
Groups Geom. Dyn. 10 (2016), 819–824

DOI 10.4171/GGD/367

Groups, Geometry, and Dynamics

© European Mathematical Society

Finite-dimensionality of Z-boundaries

Molly A. Moran

Abstract. In this paper, we re�ne the notion of Z-boundaries of groups introduced

by Bestvina and further developed by Dranishnikov. We then show that the standard

assumption of �nite-dimensionality can be omitted as the result follows from the other

assumptions.
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1. Introduction

It is easy to construct a proper CAT(0) space with in�nite-dimensional boundary,
but a result by Swenson [5] shows that such a space cannot admit a cocompact
action by isometries. This observation mirrors an earlier theorem by Gromov [3]
which asserts that boundaries of hyperbolic groups are �nite-dimensional.

The rich study of CAT(0) and hyperbolic group boundaries led Bestvina
to formalize the concept of group boundaries for wider classes of groups [1].
Included in his de�nition is a hypothesis which forces these boundaries, known
as Z-boundaries, to be �nite-dimensional. Later, when Dranishnikov generalized
Bestvina’s work to allow for groups with torsion [2], he omitted the requirement in
Bestvina’s original de�nition that forced the boundaries to be �nite-dimensional.

In this paper, we prove a generalization of Swenson’s theorem that applies to
a more general class of spaces. A consequence of this result is a more uni�ed
treatment of group boundaries put forth by Bestvina and Dranishnikov. We show
that there is no advantage in restricting our attention to �nite-dimensional spaces
as in [1]. In regards to [2], all conclusions about the cohomological dimension
of group boundaries can be extended to results about the Lebesgue covering
dimension of these boundaries.

We close with statements of our main results, which may be found in Sections 3
and 4, respectively.
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Theorem A. If a proper metric ANR .X; d/ admits a metric Z-structure . yX; Z/,

then Z is �nite-dimensional.

Theorem B. If a torsion-free group G admits an AR Z-structure, then G admits

a Z-structure, as de�ned in [1].

Acknowledgements. The author is deeply grateful to Craig Guilbault for his help
in the presentation of the material, as well as his useful comments and suggestions.
Also, many thanks to Chris Hruska for his input in helping simplify the proof of
Lemma 3.1 and Mladen Bestvina for his helpful suggestions on the exposition.

2. Preliminaries

We begin with a few preliminary de�nitions and then present some generalizations
of Bestvina’s original de�nition of a Z-structure.

We suppose that our spaces are locally compact, separable, and metrizable.
First, recall that a separable metric space X is an absolute retract (or AR) if,
whenever X is embedded as a closed subset of another separable metric space Y ,
its image is a retract of Y . X is an absolute neighborhood retract (or ANR) if some
neighborhood of X in Y retracts onto X . If X is a �nite-dimensional AR, we call
X a Euclidean retract (or ER). For more on these concepts, see for example [4].

A closed subset, A, of an ANR, X , is a Z-set if there exists a homotopy
H W X � Œ0; 1� ! X such that H0 D idX and Ht .X/ � X � A for every t > 0.
A Z-compacti�cation of a space Y is a compacti�cation yY such that yY � Y is a
Z-set in yY .

De�nition 2.1. [1] A Z-structure on a group G is a pair of spaces . yX; Z/ satisfying
the following four conditions:

(1) yX is a compact ER,

(2) yX is a Z-compacti�cation of X D yX � Z,

(3) G acts properly, cocompactly, and freely on X , and

(4) yX satis�es a nullity condition with respect to the action of G on X . That is,
for every compactum C of X and any open cover U of yX , all but �nitely
many G translates of C lie in an element of U.

We say that Z is a boundary (or Z-boundary) of G if there is a Z-structure
. yX; Z/ on G. This boundary is not unique; there can be multiple Z-structures for
a given group G. However, any two boundaries of G will have the same shape [1].
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In [2], Dranishnikov generalized Bestvina’s de�nition by omitting the require-
ment that G act freely on X and loosening the restriction that yX be an ER to be-
ing an AR. There is one immediate drawback in allowing in�nite-dimensionality
of yX : Z could potentially be in�nite-dimensional. We show in the next section
that this is not the case; the covering dimension of Z-boundaries (in the sense of
Dranishnikov) is �nite.

Since our main result was motivated by attempting to generalize Swenson’s
theorem [5, Theorem 12], we need one �nal generalized de�nition of a Z-structure
that does not require properness of the action.

De�nition 2.2. Let .X; d/ be a metric space. A metric Z-structure on X , denoted
MZ-structure, is a pair of spaces . yX; Z/ satisfying the following conditions:

(1) yX is a compact AR,

(2) yX is a Z-compacti�cation of X D yX � Z,

(3) X admits a cocompact action by isometries by some group G, and

(4) yX satis�es a nullity condition with respect to the action of G on X : for every
� > 0 and for each bounded subset U of X (bounded in the d metric), there
exists a compact subset C of X such that any G-translate of U that does not
intersect C has diameter less than � (in the metric on the compacti�cation).

3. Finite-dimensionality results

Recall that a compact metric space has Lebesgue covering dimension at most

n, denoted dimX � n if for every � > 0, there exists an open cover U with
mesh.U/ < � and order.U/ � n. Here the order of an open covering U being at
most n means that each x 2 X is in at most n C 1 elements of U and the mesh of
a cover U is de�ned as mesh.U/ D sup¹diam.U / j U 2 Uº.

The goal of this section is to prove the following:

Theorem A. Let .X; d/ be a metric space which admits a MZ-structure . yX; Z/.

Then dim Z < 1.

Our proof relies on the following lemma.

Lemma 3.1. Suppose G acts cocompactly by isometries on a proper metric space

X . Then there exists a uniformly bounded open cover U of X with �nite order.

Proof. By cocompactness, we may choose r > 0 so that GB.x0; r/ D X for
some x0 2 X . Let A be a maximal r-separated subset of the orbit of x0 and
U D ¹B.x; 2r/ j x 2 Aº. Clearly, U is a uniformly bounded open cover.
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We claim order.U/ � n, where n is the maximal number of r-separated points
in B.x0; 4r/. Otherwise, there are points x1; x2; : : : ; xnC1 2 A with

nC1\

iD1

B.xi ; 2r/ ¤ ;:

Thus, r � d.xi ; xj / < 4r for i ¤ j and i; j 2 ¹1; 2; : : : ; n C 1º. Choosing an
isometry g 2 G with gx1 D x0, the points gx1; gx2; : : : ; gxnC1 are r-separated
and contained in B.x0; 4r/, a contradiction. �

Proof of Theorem A. Let H W yX �Œ0; 1� ! yX be a Z-set homotopy with H0 D id yX

and Ht . yX/ \ Z D ; for every t > 0. Let � > 0 and �x a metric Od on yX .
Let U be a cover of X as in the proof of Lemma 3.1 and k < 1 be the order

of U. Using the nullity condition, we may choose a compactum K � X such that
diam Od

V < �=2 for every V 2 U with V \ K D ;.
Choose ı1 2 .0; 1� small enough such that Hı.Z/ is covered by open sets

V 2 U with diam Od
V < �=2 for all ı � ı1. Moreover, H W yX � Œ0; 1� ! yX is

uniformly continuous, so we may choose ı2 2 .0; 1� so that for every ı � ı2 and
for each z 2 Z, Od.z; Hı.z// < �=4. Set t� Dmin¹ı1; ı2º.

Consider V� D ¹V 2 U j V \ Ht� .Z/ ¤ ; and V \ K D ;º. Notice V� is an
open cover of Ht� .Z/ with mesh bounded by �=2 and order bounded by k.

De�ne W� D ¹Ht� j�1
Z .V / j V 2 V�º. We show this is the desired cover.

Clearly, W� forms an open cover of Z since V� forms an open cover of Ht� .Z/.
Moreover, mesh Od

W� < � by the triangle inequality.
Lastly, we know the order of the cover V� of Ht�.Z/ is at most k. Since W�

is the set of pre-images of V� under the continuous map Ht� jZ , then W� also has
order at most k. �

Remark 1. Theorem 12 in [5] now follows directly from Theorem A.

Corollary 3.2. If G admits a Z-structure . yX; Z/ in the sense of [2], then

dim Z < 1.

4. Consequences of �nite-dimensionality of Z-boundaries

We may now discuss how knowing �nite covering dimension of the various
Z-boundaries can serve to unify the theories of group boundaries presented by
Bestvina and Dranishnikov. First, any result about the cohomological dimension
of the boundary in [2] may now be replaced with a statement concerning the
Lebesgue covering dimension because in a space with �nite Lebesgue covering
dimension, covering dimension and cohomological dimension coincide (see for
example [6, Theorem 3.2(b)]).

Secondly, there is no advantage in restricting ourselves to working with an ER.
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Theorem B. Suppose a group G admits an AR Z-structure. Then G admits a

Z-structure.

The proof of Theorem B relies on a more general version of Bestvina’s bound-
ary swapping theorem. Given that G admits a Z-structure, the original version of
boundary swapping [1] provides a method to take the boundary from the Z-struc-
ture and place it on another �nite-dimensional space admitting an action by G to
obtain a new Z-structure on G.

In the presence of �nite-dimensionality of the boundary, the local contractibil-
ity condition for �nite-dimensional ANRs is satis�ed ([4, p. 168]), and thus the
proof of [1, Lemma 1.4] applies to prove the following version of boundary swap-
ping.

Lemma 4.1 (boundary swapping). Let G be a group acting properly, cocompactly,

and freely on an ER X1 and an AR X2. Assume that X1 and X2 are G-homotopy

equivalent and cX2 D X2 [ Z is an AR Z-structure on G. Then .cX1; Z/ is a

Z-structure on G.

Proof of Theorem B. Let . yX; Z/ be an AR Z-structure for G. Then the map
pW X ! X=Gis a covering projection, so X=G is a compact ANR. Using a result
from West [7, Corollary 5.3]), X=G is homotopy equivalent to a �nite complex Y .
Lifting the homotopies to the universal cover zY , an ER, we obtain a G-equivariant
homotopy equivalence between X and zY . Applying Lemma 4.1, zY [ Z is a
Z-structure for G. �

References

[1] M. Bestvina, Local homology properties of boundaries of groups. Michigan

Math. J. 43 (1996), no. 1, 123–139. Zbl 0872.57005 MR 1381603

[2] A. Dranishnikov, On Bestvina–Mess formula. In R. Grigorchuk, M. Mihalik, M. Sapir,
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