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Abstract. We prove that the rank gradient vanishes for mapping class groups of genus

greater than 1, Aut.Fn/ for all n, Out.Fn/, n � 3 and any Artin group whose underlying

graph is connected. �ese groups have �xed price 1. We compute the rank gradient and

verify that it is equal to the �rst L2-Betti number for some classes of Coxeter groups.
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1. Introduction

Let G be a �nitely generated group. We denote by d.G/ the minimal size of a

generating set of G (setting d.¹1º/ D 0) and for a subgroup H < G of �nite index

de�ne

r.G; H/ D .d.H/ � 1/=ŒG W H�:

Let H1 > H2 > � � � be a chain of normal subgroups of �nite index in G. We

de�ne the rank gradient of G with respect to the chain .Hi / to be

RG.G; .Hi// D lim
i!1

r.G; Hi/:

�e notion of rank gradient was �rst de�ned by Lackenby in [14] for the study of

Kleinian groups and further investigated in [1] and [2]. It is not known whether the

limit RG.G; .Hi// depends on the choice of the chain .Hi/ under the condition

that \iHi D ¹1º. However, as shown in [2], when G contains a normal in�nite

amenable subgroup or is a non-uniform lattice in a higher rank Lie group then

RG.G; .Hi// D 0 for any normal chain .Hi/ in G with trivial intersection.

1 �e �rst author acknowledges the support of EPSRC grants EP/I020276/1.

2 �e second author acknowledges the support of EPSRC grants EP/H045112/1.
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We remark that rank gradient with respect to an in�nite chain in a group G is a

natural upper bound for its �rst L2-Betti number ˇ
.2/
1 .G/. Indeed it is well known

that d.H/ � ˇ
.2/
1 .H/ giving that r.G; Hi/ � ˇ

.2/
1 .G/ � ŒG W Hi �

�1 and letting

ŒG W Hi � ! 1 we obtain

RG.G; .Hi// � ˇ
.2/
1 .G/: (1)

In particular if the rank gradient of G is zero with respect to some in�nite chain

then the �rst L2-Betti number of G is also zero. It is not known whether the

inequality (1) can be strict for a normal chain .Hi/ with trivial intersection.

In this note we compute the rank gradient (with respect to all chains) for several

well-known families of groups: Artin groups, mapping class groups, Aut.Fn/,

Out.Fn/ and some Coxeter groups. A result of Gaboriau [10] states that the �rst

L2-Betti number vanishes for any group that contains an in�nite normal �nitely

generated subgroup of in�nite index and in this situation one can sometimes �nd

a chain with respect to which rank gradient is zero, see [13]. �is applies to Artin

groups of �nite type, mapping class groups and (outer-) automorphism groups of

free groups. Additionally, the L2-Betti numbers of Artin groups and many Coxeter

groups have been computed. �is paper is an attempt to compare these results with

the rank gradient. In all of the groups considered here, the rank gradient is found

to be independent of the normal chain and moreover is equal to ˇ
.2/
1 .G/.

Our arguments yield the stronger result that these groups have �xed price. For

de�nition and properties of cost and �xed price we refer the reader to [9] and the

book [12]. A key connection between rank gradient and cost is the result of Abert

and Nikolov [1] that RG.G; .Hi// D c.G; OG/ � 1 where c.G; OG/ is the cost of the

action of G by left multiplication on its completion OG with respect to the normal

chain .Hi / with \iHi D ¹1º. In this way results about cost of group actions have

immediate applications to rank gradient. We remark that it is an open problem

whether every countable group has �xed price.

�eorem 1. Each of the groups in the list below has �xed price 1 and rank gradient
zero:

� Artin groups whose de�ning graphs are connected,

� Aut.Fn/, n � 2,

� Out.Fn/, n � 3, and

� MCG.Sg/, g � 2.

�eorem 1 above summarises the content of �eorems 2 and 3 appearing in the

�rst half of the paper. In section 5, we study a speci�c class C of Coxeter groups

and show that the rank gradient for a group in C is equal to its �rst L2-Betti number.
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Singer’s conjecture predicts that the L2-Betti numbers of a closed aspheri-

cal n-manifold are zero in all dimensions except for n=2. �e conjecture has

been veri�ed for di�erent classes of groups, including some right-angled Cox-

eter groups [6]. We suspect that more generally if G is a virtual Poincare duality

group of dimension at least three then the rank gradient of G is zero with respect

to any normal chain with trivial intersection.

2. Basic results on rank gradient and cost

Here we collect the results about cost and rank gradient we use. While the inde-

pendence of rank gradient on the chain can be deduced from the fact that a group

has �xed price the direct argument for rank gradient is almost the same and we

prefer to indicate these elementary techniques as well since the reader may not be

familiar with the theory of cost.

Proposition 1. Let G be a group containing a �nitely generated normal subgroup
C whose rank gradient vanishes with respect to any chain. �en RG.G; .Hi// D 0

for any chain of subgroups Hi satisfying .\iHi / \ C D 1.

Proof. Note that C is in�nite and d.H/ � d.C \Hi/Cd.Hi=.C \Hi//. Clearly,

d.Hi =.C \ Hi // D d.HiC=C / � d.G/ŒG W HiC �. We have

r.G; Hi/ �
d.C \ Hi / C d.G/ŒG W HiC �

ŒG W HiC �ŒC W C \ Hi �
:

As \i .Hi \ C / D 1 and rank gradient for C vanishes with respect to any chain,

we deduce the right hand side of the above inequality tends to zero, which implies

that limi!1 r.G; Hi/ D 0 as claimed.

Proposition 2. Let G D A �C B be an amalgam of two �nitely generated groups
over a �nite subgroup C . Let .Hi/ be a normal chain in G such that C \.\iHi/ D

¹1º. �en

RG.G; .Hi// D RG.A; .A \ Hi // C RG.B; .B \ Hi // C 1=jC j:

Proof. �is is an easy computation with the Bass-Serre tree T of G. �e key

observation is that for every normal subgroup Hj such that Hj \C D ¹1º we have

that Hj is a free product of several copies of A\Hj , B \Hj and a free group equal

to the fundamental group of the graph Hj nT . Applying the Grushko–Neumann
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theorem to Hj shows that

d.Hj / � 1 D ŒG W Hj A�.d.A \ Hj / � 1/ C ŒG W Hj B�.d.B \ Hj / � 1/ C
ŒG W Hj �

jC j

giving the result.

Proposition 3. [2, Prop. 9] Let G be a group generated by two subgroups A and
B such that C WD A \ B is in�nite. �en

RG.G; .Hi// � RG.A; .A \ Hi// C RG.B; .B \ Hi //

for any normal chain .Hi/ in G such that ŒC W .C \ Hj /� ! 1.

�e cost analogues of the results above are collected in the following Propo-

sition. It summarises some of the results of [9] (see also [12] 31.2, 32.1, 35.1, 35.3

and 36.1). We denote the cost of a group G by c.G/.

Proposition 4. Let G be a countable group. �e following results hold.

(i) If G is �nite then G has �xed price equal to 1 � jGj�1.

(ii) If G is in�nite amenable or has in�nite centre then G has �xed price 1.

(iii) Suppose that G D hA; Bi is generated by two subgroups A and B with
A \ B in�nite. If both A and B have �xed price 1 then so does G.

(iv) Suppose that G D A ?C B with amenable amalgamated subgroup C . If
both A and B have �xed price then G has �xed price equal to c.A/Cc.B/�c.C /.

3. Artin groups

�e �rst family we consider are the Artin groups. We recall their de�nition below.

Given a graph � with edges labelled by integers � 2, the Artin group A� is the

group with presentation given by a set of generators av where v ranges over the

set of vertices of � and relations

avawav � � �
„ ƒ‚ …

n

D awavaw � � �
„ ƒ‚ …

n

for every edge labelled n 2 N joining pair of vertices v; w of �.

A basic fact about Artin groups says that if one takes any subset W of the ver-

tices V of the de�ning graph, then the subgroup generated by W in A� is precisely

the Artin group A�, where � is the subgraph generated by W in � (see [16]).
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We note that it is unknown whether all Artin groups are residually �nite. Let

G0 denote the intersection of all �nite index subgroups of a group G. For an Artin

group A D A� we consider normal chains .Hi / in A with \Hi D A0.

Our result is:

�eorem 2. Let A D A� be an Artin group and let b be the number of connected
components of �. Suppose that .Hi / is a normal chain with intersection A0. �en
RG.A; .Hi// D b � 1. Moreover A has �xed price equal to b.

Proof. Note that a free product of residually �nite groups is residually �nite,

therefore in a free product of two groups G D C � D one has C \ G0 D C0

and D \ G0 D D0. In view of Propositions 2 and 4 (iv) we only need to prove

that RG.A� ; .Hi// D 0 and that A� has �xed price 1 in the special case when �

is connected.

We begin with an observation: Let � W A� ! Z be the homomorphism sending

all generators av of A to the canonical generator of Z. Clearly ker � � A0 and

therefore if T is any cyclic subgroup of A with T \ ker � D ¹1º then T \ A0 D

T \ .\iHi / D 1. In particular this applies to all vertex subgroups havi of A. Let

e D .v; w/ be an edge joining vertices v and w labelled by some integer n > 1 of

�. �e subgroup Ae D hav; awi has in�nite cyclic center Ze D Z.Ae/ generated

by .avaw/n=2 if n is even and by .avaw/n if n is odd. In both cases we have that

Ze \ ker � D ¹1º and therefore Ze \ .\Hi/ D ¹1º. �e following Lemma is the

crux of the proof of the �eorem.

Lemma 1. Let A� be an Artin group, where � is a connected graph. �en A� has
�xed price 1. Moreover, let .Hi/ be a normal chain in A� such that Av \ .\Hi/ D

¹1º for every vertex v 2 V � and Ze \ .\Hi/ D ¹1º for every edge e 2 E�. �en,
RG.A� ; .Hi// D 0.

Proof of Lemma 1. �e Lemma is proved by induction on the number of vertices

n D jV �j. If n D 1, A� Š Z and if n D 2, then the centre of A� is in�nite cyclic.

In both cases the result follows directly from Propositions 1 and 4 (ii). We may

assume that the number n of vertices is at least 3 and that the Lemma holds for all

graphs with fewer vertices.

Let v 2 V �. If removing v disconnects the graph �, set �j ; j D 1; : : : ; k to

be the connected components of �n¹vº. �en, the original Artin group A� is an

amalgam of the subgroups A�j [¹vº, j D 1; : : : ; k, along the subgroup Av. As

k � 2, the induction hypothesis applies to each of the components A�j [¹vº and

the Lemma follows in this case from Propositions 2 and 4 (iv).
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Suppose then that removing v does not disconnect the graph. Let e D .v; w/ be

an edge. Clearly, Ae and A�n¹vº generate the group A� . Moreover Ae and A�n¹vº

intersect in the subgroup Aw . �e proof of the Lemma is now completed by apply-

ing the induction hypothesis to the subgroup A�n¹vº and invoking Propositions 3

and 4 (iii). �

�e �eorem provides an elementary proof for the following result which is

well-known in the case of right-angled Artin groups (where all the L2-Betti num-

bers have been determined, cf. Corollary 2 of [5]) but we have not been able to

�nd a reference to the general case in the literature.

Corollary 1. �e �rst L2-Betti number for an Artin group A� is 0 if the underlying
graph is connected. More generally, if � has b connected components, then the
�rst L2-Betti number of A� is precisely b � 1.

4. Aut.Fn/, Out.Fn/ and MCG.Sg/

�eorem 3. Let G be one of the groups Aut.Fn/, n � 2, Out.Fn/, n � 3 and
MCG.Sg/, g � 2. �en G has �xed price 1 and in particular the rank gradient for
G is zero for any normal chain with trivial intersection.

Here, MCG.Sg/ denotes the mapping class group of the closed surface Sg of

genus g. Note that S1 is the torus and its mapping class group is SL.2;Z/. It is

well-known that SL.2;Z/ is isomorphic to the amalgam Z=6Z �Z=2Z Z=4Z and

therefore from Proposition 2 its rank gradient is equal to

RG.Z=4Z/ C RG.Z=6Z/ C jZ=2Zj�1 D
1

2
�

1

4
�

1

6
D

1

12
:

Proof of �eorem 3. Consider �rst the mapping class groups. We use the follow-

ing result: MCG.Sg/ is generated by some collection of Dehn twists h1; : : : ; hm,

possibly listed with repetitions such that all the subgroups Hi WD hhi ; hiC1i for

i D 1; : : : ; m�1 are isomorphic to the braid group B3 on 3 strands. Indeed we may

simply take the standard Lickorish generators of MCG.Sg/ [15] in the following

sequence:

m1; a1; c1; a2; m2; a2; c2; a3; m3; : : : ; cg�1; ag ; mg :

By [3] each pair of consecutive Lickorish twists generates a copy of B3 since they

are de�ned by two simple closed non-separating curves with intersection num-

ber 1.
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Since braid groups are Artin groups, by �eorem 2 B3 ' Hi has �xed price 1.

Every two consecutive subgroups Hi and HiC1 intersect in an in�nite cyclic sub-

group. �erefore, by Proposition 4 (iii), the �eorem follows for all mapping class

groups with g � 2.

To deal with Aut.Fn/ �rst we note the well-known fact that Bn embeds in

Aut.Fn/ such that the centre Zn of Bn is Bn \ Inn.Fn/. �is shows that Bn=Zn

is residually �nite because Out.Fn/ is residually �nite [11]. For n � 4 let A D

h�1; : : : ; �n�2i and B D h�2; �3; : : : ; �n�1i denote the two canonical copies of

Bn�1 in Bn. From the description of Zn as the subgroup generated by the Garside

element �n we see that A \ Zn D B \ Zn D ¹1º and therefore the images of A

and B in Bn=Zn are two groups with �xed price 1 and in�nite intersection. With

an application of Proposition 4(iii) we have therefore proved the following.

Proposition 5. Let n � 4. �e group Bn=Zn has �xed price 1 and rank gradient
equal to 0.

Now Aut.F2/ contains B4=Z4 as a subgroup of index two [7]. By choosing

an element of in�nite order in Aut.F2/ outside B4=Z4 (i.e. any element which

maps onto a matrix of in�nite order and determinant -1 in GL.2;Z/ ' Out.F2/

) we deduce that Aut.F2/ is generated by two groups of �xed price 1 with in�nite

intersection and therefore by Proposition 4 (iii) Aut.F2/ also has �xed price 1. Let

now n > 2 and let x1; : : : ; xn be the free generators of Fn. For i D 1; : : : ; n � 1,

let Ai be the copy of Aut.F2/ in Aut.Fn/ which preserves hxi ; xiC1i and �xes all

the generators except xi and xiC1. Consider the automorphisms fi 2 Ai given

by fi .xi / D xixiC1x�1
i ; f .xiC1/ D xi . �e group D generated by f1; : : : ; fn�1

is isomorphic to Bn. Note that Aut.Fn/ is generated by the Ai , and moreover

Ai \ D � hfi i is in�nite. Using that Ai and D both have �xed price 1, �eorem 3

for Aut.Fn/ follows again from Proposition 4 (iii).

We now turn to the outer automorphism groups Out.Fn/. Again let x1; : : : ; xn

denote a set of free generators for Fn. If n � 4, then Out.Fn/ is generated by the

two copies of Aut.Fn�1/ in Out.Fn/, one which �xes x1 and the other �xes xn.

Clearly Aut.F2/ is contained in the intersection of these two subgroups. We can

therefore invoke Proposition 4(iii) and the �xed price 1 of Aut.Fn/ to see that the

�eorem holds for Out.Fn/, n � 4.

We now deal with Out.F3/. First we shall de�ne three copies of Aut.F2/ in

Aut.F3/.

Let X be the copy of Aut.F2/ acting on hx1; x2i and �xing x3, Y be the copy of

Aut.F2/ acting on hx2; x3i and �xing x1 and let Z be the copy of Aut.F2/ acting

on hx1; x2i and �xing x1x3. De�ne ˛; ˇ; 
 2 Aut.F3/ as follows:
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˛.x1/ D x1; ˛.x2/ D x1x2; ˛.x3/ D x3;

ˇ.x1/ D x1x2; ˇ.x2/ D x2; ˇ.x1x3/ D x1x3;


.x1/ D x1x�1
2 ; 
.x2/ D x2; 
.x3/ D x3:

Now ˛ 2 X \ Z; ˇ 2 Z; 
 2 X and ˇ.x3/ D x�1
2 x3. �e composition 
 ı ˇ �xes

x1 and x2 and sends x3 to x�1
2 x3.

Let us write Na, NA for the image of the element a, and respectively subgroup A

of Aut.F3/ in Out.F3/. �e groups NX; NY ; NZ are all isomorphic to Aut.F2/ which

has �xed price 1. �e intersection NX \ NZ � h N̨ i is in�nite and therefore the group

h NX; NZi has �xed price 1. Now h NX; NZi \ NY contains N
 ı Ň and is therefore in�nite

giving that h NX; NY ; NZi has �xed price 1. Finally we note that NX; NY generate Out.F3/.

�is completes the proof of �eorem 3.

5. Coxeter groups

As before, let � be a �nite graph labelled with integers greater than 1. �e Coxeter

group C� is de�ned to be the image of the Artin group A� with the extra relations

that the generators av have order 2.

C� D hA� j a2
v D 1; 8v 2 V i:

In many ways Coxeter groups are better understood than Artin groups, for ex-

ample they are all linear groups (and so residually �nite), with a concrete �nite

dimensional K.�; 1/ complex. However their L2-Betti numbers have been com-

puted only in some special situations even in the case of right angled Coxeter

groups, see for example [6].

Our result on rank gradient is even more special. Let C0 be the class of Coxeter

groups which are virtually abelian, virtually free or virtually surface groups. Let

C be the smallest class of groups which contains C0 and is closed under amalga-

mation along subgroups K with ˇ
.2/
1 .K/ D 0 (for example K can be any amenable

group or a direct product of two in�nite groups).

�eorem 4. Let G be an in�nite group in C and let .Hi / be an in�nite normal
chain in G with trivial intersection. �en RG.G; .Hi// D ˇ

.2/
1 .G/.

Proof. If G 2 C0 the claim is straightforward: If G is virtually a surface or vir-

tually a free group then some member of the chain Nj is either a surface group

or a free group, in which case the equality between cost-1, rank gradient and �rst



Rank gradient and cost of Artin groups and their relatives 1203

L2-Betti number is well known (see [9] Proposition VI.9 and [8] Example 3.8.2).

In general the de�nition of C says that G can be obtained by a sequence of amal-

gamations starting from some groups in C0. By induction on the number of amal-

gamation steps it is enough to prove the following: if G D G1 �K G2 such that

ˇ
.2/
1 .K/ D 0 and G1; G2 satisfy the claim in the �eorem, then RG.G; .Ni// D

ˇ
.2/
1 .G/. To establish the claim, we use the following equality for L2-Betti num-

bers (with the convention that 1=jGj D 0 if G is in�nite):

ˇ
.2/
1 .G/ D ˇ

.2/
1 .G1/ �

1

jG1j
C ˇ

.2/
1 .G2/ �

1

jG2j
C

1

jKj
(2)

which holds whenever ˇ
.2/
1 .K/ D 0 , see the appendix of [4]. When K is �nite

then the claim follows from Proposition 2 and the assumption on G1; G2. When

K is in�nite then Proposition 3 gives

RG.G; .Ni// � RG.G1; .G1 \ Ni // C RG.G1; .G1 \ Ni // D

D ˇ
.2/
1 .G1/ C ˇ

.2/
1 .G2/ D ˇ

.2/
1 .G/ � RG.G; .Ni//

and hence again equality must hold.

We provide an application.

�eorem 5. Suppose that � is a planar graph without circuits of length less than
6. �en C� has �xed price and for any normal chain .Ni / in C� with trivial inter-
section we have

RG.C� ; .Ni // D ˇ
.2/
1 .C�/ D

jV j

2
� 1 �

X

e2EV

1

2le

where le is the label of the edge e of �.

Proof. We show �rst that � must have a vertex, say v of valency at most two.

Indeed, if every vertex has valency � 3, then the number jEj of edges of � is at

least 3jV j=2. On the other hand the number of regions of the plane cut out by � is

at most jEj=3 (because every region has at least 6 edges on the boundary). Now

Euler’s formula 1 D jV j � jEj C jF j � jV j � 2jEj=3 � 0 derives a contradiction.

Now suppose that v has valency 2 and let w1; w2 be the two neighbours of

v. Set A D hav; aw1
; aw2

i, a Coxeter group whose graph is the two edges e1 D

.v; w1/ and e2 D .v; w2/. One can check, for instance, by using (2) that the rank

gradient of the virtually free group A is equal to ˇ
.2/
1 .A/ D 1

2
� 1

2le1

� 1
2le2

and of

course A has �xed price.
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Let B be the subgroup generated by all au for u 2 V n¹vº. �en B is a Coxeter

group with graph � 0 D � � ¹vº and C� is the amalgam of A and B along the

intersection haw1
; aw2

i ' D1. By induction on jV j we may assume that the

�eorem holds for B , in particular

ˇ
.2/
1 .B/ D

jV j � 1

2
� 1 �

X

e2E�0

1

2le
:

Proposition 4 (iv) shows that C� has �xed price and together with (2) gives

that the rank gradient and �rst L2-Betti number of C� is ˇ
.2/
1 .A/ C ˇ

.2/
1 .B/. �e

case when v has valency zero or 1 is similar.
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