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Abstract. We study the second moment of the central values of quadratic twists of a modular
L-function. Unconditionally, we obtain a lower bound which matches the conjectured asymptotic
formula, while on GRH we prove the asymptotic formula itself.

1. Introduction

The family of quadratic twists of a modular form has received much attention in recent
years. Motivated by the Birch–Swinnerton-Dyer conjectures, we seek an understanding of
the central values of the associated L-functions, and while this question has been investi-
gated extensively, much remains unknown. One important theme in this area concerns the
moments of these central L-values. Thanks to the work of Keating and Snaith [12] there
are now widely believed conjectures for the asymptotics of such moments, but only the
asymptotic for the first moment has been proved (see [2, 10, 13]). In this paper we estab-
lish two results concerning the second moment of the central L-values. Unconditionally
we obtain a lower bound for the second moment which matches precisely the conjectured
asymptotic formula. Upon assuming the truth of the Generalized Riemann Hypothesis,
we establish the conjectured asymptotic formula.

To state our results we need some notation. For simplicity we shall work with modu-
lar forms of full level but our work can be extended to congruence subgroups. Let f be a
modular form of weight κ for the full modular group and suppose that f is an eigenfunc-
tion of all the Hecke operators. We write the Fourier expansion of f as

f (z) =

∞∑
n=1

λf (n)n
(κ−1)/2e(nz),

with λf (1) = 1, and f has been normalized so that Deligne’s bound gives |λf (n)| ≤ d(n)
for all n, where d(n) denotes the number of divisors of n. The L-function associated to f
is
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L(s, f ) =

∞∑
n=1

λf (n)

ns
=

∏
p

(
1−

λf (p)

ps
+

1
p2s

)−1

,

which converges absolutely for Re(s) > 1, extends analytically to the entire complex
plane, and satisfies the functional equation

3(s, f ) = (2π)−s0
(
s +

κ − 1
2

)
L(s, f ) = iκ3(1− s, f ).

Let d denote a fundamental discriminant, and χd(·) =
(
d
·

)
denote the primitive

quadratic character of conductor |d|. Let f ⊗ χd denote the twist of f by the charac-
ter χd , and L(s, f ⊗ χd) denote the twisted L-function

L(s, f ⊗ χd) =

∞∑
n=1

λf (n)

ns
χd(n).

We set

3(s, f ⊗ χd) =

(
|d|

2π

)s
0

(
s +

κ − 1
2

)
L(s, f ⊗ χd),

and then the twisted L-function satisfies the functional equation

3(s, f ⊗ χd) = i
κε(d)3(1− s, f ⊗ χd),

where ε(d) =
(
d
−1

)
is 1 or −1 depending on whether d is positive or negative. Note that

the sign of the functional equation is negative if κ ≡ 2 (mod 4) and d is positive, or if
κ ≡ 0 (mod 4) and d is negative, and in these cases the central L-value is zero.

Below we shall use
∑
∗ to denote a sum over square-free integers, and

∑[ to denote
a sum over fundamental discriminants.

Theorem 1.1. Let κ ≡ 0 (mod 4), and keep notations as above. Then∑
∗

0<8d≤X
(d,2)=1

L(1/2, f ⊗ χ8d)
2
≥ (c + o(1))X logX

where

c =
2
π2L(1, sym2f )3Z2(0, 0),

and the value Z2(0, 0) is defined in (4.5) and (4.6).

In Theorem 1.1, c is the constant predicted by the Keating–Snaith conjectures (see
[12, 5]). For simplicity we have restricted attention to fundamental discriminants of the
form 8d , but we may also handle similarly all discriminants.

Rudnick and Soundararajan [14, 15] have described a general method to obtain lower
bounds for moments in families of L-functions. Their method would readily give a bound
� X logX in Theorem 1.1.

The problem of estimating the second moment of quadratic twists of a modular form
is comparable in difficulty with that of estimating the fourth moment of central values
of quadratic Dirichlet L-functions. Analogously to Theorem 1.1 we could obtain a lower
bound for that fourth moment which matches precisely the conjectured asymptotic for-
mula; this was stated without proof in [15].
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Theorem 1.2. Suppose the Generalized Riemann Hypothesis holds for the family of
L-functions L(s, f ⊗ χd) for all fundamental discriminants d , and also for ζ(s) and
L(s, sym2f ). Then, for κ ≡ 0 (mod 4), and with c being the constant in Theorem 1.1,∑

∗

0<8d≤X
(d,2)=1

L(1/2, f ⊗ χ8d)
2
= (c + o(1))X logX.

Our method would allow us to get an error term in Theorem 1.2 which is smaller than
the main term by a small power of logX. If we consider a smooth sum over the discrim-
inants 8d in place of the “sharp cut-off” 0 < 8d ≤ X we would get an error term of
O(X(logX)3/4+ε) (see Section 5 below).

The new input in Theorem 1.2 arises from recent work of the first author [17] on
obtaining upper bounds for moments of L-functions assuming the GRH. The work there
will show that our second moment is (on GRH) bounded above byX(logX)1+ε. To refine
this to the asymptotic given here, we need to extend the technique in [17] to bound shifted
moments of L-functions; for a precise statement see Theorem 6.1 below. Similar upper
bounds for analogous shifted moments for the Riemann zeta-function have recently been
obtained by Chandee [3].

As with Theorem 1.1 for simplicity we have restricted attention to fundamental dis-
criminants of the form 8d , and we may adapt our methods to cover other discriminants.
In families of discriminants where the sign of the functional equation is negative, we may
adapt our methods to study the second moment of the derivative of the L-function at
1/2. Further, we may adapt the technique described here to obtain an asymptotic formula
for the fourth moment of quadratic Dirichlet L-functions, conditional on the GRH. We
note here the recent work of Bucur and Diaconu [1] which treats the fourth moment of
quadratic Dirichlet L-functions over the rational function field.

Given two Hecke eigenforms f and g (with weights that are congruent modulo 4) it is
a very interesting problem to understand averages of L(1/2, f ⊗ χd)L(1/2, g⊗ χd). An
asymptotic formula or lower bound for this quantity could be used to show that there are
quadratic twists for which L(1/2, f ⊗ χd) and L(1/2, g⊗ χd) are both nonzero; a result
that is as yet unknown. Unfortunately the methods of this paper do not shed any light on
this problem.

2. Basic tools

In this section we gather some of the standard formulas and estimates we shall need.

2.1. The approximate functional equation

Let d be a fundamental discriminant and let s be a complex number in the critical strip.
We define (for any positive c)

Ww(x) :=
1

2πi

∫
(c)

0(w + (κ − 1)/2+ s)
0(w + (κ − 1)/2)

(2πx)−s
ds

s
.
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A particular case is when w = 1/2 where we have

W1/2(x) =
1

2πi

∫
(c)

g(s)

s
x−s ds, where g(s) = (2π)−s

0(κ/2+ s)
0(κ/2)

.

We also set

A(s, d) :=
∞∑
n=1

λf (n)χd(n)

ns
Ws

(
n

|d|

)
.

The function Ww(x) decays rapidly as x →∞; this may be checked by taking c suitably
large in the definition of Ww(x), and using Stirling’s formula.

Lemma 2.1. With notations as above we have

L(s, f ⊗ χd) = A(s, d)+ iκε(d)
(
|d|

2π

)1−2s
0(1− s)
0(s)

A(1− s, d).

Lemma 2.1 is a standard “approximate functional equation” (see for example Theo-
rem 5.3 of [11]). Note that if s = 1/2 then L(1/2, f ⊗ χd) = (1+ iκε(d))A(1/2, d).

2.2. Poisson summation

We now quote Lemma 2.6 of [18].

Lemma 2.2. Let F be a smooth function with compact support on the positive real num-
bers, and suppose that n is an odd integer. Then∑

(d,2)=1

(
d

n

)
F

(
d

Z

)
=
Z

2n

(
2
n

)∑
k∈Z
(−1)kGk(n)F̂

(
kZ

2n

)
,

where

Gk(n) =

(
1− i

2
+

(
−1
n

)
1+ i

2

) ∑
a (mod n)

(
a

n

)
e

(
ak

n

)
,

and

F̂ (y) =

∫
∞

−∞

(cos(2πxy)+ sin(2πxy))F (x) dx

is a Fourier-type transform of F .

The Gauss-type sum Gk(n) has been calculated explicitly in Lemma 2.3 of [18] which
we quote below.

Lemma 2.3. Ifm and n are relatively prime odd integers, thenGk(mn) = Gk(m)Gk(n),
and if pα is the largest power of p dividing k (setting α = ∞ if k = 0), then

Gk(p
β) =



0 if β ≤ α is odd,
φ(pβ) if β ≤ α is even,
−pα if β = α + 1 is even,(
kp−α

p

)
pα
√
p if β = α + 1 is odd,

0 if β ≥ α + 2.
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2.3. The large sieve for quadratic characters

Heath-Brown [9] proved the following large-sieve type inequality for quadratic charac-
ters.

Theorem 2.4. For any M,N ≥ 1 and any sequence of complex numbers an, we have

∑
∗

m≤M
m odd

∣∣∣∣∑∗

n≤N

an

(
n

m

)∣∣∣∣2 � (MN)ε(M +N)
∑
n≤N

|an|
2.

Using the approximate functional equation of Lemma 2.1 and Heath-Brown’s result we
may easily deduce the following estimate (a simple modification of Theorem 2 of [9]).

Corollary 2.5. For σ ≥ 1/2 and any ε > 0, we have∑[

|d|≤X

|L(σ + it, f ⊗ χd)|
2
�ε (X(1+ |t |))1+ε.

3. The main proposition

In this section we describe the main calculation that leads to the proof of Theorem 1.1.
The pattern of this proof is also followed, with a few modifications, in obtaining a stronger
result leading to Theorem 1.2; we shall describe this in Section 5.

Our aim here is to establish an asymptotic formula for

S(h) :=
∑
∗

(d,2)=1

∑
n1

∑
n2

λf (n1)λf (n2)
√
n1n2

χ8d(n1n2)h(d, n1, n2),

where h is a smooth function on R3
+.

Proposition 3.1. LetX,U1 andU2 be large, and suppose thatU1U2 ≤ X
2. Let h(x, y, z)

be a smooth function on R3
+ which is compactly supported in the x-variable, having

all partial derivatives extending continuously to the boundary, and satisfying the partial
derivative bounds

xiyjzkh(i,j,k)(x, y, z)�i,j,k

(
1+

x

X

)−100(
1+

y

U1

)−100(
1+

z

U2

)−100

.

Then, setting h1(y, z) =
∫
∞

0 h(xX, y, z) dx, we have

S(h) =
4X
π2

∑
(n1n2,2)=1
n1n2=�

λf (n1)λf (n2)
√
n1n2

( ∏
p|n1n2

p

p + 1

)
h1(n1, n2)+O((U1U2)

1/4X1/2+ε).
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We begin the proof of Proposition 3.1 by using Möbius inversion to remove the square-
free condition on d. Thus we write, for an appropriate parameter Y to be chosen later,

S(h) =
( ∑

a≤Y
(a,2)=1

+

∑
a>Y
(a,2)=1

)
µ(a)

×

∑
(d,2)=1

∑
(n1,a)=1

∑
(n2,a)=1

λf (n1)λf (n2)
√
n1n2

χ8d(n1n2)h(da
2, n1, n2)

= S1(h)+ S2(h).

3.1. Estimating S2(h)

We first estimate the easier term S2(h).

Lemma 3.2. We have S2(h)� X1+εY−1.

Proof. We write d = b2` where ` is square-free, and group terms according to c = ab.
Thus

S2(h) =
∑

(c,2)=1

∑
a>Y
a|c

µ(a)
∑
∗

(`,2)=1

∑
(n1,c)=1

∑
(n2,c)=1

λf (n1)λf (n2)
√
n1n2

χ8`(n1n2)h(c
2`, n1, n2).

(3.1)
Consider the sum over `, n1, and n2 in (3.1). Using Mellin transforms in the variables n1
and n2 we see that this sum is

1
(2πi)2

∫
(1/2+ε)

∫
(1/2+ε)

∑
∗

(`,2)=1

ȟ(c2`; u, v)
∑
n1,n2

(n1n2,c)=1

λf (n1)λf (n2)

n
1/2+u
1 n

1/2+v
2

χ8`(n1)χ8`(n2) du dv,

(3.2)
where

ȟ(x; u, v) =

∫
∞

0

∫
∞

0
h(x, y, z)yuzv

dy

y

dz

z
.

Integrating by parts several times, we see that for Re(u),Re(v) > 0,

ȟ(x; u, v)�

(
1+

x

X

)−100 U
Re(u)
1 U

Re(v)
2

|uv|(1+ |u|)10(1+ |v|)10 . (3.3)

The sum over n1 and n2 in (3.2) equals Lc(1/2+u, f ⊗χ8`)Lc(1/2+v, f ⊗χ8`) where
Lc is given by the Euler product defining L(s, f ) but omitting those primes dividing c.
Thus moving the lines of integration in (3.2) to Re(u) = Re(v) = 1/logX, and using
(3.3) together with

|Lc(1/2+ u, f ⊗ χ8`)Lc(1/2+ v, f ⊗ χ8`)|

≤ d(c)2(|L(1/2+ u, f ⊗ χ8`)|
2
+ |L(1/2+ v, f ⊗ χ8`)|

2),
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we conclude that (3.2) is bounded by

d(c)2(logX)2
∫
∞

−∞

(1+ |t |)−10
∑
∗

(`,2)=1

(
1+

`c2

X

)−100∣∣∣∣L(1
2
+

1
logX

+ it, f ⊗χ8`

)∣∣∣∣2 dt.
(3.4)

Now using Corollary 2.5 we conclude that the quantity in (3.2) is� d(c)2X1+ε/c2, and
using this estimate in (3.1) we obtain the lemma. ut

Now let us consider the harder problem of evaluating S1(h). We begin by applying Pois-
son summation, Lemma 2.2. Letting C = cos and S = sin, we get

S1(h) =
X

2

∑
a≤Y
(a,2)=1

µ(a)

a2

∑
k∈Z

∑
(n1,2a)=1

∑
(n2,2a)=1

λf (n1)λf (n2)
√
n1n2

Gk(n1n2)

n1n2

×

∫
∞

0
h(xX, n1, n2)(C + S)

(
2πkxX
2n1n2a2

)
dx. (3.5)

3.2. The main term

The main contribution to S1(h) comes from the k = 0 term in (3.5), which we call S10(h).
Note G0(m) = φ(m) if m = �, and is zero otherwise. Further∑

a≤Y
(a,2n1n2)=1

µ(a)

a2 =
1
ζ(2)

∏
p|2n1n2

(
1−

1
p2

)−1

+O(Y−1)

=
8
π2

∏
p|n1n2

(
1−

1
p2

)−1

+O(Y−1).

Hence, setting h1(y, z) =
∫
∞

0 h(xX, y, z) dx we obtain

S10(h) =
4X
π2

∑
(n1n2,2)=1
n1n2=�

λf (n1)λf (n2)
√
n1n2

( ∏
p|n1n2

p

p + 1

)
h1(n1, n2)

+O

(
X

Y

∑
(n1n2,2)=1
n1n2=�

d(n1)d(n2)
√
n1n2

|h1(n1, n2)|

)
.

Using the bounds for h assumed in Proposition 3.1 (which basically restrict n1 to be of
size U1 and n2 to be of size U2) we find that the error term above is� X(logX)11/Y so
that

S10(h) =
4X
π2

∑
(n1n2,2)=1
n1n2=�

λf (n1)λf (n2)
√
n1n2

( ∏
p|n1n2

p

p + 1

)
h1(n1, n2)+O

(
X

Y
(logX)11

)
.

(3.6)
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3.3. The k 6= 0 terms

We now estimate the contribution to S1(h) from the terms k 6= 0 in (3.5); call this contri-
bution S3(h).

We first express the weight function appearing in (3.5) in a form more suitable for
Mellin transforms. Suppose f is a smooth function on R+ with rapid decay at infinity,
and such that f and all its derivatives have a finite limit as x → 0+. Consider the Fourier-
like transform

f̂CS(y) :=
∫
∞

0
f (x)CS(2πxy) dx,

where CS stands for either cos or sin. By Mellin inversion, we get

f̂CS(y) =

∫
∞

0
CS(2πxy)

1
2πi

∫
(−1/2)

f̃ (1+ s)x−s ds
dx

x

=

∫
∞

0
CS(sgn(y)x)

1
2πi

∫
(1/2)

f̃ (1− s)(x/2π |y|)s ds
dx

x
.

Reversing the order of integrations and using (17.43.3, 17.43.4) of [8] simplifies the above
to

f̂CS(y) =
1

2πi

∫
(1/2)

f̃ (1− s)0(s)CS
(

sgn(y)πs
2

)
(2π |y|)−s ds.

One can rigorously justify the interchange of integrations by splitting the x-integral into
x ≤ Z (with Z large) and x > Z; one treats the integral with x > Z by a contour shift,
while the x ≤ Z integral gets interchanged with the s-integral, and then extended to all
x ≥ 0 by integration by parts.

Applying this formula, we have∫
∞

0
h(Xx, n1, n2)(C + S)

(
2πkxX
2n1n2a2

)
dx

=
X−1

2πi

∫
(ε)

ȟ(1− s; n1, n2)

(
n1n2a

2

π |k|

)s
0(s)(C + sgn(k)S)

(
πs

2

)
ds, (3.7)

where

ȟ(s; y, z) =

∫
∞

0
h(x, y, z)xs

dx

x
.

Taking the Mellin transforms in the other variables on the second line of (3.7), we get

1
X

(
1

2πi

)3

×

∫
(ε)

∫
(ε)

∫
(ε)

h̃(1− s, u, v)
1

nu1n
v
2

(
n1n2a

2

π |k|

)s
0(s)(C + sgn(k)S)

(
πs

2

)
ds du dv,

where
h̃(s, u, v) =

∫
R3
+

h(x, y, z)xsyuzv
dx

x

dy

y

dz

z
.
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Integrating by parts several times we find that for Re(u),Re(v) > 0 we have

|̃h(s, u, v)| �
XRe(s)U

Re(u)
1 U

Re(v)
2

|uv|(1+ |s|)98(1+ |u|)98(1+ |v|)98 . (3.8)

Using this expression in (3.5), and since Gk(m) = G4k(m) for odd m, we find that

S3(h) =
1
2

∑
a≤Y
(a,2)=1

µ(a)

a2

∑
k 6=0

∑
(n1,2a)=1

∑
(n2,2a)=1

λf (n1)λf (n2)
√
n1n2

G4k(n1n2)

n1n2

(
1

2πi

)3

×

∫
(ε)

∫
(ε)

∫
(ε)

h̃(1− s, u, v)
1

nu1n
v
2

(
n1n2a

2

π |k|

)s
0(s)(C + sgn(k)S)

(
πs

2

)
ds du dv.

(3.9)

We write 4k = k1k
2
2 where k1 is a fundamental discriminant, and k2 is positive, so that

the sum over k above is a sum over fundamental discriminants k1 and positive integers k2.
We consider the sum over k2, n1 and n2 in (3.9) above. Note that the integrals in (3.9)
may be taken over any vertical lines with real part between 0 and 1. Consider

Z(α, β, γ ; q, k1) =

∞∑
k2=1

∑
(n1,2q)=1

∑
(n2,2q)=1

λf (n1)λf (n2)

nα1n
β

2 |k2|2γ

Gk1k
2
2
(n1n2)

n1n2
, (3.10)

which converges absolutely if Re(α), Re(β), and Re(γ ) are all > 1/2. Therefore taking
the integrals in (3.9) to be on the lines Re(s) = 1/2 + ε and Re(u) = Re(v) = 1/2 + ε
we find that

S3(h) =
1
2

∑
a≤Y
(a,2)=1

µ(a)

a2

∑[

k1

(
1

2πi

)3 ∫
(1/2+2ε)

∫
(1/2+ε)

∫
(1/2+ε)

h̃(1− s, u, v)0(s)

× (C + sgn(k1)S)

(
πs

2

)(
a2

π |k1|

)s
Z(1/2+ u− s, 1/2+ v − s, s; a, k1) ds du dv.

Changing variables we conclude that

S3(h) =
1
2

∑
a≤Y
(a,2)=1

µ(a)

a2

∑[

k1

(
1

2πi

)3 ∫
(ε)

∫
(ε)

∫
(1/2+ε)

h̃(1− s, u+ s, v + s)0(s)

× (C + sgn(k1)S)

(
πs

2

)(
a2

π |k1|

)s
Z(1/2+ u, 1/2+ v, s; a, k1) ds du dv. (3.11)

To proceed further we require an analysis of the function Z.
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Lemma 3.3. The function Z(α, β, γ ; q, k1) defined above may be written as

Lq(1/2+ α, f ⊗ χk1)Lq(1/2+ β, f ⊗ χk1)

ζq(1+ α + β)Lq(1+ 2α, sym2f )Lq(1+ α + β, sym2f )Lq(1+ 2β, sym2f )

× Z2(α, β, γ ; q, k1),

where Z2(α, β, γ ; q, k1) is a function uniformly bounded in the region Re(γ ) ≥ 1/2+ ε
and Re(α),Re(β) ≥ 0.

Proof. Inspecting Lemma 2.3, we see that the summand of (3.10) is jointly multiplicative
in terms of n1, n2, and k2, so that Z(α, β, γ ; q, k1) may be expressed as a product over
all primes p. We must compute the contribution of such an Euler factor at p.

Consider first the generic case when p - 2qk1. The contribution of such an Euler
factor is ∑

k2,n1,n2

λf (p
n1)λf (p

n2)

pn1α+n2β+2k2γ

Gk1p
2k2 (p

n1+n2)

pn1+n2
.

In the region Re(γ ) ≥ 1/2 + ε,Re(α),Re(β) ≥ 0 we check using Lemma 2.3 that the
terms k2 ≥ 1 contribute terms of size � 1/p1+2ε. This leaves the contribution of the
term k2 = 0 which is 1 + χk1(p)λf (p)(p

−1/2−α
+ p−1/2−β). From this calculation we

see that this Euler factor for Z matches the corresponding Euler factor in the alternative
expression given in our lemma.

Next consider the case p | k1 but p - 2q. Using Lemma 2.3 we find that in the region
Re(γ ) ≥ 1/2+ ε and Re(α),Re(β) ≥ 0 this Euler factor equals

1− λf (p2)

(
1

p1+2α +
1

p1+α+β +
1

p1+2β

)
−

1
p1+α+β +O

(
1

p1+ε

)
.

Again this matches the corresponding Euler factor prescribed in our lemma.
Finally, if p | 2q the corresponding Euler factor is 1 − p−2γ )−1

= 1 + O(1/p1+2ε).
With these computations we have verified the lemma. ut

With this information about Z at hand, we return to (3.11). We split that sum into two
terms based on whether |k1| ≤ U1U2Y

2/X, or not. For the first category of terms we
move the lines of integration to Re(s) = 3/4, Re(u) = Re(v) = −1/2+1/logX, and for
the second category we move the lines of integration to Re(s) = 5/4, Re(u) = Re(v) =
−1/2+ 1/logX. In either case we find by Lemma 3.3 that

Z(1/2+ u, 1/2+ v, s; a, k1)� |La(1+ u, f ⊗ χk1)La(1+ v, f ⊗ χk1)|(logX)4,

which is

� (logX)4
∏
p|a

(1+ 10/
√
p)
(
|L(1+ u, f ⊗ χk1)|

2
+ |L(1+ v, f ⊗ χk1)|

2). (3.12)
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Using (3.8), (3.12), the estimate |0(s)(C + sgn(k1)S)(πs/2)| � |s|Re(s)−1/2, and the
symmetry in u and v we find that our first category of terms contributes

� (XU1U2)
1/4(logX)4

∑
a≤Y

1
√
a

∏
p|a

(1+ 10/
√
p)

∫
(3/4)

∫
(−1/2+1/logX)

∫
(−1/2+1/logX)

×

∑[

|k1|≤U1U2Y 2/X

1
|k1|3/4

|L(1+ u, f ⊗ χk1)|
2 du dv ds

(1+ |s|)50(1+ |u+ s|)50(1+ |v + s|)50 .

(3.13)

Using Corollary 2.5 we conclude that the above is� (U1U2)
1/2YXε.

Similarly the contribution of the second category of terms is

�(U1U2)
3/4X−1/4(logX)4

∑
a≤Y

√
a
∏
p|a

(1+10/
√
p)

∫
(5/4)

∫
(−1/2+1/logX)

∫
(−1/2+1/logX)

×

∑[

|k1|>U1U2Y 2/X

1
|k1|5/4

|L(1+ u, f ⊗ χk1)|
2 du dv ds

(1+ |s|)50(1+ |u+ s|)50(1+ |v + s|)50 .

(3.14)

Using Corollary 2.5 again we see that the above is once again� (U1U2)
1/2YXε.

Proposition 3.1 follows upon combining the work of the previous sections, choosing
Y = X1/2(U1U2)

−1/4.

4. The lower bound: Proof of Theorem 1.1

Let F be a smooth, nonnegative, compactly supported function on R+. Define

AU (1/2; 8d) = 2
∞∑
n=1

λf (n)χ8d(n)
√
n

W

(
n

U

)
,

whereW(x) = W1/2(x), and U ≤ X is a parameter that we shall choose shortly. Since F
is nonnegative, by Cauchy’s inequality we have∑

∗

(d,2)=1

L(1/2, f ⊗ χ8d)
2F(8d/X)

≥
(
∑
∗

(d,2)=1 L(1/2, f ⊗ χ8d)AU (1/2; 8d)F (8d/X))2∑
∗

(d,2)=1AU (1/2; 8d)2F(8d/X)
. (4.1)

Write the right hand side above as (4A)2/4B, say. Using Proposition 3.1 we shall be able
to evaluate A and B asymptotically in the range U ≤ X1−ε. If we choose U = X1−ε then
both 4A and 4B will be close to the expected asymptotic for the second moment, giving
the lower bound of Theorem 1.1. A similar truncation argument appeared in [16].
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Both A and B may be written in a form suitable for applying Proposition 3.1. For
example, we have

A =
∑
∗

(d,2)=1

∑
n1

∑
n2

λf (n1)λf (n2)χ8d(n1n2)
√
n1n2

h(d, n1, n2), (4.2)

where h(x, y, z) = F(8x/X)W(y/U)W(z/(8x)), which satisfies the hypothesis in
Proposition 3.1 with X = X, U1 = U and U2 = X. A similar expression holds for
B with h(x, y, z) = F(8x/X)W(y/U)W(z/U)meeting the condition in Proposition 3.1
with X = X, U1 = U2 = U .

If U ≤ X1−ε then applying Proposition 3.1 in (4.2) we find that

A =
4X
π2

∑
(n1n2,2)=1
n1n2=�

λf (n1)λf (n2)
√
n1n2

( ∏
p|n1n2

p

p + 1

)∫
∞

0
h(xX, n1, n2) dx + o(X). (4.3)

Using the definition of W(x) we obtain∫
∞

0
h(xX, n1, n2) dx =

1
(2πi)2

∫
(1)

∫
(1)

g(u)g(v)

uv

UuXv

nu1n
v
2

F̃ (1+ v)
8

du dv,

where F̃ (1+ v) =
∫
∞

0 xvF(x) dx. Using this in (4.3) and setting

Z(u, v) =
∑

(n1n2,2)=1
n1n2=�

λf (n1)λf (n2)

n
1/2+u
1 n

1/2+v
2

∏
p|n1n2

p

p + 1
,

we conclude that

A =
X

2π2
1

(2πi)2

∫
(1)

∫
(1)

g(u)g(v)

uv
UuXvF̃ (1+ v)Z(u, v) dv du+ o(X). (4.4)

A simple calculation shows that Z(u, v) equals

∏
p>2

(
1+

p

p + 1

[
1
2

(
1−

λf (p)

p1/2+u +
1

p1+2u

)−1(
1−

λf (p)

p1/2+v +
1

p1+2v

)−1

+
1
2

(
1+

λf (p)

p1/2+u +
1

p1+2u

)−1(
1+

λf (p)

p1/2+v +
1

p1+2v

)−1

− 1
])
. (4.5)

The Euler product above converges absolutely when Re(u) and Re(v) are positive. We
write

Z(u, v) = ζ(1+ u+ v)L(1+ 2u, sym2(f ))L(1+ 2v, sym2(f ))

× L(1+ u+ v, sym2(f ))Z2(u, v), (4.6)

where Z2(u, v) converges absolutely in the region of Re(u) and Re(v) larger than −1/4
+ ε, and is uniformly bounded there.
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We now use these observations to evaluate the double integral in (4.4). First we move
the integrals there to Re(u) = Re(v) = 1/10; no poles are encountered in this shift.
Then we move the line of integration in v to Re(v) = −1/5. In doing so we encounter
simple poles at v = 0 and v = −u whose residues we next calculate; the integrals on
Re(u) = 1/10, Re(v) = −1/5 are easily seen to be O(X−1/10+ε). The contribution from
the residue at v = −u is

1
2πi

∫
(1/10)

g(u)g(−u)

−u2 UuX−uL(1+ 2u, sym2f )L(1− 2u, sym2f )L(1, sym2f )

× Z2(u,−u)F̃ (1− u) du

which is O(1) since U ≤ X. Finally consider the contribution of the residue at v = 0,
namely

1
2πi

∫
(1/10)

g(u)

u
Uuζ(1+ u)L(1+ 2u, sym2f )L(1+ u, sym2f )L(1, sym2f )

× Z2(u, 0)F̃ (1) du.

We now move the line of integration in u to Re(u) = −1/5, encountering a double pole
at u = 0, and the integral on the −1/5 line contributes� U−1/5Xε. The residue of the
double pole at u = 0 is easily seen to be

F̃ (1)L(1, sym2f )3Z2(0, 0) logU +O(1).

Using these observations in (4.4) we conclude that

A =
X

2π2

(
F̃ (1)L(1, sym2f )3Z2(0, 0) logU +O(1)

)
. (4.7)

A similar argument shows that the same asymptotic holds for B. Choosing U = X1−ε,
and letting F approximate the indicator function of [0, 1], we deduce Theorem 1.1 from
the inequality (4.1).

5. The asymptotic on GRH: Proof of Theorem 1.2

In this section we prove Theorem 1.2. The key ingredient in the proof is the following
upper bound on shifted moments whose proof we postpone to the next section.

Corollary 5.1. Assume GRH for the family of quadratic twists of f , for the Riemann
zeta-function, and for the symmetric square L-function L(s, sym2f ). Let t1 and t2 be real
numbers with |t1|, |t2| ≤ X and let 1/2 ≤ σ ≤ 1/2+ 1/logX. Then∑[

|d|≤x

|L(σ + it1, f ⊗ χd)L(σ + it2, f ⊗ χd)|

� X(logX)1/2+ε
(
1+min((logX)1/2, |t1 − t2|−1/2)

)
.
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Let F be a smooth, nonnegative, compactly supported function on R+. Recall from
the previous section the definition of AU (1/2; 8d), and write L(1/2, f ⊗ χ8d) =

AU (1/2; 8d) + BU (1/2; 8d). We shall prove that, on GRH, for U ≤ X/(logX)100 we
have∑

∗

(d,2)=1

|AU (1/2; 8d)|2F(8d/X) =
2X
π2

(
F̃ (1)L(1, sym2f )3Z2(0, 0) logU +O(1)

)
,

(5.1)∑
∗

(d,2)=1

|BU (1/2; 8d)|2F(8d/X) = O
(
X(logX)1/2+ε(log(X/U))2

)
. (5.2)

Once these two estimates are established, Theorem 1.2 will follow upon choosing U =
X/(logX)100 since∑

∗

(d,2)=1

|L(1/2, f ⊗ χ8d)|
2F(8d/X) =

∑
∗

(d,2)=1

|AU (1/2; 8d)|2F(8d/X)

+O
( ∑

∗

(d,2)=1

(|AU (1/2; 8d)BU (1/2; 8d)| + |BU (1/2; 8d)|2)F (8d/X)
)
,

and using (5.1) and (5.2) together with Cauchy–Schwarz we see that the remainder term
above is O(X(logX)3/4+ε).

It remains now to prove (5.1) and (5.2). We start with the latter. From the definition
of BU we find that

BU (1/2; 8d) =
1
πi

∫
(c)

g(s)L(1/2+ s, f ⊗ χ8d)

(
(8d)s − U s

s

)
ds.

Since ((8d)s − U s)/s is analytic for all s we may move the line of integration above to
the line Re(s) = 0, and since |(8d)s − U s |/|s| � |log(8d/U)| we find that

|BU (1/2; 8d)| � |log(8d/U)|
∫
∞

−∞

|g(it)| |L(1/2+ it, f ⊗ χ8d)| dt.

Therefore we find that the RHS in (5.2) is

� (logX/U)2
∫
∞

−∞

∫
∞

−∞

|g(it1)g(it2)|

×

∑
∗

(d,2)=1

|L(1/2+ it1, f ⊗ χ8d)L(1/2+ it2, f ⊗ χ8d)| dt1 dt2.

If |t1| and |t2| are both belowX/2 then we use Corollary 5.1 to bound the inner sum over d
above. In the remaining case we use Cauchy’s inequality and the bound of Corollary 2.5.
Since |g(t)| decreases exponentially in |t |, an easy calculation then gives (5.2).

Now we turn to (5.1). The argument follows the pattern laid out in Sections 3 and 4;
the results there may be improved by appealing to the estimates of Corollary 5.1 in place
of the weaker estimate in Corollary 2.5. Consider Proposition 3.1; on GRH we claim that
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the remainder term there can be replaced withO((U1U2)
1/4X1/2(logX)20). We give only

the changes that need to be made to the argument there. In Section 3.1 we use Corollary
5.1 in place of Corollary 2.5 (in the range |t | ≤ X) to estimate the quantity in (3.4). This
shows that the bound in Lemma 3.2 may be replaced with X(logX)10Y−1. Similarly
in Section 3.3, in estimating (3.13) and (3.14) we again invoke Corollary 5.1 (in the
range |u| ≤ X) to obtain there the improved bound of (U1U2)

1/2Y (logX)5. Choosing
Y = X1/2(U1U2)

−1/4 as before, we obtain the stated bound for the remainder term in
Proposition 3.1. The argument of §4 now goes through verbatim, establishing (5.1).

6. Upper bounds for shifted moments assuming GRH

Given a real number x ≥ 10 and a complex number z, set

L(z, x) =


log log x, |z| ≤ (log x)−1,

− log |z|, (log x)−1
≤ |z| ≤ 1,

0, 1 ≤ |z|.

If z1 and z2 are complex numbers we define

M(z1, z2, x) = −
1
2 (L(z1, x)+ L(z2, x)),

and

V(z1, z2, x) =
1
2

(
L(2z1, x)+ L(2z2, x)+ L(2 Re z1, x)+ L(2 Re z2, x)

+ 2L(z1 + z2, x)+ 2L(z1 + z2, x)
)
.

This section is devoted to establishing, on GRH, the following estimates for shifted mo-
ments of L-functions. An immediate consequence of this theorem is Corollary 5.1 which
we used above to establish Theorem 1.2.

Theorem 6.1. Let X be large, and let z1 and z2 be two complex numbers with 0 ≤
Re(z1),Re(z2) ≤ 1/logX and with |z1|, |z2| ≤ X. Assume GRH for the family of
quadratic twists of f , for the Riemann zeta-function, and for the symmetric square L-
function L(s, sym2f ). Then for any positive real number k and any ε > 0 we have∑[

|d|≤X

|L(1/2+ z1, f ⊗ χd)L(1/2+ z2, f ⊗ χd)|
k

�k,ε X(logX)ε exp
(
kM(z1, z2, X)+

k2

2
V(z1, z2, X)

)
.

As remarked earlier, this result follows upon modifying the method of [17], and similar
results for the Riemann zeta-function were obtained by V. Chandee [3]. If we set z1 =

z2 = it for a real number t , then it is expected that when t is close to zero the moments
correspond to a family with “orthogonal” symmetry, while for larger t (for example t = 1)
the expected symmetry type is “unitary.” We note that our theorem above expresses in a
uniform way the transition between these symmetry types.
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To prove Theorem 6.1, we shall establish an estimate on the frequency with which
large values of |L(1/2+ z1, f ⊗ χd)L(1/2+ z2, f ⊗ χd)| are attained. As d varies over
the discriminants of size below X we expect that log |L(1/2 + z1, f ⊗ χd)L(1/2 + z2,

f ⊗χd)| is distributed normally with meanM(z1, z2, X) and variance V(z1, z2, X). The
next proposition establishes (in a range sufficient to prove Theorem 6.1) an upper bound
for the frequency of large values that conforms to the above prediction. In what follows
it may be helpful to keep in mind that for z1 and z2 as in Theorem 6.1 the quantity
V(z1, z2, X) lies between log logX +O(1) and 4 log logX +O(1).

Proposition 6.2. With assumptions as in Theorem 6.1, let N (V ; z1, z2, X) denote the
number of fundamental discriminants |d| ≤ X such that

log |L(1/2+ z1, f ⊗ χd)L(1/2+ z2, f ⊗ χd)| ≥ V +M(z1, z2, X).

In the range 10
√

log logX ≤ V ≤ V(z1, z2, X) we have

N (V ; z1, z2, X)� X exp
(
−

V 2

2V(z1, z2, X)

(
1−

25
log log logX

))
;

for V(z1, z2, X) < V ≤ 1
16V(z1, z2, X) log log logX we have

N (V ; z1, z2, X)� X exp
(
−

V 2

2V(z1, z2, X)

(
1−

15V
V(z1, z2, X) log log logX

)2)
;

finally, for 1
16V(z1, z2, X) log log logX < V we have

N (V ; z1, z2, X)� X exp
(
−

1
1025

V logV
)
.

We now show how Theorem 6.1 may be deduced from Proposition 6.2.

Proof of Theorem 6.1. We have∑[

|d|≤X

|L(1/2+ z1, f ⊗ χd)L(1/2+ z2, f ⊗ χd)|
k

= −

∫
∞

−∞

exp(kV + kM(z1, z2, X)) dN (V ; z1, z2, X)

= k

∫
∞

−∞

exp(kV + kM(z1, z2, X))N (V ; z1, z2, X) dV .

Inserting here the bounds for N (V ; z1, z2, X) furnished by Proposition 6.2 we obtain
Theorem 6.1 with a little calculation. This calculation may be facilitated by using Propo-
sition 6.2 in the crude form N (V ; z1, z2, X)� X(logX)o(1) exp(−V 2/(2V(z1, z2, X)))

for 3 ≤ V ≤ 4kV(z1, z2, X) and that N (V ; z1, z2, X) � X(logX)o(1) exp(−4kV ) for
larger V . ut
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It remains now to prove Proposition 6.2. We first obtain an auxiliary result analogous to
the Proposition of [17], namely (6.5) below. Write λf (p) = αp + βp where αpβp = 1
and, by Deligne’s theorem, |αp| = |βp| = 1. By modifying slightly the proof of the
Proposition in [17] we find that for z1, z2, d as in Theorem 6.1, and for any 2 ≤ x ≤ X,

log |L(1/2+ z1, f ⊗ χd)L(1/2+ z2, f ⊗ χd)|

≤ Re
( ∑
pl≤x
l≥1

χd(p
l)(αlp + β

l
p)

lpl(1/2+λ0/log x) (p
−lz1 + p−lz2)

log(x/pl)
log x

)

+ 2(1+ λ0)
logX
log x

+O

(
1

log x

)
, (6.1)

where λ0 = 0.4912 . . . is the unique real number satisfying e−λ0 = λ0 + λ
2
0/2. As in

[17], the terms with l ≥ 3 give O(1). Using α2
p + β

2
p = λf (p

2) − 1 and
∑
p|d 1/p �

log log logX we find that the terms with l = 2 give

Re
∑
p≤
√
x

λf (p
2)− 1

2p1+2λ0/log x (p
−2z1 + p−2z2)

log(x/p2)

log x
+O(log log logX). (6.2)

Using the GRH for L(s, sym2f ) we may see that∑
p≤y

(p−2z1 + p−2z2)λf (p
2) logp �

√
y(logXy)2, (6.3)

and also the sum is trivially� y. From these bounds and partial summation we obtain∑
p≤
√
x

λf (p
2)

p1+2λ0/log x (p
−2z1 + p−2z2)

log(x/p2)

log x
= O(log log logX).

Similarly RH gives that∑
p≤y

(p−2z1 + p−2z2) logp =
y1−2z1

1− 2z1
+
y1−2z2

1− 2z2
+O(

√
y(logXy)2), (6.4)

and once again the sum is also trivially� y. Partial summation now shows that

−1/2
∑
p≤
√
x

1
p1+2λ0/log x (p

−2z1 + p−2z2)
log(x/p2)

log x
=M(z1, z2, x)+O(log log logX).

Inserting the above estimates into (6.2) and (6.1), and sinceM(z1, z2, x) ≤M(z1, z2, X)

+ logX/log x, we conclude that

log |L(1/2+ z1, f ⊗ χd)L(1/2+ z2, f ⊗ χd)|

≤ Re
∑

2<p≤x

λf (p)χd(p)

p1/2+λ0/log x (p
−z1 + p−z2)

log(x/p)
log x

+M(z1, z2, X)+ 4
logX
log x

+O(log log logX). (6.5)
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Lemma 6.3. Let X and y be real numbers and k a natural number with yk ≤

X1/2/logX. For any complex numbers a(p) we have

∑[

|d|≤X

∣∣∣∣ ∑
2<p≤y

a(p)χd(p)

p1/2

∣∣∣∣2k � X
(2k)!
k!2k

(∑
p≤y

|a(p)|2

p

)k
,

where the implied constant is absolute.

Proof. Expanding out and using the Pólya–Vinogradov inequality, we have

∑[

|d|≤X

∣∣∣∣ ∑
2<p≤y

a(p)χd(p)

p1/2

∣∣∣∣2k ≤ ∑
|d|≤X

∣∣∣∣ ∑
2<p1,...,pk≤y

a(p1) . . . a(pk)
√
p1 . . . pk

(
d

p1 · · ·pk

)∣∣∣∣2
� X

∑
p1,...,p2k≤y
p1...p2k=�

|a(p1) . . . a(p2k)|
√
p1 . . . p2k

+O
( ∑
p1,...,p2k

|a(p1) . . . a(p2k) log(y2k)|
)
.

Since y2k log(y2k)� X we see, using Cauchy–Schwarz, that the second term above is

� log(y2k)
(∑
p≤y

|a(p)|
)2k
≤ log(y2k)

(∑
p≤y

|a(p)|2

p

)k(∑
p≤y

p
)k
≤ X

(∑
p≤y

|a(p)|2

p

)k
.

To estimate the first term, note that p1 . . . p2k = � precisely when there is a way to pair
up the indices so that the corresponding primes are equal. There are (2k)!/(k!2k) ways in
which the 2k indices may be paired up. Hence

∑
p1,...,p2k≤y
p1...p2k=�

|a(p1) . . . a(p2k)|
√
p1 . . . p2k

≤
(2k)!
k!2k

(∑
p

|a(p)|2

p

)k
. ut

Proof of Proposition 6.2. For brevity put V = V(z1, z2, X), and set

A =


1
2 log log logX, V ≤ V,
V

2V log log logX, V < V ≤ 1
16V log log logX,

8, V > 1
16V log log logX.

Define further x = XA/V and z = x1/log logX.
By taking x = logX in (6.5) and bounding the sum over p trivially, we may assume

V ≤ 5 logX/log logX. Then by (6.5) we have

log |L(1/2+ z1, f ⊗ χd)L(1/2+ z2, f ⊗ χd)| ≤ S1 + S2 +M(z1, z2, X)+ 5
V

A
,

where S1 is the sum there truncated to p ≤ z, and S2 is the sum over z < p ≤ x. If d is
such that log |L(1/2+ z1, f ⊗χd)L(1/2+ z2, f ⊗χd)| ≥ V +M(z1, z2, X), then either

S2 ≥ V/A, or S1 ≥ V (1− 6/A) =: V1.
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By Lemma 6.3 we see that for any k ≤ V/(2A)− 1 we have∑[

|d|≤X

|S2|
2k
� X

(2k)!
k!2k

( ∑
z<p≤x

4
p

)k
� X(3k log log logX)k.

Hence, choosing k = bV/(2A)c − 1 and with a little calculation, the number of discrimi-
nants |d| ≤ X with S2 ≥ V/A is

� X exp
(
−
V

4A
logV

)
.

We now seek a bound for the number of discriminants with S1 large. By Lemma 6.3,
we find that for any k ≤ log(X1/2/logX)/log z,∑[

|d|≤X

|S1|
2k
� X

(2k)!
k!2k

(∑
p≤z

a(p)2

p

)k
,

where a(p) = λf (p)p−λ0/log x log(x/p)
log x Re(p−z1 + p−z2). Note that

∑
p≤z

a(p)2

p
≤

1
4

∑
p≤X

λf (p)
2

p
(p−z1 + p−z1 + p−z2 + p−z2)2

= V(z1, z2, X)+O(log log logX),

upon using (6.3) and (6.4) and partial summation. Thus the number of |d| ≤ X such that
S1 ≥ V1 is

� XV −2k
1

(2k)!
2kk!

(V(z1, z2, X)+O(log log logX))k

� X

(
2k(V(z1, z2, X)+O(log log logX))

eV 2
1

)k
.

When V ≤ (log logX)2, we take k to be bV 2
1 /(2V(z1, z2, X))c, and for V > (log logX)2

we take k to be b10V c. Then the above estimates give that the number of discriminants
|d| ≤ X with S1 ≥ V1 is

� X exp
(
−

V 2
1

2V(z1, z2, X)

(
1+O

(
log log logX

log logX

)))
+X exp(−V logV ).

Combining this estimate with our estimate for the frequency with which S2 can be large,
we obtain the proposition. ut
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