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Conjectures on Bridgeland stability for Fukaya categories
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Abstract. Let .M; J; g;�/ be a Calabi–Yau m-fold, and consider compact, graded Lagrangians L
in M . Thomas and Yau [81, 82] conjectured that there should be a notion of ‘stability’ for such L,
and that if L is stable then Lagrangian mean curvature flow fLt W t 2 Œ0;1/g with L0 D L

should exist for all time, and L1 D limt!1 Lt should be the unique special Lagrangian in the
Hamiltonian isotopy class of L. This paper is an attempt to update the Thomas–Yau conjectures,
and discuss related issues.

It is a folklore conjecture, extending [81], that there exists a Bridgeland stability condition
.Z;P/ on the derived Fukaya category DbF .M/, such that an isomorphism class in DbF .M/

is .Z;P/-semistable if (and possibly only if) it contains a special Lagrangian, which must then be
unique.

In brief, we conjecture that if .L;E; b/ is an object in an enlarged version of DbF .M/, then
there is a unique family f.Lt ; Et ; bt / W t 2 Œ0;1/g such that .L0; E0; b0/ D .L;E; b/, and
.Lt ; Et ; bt / Š .L;E; b/ in DbF .M/ for all t , and fLt W t 2 Œ0;1/g satisfies Lagrangian MCF
with surgeries at singular times T1; T2; : : : ; and in graded Lagrangian integral currents we have
limt!1 Lt D L1 C � � � C Ln, where Lj is a special Lagrangian integral current of phase ei��j
for �1 > � � � > �n, and .L1; �1/; : : : ; .Ln; �n/ correspond to the decomposition of .L;E; b/ into
.Z;P/-semistable objects.

We also give detailed conjectures on the nature of the singularities of Lagrangian MCF that
occur at the finite singular times T1; T2; : : : :
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1. Introduction

Thomas [81] and Thomas and Yau [82] proposed some interesting conjectures on graded
Lagrangians L in Calabi–Yau manifolds .M; J; g;�/: they defined a notion of ‘stabil-
ity’ [81, Def. 5.1] for Hamiltonian isotopy classes ŒL� of (almost calibrated) graded La-
grangians L, and conjectured [81, Conj. 5.2] that ŒL� contains a (unique) special La-
grangian L0 if and only if ŒL� is stable. Furthermore, they conjectured [82, Conj. 7.3] that
if ŒL� is stable and L satisfies an extra condition [82, (7.1) or (7.2)] then Lagrangian mean
curvature flow fLt W t 2 Œ0;1/g with L0 D L exists for all time, and limt!1L

t D L0.
Thomas and Yau’s papers [81, 82] are remarkably prescient, as they predate (and mo-

tivated) much important mathematics relevant to their picture, including the invention of
Bridgeland stability on triangulated categories [13], the publication of Fukaya, Oh, Ohta
and Ono’s [22–24] and Seidel’s work [74] on Lagrangian Floer cohomology and Fukaya
categories, and progress on singularities of Lagrangian MCF such as Neves [61–63]. I
believe their big picture is correct, although I think they are too optimistic in expecting
Lagrangian MCF to exist for all time without singularities even in the stable case, and
want to substitute Lagrangian MCF with surgeries instead (see (iv) below).
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The aim of this paper is to update the Thomas–Yau conjectures in the light of subse-
quent discoveries, to add more detail to the picture, and to extend their scope. Thomas
and Yau’s papers are clearly intended as a programme for future research rather than as
precise conjectures; they have many caveats on points they are uncertain about, and the
conjectures they actually state are fairly cautious (for instance, the inclusion of the strong
condition [82, (7.1) or (7.2)] on stable Lagrangians for Lagrangian MCF to converge to a
special Lagrangian).

I am going to be a lot less cautious, and will make conjectures on unique long-
time existence of Lagrangian MCF with surgeries starting from any compact graded La-
grangian with unobstructed Lagrangian Floer cohomology in the sense of [24] (‘HF �

unobstructed’ for short). Nonetheless, I ask readers to take the conjectures in the spirit
they are intended: as provisional, quite probably false in their current form, to be refined
(or discarded) as our understanding improves, but in the mean time, as (hopefully) a useful
guide and motivation for research in the area. I will say more on this in the introduction
to §3.

In reading Thomas and Yau [81, 82], I think it is helpful to impose the standing as-
sumption that all graded Lagrangians L considered are almost calibrated, that is, have
phase variation less than � . This is not clearly articulated in [81, 82], although bounds
on the phase variation are assumed in several places, with the almost calibrated condition
used in [82, §5.3]. We need L to be almost calibrated since otherwise the ‘global phase’
�.L/ in [81, §3] is not well-defined, and so ‘stability’ in [81, Def. 5.1] does not make
sense.

Including the almost calibrated assumption, I am not aware of any counterexamples
to the precise conjectures stated in [81, 82] (although I do expect such counterexamples
to exist, see (iv) below). In particular, Neves’ examples [63] of finite time singularities to
Lagrangian MCF discussed in Example 3.28 below are not almost calibrated, and so not
counterexamples to [82, Conj. 7.3].

Here are the main differences between our programme and that of [81, 82]:

(i) We work in the ‘derived Fukaya category’ DbF .M/ of M , as in Fukaya, Oh,
Ohta and Ono [22–24] (see also Seidel [74]). Objects of DbF .M/ include triples
.L;E; b/, where L is a compact, graded Lagrangian in M and E ! L a rank
one local system such that .L;E/ has ‘HF � unobstructed’, and b is a ‘bounding
cochain’ for .L;E/, as in [24].

Rather than working in a Hamiltonian isotopy class ŒL� as in [81,82], we work in an
isomorphism class Œ.L;E; b/� in DbF .M/.

(ii) The derived Fukaya category DbF .M/ must be enlarged to include immersed La-
grangians as in [2] in dimension m > 2, and certain classes of singular Lagrangians
in dimension m > 3, for the programme to work.

(iii) Our notion of ‘stability’ of Lagrangians is a ‘Bridgeland stability condition’ .Z;P/
on the triangulated category DbF .M/, as in Bridgeland [13].

(iv) Even for a ‘stable’ object .L;E; b/ with small phase variation, I do not expect La-
grangian MCF fLt W t 2 Œ0;1/g with L0 D L to exist without singularities, as
hoped in [82]. Instead, in a similar way to the proof of the Poincaré Conjecture
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by Perelman and others using Ricci flow (see [60, 68–70]), I expect there to exist
a unique family f.Lt ; Et ; bt / W t 2 Œ0;1/g of objects in the isomorphism class of
.L;E; b/ in DbF .M/ with .L0; E0; b0/ D .L;E; b/, where fLt W t 2 Œ0;1/g
satisfies Lagrangian MCF with surgeries.

That is, at a discrete series of ‘singular times’ t D T1; T2; : : : the flow develops
a singularity, but one can continue the flow uniquely for t > Ti in a way which
is continuous at t D Ti in a weak sense. The Lt for Ti � � < t < Ti and for
Ti < t < Ti C � may have different topologies.

(v) Lagrangians L or pairs .L;E/ in M ‘with HF � obstructed’ do not give objects of
DbF .M/, and ‘stability’ does not make sense for them.

For L with HF � obstructed, the author expects that Lagrangian MCF fLt W t 2
Œ0; T /g with L0 D L may develop finite time singularities at t D T after which it
is not possible to continue the flow, even with a surgery. So, the long time existence
of Lagrangian MCF with surgeries in (iv) should apply only for Lagrangians with
HF � unobstructed.

Part (iv), our insistence on including finite time singularities of Lagrangian MCF and
surgeries, is the greatest divergence between our picture and that of [81, 82]. As some
justification, note that Neves [63] proves that every Hamiltonian isotopy class ŒL� of com-
pact Lagrangians L in a Calabi–Yau m-fold .M; J; g;�/ for m > 2 contains (not almost
calibrated) representatives QL such that Lagrangian MCF fLt W t 2 Œ0; T /g with L0 D QL
develops a finite time singularity at t D T , so without (strong) extra assumptions, finite
time singularities of Lagrangian MCF are unavoidable.

One of the goals of this paper is to persuade mathematicians working on Lagrangian
MCF that obstructions to HF � are important in understanding finite time singularities of
Lagrangian MCF, that the flow should be better behaved ifHF � is unobstructed, and that
tools from symplectic topology such as J -holomorphic curves, Lagrangian Floer coho-
mology, and Fukaya categories, should be used to make the next generation of advances
in the field.

Some evidence for this is provided by Imagi, Oliveira dos Santos and the author [37],
in which, motivated by this paper, we use Lagrangian Floer cohomology and Fukaya
categories to prove that the unique special Lagrangians in Cm asymptotic at infinity to the
union …0 […� of two transverse Lagrangian planes …0;…� are the ‘Lawlor necks’ of
[51], and the unique Lagrangian MCF expanders in Cm asymptotic at infinity to…0[…�

are the examples in Lee, Tsui and the author [49, Th.s C & D], as in Theorems 2.6 and
2.14 below.

Section 2 explains some background material, §3 states the conjectures, and §4 dis-
cusses some generalizations.

Acknowledgements. I would like to thank Mohammed Abouzaid, Joana Amorim, Lino
Amorim, Denis Auroux, Mark Haskins, Yohsuke Imagi, Yng-Ing Lee, André Neves, Paul
Seidel, Richard Thomas, and Ivan Smith for useful conversations. This research was
supported by EPSRC grant EP/H035303/1.
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2. Background material

We now summarize the background material we will need to state our conjectures in §3.
We discuss Calabi–Yaum-folds, graded Lagrangians and special Lagrangians in §2.1 and
Lagrangian mean curvature flow in §2.3, giving examples of SL m-folds in Cm in §2.2
and solitons for Lagrangian MCF in §2.4. Section 2.5 explains Lagrangian Floer coho-
mology, obstructions to HF �, and derived Fukaya categories DbF .M/ for embedded
Lagrangians in Calabi–Yau m-folds, and §2.6 considers the extension to immersed La-
grangians.

Some references are McDuff and Salamon [58] for symplectic geometry, the au-
thor [48] and Harvey and Lawson [31] for Calabi–Yau m-folds and special Lagrangians,
Mantegazza [56], Smoczyk [79] and Neves [62] for (Lagrangian) MCF, Fukaya [22, 23],
Fukaya, Oh, Ohta and Ono [24] and Seidel [74] for Lagrangian Floer cohomology and
Fukaya categories for embedded Lagrangians, and Akaho and the author [2] for the ex-
tension to immersed Lagrangians.

2.1. Calabi–Yau m-folds and special Lagrangians. We define Calabi–Yau m-folds,
graded Lagrangians, and special Lagrangians.

Definition 2.1. A Calabi–Yau m-fold is a quadruple .M; J; g;�/ such that .M; J / is an
m-dimensional complex manifold, g is a Kähler metric on .M; J / with Kähler form !,
and � is a holomorphic .m; 0/-form on .M; J / satisfying

!m=mŠ D .�1/m.m�1/=2.i=2/m� ^ N�: (2.1)

Then g is Ricci-flat and its holonomy group is a subgroup of SU.m/. We do not require
M to be compact, or g to have holonomy SU.m/, although many authors make these
restrictions.

If .M; J; g;�/ is a Calabi–Yau m-fold with Kähler form !, then .M;!/ is a sym-
plectic manifold. A Lagrangian L in M is a real m-dimensional submanifold (embedded
or immersed) with !jL D 0.

Let L be a Lagrangian in M . Then �jL is a complex m-form on L. Equation (2.1)
implies that

ˇ̌
�jL

ˇ̌
D 1, where j : j is computed using the Riemannian metric gjL. Sup-

pose L is oriented. Then we have a volume form dVL on L defined using the metric gjL
and orientation with jdVLj D 1, so �jL D ‚L � dVL, where ‚L W L! U.1/ is a unique
smooth function, and U.1/ D fz 2 C W jzj D 1g.

There is an induced morphism of cohomology groups‚�L W H
1.U.1/;Z/! H 1.L;Z/.

The Maslov class �L 2 H 1.LIZ/ of L is the image under ‚�L of the generator of
H 1.U.1/;Z/ Š Z. If H 1.M;R/ D 0 then �L depends only on .M;!/; L and not
on g; J;�. We call L Maslov zero if �L D 0.

A grading or phase function of an oriented Lagrangian L is a smooth function �L W
L! R with‚L D exp.i�L/, so that�jL D ei�LdVL. That is, i�L is a continuous choice
of logarithm for ‚L. Gradings exist if and only if L is Maslov zero. If L is connected
then gradings are unique up to addition of 2�n for n 2 Z. A graded Lagrangian .L; �L/
in M is an oriented Lagrangian L with a grading �L. Usually we refer to L as the graded
Lagrangian, leaving �L implicit.
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An oriented Lagrangian L in M is called almost calibrated if .cos� Re� �
sin� Im�/jL is a positive m-form on L for some � 2 R. Then L admits a unique
grading �L taking values in .�� �

2
; �C �

2
/. If a graded Lagrangian L has phase variation

less than � , then it is almost calibrated.
An oriented Lagrangian L in M is called special Lagrangian with phase ei� if ‚L is

constant with value ei� 2 U.1/. If we do not specify a phase, we usually mean phase 1.
We will write SL for special Lagrangian, and SL m-fold for special Lagrangian submani-
fold. SLm-folds with phase ei� are Maslov zero, and graded with phase function �L D �.
They are minimal submanifolds in .M; g/. Compact SL m-folds are volume-minimizing
in their homology class.

Special Lagrangians were introduced by Harvey and Lawson [31, §III]. The deforma-
tion theory of SL m-folds was studied by McLean [59, §3]:

Theorem 2.2. Let .M; J; g;�/ be a Calabi–Yau m-fold, and L a compact SL m-fold
in M . Then the moduli space ML of special Lagrangian deformations of L is a smooth
manifold of dimension b1.L/; the first Betti number of L.

2.2. Special Lagrangian m-folds in Cm.
Definition 2.3. Let Cm have coordinates .z1; : : : ; zm/ and complex structure J , and de-
fine a Kähler metric g, Kähler form ! and .m; 0/-form � on Cm by

g D jdz1j2 C � � � C jdzmj2;

! D i
2
.dz1 ^ d Nz1 C � � � C dzm ^ d Nzm/;

and � D dz1 ^ � � � ^ dzm:

(2.2)

Then .Cm; J; g;�/ is the simplest example of a Calabi–Yau m-fold.
Define a real 1-form � on Cm called the Liouville form by

� D �1
2

Im.z1d Nz1 C � � � C zmd Nzm/:

Then d� D !. Thus, if L is a Lagrangian in Cm then d.�jL/ D 0. We call L an exact
Lagrangian if �jL D df for some smooth f W L! R.

A (singular) Lagrangian C in Cm is called a cone if C D tC for all t > 0, where
tC D ft z W z 2 C g. Let C be a closed Lagrangian cone in Cm with an isolated singularity
at 0. Then † D C \ S2m�1 is a compact, nonsingular Legendrian .m�1/-submanifold
of S2m�1, not necessarily connected. Let g† be the metric on † induced by the metric
g on Cm in (2.2), and r the radius function on Cm. Define � W † � .0;1/ ! Cm by
�.�; r/ D r� . Then the image of � is C n f0g, and ��.g/ D r2g† C dr2 is the cone metric
on C n f0g.

Let L be a closed, nonsingular Lagrangian m-fold in Cm, e.g. L could be special
Lagrangian, or a Lagrangian LMCF expander, as in Definition 2.9 below. We call L
asymptotically conical (AC) with rate � < 2 and cone C if there exists a compact subset
K � L and a diffeomorphism ' W † � .T;1/! L nK for some T > 0, such thatˇ̌

r
k.' � �/

ˇ̌
D O.r��1�k/ as r !1; for all k D 0; 1; 2; : : : :
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Here r; j : j are computed using the cone metric ��.g/. Note that if � < � < 2 and L is
AC with rate �, then L is also AC with rate � .

Asymptotically conical special Lagrangians are an important class of SL m-folds
in Cm. McLean’s Theorem, Theorem 2.2, was generalized to AC SL m-folds by Mar-
shall [57] and Pacini [67]. Here is a special case of their results:

Theorem 2.4. Let L be an asymptotically conical SL m-fold in Cm for m > 3 with
cone C and rate � 2 .2�m; 0/; and write M�

L for the moduli space of deformations of L
as an AC SL m-fold in Cm with cone C and rate �. Then M�

L is a smooth manifold of
dimension b1cs.L/ D b

m�1.L/.

Here bk.L/ D dimH k.L;R/, bkcs.L/ D dimH k
cs.L;R/ forH�.L;R/;H�cs.L;R/ the

(compactly-supported) cohomology of L, and bkcs.L/ D bm�k.L/ by Poincaré duality.
The next family of AC SL m-folds in Cm was first found by Lawlor [51], and rewritten
by Harvey [30, pp. 139–140]. They are often called Lawlor necks.

Example 2.5. Let m > 2 and a1; : : : ; am > 0, and define polynomials p;P by

p.x/ D .1C a1x
2/ � � � .1C amx

2/ � 1 and P.x/ D
p.x/

x2
: (2.3)

Define real numbers �1; : : : ; �m and A by

�k D ak

Z 1
�1

dx

.1C akx2/
p
P.x/

and A D

Z 1
�1

dx

2
p
P.x/

:

Clearly �k ; A > 0. But writing �1 C � � � C �m as one integral gives

�1 C � � � C �m D

Z 1
0

p0.x/dx

.p.x/C 1/
p
p.x/

D 2

Z 1
0

dw
w2 C 1

D �;

making the substitution w D
p
p.x/. So �k 2 .0; �/ and �1C� � �C�m D � . This yields

a 1-1 correspondence between m-tuples .a1; : : : ; am/ with ak > 0, and .mC1/-tuples
.�1; : : : ; �m; A/ with �k 2 .0; �/, �1 C � � � C �m D � and A > 0.

For k D 1; : : : ; m, define a function zk W R! C by

zk.y/ D ei k.y/
q
a�1
k
C y2; where  k.y/ D ak

Z y

�1

dx

.1C akx2/
p
P.x/

:

Now write � D .�1; : : : ; �m/, and define a submanifold L�;A in Cm by

L�;A D
˚
.z1.y/x1; : : : ; zm.y/xm/ W y 2 R; xk 2 R; x21 C � � � C x

2
m D 1

	
:

Then L�;A is closed, embedded, and diffeomorphic to Sm�1 � R, and Harvey [30,
Th. 7.78] shows that L�;A is special Lagrangian. Also L�;A is asymptotically conical,
with rate � D 2�m and cone C the union …0 […� of two special Lagrangian m-planes
…0;…� in Cm given by

…0 D
˚
.x1; : : : ; xm/ W xj 2 R

	
; …� D

˚
.ei�1x1; : : : ; ei�mxm/ W xj 2 R

	
:
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Apply Theorem 2.4 with L D L�;A and � 2 .2 �m; 0/. As L Š Sm�1 � R we have
b1cs.L/ D 1, so Theorem 2.4 shows that dimM�

L D 1. This is consistent with the fact that
when � is fixed, L�;A depends on one real parameter A > 0. Here � is fixed in M�

L as
the cone C D …0 […� of L depends on �, and all OL 2M�

L have the same cone C , by
definition.

Imagi, Oliveira dos Santos and the author [37, Th. 1.1] prove a uniqueness theorem
for Lawlor necks. The proof involves deep results on Lagrangian Floer cohomology and
Fukaya categories, and was motivated by the ideas of this paper. The exactness assump-
tion is needed to apply the Fukaya category results. Note that special Lagrangians L
in Cm occurring as blow-ups of graded Lagrangian MCF in a Calabi–Yau m-fold (as in
§3.3 below) are automatically exact, so the exactness requirement does not matter for our
programme.

Theorem 2.6. Suppose L is a closed, embedded, exact, asymptotically conical special
Lagrangian in Cm for m > 3; asymptotic at rate � < 0 to a union …1 [ …2 of two
transversely intersecting special Lagrangian planes …1;…2 in Cm. Then L is equivalent
under an SU.m/ rotation to one of the ‘Lawlor necks’ L�;A found by Lawlor [51], and
described in Example 2.5.

Here is an example based on Harvey and Lawson [31, §III.3.A]:

Example 2.7. Define a special Lagrangian T 2-cone C in C3 by

C D
˚
.z1; z2; z3/ 2 C3 W jz1j D jz2j D jz3j; z1z2z3 2 Œ0;1/

	
: (2.4)

This will be important in §3.6 as it is a ‘stable’ special Lagrangian singularity in the sense
of [39, Def. 3.6]. There are three families of explicit asymptotically conical SL 3-folds
LA1 ; L

A
2 ; L

A
3 forA > 0 in C3; each diffeomorphic to S1�R2 and asymptotic at rate � D 0

to the cone C , where

LA1 D
˚
.z1; z2; z3/ 2 C3 W jz1j2 � A D jz2j2 D jz3j2; z1z2z3 2 Œ0;1/

	
; (2.5)

and LA2 ; L
A
3 are obtained from LA1 by cyclic permutation of z1; z2; z3.

Example 2.8. In [43–45] we study SL 3-folds in C3 invariant under the U.1/-action

ei� W .z1; z2; z3/ 7�! .ei�z1; e�i�z2; z3/ for ei� 2 U.1/:

The three papers are surveyed in [46]. A U.1/-invariant SL 3-fold N may locally be
written in the form

N D
˚
.z1; z2; z3/ 2 C3 W z1z2 D v.x; y/C iy; z3 D x C iu.x; y/;

jz1j
2
� jz2j

2
D 2a; .x; y/ 2 S

	
; (2.6)

where S is a domain in R2, a 2 R and u; v W S ! R satisfy (in a weak sense if a D 0)
the nonlinear Cauchy–Riemann equations

@u

@x
D
@v

@y
and

@v

@x
D �2

�
v2 C y2 C a2

�1=2 @u
@y
: (2.7)
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If S is simply-connected, as @u
@x
D

@v
@y

there exists a potential f for u; v with @f
@y
D u,

@f
@x
D v, satisfying ��@f

@x

�2
C y2 C a2

��1=2 @2f
@x2
C 2

@2f

@y2
D 0: (2.8)

In [43, 44], for suitable strictly convex domains S � R2 and boundary data � W @S ! R,
we prove the existence of a unique f W S ! R satisfying (2.8) and f j@S D �, and then
u D @f

@y
, v D @f

@x
satisfy (2.7) (possibly in a weak sense if a D 0), and N in (2.6) is

special Lagrangian.
When v D y D a D 0, equations (2.7)–(2.8) become singular, and the SL 3-fold N

in (2.6) has a singularity at .0; 0; z3/ D
�
0; 0; x C iu.x; 0/

�
in C3. In the simplest cases

N is locally modelled on the cone C in (2.4) near .0; 0; z3/, but there are also infinitely
many other topological types of singularities not locally modelled on cones. Note that
the existence and uniqueness results for N are entirely independent of the singularities
appearing in the interior of N .

The following will be important in §3.6. Using the results of [43–46], by choosing
a suitable family �t W t 2 .��; �/ of boundary conditions for the potential f t , we can
construct a family N t W t 2 .��; �/ of exact U.1/-invariant SL 3-folds in C3 of the form
(2.6) with a D 0, with the following properties:

(i) N t depends continuously on t 2 .��; �/ in a suitable sense, for instance as special
Lagrangian integral currents in Geometric Measure Theory.

(ii) N t is nonsingular for t < 0.
(iii) N 0 has one singular point at .0; 0; 0/ 2 C3, which has tangent cone …1 [ …2,

where …1;…2 are U.1/-invariant special Lagrangian planes in C3 intersecting non-
transversely with …1 \…2 D R.

(iv) N t for t > 0 has two singular points at .0; 0;˙z.t//, where z.t/ depends smoothly
on t and z.t/! 0 as t ! 0. Each singular point is locally modelled on the special
Lagrangian T 2-cone C in (2.4).

Thus, isolated singular points of SL 3-folds modelled on the T 2-cone C in (2.4) can
appear or disappear in pairs under continuous deformation.

2.3. Lagrangian mean curvature flow. Next we discuss (Lagrangian) mean curvature
flow. A book on mean curvature flow (MCF) for hypersurfaces in Rn is Mantegazza [56].
Two useful surveys on Lagrangian MCF are Smoczyk [79] and Neves [62].

Let .M; g/ be a Riemannian manifold, and N a compact manifold with dimN <

dimM , and consider embeddings or immersions � W N ,! M , so that �.N / is a subman-
ifold of M . Mean curvature flow (MCF) is the study of smooth 1-parameter families �t ,
t 2 Œ0; T / of such �t W N ,!M satisfying

d�t
dt
D H�t ;

where H�t 2 C
1.��t .TM// is the mean curvature of the submanifold �t W N ,! M . We

usually write N t rather than �t W N ,! M , suppressing the immersion, so that fN t W t 2

Œ0; T /g is a family of submanifolds satisfying MCF.
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Mean curvature flow is the gradient flow of the volume functional for compact sub-
manifolds N in M . It has a unique short-time solution starting from any compact sub-
manifold N .

Now let .M; J; g;�/ be a Calabi–Yau m-fold, and L a compact Lagrangian subman-
ifold in M . Then the mean curvature of L is H D Jr‚L, where ‚L W L ! U.1/
is the phase function from Definition 2.1. Thus H is an infinitesimal deformation of
L as a Lagrangian. Smoczyk [78] shows that MCF starting from L preserves the La-
grangian condition, yielding a 1-parameter family of Lagrangians fLt W t 2 Œ0; �/g with
L0 D L, which are all in the same Hamiltonian isotopy class if L is Maslov zero. This
is Lagrangian mean curvature flow (LMCF). Special Lagrangians are stationary points of
Lagrangian MCF.

We will be especially interested in Lagrangian MCF for graded Lagrangians. Suppose
fLt W t 2 Œ0; T /g is a family of compact, graded Lagrangians satisfying Lagrangian MCF.
ThenLt are all Hamiltonian isotopic, that is, graded Lagrangian MCF stays within a fixed
Hamiltonian isotopy class. Also, if the phase function �L0 takes values in an interval Œa; b�
or .a; b/, then so does �Lt for t 2 Œ0; T /. Thus, Lagrangian MCF preserves the almost
calibrated condition.

It is an important problem to understand the singularities which arise in Lagrangian
mean curvature flow. Singularities in Lagrangian MCF are often locally modelled on
soliton solutions, Lagrangians in Cm which move by rescaling or translation under La-
grangian MCF.

Definition 2.9. A closed Lagrangian L in Cm is called an LMCF expander if H D ˛F?

in C1.TCmjL/, whereH is the mean curvature ofL and F? is the orthogonal projection
of the position vector F (that is, the inclusion F W L ,! Cm) to the normal bundle
TL? � TCmjL, and ˛ > 0 is constant.

This implies that (after reparametrizing by diffeomorphisms of L) the family of La-
grangians Lt WD

p
2˛t L for t 2 .0;1/ satisfy Lagrangian mean curvature flow. That is,

Lagrangian MCF expands L by dilations.
Similarly, we call L an LMCF shrinker if H D ˛F? for ˛ < 0, and then Lt WDp
2˛t L for t 2 .�1; 0/ satisfy LMCF, so LMCF shrinks L by dilations.

We call L an LMCF translator if H D v?, where v 2 Cm is the translating vector
of L, and v? the orthogonal projection of v to TL?. Then Lt WD LC tv for t 2 R satisfy
LMCF, so Lagrangian MCF translates L in Cm.

Finite time singularities of MCF have a fundamental division into ‘type I’ and ‘type II’
singularities:

Definition 2.10. Let .M; g/ be a compact Riemannian manifold (e.g. a Calabi–Yau m-
fold) and fLt W t 2 Œ0; T /g a family of compact immersed submanifolds in M (e.g.
Lagrangians) satisfying mean curvature flow. We say that the family has a finite time
singularity at t D T if the flow cannot be smoothly continued to Œ0; T C �/ for any � > 0.
As in Wang [84, Lem. 5.1] this implies that lim supt!T kA

tkC0 ! 1, where At is the
second fundamental form of Lt .

We call such a finite time singularity of type I if kAtk2
C0

6 C=.T �t / for some C > 0

and all t 2 Œ0; T /. Otherwise we call the singularity of type II.
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We call x 2 M a singular point of the flow if lim supt!T kA
t jU\Lt kC0 D 1 for all

open neighbourhoods U of x in M .

Huisken [33] showed that type I singularities developing a singularity at x 2 M are
locally modelled in a strong sense on MCF shrinkers in Rn D TxM , through a process
known as ‘type I blow up’, as in Smoczyk [79, Prop. 3.17] or Mantegazza [56, §3].

However, we are interested in MCF of graded Lagrangians in Calabi–Yau m-folds,
and it turns out that type I singularities do not occur in graded Lagrangian MCF, as was
proved by Wang [84, Rem. 5.1] and Chen and Li [17, Cor. 6.7] in the almost calibrated
case (i.e. Lagrangians Lt with phase variation less than �) and by Neves [61, Th. A] in
the graded (or Maslov zero) case.

Theorem 2.11. Let .M; J; g;�/ be a compact Calabi–Yau m-fold and fLt W t 2 Œ0; T /g
a family of compact, immersed, graded Lagrangians in M satisfying Lagrangian MCF.
Then the flow cannot develop a type I singularity.

A parallel result of Neves [62, Cor. 3.5] says that there exist no nontrivial, immersed,
graded Lagrangian MCF shrinkers in Cm (satisfying a few extra conditions such as closed
in Cm and of bounded Lagrangian angle), so there are no possible local models for type I
blow ups of graded Lagrangian MCF. Examples of Lagrangian MCF shrinkers in Cm can
be found in Abresch and Langer [1] for m D 1 and in Anciaux [3] and Joyce, Lee and
Tsui [49, Th. F] in higher dimensions, but none of them are graded.

So, for graded Lagrangian MCF, all finite time singularities are of type II. It is a
well known ‘folklore’ theorem that type II singularities of MCF admit ‘type II blow ups’,
eternal smooth solutions of MCF in Rn modelling the formation of the singularity in the
small region where the second fundamental form At is largest as t ! T . The idea of type
II blow ups is due to Hamilton, and explanations can be found in Smoczyk [79, §3.4] and
Mantegazza [56, §4.1], and for Lagrangian MCF in Han and Li [28, §2]. We state it for
graded LMCF:

Theorem 2.12. Let .M; J; g;�/ be a compact Calabi–Yau m-fold and fLt W t 2 Œ0; T /g
a family of compact, immersed, graded Lagrangians in M satisfying Lagrangian MCF,
with a finite time singularity at t D T . Then at some singular point x 2 M of the flow
there exists a type II blow up.

That is, identifying M near x with TxM Š Cm near 0; there exist sequences .ti /1iD1
in Œ0; T /; .xi /1iD1 in M and .�i /1iD1 in .0;1/; such that ti ! T; xi ! x; �i !1 and
�2i .T � ti /! 0 as i !1; and for each s 2 R the limit

QLs D lim
i!1

�i � .L
tiC�

�2
i
s
� xi /

exists as a nonempty, noncompact, smooth, closed, immersed, exact, graded Lagrangian
in Cm whose mean curvature QAs is nonzero (so that QLs is not a union of Lagrangian
planes in Cm). All derivatives of QAs; and the phase function � QLs ; are uniformly bounded
independently of s 2 R. Also QLs depends smoothly on s 2 R; and f QLs W s 2 Rg satisfies
Lagrangian MCF in Cm.
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A solution f QLs W s 2 Rg of MCF for all s 2 R is called an eternal solution. Two
obvious classes of eternal solutions of Lagrangian MCF in Cm are

(a) QLs D L is independent of s 2 R, and is an SL m-fold in Cm.

(b) QLs D L C sv for s 2 R, where L is a Lagrangian MCF translator in Cm with
translating vector v 2 Cm.

Many examples of special Lagrangian m-folds in Cm are known suitable for use in (a),
but for (b) there are few, as we explain in §2.4.

2.4. Examples of solitons for Lagrangian MCF. We now give examples of solitons
for Lagrangian MCF. We are interested in graded Lagrangians, and as in §2.3 there are
no graded Lagrangian MCF shrinkers. The next example describes a family of LMCF
expanders from Joyce, Lee and Tsui [49, Th.s C & D], generalizing the ‘Lawlor necks’ of
Example 2.5.

Example 2.13. Let m > 2, ˛ > 0 and a1; : : : ; am > 0, and define a smooth function
P W R! R by P.0/ D ˛ C a1 C � � � C am and

P.x/ D 1
x2

�
e˛x

2Qm
kD1.1C akx

2/ � 1
�
; x ¤ 0: (2.9)

Define real numbers �1; : : : ; �m by

�k D ak

Z 1
�1

dx

.1C akx2/
p
P.x/

;

For k D 1; : : : ; m define a function zk W R! C by

zk.y/ D ei k.y/
q
a�1
k
C y2; where  k.y/ D ak

Z y

�1

dx

.1C akx2/
p
P.x/

:

Now write � D .�1; : : : ; �m/, and define a submanifold L˛� in Cm by

L˛� D
˚
.z1.y/x1; : : : ; zm.y/xm/ W y 2 R; xk 2 R; x21 C � � � C x

2
m D 1

	
:

Then L˛� is a closed, embedded Lagrangian diffeomorphic to Sm�1 � R and satisfying
H D ˛F?. If ˛ > 0 it is an LMCF expander, and if ˛ D 0 it is one of the Lawlor necks
L�;A from Example 2.5. It is graded, with Lagrangian angle

�L˛�

�
.z1.y/x1; : : : ; zm.y/xm/

�
D
Pm
kD1  k.y/C arg

�
�y � iP.y/�1=2

�
:

Note that the only difference between the constructions of L�;A in Example 2.5 and L˛�
above is the term e˛x

2
in (2.9), which does not appear in (2.3). If ˛ D 0 then e˛x

2
D 1,

and the two constructions agree.
As in [49, Th. D], L˛� is asymptotically conical, with cone C the union …0 […� of

two Lagrangian m-planes …0;…� in Cm given by

…0 D
˚
.x1; : : : ; xm/ W xj 2 R

	
; …� D

˚
.ei�1x1; : : : ; ei�mxm/ W xj 2 R

	
:
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But in contrast to Example 2.5, for ˛ > 0 we do not have �1C � � � C �m D � , so …� and
C are not special Lagrangian.

In [49, Th. D] we prove that for fixed ˛ > 0, the map ˆ˛ W .a1; : : : ; am/ 7!
.�1; : : : ; �m/ gives a diffeomorphism

ˆ˛ W .0;1/m �!
˚
.�1; : : : ; �m/ 2 .0; �/

m
W 0 < �1 C � � � C �m < �

	
:

That is, for all ˛ > 0 and � D .�1; : : : ; �m/ with 0 < �1; : : : ; �m < � and 0 <
�1C� � �C�m < � , the above construction gives a unique LMCF expanderL˛� asymptotic
to …0 […� .

Motivated by the ideas of this paper, Imagi, Oliveira dos Santos and the author [37,
Th. 1.1] prove a uniqueness theorem for these LMCF expanders when m > 3. The case
m D 2 was already proved by Lotay and Neves [53]. For LMCF expanders, being exact
is equivalent to being graded, or Maslov zero.

Theorem 2.14. Suppose L is a closed, embedded, exact, asymptotically conical La-
grangian MCF expander in Cm for m > 2; satisfying the expander equation H D ˛F?

for ˛ > 0; and asymptotic at rate � < 2 to a union …1 […2 of two transversely inter-
secting Lagrangian planes …1;…2 in Cm. Then L is equivalent under a U.m/ rotation
to one of the LMCF expanders L˛� found by Joyce, Lee and Tsui [49, Th.s C & D], and
described in Example 2.13.

Example 2.15. In dimension m D 1, the unique connected Lagrangian MCF translator
in C, up to rigid motions and rescalings, is the ‘grim reaper’˚

x C iy 2 C W y 2 .��=2; �=2/; x D � log cosy
	
;

with translating vector v D 1 2 C, which is sketched in Figure 2.1.

MCF translates in this direction �!

Figure 2.1. ‘Grim reaper’ Lagrangian MCF translating soliton in C

Here is a family of LMCF translators from Joyce, Lee and Tsui [49, Cor. I]:

Example 2.16. For given constants ˛ > 0 and a1; : : : ; am�1 > 0; define

 j .y/ D

Z y

�1

dt

. 1
aj
C t2/

p
P.t/

; where P.t/ D
1

t2

�m�1Y
kD1

.1C akt
2/e˛t

2

� 1

�
;

for j D 1; : : : ; m � 1 and y 2 R.
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Then

L D
˚�
x1

q
1
a1
Cy2 ei 1.y/; : : : ; xm�1

q
1

am�1
Cy2 ei m�1.y/; 1

2
y2� 1

2

Pm�1
jD1 x

2
j

�
i
˛

Pm�1
jD1  j .y/ �

i
˛

arg.y C iP.y/�1=2/
�
W x1; : : : ; xm�1; y 2 R

	
(2.10)

is a closed, embedded Lagrangian in Cm diffeomorphic to Rm; which is a Lagrangian
MCF translator with translating vector .0; : : : ; 0; ˛/ 2 Cm.

Define �1; : : : ; �m�1 2 R by

�j D

Z 1
�1

dt

. 1
aj
C t2/

p
P.t/

:

Then �1; : : : ; �m�1 2 .0; �/with �1C� � �C�m�1 < � , and j .y/! �j as y !1, and
 j .y/ ! 0 as y ! �1. For fixed ˛ > 0; the map .a1; : : : ; am�1/ 7! .�1; : : : ; �m�1/

is a 1-1 correspondence from .0;1/m�1 to
˚
.�1; : : : ; �m�1/ 2 .0; �/

m�1 W �1 C � � � C

�m�1 < �
	
.

The phase function �L of L in (2.10) is a monotone decreasing function of y only,
with limits � as y ! �1 and

Pm�1
jD1 �j as y ! C1. Thus, by choosing

Pm�1
jD1 �j

close to �; the phase variation of L can be made arbitrarily small.
We can give the following heuristic description ofL in (2.10). If y � 0 then j .y/ �

�j and
q

1
aj
C y2 � y, and the terms � i

˛

Pn
jD1  j .y/ �

i
˛

arg.y C iP.y/�1=2/ are

negligible compared to 1
2
y2 in the last coordinate. Thus, the region of L with y�0 is in

a weak sense approximate to˚�
x1ye

i�1 ; : : : ; xm�1ye
i�m�1 ; 1

2
y2 � 1

2

Pm�1
jD1 x

2
j

�
W x1; : : : ; xm�1 2 R; y > 0

	
:

But this is just an unusual way of parametrizing

…� D
˚�
y1e

i�1 ; : : : ; ym�1e
i�m�1 ; ym

�
W yj 2 R

	
n
˚
.0; : : : ; 0; ym/ W ym 6 0

	
;

the complement of a ray in a Lagrangian plane. Similarly, the region of L with y � 0 is
in a weak sense approximate to

…0 D
˚
.y1; : : : ; ym�1; ym/ W yj 2 R

	
n
˚
.0; : : : ; 0; ym/ W ym 6 0

	
:

So, L can be roughly described as asymptotic to the union of two Lagrangian planes
…0;…� Š Rm which intersect in an R in Cm, the ym-axis

˚
.0; : : : ; 0; ym/ W ym 2 R

	
. To

make L, we glue these Lagrangian planes by a kind of ‘connect sum’ along the negative
ym-axis

˚
.0; : : : ; 0; ym/ W ym 6 0

	
. Under Lagrangian mean curvature flow, …0;…� re-

main fixed, but the gluing region translates in the positive ym direction, as though…0;…�

are being ‘zipped together’.
A slightly more accurate description of the ends of L for large y is that L approxi-

mates Q…� when y � 0 and Q…0 when y � 0, where Q…� and Q…0 are the non-intersecting
affine Lagrangian planes in Cm

Q…� D
˚�
y1e

i�1 ; : : : ; ym�1e
i�m�1 ; ym�

i
˛
.�1C� � �C�m�1/

�
W yj 2R

	
;

Q…0 D
˚�
y1; : : : ; ym�1; ym �

i�
˛

�
W yj 2 R

	
:

(2.11)
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We will discuss these Lagrangian MCF translators further in Example 3.32.

Castro and Lerma [15] give more examples of Lagrangian MCF translators in C2.
Neves and Tian [64] prove some nonexistence results.

2.5. Lagrangian Floer cohomology and Fukaya categories. Let .M;J; g;�/ be a
Calabi–Yau m-fold, which may be compact or noncompact, with Kähler form !. We
now explain a little about (embedded) Lagrangian branes .L;E/ in .M;!/, bound-
ing cochains b for .L;E/ and obstructions to HF �, Lagrangian Floer cohomology
HF �

�
.L;E; b/; .L0; E 0; b0/

�
, the Fukaya category F .M/, and the derived Fukaya cate-

gory DbF .M/. Section 2.6 discusses the extension of all this to immersed Lagrangians.
The construction of DbF .M/ in the generality we need may not yet be available

in the literature. As this paper is wholly conjecture anyway, and clearly the theory will
eventually work, this does not matter very much.

The version of bounding cochains, obstructions to HF �, and Lagrangian Floer coho-
mology we need is in Fukaya, Oh, Ohta and Ono [24]. An early explanation of how to
define the (derived) Fukaya category F .M/;DbF .M/ is Fukaya [22], and a more recent
survey is Fukaya [23]. Floer [21] originally introduced Lagrangian Floer cohomology.

For exact Lagrangians in Liouville manifolds (a class of noncompact, exact symplec-
tic manifolds), a simpler, more complete, and more satisfactory theory of Lagrangian
Floer cohomology and Fukaya categories is given in Seidel [74], which we used in [37]
to prove Theorems 2.6 and 2.14. In Seidel’s theory there are no bounding cochains or
obstructions to HF �.

However, for our purposes Seidel’s theory (in its current form) will not do: we need
to extend the theory to immersed Lagrangians, and even for exact Lagrangians, bound-
ing cochains and obstructions to HF � will then appear. This extension will be discussed
briefly in §4.1. Also, we wish to stress the idea that Lagrangian MCF is better behaved
for Lagrangians with HF � unobstructed, and in Seidel’s framework this issue is hidden
by restricting to exact, embedded Lagrangians, for which HF � is automatically unob-
structed.

Definition 2.17. Fix a field F, in which we will do ‘counting’ of J -holomorphic curves.
If nontrivial J -holomorphic CP1’s can exist in the symplectic manifold .M;!/ we are
interested in, the virtual counts can be rational, so F must have characteristic zero, and
F D Q;R or C are the obvious possibilities. If M has no J -holomorphic CP1’s (for
example, if ! is exact, or if �2.M/ D 0) then F can be arbitrary, so we can take F D Z2,
for instance, which means we do not have to worry about orientations on moduli spaces
of J -holomorphic curves.

The Novikov ringƒnov is the field of formal power series
P1
iD0 aiP

�i for ai 2 F and
�i 2 R with �i ! C1 as i ! 1, for P a formal variable. Write ƒ>0

nov for the subring
of
P1
iD0 aiP

�i in ƒnov with all �i > 0, and ƒCnov for the ideal of
P1
iD0 aiP

�i in ƒnov
with all �i > 0.

Definition 2.18. Let .M; J; g;�/ be a Calabi–Yau m-fold. A Lagrangian brane in M is
a pair .L;E/, where L is a compact, spin, graded Lagrangian inM , and E ! L is a rank
one F-local system on L, for F as in Definition 2.17. That is, E is a locally constant rank
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one F-vector bundle over L, so that if p 2 L then Ejp is a dimension one F-vector space,
which is locally independent of p.

In this section we take L to be embedded, but in §2.6 L can be immersed, and in §3
we will (conjecturally) allow L to have certain kinds of singularities.

Remark 2.19. ‘Lagrangian branes’ are the objects for which we will define Lagrangian
Floer cohomology and Fukaya categories; the term is used in the same way by Seidel [74,
§12a] and Haug [32, §3.1], for instance, although with different definitions. Our defini-
tion is designed to try to make the programme of §3 work. The precise details of Defini-
tion 2.18 will be important in Remark 3.7 and §3.4, and are discussed in Remark 3.13.

If we take F D C then E ! L is a complex line bundle on L with a flat connection
rE , which is determined up to isomorphism by its holonomy Hol.rE / W �1.L/ ! C�.
In Mirror Symmetry it is natural to suppose that rE preserves a unitary metric on E, so
that Hol.rE / takes values in U.1/ � C�. One can also allow E to be an F-local system
of higher rank. Kontsevich [50] and Fukaya [22, §2.1] include a unitary local system
E ! L of arbitrary rank in objects of their Fukaya categories.

We need to restrict to E of rank one, and not to impose the unitary condition.
Much of the literature on Lagrangian Floer cohomology and Fukaya categories in-

cluding [24, 74] omits the local system E ! L, which is equivalent to taking E to be
trivial, E D F � L! L. As in §3.4, we cannot do this, since in the programme of §3.2
involving families .Lt ; Et ; bt / for t 2 Œ0;1/, starting with E0 trivial, after a surgery at
t D Ti , we can have Et nontrivial for t > Ti .

Definition 2.20. Let .M; J; g;�/ be a Calabi–Yaum-fold, andL;L0 graded Lagrangians
in M , with phase functions �L; �L0 , which intersect transversely at p 2 M . By a kind
of simultaneous diagonalization, we may choose an isomorphism TpM Š Cm which
identifies J jp; gjp; !jp on TpM with the standard versions (2.2) on Cm, and identifies
TpL; TpL

0 with the Lagrangian planes …0;…� in Cm respectively, where

…0 D
˚
.x1; : : : ; xm/ W xj 2 R

	
; …� D

˚
.ei�1x1; : : : ; ei�mxm/ W xj 2 R

	
; (2.12)

for �1; : : : ; �m 2 .0; �/. Then �1; : : : ; �m are independent of choices up to order. Define
the degree �L;L0.p/ 2 Z of p by

�L;L0.p/ D .�1 C � � � C �m C �L.p/ � �L0.p//=�:

This an integer as �L0.p/ D �L.p/C�1C� � �C�m mod �Z. ExchangingL;L0 replaces
�1; : : : ; �m by ���1; : : : ; ���m, so that�L;L0.p/C�L0;L.p/ D m. Since �1; : : : ; �m 2
.0; �/, we see that

.�L.p/ � �L0.p//=� < �L;L0.p/ < .�L.p/ � �L0.p//=� Cm: (2.13)

Here is the basic idea of Lagrangian Floer cohomology. Let .L;E/; .L0; E 0/ be
Lagrangian branes in a Calabi–Yau m-fold .M; J; g;�/, and suppose L;L0 intersect
transversely. The aim is to define a ƒnov-module HF �

�
.L;E/; .L0; E 0/

�
called the
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Lagrangian Floer cohomology, which is the cohomology of a complex of ƒnov-modules�
CF �

�
.L;E/; .L0; E 0/

�
; d
�

called the Floer complex.

<

>

�
p

�
q

†
L

L0

L

L0

Figure 2.2. Holomorphic disc † with boundary in L [ L0

Define a free, graded ƒnov-module CF �
�
.L;E/; .L0; E 0/

�
by

CF k
�
.L;E/; .L0; E 0/

�
D

M
p2L\L0W

�L;L0 .p/Dk

HomF
�
Ejp; E

0
jp

�
˝F ƒnov:

Initially we define d W CF k.L;L0/! CF kC1.L;L0/ by

d˛p D
M

q2L\L0W
�L;L0 .q/DkC1

X
A>0

�
#virtMA

p;q

�
PA � PT

p! q in
@†\L0

.E 0/ ı ˛p ı PT
q! p in
@†\L

.E/; (2.14)

for p 2 L\L0 with �L;L0.p/ D k and ˛p 2 HomF
�
Ejp; E

0jp

�
˝Fƒnov, where MA

p;q is
the moduli space of stable J -holomorphic discs† inM with boundary in L[L0, corners
at p; q and area A, of the form shown in Figure 2.2, where #virtMA

p;q 2 Q is the ‘virtual
number of points’ in MA

p;q , and the sum is weighted by composition with the parallel
transport maps PT���.E/ 2 HomF

�
Ejq; Ejp

�
and PT���.E 0/ 2 HomF

�
E 0jp; E

0jq

�
in the

F-local systems E;E 0 along the two segments of @†. These PT���.E/; PT���.E 0/ are
locally constant on MA

p;q .
Constructing an appropriate geometric structure (‘Kuranishi space’ or ‘polyfold’) on

MA
p;q , and defining the virtual count #virtMA

p;q , raise many complicated issues which we
will not go into.

For exact Lagrangians in an exact symplectic manifold, as in Seidel [74], the differ-
ential d in (2.14) has d2 D 0, so HF �

�
.L;E/; .L0; E 0/

�
is well-defined. However, in the

non-exact case we may have d2 ¤ 0, because of contributions to the boundaries @MA
p;q

from holomorphic discs with boundary in L or in L0.
To get round this, Fukaya, Oh, Ohta and Ono [24, §3.6] introduce the notion of a

bounding cochain b for .L;E/, an element b of the singular .m�1/-chainsCm�1.L;ƒCnov/

of L with coefficients in ƒCnov � ƒnov, satisfying an equation in Cm�2.L;ƒCnov/ which is
(very roughly, and oversimplified) of the form

@b C
X
k>0

X
A>0

PA �
�
MA

kC1 �Lk b
k
�

virt � Hol@†.E/ D 0; (2.15)

where MA
kC1

is the moduli space (as a Kuranishi space or polyfold, of virtual dimension
mC k� 2) of isomorphism classes Œ†; Ez� where† is a stable J -holomorphic disc of area
A > 0 in M with boundary in L, and Ez D .z0; z1; : : : ; zk/ are cyclically ordered marked
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points in @†. Also MA
kC1
�Lk b

k is the moduli space of such Œ†; Ez� in which z1; : : : ; zk
intersect the chain b in L, and

�
MA

kC1
�Lk b

k
�

virt is a virtual chain for this. The sum is
weighted by the holonomy Hol@†.E/ 2 F� of the rank one F-local systemE ! L around
@† � L, which depends only on Œ@†� 2 H1.L;Z/, and is locally constant on MA

kC1
.

If a bounding cochain b exists for .L;E/, we say that .L;E/ hasHF � unobstructed,
otherwise we say that .L;E/ has HF � obstructed. Implicitly we will always consider
bounding cochains b up to the appropriate notion of equivalence.

To oversimplify even further, suppose that the terms for k > 1 in (2.15) are zero,
and @MA

1 D ; for all A > 0 when k D 0, so that @
�
MA

1

�
virt D 0, and write b DP

A>0 P
A � bA for bA 2 Cm�1.L;Q/. Then (2.15) becomes @bA D

�
MA

1

�
virt �Hol@†.E/

for all A > 0. So a bounding cochain b exists if
��
MA

1

�
virt
�
D 0 in Hm�2.L;Q/ for all

A > 0. In particular, if Hm�2.L;Q/ D 0 then a bounding cochain exists.
In the general case, ifHm�2.L;Q/ D 0 then (2.15) may be solved for b D

P
A>0 P

A�

bA by an inductive procedure in increasing A, yielding:

Lemma 2.21. Let .M; J; g;�/ be a Calabi–Yau m-fold and .L;E/ an embedded La-
grangian brane in M . If bm�2.L/ D 0 then .L;E/ has HF � unobstructed.

Suppose b; b0 are bounding cochains for .L;E/; .L0; E 0/. Then Fukaya et al. [24]
define a modification db;b

0

of d in (2.14) involving b; b0 and satisfying .db;b
0

/2 D 0.
The Lagrangian Floer cohomology HF �

�
.L;E; b/; .L0; E 0; b0/

�
is the cohomology of�

CF �
�
.L;E/; .L0; E 0/

�
; db;b

0�
, which may depend on b; b0. Here are some properties of

Lagrangian Floer cohomology in the theory of Fukaya, Oh, Ohta and Ono [24]:

(a) The Lagrangian Floer cohomology HF �
�
.L;E; b/; .L0; E 0; b0/

�
is independent of

the choice of almost complex structure J up to canonical isomorphism, although�
CF �

�
.L;E/; .L0; E 0/

�
; db;b

0�
does depend on J .

(b) Let .Lt ; Et / W t 2 Œ0; 1� be a smooth family of Lagrangian branes, with the Lt

Hamiltonian isotopic and the Et locally constant in t , and b0 a bounding cochain
for .L0; E0/. Then Fukaya et al. [24, Th. B & Th. G] explain how to extend b0 to
a family of bounding cochains bt for .Lt ; Et / for t 2 Œ0; 1�, by pushing forward b0

along a Hamiltonian symplectomorphism of .M;!/ taking L0 to Lt . If .L0; E 0/ is
another Lagrangian brane with bounding cochain b0 then HF �

�
.Lt ; Et ; bt /; .L0; E 0,

b0/
�

is independent of t 2 Œ0; 1� up to canonical isomorphism. Thus HF �
�
.L;E; b/;

.L0; E 0; b0/
�

is an invariant of Lagrangian branes up to Hamiltonian isotopy.

This will be important in §3. If the Lt for t 2 Œ0; 1� are graded Lagrangians moving
under Lagrangian MCF in a Calabi–Yau m-fold, then they are Hamiltonian isotopic.
If L0 extends to a triple .L0; E0; b0/, then Lt for t 2 Œ0; 1� extends naturally to
a family of Lagrangian branes .Lt ; Et / with Et locally constant in t , and b0 to a
family of bounding cochains bt for .Lt ; Et /, so that Lagrangian MCF determines
the flow of triples .Lt ; Et ; bt /, not just of Lagrangians Lt . We sometimes refer to
this flow for bt as a kind of ‘parallel transport’ on the space of bounding cochains
for .Lt ; Et /.

Remark 2.22. We need M to be (symplectic) Calabi–Yau and L;L0 to be graded to de-
fine the degree �L;L0.p/ 2 Z, which determines the grading of CF �

�
.L;E/; .L0; E 0/

�
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and HF �
�
.L;E; b/; .L0; E 0; b0/

�
. If we took M symplectic and L;L0 oriented, then

CF �
�
.L;E/; .L0; E 0/

�
;HF �

�
.L;E; b/; .L0; E 0; b0/

�
would only be graded over Z2 rather

than Z.

Lagrangian Floer cohomology is only the beginning of a more general theory of
Fukaya categories, which may be still incomplete in the general case. Let .M; J; g;�/
be a Calabi–Yau m-fold. The idea is to define the Fukaya category F .M/ of M , an
A1-category whose objects are triples .L;E; b/ of a Lagrangian brane .L;E/ in M
with HF � unobstructed, and a bounding cochain b for .L;E/, such that the morphisms
Hom

�
.L0; E0; b0/; .L1; E1; b1/

�
in F .M/ are the gradedƒnov-modules CF �

�
.L0; E0/,

.L1; E1/
�

from above, with A1-operations

�k W CF ak
�
.Lk�1; Ek�1/; .Lk ; Ek/

�
� � � � � CF a1

�
.L0; E0/; .L1; E1/

�
�! CF a1C���CakC2�k

�
.L0; E0/; .Lk ; Ek/

�
(2.16)

for k > 1, with �1 W CF a1
�
.L0; E0/; .L1; E1/

�
! CF a1C1

�
.L0; E0/; .L1; E1/

�
the

differential db0;b1 in the Floer complex. The coefficients in the ƒnov-multilinear map �k

in (2.16) are obtained by ‘counting’ J -holomorphic .kC1/-gons in M with boundary in
L0 [ � � � [ Lk , weighted by parallel transport maps in E0; : : : ; Ek .

By a category theory construction, one then defines the derived Fukaya category,
a triangulated category. There are two versions, which we will write DbF .M/ and
D�F .M/. For DbF .M/, the objects are twisted complexes, as in Seidel [74, §3l].
Roughly speaking, a twisted complex consists of objects .L1; E1; b1/; : : : ; .Ln; En; bn/
in F .M/ together with Floer cochains bij 2 CF �

�
.Li ; Ei /; .Lj ; Ej /

�
for 1 6 i <

j 6 n satisfying an equation [74, eq. (3.19)] related to (2.15). In particular, objects
.L;E; b/ in F .M/ are also objects in DbF .M/.

The translation functor Œ1� in the triangulated category DbF .M/ acts on objects
.L;E; b/ by reversing the orientation of L and changing the grading �L to �L C � . The
(graded) morphisms of objects .L;E; b/; .L0; E 0; b0/ in DbF .M/ are Hom�

�
.L;E; b/,

.L0; E 0; b0/
�
D HF �

�
.L;E; b/; .L0; E 0; b0/

�
.

The second version D�F .M/, called the idempotent completion, Karoubi comple-
tion, or split closure of DbF .M/, is obtained by applying a further category theory con-
struction toDbF .M/, which adds direct summands (idempotents) of objects inDbF .M/

as extra objects, as in Seidel [74, §4].
Kontsevich’s Homological Mirror Symmetry Conjecture [50], motivated by

String Theory, says (very roughly) that if M; LM are ‘mirror’ Calabi–Yau m-folds then
there should be an equivalence of triangulated categories

D�F .M/ ' Db coh. LM/:

This has driven much research in the area.
For Mirror Symmetry, one must use D�F .M/ rather than DbF .M/, as the mirror

category Db coh. LM/ is automatically idempotent complete. In §3.1 we will conjecture
that in the situation we are interested in, our enlarged version of DbF .M/ should be
idempotent complete, so that D�F .M/ ' DbF .M/.
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2.6. HF � andDbF .M/ for immersed Lagrangians. For the programme of §3, it will
be necessary to enlarge the derived Fukaya category DbF .M/ of a Calabi–Yau m-fold
.M; J; g;�/ to include immersed Lagrangians. As a first step in doing this, Akaho and
the author [2] explain how to generalize the Lagrangian Floer cohomology of Fukaya, Oh,
Ohta and Ono [24] from embedded Lagrangians to immersed Lagrangians with transverse
self-intersections. We now explain some of the main ideas in [2].

Let .M; J; g;�/ be a Calabi–Yau m-fold, and .L;E/ a Lagrangian brane in M . As
in §2.5, in the embedded case [24], a bounding cochain for .L;E/ is a singular .m�1/-
chain b 2 Cm�1.L;ƒCnov/ (or equivalence class of such chains), satisfying an equation
(2.15) involving virtual chains for moduli spaces Mmain

kC1
.J; ˇ/ of J -holomorphic discs in

M with boundary in L.
In the immersed case [2], if L has transverse self-intersections, a bounding cochain

b for .L;E/ consists of two pieces of data: a chain bch in Cm�1.L;ƒCnov/ as above, and
also, for each point p 2 M at which two local sheets LC; L� of L intersect transversely
with �LC;L�.p/ D 1, an element

bp 2 HomF
�
ECjp; E�jp

�
˝F ƒ

>0
nov; (2.17)

where we write E˙ for the restriction of E ! L to the local sheets L˙. These bch; bp
must satisfy equations involving virtual chains for moduli spaces of J -holomorphic discs
in M with boundary in L, but now these J -holomorphic discs can be polygons with
‘corners’ at self-intersection points of L.

For example, suppose that .L1; E1/; .L2; E2/ are embedded, transversely intersecting
Lagrangian branes inM . Then .L;E/ D .L1; E1/[.L2; E2/ is an immersed Lagrangian
brane inM . A bounding cochain b for .L;E/ could consist of bch D b1˚b2, where bi 2
Cm�1.Li ; ƒ

C
nov/ for i D 1; 2 are embedded bounding cochains for .L1; E1/; .L2; E2/, to-

gether with elements bp in (2.17) for p 2 L1\L2 with�L1;L2.p/ D 1 or�L2;L1.p/ D 1
which encode how the objects .L1; E1; b1/; .L2; E2; b2/ inDbF .M/ are glued together
to make .L;E; b/. For instance, if we have a distinguished triangle in DbF .M/

.L1; E1; b1/ // .L;E; b/ // .L2; E2; b2/
ˇ // .L1; E1; b1/Œ1�;

then the bp 2 HomF
�
E2jp; E1jp

�
˝F ƒ

>0
nov for p 2 L1 \L2 with �L2;L1.p/ D 1 form a

chain in CF 1
�
.L2; E2/; .L1; E1/

�
representing ˇ, and bp D 0 otherwise.

Note that ˇ is represented by .bp/ with bp 2 HomF
�
E2jp; E1jp

�
˝F ƒnov, but to

define a bounding cochain we require that bp 2 HomF
�
E2jp; E1jp

�
˝F ƒ

>0
nov. This can

be achieved by multiplying ˇ; bp by P � for �� 0, which does not change .L;E; b/ up
to isomorphism in DbF .M/.

<

>

�
q

�LC;L�.q/ D 2 † L

L�

LC

Figure 2.3. J -holomorphic ‘teardrop’ making immersed HF � obstructed
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The new cause of obstructions to HF � for immersed Lagrangians L with transverse
self-intersections is ‘teardrop-shaped’ J -holomorphic discs † of the form shown in Fig-
ure 2.3, with one corner at q 2 M , and with �LC;L�.q/ D 2, where L˙ are the local
sheets of L intersecting at q. As �LC;L�.q/ D 2 the moduli space of such discs has
virtual dimension 0. Such† only obstructHF � if they have ‘small area’ (that is, area.†/
is smaller than the areas of other relevant curves with boundary in L). Thus we deduce
an analogue of Lemma 2.21:

Lemma 2.23. Suppose .M; J; g;�/ is a Calabi–Yau m-fold and .L;E/ is an immersed
Lagrangian brane in M with only transverse self-intersections. If bm�2.L/ D 0 and L
has no self-intersection points p with �LC;L�.p/ D 2 or m � 2; where L˙ are the local
sheets of L at p; then .L;E/ has HF � unobstructed.

In §2.5 we explained that if .Lt ; Et / W t 2 Œ0; 1� is a smooth family of embedded
Lagrangian branes with the Lt Hamiltonian isotopic and the Et locally constant in t ,
and b0 is a bounding cochain for .L0; E0/, then b0 extends to bounding cochains bt W
t 2 Œ0; 1� for .Lt ; Et / by a kind of ‘parallel transport’, and the isomorphism class of
.Lt ; Et ; bt / in DbF .M/ is independent of t 2 Œ0; 1�.

In the immersed case, things are more complicated. Firstly, there are two notions of
Hamiltonian isotopy. Let �t W L ! M for t 2 Œ0; 1� be a smooth family of compact,
immersed Lagrangians in M , where we also write �t W L! M as Lt . We call the family
globally Hamiltonian isotopic if d

dt �
t for t 2 Œ0; 1� is Hamiltonian flow by H t ı �t for

some smooth H t W M ! R. We call the family locally Hamiltonian isotopic if d
dt �
t for

t 2 Œ0; 1� is Hamiltonian flow by some smooth H t W L ! R, where there may exist
pC; p� 2 L with �t .pC/ D �t .p�/ but H t .pC/ ¤ H

t .p�/, so that H t does not descend
from L to M .

There is a notion of ‘parallel transport’ for bounding cochains bt along such local
Hamiltonian isotopies, but it does not work all the time. Suppose for simplicity that Lt

has only transverse self-intersections for all t 2 Œ0; 1�. Then the self-intersection points
of Lt in M depend smoothly on t 2 Œ0; 1�, so we can write pt D �t .ptC/ D �t .pt�/ for
the intersection of local sheets LtC 3 p

t
C, Lt� 3 p

t
� of Lt for t 2 Œ0; 1�, where pt

˙
; Lt
˙

depend smoothly on t . Then �Lt
C
;Lt�

.pt / is independent of t .
Let bt be a bounding cochain for .Lt ; Et / depending smoothly on t , with .Lt ; Et ; bt /

Š .L0; E0; b0/ in DbF .M/. Then bt evolves in time by a kind of ‘parallel transport’.
Let pt ; pt

˙
; Lt
˙

be as above with �Lt
C
;Lt�

.pt / D 1. As above, bt includes an element

bt
pt
2 HomF

�
EtCjpt ; E

t
�jpt

�
˝F ƒ

>0
nov. Since the local systems Et are locally constant

in t , we can identify the fibres EtCjpt for t 2 Œ0; 1�, and the fibres Et�jpt for t 2 Œ0; 1�,
and so regard HomF

�
EtCjpt ; E

t
�jpt

�
˝F ƒ

>0
nov as being independent of t . Then bt

pt
is not

constant, but evolves by

d
dt
btpt D

�
H t .ptC/ �H

t .pt�/
�
� logP � btpt : (2.18)

Integrating this over Œ0; t � gives

btpt D P

R t
0
.H t .psC/ �H

t .ps�/ds � b0
p0
: (2.19)



22 D. Joyce

Suppose b0
p0
¤ 0, and write b0

p0
D
P1
iD0 aiP

�i with ai 2 HomF.E
0
Cjp0 ; E

0
�jp0/,

a0 ¤ 0, and 0 6 �0 < �1 < �2 < � � � . Then

btpt D

1X
iD0

aiP
�iC

R t
0

�
H t .psC/ �H

t .ps�/
�
ds: (2.20)

Thus bt
pt
2 HomF

�
EtCjpt ; E

t
�jpt

�
˝F ƒ

>0
nov � HomF

�
EtCjpt ; E

t
�jpt

�
˝F ƒnov, required

for bt to be a bounding cochain by (2.17), if and only if

�0 C

Z t

0

�
H t .psC/ �H

t .ps�/
�
ds > 0: (2.21)

Hence we have the following situation, which will be important in §3.4. Let .Lt ; Et /;
t 2 Œ0; 1� be a local Hamiltonian isotopy of Lagrangian branes in M , and b0 a bounding
cochain for .L0; E0/. We may extend b0 to a family of bounding cochains bt W t 2 Œ0; T �
for .Lt ; Et /; t 2 Œ0; T � for some T 2 Œ0; 1�, so that .Lt ; Et ; bt / Š .L0; E0; b0/ in
DbF .M/. But at time t D T we may cross a ‘wall’ when the l.h.s. of (2.21) be-
comes zero, and we cannot define bt for t > T . Either .Lt ; Et / for t > T may have
HF � obstructed, or a bounding cochain Qbt may exist but .Lt ; Et ; Qbt / 6Š .L0; E0; b0/ in
DbF .M/.

The Lagrangian h-principle, due to Gromov [27, p. 60-61] and Lees [52], says that
two Lagrangians L;L0 are locally Hamiltonian isotopic in .M;!/ if and only if they are
homotopic in a weak sense, which can be well understood using homotopy theory, and is
weaker than isomorphism inDbF .M/. So we should expect local Hamiltonian isotopies
to connect Lagrangians with HF � unobstructed and with HF � obstructed, or to connect
non-isomorphic Lagrangians in DbF .M/.

Remark 2.24. As in §2.5, in the embedded case, the Fukaya category F .M/ has objects
.L;E; b/ for .L;E/ an embedded Lagrangian brane and b a bounding cochain, but the
derived Fukaya category DbF .M/ has objects twisted complexes, consisting of objects
.L1; E1; b1/; : : : ; .Ln; En; bn/ in F .M/ together with bij 2 CF �

�
.Li ; Ei /; .Lj ; Ej /

�
for 1 6 i < j 6 n satisfying an equation.

In the immersed case (at least, if we do not require objects of our immersed Fukaya
category to have transverse self-intersections), we can regard such a twisted complex as a
single object .L;E; b/ in F .M/, whereL is the disjoint unionL1q� � �qLn, considered
as a single immersed Lagrangian, EjLi D Ei , and b is a bounding cochain for .L;E/
built from b1; : : : ; bn and bij for i < j . Thus there is no need to add twisted complexes,
and we can suppose all objects of DbF .M/ are of the form .L;E; b/.

The idempotent completionD�F .M/ ofDbF .M/ as in §2.5 could still include ob-
jects which are direct summands of some .L;E; b/, but do not have a good geometric
interpretation. However, in §3.1 we will conjecture that in the situation we are inter-
ested in, DbF .M/ is already idempotent complete, so that we can take all objects of
D�F .M/ to be of the form .L;E; b/.
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3. The conjectures

I now explain a conjectural picture linking Bridgeland stability on the derived Fukaya
categoryDbF .M/ of a Calabi–Yau manifoldM , special Lagrangians, Lagrangian mean
curvature flow, and obstructions to Lagrangian Floer cohomology. I had help from many
people in forming this picture, and drew inspiration from [13, 24, 26, 61, 63, 81, 82], and
other places. Any mistakes are my own.

I will state some Conjectures, and also ‘Principles’, which are too vague to be called
conjectures, but describe how I think the mathematics ought to work. This material is
intended to motivate future research. Note that even the Conjectures are imprecise, and
may well be false in their current form.

So, for ambitious readers: few points will be awarded for disproving the conjectures
below, if there is some simple way to rephrase them, retaining their spirit, but excluding
the counterexample you have in mind. Your mission, should you choose to accept it, is to
find the correct version of the conjectures, and prove them; or else to show that the whole
picture is fundamentally flawed.

Be warned that I expect the difficulty of proving Conjectures 3.2 and 3.34 increases
sharply with dimension, and even in dimension 3 is probably comparable in difficulty
to the three-dimensional Poincaré Conjecture, as proved by Perelman and others (see
[68–70] and Morgan and Tian [60]). The two-dimensional case may be feasible, though
challenging. However, verifying that smaller parts of the picture work as expected could
provide a lot of interesting research projects.

3.1. Bridgeland stability on DbF .M/ for M Calabi–Yau. Let .M; J; g;�/ be a
Calabi–Yaum-fold, with Kähler form !, so that .M;!/ is a symplectic Calabi–Yau man-
ifold. As in §2.5, we will consider the derived Fukaya category DbF .M/ of M , in
the sense of Fukaya, Oh, Ohta and Ono [22, 24]. Objects of DbF .M/ include triples
.L;E; b/, where L is a compact, spin, graded Lagrangian in M and E ! L a rank one
F-local system such that .L;E/ has HF � unobstructed, and b is a bounding cochain
for .L;E/.

Note in particular that not every compact, graded Lagrangian L or brane .L;E/
yields an object of DbF .M/, but only those .L;E/ withHF � unobstructed. One of our
themes will be that we expect LagrangiansLwithHF � unobstructed to be better-behaved
from the point of view of Lagrangian MCF.

We hope to use special Lagrangians and Lagrangian MCF in .M; J; g;�/ to define
an additional structure on the triangulated categoryDbF .M/, a stability condition in the
sense of Bridgeland [13] (see also Huybrechts [35]):

Definition 3.1. Let T be a triangulated category. A (Bridgeland) stability condition
.Z;P/ on T consists of a group homomorphism Z W K0.T / ! C called the central
charge, and full additive subcategories P.�/ � T for each � 2 R, satisfying the follow-
ing properties:

(i) If A 2 P.�/ then Z.ŒA�/ D m.A/ei�� for some m.A/ > 0.

(ii) For all � 2 R, P.� C 1/ D P.�/Œ1�.
(iii) If �1 > �2 and Aj 2 P.�j / then HomT .A1; A2/ D 0.
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(iv) For each nonzero object F 2 T there is a finite sequence of real numbers �1 >
�2 > � � � > �n and a diagram in T
0 D F0 // F1 //

}}

F2 //

}}

� � � // Fn�1 // Fn D F;

}}
A1

Œ1�

aa

A2
Œ1�

aa

An
Œ1�

aa
(3.1)

where the triangles are distinguished and Aj 2 P.�j / for j D 1; : : : ; n.

Objects in P.�/ for some � 2 R are called semistable.

The following conjecture extending Thomas [81] (perhaps excluding (c),(c/0?) is folk-
lore, known for years in some form to many in the Geometry and String Theory commu-
nities, and is mentioned briefly in Bridgeland [13, §1.4].

Conjecture 3.2. Let .M; J; g;�/ be a Calabi–Yau m-fold, either compact or suitably
convex at infinity, and DbF .M/ the derived Fukaya category of M in the sense of
[22, 24]. Then there exists a natural Bridgeland stability condition .Z;P/ on DbF .M/

such that:

(a) The central charge Z is the composition of the natural maps

K0.D
bF .M//

.L;E;b/ 7!ŒL� // Hm.M IZ/
ŒL� 7!Œ���ŒL�D

R
L� // C: (3.2)

(b) If .L;E; b/ 2 DbF .M/ with L special Lagrangian of phase ei�� ; so that L has
constant phase function �L D ��; then .L;E; b/ 2 P.�/.

(c) (Dubious, probably false as stated.) Suppose we enlarge the definition of DbF .M/

so that it contains ‘as many LagrangiansL as possible for whichHF � can be defined’,
including immersed Lagrangians as in §2.6, and some classes of singular Lagrangians.
Then every isomorphism class of objects in P.�/ for any � 2 R contains a unique
representative .L;E; b/ with L a (possibly immersed or singular) special Lagrangian
of phase ei�� .

Part (c) requires the inclusion of badly singular Lagrangians in DbF .M/; which
may not be feasible. Here is an alternative which may work with DbF .M/ containing
only more mildly singular Lagrangians:

(c/0 (Still dubious.) Suppose we enlarge DbF .M/ so that it contains ‘sufficiently many
Lagrangians L for which HF � can be defined’, including immersed and some sin-
gular Lagrangians. Then for any � > 0 and � 2 R; every isomorphism class of
objects in P.�/ contains a representative .L;E; b/ whose phase function �L maps
�L W L! .�� � �; �� C �/.

Remark 3.3. (i) The enlargement of DbF .M/ envisaged in (c),(c/0 adds more objects
to DbF .M/, but it need not change DbF .M/ up to equivalence.

An example of the kind of enlargement the author has in mind is including imm-
ersed Lagrangians in DbF .M/, as in §2.6. We have embedded and immersed de-
rived Fukaya categories DbF .M/em � D

bF .M/im, but if every immersed Lagrangian
.L;E; b/ in DbF .M/im is equivalent to a twisted complex of embedded Lagrangians,
then DbF .M/em ' D

bF .M/im.
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For many applications in symplectic topology, one only really cares about DbF .M/

up to equivalence, so adding extra geometric objects toDbF .M/ in this way is unneces-
sary. But for Conjecture 3.2(c),(c/0, it is vital — if an isomorphism class in P.�/ contains
a unique special Lagrangian representative .L;E; b/, andL happens to be immersed, then
restricting to embedded Lagrangians would make Conjecture 3.2(c) false. (Examples of
such isomorphism classes are easy to find, e.g. take L D L1 [ L2 for L1; L2 embedded
special Lagrangians of phase ei�� with L1 \ L2 ¤ ;.) Similarly, we will see that the
programme of long-time existence for Lagrangian MCF we outline below must take place
in an enlarged category of Lagrangians to have any chance of working.

(ii) The uniqueness of .L;E; b/ in its isomorphism class in Conjecture 3.2(c), provided it
exists, should be proved as in Thomas and Yau [82, Th. 4.3].

Note however that Thomas and Yau’s method does not exclude the possibility that
L0 ! L and L00 ! L are non-isomorphic k-fold multiple covers of a non-simply-
connected special Lagrangian L in M for k > 1, with .L0; E 0; b0/ Š .L00; E 00; b00/ in
DbF .M/. A good uniqueness statement in Conjecture 3.2(c) may be that the special La-
grangian integral current in Geometric Measure Theory induced by L is unique, so that
in the case above the special Lagrangian integral currents of both L0; L00 would be kL.

(iii) There may be a way to construct the expected Bridgeland stability conditions on
DbF .M/ in examples (though initially without proving that semistable objects are rep-
resented by special Lagrangians) using Mirror Symmetry.

Kontsevich’s Homological Mirror Symmetry Conjecture [50] roughly says that Calabi–
Yaum-folds should exist in ‘mirror pairs’M; LM for which there should be an equivalence
of triangulated categories

D�F .M/ ' Db coh. LM/; (3.3)

where Db coh. LM/ is the derived category of coherent sheaves on LM . (Really LM should
be defined over the Novikov ring ƒnov.)

Kontsevich [50] proved (3.3) when M is an elliptic curve (a Calabi–Yau 1-fold). Sei-
del [73] proved it forM a quartic surface in CP3 (a Calabi–Yau 2-fold), and Sheridan [76]
proved it for M a smooth Calabi–Yau m-fold hypersurface in CPmC1 for m > 3. If
(3.3) holds then stability conditions on D�F .M/ are equivalent to stability conditions
on Db coh. LM/. But derived categories of coherent sheaves are generally better under-
stood than derived Fukaya categories.

Bridgeland stability conditions onDb coh.M/ are defined by Bridgeland [13, Ex. 5.4]
for M a Calabi–Yau 1-fold and [14] for M an algebraic K3 surface (a Calabi–Yau 2-
fold). Assuming a conjecture on ‘Bogomolov–Gieseker type inequalities’, Bayer, Macrì
and Toda [8] construct Bridgeland stability conditions on Db coh.M/ for M a Calabi–
Yau 3-fold; the conjecture is proved by Macioca and Piyaratne [54, 55] when M is an
abelian 3-fold.

Combining the two, one may be able to construct examples of Bridgeland stability
conditions on D�F .M/ for M a Calabi–Yau 1-fold, 2-fold or 3-fold.
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The next definition and conjecture give an alternative formulation of stability which
is much closer to Thomas’ definition [81, Def. 5.1]:

Definition 3.4. Let .M; J; g;�/ be a Calabi–Yaum-fold, either compact or suitably con-
vex at infinity, and DbF .M/ the derived Fukaya category of M , enlarged as in Con-
jecture 3.2 to include immersed Lagrangians, and maybe also some classes of singular
Lagrangians. As in Remark 2.24, we may take all objects in DbF .M/ to be of the form
.L;E; b/, we do not need twisted complexes.

Suppose ˛ 2 R is such that Œ�� � ŒL� … ei�˛ � .0;1/ for all .L;E; b/ in DbF .M/,
where Œ�� 2 Hm.M IC/ and ŒL� 2 Hm.M IZ/. As there are only countably many such
homology classes ŒL�, this holds for generic ˛ 2 R. Write A˛ for the full subcategory
of DbF .M/ with objects .L;E; b/ such that the phase function �L of L maps L !
.�˛; �.˛C 1//. Write A˛ for the full subcategory of objects inDbF .M/ isomorphic to
an object of A˛ , so that A˛;A˛ are equivalent categories with A˛ � A˛ � DbF .M/.

We have A˛Œ1� D A˛C1 and A˛Œ1� D A˛C1. The condition on ˛ is to avoid tak-
ing phases in a half-open interval .�˛; �.˛ C 1/�, which could cause problems. If
.L;E; b/ 2 A˛ , then L is almost calibrated (has phase variation less than �).

Using the almost calibrated condition, we see that every .L;E; b/ 2 A˛ has a unique
global phase �.L/ 2 .�˛; �.˛ C 1// with

R
L
� D Rei�.L/ for R > 0, as in Thomas

[81, §3]. If .L0; E 0; b0/ 2 A˛ then .L0; E 0; b0/ Š .L;E; b/ in DbF .M/ for some
.L;E; b/ 2 A˛ , and

R
L0
� D

R
L
� D Rei�.L/, where �.L/ is independent of the choice

of .L;E; b/. Thus we may define �.L0/ D �.L/ for .L0; E 0; b0/ 2 A˛ .
In a similar way to Thomas [81, Def. 5.1], we say that a nonzero object .L;E; b/ in

A˛ or A˛ is stable (or semistable) if there is no distinguished triangle

.L1; E1; b1/ // .L;E; b/ // .L2; E2; b2/ // .L1; E1; b1/Œ1� (3.4)

in DbF .M/ with .L1; E1; b1/; .L2; E2; b2/ nonzero objects in A˛ or A˛ such that
�.L1/ > �.L2/ (or �.L1/ > �.L2/).

Conjecture 3.5. In Definition 3.4, A˛ is the heart of a bounded t-structure onDbF .M/;

and so A˛;A˛ are abelian categories, and (3.4) becomes a short exact sequence in A˛
or A˛ . Furthermore, the Bridgeland stability condition .Z;P/ on DbF .M/ in Con-
jecture 3.2 may be described as follows: Z is defined by (3.2), and P.˛/ D ;; and for
each ˇ 2 .˛; ˛ C 1/; P.ˇ/ is the full subcategory of semistable objects .L;E; b/ in A˛
with �.L/ D �ˇ.

Note that (semi)stability in Definition 3.4 is equivalent to slope (semi)stability on the
(conjecturally abelian) categories A˛;A˛ , with slope function

�.L;E; b/ D
� cos�˛

R
L

Re� � sin�˛
R
L

Im�

� sin�˛
R
L

Re�C cos�˛
R
L

Im�
;

since �.L/ D tan�1.�.L;E; b// C �˛ C �
2

. Thomas’ analogue of (3.4) is to require
L1; L2 to intersect transversely at one point p, and L to be Hamiltonian isotopic to the
Lagrangian connect sum L1#L2 at p. Equation (3.4) is more general, e.g. it does not
imply thatL is diffeomorphic toL1#L2. It would be nice to state the relationship between
L and L1; L2 geometrically rather than categorically.
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As in §2.5, there are two versions DbF .M/ � D�F .M/ of the derived Fukaya
category, where DbF .M/ has objects twisted complexes in F .M/, and D�F .M/

has objects direct summands of objects in DbF .M/. By Remark 2.24, for immersed
Lagrangians we do not need to add twisted complexes, so we can take all objects in
DbF .M/ to be of the form .L;E; b/.

We wrote Conjecture 3.2 using DbF .M/, since the extra objects in D�F .M/ are
not geometric, and our programme does not make sense for them. For example, the
map K0.DbF .M// ! Hm.M IZ/ in (3.2) is not defined for D�F .M/, as we cannot
associate a homology class to a direct summand of .L;E; b/.

However, if DbF .M/ has a Bridgeland stability condition, then it has a bounded
t-structure, and so by Huybrechts [35, Rem. 1.15] it is idempotent complete. Thus Con-
jecture 3.2 or Conjecture 3.5 imply:

Conjecture 3.6. In the situation of Conjecture 3.2, the enlarged version of
DbF .M/ with objects .L;E; b/ for L a possibly singular, compact, immersed, graded
Lagrangian is idempotent complete. HenceD�F .M/ ' DbF .M/; and we can take all
objects of D�F .M/ to be geometric, of the form .L;E; b/.

Remark 3.7. A partial verification of Conjecture 3.6 in the case M D T 2 is provided
by Haug [32]. He defines a version of the derived Fukaya category DbF .T 2/ in which
the objects are twisted complexes built out of pairs .L;E/ for L a compact, spin, graded,
embedded Lagrangian in T 2, and E ! L a local system, and proves that DbF .T 2/ is
idempotent complete.

Haug remarks [32, §1] that for T 2, including local systems E ! L has the effect of
making DbF .T 2/ idempotent complete, and that DbF .T 2/ would not be idempotent
complete if we took objects to be twisted complexes of Lagrangians L rather than pairs
.L;E/. This shows that including local systems E ! L in objects .L;E; b/ is necessary
for our programme, since otherwise Conjecture 3.6 and hence Conjecture 3.2 would be
false even for M D T 2. We will see in §3.4 how nontrivial local systems are needed for
some kinds of surgeries.

Haug’s definition of DbF .T 2/ is not quite the same as ours. He does not include
bounding cochains b in his objects .L;E/ (the simplicity of dimension 1 permits this).
He fixes F D C. His local systems E ! L [32, §3.1.1] are not F-local systems, as in
§2.5, but ƒnov-local systems of arbitrary finite rank, such that (roughly) the eigenvalues
of Hol.rE / lie in F� � ƒ�nov to leading order.

I expect this should be related to our definition of DbF .T 2/ as follows. In dimen-
sion 1, the combination of a rank one F-local system E ! L and a bounding cochain b is
essentially equivalent to a rank oneƒnov-local systemEnov ! L satisfying Haug’s condi-
tion, where the holonomies satisfy Hol.rEnov/Œ� D Hol.rE /Œ� � e

R
 b for Œ� 2 �1.L/.

Also, I expect that for T 2, considering rank one local systems E ! L on immersed
Lagrangians has a similar effect to considering higher rank local systems E ! L on
embedded Lagrangians.

3.2. Approaching Conjecture 3.2 using Lagrangian MCF. Here is our suggestion for
a programme to prove Conjecture 3.2 using Lagrangian MCF, building on Thomas and
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Yau [82]. We will state a conjecture about it in §3.9, after discussing issues that arise in
the programme in §3.3–§3.8.

Programme for (partially?) proving Conjecture 3.2 using LMCF. Let .M; J; g;�/
be a Calabi–Yau m-fold, either compact or suitably convex at infinity, and suppose as in
Conjecture 3.2 that we have extended the definition of DbF .M/ to include immersed
Lagrangians, as in [2], and some classes of singular Lagrangians.

Define Z W K0.DbF .M// ! C by (3.2), and define P.�/ for � 2 R to be the full
subcategory of objectsA inDbF .M/ isomorphic to .L;E; b/ forL a (possibly singular)
special Lagrangian of phase ei�� with �L D ��; as in Conjecture 3.2(c), or alternatively
those objects A in DbF .M/ which for any � > 0 are isomorphic to some .L;E; b/ with
phase function �L W L! .�� � �; �� C �/; as in Conjecture 3.2(c/0.

We must prove .Z;P/ is a Bridgeland stability condition on DbF .M/. We discuss
only the problem of verifying Definition 3.1(iv) for objectsF D .L;E; b/;where .L;E/ is
a nonsingular, immersed Lagrangian brane with HF � unobstructed. For such .L;E; b/;
we must construct a diagram

0 D F0 // F1 //

}}

F2 //

}}

� � � // Fn�1 // FnD.L;E; b/;

}}
.L1; E1; b1/
Œ1�

aa

.L2; E2; b2/
Œ1�

aa

.Ln; En; bn/
Œ1�

aa
(3.5)

inDbF .M/;whereL1; : : : ; Ln are either unique (possibly singular) special Lagrangians
with �Lj D ��j for �1 > �2 > � � � > �n; or else (possibly singular) Lagrangians with
�Lj W Lj ! .��j � �; ��j C �/ for arbitrarily small � > 0.

We aim to construct a unique family
˚
.Lt ; Et ; bt / W t 2 Œ0;1/

	
satisfying:

(a) .L0; E0; b0/ D .L;E; b/.
(b) There is a (hopefully finite) series of singular times 0 < T1 < T2 < � � � ; such that

if t 2 Œ0;1/ n fT1; T2; : : :g then .Lt ; Et ; bt / is an object in DbF .M/ isomorphic to
.L;E; b/; with Lt a (possibly immersed or singular) compact, graded Lagrangian in
M; with HF � unobstructed.

(c) The family
˚
Lt W t 2 Œ0;1/n fT1; T2; : : :g

	
satisfies Lagrangian mean curvature flow,

and
˚
Et W t 2 Œ0;1/nfT1; T2; : : :g

	
are locally constant in t . (As a shorthand, we will

say that the family of Lagrangian branes
˚
.Lt ; Et / W t 2 Œ0;1/nfT1; T2; : : :g

	
satis-

fies Lagrangian MCF.) The bounding cochains bt also change by a kind of ‘parallel
transport’ for t 2 Œ0;1/ n fT1; T2; : : :g as in §2.5–§2.6, to ensure that the isomor-
phism class of .Lt ; Et ; bt / in DbF .M/ remains constant.

(d) Let Ti for i D 1; 2; : : : be a singular time and � > 0 be small, so that
˚
Lt W t 2

.Ti � �; Ti /
	

and
˚
Lt W t 2 .Ti ; Ti C �/

	
satisfy Lagrangian MCF. As t ! Ti in

.Ti � �; Ti /; the flow usually undergoes a finite time singularity of Lagrangian MCF.
But see §3.4 for a case in which the limit is smooth as t ! Ti in .Ti � �; Ti /; and
singular as t ! Ti in .Ti ; Ti C �/.

We do not require .LTi ; ETi ; bTi / to be an object in DbF .M/; as the singularities
of LTi may be too bad, and if so, bTi is meaningless.
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The topologies of Lt for t 2 .Ti � �; Ti /; and LTi ; and Lt for t 2 .Ti ; Ti C �/; may
all be different, so we may think of the (possibly singular) manifoldsLt as undergoing
a surgery at time t D Ti . Nonetheless, the family

˚
Lt W t 2 .Ti � �; Ti C �/

	
is in a

suitable sense continuous, for instance, as graded Lagrangian integral currents in M
in Geometric Measure Theory.

(e) For the case of Conjecture 3.2(c), we have limt!1L
t D L1 [ � � � [ Ln; where

Lj is a (possibly badly singular) special Lagrangian with phase ei��j and phase
function �Lj D ��j ; for �1 > �2 > � � � > �n. The local systems E1; : : : ; En;
bounding cochains b1; : : : ; bn and morphisms in (3.5) are obtained from limr!1E

t

and limt!1 b
t .

For the case of Conjecture 3.2(c/0, if t � 0 then there is a decomposition Lt D
Lt1 q � � � q L

t
n; such that �Lt maps Ltj ! .��j � �

t ; ��j C �
t / for j D 1; : : : ; n;

where �t > 0 with �t ! 0 as t !1.

Remark 3.8. (i) In dimension m > 1, Lagrangian MCF fLt W t 2 Œ0;1/g starting
from a compact, embedded Lagrangian L0 can flow to immersed Lagrangians Lt in finite
time, as sketched in Figure 3.1, or vice versa. (When m D 1, embedded curves remain
embedded.)

Lt ; t < T
embedded

Lt , t D T
immersed

Lt ; t > T
immersed

new J -holomorphic
curve †

Figure 3.1. LMCF flowing from embedded to immersed Lagrangians

Therefore, to carry out the programme above, we must include immersed Lagrangians
in DbF .M/, since otherwise in the situation of Figure 3.1 we could not continue the
programme past t D T . This inclusion was discussed in §2.6, using the extension of [24]
to immersed Lagrangians in Akaho and Joyce [2].

Observe that for Lagrangian MCF fLt W t 2 Œ0; T /g of immersed, graded Lagrangians
Lt in a Calabi–Yau m-fold, the Lt for t 2 Œ0; T / are all locally Hamiltonian isotopic in
the sense of §2.6, but not necessarily globally Hamiltonian isotopic, as in Figure 3.1.

Thus, for immersed Lagrangian MCF we must deal with the possibility that even
without finite time singularities, the flow may take us from Lagrangians with unob-
structed HF � to Lagrangians with obstructed HF �, or change the isomorphism class
inDbF .M/, since we explained in §2.6 that local Hamiltonian isotopies can do this. We
discuss this further in §3.4.

(ii) Notice the strong similarity of the programme above with the proof of the three-
dimensional Poincaré Conjecture by Perelman, Hamilton and others, as in [60, 68–70].
There one starts with a Riemannian 3-manifold .M; g/ (the analogue of Lagrangians),
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and applies rescaled Ricci flow, encountering finite time singularities at times 0 < T1 <

T2 < � � � when one does surgery, until as t ! 1 the flow converges to a disjoint union
of constant curvature Riemannian 3-manifolds (the analogue of special Lagrangians).

In dimension m D 3, I expect the programme above to be of comparable difficulty
to the Poincaré Conjecture. As the dimension increases, so should the difficulty, as there
will be more kinds of finite-time singularities to worry about.

(iii) There is a literature on mean curvature flow with surgeries for (suitably convex) hy-
persurfaces in Rn which resembles our proposal — see for instance Huisken and Sines-
trari [34] and Brendle and Huisken [12].

(iv) As for isolated conical singularities of special Lagrangians [39, §3], one could try to
define an ‘index’ ind.�/ for different ‘types’ � of finite time singularities of Lagrangian
MCF, which measures the codimension in the infinite-dimensional family L of Lagrangi-
ans L inM in which singularities of type � occur in Lagrangian MCF starting from L. So
for instance, Lagrangian MCF starting from a generic Lagrangian L could only develop
singularities with ind.�/ D 0.

We could modify the programme above by taking L0 to be a generic Hamiltonian
perturbation of L in (a), rather than L0 D L. Then the Lagrangian MCF singularities
occurring at the singular times T1; T2; : : : would have to have index 0. This might have
the effect of limiting the kinds of singular Lagrangians that must be included inDbF .M/

to make the programme work.
For similar ideas in MCF of hypersurfaces in Rn, see Angenent and Velázquez [6]

who construct examples of non-generic finite time singularities of MCF, and Colding and
Minicozzi [18], who classify the possible finite time singularities of MCF starting from a
generic, compact, embedded surface †2 in R3.

(v) Taking limits limt!1L
t in (e) above is likely to introduce different, and worse, singu-

larities than those in the finite time singularities LT1 ; LT2 ; : : : : Also, I expect limt!1L
t

to be unchanged by Hamiltonian perturbations of L0, so taking L0 generic as in (iv) will
not help.

It seems likely that the possible singularities occurring in limt!1L
t may be too

severe to incorporate as objects in DbF .M/. Thus, although Conjecture 3.2(c) is more
attractive, Conjecture 3.2(c/0 is more plausible.

(vi) Since fLt W t 2 Œ0;1/g above satisfies Lagrangian MCF, one might expect that
fLt W t 2 Œ0;1/g depends only on L0 D L, and is independent of E; b in .L;E; b/.
However, in §3.4 we will describe a surgery ‘opening a neck’ depending on E; b, so
fLt W t 2 Œ0;1/g does depend on all of L;E; b, not just on L.

(vii) Behrndt [10] defines a modification of Lagrangian MCF which works in almost
Calabi–Yau manifolds .M; J; g;�/, that is, a complex m-manifold .M; J / with Kähler
metric g and nonvanishing holomorphic .m; 0/-form � which need not satisfy (2.1), so
that g need not be Ricci-flat. I expect the whole of this paper also to work for modified
Lagrangian MCF in almost Calabi–Yau m-folds.

3.3. On finite time singularities of Lagrangian MCF. Finite time singularities of La-
grangian MCF were discussed in §2.3. For graded Lagrangian MCF, Theorem 2.11 says
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that any finite time singularity must be of type II, and Theorem 2.12 that any finite time
singularity must admit a ‘type II blow up’ modelled on a nontrivial eternal solution of
Lagrangian MCF in Cm. As in the end of §2.3, two natural classes of eternal solutions
are provided by SL m-folds in Cm, and Lagrangian MCF translators.

Motivated by this, the next ‘principle’ gives heuristic pictures of how the author ex-
pects two different classes of finite time singularities to work.
Principle 3.9. Let .M; J; g;�/ be a compact Calabi–Yau m-fold and fLt W t 2 Œ0; T /g
a family of compact, immersed, graded Lagrangians in M satisfying Lagrangian MCF,
with a finite time singularity at t D T; and a singular point at x 2 M . Here are broad
descriptions of two classes of such singularities:
(a) Let U be a small open neighbourhood of x inM; which we identify with a small open

neighbourhood of 0 in Cm D TxM; and � > 0 be small. Then Lt \ U approximates
a closed, exact SL m-fold in Cm for t 2 .T � �; T /.

Since SL m-folds are stationary points of LMCF, to ‘first order’ Lt \U is constant in
t; but to ‘second order’ Lt \ U wanders slowly in the moduli space of closed, exact
SL m-folds in Cm; until at time t D T it hits a singular SL m-fold. This ‘wandering’
is driven by ‘outside influences’ from the whole of Lt ; not just from Lt \ U .

For example, if N is an exact asymptotically conical SLm-fold in Cm; we could have
Lt \ U � f .t/ � N for t 2 .T � �; T /; where f W .T � �; T / ! .0;1/ is smooth
with f .t/! 0 as t ! T .

(b) Let U; � be as in (a). Then Lt \ U approximates a closed, exact LMCF translator
in Cm D TxM for t 2 .T � �; T /. To ‘first order’ Lt \ U moves by translation in
Cm D TxM; since it approximates a translating soliton. But to second order it also
wanders slowly in the moduli space of closed, exact LMCF translators in Cm; driven
by ‘outside influences’ from the whole of Lt ; until at time t D T it hits a singular
soliton.

For example, if N is an exact LMCF translator in Cm with translating vector v 2 Cm;
we could haveLt\U � f .t/�NCg.t/�v for t 2 .T��; T /;where f; g W .T��; T /!
.0;1/ are smooth with f .t/! 0 as t ! T .

Remark 3.10. (i) We will describe examples of behaviours (a),(b) in §3.5 and §3.8. Sec-
tion 3.7 discusses a class of singularities not of type (a) or (b).

Note that in (a),(b) we do not simply mean that the singularity has a type II blow up
f QLs W s 2 Rg in Theorem 2.12 with QLs special Lagrangian or an LMCF translator. In
general type II blow ups describe only a small part of the singularity, and may give little
idea of the global geometry and topology near the singular point. The point of (a),(b) is
that in these cases we have a more complete picture of the singularity than a general type
II blow up gives.
(ii) As in §2.3, Lagrangian MCF shrinkers do not occur in the graded case. The other
major class of Lagrangian MCF solitons, Lagrangian MCF expanders (as in §2.3) are
not relevant to the formation of singularities of the flow (that is, to describing the flow
immediately before the singular time t D Ti ). However, we can use Lagrangian MCF
expanders to model the flow immediately after a surgery at a singular time t D Ti , and
we do this in §3.4.
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If we believe Principle 3.9, stretching credulity a little further gives:
Principle 3.11. Any type of (sufficiently well-behaved) singularity of SL m-folds, which
can appear as a limit of nonsingular, locally exact SLm-folds, may provide a local model
for finite time singularities of Lagrangian MCF.

Similarly, any (sufficiently well-behaved) singular Lagrangian in Cm which can ap-
pear as a limit of nonsingular, exact Lagrangian MCF translators in Cm; may provide a
local model for finite time singularities of Lagrangian MCF.

This suggests a class of research problems:
Problem 3.12. (a) Choose from the literature your favourite family of explicit, nonsin-
gular, exact SL m-folds Ns in Cm which converge to an explicit singular SL m-fold N0
as s ! 0. For example, let N be an exact AC SL m-fold in Cm with cone C; and take
Ns D s �N for s > 0 and N0 D C .

Construct examples fLt W t 2 Œ0; T �g of Lagrangian MCF in Cm or in a Calabi–Yau
m-fold .M; J; g;�/ with finite time singularities at t D T for which LT has a singularity
at x 2 Cm modelled on N0; and Lt near x for t 2 .T � �; T / approximates Ns.t/; where
s.t/! 0 as t ! T; as in Principle 3.9(a).
(b) If you can do (a), determine whether Lagrangian MCF starting from a small generic
Hamiltonian perturbation of L0 also develops finite time singularities of the same type. In
this case, we call this type a generic singularity of Lagrangian MCF. If it is not generic,
compute the expected codimension amongst Hamiltonian perturbations of L0 in which
singularities of this type occur.
(c) Repeat (a),(b) for LMCF translators rather than SL m-folds.

3.4. Flowing from unobstructed to obstructed immersed Lagrangians. In Remark
3.8(i) we noted that Lagrangian MCF may take an immersed Lagrangian brane .Lt ; Et /
with HF � unobstructed to one .Lt

0

; Et
0

/ for t 0 > t with HF � obstructed, without finite
time singularities. This is a problem for the programme of §3.2, as we need .Lt ; Et / to
haveHF � unobstructed for all t . We now discuss this problem in more detail, and explain
how to solve it.

Let .M; J; g;�/ be a Calabi–Yau m-fold and f.Lt ; Et / W t 2 Œ0; T /g a family of
Lagrangian branes satisfying Lagrangian MCF. Suppose, for simplicity, that all the Lt

have transverse self-intersections. Then the self-intersection points of Lt in M depend
smoothly on t 2 Œ0; T /, so we can write pt for the intersection of local sheets LtC; L

t
� of

Lt for t 2 Œ0; T /, where pt ; Lt
˙

depend smoothly on t . Then �Lt
C
;Lt�

.pt / is independent
of t .

Suppose that bt is a bounding cochain forLt depending smoothly on t , with .Lt ; Et ; bt /
Š .L0; E0; b0/ in DbF .M/. Then bt evolves in time by a kind of ‘parallel transport’.
Let pt ; Lt

˙
be as above with �Lt

C
;Lt�

.pt / D 1. Then as in §2.6, bt includes an element

bt
pt
2 HomF

�
EtCjpt ; E

t
�jpt

�
˝F ƒ

>0
nov. The analysis of (2.18)–(2.21) holds, with H t D

��Lt . Thus, writing b0
p0
D
P1
iD0 aiP

�i with a0 ¤ 0 and 0 6 �0 < �1 < �2 < � � � , we
have

btpt D

1X
iD0

aiP
�iC

R t
0

�
�Ls�.p

s/ � �Ls
C
.ps/

�
ds
;
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and bt
pt
2 HomF

�
EtCjpt ; E

t
�jpt

�
˝Fƒ

>0
nov � HomF

�
EtCjpt ; E

t
�jpt

�
˝Fƒnov, required for

bt to be a bounding cochain, if and only if

�0 C

Z t

0

�
�Ls�.p

s/ � �Ls
C
.ps/

�
ds > 0: (3.6)

We can now explain how Lagrangian MCF can flow fromHF � unobstructed toHF �

obstructed: as t increases, we can cross a ‘wall’ at t D T1 when the l.h.s. of (3.6) becomes
negative, so that bt

pt
… HomF

�
EtCjpt ; E

t
�jpt

�
˝F ƒ

>0
nov for t > T1. Then bt is not a

bounding cochain, and .Lt ; Et / may have HF � obstructed.

<

>

<

>

�
pt

�
qt

†t1

LtC

Lt�

�Lt
C
;Lt�

.qt /D2�Lt
C
;Lt�

.pt /D1

†t2 Lt

Lt�

LtC

LtC

Lt�

Figure 3.2. Crossing betweenHF � unobstructed when area.†t1/ < area.†t2/ andHF � obstructed
when area.†t1/ > area.†t2/

To make this more explicit, let us simplify further, and suppose that Lt has only two
self-intersection points pt ; qt with �Lt

C
;Lt�

.pt / D 1 and �Lt
C
;Lt�

.qt / D 2, and there
are only two J -holomorphic curves †t1; †

t
2 with boundary in Lt which are relevant to

obstructions to HF �, which are as shown in Figure 3.2, so that †t1 has two corners at
pt ; qt and †t2 one corner at qt . Note that †t2 is the type of curve in Figure 2.3 that can
cause obstructions to immersed HF �.

Then .Lt ; Et / has HF � unobstructed if and only if area.†t2/ > area.†t1/, and if so,
the bounding cochain bt has

btpt D a0P
area.†t

2
/�area.†t

1
/
C higher order terms, (3.7)

where 0 ¤ a0 2 HomF
�
EtCjpt ; E

t
�jpt

�
. We can think of †t2 � †

t
1 as a ‘virtual J -

holomorphic curve’ with ‘virtual area’ area.†t2/ � area.†t1/ and one corner at pt , which
obstructs HF � if this virtual area is negative.

Under Lagrangian MCF we have

d
dt

�
area.†t2/ � area.†t1/

�
D �

Z
@†t
2

d�Lt C
Z
@†t
1

d�Lt

D �
�
�Lt
C
.qt / � �Lt�.q

t /
�

C
�
�Lt
C
.qt / � �Lt�.q

t /C �Lt�.p
t / � �Lt

C
.pt /

�
D �Lt�.p

t / � �Lt
C
.pt /:

(3.8)

Suppose now that the family f.Lt ; Et / W t 2 Œ0; T /g passes from HF � unobstructed
when t < T1 to HF � obstructed when t > T1. Then area.†t2/ � area.†t1/ crosses zero
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at t D T1 going from positive to negative, so (3.8) shows that

�
L
T1
�
.pT1/ � �

L
T1
C

.pT1/ 6 0: (3.9)

We claim that in the programme of §3.2, the correct thing to do is to change Lt for
t > T1 by doing a surgery at pt when t D T1, a Lagrangian connected sum of the two
sheets LtC; L

t
� at pt , so that Lt for T1 < t < T1 C � looks roughly like Figure 3.3. We

will call this surgery ‘opening a neck’. The self-intersection pt is now gone, and there are

<

>

<

>

�
qt

†t1

Lt

�

�Lt
C
;Lt�

.qt /D2

†t2 Lt

Lt�

LtC

LtC

Lt�

area.†t1/ D
area.†t2/

Figure 3.3. Lt for t > T1, after Lagrangian connected sum surgery at pt

two J -holomorphic discs †t1; †
t
2 with one corner at qt . Since we do the surgery when

area.†t1/ D area.†t2/, we have area.†t1/ D area.†t2/ for all t > T1, though †t1; †
t
2

are in different relative homology classes. As their areas are equal, the obstructions from
†t1; †

t
2 cancel for suitable Et , and .Lt ; Et / for t > T1 has HF � unobstructed.

We have �
L
T1
C
;L
T1
�
.pT1/ D 1 and �

L
T1
C

.pT1/ > �
L
T1
�
.pT1/ by (3.9). Suppose strict

inequality holds, �
L
T1
C

.pT1/ > �
L
T1
�
.pT1/. Then from Definition 2.20, we see that there

is an identification TpT1M Š Cm identifying J jpT1 ; gjpT1 with the standard versions on

Cm, and identifying TpT1L
T1
C ; TpT1L

T1
� with the Lagrangian planes…0;…� in (2.12) for

�1; : : : ; �m 2 .0; �/ with 0 < �1C� � �C�m < � , where �1C� � �C�m < � comes from
�
L
T1
C
;L
T1
�
.pT1/ D 1 and �

L
T1
C

.pT1/ > �
L
T1
�
.pT1/.

Thus, by Example 2.13 there is a unique, exact Joyce–Lee–Tsui Lagrangian MCF
expander L1� with ˛ D 1 in TpT1M asymptotic to TpT1L

T1
C [ TpT1L

T1
� , and Theorem

2.14 shows that L1� is the only LMCF expander with ˛ D 1 in TpT1M asymptotic to

TpT1L
T1
C [ TpT1L

T1
� . Note that

p
2.t � T1/ � L

1
� for t > T1 satisfy Lagrangian MCF

in TpT1M Š Cm. We now aim to define the Lt for T1 < t < T1 C � by gluing inp
2.t � T1/ � L

1
� into LT1 near pT1 .

To define the local systems Et for t > T1, note that bT1
pT1
D a0 C � � � by (3.7), where

0 ¤ a0 2 HomF
�
E
T1
C jpT1 ; E

T1
� jpT1

�
. As ET1 has rank one, a0 ¤ 0 implies that a0 is

an isomorphism. For T1 < t < T1 C �, we define Et to be equal to ET1 away from the
‘neck’ region joining LT1C with LT1� , and on the ‘neck’ region we use the isomorphism a0
to identify ET1 jLC and ET1 jL� . This choice of Et is necessary for the obstructions to
HF � for .Lt ; Et / from †t1; †

t
2 to cancel.

The bounding cochain bt for T1 < t < T1 C � should be roughly equal to bT1 away
from the ‘neck’ region. On the ‘neck’ region, bt should somehow encode the higher order
terms in bT1

pT1
D a0 C � � � , possibly in the form bt � log

�
a�10 ı b

T1

pT1

�
� ŒSm�1t �, where
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ŒSm�1t � 2 Cm�1.L
t ;Z/ is a fundamental cycle for the new small .m�1/-sphere Sm�1t

spanning the ‘neck’ in Lt .

Remark 3.13. We can now see an important reason why our programme requires the
inclusion of the rank one F-local systems E ! L in the objects .L;E; b/ of DbF .M/,
as mentioned in Remark 3.7. We can also justify our definition of Lagrangian branes in
Definition 2.18.

Firstly, note that if the initial local systems Et for t < T1 above are trivial, the local
systems Et for t > T1 may not be trivial, as across the ‘neck’ region Et for t > T1 has
holonomy a0 2 HomF

�
E
T1
C jpT1 ; E

T1
� jpT1

�
Š F, and we need not have a0 D 1. So this

surgery can pass from trivial to nontrivial local systemsEt . If we omitted local systemsE
in DbF .M/, then the data a0 in bT1 would be lost under the surgery, and Lt for t > T1
might have HF � obstructed.

Secondly, we take F to be a field (rather than say a commutative ring) so that 0 ¤
a0 2 F implies that a0 is an isomorphism.

Thirdly, observe that the argument above would not work for higher rank local systems
E ! L, which is why we restrict to rank one. If ET1 has different ranks n˙ on LT1

˙
, then

it cannot extend across the ‘neck’ to make Et for t > T1. If ET1 has the same rank n > 1
on LT1C ; L

T1
� , then a0 ¤ 0 no longer implies that a0 is an isomorphism, so we cannot use

a0 to extend ET1 across the ‘neck’.

Our discussion has shown the following rather neat:

Evidence for the viability of the programme of §3.2. Let .M; J; g;�/ be a Calabi–Yau
m-fold and f.Lt ; Et / W t 2 Œ0; T /g be a family of Lagrangian branes in M satisfying
Lagrangian MCF.

Suppose that .Lt ; Et / has HF � unobstructed for 0 6 t < T1 < T; but at t D T1
crosses a ‘wall’ intoHF � obstructed, because at a transverse self-intersection point p of
LT1 with �

L
T1
C
;L
T1
�
.p/ D 1; the data btp in the bounding cochain bt leaves HomF

�
EtCjp;

Et�jp
�
˝F ƒ

>0
nov in HomF

�
EtCjp; E

t
�jp

�
˝F ƒnov when t D T1.

Then (at least if strict inequality holds in (3.9)) there is a unique Lagrangian MCF
expander in TpM asymptotic to TpL

T1
C [TpL

T1
� ; which we can (conjecturally) use to do

a surgery at t D T1 so that the flow can continue for t > T1 withHF � unobstructed, as in
§3.2. The analogue does not hold for flowing fromHF � obstructed toHF � unobstructed.

It also suggests a research project:

Problem 3.14. Suppose .M; J; g;�/ is a Calabi–Yau m-fold, L a compact, immersed
Lagrangian in M with a transverse self-intersection point at p 2 M with local sheets
L˙; and N a Joyce–Lee–Tsui Lagrangian MCF expander in TpM asymptotic to TpLC[
TpL� and satisfying H D F?. Prove that for small � > 0; there is a unique family
fLt W t 2 .0; �/g of compact, immersed Lagrangians in M satisfying Lagrangian MCF,
such that limt!0L

t D L0 in a suitable sense, and for small t we have Lt �
p
2t � N

near p and Lt � LC tHL away from p.

Motivated by the first version of this paper, Problem 3.14 has now been proved by
Begley and Moore [9].
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Ilmanen, Neves and Schulze [36] study the evolution of ‘networks’ (roughly, finite
graphs smoothly embedded in R2) in the plane under mean curvature flow. In a similar
way to Problem 3.14, they show [36, §7] that one can glue a certain kind of self-expander
in at a singular point when t D 0, and obtain existence of MCF for networks for t 2 Œ0; �/.

In the next example we use ‘opening necks’ to resolve an apparent counterexample to
our programme.
Example 3.15. Let .M; J; g;�/ be a Calabi–Yaum-fold, and .L1; E1/; .L2; E2/ be em-
bedded, transversely-intersecting, special Lagrangian branes inM with phases ei��1 ; ei��2
for �1 < �2, with HF � unobstructed. Choose bounding cochains b1; b2 for .L1; E1/;
.L2; E2/. Let 0 ¤ ˇ 2 HF 1

�
.L2; E2; b2/; .L1; E1; b1/

�
, and .ˇp/ 2 CF 1

�
.L2; E2/;

.L1; E1/
�

represent ˇ, where for all p 2 L1 \ L2 with �L2;L1.p/ D 1 we have ˇp 2
HomF

�
E2jp; E1jp

�
˝F ƒnov .

Suppose ˇp 2 HomF
�
E2jp; E1jp

�
˝F ƒ

>0
nov for all p. Set .L;E/ D .L1; E1/ [

.L2; E2/, considered as an immersed Lagrangian brane in M . Then using the notation of
§2.6, b D b1 ˚ b2 ˚ .ˇp/ is a bounding cochain for .L;E/, where bch D b1 ˚ b2 in
Cm�1.L;ƒ

C
nov/ D Cm�1.L1; ƒ

C
nov/˚ Cm�1.L2; ƒ

C
nov/, and the data bp for each p 2 M

at which two local sheets LC; L� of L intersect transversely with �LC;L�.p/ D 1 are
bp D ˇp if LC D L2, L� D L1, and bp D 0 otherwise. We now have a distinguished
triangle in the derived Fukaya category DbF .M/ of immersed Lagrangians

.L1; E1; b1/ // .L;E; b/ // .L2; E2; b2/
ˇ // .L1; E1; b1/Œ1�: (3.10)

Let us apply the programme of §3.2 to .L;E; b/. Since L is a union of special La-
grangians of different phases, it is stationary under immersed Lagrangian MCF, so the
obvious answer is that .Lt ; Et ; bt / D .L;E; b/ for all t 2 Œ0;1/. Equation (3.10) gives
a diagram for .L;E; b/ of the form (3.5) with n D 2

0 D F0 // F1 D .L1; E1; b1/ //

xx

F2 D .L;E; b/:

xx
.L1; E1; b1/

Œ1�

ff

.L2; E2; b2/
Œ1�

ˇ
ff

However, in §3.2 we want such a diagram with �1 > �2, but we assume that �1 < �2.
So writing .Lt ; Et ; bt / D .L;E; b/ for all t 2 Œ0;1/ does not satisfy the programme of
§3.2, as although we have long-time existence of Lagrangian MCF, the limiting behaviour
at infinity is wrong, and this looks like a counterexample.

Here is the explanation. Although (at least initially) the Lt ; Et are independent of t ,
the bounding cochains bt do evolve in time. Suppose p 2 L1 \L2 with �L2;L1.p/ D 1.
Then (2.18)–(2.21) with HLj D ��Lj D ���j for j D 1; 2 shows that the data btp in
bt should evolve according to the equation

d
dt
btp D �.�1 � �2/ � logP � btp;

so as b0p D ˇp , the solution is btp D P
�.�1��2/t � ˇp . Thus, we have

.Lt ; Et / D .L1; E1/q .L2; E2/; bt D b1 ˚ b2 ˚ .P
�.�1��2/t � ˇp/; (3.11)

at least for small t .
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Write ˇp D apP
�p C � � � if ˇp ¤ 0, where 0 ¤ ap 2 HomF

�
E2jp; E1jp

�
and �p > 0,

and set �p D1 if ˇp D 0. Then

btp D apP
�pC�.�1��2/t C � � � ;

so btp 2 HomF
�
Et2jp; E

t
1jp

�
˝F ƒ

>0
nov if t 2 Œ0; �p=�.�2 � �1/�.

Thus, at time T D .minp �p/=�.�2 � �1/, the flow crosses a ‘wall’ after which bt in
(3.11) is no longer a bounding cochain, as btp leaves HomF

�
Et2jp; E

t
1jp

�
˝Fƒ

>0
nov for some

p. We claim that the right thing to do is to ‘open a neck’ at time t D T at each p with �p
minimal, gluing in a Joyce–Lee–Tsui LMCF expander. Then Lt ; Et will undergo some
nontrivial evolution for t > T .

To see that a suitable LMCF expander exists to glue in at p, note that �Lj .p/ D ��j
for j D 1; 2, so �L1.p/ < �L2.p/ by assumption, and as �L2;L1.p/ D 1, the first
equation of (2.13) gives �L2.p/ < �L1.p/C� . These are the conditions for the existence
of an LMCF expander in TpM asymptotic to TpL1 [ TpL2.

3.5. ‘Neck pinches’ using Lawlor necks. The programme of §3.2 requires a flow fLt W
t 2 Œ0;1/g starting from a single Lagrangian L0 D L, but converging as t ! 1 to a
union L1 [ � � � [ Ln of several (possibly intersecting) special Lagrangians of different
phases, where we regard L1 [ � � � [ Ln as a single immersed Lagrangian. Thus, we
need a local model for how one Lagrangian L can break up into a union L1 [ L2 of two
Lagrangians under the flow, at some singular time t D Ti , in the notation of §3.2.

We call this local model a ‘neck pinch’, as it involves the Lawlor necks L�;A of
Example 2.5 as A ! 0, so that the ‘neck’ pinches to a point. It is an example of Prin-
ciples 3.9(b) and 3.11, where the special Lagrangian local models are the Lawlor necks
L�;A. The possibility of such pinching behaviour is clear from Thomas and Yau [82], and
Neves [61, §4] proves that it occurs in an example, where both [61,82] work with SO.m/-
equivariant Lagrangians, so that Lagrangian MCF is reduced to understanding evolution
of real curves.

Conjecture 3.16. The following behaviour, which we call a ‘neck pinch’, can occur in
Lagrangian MCF with surgeries in Calabi–Yau m-folds for m > 2; as in §3.2. Further-
more, ‘neck pinches’ are a generic singularity. That is, if Lagrangian MCF beginning
from L0 develops a neck pinch, then Lagrangian MCF beginning from any sufficiently
small Hamiltonian perturbation QL0 of L0 also develops a neck pinch.

Let .M; J; g;�/ be a Calabi–Yau m-fold, and extend DbF .M/ to include immersed
Lagrangians, as in [2]. Suppose f.Lt ; Et / W t 2 .T � �; T C �/g for � > 0 small is
a family of immersed Lagrangian branes in M with HF � unobstructed, and fbt W t 2
.T � �; T C �/g a corresponding family of bounding cochains, satisfying the following
conditions:

(i) The .Lt ; Et ; bt / for t 2 .T � �; T C �/ are all isomorphic in DbF .M/.

(ii) When t < T; Lt ; Et depend smoothly on t 2 .T � �; T /; and f.Lt ; Et / W t 2
.T � �; T /g satisfies Lagrangian MCF, with a finite time singularity at t D T; with
one singular point p 2M .
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Similarly, when t > T; Lt ; Et depend smoothly on t 2 ŒT; T C �/; and f.Lt ; Et / W
t 2 ŒT; T C �/g satisfies Lagrangian MCF. The topology of Lt for t 2 .T � �; T C �/
changes discontinuously at t D T . Nonetheless, the family fLt W t 2 .T ��; TC�/g is
continuous at t D T in a suitable sense, e.g. as graded Lagrangian integral currents
in Geometric Measure Theory.

(iii) Identifying M near p with TpM Š Cm near 0; for each t 2 .T � �; T /; Lt approx-
imates a ‘Lawlor neck’ L�.t/;A.t/ from Example 2.5, after a translation and a U.m/
rotation in Cm. Here A.t/ > 0 is small and A.t/ ! 0 as t ! T; so that L�.t/;A.t/
converges to a union …0 [ …�.T / of transversely intersecting special Lagrangian
planes in Cm as t ! T .

(iv) For t 2 ŒT; T C �/; there is a self-intersection point pt of Lt where two local sheets
Lt
˙

of Lt intersect transversely with�Lt
C
;Lt�

.pt / D 1. Here pt ; Lt
˙

depend smoothly

on t 2 ŒT; T C �/; with pT D p.

(v) We have �LT
C
.pT / D �Lt�.p

T /; and �Lt
C
.pt / < �Lt�.p

t / for t 2 .T; T C �/.

(vi) The F-local systems Et for t 2 ŒT; T C �/ are constructed from the F-local systems
Et
0

for t 0 2 .T � �; T / by deleting the ‘neck’ in Lt
0

and extending Et
0

over pt in Lt
˙

in the unique possible way (at least for m > 3).

(vii) When t 2 ŒT; T C �/; the bounding cochain bt for Lt includes an element bt
pt
2

HomF
�
EtCjpt ; E

t
�jpt

�
˝F ƒ

>0
nov as in §2.6. This is of the form

btpt D a0P
�.t/
C higher order terms,

where a0 2 HomF
�
EtCjpt ; E

t
�jpt

�
is the natural isomorphism induced from Et

0

for
t 0 2 .T � �; T / using (vi), and �.t/ D

R t
T

�
�Ls�.p

s/� �Ls
C
.ps/

�
ds; so that �.T / D 0

and �.t/ > 0 for t 2 .T; T C �/ by (v).

Remark 3.17. (a) The ‘neck pinching’ behaviour of Conjecture 3.16 is inverse to the
‘opening a neck’ behaviour of §3.4. So, for example, we can imagine a flow fLt W t 2
Œ0;1/g satisfying the programme of §3.2, with two singular times 0 < T1 < T2, which
starts with a single Lt for 0 6 t < T1, undergoes a ‘neck pinch’ at t D T1 and becomes a
union Lt D Lt1[L

t
2 of Lagrangians Lt1; L

t
2 intersecting at one point pt for T1 < t < T2,

and then at t D T2 ‘opens the neck’ at pt and turns back into a single Lagrangian Lt

for t > T2.
Note that these inverse singular behaviours involve different (though related) geomet-

ric local models, Lawlor necks L�;A and Joyce–Lee–Tsui expanders L˛� . We do not just
naïvely run the local picture for the flow in reverse. Note too that ‘neck pinching’ works
only for m > 2, whereas ‘opening necks’ works for m > 1, so when m D 1, ‘opening
necks’ has no inverse behaviour.

In a similar way, the author expects that many types of finite time singularity possible
in the programme of §3.2 should have a corresponding inverse type, so that changes in the
topology of Lt , and other qualitative features, are reversible. An exception to this is that
when m D 1, the flow can only decrease the number of self-intersection points, making
the curve ‘less immersed’.
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(b) Theorem 2.6 shows that Lawlor necks L�;A are the only possible geometric local
models for such ‘neck pinches’.

(c) The inequality �Lt
C
.pt / < �Lt�.p

t / in (v) is the opposite of (3.9) in §3.4. Heuris-
tically, we expect ‘small necks’ to shrink under Lagrangian MCF when �Lt

C
.pt / <

�Lt�.p
t /, and to grow when �Lt

C
.pt / > �Lt�.p

t /.

(d) The case m D 2 in Conjecture 3.16 is special. For m > 3, the family F of AC special
Lagrangian ‘Lawlor necks’ L in Cm asymptotic to …0 […� is (isomorphic to) .0;1/,
and all such L are exact. Whenm D 2, the family F is R2 n f0g, and the subfamily F exact
of exact L is R n f0g � R2 n f0g, since then F exact contains both the L�;A for A > 0 and
QL�;A for A < 0 in Example 2.5.

Also, when m D 2 the local systems Et
0

for t 0 2 .T � �; T / could have nontrivial
holonomy around the ‘neck’. If so, the definition of Et for t 2 ŒT; T C �/ in part (vi) no
longer makes sense, since we cannot extend Et

0

over pt in Lt
˙

.
One conclusion is that for m D 2, though neck pinches should be generic under

Hamiltonian perturbations, they may be nongeneric (and of index 1) under Lagrangian
perturbations, since Lagrangian perturbations may allow the flow to wander in F D
R2 n f0g rather than F exact D R n f0g, and will only hit the singularity 0 2 R2 in real
codimension 1 amongst initial Lagrangians.

We can also ask: if Lagrangian MCF fLt W t 2 .T � �; T /g develops a singularity as
t ! T modelled on Lawlor necks L�;A for A 2 .0;1/ � F exact D R n f0g, rather than
continuing for t > T using immersed SL 2-folds as in Conjecture 3.16, why not continue
using Lawlor necks QL�;A for A 2 .�1; 0/ � F exact D R n f0g, immediately opening the
neck again, in a similar way to §3.4?

The author expects that this is the correct thing to do if Et
0

for t 0 2 .T � �; T / has
nontrivial holonomy around the ‘neck’. But in the trivial holonomy case, it would change
the isomorphism class of .Lt ; Et ; bt / in DbF .M/, and so should be avoided according
to the philosophy of §3.2.

3.6. Including singular Lagrangians in DbF .M/; LMCF for Lagrangians with sta-
ble conical singularities. The programme of §3.2 involves flows fLt W t 2 Œ0;1/g with
the Lt immersed Lagrangians which can be singular at the singular times t D T1; T2; : : : ;
where we do not require .LTi ; ETi ; bTi / to be objects of DbF .M/. In this section we
argue that in dimensionm > 3, we must also allow theLt to have certain kinds of ‘stable’
singularities for t ¤ Ti . To complete the programme, Lagrangian MCF must work for
such singular Lagrangians, and we must include them as objects in the derived Fukaya
category DbF .M/.

In [38–42] the author studied compact SL m-folds L with isolated conical singulari-
ties in a Calabi–Yau m-fold M . That is, L has singularities p1; : : : ; pk locally modelled
on closed special Lagrangian cones C1; : : : ; Ck in Cm which have isolated singulari-
ties at 0 2 Cm. As in [39], the deformation theory of L involves an obstruction space
O D O1 ˚ � � � ˚ Ok which is the sum of contributions Oi from each singular point pi ,
depending only on the cone Ci . We call the singularities pi and the SL cones Ci sta-
ble [39, Def. 3.6] if the obstruction spaces Oi are zero. By [39, Cor. 6.11], if L has only
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stable isolated conical singularities, then the moduli space ML of SL deformations of L
is a smooth manifold.

Few examples of stable SL cones are known. The SL T 2-cone C in C3 in equation
(2.4) of Example 2.7 was shown to be stable in [38, §3.2]. Ohnita [66] found four more
examples of stable SL cones in dimensions 5, 8, 14, and 26. In dimension m D 2, any
irreducible, immersed SL cone in C2 is a Lagrangian plane R2, or a finite cover of R2
branched at 0. Nontrivial branched covers of R2 are unstable. So there are no singular
stable SL cones in C2.

Principle 3.18. (a) In the programme of §3.2, in dimension m > 3; for the Lagrangians
Lt at nonsingular times t ¤ Ti we should allow Lagrangians with ‘stable special La-
grangian singularities’. These should include stable isolated conical singularities, as
in [39], and probably also other classes of non-isolated or non-conical singularities.

For example, if m D k C l with k; l > 0 and C is a stable special Lagrangian cone
in Ck as above, the author expects that Lagrangians L with l-dimensional singularities
locally modelled on C � Rl in Ck � Cl D Cm are ‘stable’.

In dimensionm D 3; Lagrangians with conical singularities modelled on the T 2-cone
C in (2.4) may be the only kind required. As m increases, the singularities allowed will
probably become more and more complicated.
(b) For each such class of stable singularities one should prove short time existence for
Lagrangian MCF.
(c) One should extend the definitions of Lagrangian Floer cohomology, obstructions to
HF �; and DbF .M/ to include each such class of stable singularities.

For (b), the author’s PhD student Tapio Behrndt proved [11, Th. 5.12]:

Theorem 3.19. Let .M; J; g;�/ be a Calabi–Yau m-fold, and L a compact Lagrangian
m-fold in M with isolated conical singularities modelled on stable SL cones in Cm (with
any phase ei�). Then for small � > 0 there exists a unique smooth family fLt W t 2 Œ0; �/g
satisfying Lagrangian MCF with L0 D L; where the Lt are compact Lagrangians in M
with stable isolated conical singularities.

Problem 3.20. Extend the theories of Lagrangian Floer cohomology, obstructions to
HF �; and Fukaya categories DbF .M/ to include Lagrangians L in M with isolated
conical singularities modelled on stable special Lagrangian cones C in Cm; such as the
T 2-cone C in C3 in (2.4). The main technical issues will involve studying moduli spaces
of J -holomorphic discs† inM whose boundaries @† lie in L and pass through singular
points of L.

Problem 3.20 can be approached as an exercise in Symplectic Field Theory, as in
Eliashberg et al. [20]: given L with conical singularities at p1; : : : ; pk modelled on stable
SL conesC1; : : : ; Ck � Cm, we delete p1; : : : ; pk fromL;M , and treatM nfp1; : : : ; pkg
as a noncompact symplectic manifold with concave cylindrical ends modelled on S2m�1�
.�1; 0/, and L n fp1; : : : ; pkg as a noncompact Lagrangian with cylindrical ends mod-
elled on †j � .�1; 0/ for j D 1; : : : ; k, where †j D Cj \ S2m�1 is the special
Legendrian link of the cone Cj .

The reason we need to include Lagrangians with ‘stable singularities’ in the pro-
gramme of §3.2 is that (the author expects) for m > 3 there should exist examples of
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flows fLt W t 2 Œ0; T /g in nonsingular Lagrangians with a finite time singularity at t D T ,
such that one can only continue the flow for t > T by using Lagrangians with stable
singularities.

Example 2.8 described a continuous family of exact SL 3-folds N t in C3 for t 2
.��; �/, such thatN t is nonsingular for t < 0, andN 0 has one (non-stable) singular point
with tangent cone R3 qR R3, and N t for t > 0 has two singular points modelled on the
stable SL T 2-cone of (2.4). By Principles 3.9(a) and 3.11, we should expect there to exist
similar examples of Lagrangian MCF Lt W t 2 .��; �/ with surgeries, such that Lt is
nonsingular for t < 0 with a finite time singularity at t D 0, and L0 has one singular
point with tangent cone R3 qR R3, and Lt has two stable singularities modelled on C
in (2.4) for t > 0.
Remark 3.21. We temporarily write DbF .M/nonsing for the derived Fukaya category
of nonsingular immersed Lagrangians, and DbF .M/sing for the category including La-
grangians with ‘stable special Lagrangian singularities’. It seems likely thatDbF .M/sing

and DbF .M/nonsing need not be equivalent categories. If so, DbF .M/sing may be
preferable to DbF .M/nonsing, in the sense of being better behaved, more natural, or the
right category to use in Mirror Symmetry. To test this, we should start in dimension
m D 3 by including Lagrangians with isolated singularities modelled on the T 2-cone C
in (2.4).

The following example was suggested to me by Ivan Smith. Harris [29] constructs
a smooth family .M t ; !t / W t 2 Œ0; �/ of symplectic Calabi–Yau 6-manifolds for small
� > 0, with the following properties:
(i) M t is independent of t , and is the result of adding a 2-handle to T �S3. There is an

isomorphism H 2.M t ;R/ Š R identifying Œ!t � with t . Thus .M t ; !t / is an exact
symplectic manifold if and only if t D 0.

(ii) For t > 0 there is a compact, embedded Lagrangian Lt in .M t ; !t / diffeomorphic to
S3, depending smoothly on t , with 0 ¤ ŒLt � 2 H3.M t IZ/ Š Z.

(iii) There are no Lagrangian S3’s in .M 0; !0/, and in fact, no compact, exact, embedded
Lagrangians in .M 0; !0/ at all.

(iv) As in [29, Rem. 3.7], L0 D limt!0L
t is a singular Lagrangian in M 0, which topo-

logically looks like an S3 with an S1 collapsed to a point p, so that topologically L0

is modelled on a T 2-cone near p.
All this suggests that DbF .M t /nonsing is empty for t D 0, and nonempty for t > 0.

This counts as pathological behaviour, discontinuous in t , since the DbF .M t /nonsing for
small t > 0 are not deformations of DbF .M 0/nonsing in a meaningful sense. Intuitively,
one would expect objects to disappear under small deformations owing to obstructions,
so that DbF .M t /nonsing for t > 0 should be smaller than DbF .M 0/nonsing.

It seems plausible that we can choose the Lt up to Hamiltonian isotopy so that L0 has
one singular point p locally modelled on C in (2.4), and Lt for t > 0 is locally modelled
near p on LA.t/1 in (2.5), where A.t/ ! 0 as t ! 0. If so, L0 may give an object in
DbF .M 0/sing, and the derived categories DbF .M t /sing may depend continuously on
t 2 Œ0; �/. So in this example, DbF .M/sing may be better behaved than DbF .M/nonsing
under deformations of .M;!/.
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3.7. Collapsing zero objects in DbF .M/. Let .L;E/ be a Lagrangian brane in Cm,
either embedded or immersed. Since L is displaceable (Hamiltonian isotopic to a disjoint
Lagrangian, by translations in Cm), there are two possibilities, either:

(A) .L;E/ has HF � obstructed; or

(B) .L;E/ hasHF � unobstructed, and for every bounding cochain b for .L;E/, .L;E; b/
Š 0 in DbF .Cm/. Then we call .L;E; b/ a zero object.

In this case L must also be exact, and strictly immersed (not embedded).

For the second part of (B), note that dilation in Cm induces an infinitesimal deformation
of .L;E; b/, corresponding to a class in HF 1

�
.L;E; b/; .L;E; b/

�
. As .L;E; b/ Š 0,

this deformation class is zero, so dilations of L are Hamiltonian isotopies, and L is ex-
act. But by an argument of Gromov there are no nonempty, compact, exact, embedded
Lagrangians in Cm, since then we would have

H�.LIƒnov/ Š HF
�
�
.L;F �E; 0/; .L;F �E; 0/

�
Š 0:

Example 3.22. Until recently it was believed there are no compact, graded, embedded
Lagrangians in Cm. However, Ekholm, Eliashberg, Murphy and Smith [19, Cor. 1.6]
found an example of a compact, graded, embedded Lagrangian S1 � S2 in C3, and prod-
ucts give Lagrangian .S1 � S2/n’s in C3n. These all have HF � obstructed, as they are
not strictly immersed.

Example 3.23. Writing Sm D
˚
.x0; : : : ; xm/ 2 RmC1 W x20 C � � � C x2m

	
, the Whitney

sphere L D �.Sm/ is the Lagrangian immersion � W Sm ! Cm given by

� W .x0; x1; : : : ; xn/ 7�!
1

1C x20

�
x1.1C ix0/; : : : ; xn.1C ix0/

�
:

It has the special property of having conformal Maslov form. It has one transverse self-
intersection point at p D .0; : : : ; 0/ D �.1; 0; : : : ; 0/ D �.�1; 0; : : : ; 0/, with �L�;LC.p/
D �1, �LC;L�.p/ D m C 1. Thus if m > 2, Lemma 2.23 shows that L has HF �

unobstructed, so as in (B), .L;E; b/ Š 0 in DbF .Cm/.
Ekholm, Eliashberg, Murphy and Smith [19, §1] construct Lagrangian immersions | W

Sm ! Cm form odd, with one transverse self-intersection point p with �LC;L�.p/ D 2.
If m > 3 it has HF � obstructed, as in (A).

Next we consider graded, immersed Lagrangian MCF in an example in C.

Example 3.24. Let L be a graded, immersed Lagrangian in C shaped like an1 sign, not
necessarily symmetric, bounding two ‘teardrop’ J -holomorphic curves†1; †2, as shown
in Figure 3.4, and let E ! L be a rank one F-local system, which is classified by its
holonomy Hol.rE /ŒL� 2 F� around L.

Then .L;E/ has HF � obstructed if area.†1/ ¤ area.†2/. If area.†1/ D area.†2/,
there is a unique choice of Hol.rE /ŒL� D ˙1 which makes the obstructions toHF � due
to †1; †2 cancel, and then .L;E/ has HF � unobstructed.
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Consider the immersed Lagrangian MCF (‘curve shortening flow’) fLt W t 2 Œ0; T /g
in C starting fromL0 D Lwith first finite time singularity at t D T . The curve shortening

�†1 †2 L

Figure 3.4. ‘1 sign’ Lagrangian L in C

flow is well understood, as in Abresch and Langer [1], Angenent [4,5], Grayson [25], and
others, and we can give a good description of the flow. The difference area.†t1/�area.†t2/
is constant during the flow, and both area.†t1/; area.†t2/ decrease until the smaller be-
comes zero at t D T .

�

L0

! �

Lt ; t < T

#

:::::::::::::::::::::::
::
::
::
:::
:::

::::::::::::::
::
::::

possible Lt , t > T (non-graded)

Type II blow up in these regions gives the ‘grim reaper’

 �
LT finite time

singularity

Figure 3.5. Lagrangian MCF when area.†t1/ > area.†t2/

In the case area.†t1/ > area.†t2/, the flow is sketched in Figure 3.5. The loop bound-
ing †2 shrinks to a point at t D T , and the curve develops a cusp singularity. A type II
blow up of this singularity sees only the small, highly curved regions indicated, and yields
the ‘grim reaper’ translating soliton from Figure 2.1. Note that in this case, the type II
blow up only gives a rather incomplete picture of what is happening.

Following Angenent [5], one can continue the flow for t > T after a surgery at t D T
eliminating the self-intersection point, as in the last picture of Figure 3.5, but then the Lt

for t > T are non-graded. From the point of view of this paper, this is the wrong thing
to do, and only works as dimension m D 1 is so simple. A better answer is that after the
singularity at t D T; one cannot continue the flow in graded Lagrangian MCF for t > T .
This does not contradict the programme of §3.2, as the initial Lagrangian L in Figure 3.4
has HF � obstructed in this case. We will discuss this phenomenon further in §3.8.

In the case area.†t1/ D area.†t2/, the flow is sketched in Figure 3.6. The whole1
sign shrinks to a point at t D T . It is not a type I singularity modelled on a Lagrangian
MCF shrinker, since this cannot happen in graded Lagrangian MCF as in §2.3. The curve
does not rescale homothetically, but as in Figure 3.6 the curve shrinks faster in the vertical
than in the horizontal directions. Type II blow ups at either end of the1 sign yield a ‘grim
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reaper’ translating soliton, as in Figure 2.1, as indicated. So, in this case of an immersed
curve in C with HF � unobstructed, the whole curve collapses to a point in finite time
under Lagrangian MCF.

�

L0

! �

Lt1 ; 0<t1<t2<T

#

:::::::::::::::::::::::::::::::::::
:::
::
::
::
::
::
:::
::::

::::::::::::::::::::::::::::::::::::::
:::
::
::
::
::
::
:::
::::

:::
::::::::::::::::::::::::::
:::
::
::
::
:::
::::::::::::::::::::::::::::::

:::
::
::
::
:::
::::

�  �

Lt2 ; 0<t1<t2<T
LT

finite time
singularity

::::::::::::
::
::::::::::::::

::
::

Type II blow up in these regions gives the ‘grim reaper’

Figure 3.6. Lagrangian MCF when area.†t1/ D area.†t2/

More generally, for Lagrangian MCF fLt W t 2 Œ0; T /g of compact, immersed, graded
Lagrangians Lt in Cm with HF � unobstructed, I expect that the typical behaviour is for
the whole of Lt to collapse to a point at time t D T (though possibly undergoing other
surgeries along the way, as in §3.4–§3.6).

Similarly, for immersed Lagrangian MCF fLt W t 2 Œ0; T /g with HF � unobstructed
in a Calabi–Yau m-fold .M; J; g;�/, connected components Lt1 of Lt D Lt1 q Lt2 in
small open balls in M may collapse to a point in finite time t D T . When this happens,
in the programme of §3.2, the correct thing to do is to delete the collapsed component Lt1,
and continue flowing the remaining components Lt2 when t > T . As .Lt1; E

t
1; b

t
1/ is a

zero object inDbF .M/, deleting it does not change the isomorphism class inDbF .M/.
We state this as:

Principle 3.25. The following behaviour, called ‘collapsing a zero object’, is a possible
model for finite time singularities in the programme of §3.2.

Let .M; J; g;�/ be a Calabi–Yau m-fold, and extend DbF .M/ to include immersed
Lagrangians, as in [2]. Suppose f.Lt ; Et / W t 2 .T � �; T C �/g for � > 0 small is a
family of Lagrangian branes inM withHF � unobstructed, and fbt W t 2 .T ��; T C�/g
a corresponding family of bounding cochains, satisfying the following conditions:

(i) The .Lt ; Et ; bt / for t 2 .T � �; T C �/ are all isomorphic in DbF .M/.

(ii) When t < T; Lt ; Et depend smoothly on t 2 .T � �; T /; and f.Lt ; Et / W t 2
.T � �; T /g satisfies Lagrangian MCF, with a finite time singularity at t D T; with
one singular point p 2M .

Similarly, when t > T; Lt ; Et depend smoothly on t 2 ŒT; T C �/; and f.Lt ; Et / W
t 2 ŒT; T C �/g satisfies Lagrangian MCF.

(iii) For t 2 .T��; T / there is a decomposition .Lt ; Et ; bt / D .Lt1; E
t
1; b

t
1/q.L

t
2; E

t
2; b

t
2/;

withLt1; L
t
2 open and closed inLt . There exists a continuous ı W .T ��; T /! .0;1/

with ı.t/ ! 0 as t ! T such that Lt1 � Bı.t/.p/ for all t 2 .T � �; T /; where
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Bı.t/.p/ is the open ball of radius ı.t/ about p in M . That is, the whole of Lt1
converges uniformly to p 2M as t ! T .

(iv) .Lt1; E
t
1; b

t
1/ Š 0 inDbF .M/ for t 2 .T ��; T /; so that .Lt ; Et ; bt / Š .Lt2; E

t
2; b

t
2/

in DbF .M/.

(v) The family f.Lt2; E
t
2; b

t
2/ W t 2 .T � �; T /gqf.L

t ; Et ; bt / W t 2 ŒT; T C �/g is smooth
in t 2 .T � �; T C �/.

Rather than taking LT D LT2 to be a nonsingular immersed Lagrangian at t D T; we
could instead write LT D fpgqLT2 ; where fpg D limt!T L

t
1 is regarded as an extreme

example of a singular Lagrangian in M .

Recall that a graded Lagrangian L is almost calibrated if it has phase variation less
than � . The almost calibrated condition is preserved by Lagrangian MCF. The next lemma
implies that ‘collapsing zero objects’ does not happen in almost calibrated Lagrangian
MCF.

Lemma 3.26. Suppose L is a compact, immersed, graded Lagrangian in Cm; or in a
small open ball Bı.p/ in a Calabi–Yau m-fold .M; J; g;�/. Then L has phase variation
greater than � . That is, L is not almost calibrated.

To prove the lemma, assume for a contradiction that the phase function �L of L maps
�L W L ! Œ� � �

2
; � C �

2
�, consider

R
L
.cos� Re� � sin� Im�/, and note that the

homology class ŒL� in Hm.Cm;Z/ or Hm.M;Z/ is zero.

Problem 3.27. Find global geometric models for how such ‘collapsing a zero object’
finite time singularities occur in MCF for compact, immersed, graded Lagrangians Lt in
Cm with HF � unobstructed.

Even for m D 1 there may be something new to say.

Example 3.28. Let .M; J; g;�/ be a Calabi–Yau m-fold for m > 2, L a compact La-
grangian in M , and p 2 L. In [63], Neves defines another Lagrangian QL in M , which is
Hamiltonian isotopic to L and coincides with L except in a small open neighbourhood of
p. Here L; QL are locally SO.m/ surfaces of revolution on the curves in sketched in Figure
3.7. (Actually Neves restricts to m D 2, but the same ideas should work for all m > 2.)

�
p

���
��
�

��
��
�

L QL

Figure 3.7. Neves’ Lagrangian with a finite time singularity under LMCF

Neves’ main result [63, Th. A] is that Lagrangian MCF starting from QL develops finite
time singularities. This is important, as it shows that finite time singularities in Lagrangian
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MCF are unavoidable in many situations (although note that QL has phase variation greater
than � , so this does not show that almost calibrated Lagrangian MCF has finite time
singularities).

LT1

� �

L
T1
1

�

L
T1
2

D q

Figure 3.8. First singular time t D T1 of Lagrangian MCF from QL

What actually happens in Lagrangian MCF starting from QL? Neves’ proof does not
tell us, as he assumes for a contradiction that no finite time singularity occurs. The author
expects a Lagrangian MCF with surgeries fLt W t 2 Œ0; T /g in M with L0 D QL, with
two singular times 0 < T1 < T2 < T . For t 2 Œ0; T1/; Lt looks much like QL, but
as t ! T1 in Œ0; T1/, the region marked with crosses ‘�’ in Figure 3.7 undergoes a
‘neck pinch’. At t D T1, as sketched in Figure 3.8, LT1 decomposes as LT11 q L

T1
2 ,

where LT11 is a small immersed Sm near p with one transverse self-intersection point
with �LC;L�.p/ D mC 1, a ‘Whitney sphere’ as in Example 3.23, and LT12 looks quite
like the original L.

Then as t increases from T1 to T2, the component Lt1 should shrink to a point, until
at the second singular time t D T2 it undergoes ‘collapsing a zero object’ as in Prin-
ciple 3.25. Meanwhile, the Lagrangian MCF of Lt2 looks quite like that of the original
L, and continues for t > T2. Thus, at least conjecturally, Neves’ examples [63] are not
counterexamples to the programme of §3.2.

3.8. What goes wrong in LMCF of obstructed Lagrangians. The programme of §3.2
claims that if .M; J; g;�/ is a Calabi–Yau m-fold and L a compact, immersed, graded
Lagrangian in M with HF � unobstructed, then graded Lagrangian MCF with surgeries
fLt W t 2 Œ0;1/gwithL0 D L should exist for all time. But ifL hasHF � obstructed, the
author expects that Lagrangian MCF fLt W t 2 Œ0; T /g can develop finite time singularities
at t D T such that one cannot continue the flow for t > T , even after a surgery.

In dimension m D 1, we met an example of this in Example 3.24: if L is the ‘1
sign’ Lagrangian in C from Figure 3.4 with area.†1/ ¤ area.†2/, then Lagrangian MCF
starting from L has a finite time singularity after which one cannot continue in graded
Lagrangian MCF (though in this case one can continue in non-graded Lagrangian MCF
after a surgery).

We now discuss the nature of these terminal singularities of HF �-obstructed La-
grangian MCF. I expect they should be impossible in HF �-unobstructed flow, and so
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the obstructions should be present locally as the singularity forms. As in §2.5–§2.6, ob-
structions toHF � for a LagrangianL or brane .L;E/ are caused by ‘bad’ J -holomorphic
discs † in M with boundary in L, of two kinds:
(i) For L embedded, moduli spaces MA

1 of J -holomorphic discs † with area A > 0

and one boundary marked point, whose virtual classes
��
MA

1

�
virt
�

are nonzero in
Hm�2.L;Q/. (This is oversimplified.)

(ii) For L immersed, † of type (i), and also ‘teardrop-shaped’ J -holomorphic discs † of
the form shown in Figure 2.3, with one corner at q 2 M , and with �LC;L�.q/ D 2,
where L˙ are the local sheets of L intersecting at q.

Thus an obvious guess is that the singularities we are interested in occur when such a
‘bad’ † shrinks to a point, and area.†/! 0. As L is graded, † of type (i) have constant
area under Lagrangian MCF, so they are not relevant. For† of type (ii), as for (3.8) under
Lagrangian MCF we have

d
dt

area.†/ D �
Z
@†

d�L D �L�.q/ � �LC.q/;

so area.†/ will decrease under Lagrangian MCF if �LC.q/ > �L�.q/.
Therefore we propose:

Principle 3.29. In contrast to §3.2, Lagrangian MCF fLt W t 2 Œ0; T /g of compact,
immersed, graded Lagrangians L or branes .L;E/ with HF � obstructed in a Calabi–
Yau m-fold may develop finite time singularities at t D T; such that one cannot continue
the flow for t > T in graded LMCF, even after a surgery.

A typical way in which this occurs is that for t 2 .T � �; T /; there exists a ‘teardrop’
J -holomorphic curve †t with boundary in Lt of the form shown in Figure 2.3, and
area.†t / ! 0 as t ! T; where †t causes Lt to have HF � obstructed if area.†t / is
small enough.

In dimension m > 2; this should be possible for L0 with arbitrarily small phase
variation.

Note that this is exactly what happens in Example 3.24 in dimension m D 1.
Remark 3.30. We are restricting to graded Lagrangians, so as above, discs † of type (i)
have constant area under the flow, and cannot cause singularities.

We could generalize the programme of §3.2 to oriented Lagrangians rather than graded
Lagrangians, so that HF �

�
.L;E; b/; .L0; E 0; b0/

�
is Z2-graded rather than Z-graded. In

this case, curves of type (i) can cause singularities. For non-graded L, the area of curves
† of type (i) change under Lagrangian MCF by

d
dt

area.†t / D ��L � Œ@†t �; (3.12)

where�L 2 H 1.L;R/ is the Maslov class from §2.1, and Œ@†t � 2 H1.L;R/. As the r.h.s.
of (3.12) is independent of t , if �L � Œ@†0� > 0 then unless other singularities happen first,
the area of †t shrinks to zero at time T D area.†0/=.�L � Œ@†0�/. So in the non-graded
analogue of Principle 3.29, we should also include shrinking of type (i) discs †. Groh,
Schwarz, Smoczyk and Zehmisch [26] used this idea to study singularities of Lagrangian
MCF for monotone Lagrangians in Cm.



48 D. Joyce

Example 3.31. Wolfson [85] constructed an example of a Calabi–Yau 2-fold .M; J; g;�/
(a K3 surface) with the following properties:

(i) There exists ˛ 2 H2.M;Z/ with ˛ � ˛ D �4, such that every compact, immersed
Lagrangian L in M has ŒL� 2 Z � ˛ � H2.M;Z/.

(ii) There exists an immersed Lagrangian two-sphere L in M with ŒL� D ˛.

(iii) There does not exist a compact, immersed SL 2-fold L0 in M with homology class ˛
(even if one allows branch point singularities in L0).

Here (iii) is proved as follows: L0 must be connected, as we cannot split ˛ D ˇ C  for
ˇ ¤ 0 ¤  homology classes represented by SL 2-folds. Suppose L0 has genus g, and
for simplicity has k transverse self-intersection points. An easy calculation shows that
ŒL0� � ŒL0� D 2g C 2k � 2 > �2. But ŒL0� D ˛ and ˛ � ˛ D �4.

So we can ask: what happens to Lagrangian MCF fLt W t 2 Œ0; T /g in M with
L0 D L? I expect that L has HF � obstructed, and that a finite time singularity develops
at t D T after which one cannot continue the (graded) flow, as in Principle 3.29. As
evidence for this, note that if Lagrangian MCF with surgeries fLt W t 2 Œ0;1/g existed
for all time, one would expect L0 D limt!1L

t to be an SL 2-fold in homology class ˛,
which is excluded by (iii).

Wolfson uses his example to prove something different. Schoen and Wolfson [71]
show that by minimizing volume amongst (not necessarily graded) compact, immersed,
oriented Lagrangians L in a Calabi–Yau 2-fold in a fixed homology class ˛ and taking
a limit, one can construct a singular Lagrangian L0 with minimal volume in homology
class ˛, such that L0 is Hamiltonian stationary and has finitely many singular points of
two kinds:

(a) Branch points, like those of Riemann surfaces, and

(b) Singularities modelled on certain Lagrangian cones Cp;pC1 in C2 for p > 1: These
Cp;pC1 are Hamiltonian stationary, but not Maslov zero, or graded.

If there are only singular points of type (a), then L0 is special Lagrangian. Wolfson
deduces [85, Th. 3.3] that in his example, the minimizer L0 must have singular points
of type (b). But then L0 is not graded, so it is not a possible limit limt!1L

t for graded
Lagrangian MCF.

The next example gives a heuristic description of how the author expects the finite
time singularities in Principle 3.29 may form geometrically.

Example 3.32. Example 2.16 described a family of Lagrangian MCF translatorsL in Cm
given in equation (2.10), asymptotic to the union of two Lagrangian planes …0;…� Š

Rm intersecting in R. We have sketched L in Figure 3.9 (not easy to draw in only two
dimensions).

We indicate the intersection of L with the zm-axis, the curve

L \
˚
.0; : : : ; 0; zm/ W zm 2 C

	
D
˚�
0; : : : ; 0; 1

2
y2 � i

˛

Pm�1
jD1  j .y/ �

i
˛

arg.y C iP.y/�1=2/
�
W y 2 R

	
;

which bounds a noncompact J -holomorphic curve † in the zm-axis as shown.
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We will try and describe a type II singularity of Lagrangian MCF fLt W t 2 Œ0; T /g
with a singularity at x 2 M modelled on these LMCF translators L, using Princi-
ple 3.9(b). Identifying M with TxM Š Cm near x 2 M , each Lt should to ‘first or-
der’ approximate an LMCF translator L from Example 2.16, and as t ! T these LMCF
translators should slowly shrink homothetically, as well as translate. What interests us is
the ‘second order’ changes to L which cause this shrinking.

:::
::
::
::
::
::
::
:

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

::::::::::::::::::::::
::::

:
:::::::::::::::::::::::::::::::::: �!

direction of
translation

intersection of L with zm-axis

J -holomorphic curve †

Q…0

Q…�

L

Figure 3.9. Joyce–Lee–Tsui Lagrangian MCF translator from Example 2.16

Far to the right in Figure 3.9, the LMCF translatorL approximates two non-intersecting
affine Lagrangian planes Q…0; Q…� in Cm from (2.11), just as far to the right in Figure 2.1,
the ‘grim reaper’ approximates two non-intersecting parallel lines in C. I suggest that to
‘second order’ inLt , the two planes Q…0; Q…� should be bent towards each other by a small
angle, introducing a new immersed self-intersection point, and so that the noncompact J -
holomorphic curve † becomes a compact ‘teardrop’ as in Figure 2.3, which makes HF �

obstructed. This modification QL of L is sketched in Figure 3.10.

:::
::
::
::
::
::
::
:

:::::::::::::::::: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

:::::::::::::::::::::::::::::::
::

:::
::::

:::::
:::::::::::::::::::: � �!

direction of
translation

intersection of QL with zm-axis

J -holomorphic curve †

Q…0

Q…�

QL

Figure 3.10. Modification QL of Joyce–Lee–Tsui LMCF translator

I expect that this ‘bending’ of Q…0; Q…� towards one another is both the ‘outside influ-
ence’ in Principle 3.9(b) which makes L shrink and causes the finite time singularity, and
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also the cause of the self-intersection point, the ‘teardrop’ curve †, and the obstructions
to HF �.

Conjecture 3.33. In dimension m > 2; Example 3.32 describes a possible finite time
singularity of graded, immersed Lagrangian MCF withHF � obstructed, after which one
cannot continue the flow in graded Lagrangian MCF.

Such finite time singularities admit type II blow ups, as in Theorem 2.12, which are
Lagrangian MCF translators from Example 2.16.

This is a generic singularity of Lagrangian MCF, that is, if Lagrangian MCF starting
from L0 develops such a singularity, then so does Lagrangian MCF starting from any
sufficiently small Hamiltonian perturbation QL0 of L0.

All this is possible for Lagrangians with arbitrarily small phase variation.

3.9. A Thomas–Yau type conjecture. Finally we state our second main conjecture,
about the programme of §3.2, which summarizes the discussion of §3.2–§3.7. We call
it a ‘Thomas–Yau type conjecture’, as it aims to update the conjectures of Thomas and
Yau [81, 82].

Our focus here is mostly on the unique long-time existence of immersed Lagrangian
MCF with surgeries, although proving the conjecture would go some way to proving
Conjecture 3.2 on Bridgeland stability conditions. To simplify the possible finite time
singularities, we take L generic in its Hamiltonian isotopy class. To minimize the sin-
gular Lagrangians to be included in DbF .M/, we do not require .LTi ; ETi ; bTi / or
limT!1.L

t ; Et ; bt / to be objects in DbF .M/.

Conjecture 3.34. Let .M; J; g;�/ be a Calabi–Yau m-fold, either compact or suitably
convex at infinity, and DbF .M/ an enlarged version of the derived Fukaya category
of Lagrangian branes in M from [24], including classes of immersed or singular La-
grangians, depending on the dimension m:

(i) When m D 1; DbF .M/ can be the usual derived Fukaya category of nonsingular,
embedded Lagrangian branes.

(ii) Whenm > 2; DbF .M/ must include immersed Lagrangians, as in Akaho and Joyce
[2] and §2.6. For m D 2; these are all of DbF .M/.

(iii) When m > 3; DbF .M/ must also include singular Lagrangians with stable spe-
cial Lagrangian singularities, as in §3.6. When m D 3; these include Lagrangians
with isolated conical singularities in the sense of [38–42] modelled on the special
Lagrangian T 2-cone from (2.4), and this may be the only kind of stable singularity
when m D 3. When m > 4; stable singularities may be more complicated, and need
not be isolated.

Let .L;E/ be a Lagrangian brane in M with HF � unobstructed, and suppose L is
generic in its Hamiltonian isotopy class. Let b be a bounding cochain for .L;E/. Then
there is a unique family

˚
.Lt ; Et ; bt / W t 2 Œ0;1/

	
satisfying:

(a) .L0; E0; b0/ D .L;E; b/.

(b) There is a finite series of singular times 0 < T1 < T2 < � � � < TN such that if
t 2 Œ0;1/ n fT1; : : : ; TN g then .Lt ; Et ; bt / is an object in DbF .M/ isomorphic to
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.L;E; b/; with Lt a (possibly immersed or singular) compact, graded Lagrangian in

.M;!/; with HF � unobstructed.

(c) The family
˚
Lt W t 2 Œ0;1/ n fT1; : : : ; TN g

	
satisfies Lagrangian mean curvature

flow, and
˚
Et W t 2 Œ0;1/ n fT1; : : : ; TN g

	
is locally constant in t . The bounding

cochains bt also change by a kind of ‘parallel transport’ for t 2 Œ0;1/n fT1; T2; : : :g
as in §2.5–§2.6, to ensure that the isomorphism class of .Lt ; Et ; bt / in DbF .M/

remains constant.

(d) At each singular time T1; : : : ; TN ; the flow undergoes a surgery, which may involve
a finite time singularity of Lagrangian MCF, and a change in the topology of Lt .
The kinds of surgery allowed include ‘opening a neck’ as in §3.4 when m > 1; ‘neck
pinches’ as in §3.5 whenm > 2; transitions to and from Lagrangians with ‘stable spe-
cial Lagrangian singularities’ as in §3.6 when m > 3; and ‘collapsing zero objects’
as in §3.7 for m > 1 (the latter is excluded for almost calibrated Lagrangians).

We do not require .LTi ; ETi ; bTi / to be an object in DbF .M/; as the singularities
of LTi may be too bad, and if so, bTi is meaningless.

(e) The family fLt W t 2 Œ0;1/g is continuous as graded Lagrangian integral currents in
M in Geometric Measure Theory.

In graded Lagrangian integral currents, we have limt!1L
t D L1C� � �CLn for some

n > 0; where 0 ¤ Lj for j D 1; : : : ; n is a nonzero, compactly-supported, graded,
special Lagrangian integral current with phase ei��j and grading �Lj D ��j ; with
�1 > � � � > �n.

For the Bridgeland stability condition .Z;P/ on DbF .M/ discussed in Conjecture
3.2, if n D 1 then .L;E; b/ 2 P.�1/; and otherwise .L;E; b/ … P.�/ for any � 2 R.

Remark 3.35. (i) The most feasible case of the conjecture is that of Lagrangian MCF
in dimension m D 2, starting from an almost calibrated Lagrangian L generic in its
Hamiltonian isotopy class.
(ii) Assuming the initial object .L;E; b/ is semistable or stable in the sense of Conjectures
3.2 and 3.5 means in part (e) that the limit limt!1L

t D L1 is only one (singular) special
Lagrangian, rather than a finite union L1 [ � � � [Ln of special Lagrangians with different
phases, but otherwise it does not simplify things: we still expect nontrivial finite time
singularities, and surgeries.
(iii) It is an interesting question whether there are useful extra assumptions on L which
limit the kinds of singularities occurring at the singular times T1; T2; : : : : For example,
if L is generic in its Hamiltonian isotopy class then only singularities of ‘index zero’
appear, as in Remark 3.8(iv), and ifL is almost calibrated, then as in §3.7 ‘collapsing zero
objects’ cannot happen. Thomas and Yau give conditions [82, (7.1) or (7.2)] preventing
‘neck pinches’ in §3.5 dividing L into two pieces L1 q L2 from happening, although I
expect other singularities can.

There are some very special situations in which Lagrangian MCF is known to exist
for all time without singularities, such as the Lagrangian Tm-graphs in T 2m studied by
Smoczyk and Wang [80], or Lagrangian MCF starting from a small perturbation of a
smooth special Lagrangian. But apart from these, I do not know of any useful, nontrivial
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conditions on L under which I expect the flow to exist for all time without singularities,
as hoped for in [82, Conj. 7.3].

4. Generalizations

Finally we discuss two variations on the conjectural picture of §3. The first in §4.1 is a
simplification: for (immersed) exact Lagrangians in exact Calabi–Yau m-folds, we can
use a (not yet written down) version of Seidel’s Lagrangian Floer theory [73] in place of
that of Fukaya et al. [24], and in particular, we can dispense with Novikov rings ƒnov.
The second, in §4.2, considers whether we can generalize our picture to Lagrangian MCF
in Kähler–Einstein manifolds rather than Calabi–Yau m-folds.

4.1. Exact Lagrangians in exact Calabi–Yau m-folds. Consider the situation of §3 in
the special case in which the Calabi–Yaum-fold .M; J; g;�/ is noncompact, and .M;!/
is a Liouville manifold in the sense of [73], so that the Kähler form ! D d� for some
Liouville form �. Then we can restrict our attention to exact graded Lagrangians L inM ,
and for each such L we can choose a potential fL W L! R with dfL D �jL.

Then Seidel [73] defines Lagrangian Floer cohomology HF �.L1; L2/ and Fukaya
categoriesDb.F .M//ex;D

�.F .M//ex for embedded, exact, graded LagrangiansL1; L2
in M , which are simpler and more complete than Fukaya, Oh, Ohta and Ono [22–24].
Here are two differences between the two theories:

(i) Seidel does not work over the Novikov ring ƒnov. This is because ƒnov in [24] keeps
track of infinite sums

P1
iD0 niP

Ai , where ni is the number of J -holomorphic discs
of area Ai and Ai !1 as i !1 in a problem, but in the exact case, the area A for
J -holomorphic discs is uniquely determined.

(ii) Seidel does not include bounding cochains in his theory. This is because bounding
cochains b for L are there in [24] to compensate for J -holomorphic discs † with
boundary in L, but for L exact, there are no such non-constant †. In effect, Seidel
sets b D 0 throughout.

I expect that for exact Lagrangian branes .L;E/ in Calabi–Yau Liouville manifolds,
one should be able to carry out a simplified version of the programme of §3, using an
extended version of Seidel’s theory [73] in place of an extended version of Fukaya et
al. [22–24]. To do this, one must extend Seidel’s derived Fukaya category D�.F .M//ex
of exact Lagrangians to include immersed Lagrangians, as in §2.6, and some classes of
singular Lagrangians, as in §3.6.

We need not work over ƒnov as in (i), instead one should take just coefficients in the
field F of Definition 2.17. However, including immersed Lagrangians will mean that one
has to consider obstructions toHF � and bounding cochains, as in (ii). The next definition
explains how to do this.

Definition 4.1. Let .M; J; g;�/ be a Calabi–Yau Liouville manifold, and .L;E/ a com-
pact, graded, immersed Lagrangian brane in M with only transverse self-intersection
points, with potential fL W L! R. Here E ! L is a rank one F-local system as in §2.5.



Conjectures on Bridgeland stability for Calabi–Yau m-folds and Lagrangian MCF 53

Define a bounding cochain b D .bp/ for L to assign to each point p 2 M at which
two local sheets LpC; L

p
� of L intersect transversely with �Lp

C
;L
p
�
.p/ D 1 and fLp

C
.p/ >

fLp�.p/, an element bp 2 HomF
�
ECjp; E�jp

�
, as in (2.17) but without the ‘˝Fƒ

>0
nov’.

This data .bp/ must satisfy the following condition: for each point q 2 M at which two
local sheets LqC; L

q
� of L intersect transversely with �Lq

C
;L
q
�
.q/ D 2, we should haveX

k > 0, p1; : : : ; pk 2M : local sheets L
pi
C
;L
pi
� of L

intersect transversely at pi , �
L
pi
C
;L
pi
�
.pi / D 1,

f
L
pi
C

.pi / > f
L
pi
�
.pi /; i D 1; : : : ; k

Nq;p1;:::;pk � .bp1˝� � �˝bpk / D 0 in HomF
�
ECjq; E�jq

�
. (4.1)

�

�

�
p2

�
q

p3 D pk

p1

†
L
p2
C

Lp2�

L
q
C

Lq�

Lp3�L
p3
C

L
p1
C

Lp1�

Figure 4.1. Holomorphic .k C 1/-gon † with boundary in L, case k D 3

Here the term

Nq;p1;:::;pk 2 Hom.ECjq; ECjpk /˝F Hom.E�jpk ; ECjpk�1/˝F

� � � ˝F Hom.E�jp2 ; ECjp1/˝F Hom.E�jp1 ; E�jq/ (4.2)

in (4.1) ‘counts’ J -holomorphic discs † of the form shown in Figure 4.1, in the case
k D 3, weighted by the parallel transport in E around @† in the clockwise direction in
Figure 4.1, where the parallel transport from q to pk contributes the term Hom.ECjq; ECjpk /
in (4.1), and so on. ContractingNq;p1;:::;pk in (4.1) with bp1 2 HomF

�
ECjp1 ; E�jp1

�
; : : : ;

bpk 2 HomF
�
ECjpk ; E�jpk

�
yields an element of HomF

�
ECjq; E�jq

�
, as desired.

The area of † in Figure 4.1 is

area.†/ D fLq
C
.q/ � fLq�.q/ �

Pk
iD1

�
f
L
pi
C

.pi / � fLpi� .pi /
�
6 fLq

C
.q/ � fLq�.q/:

Since these areas are uniformly bounded, standard results on J -holomorphic curves tell
us that the family of such † for all k; p1; : : : ; pk is compact, and therefore the sum (4.1)
has only finitely many nonzero terms, and is well defined.

If L is embedded, then there are no possibilities for p or q above, so b D ; is trivially
the unique bounding cochain.

We say that .L;E/ has HF � unobstructed if a bounding cochain b exists, and has
HF � obstructed otherwise. To work with Lagrangians L rather than Lagrangian branes
.L;E/, we take E to be the trivial F-local system F � L! L.
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The next conjecture, similar to Akaho and Joyce [2], should not be difficult.

Conjecture 4.2. Seidel’s theory of Lagrangian Floer cohomology and Fukaya cate-
gories [73] may be extended to include immersed Lagrangians L and Lagrangian branes
.L;E/ with transverse self-intersections with choices of bounding cochains, in the sense
of Definition 4.1.

The author expects that the programme of §3 can be carried out for exact Lagrangians
in this extended Seidel-style derived Fukaya category. Sections 3.4 and 3.5 should be
modified as follows. Suppose as in §3.4 that f.Lt ; Et / W t 2 Œ0; T /g is a family of
exact Lagrangian branes satisfying Lagrangian MCF, with transverse self-intersections,
potential functions fLt , and bounding cochains bt for t 2 Œ0; T / as in Definition 4.1.

Write pt for an intersection of local sheets LtC; L
t
� of Lt for t 2 Œ0; T /, depending

smoothly on t , with �Lt
C
;Lt�

.pt / D 1. Then bt includes an element bt
pt
2 HomF

�
EtCjpt ;

Et�jpt
�

if fLt
C
.pt / > fLt�.p

t /. Then ‘opening a neck’ at pt as in §3.4 should happen
at time t D T1 if bt

pt
¤ 0 and we have fLt

C
.pt / > fLt�.p

t / for T1 � � < t < T1 and

f
L
T1
C

.pT1/ D f
L
T1
�
.pT1/.

Similarly, for the ‘neck pinch’ in §3.5, the analogue of Conjecture 3.16 should say
that the immersed Lagrangian LT at the singular time t D T should have potential fLT
with fLT

C
.p/ D fLT� .p/, and fLt

C
.pt / > fLt

C
.pt / for T < t < T C �, and bt .pt / D a0

for T 6 t < T C �, where a0 is as in Conjecture 3.16(vii).

4.2. ‘Balanced’ Lagrangians in Kähler–Einstein manifolds. Let .M; J; g/ be a Käh-
ler manifold. Then mean curvature flow of compact submanifolds preserves Lagrangian
submanifolds not only if g is Ricci-flat (the Calabi–Yau case), but also if g is Einstein,
that is, if .M; J; g/ is a Kähler–Einstein manifold. Thus, it is natural to ask whether, and
to what extent, the programme of §3 can be generalized to Kähler–Einstein manifolds.

To do this, we should answer the following questions:

Question 4.3. (a) Compact, graded Lagrangians in Calabi–Yau m-folds have the prop-
erty that Lagrangian MCF stays in the same Hamiltonian isotopy class. Is there an inter-
esting class of Lagrangians in Kähler–Einstein manifolds with the same property?
(b) For a Calabi–Yau m-fold M; one can define derived Fukaya categories DbF .M/,
D�F .M/ of graded Lagrangians, which are Z-graded triangulated categories. What is
the appropriate analogue in the Kähler–Einstein case?
(c) As in §3.1, for Calabi–Yaus there conjecturally exist Bridgeland stability conditions
on DbF .M/ ' D�F .M/, such that special Lagrangians are semistable. In the
Kähler–Einstein case, is there some useful notion of ‘stability condition’ on DbF .M/

or D�F .M/, such that minimal Lagrangians are semistable?
(d) In the Calabi–Yau case, as [82, Th. 4.3] special Lagrangians are unique in their
isomorphism classes inDbF .M/. In the Kähler–Einstein case, are minimal Lagrangians
unique in their isomorphism classes in DbF .M/?
(e) As in §3.9, for Calabi–Yaus we conjecture unique long-time existence of Lagrangian
MCF with surgeries starting from a Lagrangian brane .L;E/ with HF � unobstructed.
Should we expect an analogue in the Kähler–Einstein case?
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Note that the Einstein condition on .M; J; g/ is that the Ricci curvature Rab of g
satisfies Rab D �gab for some � 2 R, where � D 0 is the Calabi–Yau case. By rescaling
g we can take � D 1; 0 or �1. The cases � > 0 (so g has positive scalar curvature) and
� < 0 (so g has negative scalar curvature) are likely to behave differently, and should be
considered separately. When � > 0, Œ!� is a positive multiple of c1.M/ inH 2.M;R/, and
so the symplectic manifold .M;!/ is called monotone. Monotone symplectic manifolds
have been extensively studied.

Here are some partial answers to Question 4.3:

(a) The appropriate class of Lagrangians are known as ‘balanced’ or ‘Bohr–Sommerfeld
monotone’ Lagrangians, as in Seidel [75, §6], for instance. For a balanced Lagrangian
L, the mean curvature H corresponds to an exact 1-form on L, so LMCF stays in the
same Hamiltonian isotopy class.

When � > 0, balanced Lagrangians are sometimes called monotone Lagrangians,
although definitions of these vary (balanced implies monotone, but the definition of
monotone Lagrangians involving �2.M;L/ rather than H2.M;LIR/ does not imply
balanced).

(b) We would like to define a Fukaya category DbF .M/ of balanced Lagrangians in
a Kähler–Einstein manifold .M; J; g/. When � < 0 (negative scalar curvature), a
model for this is provided by Seidel [75], who defines DbF .M/ when M is the
genus two curve.

When � > 0 (positive scalar curvature, monotone), a Fukaya category DbF .M/ is
defined by Sheridan [77, §3], following Oh [65] and Seidel [74]. In this case one
can include an extra parameter w 2 F, where F is the base field as in §2.5, to get
categories DbF .M/w for w 2 F generated by Lagrangian branes .L;E/, such that
for a generic p 2 L we have X

Maslov 2 J -holomorphic discs†
inM with p 2 @† � L

sign.†/Hol@†.E/ D w;

where Hol@†.E/ 2 F is the holonomy of the F-local system E ! L around @† �
L. One expects DbF .M/w D 0 for all but finitely many w 2 F. Lagrangians in
DbF .M/w for w ¤ 0 are called weakly unobstructed.

In both cases DbF .M/ will not be a Z-graded triangulated category: for oriented
Lagrangians it will be Z2-graded, though as in Seidel [72] we can improve this to
Z2k-graded if k divides c1.M/.

(c) As DbF .M/ is not Z-graded, Bridgeland stability conditions on DbF .M/ do not
make sense. Also the central charge mapZ in (3.2), and phases of Lagrangians, make
no sense in the Kähler–Einstein case.

Nonetheless, it seems possible that some features of Bridgeland stability may survive
to the Kähler–Einstein case, in particular, being given a set of ‘semistable objects’
(represented by minimal Lagrangians) satisfying some axioms, such that every object
in DbF .M/ has a unique decomposition into semistable objects of the form (3.1).
This may be worth further study.
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(d) When � > 0 (positive scalar curvature), minimal Lagrangians need not be unique in
their isomorphism classes in DbF .M/. For example, a minimal Lagrangian L in
CPm (such as the Clifford torus) is isomorphic to all of its images under the Lie group
Aut.CPm/ D PU.mC 1/.

When � < 0 (negative scalar curvature), the author expects minimal Lagrangians to
be unique in their isomorphism classes in DbF .M/.

This is parallel to uniqueness for Kähler–Einstein metrics: if .M; J / is a compact
complex manifold, then Kähler–Einstein metrics on M are unique in their Kähler
classes if � D 0 or � < 0, but need not be unique if � > 0.

(e) The author’s guess is that the answer is yes: or at least, in any dimension m in which
Conjecture 3.34 holds for Calabi–Yaus, some analogous conjecture on long-time ex-
istence of LMCF with surgeries should also hold in dimension m for the Kähler–
Einstein case.

Some justification is that if the conjecture is false, it will be because of singular be-
haviour of LMCF developing locally near a point x 2 M . But locally, LMCF in
Calabi–Yau m-folds and in Kähler–Einstein manifolds looks essentially the same, the
differences are global.

Example 4.4. (i) Let M be CP1, a Kähler–Einstein manifold with � > 0, and L an
embedded S1 in CP1, which is automatically Lagrangian. Then CP1 n L is two open
discs D1 qD2, and L is balanced if and only if area.D1/ D area.D2/.

One can show using known results on the curve-shortening flow [1, 4, 5, 25] that La-
grangian MCF in CP1 starting from L0 D L exists for all time and converges as t !1
to a great circle (a minimal Lagrangian in CP1) if L is balanced, and collapses to a point
in finite time if L is unbalanced.

(ii) Let M be a Riemann surface of genus g > 1 with a hyperbolic metric, a Kähler–
Einstein manifold with � > 0, and L an embedded S1 in M with ŒL� ¤ 0 in H1.M;Z/.
Then Lagrangian MCF in M starting from L0 D L exists for all time and converges
as t ! 1 to the unique closed geodesic  in M with homology class ŒL�. Here  is
balanced, and the flow stays in a fixed Hamiltonian isotopy class (the Hamiltonian isotopy
class of  ) if and only if L is balanced.

This suggests that in (i), (ii), all (indecomposable?) objects inDbF .M/ are ‘semista-
ble’, so the notion of stability in (c) above is not interesting for m D 1.

Example 4.5. Let M be CP2, a Kähler–Einstein manifold with � > 0, and take F D C.
Mirror Symmetry [7] predicts that the mirror of M is the Landau–Ginzburg model f W
U D .C�/2 ! C, f .x; y/ D x C y C 1=xy. Thus for w 2 C we expect an equiv-
alence of Z2-periodic triangulated categories D�F .CP2/w ' MF.f � w W U ! C/,
where D�F .CP2/w is the idempotent-completed Fukaya category of oriented, balanced
Lagrangian branes .L;E/ in CP2 as in (b) above, and MF.� � � / is the matrix factorization
category. Since f is Morse, this indicates that D�F .CP2/w ' Db

Z2.VectC/ if w is one
of the 3 critical values 3; 3e2�i=3; 3e�2�i=3 of f , and D�F .CP2/w ' 0 otherwise.
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Few examples of oriented, balanced Lagrangians in CP2 are known, up to Hamilto-
nian isotopy. They include the minimal Lagrangian Clifford torus

T 2Cl D
˚
Œz0; z1; z2� 2 CP2 W jz0j D jz1j D jz2j

	
;

and two exotic examples, the Chekanov torus T 2Ch [16], and the Vianna torus T 2Vi [83]. All
three are pairwise non Hamiltonian isotopic [16, 83].

I expect the following picture. Each of T 2Cl; T
2

Ch; T
2

Vi should have C-local systems
EwCl ; E

w
Ch; E

w
Vi for w D 3; 3e2�i=3; 3e�2�i=3, such that .T 2Cl; E

w
Cl/; .T

2
Ch; E

w
Ch/; .T

2
Vi; E

w
Vi/

are nontrivial objects inD�F .CP2/w for eachw. Furthermore, we should have .T 2Cl; E
w
Cl/

Š .T 2Ch; E
w
Ch/ Š .T 2Vi; E

w
Vi/, because there is basically only one interesting object in

D�F .CP2/w ' Db
Z2.VectC/.

As an aside, note that End�.T 2Cl; E
w
Cl/ Š End�.F ˚ F Œ1�/ as a Z2-graded ring, where

F is a simple object with End.F / D C. Thus DbF .CP2/w is not idempotent complete,
since .T 2Cl; E

w
Cl/ is indecomposable in DbF .CP2/w , but decomposes as F ˚ F Œ1� in

D�F .CP2/w . This suggests that the analogue of Conjecture 3.6 may be false for CP2.
Lagrangian MCF starting from .T 2Cl; E

w
Cl/ is stationary, as T 2Cl is minimal. I conjecture

that Lagrangian MCF starting from .T 2Ch; E
w
Ch/ or .T 2Vi; E

w
Vi/ exists, with surgeries, for

all time, as in (e) above, and converges as t ! 1 to .T 2Cl; E
w
Cl/, or one of its images

under PU.3/. If this is so, then the exotic tori T 2Ch; T
2

Vi and their local systems EwCh; E
w
Vi

can be obtained from T 2Cl and EwCl by applying one or more Lagrangian surgeries which
change the Hamiltonian isotopy class of T 2Cl, but not the isomorphism class of .T 2Cl; E

w
Cl/

in DbF .CP2/w .
My guess is that the right kind of surgery is that described in Remark 3.17(d) in the

special case m D 2: at the singular time t D T there should be a ‘neck pinch’ as in §3.5,
where EwCh; E

w
Vi have nontrivial holonomy around the S1 of the ‘neck’, and for t > T one

immediately ‘opens the neck’ as in §3.4, but in the opposite direction.
If this is correct, then there should exist an immersed Lagrangian LT in CP2 diffeo-

morphic to S2 (a Whitney sphere?), with one transverse self-intersection point p, such
that resolving LT by connected sum at p in one way gives T 2Cl (up to Hamiltonian iso-
topy), and in the other way gives T 2Ch or T 2Vi. Immersed Lagrangians with few double
points are discussed by Ekholm et al. [19].
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