;

where the direct limit is with respect to the restriction maps.

Remark 5.4. LetAŒpn� be thepn-torsion of an abelian varietyA=K as in Remark 5.3.
The image of the Kummer map � W A.K/=pn ,! H 1.K;AŒpn�/ contains the sub-
group H WD Im.�/div \H 1.K;AŒpn�/, where � is the map defined in Remark 5.3.
Since Im.�/ is maximal isotropic for the local Tate pairing, then it coincides with the
maximal isotropic subgroup of H 1.K;AŒpn�/ containing H .

5.2.4. Selmer groups. Let Mf;�n denote Af;�n or Tf;�n . For any prime q, let

resq W H 1.K}1 ;Mf;�n/ �! H 1.K}1;q;Mf;�n/

denote the restriction map. For a prime q � OF not dividing np, let @q denote the
residue map

@q W H 1.K}1;q;Mf;�n/ �! H 1
sing.K}1;q;Mf;�n/

and, by an abuse of notation, denote also by @q the map obtained by composing resq

with @q. If s 2 H 1.K}1 ;Mf;�n/ satisfies @q.s/ D 0, write vq.s/ for the image of s
in H 1

fin.K}1 ;Mf;�n/.

Definition 5.5. The Selmer group Sel�n.f =K}1/ attached to f , n and K}1 is the
group of elements s 2 H 1.K}1 ; Af;�n/ satisfying

(1) for primes q − np: resq.s/ 2 H 1
fin.K}1;q; Af;�n/;

(2) for primes q j n� and q − p: resq.s/ 2 H 1
ord.K}1;p; Af;�n/;

(3) for primes q j nC and q − p: resq.s/ D 0;

(4) for primes p j p: resp.s/ 2 H 1
ord.K}1;p; Af;�n/.

The Selmer group Sel�1.f =K}1/ is defined to be the direct limit

Sel�1.f =K}1/ WD lim�!
n

Sel�n.f =K}1/

with respect to the inclusion maps.
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Let s � OF be a square free ideal prime to n. The compactified Selmer
group yH 1

s .K}1 ; Tf;�n/ attached to f; n and K}1 is the groups of elements � 2
yH 1.K}1 ; Tf;�n/ such that

hresq.�/; resq.s/iq D 0
for all s 2 Sel�n.f =K}1/ and all q − s, where h; iq is the local Tate pairing. The
global reciprocity law of class field theory implies that for any s 2 Sel�n.f =K}1/

and any � 2 yH 1
s .K}1 ; Tf;�n/,

X
qjs
h@q.�/; vq.s/iq D 0: (5)

In the above equation, by an abuse of notation, the symbol@q denotes the map obtained
from @q by passing to the inverse limit.

6. Iwasawa’s Main Conjecture

6.1. The main result. Let

Sel_�1.f =K}1/ WD Hom.Sel�1.f =K}1/;Kf;�=Of;�/

be the Pontryagin dual of Sel�1.f =K}1/. Since Sel_�1.f =K}1/ has a structure
of finitely generated ƒ};� -module, there is an exact sequence:

0 �!M �! Sel_�1.f =K}1/ �! ƒr
};�

Ls
iD1ƒ};�=.fi / �! N �! 0; (6)

where fi ¤ 0 and M and N are pseudo-null ƒ};� -modules (for definitions of
pseudo-null ƒ};� -modules, as well as for the notion of pseudo-isomorphism of
ƒ};� -modules, we refer to Section 7.1). Define the characteristic power series
of Sel_�1.f =K}1/ to be:

Char}.f =K/ WD
�
0; if r ¤ 0Qs

iD1 fi ; if r D 0:
The main result which will by proved in Section 7 is the following:

Theorem 6.1. Suppose that the assumptions listed in the Introduction are satis-
fied. The characteristic power series Char};�.f =K/ of the Pontryagin dual
Sel_�1.f =K}1/ of Sel�1.f =K}1/ divides the p-adic L-function L};�.f =K/.

Corollary 6.2. Suppose that the assumptions listed in the Introduction are satisfied.
Then Sel_�1.f =K}1/ is pseudo-isomorphic to a torsion ƒ};� -module.
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Proof. By Theorem 1.4 of [8], L};�.A=K/ is not identically zero, and therefore
Char};�.f =K/ ¤ 0. �

The proof of this result is based on a generalization of the argument in [5]. In
Section 7 a sketch of the argument with the necessary adaptations to the totally real
case will be presented.

6.2. Applications to modular abelian varieties

6.2.1. Modular abelian varieties. Let A=F be an abelian variety. Denote by
End.A/ its endomorphism ring and define

E WD EndQ.A/ D End.A/˝Z Q:

Say that A is of GL2-type if E is a field such that ŒE W Q� D dim.A/ and End.A/ is
the ring of integers OE of E. For any ideal I � OE , denote by AŒI � the I -torsion in
A, by AŒI1� the I -primary subgroup of A and by TI .A/ the I -adic Tate module of
A. Finally, let

�A;I W Gal. xF=F / �! Aut
�
TI .A/

�
be the representation of Gal. xF=F / on TI .A/.

Definition 6.3. Say that an abelian variety of GL2-type A=F as above is modular if
there exists a cuspidal Hilbert modular form f of�0.n/-level for some ideal n � OF ,
parallel weight 2, trivial central character, which is an eigenform for the Hecke algebra
Tn, such thatE ' Kf and the `-adic representation �A;` of Gal. xF=F / on the `-adic
Tate module T`.A/ of A is equivalent to the `-adic representation �f;` attached to f ,
where ` is a prime number.

Remark 6.4. Since n� ¤ OF when d is even, Shimura’s construction generalized
to this context (see [48], Theorem B and Section 3) shows that for f as above there
is a modular abelian variety A=F whose associated eigenform is f . Note that Def-
inition 6.3 applies also to the case of n� D OF and d even, which however is not
considered in this paper. For results in this important case, see [29] and [30].

Assume that the abelian variety A=F satisfies the following:

Assumption 6.5. (1)A=F is a modular abelian variety in the sense of Definition 6.3.

(2) The modular formf associated toA by Definition 6.3 satisfies the assumptions
listed in the Introduction.

(3) A=F has good reduction at all primes q − n.

(4) A=F has purely toric reduction at all primes q j n and q − p.

(5) A=F has ordinary reduction at all prime ideals p j p.
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Remark 6.6. If A is ordinary at p j p, then the associated Hilbert modular form is
also ordinary at p (see [16], Chapter 3, Section 6.2).

Let A=F satisfy Assumption 6.5 above. Define the Selmer groups:

Sel�n.A=K}m/ WD ker
�
H 1.K}m ; AŒ�n�/ �!

Y
q

H 1.K}m;q; A.K}m;q//
�
;

where the product is over all prime ideals q of K}m ,

Sel�n.A=K}1/ WD lim�!
m

Sel�n.A=K}m/

where the direct limit is with respect to the restriction maps, and

Sel�1.A=K}1/ WD lim�!
n

Sel�n.A=K}1/

where the direct limit is with respect to the maps induced by AŒ�n� � AŒ�nC1�.

Lemma 6.7. There are isomorphisms

Sel�n.f =K}1/ ' Sel�n.A=K}1/ and Sel�1.A=K}1/ ' Sel�1.f =K}1/:

In particular, the characteristic power series of their Pontryagin duals are the same.

Proof. To show the first isomorphism it is necessary to compare the local conditions
used in the definition of Sel�n.f =K}1/ with the image of the local Kummer map

�q0 W A.K}1;q0/=�n,�!H 1.K}1;q0 ; AŒ�n�/

for all prime ideals q0 in the ring of integers of K}1 . The equality of the local
conditions follows from Remark 5.1 for primes q0 − np, from Remark 5.2 for primes
q0 j n, q − p and from Remark 5.4 for primes p j p. The second isomorphism
follows by taking the direct limit over n. �

6.2.2. Arithmetic applications of themain result. LetA=F satisfyAssumption 6.5
above. Define the }-adic L-function associated to A=K to be L};�.A=K/ WD
L};�.f =K/. Then Theorem 6.1 and Corollary 6.2 can be restated as follows:

Theorem 6.8. The characteristic power series Char};�.A=K/ of the Pontryagin dual
Sel_�1.A=K}1/ of the�-primary Selmer group Sel�1.A=K}1/ ofA overK}1 di-
vides the}-adicL-functionL};�.A=K/ ofA overK. In particular, Sel_�1.A=K}1/

is pseudo-isomorphic to a torsion ƒ};� -module.
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This result on the abelian variety A=F can be used to deduce the following
corollaries. Denote by LK.A; s/ and LK.A; �; s/ the complex L-function of A
over K and its twist by finite order characters � W G}1 ! C�. For any charac-
ter � W G}1 ! O�, where O is the valuation ring of a finite extension of Qp ,
denote by the same symbol � W ƒ};� ! O its extension. Choose an embedding
xQp ,! C such that � can also be considered as a complex-valued character. For any
ƒ};� -module M , let M� WD M ˝� Of;� . Finally, let Ш�1.A=K}1/ denote the
�-primary Tate–Shafarevich group of A=K}1 which is defined by the exactness of
the following sequence:

0 �! A.K}1/˝ .E�=OE;�/ �! Sel�1.A=K}1/ �!Ш�1.A=K}1/ �! 0;

where E� and OE;� are the completions of E D EndQ.A/ and OE D End.A/ at � .

Corollary 6.9. Suppose that ŒF} W Qp� D 1. If LK.A; �; 1/ ¤ 0, then A.K}1/�

and Ш�1.A=K}1/� are finite.

Proof. In this case the Iwasawa algebraƒ};� is isomorphic to a power series ring over
Of;� in one variable and all pseudo-nullƒ};� -modules are finite. By the interpolation
formula, �

�
L}.f =K/

� ¤ 0. By Theorem 6.8, �
�
Char};�.A;K/

� ¤ 0. Hence
Sel�1.A=K}1/� is finite and the result follows. �

Corollary 6.10. Suppose ŒF} W Qp� D 1 and the torsion subgroup A.K}1/tors of
A.K}1/ is finite. Then A.K}1/ is finitely generated.

Proof. As in the proof of Corollary 6.9, note that all pseudo-null ƒ};� -modules
are finite. By Theorem 6.8, Sel_�1.A=K}1/ is a torsion ƒ};� -module. The result
follows from the classification of torsionƒ};� -modules becauseA.K}1/tors is finite.

�

Corollary 6.11. Suppose ŒF} W Qp� D 1 and A an elliptic curve. Then A.K}1/ is
finitely generated.

Proof. By definition, A does not have complex multiplication, hence by [32], Propo-
sition 6.12 (ii), A.K}1/tors is finite and Corollary 6.10 applies. �

Remark 6.12. The finiteness of A.K}1/tors for more general abelian varieties of
GL2-type is proved for example in [32], Proposition 6.12 (i), under the condition
that the Zp-extension is the cyclotomic one. This explains the finiteness assumption
added in Corollary 6.10.
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7. The proof

7.1. The divisibility criterion. The argument of the proof of Theorem 6.1 is based
on the generalization of Proposition 3.1 in [5], which will be obtained in the next
Proposition 7.4. For its proof, we need two preliminary results which, for lack
of precise references, are stated in the following as Lemma 7.1, Lemma 7.2 and
Lemma 7.3.

Let ƒ WD RŒŒT1; : : : ; Tm�� be a ring of formal power series in m � 1 variables,
where R is the ring of integers of a finite extension of Qp and p is a prime number.
Choose an uniformizer $ of R. Recall that the Noetherian integral domain ƒ is
a UFD (see for example [42]), so every height one prime ideal of ƒ is principal
(see for example [31], Theorem 20.1). A finitely generatedƒ-moduleX is said to be
pseudo-null if its support Suppƒ.X/ contains only prime ideals of height greater than
or equal to 2. Two ƒ-modules X and Y are said to be pseudo-isomorphic if there
exist two pseudo-null ƒ-modules A and B and an exact sequence of ƒ-modules:

0 �! A �! X �! Y �! B �! 0:

Let X be a finitely generatedƒ-module. By Section 4.4, Théorèmes 4, 5 in [6], X is
pseudo-isomorphic to aƒ-module of the formƒr

Ls
iD1ƒ=.gi /, that is, there exists

an exact sequence of ƒ-modules

0 �! A �! X �! ƒr
L
i D 1sƒ=.gi / �! B �! 0; (7)

where r; s are non-negative integers, A;B are pseudo-null ƒ-modules and gi 2 ƒ.
By definition the characteristic power series Charƒ.X/ attached to theƒ-moduleX
is Charƒ.X/ WD Qs

iD1 gi if r D 0 and 0 otherwise. The characteristic power series
Charƒ.X/ is well-defined only up to units inƒ; the characteristic ideal

�
Charƒ.X/

�
of ƒ that it generates is then well defined.

Lemma 7.1. Let F , G be elements of ƒ. Then F divides G if and only if for all
morphisms ' W ƒ ! O, where O is the ring of integers of a finite extension of Qp ,
'.F / divides '.G/.

Proof. One direction is obvious. For the other direction, we prove the following
equivalent statement: If F does not divide G, then there exists a homomorphism
' W ƒ ! O, where O is the ring of integers of a finite extension of Qp , such that
'.F / does not divide '.G/. The proof is by induction.

The case m D 1 is an easy consequence of the Weierstrass preparation theorem,
so we suppose the statement true for m � 1 and we prove it for m. For T WD T1

and W WD .T2; : : : ; Tm/, write F D P1
nD0 anT

n and G D P1
nD0 bnT

n where
an; bn 2 RŒŒW �� for n D 0; : : : ;1.

If a0 − b0, then, by the inductive hypothesis, there exists a homomorphism

' W RŒŒW �� �! O
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for some O as above such that '.a0/ − '.b0/. Extend ' to a morphism, denoted by
the same letter ' W ƒ! O, by setting '.T / WD 0. Then '.F / does not divide '.G/.
Hence, in the following suppose that a0 j b0.

If a0 j b0, since F does not divide G, there are elements cn 2 RŒŒW ��, n D
0; : : : ; N � 1 and N � 1, such that bn D Pn

iD0 aicn�i for n D 0; : : : ; N � 1
and a0 −

�
bN �PN

iD1 aicN �i

�
. Hence, by the inductive hypothesis, we see that

there exists a morphism ' W RŒŒW �� ! O for some O as above such that '.a0/ −
'.bN �PN

iD1 aicN �i /. Extend ' to a morphism, denoted by the same letter ' W ƒ!
OŒŒT ��, by setting '.T / WD T . Hence, '.F / does not divide '.G/ in OŒŒT ��. By the
inductive hypothesis, there exists '0 W OŒŒT ��! O0 such that '0�'.F /� does not divide
'0�'.G/�. Defining '00 WD '0 B ' W ƒ! O0, yields '00.F / − '00.G/. �

Lemma 7.2. Let I D .x1; : : : ; xn/ with n � 2 be an ideal ofƒ such that I 6� P for
all prime ideals P ofƒ of height one. Then I contains at least two elements without
common irreducible factors.

Proof. The proof is by induction on n. The case n D 2 is immediate, so we suppose
the result true for n� 1 and prove it for n. Denote by f the common greatest divisor
of the xi for i D 1; : : : ; n � 1 and write x0

i WD xi=f for i D 1; : : : ; n � 1. Then
J WD .x0

1; : : : ; x
0
n�1/ is not contained in any prime ideal of ƒ of height one, so, by

the inductive hypothesis, there are two elements g 2 J and h 2 J without common
irreducible factors. Thenfg andf h are in I andg; h do not have common irreducible
factors. Furthermore, any irreducible factor z of xn may divide g or h (but not both
of them) and does not divide f (if it does, then I � .z/, which contradicts our
assumption). Write xn D ks where an irreducible factor z of xn divides k if and only
if z divides gh. Then any irreducible factor of s is prime to gh. If s is invertible,
then xn and f .g C h/ 2 I do not have irreducible common factors: any irreducible
factor of xn does not divide f and divides exactly one between g and h. Suppose s
is not invertible and write s D Qt

j D1 s
mj

j , where sj are irreducible and mj are non
negative integers. If sj j g C nh for some integer n ¤ 0, then sj − g C .mC n/h
for all integers m ¤ 0, except possibly those m such that p j m in the case when
.sj / D .$/: indeed, if sj j gC .mCn/h, then sj j mh and, since sj − h, sj j m, and
this is possible only if sj is a constant, hence .sj / D .$/, so that p j m. It follows
that if $ − s, then s and g C mh do not have common irreducible factors for all
integersm except possibly a finite number of them, while if$ j s, then s and gCmh
do not have common irreducible factors for infinitely many integers m. Choose an
integerm ¤ 0 such that s and gCmh do not have common irreducible factors, with
the additional condition that p − m if $ j k. Note that there are infinitely many
integers m verifying these conditions, even if R D Z2: indeed, the condition p − m
is required only if$ j k, but in this case$ − s and there are only a finite number of
integers m such that s and g Cmh have common irreducible factors. We claim that
xn and f .gCmh/ 2 I do not have common irreducible factors. Indeed, let z j xn be
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an irreducible factor, so that z j k or z j s. If z j k then z − f and z divides exactly
one of g and h. If z j h, then, since z − g, z − gCmh. If z j g, then z − mh: indeed,
z − h and, since m ¤ 0, the only case when z j m is that of .z/ D .$/ and p j m,
but our additional condition onm stipulates that p − m when$ j k. Since z j g and
z − mh, then z − g Cmh. Hence in any case if z j k then z − f .g Cmh/. If z j s,
then z D sj for some j , hence z − g Cmh and since sj − f then sj − f .g Cmh/.
The claim follows, thus completing the proof. �

IfX is a finitely generatedƒ-module, denote by Fittƒ.X/ (respectively, Annƒ.X/)
its Fitting ideal (respectively, its annihilator ideal) over ƒ.

Lemma 7.3. Let X be a finitely generated pseudo-null ƒ-module. Then Fittƒ.X/

contains at least two elements with no common irreducible factors.

Proof. Recall that a prime ideal P ofƒ belongs to the support Suppƒ.X/ ofX inƒ
if and only if the annihilator Annƒ.X/ of X inƒ is contained in P (see for example
[31], page 26). Fix a prime idealP ofƒ of height 1. By the definition of a pseudo-null
submodule, P 62 Suppƒ.X/, so Annƒ.X/ 6� P . Suppose that X is generated over
ƒ by h elements. Then by [33], Appendix, 8 on page 325, Annƒ.X/

h � Fittƒ.X/,
hence, since P is a prime ideal, Fittƒ.X/ 6� P for all prime ideals P of height 1.
The result follows from Lemma 7.2. �

Proposition 7.4. Let X be a finitely generated ƒ-module and L 2 ƒ. Suppose that
'.L/ belongs to FittO.X ˝' O/ for all homomorphisms ' W ƒ! O, where O is the
ring of integers of a finite extension of Qp . Then L belongs to

�
Charƒ.X/

�
.

Proof. If X is not ƒ-torsion, then Fittƒ.X/ D 0. Since FittO.X ˝' O/ is equal to
'

�
Fittƒ.X/

�
, it follows that '.L/ D 0 for all ' as above and hence, by Lemma 7.1,

L D 0. Assume in the following that X is a ƒ-torsion module. Since B in the exact
sequence (7) is pseudo-null, by Lemma 7.3 there are at least two elements x1 and x2

in Fittƒ.B/ without common irreducible factors. Tensoring the exact sequence (7)
with O yields

'.xi /FittO.X ˝' O/ � �
'.Charƒ.X//

�
for i D 1; 2. By assumption, '

�
Charƒ.X/

�
divides '.xiL/ for i D 1; 2 and hence,

by Lemma 7.1, Charƒ.X/ divides xiL for i D 1; 2. Since x1 and x2 do not have
common irreducible factors, Charƒ.X/ divides L and the result follows. �

7.2. Admissible primes. A prime ideal ` � OF is said to be n-admissible if

(1) ` does not divide np;

(2) ` is inert in K=F ;

(3) � does not divide j`j2 � 1;
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(4) �n divides j`j C 1C a`.f / or j`j C 1 � a`.f /.

Let ` be an n-admissible prime. Then

H 1
sing.K`; Tf;�n/ ' Of;�=�

n and H 1
fin.K`; Tf;�n/ ' Of;�=�

n:

To show this, note that, since Tf;�n is unramified at `,

H 1
sing.K`; Tf;�n/ D HomGK`

.IK`
; Tf;�n/:

Since ` − p, all homomorphisms above factor through the tame inertia subgroup.
The Frobenius Frob`.K/ of K at ` (where, by an abuse of notation, ` denotes the
unique prime ofK above `) acts on IK`

by j`j2 and on Tf;�n it acts with eigenvalues
j`j2 and 1 (which are distinct in Of;�=�

n). Hence,

H 1
sing.K`; Tf;�n/ ' Of;�=�

n:

For the finite cohomology, since Tf;�n is unramified at `,

H 1
fin.K`; Tt;�n/ ' Tf;�n=.Frob`.K/ � 1/:

Hence, as above, H 1
fin.K`; Tf;�n/ ' Of;�=�

n. Since ` is inert in K, it splits com-
pletely in K}1 . It follows that

yH 1
sing.K}1;`; Tf;�n/ ' ƒ};�=�

nƒ};� ; and

yH 1
fin.K}1;`; Tf;�n/ ' ƒ};�=�

nƒ};� :
(8)

Proposition 7.5. Let s 2 H 1.K;Af;�/ be a non-zero element. Then there exist
infinitely many admissible primes ` such that @`.s/ D 0 and v`.s/ ¤ 0.

Proof. This is a direct generalization of Theorem 3.2 in [5]. A similar argument will
be given in Proposition 7.13. �

7.3. Rigid pairs. Let � D �f;� denote the representation of GF D Gal. xF=F / on
the k WD Of;�=�-vector space Af;� . The k-vector space ad� WD Hom.Af;� ; Af;�/ is
endowed with an action of GF by conjugation of endomorphisms. The GF -module
ad� is called the adjoint representation of �. Denote by ad0� the k-subspace of trace-
zero endomorphisms in ad�with the induced action ofGF . Define the following local
structures for the cohomology of ad0�:

Primes q − np: DefineH 1
fin.Fq; ad0�/ WD H 1.GFq=IFq ; ad0�/ to be the unram-

ified cohomology.
Primes q j n, q − p: As in the previous case, define

H 1
ord.Fq; ad0�/ WD H 1.GFq=IFq ; .ad0�/IFq /
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to be the unramified cohomology.
Primes p j p: Let ad.1/� denote the subspace Hom.A.1/

f;�
; A

.p/

f;�
/ of ad0�. Define

H 1
ord.Fp; ad0�/ WD ker

�
H 1.Fp; ad0�/ �! H 1.IFp ; ad0�=ad.1/�/

�
:

1-admissible primes `: If ` is a 1-admissible prime, denote by ad.`/� the unique
one dimensionalk-vector subspace of ad0� on which the absolute Frobenius Frob`.F /

of F at ` acts with eigenvalue j`j (the existence of this subspace follows because the
Frobenius at ` acts on Af;� with eigenvalues˙j`j and˙1, so that the eigenvalues of
its action on ad0� are j`j, j`j�1 and 1, while its uniqueness follows because j`j2 ¤ 1
in k). Define

H 1
ord.F`; ad0�/ WD H 1.F`; ad.`/�/

and H 1
fin.F`; ad0�/ to be the kernel of the canonical map

H 1.F`; ad0�/! H 1
ord.F`; ad0�/:

The group H 1.F`; ad0�/ is two dimensional over k and there is a decomposition in
one-dimensional k-vector spaces:

H 1.F`; ad0�/ D H 1
fin.F`; ad0�/˚H 1

ord.F`; ad0�/:

See for example Lemma 1 in Section 3 of [41] for details.
Let s be a square-free product of 1-admissible primes. Define the s-Selmer group

Sels.F; ad0�/ attached to ad0� to be the k-vector space consisting of those classes
� 2 H 1.F; ad0�/ such that

(1) for primes q − np: resq.�/ 2 H 1
fin.Fq; ad0�/;

(2) for primes ` j s: res`.�/ 2 H 1
ord.F`; ad0�/;

(3) for primes q j n and q − p: resq.�/ 2 H 1
ord.Fq; ad0�/;

(4) for primes p j p: resp.�/ 2 H 1
ord.Fp; ad0�/;

Denote by R the minimal nearly ordinary universal deformation ring attached
to � with determinant the cyclotomic character. See [15], Section 3.8, for detailed
definitions. Let mf;� WD ker

�
Tn ! k

�
and denote by Tf the completion of Tn at

mf;� . Then R is isomorphic to Tf by Theorem 11.1 in [15].

Remark 7.6. The condition ŒF .	5/ W F � ¤ 2 when p D 5 in the Introduction is
required to apply [15].

Lemma 7.7. The modular form f is �-isolated if and only if SelOF
.F; ad0�/ is

trivial.
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Proof. f is �-isolated if and only if Tf ' Of;� , and this condition is equivalent to
the isomorphism R ' Of;� . Now R ' Of;� if and only if m=.�;m2/ D 0, and this
condition is equivalent to SelOF

.F; ad0�/ D 0 by [15], Proposition 3.35. �

Assume from now on that f is �-isolated in the sense of Assumption 1.3.
If s is a (possibly empty) square free product of 1-admissible primes, let

Sel.s/.F; ad0�/ be the group defined in the same way as Sels.F; ad0�/ but with
no conditions imposed on the prime dividing s. Let SelŒs�.F; ad0�/ denote the sub-
group of Sels.F; ad0�/ consisting of classes which are trivial at the primes divid-
ing s. These notations can be combined: if s1; s2; s3 are pairwise coprime square-
free product of 1-admissible primes, define the group Sels1.s2/Œs3�.F; ad0�/ WD
Sels1

.F; ad0�/ \ Sel.s2/.F; ad0�/ \ SelŒs3�.F; ad0�/.
Let ad0�� WD Hom.ad0�; k/ be the dual representation of ad0�. Then de-

fine the dual Selmer group of Sels.F; ad0�/ to be the subgroup Sels.F; ad0��/ of
H 1.F; ad0��/ consisting of those elements t 2 H 1.F; ad0��/ such that

hresq.s/; resq.t/iq D 0

for all s 2 Sels.F; ad0�/ and for all prime ideals q, where h; iq is the local Tate
pairing at q. Define as above the Selmer groups Sels.F; ad0��/, Sel.s/.F; ad0��/,
SelŒs�.F; ad0��/ and Sels1.s2/Œs3�.F; ad0��/.

The groups Sel.s/.F; ad0�/ and SelŒs�.F; ad0��/ are dual to each other, and the
same is true for Sels.F; ad0�/ and Sels.F; ad0��/.

Lemma 7.8. Let ` be an admissible prime for f . Then the groups Sel.`/.F; ad0�/

and Sel.`/.F; ad0��/ are one dimensional over k.

Proof. The groups SelOF
.F; ad0�/ and SelOF

.F; ad0��/ have the same cardinality
by Theorem 2.19 in [10]. Furthermore, SelOF

.F; ad0�/ D 0 by Lemma 7.7 because
f is �-isolated. Hence SelOF

.F; ad0��/ D 0. Since

#Sel.`/.F; ad0�/=#SelŒ`�.F; ad0��/ D #k

by Theorem 2.19 in [10], it follows that Sel.`/.F; ad0�/ is one dimensional overk. Re-
placing ad0� by ad0�� and repeating the same argument shows that Sel.`/.F; ad0��/
is one dimensional too. �

Lemma 7.9. Let ` be an admissible prime for f and suppose that Sel`.F; ad0�/ ¤ 0.
Then Sel`.F; ad0�/ ' k.

Proof. Thanks to the inclusion Sel`.F; ad0�/ � Sel.`/.F; ad0�/, this is immediate
from Lemma 7.8. �
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Fix a pair of admissible primes `1 ¤ `2. Write

v`2
W Sel.`1/.F; ad0�/! H 1

fin.F`2
; ad0�/

v�
`2
W Sel.`1/.F; ad0��/! H 1

fin.F`2
; ad0��/

for the restriction maps at `2.

Lemma 7.10. Suppose that Sel`1
.F; ad0�/ ¤ 0 and v`2

, v�
`2

are both non trivial.

Then Sel`1`2
.F; ad0�/ D 0.

Proof. By Lemma 7.8, choose generators � and �� of the one dimensional k-vector
spaces Sel.`1/.F; ad0�/ and Sel.`1/.F; ad0��/. Note that

Sel`1
.F; ad0�/ � Sel.`1/.F; ad0�/ ' k

and that Sel`1
.F; ad0�/ ¤ 0 by assumption. Therefore � 2 Sel`1

.F; ad0�/ and
Sel`1

.F; ad0�/ ' k. Since Sel`1
.F; ad0�/ and Sel`1

.F; ad0��/ have the same car-
dinality ([10], Theorem 2.19), �� 2 Sel`1

.F; ad0��/. By [10], Theorem 2.19,

#Sel`1.`2/.F; ad0�/=#Sel`1Œ`2�.F; ad0��/ D #k: (9)

Further note that Sel`1Œ`2�.F; ad0��/ � Sel`1
.F; ad0��/ ' k, and therefore, either

Sel`1Œ`2�.F; ad0��/ D 0 or Sel`1Œ`2�.F; ad0��/ ' k, generated by ��. In the second
case, �� 2 Sel`1Œ`2�.F; ad0��/ implies that res`2

.��/ D 0 in H 1
fin.F`2

; ad0��/. The
assumption v�

`2
.��/ ¤ 0 excludes this possibility, so Sel`1Œ`2�.F; ad0��/ D 0. By

(9), Sel`1.`2/.F; ad0�/ ' k. The inclusion

Sel`1
.F; ad0�/ � Sel`1.`2/.F; ad0�/

implies Sel`1.`2/.F; ad0�/ D Sel`1
.F; ad0�/ and both of them are generated by � .

Finally, note that
Sel`1`2

.F; ad0�/ � Sel`1.`2/.F; ad0�/;

so, as above, either Sel`1`2
.F; ad0�/ is trivial or is one dimensional. In the second

case, it is isomorphic to Sel`1.`2/.F; ad0�/ and hence also to Sel`1
.F; ad0�/. So the

reduction of � at `2 should be both ordinary (it belongs to Sel`1`2
.F; ad0�/) and finite

(it belongs to Sel`1`2
.F; ad0�/), hence trivial. The assumption v`2

.�/ ¤ 0 excludes
this possibility, so Sel`1`2

.F; ad0�/ is trivial. �

Lemma 7.11. If Sel`1
.F; ad0�/ D 0, Sel`2

.F; ad0�/ D 0 and v`2
is the trivial map,

then Sel`1`2
.F; ad0�/ D 0.

Proof. Since Sel`2
.F; ad0�/ D 0, again by Theorem 2.19 in[10], Sel.`1/`2

.F; ad0�/

is one dimensional. By Lemma 7.8, choose a generator � of Sel.`1/.F; ad0�/. Since



332 M. Longo CMH

v`2
.�/ D 0, the restriction to F`2

of this class must be ordinary, and so � belongs to
Sel.`1/`2

.F; ad0�/. Hence, Sel.`1/`2
.F; ad0�/ is generated by � and

Sel.`1/`2
.F; ad0�/ ' Sel.`1/.F; ad0�/:

Note that if � 2 Sel`1.`2/.F; ad0�/, then also � 2 Sel`1
.F; ad0�/. By assumption

Sel`1
.F; ad0�/ D 0;

so � 62 Sel`1.`2/.F; ad0�/. As � 2 Sel.`1/`2
.F; ad0�/ and � 62 Sel`1.`2/.F; ad0�/, one

finds that Sel`1`2
.F; ad0�/ is trivial because it is the intersection of Sel`1.`2/.F; ad0�/

and Sel.`1/`2
.F; ad0�/. �

Definition 7.12. A pair .`1; `2/ of admissible primes is said to be a rigid pair if
Sel`1`2

.F; ad0�/ is trivial.

Choose s 2 H 1.K;Af;�/, s ¤ 0. Assume that s belongs to a specific eigenspace
for the complex conjugation � , so that �.s/ D ıs with ı D ˙1. Fix an integer
n and define M WD K.Af;�n/. Let Ms=M be the extension cut out by s, so that
Gal.Ms=M/ ' Af;� via s. Set GM WD Gal. xM=M/.

Sincef is�-isolated, Sel.`1/.F; ad0�/ and Sel.`1/.F; ad0��/ are one dimensional
over k. Let � and �� be generators. The images N� and N�� of � and �� in

H 1.M; ad0�/ D Hom.GM ; ad0�/ and H 1.M; ad0��/ D Hom.GM ; ad0��/

cut out extensionsM� andM�� ofM whose Galois groups are identified via N� and N��
with ad0� and ad0�� respectively (that is, Gal.M�=M/ ' ad0� and Gal.M��=M/ '
ad0��).

Denote byMs;�;�� the compositum ofMs ,M� andM�� . Since the representations
Af;� , ad0� and ad0�� are pairwise non isomorphic and absolutely irreducible, we
have

Gal.Ms;�;��=F / ' .Af;� � ad0� � ad0��/ Ì Gal.M=F /

where the action of Gal.M=F / on the normal subgroup .Af;� ; ad0�; ad0��/ is given
by

.v; w;w�/.�j ; T / D �
ıj xT v; xTw xT �1; xTw� xT �1 det.T /

�
:

Proposition 7.13. Let `1 be admissible such that Sel`1
.F; ad0�/ ¤ 0. Fix a non

trivial element s 2 H 1.K;Af;�/. For any n there exists infinitely many n-admissible
primes `2 such that @`2

.s/ D 0, v`2
.s/ ¤ 0 and .`1; `2/ is a rigid pair.

Proof. By Lemma 7.9, � 2 Sel`1
.F; ad0�/, so that �� 2 Sel`1

.F; ad0��/ too. The
Galois group Gal.Ms;�;��=F / contains an element .v; w;w�; �; T / such that:



Vol. 87 (2012) Anticyclotomic Iwasawa’s Main Conjecture for Hilbert modular forms 333

(1) T acts on Af;�n with eigenvalues ı and � where � is an element of .Of;�=�
n/�

of order prime to p and¤ ˙1;

(2) v belongs to the unique line in Af;� where T acts by ı;

(3) w belongs to the unique line in ad0� fixed by T ;

(4) w� belongs to the unique line in ad0�� fixed by T .

Choose now `2 − pn and unramified in Ms;�;�� such that the Frobenius element
Frob`2

.Ms;�;��=F / of Gal.Ms;�;��=F / at `2 verifies the relation

Frob`2
.Ms;�;��=F / D .v; w;w�; �; T /:

We claim that `2 has the desired properties. By the Chebotarev density theorem,
there are infinitely many such primes. Then `2 has the desired properties. To show
that `2 is n-admissible, note that the Frobenius element Frob`2

.K=F / of Gal.K=F /
at `2 verifies the relation Frob`2

.K=F / D � , which implies that ` is inert in K.
The congruences a`2

.f / 	 ı C � .mod �n/ and j`2j 	 ı� .mod �n/ enjoyed by
the characteristic polynomial of Frobenius show a`2

.f / 	 ı.j`2j C 1/ .mod �n/.
Finally, since � ¤ ˙1, it follows that j`2j 6	 ˙1 .mod �n/. Hence `2 is an n-
admissible prime. Moreover, `2 has the properties stated in the theorem. First, note
that @`2

.s/ D 0. Indeed, if l is a prime ideal of Ms;�;�� dividing `2, then

res`2
.s/ 2 ker

�
H 1.K`2

; Af;�/ �! H 1.Ms;�;��;l ; Af;�/
�
:

Since H 1.Ms;�;��;l ; Af;�/ 
 H 1.Kunr
`2
; Af;�/ 
 H 1

sing.K`2
; Af;�/, it follows that

@`2
.s/ D 0 (here Ms;�;��;l is the completion of Ms;�;�� at l). For the proof that

v`2
.s/ ¤ 0: Let l be a prime ideal inM dividing ` and set c WD ŒM W F �. Denote by

Frobl.Ms;�;��=M/ a Frobenius element of Gal.Ms;�;��=M/ at l. Note that

Frobl.Ms;�;��=M/ D .v; w;w�; �; T /c D .cv; cw; cw�; 1; 1/:

Let Ns be the image of s in Gal.Ms=M/. Since c is even and prime to p by Property 1
of T ,

Ns.Frobl.Ms;�;��=M// D Ns.cv/ D c Ns.v/ ¤ 0
and res`2

.s/ ¤ 0. So, v`2
.s/ ¤ 0. Since

N�.Frobl.Ms;�;��=M// D N�.cw/ D c N�.w/ ¤ 0;
N��.Frobl.Ms;�;��=M// D N��.cw�/ D c N��.w/ ¤ 0;

Lemma 7.10 implies Sel`1`2
.F; ad0��/ D 0, so .`1; `2/ is a rigid pair. �

Proposition 7.14. Let `1 be admissible such that Sel`1
.F; ad0�/ D 0. Fix a non

trivial element s 2 H 1.K;Af;�/. For any n there exists infinitely many n-admissible
primes `2 such that @`2

.s/ D 0, v`2
.s/ ¤ 0 and either Sel`2

.F; ad0�/ ' k or
Sel`2

.F; ad0�/ D 0 and .`1; `2/ is a rigid pair.
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Proof. Choose a prime `2 such that

Frob`2
.Ms;�;��=F / D .v; 0; 0; �; T /:

The same computations as in Proposition 7.13 show that `2 is admissible and that
v`2
.s/ ¤ 0. Note that �.w/ D 0 and ��.w�/ D 0. If Sel`2

.F; ad0�/ D 0, by
Lemma 7.11 Sel`1`2

.F; ad0�/ is trivial, so .`1; `2/ is a rigid pair. If Sel`2
.F; ad0�/ ¤

0, then it is one-dimensional by Lemma 7.9. �

7.4. Congruences between modular forms and the Euler system

7.4.1. Raising the level in one prime. Fix an n-admissible prime `. Let TnC;n�`

be the Hecke algebra acting on the space of modular forms which are new at n�`. It
is known that there exists a morphism f` W TnC;n�` ! Of;�=�

n such that

(1) for primes q − n`: f`.Tq/ 	 aq.f / .mod �n/;

(2) for primes q j n: f`.Uq/ 	 aq.f / .mod �n/;

(3) f`.U`/ 	 � .mod �n/, where �n divides j`j C 1 � �a`.f /.

This result follows from a generalization to the case n > 1 of [40]. For details, see
[30], Theorem 3.3.

7.4.2. TheEuler system. Denote byX .`/ the Shimura curve (defined overF ) whose
complex points are given by

X .`/.C/ D B�nH ˙ � yB�= yR�;

where H ˙ WD C � R, B=F is a quaternion algebra of discriminant n�` which is
ramified in exactly one of the archimedean places and R � B is an Eichler order
of level }nC. Let J .`/ be the Jacobian variety (defined over F ) associated to X .`/.
Denote by Tp.J

.`// the p-adic Tate module of J .`/ and byˆ` the group of connected
components of the fiber at ` of the Néron model of J .`/ over OK . Denote by �f`

the kernel of the map f`. By [30], which generalizes the result of [29] to the present
situation, there exists a Hecke equivariant isomorphism of Gal. xF=F /-modules:

� W Tp.J
.`//=�f`

��!� Tf;�n : (10)

Remark 7.15. It is not known if (10) is an isomorphism when the degree d of F over
Q is even and n� D OF . For simplicity, we do not consider this case in the present
work.

Following Section 3, a Heegner point Pm of conductor }m is a CM-point of
conductor }m in

X
.`/

R
.K/ WD B�nHom.K;B/ � yB�= yR�:
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Let 
 be the archimedean place where B is split and fix an isomorphism �1 of B˝� R
with M2.R/. Then B acts on H ˙ by fractional linear transformations via �1 and the
set Hom.K;B/ can be embedded in H ˙ by sending ‰ 2 Hom.K;B/ to the fixed
point of ‰.K�/ acting on H ˙ whose imaginary part is positive. Hence, a CM-point
P 2 X .`/

R
.K/ of conductor }m can be viewed as a point in X .`/.C/ and the theory

of complex multiplication shows that, in fact, P 2 X .`/. zK}m/. Furthermore, the
Galois action on CM-points of conductor }m described in Section 3 translates into
the usual Galois action of zG}m on X .`/. zK}m/. For more details, see Chapter 9 of
[45].

Recall the choice of orientations made in Section 4.2 and fix an orientation as
explained in Section 3 at the prime `. Define the set of Gross points Gr.`/.}m/

in X .`/

R
with respect to these orientations. Write Pm D .xm; ‰m/. Let ePm

D�
s.ePm

/; t.ePm
/
� 2 E} be the edge corresponding to xmR}x

�1
m as described in Sec-

tion 3. Say that a sequence .Pm/m�1 of points in Gr.`/.}1/, with Pm 2 Gr.`/.}m/,
is compatible if t .ePm

/ D s.ePmC1
/ for all integers m � 1. Choose a sequence of

compatible Heegner points .Pm/m�1 with Pm 2 Gr.`/.}m/.
For the modular interpretation of Heegner points, which will not be recalled here,

we refer to Section 2 of [48].
Since �f`

is not Eisenstein, there is an isomorphism

J .`/. zK}m/=�f`
�! Pic.X .`//. zK}m/=�f`

:

Denote by PC
m the image of Pm in J .`/. zK}m/=�f`

. Define

P �
m WD ˛�m

p PC
m :

Since .Pm/m�1 is compatible, it is easily seen that the pointsP �
m are norm-compatible.

Their images under the Kummer map followed by the map induced by �

J .`/. zK}m/=�f`
�! H 1. zK}m ; Tp.J

.`//=�f`
/ �! H 1. zK}m ; Tf;�n/

yield a sequence of cohomology classes, Q�m.`/, which are compatible under core-
striction. Taking limit defines a class Q�.`/ 2 yH 1. zK}1 ; Tf;�n/. Define finally the
class

�.`/ 2 yH 1.K}1 ; Tf;�n/

to be the corestriction of Q�.`/ from zK}1 to K}1 .

Lemma 7.16. �.`/ 2 yH 1
`
.K}1 ; Tf;�n/:

Proof. It is enough to observe, as in the beginning of Section 8 in [5], that �.`/ is
constructed from a sequence of global points ofX .`/, so it belongs to the usual Selmer
group of J .`/ relative to the Galois module Tp.J

.`//=�f`
. For completeness, let us

provide some details on this proof. From the definition of yH 1
`
.K}1 ; Tf;�n/, we see

that it is enough to show that
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(1) resq0. Q�m.`// 2 H 1
fin.
zK}m;q0 ; Tf;�n/ for primes q0 of zK}m which do not divide

np`;

(2) resq0. Q�m.`// 2 H 1
ord.
zK}m;q0 ; Tf;�n/ for primes q0 dividing n� but not p;

(3) resp0. Q�m.`// 2 H 1
ord.
zK}m;p0 ; Tf;�n/ for primes p0 of zK}m which divide p.

For (1), Remark 5.1 shows that the image of the Kummer map

J .`/. zK}m;q0/ �! H 1. zK}m;q0 ; J .`/Œpn�/

is unramified; the result follows then taking quotient by �f`
. For (3), note that

the Kummer map J .`/. zK}m;p0/ ! H 1. zK}m;p0 ; Tf;n/ factors through the maximal
ordinary abelian subvariety J .`/;ord of J .`/; the result follows then by Remark 5.4,
again taking quotients by �f`

. For (2), the analogue of [5], Corollary 5.18 (see (22)
with the prime q0 replacing `m), shows that if the quotient ˆq=�f`

of the group of
connected componentsˆq at q ofJ .`/ by �f`

is trivial, then resq. Q�m.`// is unramified;
on the other hand, the vanishing ofˆq=�f`

follows becausef is ramified at q. Indeed,
ifˆq=�f`

¤ 0, then there is an Of;�=�
n-valued modular form of level n`=q which is

congruent to f`, and hence to f , modulo �n; so the mod � representation associated
to f should be unramified at q, which is not the case. �

7.4.3. Raising the level in two primes. Choose distinct n-admissible primes `1 and
`2 such that �n divides both j`1j C 1� �1a`1

.f / and j`2j C 1� �2a`2
.f /, with �1,

�2 equal to ˙1. Let T`1
be the Hecke algebra acting on the Shimura curve X .`1/.

Assume that f is �-isolated. The map arising from Kummer theory composed with
(10) yields a map

J .`1/.K`2
/=�f`1

�! H 1.K`2
; Tp.J

.`1//=�f`1
/ �! H 1.K`2

; Tf;�n/

whose image is equal to H 1
fin.K`2

; Tf;�n/ because both Tp.J
.`1// and Tf;�n are un-

ramified at `2. For the same reason and the fact that `2 − p, the map induced by
reduction modulo `2

J .`1/.K`2
/=�f`1

�! J .`1/.F`2
2
/=�f`1

is an isomorphism, where F`2
2

is the residue field of the ring of integers of K`2
. The

identification H 1
fin.K`2

; Tf;�n/ ' Of;�=�
n and the inverse of the above map yield a

surjective map
J .`1/.F`2

2
/=�f`1

�! Of;�=�
n: (11)

Let �`2
� X .`1/.F`2

2
/ be the set of supersingular points of X .`1/ in characteristic `2

and let Div.�`2
/ and Div0.�`2

/ be the set of formal divisors and the set of formal
degree zero divisors with Z-coefficients supported on �`2

. Let the Hecke algebra
T`1

act on Div.�`2
/ and Div0.�`2

/ via Albanese functoriality (it makes no difference
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if the Picard functoriality were chosen: see the discussion in [5], Section 9). Since
�f`1

is not Eisenstein, there is an identification Div.�`2
/=�f`1

' Div0.�`2
/=�f`1

,

so there is a map
� W Div.�`2

/ �! Of;�=�
n:

Write xT for the image of T 2 T`1
into T`1

=�f`1
, so that for primes q − n`1 we

have xTq 	 aq.f / .mod �n/, and for primes q j n we have xUq 	 aq.f / .mod �n/

and xU`1
	 �1 .mod �n/.

Lemma 7.17. For x 2 Div.�`2
/ the following relations hold:

(1) For q − n`1: �.Tqx/ D xTq�.x/.

(2) For q j n`1: �.Uqx/ D xUq�.x/.

(3) �.T`2
x/ D xT`2

�.x/.

(4) �.Frob`2
.F /.x// D �2�.x/, where, as above, Frob`.F / is the absolute Frobe-

nius of F at `.

Proof. The first two relations can be obtained from the identification between the
groups H 1

fin.K`2
; Tf;�n/ and Tf;�n=.Frob2

`2
.F / � 1/. The last two relations follow

from Eichler–Shimura. For more details, see Lemma 9.1 in [5]. �

Before going on with the raising the level result, we state an analogue of Ihara’s
Lemma in the context of Shimura curves over totally real fields. First recall the
setting of [22]: Define G1 WD SL2.R/=f˙1g and, for any prime q of F , Gq WD
fg 2 GL2.Fq/ W valq.det.g// 	 0 .mod 2/g=F �

q , where valq is the normalized
valuation of Fq. Let i1 W B� ! G1 and iq W B� ! Gq be the injections. Let
OF Œ1=q� be the ring of q-integers of F and U � B any OF Œ1=q�-order. Define

�U WD f� 2 U W NB=F .�/ D 1g=f˙1g;

where NB=F W B ! F is the norm map. Let z�U be the pull-back of the group
GL2.Oq/=O

�
q under the map iq W �U ! Gq. Denote by XU the Shimura curve

defined over a suitable abelian extension of F whose complex points are

XU.C/ D i1.z�U/nH ;

where H is the upper complex plane. Suppose that �U is torsion-free. Denote by
JU the Jacobian variety of XU. Let Fq2n be the field with q2n elements, where q is
the residue characteristic of q and jqj D qn for a positive integer n. Let J ss

U
.Fq2n/

be the subgroup generated by the divisors supported on the supersingular points in
JU.Fq2n/. Then by [22], Section 3, (G), there is a canonical isomorphism

JU.Fq2n/=J ss
U.Fq2n/ ' �ab

U ; (12)
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where, if G is a group, Gab is the abelianization of G.
Let U � yB� be a compact open subgroup and defineXU ! Spec.F 0/, where F 0

is a suitable abelian extension of F , to be the Shimura curve whose complex points
are

XU .C/ D B�n yB� �H ˙=U '
ta

iD1

Xi .C/; Xj .C/ D �jnH (13)

where �i � B� are suitable arithmetic subgroups. Write JU for the Jacobian va-
riety of XU . Fix a prime q such that the q-component Uq of U is isomorphic to
GL2.OF;q/. For any i D 1; : : : ; t , let z�i denote the subgroup of norm-one elements
in �j Œ1=q�=O

�
F Œ1=q�. Assume that

all the groups z�i are torsion free: (14)

Let Ji denote the Jacobian variety ofXj and set z� WDQt
iD1
z�i . If J ss.Fq2n/ denotes

the set of supersingular points in J.Fq2n/, then from (12)

JU .Fq2n/=J ss
U .Fq2n/ ' z�ab: (15)

By fixing an embedding of B into M2.F`2
/, one obtains an action of z�i on the

Bruhat–Tits tree Tq of PGL2.Fq/. Let v0 be the vertex of Tq such that the stabilizer
z�vi;0

of vi;0 in z�i is the image of�i in z�i . Let ei;0 be the edge originating from vi;0 and
such that the stabilizer z�ei;0

of ei;0 in z�i is the image of the subgroup� 0
i of�i obtained

as in (13) but with U \ U0.q/ replacing U . Here U0.q/ is defined by imposing that
its local componentsU0.q/q satisfy the following conditions: U0.q/q is the standard
upper triangular subgroup�0.q/ of GL2.Fq/ andU0.q/q0 D GL2.OF;q0/ for q0 ¤ q.
More explicitly,

XU \U0.q/ D
ta

iD1

X 0
i ; with X 0

i D � 0
inH :

Write vi;1 for the target of ei;0. The group z�i acts on the tree Tq with the closed edge
attached to ei;0 as a fundamental region. Set z�v0

WDQt
iD1
z�vi;0

, z�v1
WDQt

iD1
z�vi;1

and z�e0
WD Qt

iD1
z�ei;0

. Hence, taking the product over all i D 1; : : : ; t of the exact
sequence in Proposition 13, Section II, 2.8 in [43] for i D 1, M D Fp , G D z�i

yields

0 �! Hom.z�;Fp/ �! Hom.z�v0
;Fp/˚ Hom.z�v1

;Fp/
d�! Hom.z�e0

;Fp/:

For i D 1; : : : ; t there are natural injective maps as in [28], Section 1, Equation (3):

 i W Ji .C/ �! Hom.�i ;S/ and  0
i W J 0

i .C/ �! Hom.� 0
i ;S/; (16)
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where S WD fz 2 C W jzj D 1g. Hence in the above exact sequence the modules
appearing in the source and in the target of d correspond to the p-torsion of Ji and
J 0

i respectively, where J 0
i is the Jacobian variety of X 0

i .
Suppose now that U is contained in some Eichler order of B of level r and let g

be a modular form with coefficients in a finite field F , of weight 2, levelK and trivial
central character, which is an eigenform for the quotient T of the Hecke algebra of
level rn�` acting faithfully on JU (recall that the discriminant of B is n�`). Let mg

be the kernel of the homomorphism T ! F associated to g.

Assumption 7.18. Let U be an open compact subgroup of yB� such that (14) is
verified. If the residual Galois representation on GL2.F/ associated to g is irreducible
then Hom.z�;Fp/Œmg � D 0.

Remark 7.19. The technical condition in Assumption 7.18 is essential in the proof of
Lemma 7.20 below. It consists in a version of Ihara’s Lemma for Shimura curves over
totally real fields. Indeed, if F D Q, Assumption 7.18 holds thanks to Theorem 2
in [12] because under the above identifications the map d corresponds to the map p̨

in that theorem. The result of Theorem 2 in [12] can be understood as an analogue
of Ihara’s Lemma in the context of Shimura curves over Q. The results contained in
[12] and successively refined in [13] are partially generalized to the totally real case
in [25]. However, [25] does not cover the full generalization of Theorem 2 in [12].
It might be possible that the techniques in [25] and [26] can be used to prove some
results in the direction of an analogue of Theorem 2 in [12]. In this paper we follow
[15], which assumes a suitable generalization to totally real fields of Ihara’s Lemma
as an hypothesis, although Assumption 7.18 is stated in a different form with respect
to [15], Hypothesis 5.9. Similar results for Hilbert modular varieties hold: see [14].

As a consequence of Assumption 7.18 we see that z�ab=mg D 0. Let now R be
the ring of integers of a finite extension of Q and fix a maximal ideal v of R such
that Rv=v ' F , where Rv is the completion of R at v. Suppose that g is a modular
form with coefficients in Rv=v

m for some integer m � 1 of weight 2, level U and
trivial central character, which is an eigenform for the Hecke algebra T ; let �g denote
the kernel of the associated homomorphism T ! Rv=v

m and note that mg is the
maximal ideal containing �g . If the above conditions on g are satisfied, z�ab=mg D 0
and hence, by Nakayama’s Lemma, z�ab=�g D 0. By (15),

the canonical map J ss
U.Fq2n/ �! JU.Fq2n/=�g is surjective: (17)

Suppose from now on that Assumption 7.18 is verified.

Lemma 7.20. The map � is surjective.
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Proof. Write X D X .`1/ and J D J .`1/. Let J ss.F`2
2
/ be the set of supersingular

points in J.F`2
2
/, where F`2

2
is the quadratic extension of the residue field F` of OF

at `2. Since the map (11) is surjective, it is enough to show that

the canonical map J ss.F`2
2
/ �! J.F`2

2
/=�f`1

is surjective. (18)

Recall that X is the Shimura curve defined over F whose complex points are

X.C/ D B�n yB� �H ˙= yR�:

Define X 0 to be the Shimura curve defined over F whose complex points are

X 0.C/ D B�n yB� �H ˙= yR0�;

where R0 � R is defined by requiring that, for a fixed isomorphism

�} W R˝OF
OF;} '

˚�
a b
c d

� 2 GL2.OF;}/jc 	 0 mod }
�
;

R0 ˝OF
OF;} correspond to the elements which are congruent to

�
1 b
0 1

�
mod },

while R0 ˝OF
OF;q D R˝OF

OF;q if q ¤ }. Since R0 � R, there is a canonical
projection map u W X 0 ! X and also, by Picard (respectively, Albanese) functoriality,
maps u� W J ! J 0 (respectively, u� W J 0 ! J ), where J and J 0 are theJacobian
varieties of X and X 0 respectively. Write as above

X.C/ D
sa

iD1

Xi .C/ and X 0.C/ D
ta

j D1

X 0
j .C/

where Xi D �inH and X 0
j .C/ D � 0

jnH for suitable arithmetic subgroups �i and
� 0

j ; here s and t are suitable integers such that t � s. The canonical projection
u W X 0 ! X can be decomposed as t projections X 0

j ! Xi.j / and if i.j1/ D i.j2/

(that is, two projections have the same target), then � 0
j1
D � 0

j2
. For details, see

Section 3 in [20]. Write finally Ji and J 0
j for the Jacobian varieties of Xi and X 0

j ,
respectively.

The subgroups z� 0
j of norm one elements in � 0

j Œ1=`2�=OF Œ1=`2� are torsion free
(see for example [19], Lemma 7.1, after noticing thatp is not ramified in the extension
K=Q). Now viewf`1

as a mod �n eigenform onX 0 and write �0
f`1

for its associated

ideal in the Hecke algebra T`1
acting faithfully on J 0. Write mf`1

for the maximal
ideal containing �0

f`1

. Since mf`1
corresponds to an irreducible representation, it

follows from (17) that

the canonical map J 0ss.F`2
2
/ �! J 0.F`2

2
/=�0

f`1
is surjective. (19)

We need the generalization to this context of [28], which can be obtained as
follows. For any j D 1; : : : ; t , let i.j / such that i.j.i// D i , that is, u� maps
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Ji.j / into J 0
j . An element x belongs to †j WD ker

�
Ji.j /.C/ ! J 0

j .C/
�

if and
only if the kernel of the map  i.j /.x/ associated to x as in (16) contains � 0

j . Set
† WD ker

�
J.C/! J 0.C/

�
. Using the fact that � 0

j1
D � 0

j2
if i.j1/ D i.j2/, we get

an injection:
0 �! † �!Ls

iD1 Hom.�i=�
0
j.i/
;S/:

The order of the group yR�= yR0� is prime to p, hence the same is true for the order
of .g�1 yR�g/=.g�1 yR0�g/ for any g 2 yB�. Since the groups �i=�

0
j.i/

are contained

in .g�1 yR�g/=.g�1 yR0�g/ for suitable elements g 2 yB�, it follows the order of any
�i=�

0
j.i/

is prime to p, so the same is true for †. Dualizing shows that the cokernel
of the map u� W J 0.F`2

2
/! J.F`2

2
/ has order prime to p. It follows that

the canonical map J 0.F`2
2
/ �! J.F`2

2
/=�f`1

is surjective. (20)

Finally, combining (19) and (20) shows (18). �

Let B 0=F be the totally definite quaternion algebra of discriminant n�`1`2 and
R0 an Eichler order of B 0 of level }nC. For any ring C , denote by SB0

2 .}nC; C / the
C -module of functions:

B 0�n yB 0�= yR0� �! C:

This module is endowed with an action on the Hecke algebra Tn`1`2
.

Proposition 7.21. There exists g 2 SB0

2 .}nC;Of;�=�
n/ such that:

(1) for prime ideals q − n`1`2: Tq.g/ 	 aq.f /g .mod �n/;

(2) for prime ideals q j n: Uq.g/ 	 aq.f /g .mod �n/;

(3) U`1
g 	 �1g .mod �n/ and U`2

g 	 �2g .mod �n/.

Furthermore, if .`1; `2/ is a rigid pair, then g can be lifted to a �-isolated form in
SB0

2 .}nC/ taking values in Of;� .

Proof. Write T`1
(respectively, T`2;`1

) for the quotient of the Hecke algebra Tn`1

(respectively, Tn`1`2
) acting on cusp forms of weight 2, trivial central character,

�0.n`1/ (respectively, �0.n`1`2/) level structure and new at n�`1. Write

f`1
W T`1

�! Of;�=�
n

for the modular form satisfyingf`1
	 f .mod �n/. This form has the properties that

Tq.f`1
/ 	 aq.f /f`1

.mod �n/ for all q − n`1, Uq.f`1
/ 	 aq.f /f`1

.mod �n/

for all q j n and U`2
.f`1

/ 	 �1f`1
.mod �n/.

Let R1 � R be an Eichler order of level }nC`2 and denote by X .`2;`1/ the
Shimura curve (over F ) whose complex points are given by:

X .`2;`1/.C/ D B�n yB� �H ˙= yR�
1 :
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Recall from above the set �`2
� X .`1/.F`2

2
/ of supersingular points of X .`1/ in

characteristic `2. By [49], Section 5.4,

�`2
' B 0�n yB 0�= yR0�: (21)

It follows that the character group X`2
of X .`2;`1/ at `2 is identified with the module

Div0.�`2
/. Furthermore, the action of T`2;`1

on X`2
induced from the action on

Pic.X .`2;`1// by Picard functoriality is compatible with the standard Albanese action
of T`2;`1

via correspondences in the set of supersingular points. Therefore, � can also
be viewed as a Of;�=�

n-valued modular form on B 0�n yB 0�= yR0�. Denote by g this
modular form. Since � is surjective by Lemma 7.20, the image of g is not contained
in any proper subgroup of Of;�=�

n.
To show that g has the desired properties, write T �

q (with q − n`1`2) andU �
q (with

q j n`1`2) for the Hecke operators in T`2;`1
and Tq andUq for the Hecke operators in

T`1
. By Lemma 7.17, T �

q g D aq.f /g .mod �n/ and U �
q g D aq.f /g .mod �n/.

By Lemma 7.2 of [25], U �
`2
x D Frob`2

.F /x for x 2 �`2
. Hence Lemma 7.17 yields

.U �
`2
g/.x/ D �.Frob`2

.F /x/ D �2g.x/:

For the final part of the statement: The modular form g yields a surjective mor-
phism �g W T`2;`1

! Of;�=�
n; if .`1; `2/ is a rigid pair, then T`2;`1

' Of;� and
therefore �g lifts to characteristic zero. �

7.5. Explicit reciprocity laws. The two following theorems explore the relations
between the classes �.`/ constructed in Section 7.4 and the }-adic L-functions of
Section 4. Their proofs are similar to the proofs of the corresponding results [5],
Theorems 4.1 and 4.2. We will present a sketch of the arguments: for more details,
the reader is referred to [5]. See also Section 5.3 in [29] and Section 3.5 in [30],
where a result similar to that of Theorem 7.22 is proved.

Recall the maps @` and v` introduced in § 5.2. Thanks to the isomorphisms (8),
we find a decomposition

yH.K}1;`; Tf;�n/ D yH 1
sing.K}1;`; Tf;�n/˚ yH 1

fin.K}1;`; Tf;�n/:

In this decomposition the map @` corresponds to the projection to the first factor,
while the map v`, a priori only defined on the kernel of @`, can be extended to a map

v` W yH.K}1;`; Tf;�n/ �! yH 1
fin.K}1;`; Tf;�n/

(the projection to the second factor).

Theorem 7.22 (First Explicit Reciprocity Law). v`.�.`// D 0 and the equality

@`

�
�.`/

� 	 �f .mod �n/

holds in yH 1
sing.K}1;`; Tf;�n/ ' ƒ};�=�

nƒ};� up to multiplication by elements in
O�

f;�
and G}1 .
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Proof. Denote by Q@` the residue map

yH 1. zK}1 ; Tf;�n/ �! yH 1
sing.
zK}1;`; Tf;�n/

(these cohomology groups are defined for yH 1.K}1 ; Tf;�n/ and yH 1
sing.K}1;`; Tf;�n/

by replacing K}1 by zK}1). In is enough to show that Q@`.fP �
mgm/ 	 Q�f mod �n

(note the abuse of notation for the image of fP �
mgm in yH 1. zK}1 ; Tf;�n/).

Recall the notations of Section 6.2: Let B=F be the quaternion algebra which is
ramified at all archimedean places and whose discriminant is Disc.B/ D n�. Denote
by R � B an Eichler order of level }nC.

Recall that End.Pm/ ' O}m , where End.Pm/ is defined in [48], Section 2.1.1.
The Heegner point Pm is described in Section 2.1.2 of [48] in terms of a certain
abelian variety Am with additional structures. Let k denote as in [48], Section 2.2,
the residue field of the maximal unramified extension of OK;`. Denote by xAm the
reduced abelian variety over k and by End. xPm/ the endomorphism ring of xAm as
defined in [48], Section 2.3.3. Then, by [48], Section 2.3.3, End. xPm/˝Z Q ' B .
Tensoring by Q the map

End.Pm/ �! End. xPm/

induced by reduction of endomorphisms yields an embedding  W K ,! B .
Let H` WD C`�F` be the `-adic upper half plane, where C` is the completion of

an algebraic closure of F`. The C`-points of the special fiberX .`/

`
at ` of the Shimura

curve X .`/ can be described by using the Cerednik–Drinfeld theorem:

X
.`/

`
.C`/ ' B�n. yB� �H`/= yRŒ1=`��;

whereRŒ1=`� is the Eichler OF Œ1=`�-order ofB of level}nC and OF Œ1=`� is the ring
of `-integers of F . Then the point Pm reduces to the point P 0

m D .1; z/ 2 X .`/

`
.K`/,

where z is one of the two fixed points of  .K�/ acting on H`. The integrality
property of P 0

m follows because, since ` is inert in K=F , then it splits completely in
zK}1 .

Let V` and E` are, respectively, the set of geometrically irreducible components
and the set of singular points, respectively, of xX .`/

`
. By [49], Lemma 5.4.4, the set

V` can be identified with B�
e n yB�= yR�, where B�

e is the set of elements of B with

even order at }. The reduction of P 0
m in the special fiber xX .`/

`
of X .`/

`
belongs to a

single geometrically irreducible component: this is because, since ` is inert inK and
O}m˝Z` is maximal,  .O}m˝Z`/ is contained in a unique maximal order, hence
the action of  .K�/ on V` [ E` has a unique fixed point which is a vertex. Denote
by r.Pm/ the corresponding element in B�

e n yB�= yR�.
Fix a prime `1 of zK}1 dividing ` and set `m WD `1 \ K}m . Note that the

different choices of `1 are permuted by the multiplication by an element of zG}1 ,
and the same dependence holds for the definition of Q�f . Let ˆ`m

be the group of
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connected components of the fiber at `m of the Néron model of J .`/ over O zK}m
.

There is a specialization map ı`m
W J .`/. zK}m/! ˆ`m

which fits into the following
commutative diagram:

J .`/. zK}m/=�f`
��

ı`m

��

H 1. zK}m ; Tf;�n/

Q@`

��
ˆ`m

=�f`

� �� H 1
sing.
zK}m;`m

; Tf;�n/

(22)

where the bottom horizontal arrow is an isomorphism. The Heegner pointPm satisfies,
by Section 2 of the Appendix in [4], the following relation:

ı`m
.Pm/ D !`.r.Pm//;

where !` W Z0ŒV`�! ˆ` is the map arising from the exact sequence

0 �! X` �! X_
` �! ˆ` �! 0

connecting ˆ` with the character group X` of the maximal torus of the special fiber
of J .`/

`
and its Z-dual X_

`
. Recall the identification of V` withB�

e n yB�= yR� and note

that the last double coset space can be identified with two copies of B�n yB�= yR� by
sending a class Œb� in B�

e n yB�= yR� to the class Œb� in the first copy of B�n yB�= yR� if
the }-adic valuation of b is even and to the class of Œb� of the second copy otherwise.
It follows that evaluation on Heegner points gives rise to an Hecke equivariant map:

B�n yB�= yR� �! ˆ`m
=�f`

�! H 1
sing.K}m;`m

; Tf;�n/ ' Of;�=�
n

which, by multiplicity one, is equal to the modular form f B up to multiplication by
an element in .Of;�=�

n/�:
It follows from above that Q@`.Pm/ D f B.r`.Pm// mod �n. The result follows

now from the definition of P �
m and Q�f because the action of G}1 on Gr.`/.}m/ is

compatible with the action of G}1 on Gr.}m/ and, by our choice of the orientation
at}, the compatibility of the sequence fPmg translates into the compatibility of Gross
points. �

Theorem 7.23 (Second Explicit Reciprocity Law). Let `1 and `2 be two n-admissible
primes. Let g be as in Proposition 7.21. The equality

v`2

�
�.`1/

� D �g

holds in yH 1
fin.K}1;`2

; Tf;�n/ ' ƒ};�=�
nƒ};� up to multiplication by elements in

O�
f;�

and G}1 .
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Proof. Consider the sequence fPmgm of Heegner points. Fix (as in the proof of
the above theorem) a prime `2;1 of zK}1 above `2 and let `2;m WD `2;1 \ zK}m .
Since `2 is inert in K, the points Pm reduce modulo `2;1 to supersingular points
xPm 2 X .`1/.F`2;m

/, where F`2;m
is the residue field of zK}m at `2;m. Identify F`2;m

with F`2
2

for allm. Then xPm can be viewed as a point in �`2
, and hence, by Equation

(21), xPm can be identified with an element in B 0�n yB 0�= yR0�.
Reduction modulo `2;m of endomorphism as in the proof of Theorem 7.22 yields

by extension of scalars an embedding ' W K ! B 0, which is independent of m. The
Galois action of zG}1 on Pm is compatible with the action of zG}1 on xPm via '.
Write

Q�g;m D ˛�m
}

X
�2 zG}m

g.
 xPm/ � 
 2 Of;�=�
nŒ zG}m �;

so that Q�g D lim �
m

Q�g;m 2 Of;�=�
nŒŒ zG1��. The choice of `2;1 together with the

isomorphism H 1
fin.K`2

; Tf;�n/ ' Of;�=�
n yields identifications:

H 1
fin.
zK}m;`2

; Tf;�n/ D Of;�=�
nŒ zG}m �;

yH 1
fin.
zK}1;`2

; Tf;�n/ D Of;�=�
nŒŒ zG}1 ��;

where these cohomology groups are defined as in Section 5.2.1. By the definition
of � , the image of P �

m in H 1
fin.
zK}m;`2

; Tf;�n/ corresponds to Q�g;m .mod �n/ and
so the image of the compatible sequence fP �

mg corresponds to Q�g . Define the class
Q�.`1/ to be the image of fP �

mg in yH 1. zK}1 ; Tf;�n/. It follows that v`2
. Q�.`1// 2

yH 1
fin.
zK1;`2

; Tf;�n/ is equal to Q�g .mod �n/. Since �.`1/ is the corestriction of
Q�.`1/ from zK}1 to K}1 , the result follows. �

Corollary 7.24. The equality

v`1

�
�.`2/

� 	 v`2

�
�.`1/

�
.mod �n/

holds in ƒ};�=�
nƒ};� up to multiplication by elements in O�

f;�
and G}1 .

Proof. Since the definition of g is symmetric in `1 and `2, this is obvious. �

7.6. The argument. The remaining part of the section is devoted to the proof of The-
orem 6.1. Keeping } fixed, denote Sel�1.f =K}1/ (respectively, Sel�n.f =K}1/)
simply by Self;1 (respectively, Self;n). By Proposition 7.4, it is enough to show that
'.�f /

2 belongs to FittO.Sel_f;1˝' O/ for all ' 2 Hom.ƒ;O/where O is the ring of
integer of a finite extension of Qp . For this, by [33], Appendix, 10 on 325, is enough
to show that

'.�f /
2 belongs to FittO.Sel_f;n ˝' O/ for all integers n � 1: (23)
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Fix O and ' as above. Write � for an uniformizer of O. Set

tf WD ord�.'.�f //:

If '.�f / D 0, then '.�f /2 belongs trivially to FittO.Sel_f;n ˝' O/ for all n � 1, so
assume '.�f / ¤ 0. If Sel_f;1 ˝' O is trivial, then its Fitting ideal is equal to O and,
again, '.�f /2 belongs trivially to FittO.Sel_f;n ˝' O/ for all n � 1, so assume that
FittO.Sel_f;n ˝' O/ ¤ 0. The theorem is proved now by induction on tf .

7.6.1. Construction of �'.`/. Let ` be any .nC tf /-admissible prime and enlarge
f`g to a .nC tf /-admissible set S : such a set consists of s distinct .nC tf /-admissible
primes such that the map

Self;nCtf .K/ �!
M
`2S

H 1
fin.K`; Af;�

nCtf /

is injective (Proposition 7.5 shows that such a set exists). Denote by s the square-free
product of the primes in S and let

�.`/ 2 yH 1
` .K}1 ; T

f;�
nCtf / � yH 1

s .K}1 ; T
f;�

nCtf /

be the cohomology class attached to `.

Proposition 7.25. The group yH 1
s .K}1 ; Tf;�n/ is free of rank s over ƒ};�=�

n.

Proof. This statement can be proved by a direct generalization of Theorem 3.2 in [2]
as suggested in Proposition 3.3 in [5]. �

Let �'.`/ be the image of �.`/ in

M WD yH 1
s .K}1 ; T

f;�
nCtf /˝' O:

Note that, by Proposition 7.25, M is free of rank s over Of;�=�
nCtf . By Theo-

rem 7.22,
t WD ord�.�'.`// � ord�.@`.�'.`/// D ord�.'.�f //: (24)

Choose an element Q�'.`/ 2 M such that �t Q�'.`/ D �'.`/. This element is well
defined modulo the �t -torsion subgroup of M; to remove this ambiguity, denote by
�0

'.`/ the image of Q�'.`/ in H 1
s .K}1 ; Tf;�n/ ˝' O. The following properties of

�0
'.`/ hold:

(1) ord�.�
0
'.`// D 0 (because ord�.�'.`// D t � tf );

(2) @q.�
0
'.`// D 0 for all q − `n� (because �.`/ 2 yH 1

s .K}1 ; Tf;nCtf /);

(3) v`.�
0
'.`// D 0 (by Theorem 7.22);
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(4) @`.�
0
'.`// D tf � t (by Theorem 7.22 and formula (24));

(5) The element @`.�
0
'.`// belongs to the kernel of the homomorphism:

�` W yH 1
sing.K}1;`; Tf;�n/˝' O �! Sel_f;n ˝' O: (25)

To prove the last statement use the global reciprocity law of class field theory (5) as
follows (see more details in [5]), Lemma 4.6. Denote by I' the kernel of '. First
note that it is enough to show that �`.@`�

0
'.`//.s/ D 0 for all s 2 Self;nŒI' �. Note

that, by the global reciprocity law of class field theory:
X
qjS
h@q. Q�'.`//; sqiq D 0

for all s 2 Self;nCtf ŒI' �. On the other hand, �t Q�'.`/ D �'.`/ has trivial residue at
all the primes q ¤ ` (it is finite at those primes) so the element @q. Q�'.`// annihi-
lates �tH 1

fin.K1;q; Af;�
nCtf /ŒI' �, which contains H 1

fin.K1;q; Af;�n/ŒI' �/. Hence,
if s belongs to Self;nŒI' �, then the terms in the above sum corresponding to primes
q ¤ ` are all zero. It follows that @`.�

0
'.`// annihilates the image of Self;nŒI' � in

H 1
fin.K1;`; Af;�n/, so it belongs to the kernel of �`.

7.6.2. Case of tf D 0. This is the basis for the induction argument. First, recall the
following result.

Proposition 7.26. The natural map H 1.K;Af;�/! H 1.K}1 ; Af;�n/Œm� induced
by restriction is an isomorphism.

Proof. This result can be obtained as in Theorem 3.4 of [5] by analyzing the inflation-
restriction exact sequence

0 �! H 1.Gal.K}m=K/;A
GK}m

f;�n / �! H 1.K;Af;�n/ �! � � �
�! H 1.K}m ; Af;�n/Gal.K}m =K/ �! H 2.Gal.K}m=K/;A

GK}m

f;�n /

where GKm
}

is the absolute Galois group of K}m , and the exact sequence

A
GK

f;�n�1 �!H 1.K;Af;�/�!H 1.K;Af;�n/�!H 1.K;Af;�n/�!H 2.K;A
GK

f;�
/

induced by 0 ! Af;� ! Af;�n

�! Af;�n�1 ! 0 and noticing that, since �f;� is

surjective, A
GK}m

f;�n D AGK

f;�
D 0. For details, see [5], Theorem 3.4. �

Then we can state the basis of the inductive argument.

Proposition 7.27. If tf D 0 then Sel_f;n D 0.
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Proof. To prove this, note that, for all n-admissible primes `, Theorem 7.22 implies
that yH 1

sing.K}1;`; Tf;�n/˝' O is generated by @`.�'.`// (as O-module) and that the
map �` in (25) is trivial. Assume now that Sel_f;n is not trivial. Then Nakayama’s
lemma implies that the group Sel_f;n=m D .Self;nŒm�/

_ is not trivial, where m is the
maximal ideal of ƒ};� .

Let now s 2 Self;nŒm�be a non trivial element. Proposition 7.26 allows to consider
s as an element of H 1.K;Af;�/. Invoke Proposition 7.5 to choose an n-admissible
prime ` such that @`.s/ D 0 and v`.s/ ¤ 0. Then the non degeneracy of the local
Tate pairing implies that �` is trivial, which is a contradiction. �

7.6.3. The minimality property. As a corollary of Proposition 7.25, note that

the corestriction map yH 1
s .K}1 ; Tf;�n/=m �! H 1.K; Tf;�/ is injective. (26)

Let now … be the set of primes of OF such that:

(1) ` is nC tf -admissible;

(2) The number t D ord�.�'.`// is minimal among the set of .nC tf /-admissible
primes.

By Proposition 7.5, … ¤ ;.

Proposition 7.28. t < tf .

Proof. To prove this assertion, assume on the contrary that t � tf . Since by definition
t � tf , then t D tf for all .n C tf /-admissible primes `. Use Proposition 7.26 to
choose a non trivial element in H 1.K;Af;�/ \ Self;n (recall that by assumption,
Sel_f;n ˝' O ¤ 0, so Self;nŒm� ¤ 0). By Proposition 7.5, choose an .n C tf /-
admissible prime ` such that v`.s/ ¤ 0. Now by the Property 5 enjoyed by the
class �0

'.`/, it follows that ord�.@`�
0
'.`// D 0, so that @`�

0
'.`/ is a generator of

yH 1
sing.K1;`; Tf;�n/˝' O. By Nakayama’s lemma again, the image of @`.�

0
'.`// in

yH 1
sing.K1;`; Tf;�n/=m˝' O is not trivial. Use (26) to identify this last module with

H 1.K; Tf;�/˝O; then it follows that the natural image of @`.�
0
'.`// inH 1.K; Tf;�/˝

O is not trivial. By Property 5 enjoyed by the class �0
'.`/ again, it follows that

@`.�
0
'.`// is orthogonal to v`.s/ with respect to the local Tate pairing, contradicting

the fact that @`.�
0
'.`// and v`.s/ are both supposed to be non trivial and the fact that the

Tate pairing is a perfect duality between one-dimensional O=�-vector spaces. �

7.6.4. Rigid pairs with the minimality property. This step is devoted to the proof
that there exist primes `1; `2 2 … such that .`1; `2/ is a rigid pair. To prove this, start
by choosing any prime `1 2 … and denote by s the image of �0

'.`1/ in

. yH 1
s .K1; Tf;�n/=m/˝' O=.�/;
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where m is the maximal ideal of ƒ};� . By (26), view s as a non-zero element in
H 1.K; Tf;�/˝ O=.�/. Note that @q.s/ D 0 for all q − `1n. By Propositions 7.13
and 7.14, choose an .nC tf /-admissible prime `2 such that @`2

.s/ D 0, v`2
.s/ ¤ 0

and either .`1; `2/ is a rigid pair or Sel`2
.F; ad0�/ is one-dimensional. The following

relation holds:

t D ord�.�'.`1// � ord�.�'.`2// � ord�.v`1
.�'.`2///: (27)

The first inequality follows from the minimality property of t using that `1 2 …
and that `2 is an .n C tf /-admissible prime. By the choice of `2 and Corol-
lary 7.24, it follows that ord�.v`1

.�'.`2/// D ord�.v`2
.�'.`1///: Now note that

ord�.v`2
.�'.`1/// � ord�.�'.`1// and that the strict inequality holds if and only if

v`2
.s/ D 0, so, since v`2

.s/ ¤ 0, ord�.v`1
.�'.`2/// D ord�.�'.`1//. Combining

this with the inequalities in formula (27) shows that

t D ord�.�'.`1// D ord�.�'.`2//: (28)

It follows that `2 2 …. If .`1; `2/ is not a rigid pair, then Sel`2
.F; ad0�/ is one

dimensional (this is the case only if Sel`1
.F; ad0�/ D 0). In this case, by Proposi-

tion 7.13, choose an .nC tf /-admissible prime `3 such that @`3
.s/ D 0, v`3

.s/ ¤ 0
and .`2; `3/ is a rigid pair. Repeat the argument above with `2 replacing `1 and `3

replacing `2 to show that `3 2 …. In any case then, either .`1; `2/ or .`2; `3/ is a
rigid pair and the claim at the beginning of follows.

7.6.5. The congruence argument. Choose by the result explained in Subsec-
tion 7.6.4 a rigid pair .`1; `2/ with `1; `2 2 …. Note that, by Theorem 7.23,

t D tg D ord�.�g/ (29)

(hereg is the congruent modular form attached to .`1; `2/ by Proposition 7.21). There
is an exact sequence of ƒ-modules:

0 �! Self
`1`2
�! Sel_f;n �! Sel_Œ`1;`2� �! 0; (30)

where SelŒ`1;`2� � Self;n is defined by the condition that the restriction at the primes

`1 and `2 must be trivial and Self
`1`2

is the kernel of the surjection of duals. There is
an inclusion:

.Self
`1`2

/_ � H 1
fin.K}1;`1

; Af;�n/˚H 1
fin.K}1;`2

; Af;�n/:

The dual of H 1
fin.K}1;`1

; Af;�n/˚H 1
fin.K}1;`2

; Af;�n/, by the non-degeneracy of
the local Tate pairing, is yH 1

sing.K}1;`1
; Af;�n/˚ yH 1

sing.K}1;`2
; Af;�n/, so the above

inclusion leads to a surjection:

�f W yH 1
sing.K}1;`1

; Af;�n/˚ yH 1
sing.K}1;`1

; Af;�n/ �! Self
`1`2

:
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Recall that, since `1 is n-admissible, yH 1
sing.K}1;`1

; Af;�n/ ' ƒ};�=�
n: Let �'

f

be the map induced by �f after tensoring by O via '. Then the domain of �'

f
is

isomorphic to .O='.�n//2. By Property 5 above enjoyed by the classes �0
'.`1/

and �0
'.`2/, the kernel of �'

f
contains .@`1

�0
'.`1/; 0/ and .0; @`2

�0
'.`2//. The same

property combined with equations (28) and (29) yields

tf � tg D ord�.@`1
.�0

'.`1/// D ord�.@`2
.�0

'.`2///:

It follows that

�2.tf �tg/ belongs to the Fitting ideal of Self
`1`2
˝' O: (31)

Repeat now the argument with the modular form g: there is an exact sequence

0 �! Selg
`1`2
�! Sel_g;n �! Sel_Œ`1;`2� �! 0;

and a surjection

�g W yH 1
fin.K}1;`1

; Af;�n/˚ yH 1
fin.K}1;`1

; Af;�n/ �! Selg
`1`2

:

Let �'
g be the map induced by �g after tensoring by O via '. By the global reciprocity

law of class field theory, the kernel of �'
g contains the elements

.v`1
.�0

'.`1//; v`2
.�0

'.`1/// D .v`1
.�0

'.`1//; 0/;

.v`1
.�0

'.`2//; v`2
.�0

'.`2/// D .0; v`2
.�0

'.`2///;

where the equalities follow from Property 3 above enjoyed by the classes �0
'.`1/ and

�0
'.`2/. Note that ord�.v`2

�0
'.`1// D ord�.v`1

�0
'.`2// D tg � t D 0. From this it

follows that the module Selg
`1`2

is trivial. As a consequence, there is an isomorphism

Sel_g;n ˝' O ��!� Sel_Œ`1`2� ˝' O: (32)

7.6.6. The inductive argument. Now assume that the theorem is true for all t 0 < tf
and prove that it is true for tf . Recall that t D tg < tf . Since .`1; `2/ is a rigid
pair, the modular form g satisfies the assumptions in the theorem, so, by the inductive
hypothesis,

'.�g/ belongs to the Fitting ideal of Sel_g;n ˝' O: (33)

Now use the theory of Fitting ideals:

�2tf D �2.tf �tg/�2tg

2 FittO.Self
`1`2
˝' O/ � FittO.Sel_g;n ˝' O/ by .31/ and .33/

D FittO.Self
`1`2
˝' O/ � FittO.Sel_Œ`1`2� ˝' O/ by .32/

� FittO.Sel_f;n ˝' O/ by .30/:

Since by definition ord.�f / D tf , it follows that '.�f /2 2 FittO.Sel_f;n ˝' O/, thus
proving (23) and therefore Theorem 6.1.
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