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Abstract. We consider largeness of groups given by a presentation of deficiency 1, where the
group is respectively free-by-cyclic, LERF or 1-relator. We give the first examples of (finitely
generated free)-by-Z word hyperbolic groups which are large, show that a LERF deficiency 1

group with first Betti number at least two is large or Z � Z and show that 2-generator 1-relator
groups where the relator has height 1 obey the dichotomy that either the group is large or all
its finite images are metacyclic.
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1. Introduction

A finitely generated group G is said to be large if it has a finite index subgroup
possessing a homomorphism onto a non-abelian free group. This has a range of
implications: for instance G is SQ-universal (which means that every countable
group is a subgroup of a quotient of G), G has uniformly exponential word growth,
G has the largest possible subgroup growth for finitely generated groups (which is
of strict type nn) and G has infinite virtual first Betti number. Here we define the
first Betti number ˇ1.G/ to be the maximum integer m for which there is a surjective
homomorphism from G to Zm. The virtual first Betti number of G is the supremum
of ˇ1.H/ where H varies over all the finite index subgroups of G. If we restrict
ourselves to finitely presented groups and define the deficiency of a finite presentation
to be the number of generators minus the number of relators, a well-known result of
B. Baumslag and S. J. Pride in [7] is that groups with a presentation of deficiency at
least 2 are large.

The results in this paper follow on from [27] where the question considered was
which groups with a deficiency 1 presentation are large. Clearly Z and Z�Z are not,
and neither are the soluble Baumslag–Solitar groups BS.1; n/, where the Baumslag–
Solitar group BS.m; n/ has the presentation hx; y j yxmy�1 D xni. There are other
cases, such as BS.2; 3/, but no more residually finite examples are known (indeed all
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others are “far from being residually finite” in a sense that will be made precise in
Section 4).

However in [27] many families of deficiency 1 groups which are all large were
found. In particular if Fn is the free group of rank n then it was shown that free-
by-cyclic groups Fn Ì˛ Z are large for n � 2 if they contain Z � Z, which is
equivalent here to not being a word hyperbolic group. The question of whether
Fn Ì˛ Z is large in the word hyperbolic case was left open, and up until now not
a single large example was known. In Section 2 we show that if ˛ is a reducible
automorphism then Fn Ì˛ Z is large provided that free-by-cyclic groups have finite
index subgroups with first Betti number at least 2. This was raised by A. Casson
in [8] Question 12.16. Although still unknown in the word hyperbolic case, if ˛

is a specific reducible automorphism then we merely require for largeness that two
particular free-by-cyclic groups have virtual first Betti number at least 2: these are
the one obtained by restricting (a suitable power of) ˛ to the invariant free factor,
and the free-by-cyclic group formed by quotienting out the invariant free factor. By
taking a specific word hyperbolic group in the literature which is of the form F3 Ì˛ Z
and using it to make a reducible automorphism, we obtain Corollary 2.4 which gives
the first group of the form Fn Ì˛ Z which is known to be both word hyperbolic and
large. It double covers a group with the same properties which has a most succinct
presentation: ht; a j t6at�4a�1t�2a�1i.

We have mentioned that the property of residual finiteness should increase the
chances of a deficiency 1 presentation being large. For instance all groups of the
form Fn Ì˛ Z are residually finite. In Section 3 we look at deficiency 1 groups which
are LERF (also known as subgroup separable). This is considerably stronger than
residual finiteness, so we would expect these groups to be large (with three obvious
exceptions). Once again though the problem is finding a finite cover with first Betti
number at least 2. We prove in Theorem 3.3 that if G is a LERF group with a presen-
tation of deficiency 1 and has such a finite cover then G is large or the fundamental
group of the torus or Klein bottle. A recent result in [47] of D. Kochloukova is used in
Theorem 3.1 to show that the only possible exceptions to LERF deficiency 1 groups
being large (apart from Z and these two groups) are word hyperbolic groups of the
form FnÌ˛Z. This at least gives us in Corollary 3.2 that all but these three deficiency 1

LERF groups are SQ-universal, but we are prevented from concluding largeness until
Casson’s question is settled (at least in the LERF case, but even here this seems open).
We also look at the question of a type of Tits alternative for deficiency 1 groups which
would say that such a group is either soluble or contains a non-abelian free group.
The result in [47] mentioned above very nearly established this, but one case is still to
be resolved. We show in Corollary 3.4 that this is true if G has a finite index subgroup
with first Betti number at least 2. However it is not true that all finitely generated
subgroups of G will either be virtually soluble or contain a non-abelian free group,
and Example 3.5 is such a group which has deficiency exactly 1.

Another much studied class of groups are those with a 1-relator presentation. The
intersection of 1-relator and deficiency 1 groups is the class of 2-generator 1-relator
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presentations. Although groups of this form have strong properties, it is not known
which ones are large. Moreover we would like to be able to deduce largeness using
only information obtained directly from the presentation rather than needing to know
a priori that the group has special properties such as residual finiteness.

In Section 4 we settle this question for a particular class of 2-generator 1-relator
presentations. Given any relator in 2 variables we can make a change of basis of F2

to fa; tg such that the exponent sum of t in the relator is zero. We say that r has
height 1 if appearances of t˙1 in r are such that t alternates with t�1. Although this
is a restricted set of relators, it is the case that nearly all of the 2-generator 1-relator
groups in the literature which have unusual or nasty properties (we review these in
that section) are given by height 1 words.

We establish a major dichotomy of groups G with height 1 presentations in Theo-
rem 4.1 which states that either G is large or all its finite images are metabelian. If
G is not a soluble Baumslag–Solitar group but is in the latter case then G contains
a non-abelian free group, so is far from being metabelian and hence far from being
residually finite. We also apply a famous result of Zelmanov on pro-p groups which
allows us in Corollary 4.2 to distinguish between the two cases: G is large if and only
if it has a finite index subgroup whose abelianisation requires at least 3 generators,
which is a condition that can easily be checked on a computer.

Section 5 is a collection of open questions encountered during the preparation of
this work which, although some of these might be well known, we have not found in
the standard problem lists. They are all on finitely generated and finitely presented
groups and the list begins with the most wide ranging questions and then gradually
specialises, ending with unsolved problems that are the most relevant to this paper.

The author would like to thank J. Hillman for bringing his attention to the pa-
per [47].

2. Reducible free-by-cyclic groups

A powerful method for proving largeness directly from a given finite presentation is
to apply Howie’s result which is Theorem A in [44]. This tells us that if there is a
homomorphism � from a finitely presented group G onto Z such that the Alexander
polynomial �G;�.t/ 2 ZŒt˙1� relative to � is identically zero then G is large (indeed
the proof shows that a finite index subgroup containing ker � surjects onto a non-
abelian free group). However not only do we need the abelianisation xG D G=G0 of
G to be infinite in order to have a homomorphism onto Z in the first place, we also
have that if xG D Z � T for T finite then j�G;�.1/j divides the order of T . Thus we
will not be able to use this criterion for largeness unless the first Betti number ˇ1.G/

is at least two, or we can find a finite index subgroup with this property. (In fact
Howie’s theorem is also true if the mod p Alexander polynomial �

p
G;� 2 F Œt˙1� for

F D Z=pZ is zero and we will use this in later sections, but for now we will stick to
the characteristic zero version.)
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Given a finitely presented group G D hx1; : : : ; xm j r1; : : : ; rni which does have a
homomorphism � onto Z where K D ker �, we can regard K=K 0 as a ZŒt˙1�-module
where t acts by conjugation on K using an element of ��1.1/. Moreover we can
obtain a finite presentation for this module K=K 0 by using the Reidemeister–Schreier
rewriting process to go from a group presentation for G to a group presentation for
K, and then abelianising the relations. Although this will result in infinitely many
group relations there are only finitely many orbits under the action of t . The result is
an .m � 1/ by n presentation matrix M for K=K 0 and we can assume that n � m � 1

by adding zero columns if necessary. We then define the Alexander polynomial
�G;� 2 ZŒt˙1� to be the highest common factor of the .m � 1/ by .m � 1/ minors of
M ; it is the same (up to units in ZŒt˙1�) for any finite presentation of G.

The fact that a zero Alexander polynomial implies largeness is particularly useful
for groups G with a presentation of deficiency 1 because the resulting matrix is
square and so we are merely evaluating the determinant to obtain the Alexander
polynomial. In particular if we find that one row or column consists entirely of
zeros then we immediately conclude largeness. We do have the problem mentioned
above that we need ˇ1.G/ � 2 for this to happen, however another advantage of
deficiency 1 presentations is that for any finite index subgroup H of G (for which we
write H �f G) the Reidemeister–Schreier rewriting process results in a deficiency 1

presentation for H . As H is large if and only if G is, we can hope that there is a
subgroup H with ˇ1.H/ � 2.

A large class of deficiency 1 presentations comes from the free-by-cyclic groups:
let F be a free group and ˛ an automorphism of F . Then we can form the semidirect
product (also called the mapping torus) F Ì˛ Z. If Fn is the free group of rank n

with free basis x1; : : : ; xn then Fn Ì˛ Z has the presentation

hx1; : : : ; xn; t j tx1t�1 D ˛.x1/; : : : ; txnt�1 D ˛.xn/i: (1)

The following facts are known about free-by-cyclic groups F Ì˛ Z; see [27], Section 5
and references within.

(1) If F is of infinite rank then F Ì˛ Z may be finitely or infinitely generated. If
F Ì˛ Z is infinitely generated then it need not be large, nor residually finite,
but if it is finitely generated then it is residually finite and finitely presented.
Moreover it has a presentation with deficiency at least 2, so is large.

(2) Fn Ì˛ Z is residually finite, has deficiency exactly equal to 1 and any finite index
subgroup is also of the form Fm Ìˇ Z, so also has deficiency exactly 1.

(3) Fn Ì˛ Z is word hyperbolic precisely when it does not contain a subgroup
isomorphic to Z � Z. If it does and n � 2 then it is large. However it is
not known whether word hyperbolic groups of the form Fn Ì˛ Z are large. A
problem in [8] due to Casson is whether a group G D Fn Ì˛ Z with n � 2

always has H �f G with ˇ1.H/ � 2. Whilst this is true if G contains Z � Z,
it is unknown in general if G is word hyperbolic and so we will need to take this
as an assumption.
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An automorphism ˛ of the free group Fn for n � 2 is said to be reducible if there
exist proper non-trivial free factors R1, : : : , Rk of Fn such that the conjugacy classes
of R1, : : : , Rk are permuted transitively by ˛ (see [11]).

Theorem 2.1. Assume that any group of the form Fn Ì˛ Z for n � 2 has a finite
index subgroup with first Betti number at least 2. Then if G D Fn Ì˛ Z for ˛ a
reducible automorphism, we have that G is large.

Proof. Our group G will have a presentation as in (1) and so for each positive integer
k there exists the cyclic cover of G which is the index k subgroup Fn Ì˛k Z generated
by tk and Fn. If ˛ is reducible then on replacing ˛k by ˛ we can assume Fn D A�B

with A and B proper free factors and ˛.A/ is sent to a conjugate of A. However on
now composing ˛ with an appropriate inner automorphism (which does not change
the free-by-cyclic group) we can assume that ˛.A/ D A. From now on this will be
our G.

We define the free-by-cyclic group Gr by restricting ˛ to A. Our assumption
means that we can take a finite index subgroup of Gr with first Betti number at
least 2 (and note that if A has rank 1 then we can do this as well). But every finite
index subgroup of Fn Ì˛ Z contains one of the form Fm Ì˛k Z where Fm �f Fn

and ˛k.Fm/ D Fm. Moreover the first Betti number does not decrease in finite
covers. Doing this for Gr , we have A0 �f A and a power of ˛ fixing A0 (which we
again replace by ˛) to get a finite index subgroup L D ht; A0i of Gr with ˇ1.L/ � 2.
However a result of Marshall Hall, Jr., states that as A0 is a finitely generated subgroup
of Fn D A � B , there is a finite index subgroup E of Fn with A0 a free factor, so
we have E D A0 � S for some S and, as A0 does not have finite index in Fn, S is
non-trivial. Again taking a power of t , we can assume that ˛j .E/ D E as there are
only finitely many subgroups in Fn of each finite index.

We are now ready to look at a finite presentation for the finite index subgroup
J D htj ; Ei of G, which we obtain by first examining a suitable finite presentation
for L D ht; A0i. Let us take a free basis a1, : : : , al for A0, where l is the rank of
A0, and a similar one for S . Let N̨ be the automorphism of Zl induced by ˛ when
A0 is abelianised. Because ˇ1.L/ � 2 we must have a non-zero u 2 Zl such that
N̨ .u/ D u, and so we can extend u (or u=n for some positive integer n) to a basis for
Zl . Now we can find an automorphism of A0 Š Fl sending the basis a1, : : : , al to
x1, : : : , xl where x1 goes to u under abelianising. Thus ˛.x1/ D x1c.x1; : : : ; xl/

where c is a word in the commutator subgroup F 0
l

of Fl , and the same is true (with a
different c) for any power of ˛. Therefore on setting � D tj we obtain a deficiency 1

presentation for J of the form in (1) where the first l relations are of the form
�xi�

�1 D wi .x1; : : : ; xl/ where wi are reduced words in Fl .
Now suppose there exists a surjective homomorphism � from J to Z with the

property that � and all of A0 are in ker �. When we form the square matrix M

with entries in ZŒx˙1� in order to calculate the polynomial �J;�.x/, all the letters
appearing in the first relation are in the kernel of �. Therefore we have that the
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first column of M consists in turn of the exponent sum of � , x1, : : : , xl and then
zeros in the other places because the latter rows correspond to generators in this
presentation for J which do not even appear in the first relation. However the exponent
sums of the generators � , x1, : : : , xl that do appear are all zero so we have a zero
column in a square matrix, meaning that �J;� is the zero polynomial so J , and G,
are large.

In order to find such a homomorphism, we must again use our assumption on
finite covers with first Betti number at least 2. From G we obtained the “reduced”
free-by-cyclic group Gr by restricting ˛ to A. Although the definition of a reducible
automorphism means that we cannot assume ˛.B/ D B even if ˛.A/ D A, we can
form the “quotient” free-by-cyclic group Gq by taking the “quotient” automorphism
Q̨ of B . This is formed by letting � W A � B ! B be the homomorphism with kernel
the normal closure of A and then we define Q̨ .b/ D �˛.b/ for b 2 B . Note that Q̨
is surjective because ˛ and � are, and the Hopfian property of finitely generated free
groups means that Q̨ is an automorphism. Also there is a natural homomorphism �

from G to Gq D hs; Bi given by sending t to s and “ignoring” A; this is well defined
because ˛.A/ D A.

Now we apply our assumption to obtain a finite index subgroup H of Gq with
ˇ1.H/ � 2 and without loss of generality we can assume H is of the form hsi ; C i
for C �f B and some i 2 N. In fact as cyclic covers of H will also have first
Betti number at least 2, we can replace i with j by taking multiples so that they are
both equal to ij . As ˇ1.H/ � 2, we must have a homomorphism Q� from H onto
Z with Q�.sj / D 0. We then consider the subgroup of G which is ��1.H/ \ J . As
each of these subgroups has finite index in G, so does their intersection. We can
take our finite presentation above for J and use this to rewrite for the finite index
subgroup ��1.H/ \ J . Note that tj is in ��1.H/ and this presentation will also
have deficiency 1. Also the generators that we used for A0 are in ker � so are in
��1.H/ too. Hence in going from our old presentation to our new one, our valuable
relation survives intact. But the homomorphism Q�� W ��1.H/ ! Z can be restricted
to ��1.H/ \ J which has finite index in ��1.H/. Without loss of generality this
restriction is surjective and moreover all the generators in our special relation end up
being sent to the identity by Q�� , so we are done.

Corollary 2.2. Assume that any group Fn Ì˛ Z for n � 2 has a finite index subgroup
with first Betti number at least two. Suppose that the group G can be written in the
form Fn Ì˛ Z and there exists a finitely generated subgroup A of Fn which is non-
trivial and of infinite index in Fn, whose conjugacy class has a finite orbit under ˛.
Then G is large.

Proof. By taking cyclic covers and an inner automorphism, we can assume that
˛.A/ D A. Although A may not be a free factor of Fn, we can again use Marshall
Hall’s result to find S (with A and S non-trivial) such that A � S D Fm and Fm has
finite index in Fn. We now take the appropriate power ˛i of ˛ that fixes Fm. Then
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the subgroup H D Fm Ì˛i Z has finite index in G, with ˛i reducible when restricted
to Fm, so H is large by Theorem 2.1.

However we have not seen a single example of a word hyperbolic group of the
form Fn Ì˛ Z which is large. Although it seems as if we need to wait for Casson’s
question on finite index subgroups with first Betti number at least two to be settled
positively, we can manage without this in specific cases. If we have an automorphism
˛ of Fn D A � B with ˛.A/ D A, where A and B are proper free factors, and we
form the free-by-cyclic group G then the proof of Theorem 2.1 was set out so that it is
enough to find finite index subgroups with first Betti number 2 of both the restriction
Gr D A Ì˛ Z and the quotient Gq D B Ì Q̨ Z. If we have a presentation for G as in
(1) and our free basis for Fn is obtained by putting together ones for A and B then
we instantly get finite presentations for Gr and Gq which we can then feed into a
computer and ask it to enumerate finite index subgroups and their abelianisations.

This allows us to check largeness of free-by-cyclic groups G formed by reducible
automorphisms ˛. If we require a word hyperbolic example then it is necessary that
G contains no Z � Z subgroup, or equivalently ˛ has no periodic conjugacy classes.
Moreover this is sufficient for a group of the form Fn Ì Z to be word hyperbolic
by [9], [10] and [19]. Thus it is straightforward to create reducible word hyperbolic
examples by a “doubling” process.

Lemma 2.3. If A Ì˛ Z is word hyperbolic where A is isomorphic to Fn and ˛ is an
automorphism of A then .A � B/ Ì˛ Z is also word hyperbolic, where B is a copy of
A and the action of ˛ on B is the same as on A.

Proof. Suppose we have w 2 A � B with ˛k.w/ equal to a conjugate of w for k � 1.
Then w is not in A or B , so we can ensure (by conjugation in A � B if necessary)
that w D a1b1 : : : anbn where ai 2 A � feg and bi 2 B � feg. Now on setting
a0

i D ˛k.ai / which is in A and b0
i D ˛k.bi / in B , we have that w and a0

1b0
1 : : : a0

nb0
n

are conjugate, with both words cyclically reduced in a free group, meaning that there
must be j so that (taking subscripts modulo n) a0

i D aiCj and b0
i D biCj . But then

˛kn.ai / D .ai /, giving a Z � Z subgroup in A Ì˛ Z.

Note that in this case if G D .A � B/ Ì˛ Z then both Gr and Gq are isomorphic
to the original group A Ì˛ Z.

We now need to find explicit examples of word hyperbolic groups of the form
Fn Ì˛ Z. To achieve this we use results in [39] and [66]. An automorphism ˛

of Fn gives rise to an automorphism of the abelianisation Zn of Fn which is well
defined for outer automorphisms, as is the definition of reducibility of ˛. In the
former paper Corollary 2.6 states that if we have an outer automorphism O of Fn

such that the characteristic polynomial of the induced automorphism of Zn is a PV-
polynomial (which means that the polynomial is monic and has exactly one root with
modulus greater than one (counted with multiplicity) and no roots on the unit circle)
then Ok is irreducible for k � 1. They then obtain as Corollary 2.8 that if ˛ is an
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automorphism of Fn for n � 3 where the corresponding characteristic polynomial
is a PV-polynomial then ˛.w/ D w implies that w D e. Moreover ˛ can have no
periodic conjugacy classes because ˛k will also have the same property, and if ˛ (or
˛k) sends w to a conjugate then we multiply ˛ (or ˛k) by an inner automorphism
which does not change the characteristic polynomial.

The latter corollary is proved by applying [11], Theorem 4.1, which states that
if Ok is irreducible for k � 1 and O fixes a conjugacy class then O is geometri-
cally realised by a pseudo-Anosov homeomorphism of a compact surface with one
boundary component. But [66] shows that automorphisms of Fn with a characteristic
polynomial that is a PV-polynomial are not geometrically realisable for n � 3 by
considering the eigenvalues (note that F2 Ì˛ Z is never word hyperbolic because
the commutator of the generators gives rise to a conjugacy class that is fixed or of
period 2). An example is given: G0 D F3 Ì˛ Z where ˛.x/ D y, ˛.y/ D z,
˛.z/ D xy.

Corollary 2.4. The F6-by-Z group

G D ht; a; b; c; x; y; z j tat�1 D b; tbt�1 D c; tct�1 D ab;

txt�1 D y; tyt�1 D z; tzt�1 D xyi
is word hyperbolic and large.

Proof. That G is word hyperbolic follows from the facts quoted above: namely
G0 D F3 Ì˛ Z has no periodic conjugacy classes, so Lemma 2.3 shows that G also
has no periodic conjugacy classes, thus is word hyperbolic. That G is large follows
from applying the proof of Theorem 2.1 to G with Gr D Gq D G0, and from the
output of a computer. Inputting the presentation of G0 into MAGMA and asking for
the abelianisation of its low index subgroups, we find (after a bit of a wait, although
it is more quickly checked) that G0 has an index 14 subgroup (with generators x, y,
z2, zxz�1, zyz�1; zt�7) with abelianisation C2 � C4 � Z � Z.

We also note that G is the double cover of the automorphism which sends in
turn a to x to b to y to c to z to ab. Here all other generators except t and a can
be eliminated to get the 2-generator 1-relator F6-by-Z word hyperbolic large group
ht; a j t6at�4a�1t�2a�1i.

3. LERF groups of deficiency 1

Not all groups with a deficiency 1 presentation can be large, as evidenced by the
Baumslag–Solitar groups BS.m; n/ D ha; t j tamt�1 D ani for m, n non-zero
integers, where we can take without loss of generality m > 0 and jnj � m. We
have that BS.m; n/ is large if and only if m and n are not coprime. For m D 1 we
have a soluble group (and it is known that a virtually soluble group of deficiency 1
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must be isomorphic to BS.1; n/ or to Z), but otherwise BS.m; n/ contains a non-
abelian subgroup, thus it is not true that Baumslag–Solitar groups are either virtually
soluble or large. However most of these groups are not residually finite (for this we
require m D 1 or m D jnj) and so if we stick to residually finite Baumslag–Solitar
groups, we do have this dichotomy. Thus we could consider residually finite groups
of deficiency 1: in fact we know of no example of such a group which is not virtually
soluble but not large.

In order to make progress we impose an even tighter condition on our deficiency 1

group G, which is that it is LERF (locally extended residually finite, also known
as subgroup separable). This means that every finitely generated subgroup is an
intersection of finite index subgroups. The big advantage of this is a result of Lubotzky
in [51] that if a LERF group G can be written as an HNN extension H�� which is
non-ascending, that is both the domain A of � and the image B are strictly contained
in H , then G is large if A is finitely generated. This is because G surjects to an HNN
extension of a finite group which is virtually free, and the LERF property applied to
A means that this HNN extension will also be non-ascending, thus it is virtually free
but not virtually cyclic.

Theorem 3.1. If G is LERF and of deficiency 1 then either G is large or G is of the
form Fn Ì Z.

Proof. As there must be a surjective homomorphism � from G to Z, we have by [15]
that the finitely presented group G is an HNN extension of a finitely generated group
H with finitely generated associated subgroups A and B . We say that an HNN
extension is ascending if at least one of A or B is equal to the base H , and it is strictly
ascending if exactly one is. We then have that if this HNN extension is not ascending
then G is large by the above. But if say H D A then G D ht; H i where t is the stable
letter and we have tHt�1 � H . By a result of Blass and P. M. Neumann, a LERF
group cannot have a finitely generated subgroup conjugate to a proper subgroup of
itself, so tHt�1 D H and we conclude that H E G with G D H Ì Z. Now we
can use a recent result of Kochloukova. We have by [42] Theorem 6 that if G has
deficiency 1 and is an ascending HNN extension of a finitely generated group then G

has geometric (hence cohomological) dimension at most 2. But Theorem 3 in [47]
is as follows: Let G be a non-trivial group with a finite K(G,1) CW-complex of
dimension n with Euler characteristic 0. Suppose that N is a normal subgroup of
G containing G0 which is of homological type FPn�1 and G=N is cyclic-by-finite.
Then N is of type FPn. Consequently we conclude by putting H equal to N that H

is of type FP2, but a result of Bieri which is Corollary 8.6 in [12] gives us that the
cohomological dimension of H is 1 and thus H is free.

It should be noted that groups of the form Fn Ì Z are not necessarily LERF. The
first example is ht; a; b j tat�1 D ab; tbt�1 D bi due to Burns, Karrass and Solitar
in [24] and is also famous for being the first 3-manifold group known not to be LERF.
Also Corollary 3 of [55] gives further examples.
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Consequently if we had that Fn Ì Z was large for n � 2 we would have the
strongest possible result: either a deficiency 1 LERF group is large or it is Z, Z � Z
or the Klein bottle group BS.1; �1/. However we can move in two directions from
this result. The first is to relax the property of largeness to that of G being SQ-
universal (every countable group is a subgroup of a quotient of G) which in turn is
stronger than containing the free group F2. As groups of the form Fn Ì Z for n � 2

are either large by [27] or hyperbolic, hence SQ-universal by [62], we immediately
get:

Corollary 3.2. A LERF group of deficiency 1 is either SQ-universal or is one of Z,
Z � Z, BS.1; �1/.

A conjecture of P. M. Neumann from 1973 is that there is a dichotomy for any
1-relator group: either it is SQ-universal or it is a soluble Baumslag–Solitar group
or Z. Of course if there are at least 3 generators then later it was shown that we
have largeness, but the conjecture remains open in the 2-generator 1-relator case.
Corollary 7.5 in [27] showed this to be true if the group is LERF, so in light of
Corollary 3.2 we wonder if P. M. Neumann’s conjecture extends to all deficiency 1

groups, or (more cautiously) to all residually finite deficiency 1 groups.
The other improvement that we can make to Theorem 3.1 is to give further con-

ditions guaranteeing largeness. It might not be a surprise in light of Section 2 that
once again it comes down to requiring first Betti number at least two.

Theorem 3.3. If G is LERF, of deficiency 1 and has a finite index subgroup with first
Betti number at least 2 then G is large or Z � Z or the Klein bottle group.

Proof. We assume that ˇ1.G/ D b � 2 and is LERF (which is a property preserved
by all subgroups). We consider the BNS (Bieri–Neumann–Strebel) invariant † of G

which is an open subset of Sb�1 and which gives information on the finite generation
of kernels of non-trivial homomorphisms from G to Z. The definition of † is given
in the introduction of [14], but we will only need to look at the rationally defined
points of Sb�1. We can regard these rationally defined points as equivalence classes
of (nontrivial) homomorphisms �, �0 from G to Z according to the relation � D q�0
for q 2 Q and q > 0. Then by [14], Proposition 4.3, we have that Œ�� is in † if
and only if G can be expressed as an ascending HNN extension ht; H i, as defined
in Theorem 3.1, with associated homomorphism � (that is �.t/ D 1 and �.H/ D 0)
and with H finitely generated. Moreover ker � is finitely generated if and only if Œ��

and Œ��� are both in †. Now for a LERF group G, if there exists � with neither of
Œ˙�� in † then G is large, as in Theorem 3.1. Otherwise one of Œ˙�� is in † for
every homomorphism � from G onto Z. But as the LERF condition means that we
cannot have G equal to a strictly ascending HNN extension ht; H i where H is finitely
generated, we must have both Œ˙�� 2 † for all possible �.

Now we use a result of Dunfield in [30]. One can regard the (multivariable)
Alexander polynomial �G.t1; : : : ; tb/ as a finite set of lattice points in Zb labelled
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with a non-zero integer by taking the monomials in �G with non-zero coefficient.
We can then form the Newton polytope N.�G/ � Rb which is the convex hull of
these points. Then [30] Theorem 5.1 states that if D.�G/ is the dual of N.�G/ in Rb

(so that faces of dimension i become faces of dimension b � i � 1) and F1, : : : , Fk

are the .b �1/-dimensional faces of D.�G/ whose corresponding vertices of N.�G/

have coefficient ˙1 then † is contained in the projection of the interiors of the Fi

to Sb�1.
So far we have not used the fact that b � 2. Now when b D 1 we get S0 D f˙1g

and the result above is saying that if � is the unique surjective homomorphism (up
to sign) from G to Z then ker � being finitely generated implies that the highest and
lowest terms of �G.t/ are monic. However if b � 2 then the fact that Œ�� 2 † for all
homomorphisms � implies that �G D 1. This is because if there are n � 2 vertices of
N.�G/ then we have .b � 1/-dimensional faces F1, : : : , Fn of D.�G/, and so when
we project the interiors of those faces which are obtained from the ˙1 coefficients,
we do not cover all of Sb�1 because we miss the lower dimensional faces where pairs
of elements of F1, : : : , Fn meet. Moreover there will be rationally defined points
which are not covered and therefore homomorphisms � with Œ�� not in †.

Hence if G is LERF and has ˇ1.G/ � 2 then the only way that G fails to be large
is if �G D 1, with ker � being finitely generated for all homomorphisms � onto Z.
However by [25], Theorem 3.1, we have for deficiency 1 groups that

�G;�.t/ D .t � 1/�G.t
n1

1 ; : : : ; t
nb

b
/

where ni is the image under � of any element in G which projects to ti under the natural
homomorphism from G to its free abelianisation Zb D ht1; : : : ; tbi. Consequently if
�G D 1 then for any � we have �G;� equal to t � 1. But the degree of �G;� is the
dimension of the Q-vector space H1.ker �I Q/ D H1.ker �I Z/ ˝Z Q, for which we
write ˇ1.ker �I Q/, and from [47] Theorem 3 we have that ker � is free, so it must be
free of rank 1 and therefore G D Z � Z.

Finally if G has deficiency 1 and has a finite index subgroup H D Z � Z then G

is either Z � Z or the Klein bottle group.

We will see in Section 4 that this theorem is not true if the LERF condition is
removed. If it is weakened to residually finite then this is unknown.

We can also finish off the proof without needing [47], Theorem 3, by considering
the Alexander polynomial �

p
G;� over Z=pZ. Although it is not true for a general

finite presentation, for the deficiency 1 case this is just the Alexander polynomial
�G;� over Z reduced modulo p. Consequently we must have ˇ1.ker �I Z=pZ/ D 1

and so ˇ1.GI Z=pZ/ � 2. But if this is true for all finite index subgroups H of G then
H=H 0 D Z�Z which cannot happen if G is residually finite by [27], Proposition 3.4,
unless G D Z � Z.

As for attempting to apply the above techniques to deficiency 1 groups which
are not LERF, we can squeeze out results on when a deficiency 1 group contains a
non-abelian free group (or equivalently contains F2). In [67] J. S. Wilson conjectures
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that if a finitely presented group G is such that def.G/ C d 2=4 � d > 0, where d

is the minimum number of generators for G=G0 (and assumed to be at least 2), then
G contains a non-abelian free group. (Ershov has recently proved in [35] that such a
group is non-amenable.)

For def.G/ D 1 this was established in [44], as Corollary 2.4 in that paper states
that if G is of deficiency 1 and N E G is such that G=N is non-trivial and free abelian
with N=N 0 ˝Z F having dimension at least 2 for some field F , then G contains F2.
Therefore on putting N D ker � for any �, we have that ˇ1.GI Z=pZ/ is at least 3

for some prime p, which implies that ˇ1.N I Z=pZ/ � 2.
We also have

Corollary 3.4. If G has deficiency 1 and virtual first Betti number at least 2 then G

contains F2 or is Z � Z or the Klein bottle group.

Proof. By [14] Theorem D, if a finitely presented group G does not contain F2 but
ˇ1.G/ � 2 then there exists K D ker � which is finitely generated and such that
G=K Š Z. Consequently by [47], Theorem 3, mentioned above, we have that K is
of type FP2 and hence free as before. Thus we are done unless K is free of rank 0

(but then G D Z so its virtual first Betti number is 1) or free of rank 1, giving the
two exceptions.

In fact it is widely believed that if G has deficiency 1 then it contains F2 unless
G D BS.1; n/. It is clear that the only case left is when ˇ1.G/ D 1 with 1 �
d.G=G0/ � 2, where d is the minimum number of generators of a finitely generated
group, and G is a strictly ascending HNN extension, so that S0 contains two points
with † one of them. The conjecture at the end of Section 2 in [13] is that in this case
G is a strictly ascending HNN extension with base a finitely generated free group.
The BNS invariant † of a finitely generated group G was later incorporated as one of
a family of n dimensional invariants †n.GI Z/ with † D †1.GI Z/. However it is
shown in this paper that † D †2.GI Z/ if G is a finitely presented group. Therefore
we would be done if we knew that having a rationally defined � with Œ�� 2 †2.GI Z/

implies that G is an ascending HNN extension over a base group of type FP2 with
associated homomorphism �. This would be the equivalent for n D 2 of the Bieri–
Neumann–Strebel result that Œ�� 2 † D †1.GI Z/ implies that the base is of type
FP1, i.e. finitely generated. In the special case of 2-generator 1-relator groups the
conjecture above is known: indeed in [53], Chapter II, Section 5, we have a “Tits
alternative” which says that a subgroup of a 1-relator group either contains F2 or is
soluble (whereupon it is locally cyclic, BS.1; n/ or infinite dihedral). However we
will not get such an alternative for arbitrary subgroups of deficiency 1 groups, or even
arbitrary finitely generated subgroups:

Example 3.5. Thompson’s group T has a finite presentation of two generators and
two relators but has the unusual property that it does not contain F2 nor is it virtually
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soluble. The group G D T �Z has deficiency at least one, and in fact it is exactly 1 as
we can use Philip Hall’s inequality that def.G/ � ˇ1.G/ � d.H2.GI Z// (see [64],
14.1.5). We have Hn.T I Z/ D Z � Z for all n � 1 by [21], Theorem 7.1, so that
by using the Meier–Vietoris sequence for a free product we get ˇ1.G/ D 3 and
H2.GI Z/ D Z � Z.

Therefore any formulation of a possible Tits alternative for subgroups of defi-
ciency 1 groups will need to avoid freely decomposable examples.

4. 2-generator 1-relator groups of height 1

So far our attempts to prove that various deficiency 1 groups are large have needed
some hypothesis on the group, such as being free-by-cyclic or LERF. In this section
we concentrate on 2-generator 1-relator groups and look for conditions where we
can conclude that such a group is large using information obtained directly from a
given presentation. We fall into two very different cases: a group G of the form
hx; y j r.x; y/i has ˇ1.G/ equal to either 1 or 2, the latter occurring exactly when
r 2 F 0

2. First let us concentrate on the former case. There is an automorphism ˛ of
F2, with let us say ˛.x/ D a and ˛.y/ D t , such that r.˛�1.a/; ˛�1.t// has exponent
sum 0 in t when written as a word w in a and t . This is a consequence of the fact
that the kernel of the natural map from Aut(F2) to Aut(F2=F 0

2/ Š GL.2; Z/ is the
group of inner automorphisms of F2. Thus by making a change of free basis for the
group F2 we can assume that the presentation is of the form ha; t j w.a; t/i where
the word w has exponent sum 0 in t and is cyclically reduced. Consequently we can
define the height of such words: we can rewrite w as a word in ai D t iat�i for i 2 Z
to obtain the new word v, but only finitely many letters ai will actually appear in v

(this is sometimes referred to as Magnus rewriting). If am is the smallest and aM the
largest letter to appear in v then the height of w is defined to be M � m � 0, which
is invariant under cyclic permutations and taking inverses.

If the height is zero then we can only have w D ai , so G is large (or Z for ji j D 1).
We now consider height one words where without loss of generality we can assume
that

w D tai1 t�1ai2 : : : tai2k�1 t�1ai2k ; so v D a
i1
1 a

i2
0 : : : a

i2k�1

1 a
i2k

0 : (2)

Note that for �.t/ D 1, �.a/ D 0 we have �G;�.t/ D .i1C� � �Ci2k�1/tCi2C� � �Ci2k

and for ˇ1.G/ D 1 this is the Alexander polynomial �G .
If ˇ1.G/ D 2 then the exponent sum of x and y is zero, so we can talk about

the height of either letter. Moreover a change of basis will preserve this property but
could well vary the heights. The results that follow are also satisfied by groups G

with ˇ1.G/ D 2, where we interpret a height 1 word as there exists a free basis where
the word has height 1 with respect to one of the letters. Given a finitely generated
group G, the finite residual RG is the intersection of all finite index subgroups of G.
Consequently it is the trivial subgroup if and only if G is residually finite.
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Theorem 4.1. If G D ha; t j wi where w is a height 1 word then either G is large or
the finite residual RG D G00, in which case G=RG is metabelian and all finite images
of G are metacyclic.

Proof. By writing w in terms of a0, a1 to get the word v as in (2), we see that G is
an HNN extension of the 1-relator group H D ha0; a1 j v.a0; a1/i with associated
cyclic subgroups A0 D ha0i and A1 D ha1i. We can now use Lubotzky’s result as
mentioned in the previous section: although it appears to require that G is LERF, all
we need to conclude largeness for G is the existence of a homomorphism � of G onto
a finite group with �.H/ ¤ �.A0/. Let us suppose that no such homomorphism
exists and let � be any homomorphism from G to a finite group. As �.H/ D �.A0/

which is cyclic and t conjugates a0 into H , we have that �.H/ is normal in �.G/ and
cyclic, with �.G/=�.H/ Š h�.t/i cyclic as well. This means that all finite images
of G are metacyclic and if x 2 G00 but x … RG , we would take a homomorphism
� from G onto a finite group F with �.x/ ¤ e so that F 00 is non-trivial, but this
is a contradiction. Consequently G00 � RG , but Philip Hall’s result that a finitely
generated metabelian group is residually finite implies that RG � G00.

Suppose G in Theorem 4.1 is not large, so that G=RG is metabelian. It is also
the case that the normal closure of the element a in G=RG , which is generated by
elements of the form t iat�i for i 2 Z, is not just metabelian but abelian. This is
because if there existed Œt iat�i ; a� … RG then we could take a finite image of G in
which this was also non-trivial, but this contradicts the fact that the cyclic group hai
is normal in every finite image. We will use this fact in the following discussion of
height 1 groups which are not large.

This gives us a strict dichotomy in the behaviour of height 1 presentations. How-
ever the result does not tell us how to work out in which category a given presentation
falls. Luckily there is a straightforward way of determining largeness once a major
result of Zelmanov is used.

Corollary 4.2. If G D ha; t j wi where w is a height 1 word then G is large if and
only if there exists H �f G with d.H=H 0/ � 3, where d is the minimum number of
generators of a finitely generated group.

Proof. The only if direction is clear. [68] states that if we have a finite presentation
P of a group G with def.P / C d 2=4 � d > 0 where d D d.G=G0/ is at least 2 then
there exists a prime p such that the pro-p completion of G contains a non-abelian
free pro-p group. In our case the deficiency is 1, so this is true if d � 3. But if
G00 D RG then all finite images F of G have F 00 trivial, so this is also true for the
profinite or pro-p completion of G. Consequently any pro-p completion is soluble
and cannot contain a non-abelian free group.

However G is 2-generated, so we cannot have d.G=G0/ � 3 in any case. But for
H �f G we still have deficiency 1, with H 00 � G00 and RG D RH , so if G00 D RG

and d.H=H 0/ � 3 we have a contradiction.
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We now give a summary of height 1 group presentations that have appeared in the
literature. If we define the length of height 1 words to be k in (2) then it is clear that
length 1 words are just the standard presentations of the Baumslag–Solitar groups
BS.m; n/. In [4] Baumslag introduced a family C.m; n/ of groups with presentations

ha; t j .tat�1/am.tat�1/�1 D ani
which generalises the group C.1; 2/ that first appeared in [2] with the comment that
they are 1-relator groups which are as far from being residually finite as possible.
For our purposes we will interpret a finitely generated group G as being “as far from
being residually finite as possible” in three ways: the first is that G (is infinite but)
has no proper finite index subgroups whatsoever, or equivalently G D RG . However
this will never arise with deficiency 1 groups as G=G0 is infinite.

The next strictest interpretation is that (G is non-abelian but) G0 D RG , or
equivalently every finite image is abelian. To be succinct, we will say that G is
proabelian because this is equivalent to the profinite completion of G being proabelian
(or abelian). This property of finitely generated groups was examined in [27]. A
finite index subgroup of a proabelian group is also proabelian and a finitely presented
proabelian group G (with ˇ1.G/ > 0) has �G D 1 (which can be seen because
the Alexander polynomial of G is the same as that of G=RG and this will be 1 for
finitely generated infinite abelian groups). If G is a deficiency 1 group with the
abelianisation G=G0 equal to Z � T then G being proabelian and ˇ1.G/ D 1 implies
that T must be trivial because here j�G.1/j D jT j. We cannot have d.G=G0/ � 3

from above, so that if G is proabelian and ˇ1.G/ � 2 then G=G0 D Z�Z. Moreover
if H=H 0 D Z for all H �f G (or H=H 0 is Z � Z throughout) then G is proabelian
by [27] Proposition 3.4. In particular if G has deficiency 1 with ˇ1.G/ D 2 then
either G is proabelian (so that G=RG D Z � Z) or a pro-p completion of G contains
a non-abelian free pro-p group (so that G=RG is “big”).

The first example of a proabelian finitely generated group that is given by a
1-relator presentation is C.1; 2/; indeed every finite image is cyclic as the abeliani-
sation of C.1; 2/ is Z.

Finally we could also look at when (G is not metabelian but) G00 D RG , or
equivalently every finite image is metabelian, for which we will similarly write that
G is prometabelian. As we have RG � G00 for any finitely generated group (although
not necessarily RG � G000) this is also a natural concept, with a prometabelian group
G being proabelian if and only if G0 D G00. Moreover it is also fair to say that
finitely generated proabelian and prometabelian groups are “as far from being large
as possible”.

If we have a height 1 group G D ha; t j w.a; t/i D ha0; a1; t j ta0t�1 D
a1; v.a0; a1/i which is not large then by the comment after Theorem 4.1 we have
that a0 commutes with a1 in G=RG . In particular if the exponent sum of a0 in
v.a0; a1/ is d and that of a1 is c then G=G00 has the presentation

ha; t j tact�1 D a�d ; Œt iat�i ; a� for i 2 Zi;
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which is the same as for BS.c; �d/=BS.c; �d/00. Thus any result which depends
purely on the finite images of BS.m; n/ for m and n coprime applies identically
for any non-large group G of height 1 (and if c and d are not coprime then G is
large anyway). In particular the formulae for the number of finite index subgroups
of BS.m; n/ in [37] and the number of finite index normal subgroups in [26] apply
equally for G. However there is a potential problem here: we do not know whether
these groups are merely nonstandard presentations of BS.m; n/. For instance on
putting b D a2 and substituting in for the standard presentation of BS.2; 3/ we have
a D tbt�1b�1 and so we obtain an alternative height 1 presentation

hb; t j tbt�1b�1tbt�1b�2i:
The problem is a lack of invariants which are able to distinguish that two given
presentations do not define isomorphic groups. We see in these cases that any such
invariant which is calculated using information obtained solely from the finite images
of a group is here doomed to failure.

As for 1-relator proabelian groups that are not abelian, we can only have pre-
sentations with 2 generators. We have already mentioned C.1; 2/ above and in [33]
the example C.2; 3/ was introduced where it was shown that for all H �f C.2; 3/

we have H=H 0 D Z, so C.2; 3/ is proabelian by [27], Proposition 3.4. Moreover
if we regard C.2; 3/ as an HNN extension of BS.2; 3/ by adding the stable letter s

with sas�1 D t then we can iterate this process indefinitely and keep on obtaining
new 1-relator height 1 group presentations. This HNN extension when applied to
C.1; 2/ was also used in [28] to give an example of a higher dimensional knot whose
infinite cyclic cover is not simply connected but which has no proper finite covers.
The group C.1; 2/ (which is sometimes referred to as the Baumslag–Gersten group)
also appears in [38] where it is shown that its Dehn function grows faster than every
iterated exponential, and again in [22] where it is shown that it is isomorphic to

ha; t j .ta2k

t�1/a.ta2k

t�1/�1 D a2i
for any k � 0. The paper [23] considers a more general family D.k; m; n/ containing
the groups C.m; n/ where the conjugating element tat�1 can be takt�1. These were
used in [17] to give a pair of non-isomorphic 1-relator groups, each of which is a
homomorphic image of the other. Also the examples

ha; t j .tkat�k/a.tkat�k/�1 D a2i
of proabelian groups for k � 1 are mentioned in [57]: note this implies that a
proabelian 1-relator group can have arbitrary height.

We can incorporate all of these examples in the next result. Although the proof
is really that of Higman in [40] when giving the first example of an infinite finitely
generated simple group, the aim here is to express it in as general terms as possible.
A very similar interpretation of Higman’s result is Lemma 2 in [6].
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Theorem4.3. Suppose that g and h are elements of a finite group F with hkgmh�k D
gn for integers k, m, n where jm � nj D 1. Suppose further that g and h have equal
orders. Then this order is always 1.

Proof. If r is the order of g and h then by considering hrkgmr
h�rk which is equal

to gnr
, we must have r dividing mr � nr . So if r ¤ 1 and p is the smallest prime

dividing r , we have .mn�1/r 	 1 mod p where we can assume without loss of
generality that n and p are coprime. Thus the order of mn�1 divides r and p � 1 so
p divides m � n D ˙1.

Corollary 4.4. Suppose that H D ha; t j w.a; t/i where w has exponent sum 0 in t

and is of height 1. Then the HNN extension G D hH; si, where sas�1 D t , is large
if H=H 0 ¤ Z and proabelian if H=H 0 D Z, but H is not large.

Proof. G D ha; s j w.a; sas�1/i is also a 1-relator group of height 1 and if the
Alexander polynomial of H (with respect to the homomorphism �.t/ D 1, �.a/ D 0)
is f .t/ D ct C d then that for G is c C d D f .1/. However as H is a group with a
deficiency 1 presentation, we have that jf .1/j is the order of T , where H=H 0 D Z�T .
Consequently if T is non-trivial then we can take a prime p dividing the order of T .
We then use the fact that as G also has a presentation of deficiency 1, the mod p

Alexander polynomial for G is just the Alexander polynomial for G reduced mod p

and so is 0 here. Thus G is large by Howie’s result.
Now suppose that jT j D 1 and H is not large. Let � be any homomorphism from

G to a finite group F . We have that in F the relation tact�1 D a�d holds because
�.H/ is a finite image of H and H 00 D RH . But t and a are conjugate in F via the
image of s, so we can use Theorem 4.3 to conclude that �.t/ D �.a/ D e. Thus the
image of G in F is generated by �.s/.

Note that this means the group C.m; n/ above is not large if and only if jm�nj D 1.
This is in disagreement with [4], Theorem 4, where Part 2 states (but proofs are not
given) that C.m; n/ is proabelian if m and n are distinct primes. However in Section 3
of that paper it is mentioned that if m D n C 1 then C.m; n/ is proabelian, so we
believe that is what was meant in the theorem.

Corollary 4.2 allows us, with the help of a computer, to gather statistics on what
proportions of height 1 groups G are large by searching through finite index subgroups
H of G until d.H=H 0/ � 3, or until we give up on this method and begin to suspect
that G might not be large. This is done in [29], Section 3.2, where we looked at all
words w.a; t/ with exponent sum zero in t and of height 1, up to word length 14. We
found that all words give rise to large groups, apart from Baumslag–Solitar groups
with coprime parameters along with a table of about 20 entries. Each of these is either
a Baumslag–Solitar group (but not given by the standard presentation) or one from
the family D.k; m; n/, with the possible exception of two words of length 13, where
we could not identify the group nor determine largeness. We note here in relation to
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Corollary 4.4 that the computer tells us that the group ha; t j ta2t�1a�1ta�1t�1a�1i
is large but has Alexander polynomial t � 2, which is the same as for BS.1; 2/, and
forming the HNN extension of this group using sas�1 D t results in a height 1 group
which is large but with Alexander polynomial equal to 1.

Corollary 4.5. If G0 D ha; t j wi is proabelian then G1 D ha; t j vkwmv�k D wni
is proabelian, where v is a conjugate element of w in F2 and jm � nj D 1.

Proof. Given any finite image F of G1, we set h equal to the image of v and g equal
to the image of w and apply Theorem 4.3. We conclude that the image of w is trivial
in F , so F is a finite image of G0 and hence is abelian.

Thus we see how to create lots of proabelian 1-relator groups by starting with
w D a (or indeed w equal to any element of a free basis for F2) and then iterating in
Corollary 4.5. The same construction is given in [6], Theorem 1, where it is shown that
for a 1-relator group G D ha; b; : : : j wi, if v D uwu�1 where u does not commute
with w in the ambient free group then the group xG D ha; b; : : : j vwv�1 D w2i has
the same finite images as G, but w ¤ 1 in xG. Therefore xG is not residually finite,
thus if G is then xG 6Š G, but xG surjects onto G. This allows us to construct many
2-generator 1-relator groups xG which are large but not residually finite, by inputting
any 2-generator 1-relator group G which is large so that xG will be too.

This construction also allows us to give an example of a 1-relator group G with
ˇ1.G/ D 2 that is proabelian, the existence of which was not previously known. By
putting in w D Œt; a�1� and u D a so that G D Z � Z above, we see that the group

xG D ha; t j Œa; t �Œt; a�1�Œa; t ��1 D Œt; a�1�2i
which is Corollary 2 in [6] is proabelian (hence not large) with ˇ1.G/ D 2 but is not
residually finite, hence not equal to Z � Z.

We note that the relation above is of height 1 with respect to t . However there are
also groups with first Betti number 2 and height 1 which we can prove are large:

Corollary 4.6. If G D ha; t j w.a; t/i where ˇ1.G/ D 2 and w is a height 1 word
of the form in (2) then G is large if ji1 C i3 C � � � C i2k�1j ¤ ˙1. Otherwise G is
either proabelian, equal to Z � Z or large.

Proof. We have that ˇ1.G/ D 2 implies i1 C i2 C � � � C i2k D 0 and so �G;�.t/ D
n.t � 1/ where n D i1 C i3 C � � � C i2k�1 with �.a/ D 0, �.t/ D 1. Thus if
jnj ¤ ˙1 we have largeness because �

p
G;� 	 0 modulo a suitable prime p. We also

have largeness by Corollary 4.2 unless H=H 0 D Z � Z for all H �f G. If this is
so then [27], Proposition 3.4, shows that if G is quotiented out by its finite residual
RG then we have G=RG Š Z � Z. In particular G is proabelian if RG is non-trivial
and equal to Z � Z otherwise. Moreover it is known by [54], Section 4.4, that a
2-generator 1-relator group ha; t j ri is equal to Z � Z if and only if r D Œa; t �˙1
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or a cyclic conjugate when r is cyclically reduced, so we only have G D Z � Z if
w D ta˙1t�1a�1.

For instance the group ha; b; t j aba2 D b2; ta3t�1 D bi is shown in [18],
Proposition 19, to be word hyperbolic and of the form F6 Ì˛ Z. As such groups are
residually finite and eliminating b gives a height 1 word with respect to t , we can
use Corollary 4.6 to obtain another group satisfying the conditions of Corollary 2.4
without using the computer.

5. Problem list

Here we list some problems in Group Theory with particular emphasis on finitely
generated and finitely presented groups. The aim is to put together questions which
may well have appeared somewhere in print but which are not to be found in the stan-
dard problem lists (for instance the Kourovka notebook [48], the New York list [59]
and Mladen Bestvina’s questions in Geometric Group Theory [8]). Also there is
an emphasis on questions which can be stated using only group theoretic concepts,
although it may well be that solutions require topological, geometric or other tech-
niques. In some cases the credits refer to those from whom we first heard about the
question; we apologise if this is not the original source. The order of appearance
places what should be the most general questions first and then specialises until we
reach the topics of this paper.

The list was first compiled in March 2008 and we have added updates where
known in January 2010.

Finiteness questions

1 (J. S. Wilson [67]). Is there a finitely presented and residually finite group which
is neither virtually soluble nor contains a non-abelian free group?

Notes. If we replace finitely presented with finitely generated then certainly a range
of examples are known. If however we keep finitely presented and remove residu-
ally finite then the list becomes much shorter. We know of only four constructions:
Thompson’s group F , the Houghton groups as in [43], the finitely presented Grig-
orchuk group (which is an ascending HNN extension of the well-known Grigorchuk
group) and the non-amenable monsters (which are ascending HNN extensions of
finitely generated infinite groups with finite exponent) in [63]. All of these are far
from being residually finite. Of course if we weaken finitely presented to finitely
generated but strengthen residually finite to linear then there are no examples by the
Tits alternative.

A variation might be to strengthen the conditions in other ways (e.g. LERF, co-
herent, of type FP ) with the aim of proving such an example does not exist.
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Update. No progress known, even with the strengthened conditions. We remark
though that a proof of the amenability of Thompson’s group F has been put forward
by E. T. Shavgulidze although this has been disputed.

The Prüfer rank of a group is the supremum of the minimum number of generators
over all finitely generated subgroups.

2. If a group has infinite Prüfer rank then must it have an infinitely generated sub-
group?

Notes. This question has interesting implications either way. We say that a group
has max (or is Noetherian) if it and every subgroup is finitely generated. The ques-
tion of whether a group with max is virtually polycyclic was settled in the negative
by Olshankskii’s construction of Tarski monsters, but these have finite Prüfer rank.
Moreover this property (like max) is preserved by subgroups, quotients and exten-
sions. Thus a counterexample in Question 2 would be a genuinely new example of a
group with max as it would not be obtained from known examples by these operations.

If however the answer is yes then a result of Lubotzky and Mann in [52] says that
a finitely generated, residually finite group with finite Prüfer rank is virtually soluble.
Thus a residually finite group with max would be virtually polycyclic, giving a positive
answer to Question 31 in the first Kourovka notebook, credited to M. I. Kargapolov.

Update. The answer is no, as pointed out independently by A. Minasyan and
A. Klyachko using the same method: Theorem 35.1 of [61] shows that for any count-
able family of countable groups, there exists a 2-generated simple group G such that
every proper subgroup of G is either cyclic or contained in a conjugate of a member
of this family. Thus we can take our family to be Zn for n 2 N. However a residually
finite example is still unknown.

3. If G=N and N are both virtually soluble then is G?

Notes. This is true and straightforward with virtually soluble replaced by soluble.

Update. This is true, as pointed out independently by P. Linnell, by A. Minasyan
and by A. Klyachko. We outline the argument: let M be the unique maximal normal
subgroup of N (which exists as the product of two soluble normal subgroups is
itself soluble and normal). Then M is characteristic in N so normal in G. Thus,
by replacing G and N with G=M and N=M respectively, we can assume that N is
finite with no non-trivial soluble normal subgroups. The centraliser C of N in G has
finite index in G and C \ N is abelian thus trivial. Now we are done because C is
isomorphic to the virtually soluble group CN=N .

This is taken further in [46] Section 5: let the virtual derived length vdl.G/ of a
virtually soluble group G be the smallest derived length of a finite index subgroup.
There it is shown that vdl.G/ � vdl.G=N / C vdl.N / C 1 and this is best possible.

4. Is there a finitely presented group that is elementary amenable but not virtually
soluble?
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Notes. In [41] Hillman gives an infinitely generated example and then uses it to
obtain a finitely generated example.

Update. P. Linnell points out that this is now in the Kourovka notebook as Prob-
lem 16.52 and Y. de Cornulier mentions the Houghton groups as examples.

Amenability and properties .T / and .�/

5. Do all finitely generated (or finitely presented) infinite amenable groups have a
proper finite index subgroup?

Notes. The rationals show this is not true for infinitely generated groups. We have
the dichotomy that no infinite discrete group can have property .T / and be amenable.
For property .�/ (always assumed here to be with respect to all normal finite index
subgroups) we have by [50], Proposition 3.3.7, that a finitely generated amenable
group with infinitely many finite index subgroups does not have .�/, but groups with
finitely many finite index subgroups trivially have property .�/. If the answer is yes
then we regain our dichotomy for finitely generated/presented groups.

An old question asks if there is a finitely generated infinite simple group which is
amenable. This is equivalent to having a finitely generated infinite amenable group
with no proper finite index subgroups, as we can quotient out by a maximal normal
subgroup. Infinitely generated simple amenable groups certainly exist, for instance
the union

S
An of alternating groups. It has also been asked whether there are

finitely presented infinite simple amenable groups, but those wishing to establish
their existence would need to answer the next question in the negative.

6. Does an infinite finitely presented simple group necessarily contain a non-abelian
free group?

Notes. This is not true for infinite finitely generated simple groups, but for all known
finitely presented examples the answer seems to be yes.

7 (Lackenby). If a finitely presented group has zero virtual first Betti number then
must it have property .�/?

Notes. The Grigorchuk group shows that this is not true for finitely generated groups
as it is amenable with infinitely many finite index subgroups.

We recall that property .T / implies finite generation as well as implying property
.�/, which in turn implies zero virtual first Betti number.

Subgroup separability

8 (J. S. Wilson). Is there a finitely generated group which is not virtually polycyclic
but where every subgroup is the intersection of finite index subgroups?
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Notes. The paper [45] shows that there are no examples when the group is hyper-
(abelian or finite) which covers being virtually soluble. As for a finitely presented
example, this would be residually finite and would not contain F2, so would provide
a yes answer to Question 1.

9 (Long and Reid [49], Question 4.5). Is there a finitely generated infinite group
which is LERF and has property .T /?

10. Is there a finitely presented infinite group which is LERF and which has zero
virtual first Betti number?

Notes. A finitely presented example for Question 9 (or just one with LERF and
property .�/) would of course answer this. However the Grigorchuk group is a
finitely generated infinite LERF group which has zero virtual first Betti number.

Largeness

11. If a finitely generated or finitely presented group has the biggest possible sub-
group growth, that is of strict type nn, then is it large?

Update. No progress known, but J. -C. Schlage-Puchta has looked at this and con-
jectures that there should exist finitely generated torsion groups with this type of
subgroup growth.

12. Is there an algorithm to determine whether or not the group given by a finite
presentation has a proper finite index subgroup?

Notes. It is unknown whether there is an algorithm to detect largeness in finitely
presented groups. There are partial algorithms which will terminate with the answer
yes if a finitely presented group is large and which may return no or not terminate
otherwise, see for instance [29]. If we have a complete algorithm for largeness then,
as pointed out by D. Groves and I. Leary, we have yes to this question because a
group G has proper finite index subgroups if and only if G � G � G is large.

13. If a finitely presented group has infinite virtual first Betti number then must it be
large? Does it contain F2? Must it be not virtually soluble?

Notes. These seem interesting questions. The first point to make is that these are
all false for finitely generated groups, as in [32] it is pointed out that the soluble and
R-linear group Z o Z has infinite virtual first Betti number. Therefore one would
expect to find counterexamples by taking a group surjecting to Z o Z. But Baumslag
shows in [3], Chapter IV, Theorem 7, that a finitely presented group surjecting to
Z o Z is large.
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Update. All three questions are still open, but here is an intriguing observation for
the large case: it is enough to restrict to torsion-free word hyperbolic groups. This
is because if P is a finitely presented group then by [60], building on a construction
of Rips, there exists a torsion-free word hyperbolic group G such that G=N Š P

and N has property (T ). If P has infinite virtual first Betti number then so does G.
However P and N both being finitely generated but not large implies that G is not
large.

We can also ask about growth of first Betti numbers in finite covers.

14. If a finitely presented group G has a sequence of finite index subgroups Hn such
that ˇ1.Hn/=ŒG W Hn� � c > 0 for all n then is G large?

Notes. If Hn E G with the sequence nested and such that
T

Hn is trivial (thus
implying that G is residually finite) then this limit exists and is the first L2-Betti
number by Lück’s Approximation Theorem. However groups of the form Fn Ì˛ Z
have zero first L2-Betti number, but any large example will have a sequence as in the
question.

If the sequence .Hn/ above is such that there is a surjective homomorphism
� W G ! Z with K D ker � � Hn for all n then G is large. Indeed we only require
that ˇ1.Hn/ is unbounded, or even ˇ1.HnI Z=pZ/ for some prime p. This is because

ˇ1.HnI F/ � ˇ1.KI F/ C 1 for F D Q or Z=pZ;

so if we have an unbounded sequence then �F
G;� is zero, with Howie’s result implying

that for all large k the subgroup KGk has a surjection onto Cp �Cp �Cp (or Z�Z�Z
for F D Q). However the counterexample Z o Z above for finitely generated groups
also has the first Betti number growing linearly in a sequence of subgroups containing
ker �.

One could also formulate variations of Question 14 using first Betti numbers
modulo a prime p. However Question 13 is no longer true in this more general
setting: consider the R-linear Baumslag–Remeslennikov soluble group

G D ha; s; t j tat�1 D asas�1; Œa; sas�1� D 1 D Œs; t �i:
By using the binomial theorem modulo any prime p, it is not hard to show that we
have subgroups Hn with ˇ1.HnI Z=pZ/ � 2 C 2pn�1 where G0 E Hn E G is the
finite abelian cover corresponding to

s�pn�1

.tpnCpn�1

/ and s3pn�1

for p 	 1 mod 3;

tpnCpn�1

and s3pn�1

for p 	 2 mod 3;

tpnCpn�1

and s8pn�1

for p D 3:

This is the fastest possible growth of ˇ1.H I Z=pZ/ because Corollary 1.4 in [67]
states that if G is finitely presented and soluble then there exists 	 > 0 such that
d.H=H 0/ � 	jG W H j1=2 for all H �f G.
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15. Fix an integer k � 1. Is there f .k/ such that whenever a group G has a
presentation of deficiency k and ˇ1.G/ > f .k/ then G is large?

This seems less and less likely as k gets smaller. It is of course true for k � 2.

16 (J. S. Wilson [67]). If a group G has a finite presentation P such that
def.P / C d 2=4 � d > 0 where d � 2 is the minimum number of generators of
G=G0 then does G contain a non-abelian free group?

Notes. Bartholdi has recently proved in [1] that Golod–Shafarevich groups are not
amenable. These are groups with a presentation (of finitely many generators but
possibly infinitely many relators) possessing a certain condition which is certainly
satisfied by finite presentations of the form above. This can be seen as providing
evidence for the answer yes because a counterexample would have the extremely rare
property of being a finitely presented non-amenable group without F2 as a subgroup.
Lackenby and Lubotzky ask for a group with a finite presentation as above which
is not large: surely these exist? There is also the question (credited to Lubotzky
and Zelmanov) of whether a group with such a presentation can have property .T /

or .�/. Recently Ershov in [34] has constructed Golod–Shafarevich groups with
property .T /.

Update. Bartholdi’s paper is regarded by the author as having a gap. However
since then a major result in [35] is that any Golod–Shafarevich group has an infinite
quotient with property (T ), thus is non amenable (indeed it is shown that these groups
are uniformly non amenable).

Deficiency 1 groups

17. Is every deficiency 1 group that does not contain F2 isomorphic to BS.1; m/?

Notes. For evidence, see Section 3.

18. Is every residually finite deficiency 1 group that is not large isomorphic to
BS.1; m/?

Notes. In particular are all word hyperbolic groups of the form Fn Ì˛ Z for n � 2

large? A proof could be attempted in two parts: assume the virtual first Betti number
is at least 2 to obtain largeness, and separately establish this assumption which is
Question 12.16 in [8] due to Casson.

19. If a deficiency 1 group G has (virtual) first Betti number at least 3 then is it large?
If the minimum number of generators of G=G0 (or H=H 0 for H �f G) is at least 3

then is G large?

Notes. The first part is Question 15 for k D 1 and f .1/ D 2, which is certainly
more believable here. The example before Corollary 4.6 shows that we cannot replace
“(virtual) first Betti number at least 3” with “(virtual) first Betti number at least 2 and
G ¤ Z � Z (or BS.1; �1/)”, even in the 1-relator case.
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2-generator 1-relator presentations. In this special case Question 17 is true, but
Questions 18 and 19 are unknown.

Update. Major computation was undertaken in [29], which provides evidence in
support of both questions. In particular they are both true for all such presentations
where the relator has length at most 12 and zero exponent sum in at least one generator,
as well as length at most 18 and zero exponent sum in both generators.

20. Let G be a group with a 2-generator 1-relator presentation where the relator is
not a proper power. Suppose that G is residually finite, then does G have a finite
index subgroup H which is an ascending HNN extension of a finitely generated free
group?

Notes. If so then every finite index subgroup of H , and G, has deficiency 1. However
if the relator is a proper power, which is exactly when G has torsion, then often G

has a finite index subgroup of deficiency at least 2 and in any case G is known to
be large (although [4], Problem 4, asks if a 1-relator group with torsion is virtually
free-by-cyclic: here the free part could be infinitely generated and cyclic includes
finite cyclic). But if G is torsion-free then it has geometric dimension 2 so all finite
index subgroups have deficiency 1.

If we have a yes answer to this question then by [36] H , and so G, is coherent,
which is a special case of the old question of whether all 1-relator groups are coherent.

Update. No progress in the 2-generator 1-relator case, but [5] shows that cyclically
pinched 1-relator groups are often virtually free-by-cyclic (though the free subgroup
will be infinitely generated for more than 2 generators).

21 (Borisov and Sapir [16]). Is the property of being residually finite generic amongst
2-generator 1-relator presentations?

Notes. It is shown in [31] Theorem 6.1 that a generic presentation is not an ascend-
ing HNN extension of a finitely generated free group, but experimentally 94% of
presentations give groups of the form Fn Ì Z. There is an algorithm, due to Molda-
vanskii [56] in the case ˇ1.G/ D 1 and Brown [20] for ˇ1.G/ D 2, as to whether a
2-generator 1-relator group is of this form. One could try looking for H �f G with
H an ascending HNN extension of a finitely generated free group (which is shown
to be residually finite in [16]), but the problem is of course that although H will have
a deficiency 1 presentation, it will not in general be 2-generated (indeed as soon as
d.H=H 0/ � 3 it cannot be).

We can also ask about genericity for other properties: being linear, being coherent
(as evidence for the general conjecture) and being large. It is known that a generic
presentation gives rise to a group that is one ended, torsion-free and word hyperbolic,
so if G D Fn Ì Z is large for word hyperbolic G with n � 2 as in Question 18 then
we would expect at least 94% of random presentations to give large groups.
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Update. Again no progress in this case, but [65] shows that residual finiteness is
generic amongst n-generator 1-relator presentations for n > 2 (indeed this is es-
tablished by embedding the group into a 2-generator 1-relator group which is an
ascending HNN extension of a finitely generated free group). As for these properties
in the 2-generator 1-relator case, we suggest the following order for the likelihood
of their genericity: first coherence as it could be that 2-generator 1-relator groups
are coherent without exception (indeed as any finitely generated 1-relator group can
be embedded in a 2-generator 1-relator group, this would establish coherence of all
finitely generated 1-relator groups). Next largeness as 1-relator groups with 3 or more
generators are large without exception, then residual finiteness as having 3 or more
generators implies residual finiteness is a generic (but not universal) property. (Also
we know of plenty of 2-generator 1-relator groups which are large but not residually
finite, but only those in Question 18 for the other way round.) Finally linearity which
implies residual finiteness.

22. Given reduced words u; v 2 F2 D hx; yi which are not a generating pair, does
there exist a homomorphism 
 from F2 into the symmetric group †n for some n such
that 
.u/ and 
.v/ commute, but 
.x/ and 
.y/ do not?

Notes. This is equivalent to asking: if the group G D hx; y j Œu; v�i is proabelian
then is it abelian (and thus equal to Z�Z)? Again there are interesting consequences
because if so then G is either large or Z � Z by [27] Theorem 3.6, but if not then
[59], Question (OR8), is answered, which asks if G is always residually finite.

23 (Müller and Schlage-Puchta [58], Problem 5). Is there an algorithm to detect
whether a 2-generator 1-relator presentation is large?

This special case of Question 12 might be more likely to yield the answer yes.
However even if there is a straightforward criterion for largeness of such presentations,
it might not convert into an algorithm: for instance if Question 19 is true then it will
detect largeness (which we can do anyway for an arbitrary finitely presented group)
but would fail to prove that a given presentation is not large. We believe that Section 4
provides evidence that there is not an obvious algorithm.
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