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Abstract. The Muskat problem models the dynamics of the interface between two incompressible
immiscible fluids with different constant densities. In this work we prove three results. First we
prove an L2(R) maximum principle, in the form of a new “log” conservation law (3) which is
satisfied by the equation (1) for the interface. Our second result is a proof of global existence for
unique strong solutions if the initial data is smaller than an explicitly computable constant, for
instance ‖f ‖1 ≤ 1/5. Previous results of this sort used a small constant ε � 1 which was not
explicit [7, 19, 9, 14]. Lastly, we prove a global existence result for Lipschitz continuous solutions
with initial data that satisfy ‖f0‖L∞ < ∞ and ‖∂xf0‖L∞ < 1. We take advantage of the fact that
the bound ‖∂xf0‖L∞ < 1 is propagated by solutions, which grants strong compactness properties
in comparison to the log conservation law.
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1. Introduction

The Muskat problem models the dynamics of an interface between two incompressible
immiscible fluids with different characteristics, in porous media. The phenomenon has
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been described using the experimental Darcy law that is given in two dimensions by the
following momentum equation:

µ

κ
u = −∇p − g(0, ρ).

Here µ is viscosity, κ permeability of the isotropic medium, u velocity, p pressure, g
gravity and ρ density. Saffman and Taylor [18] related this problem to the evolution of an
interface in a Hele-Shaw cell since both physical scenarios can be modeled analogously
(see also [7] and reference therein). Recently, the well-posedness has been shown without
surface tension in [8] (for previous work on this topic see [1], [21], [2] and [9]) using
arguments that rely upon the boundedness properties of the Hilbert transforms associated
to C1,γ curves. Precise estimates are obtained with arguments involving conformal map-
pings, the Hopf maximum principle and Harnack inequalities. The initial data have to
satisfy the Rayleigh–Taylor condition initially, otherwise the problem has been shown to
be ill-posed in the sense of Hadamard (see [19] and [9] for more details). With surface ten-
sion, the initial value problem becomes more regular, and instabilities do not appear [13].
The case of more than one free boundary has been treated in [11] and [14].

In this paper we consider an interface given by fluids of different constant densities ρi ,
with the same viscosity and without surface tension. The step function ρ is represented
by

ρ(x, t) =

{
ρ1, x ∈ �1(t),

ρ2, x ∈ �2(t) = R2
\�1(t),

for �i(t) two connected regions. As the density ρ is transported by the flow

ρt + u · ∇ρ = 0,

the free boundary evolves with the two-dimensional velocity u = (u1, u2). The Biot–
Savart law allows one to recover u from the vorticity given by ω = ∂x1u2− ∂x2u1, via the
integral operator

u(x, t) = ∇⊥1−1ω(x, t).

Darcy’s law then provides the relation ω = −∂x1ρ where µ/κ and g are taken equal to 1
for the sake of simplicity. Then the velocity field can be obtained in terms of the density
as follows:

u(x, t) = PV
∫
R2
K(x − y)ρ(y, t) dy −

1
2
(0, ρ(x, t)).

Here the kernel K is of Calderón–Zygmund type:

K(x) =
1
π

(
−
x1x2

|x|2
,
x2

1 − x
2
2

2|x|2

)
(see [20]). As a consequence of ρ ∈ L∞(R2

× R+) it follows that the velocity belongs
to BMO. Moreover, as K is an even kernel, it has the property that the mean of K (in the
principal value sense) is zero on hemispheres [4], and this yields a bound on the velocity
u(x, t) in terms of C1,γ norms (0 < γ < 1) of the free boundary [11].
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In order to have a well-posed problem we need to consider initially an interface pa-
rameterized as the graph of a function with the denser fluid below: ρ2 > ρ1 as in [9]. The
interface is characterized as the graph of the function (x, f (x, t)). This characterization
is preserved by the system and f satisfies

ft (x, t) =
ρ2
−ρ1

2π
PV

∫
R
dα

(∂xf (x, t)− ∂xf (x − α, t))α

α2 + (f (x, t)− f (x − α, t))2
,

f (x, 0) = f0(x), x ∈ R.
(1)

The above equation can be linearized around the flat solution, which yields the following
nonlocal partial differential equation:

ft (x, t) = −
ρ2
− ρ1

2
3f (x, t),

f (α, 0) = f0(α), α ∈ R,
(2)

where the operator 3 is the square root of the Laplacian. This linearization shows the
parabolic character of the problem in the stable case (ρ2 > ρ1), as well as the ill-
posedness in the unstable case (ρ2 < ρ1). We use the term ill-posedness here to mean
that some solutions do leave the H s spaces right away even for arbitrarily small data.

The nonlinear equation (1) is ill-posed in the unstable situation and locally well-posed
in H k (k ≥ 3) for the stable case [9]. Furthermore the stable system satisfies a maximum
principle ‖f ‖L∞(t) ≤ ‖f ‖L∞(0) (see [10]); decay rates are obtained for the periodic
case:

‖f ‖L∞(t) ≤ ‖f0‖L∞e
−Ct ,

and also for the case on the real line (flat at infinity):

‖f ‖L∞(t) ≤
‖f0‖L∞

1+ Ct
.

Numerical solutions performed in [12] further indicate a regularizing effect. The decay
of the slope and the curvature is observed to be stronger than the rate of decay of the
maximum of the difference between f and its mean value. Thus, the irregular regions in
the graph are observed to be rapidly smoothed and the flat regions are smoothly bent. It
is shown analytically in [10] that, if the initial data satisfy ‖∂xf0‖L∞ < 1, then there is a
maximum principle so that this derivative remains in absolute value smaller than 1.

The three main results we present in this paper are the following:

1) In Section 2, we prove that a solution of (1) formally satisfies

‖f ‖2
L2(t)+

ρ2
− ρ1

2π

∫ t

0
ds

∫
R
dα

∫
R
dx ln

(
1+
(
f (x, s)− f (α, s)

x − α

)2)
= ‖f0‖

2
L2 . (3)

Furthermore, we have the inequality∫
R
dx

∫
R
dα ln

(
1+

(
f (x, s)− f (α, s)

x − α

)2)
≤ C‖f ‖L1(s).



204 Peter Constantin et al.

This identity shows a major difference with the linear equation (2) where the evolution of
the L2 norm provides a gain of half derivative for ρ2 > ρ1:

‖f ‖2
L2(t)+ (ρ

2
− ρ1)

∫ t

0
ds ‖31/2f ‖2

L2(s) = ‖f0‖
2
L2 , (4)

or equivalently

‖f ‖2
L2(t)+

ρ2
− ρ1

2π

∫ t

0
ds

∫
R
dx

∫
R
dα

(
f (x, s)− f (α, s)

x − α

)2

= ‖f0‖
2
L2 .

Notice that this linear energy balance (4) directly implies compactness, whereas compact-
ness does not follow from the nonlinear L2 energy (3).

2) Our second result proves global existence of unique C([0, T ];H 3(R)) solutions if
initially the norm (7) of f0 is controlled as ‖f0‖1 < c0 where

‖f0‖1 =

∫
R
dξ |ξ | |f̂0(ξ)|.

Of course here f̂ denotes the standard Fourier transform of f . There are several results
of global existence for small initial data (small compared to 1 or ε � 1) in several norms
[7, 19, 9, 14] taking advantage of the parabolic character of the equation for small initial
data. For example in [19] and [9], in order to measure the analyticity of the solution,
global existence is shown when ‖f0‖1 ≤ ε for ε very small (compared to 1) and∫

R
dξ |ξ |2eb(t)|ξ ||f̂0(ξ)| ≤ εe

b(t)(1+ |b(t)|γ−1), (5)

where 0 < γ < 1 and b(t) = a− ct/2. Here c depends on the Rayleigh–Taylor condition
and a ≤ ct/2.

For the Hele-Shaw problem, [7] proves the global existence in time for small analytic
perturbations of the circle, and nonlinear asymptotic stability of the steady circular solu-
tion. Also recently [14] considers the Muskat problem in a periodic geometry, and proves
the well-posedness as well as the exponential stability of a certain flat equilibrium.

The key point for our result, in comparison to previous work [7, 19, 9, 14], is that the
constant c0 can be easily explicitly computed (see (8)). We have checked numerically that
c0 is not that small: it is greater than 1/5.

3) In Section 4 we prove global in time existence of Lipschitz continuous solutions in
the stable case. Being a solution of (1) is understood in its weak formulation:∫ T

0
dt

∫
R
dx ηt (x, t)f (x, t)+

∫
R
dx η(x, 0)f0(x)

=

∫ T

0
dt

∫
R
dx ηx(x, t)

ρ2
− ρ1

2π
PV

∫
R
dα arctan

(
f (x, t)− f (α, t)

x − α

)
(6)
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for all η ∈ C∞c ([0, T )×R). For initial data f0 satisfying ‖f0‖L∞ <∞ and ‖∂xf0‖L∞ < 1
we prove that there exists a solution of (6) that remains in the spaces C([0, T ] × R) ∩
L∞([0, T ];W 1,∞(R)) for any T > 0. We point out that, because of the condition f ∈
L∞(R), the nonlinear term in (6) has to be understood as a principal value for the integral
of two functions, one in H1, the Hardy space, and the other in BMO [20].

Kim [16] studied viscosity solutions for the one-phase Hele-Shaw and Stefan prob-
lems. For the Muskat problem, previous results of global existence [7, 19, 9, 14]
need small initial data more regular than Lipschitz. We show here that we just need
‖∂xf0‖L∞ < 1, therefore ∣∣∣∣f0(x)− f0(α)

x − α

∣∣∣∣ < 1.

Notice that if we consider the first order term in the Taylor series of ln(1+y2) (absolutely
convergent for |y| < 1), then the identity (3) becomes (4).

2. L2 maximum principle

In this section we provide a proof of the identity (3). As we are in the stable case, we take
without loss of generality (ρ2

− ρ1)/(2π) = 1 to simplify the exposition. The contour
equation (1) can be written as follows:

ft (x, t) = PV
∫
R
∂x arctan

(
f (x, t)− f (x − α, t)

α

)
dα.

We multiply by f , integrate over dx, and use integration by parts to observe

1
2
d

dt
‖f ‖2

L2(t) = −

∫
R
dx

∫
R
dα fx(x) arctan

(
f (x, t)− f (x − α, t)

α

)
= −

∫
R
dx

∫
R
dα fx(x) arctan

(
f (x, t)− f (α, t)

x − α

)
.

We use the splitting

1
2
d

dt
‖f ‖2

L2(t) = −

∫
R

∫
R

(
f (x, t)− f (α, t)

x − α

)
arctan

(
f (x, t)− f (α, t)

x − α

)
dx dα

−

∫
R

∫
R

(
fx(x)(x − α)− (f (x, t)− f (α, t))

x − α

)
arctan

(
f (x, t)− f (α, t)

x − α

)
dx dα

= I1 + I2.

We also use the function G defined by

G(x) = x arctan x − ln
√

1+ x2 =

∫ x

0
dy arctan y.
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With these, it is easy to observe that

I2 = −

∫
R

∫
R
(x − α)∂xG

(
f (x, t)− f (α, t)

x − α

)
dx dα.

The identity

lim
|x|→∞

(x − α)G

(
f (x, t)− f (α, t)

x − α

)
= 0

allows us to integrate by parts to obtain

I2 =

∫
R

∫
R
G

(
f (x, t)− f (α, t)

x − α

)
dx dα

= −I1 −

∫
R

∫
R

ln

√
1+

(
f (x, t)− f (α, t)

x − α

)2

dx dα.

This equality gives

1
2
d

dt
‖f ‖2

L2(t) = −

∫
R

∫
R

ln

√
1+

(
f (x, t)− f (α, t)

x − α

)2

dx dα,

and integrating in time we get the desired identity.
The above equality indicates that for large initial data, the system is not parabolic at

the level of f in L2. We prove below the inequality∫
R

∫
R

ln
(

1+
(
f (x, t)− f (α, t)

x − α

)2)
dx dα ≤ 4π

√
2 ‖f ‖L1(t),

which shows that there is no gain of derivatives for the stable case. If the initial data are
positive, then ‖f ‖L1(t) ≤ ‖f0‖L1 follows from [10], so that the dissipation is bounded in
terms of the initial data with zero derivatives.

For the proof of the inequality, we denote by J the integral

J :=

∫
R

∫
R

ln
(

1+
(
f (x)− f (x − α)

α

)2)
dx dα.

We now use that the function ln(1+ y2) is increasing to observe that

J ≤

∫
R

∫
R

ln
(

1+
2|f (x)|2

α2 +
2|f (x − α)|2

α2

)
dx dα.

The inequality ln(1+ a2
+ b2) ≤ ln(1+ a2)+ ln(1+ b2) yields

J ≤

∫
R

∫
R

ln
(

1+
2|f (x)|2

α2

)
dx dα +

∫
R

∫
R

ln
(

1+
2|f (x − α)|2

α2

)
dx dα,
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and therefore

J ≤ 2
∫
R

∫
R

ln
(

1+
2|f (x)|2

α2

)
dx dα = K.

For K it is easy to get

K = 2
∫
{x : |f (x)|6=0}

dx

∫
R
dα ln

(
1+

2|f (x)|2

α2

)
,

so that an easy integration in α provides

K = 4π
√

2
∫
{x : |f (x)|6=0}

dx |f (x)| = 4π
√

2 ‖f ‖L1 .

This concludes our discussion of the L2 maximum principle (3) for (1).

3. A global existence result for data less than 1/5

In this section we prove global existence of C([0, T ];H 3(R)) small data solutions. A key
point is to consider the norm

‖f ‖s :=

∫
R
dξ |ξ |s |f̂ (ξ)|, s ≥ 1. (7)

This norm allows us to use Fourier techniques for small initial data that give rise to a
global existence result for classical solutions. The key point is that (7) appears naturally
when taking the Fourier transform of the equation in our computations below (see (9) and
(10)). As a result, (7) provides sharper constants than the ones that one could obtain with
different norms.

Theorem 3.1. Suppose that initially f0 ∈ H
3(R) and ‖f0‖1 < c0, where c0 is a constant

such that
2
∑
n≥1

(2n+ 1)2+δc2n
0 ≤ 1 (8)

for a fixed 0 < δ < 1/2. Then there is a unique solution f of (1) that satisfies f ∈
C([0, T ];H 3(R)) for any T > 0.

Remark 3.2. We compute the limit case δ = 0, so that

2
∑
n≥1

(2n+ 1)2c2n
0 ≤ 1

for

0 ≤ c0 ≤
1
3

√
7−

14× 52/3

3
√

9
√

39− 38
+ 2

3
√

5(9
√

39− 38) ≈ 0.2199617648835399.

In particular,
2
∑
n≥1

(2n+ 1)2.1c2n
0 < 1

if say c0 ≤ 1/5.
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The remainder of this section is devoted to the proof of Theorem 3.1. The contour
equation for the stable Muskat problem (1) can be written as

ft (x, t) = −ρ(3f + T (f )), (9)

where we recall that ρ = (ρ2
− ρ1)/2 > 0 and we have

T (f ) =
1
π

∫
R

∂xf (x)− ∂xf (x − α)

α

(f (x)−f (x−α)
α

)2
1+

(f (x)−f (x−α)
α

)2 dα. (10)

We define

1αf (x) :=
f (x)− f (x − α)

α
.

We consider the evolution of the norm ‖f ‖1 given in (7):

d

dt
‖f ‖1(t) =

∫
R
dξ |ξ | sgn(f̂ (ξ))f̂t (ξ)

= ρ

∫
R
dξ |ξ | sgn(f̂ (ξ))(−|ξ |f̂ (ξ)− F(T )(ξ)).

We will show that the first term dominates the second if initially

‖f0‖1 <

√
(4−
√

13)/6, where
√
(4−
√

13)/6 > 1/4.

The key point, again, is that the constant is given explicitly.
Notice that under the local existence theorem of [9], this bound will be propagated for

a short time. Then we may use the Taylor expansion

x2

1+ x2 =

∞∑
n=1

(−1)n+1x2n,

to obtain

T (f ) =
−1
π

∑
n≥1

(−1)n
∫
R
∂x(1αf )(1αf )

2n dα. (11)

Notice that

F(1αf ) = f̂ (ξ)m(ξ, α), F(∂x1αf ) = −iξ f̂ (ξ)m(ξ, α), m(ξ, α) =
1− e−iξα

α
.

Therefore

F(∂x(1αf ) (1αf )2n) = ((−iξ f̂ m) ∗ (f̂ m) ∗ · · · ∗ (f̂ m))(ξ, α),
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with 2n convolutions, one with −iξ f̂ m and 2n− 1 with f̂ m. Using (11) we obtain

F(T )(ξ) =
i

π

∑
n≥1

(−1)n
∫
R
dα

∫
R
dξ1 · · ·

∫
R
dξ2n(ξ − ξ1)f̂ (ξ − ξ1)m(ξ − ξ1, α)

× f̂ (ξ1 − ξ2)m(ξ1 − ξ2, α) · · · f̂ (ξ2n−1 − ξ2n)m(ξ2n−1 − ξ2n, α)f̂ (ξ2n)m(ξ2n, α)

=

∑
n≥1

∫
R
dξ1 · · ·

∫
R
dξ2n (ξ − ξ1)f̂ (ξ − ξ1)

(2n−1∏
i=1

f̂ (ξi − ξi+1)
)
f̂ (ξ2n)Mn,

where Mn = Mn(ξ, ξ1, . . . , ξ2n) is given by

Mn :=
i

π
(−1)n

∫
R
m(ξ − ξ1, α)

(2n−1∏
i=1

m(ξi − ξi+1, α)
)
m(ξ2n, α) dα. (12)

Since m(ξ, α) = iξ
∫ 1

0 ds e
iα(s−1)ξ we obtain

Mn(ξ, ξ1, . . . , ξ2n) = mn(ξ, ξ1, . . . , ξ2n) (ξ1 − ξ2) · · · (ξ2n−1 − ξ2n)ξ2n

with

mn =
i

π

∫ 1

0
ds1 · · ·

∫ 1

0
ds2n

∫
R
dα

1− e−iα(ξ−ξ1)

α

× exp
(
iα

2n−1∑
j=1

(sj − 1)(ξj − ξj+1)+ iα(s2n − 1)ξ2n

)
=
i

π

∫ 1

0
ds1 · · ·

∫ 1

0
ds2n

(
PV

∫
R

exp(iαA)
dα

α
− PV

∫
R

exp(iαB)
dα

α

)
= −

∫ 1

0
ds1 · · ·

∫ 1

0
ds2n (sgnA− sgnB),

where

A =

2n−1∑
j=1

(sj − 1)(ξj − ξj+1)+ (s2n − 1)ξ2n = −ξ1 +

2n∑
j=1

sj ξj −

2n−1∑
j=1

sj ξj+1,

B = −(ξ − ξ1)+

2n−1∑
j=1

(sj − 1)(ξj − ξj+1)+ (s2n − 1)ξ2n

= −ξ +

2n∑
j=1

sj ξj −

2n−1∑
j=1

sj ξj+1.
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It follows that

F(T )(ξ) =
∑
n≥1

∫
R
dξ1 · · ·

∫
R
dξ2nmn(ξ, ξ1, . . . , ξ2n) (ξ − ξ1)f̂ (ξ − ξ1)

×

(2n−1∏
i=1

(ξi − ξi+1)f̂ (ξi − ξi+1)
)
ξ2nf̂ (ξ2n),

with |mn(ξ, ξ1, . . . , ξ2n)| ≤ 2. We then have∫
R
dξ |ξ | |F(T )(ξ)| ≤ 2

∑
n≥1

∫
R
dξ

∫
R
dξ1 · · ·

∫
R
dξ2n |ξ | |ξ − ξ1| |f̂ (ξ − ξ1)|

× |ξ1 − ξ2| |f̂ (ξ1 − ξ2)| · · · |ξ2n−1 − ξ2n| |f̂ (ξ2n−1 − ξ2n)| |ξ2n| |f̂ (ξ2n)|.

The inequality |ξ | ≤ |ξ − ξ1| + |ξ1 − ξ2| + · · · + |ξ2n−1 − ξ2n| + |ξ2n| yields∫
R
dξ |ξ | |F(T )(ξ)| ≤ 2

∑
n≥1

(2n+ 1)
(∫

R
dξ |ξ |2|f̂ (ξ)|

)(∫
R
dξ |ξ | |f̂ (ξ)|

)2n

,

and therefore∫
R
dξ |ξ | |F(T )(ξ)| ≤

(∫
R
dξ |ξ |2|f̂ (ξ)|

)
2
∑
n≥1

(2n+ 1)‖f ‖2n1

≤

(∫
R
dξ |ξ |2|f̂ (ξ)|

)
2‖f ‖21(3− ‖f ‖

2
1)

(1− ‖f ‖21)
2

.

Notice 2x2(3− x2)/(1− x2)2 < 1 if 0 ≤ x <

√
(4−
√

13)/6 ≈ 0.256400964. If

‖f0‖1 <

√
(4−
√

13)/6, then this inequality will continue to hold for some time so that

d

dt
‖f ‖1(t) ≤ 0,

and we conclude that ‖f ‖1(t) ≤ ‖f0‖1 if ‖f0‖1 <

√
(4−
√

13)/6.
Now we repeat the argument but with s > 1 in (7). Our goal is to obtain

d

dt
‖f ‖2+δ(t) ≤ 0, 0 < δ < 1/2. (13)

Let us point out that
‖f0‖2+δ ≤ C(‖f0‖L2 + ‖∂

3
xf0‖L2)

for 0 < δ < 1/2. Using the inequality

|ξ |2+δ ≤ (2n+ 1)1+δ(|ξ − ξ1|
2+δ
+ |ξ1 − ξ2|

2+δ
+ · · · + |ξ2n−1 − ξ2n|

2+δ
+ |ξ2n|

2+δ),
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we proceed as before to get∫
R
|ξ |2+δ|F(T )(ξ)| dξ ≤

∫
R
|ξ |3+δ|f̂ (ξ)| dξ 2

∑
n≥1

(2n+ 1)2+δ‖f ‖2n1 .

In particular, taking ‖f ‖1 small enough we find∫
R
|ξ |2+δ|F(T )(ξ)| dξ ≤

∫
R
|ξ |3+δ|f̂ (ξ)| dξ,

and bound (13) therefore holds.
If ‖f ‖C2,δ remains bounded (0 < δ < 1), then from previous work [9], we can deduce

global existence in C([0, T ];H 3(R)) for any T > 0. Note that the Hölder seminorm

|g|Cδ = sup
x, y 6=0

|g(x + y)− g(x)|

|y|δ

is bounded by

sup
x, y 6=0

|g(x + y)− g(x)|

|y|δ
= sup
x, y 6=0

∣∣∣∣ C|y|δ
∫
R
ĝ(ξ)eixξ (eiyξ − 1) dξ

∣∣∣∣ ≤ C ∫
R
|ξ |δ|ĝ(ξ)| dξ,

and therefore

‖f ‖C2,δ ≤ C

(
‖f ‖L∞ +

∫
R
dξ |ξ | |f̂ (ξ)| +

∫
R
dξ |ξ |2+δ|f̂ (ξ)|

)
.

We conclude that the solution can be continued for all time if ‖f0‖1 is initially smaller
than a computable constant c0, and ‖f0‖2+δ is bounded. The constant c0 is defined by the
condition

2
∑
n≥1

(2n+ 1)2+δc2n
0 ≤ 1,

which has been numerically verified to be no smaller than say 1/5.

4. Global existence for initial data smaller than 1

We prove now the existence of a weak solution of the system (1) which can be written as
follows:

ft =
ρ

π
∂x PV

∫
R

arctan
(
f (x)− f (x − α)

α

)
dα, (14)

where ρ = (ρ2
− ρ1)/2. We first extend the sense of the contour equation with a weak

formulation: for any η ∈ C∞c ([0, T )×R), a weak solution f should satisfy (6). We show
here that this is the case if ‖∂xf0‖L∞ < 1. Then it follows that ‖f ‖L∞(t) ≤ ‖f0‖L∞

and ‖∂xf ‖L∞(t) ≤ ‖∂xf0‖L∞ < 1 as in [10]. Then the solution is in fact Lipschitz
continuous by Morrey’s inequality. The main result we prove below is the following:
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Theorem 4.1. Suppose that ‖f0‖L∞ <∞ and ‖∂xf0‖L∞ < 1. Then there exists a global
in time weak solution of (6) that satisfies

f ∈ C([0, T ] × R) ∩ L∞([0, T ];W 1,∞(R)).

In particular f is Lipschitz continuous.

The rest of this section is devoted to the proof of Theorem 4.1. The first step is to prove
global in time existence of classical solutions to the regularized model (15) below. This
is done in Section 4.2. Prior to that, in Section 4.1 we prove some necessary a priori
bounds. Then, in Section 4.3 we explain how to approximate the initial data. Section 4.4
shows how to prove the existence of solutions of (6), subject to the strong convergence
established in Section 4.5.

From now on, in the next two subsections we write f = f ε for the solution to (15)
for the sake of simplicity of the notation. The regularized model is given by

ft (x, t) = −εC3
1−εf + εfxx +

ρ

π
∂x PV

∫
R
dα arctan(1εαf (x)). (15)

where C > 0 is a universal constant fixed below, the operator 31−εf is given by the
formula

31−εf (x) = c1(ε)

∫
R

f (x)− f (x − α)

|α|2−ε
dα, (16)

with 0 < cm ≤ c1(ε) ≤ cM for 0 ≤ ε ≤ 1/4, and we define

1εαf (x) :=
f (x)− f (x − α)

φ(α)
,

with φ(α) = φε(α) = α/|α|ε and ε > 0 is small enough. Initially we consider the data
f0 ∈ W

1,∞(R) with ‖∂xf0‖L∞(R) < 1. We will explain how to approximate this initial
data later on in Section 4.3.

4.1. A priori bounds

In this section we show two a priori bounds for the regularized system (15). We prove the
following result:

Proposition 4.2. Let f (x, t) be a regular solution of the system (15). Then

‖f ‖L∞(t) ≤ ‖f0‖L∞ , ‖∂xf ‖L∞(t) ≤ ‖∂xf0‖L∞ < 1,

for any t > 0.

In order to prove the first estimate, we check the evolution of

M(t) = max
x
f (x, t) = f (xt , t).
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Then M is differentiable for almost every t and

M ′(t) = ft (xt , t) = −εC3
1−εf (xt )+ εfxx(xt )+

ρ

π
∂x PV

∫
R

arctan(1εαf (xt )) dα

(see [5, 10] for more details regarding the differentiability of M(t)). Using formula (16)
it is easy to check that the second and the third term above have the correct sign. We have
to deal with the third one. Now

I (x) = ∂x PV
∫
R

arctan(1εαf (x)) dα = ∂x PV
∫
R

arctan(1εx−αf (x)) dα, (17)

and thus

I (x) = ∂xf (x)PV
∫
R

1
φ(x−α)

1+ (1εx−αf (x))2
dα

− (1− ε)PV
∫
R

f (x)−f (α)

|x−α|2−ε

1+ (1εx−αf (x))2
dα. (18)

Therefore I (xt ) ≤ 0 (since ∂xf (xt ) = 0). Then M ′(t) ≤ 0 for a.e. t ∈ (0, T ] and
M(t) ≤ M(0). Analogously, we check the evolution of

m(t) = min
x
f (x, t) = f (xt , t)

and find m(t) ≥ m(0).
From (15) and (17) we have

fxt = −εC3
1−εfx + εfxxx +

ρ

π
Ix .

Using (18) we rewrite I (x) = J 1(x)+ J 2(x) where

J 1(x) = PV
∫
R

fx(x)(x − α)− (f (x)− f (α))

|x − α|2−ε
1

1+ (1εx−αf (x))2
dα,

J 2(x) = ε PV
∫
R

f (x)− f (x − α)

|α|2−ε
1

1+ (1εαf (x))2
dα,

to find

J 1
x (x) = fxx(x)PV

∫
R

1
φ(x − α)

1
1+ (1εx−αf (x))2

dα

− (2− ε)PV
∫
R

fx(x)−
f (x)−f (α)

x−α

|x − α|2−ε
1

1+ (1εx−αf (x))2
dα

− PV
∫
R

fx(x)(x − α)− (f (x)− f (α))

|x − α|2−ε

21εx−αf (x)
(1+ (1εx−αf (x))2)2

×
fx(x)(x − α)− (1− ε)(f (x)− f (α))

|x − α|2−ε
dα,
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and we split further J 1
x (x) = K

1(x)+K2(x)+K3(x)+K4(x) where

K1(x) = fxx(x)PV
∫
R

1
φ(α)

1
1+ (1εαf (x))2

dα,

K2(x) = ε PV
∫
R

fx(x)−
f (x)−f (x−α)

α

|α|2−ε
1

1+ (1εαf (x))2
dα,

K3(x) = −PV
∫
R

fx(x)−
f (x)−f (x−α)

α

|α|2−ε
2

1+ (1εαf (x))2
dα,

K4(x) = −PV
∫
R
dα

fx(x)−
f (x)−f (x−α)

α

|α|2−ε
21εαf (x)

(1+ (1εαf (x))2)2

× (fx(x)|α|
ε
− (1− ε)1εαf (x)).

For J 2 it is easy to check that

J 2
x (x) = ε PV

∫
R

fx(x)− fx(x − α)

|α|2−ε
dα

1+ (1εαf (x))2

− ε PV
∫
R

fx(x)− fx(x − α)

|α|2−ε
2(1εαf (x))

2 dα

(1+ (1εαf (x))2)2
.

Next, as we did before, we consider M(t) = maxx fx = fx(xt , t). Then M(t) is differ-
entiable (as we explained previously). It follows that

M ′(t) = fxt (xt , t) = −εC3
1−εfx(xt )+ εfxxx(xt )+

ρ

π
Ix(xt ).

Now we claim that if M(t) < 1 then M ′(t) ≤ 0 for a.e. t . We can conclude analogously
for m(t) = minx fx > −1, m′(t) ≥ 0 for a.e. t .

We check that if M(t) < 1, then

−εC31−εfx(xt )+ εfxxx(xt )+
ρ

π
Ix(xt ) ≤ 0.

We can use in some cases the following formula for the operator 31−εfx :

31−εfx(x) = c2(ε)

∫
R

fx(x)−
f (x)−f (x−α)

α

|α|2−ε
dα, (19)

where 0 < cm ≤ c2(ε) ≤ cM for 0 ≤ ε ≤ 1/4.
We claim that

−εC31−εfx(xt )+
ρ

π
(K2(xt )+ J

2
x (xt )) ≤ 0.

We will show that

−ε
C

2
31−εfx(xt )+

ρ

π
K2(xt ) ≤ 0,
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using (19) and that

−ε
C

2
31−εfx(xt )+

ρ

π
J 2(xt ) ≤ 0,

by (16). In fact

− ε
C

2
31−εfx(xt )+

ρ

π
K2(xt )

= −ε PV
∫
R

fx(xt )−
f (xt )−f (xt−α)

α

|α|2−ε

Cc2(ε)
2 (1εαf (xt ))

2
+

Cc2(ε)
2 −

ρ
π

1+ (1εαf (xt ))2
dα.

The mean value theorem gives

|f (x)− f (x − α)|/|α| ≤ ‖fx‖L∞ .

Thus if we take C ≥ 2ρ/(cmπ) we obtain the first inequality. Also

− ε
C

2
31−εfx(xt )+

ρ

π
J 2(xt )

= −ε PV
∫
R

fx(xt )− fx(xt − α)

|α|2−ε

Cc1(ε)
2 (1εαf (xt ))

2
+

Cc1(ε)
2 −

ρ
π

1+ (1εαf (xt ))2
dα

− ε PV
∫
R

fx(xt )− fx(xt − α)

|α|2−ε
2(1εαf (xt ))

2 dα

(1+ (1εαf (xt ))2)2
≤ 0.

Thus the term above has the desired sign.
We find fxxx(xt ) ≤ 0 and K1(xt ) = 0. We still have to deal with K3 and K4.

Considering K3(xt )+K
4(xt ), we realize that if

P(α) = 2+ 2(1εαf (xt ))
2
+ 2(1εαf (xt ))(fx(xt )|α|

ε
− (1− ε)1εαf (xt )) ≥ 0,

then we are done. We rewrite

P(α) = 2+ 2ε(1εαf (xt ))
2
+ 2(1εαf (xt ))fx(xt )|α|

ε,

and therefore we need
|(1εαf (xt ))fx(xt )|α|

ε
| ≤ 1.

This fact holds if

|f |C1−2ε = sup
α 6=0

|f (xt )− f (xt − α)|

|α|1−2ε < 1.

Now we will check that if ‖f ‖L∞ ≤ ‖f0‖L∞ and ‖fx‖L∞ < 1 then |f |C1−2ε < 1 for ε
small enough uniformly. We replace 2ε by ε without loss of generality. If ‖f0‖L∞ = 0 or
‖fx‖L∞ = 0 then there is nothing to prove. Otherwise

|f (xt )− f (xt − α)|

|α|1−ε
≤ ‖fx‖L∞δ

ε
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for 0 < |α| ≤ δ, and
|f (xt )− f (xt − α)|

|α|1−ε
≤ 2
‖f0‖L∞

δ1−ε

for |α| ≥ δ. We take δ1−ε
= 2‖f0‖L∞/‖fx‖L∞ and therefore

|f |C1−ε ≤ max{‖fx‖L∞ , ‖fx‖
1−ε/(1−ε)
L∞ (2‖f0‖L∞)

ε/(1−ε)
}.

Now it is clear that given ‖f0‖L∞ , if ‖fx‖L∞ < 1 there exists ε0 > 0 such that |f |C1−ε

≤ 1 for any 0 ≤ ε ≤ ε0.

4.2. Global existence for the regularized model

In this section we use the a priori bounds to show global existence. Local existence can be
easily proved using the local existence proof for the non-regularized Muskat problem (1),
as in [9]. We use energy estimates and the Gronwall inequality. We have the following
result.

Proposition 4.3. Let f (x, t) be a regular solution of the system (15). Then

‖f ‖2
L2(t)+ ‖∂

3
xf ‖

2
L2(t) ≤ (‖f0‖

2
L2 + ‖∂

3
xf0‖

2
L2) exp

(∫ t

0
C(ε)G(s) ds

)
(20)

for
G(s) = ‖f ‖4L∞ + ‖f ‖

2
L∞ + ‖fx‖

4
L∞(s)+ ‖fx‖

2
L∞(s)+ 1

and any t > 0.

Estimate (20) allows us to find f ∈ C([0, T ];H 3(R)) for any T > 0 by the a priori
bounds.

Furthermore, as we did for (1), it follows that

d

dt
‖f ‖2

L2(t) = −
ρ

2π

∫
R

∫
R

1− ε
|x − α|ε

ln
(

1+
(
f (x, t)− f (α, t)

φ(x − α)

)2)
dx dα

− 2Cε‖3(1−ε)/2f ‖2
L2(t)− 2ε‖fx‖2L2(t).

Therefore ‖f ‖L2(t) ≤ ‖f0‖L2 .

Remark 4.4. The above maximum principle for the regularized system shows that The-
orem 4.1 can also be proved with

‖f0‖L2 <∞ instead of ‖f0‖L∞ <∞.

We picked the version above because it is more suitable. We see that if the solution satis-
fies initially an L2 bound then f ∈ L∞([0, T ];L2(R)).
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Next, we consider the evolution of∫
R
∂3
xf ∂

3
xft dx ≤ −Cε‖3

(1−ε)/2∂3
xf ‖L2(t)− ε‖∂

4
xfx‖

2
L2 + L1 + L2,

where

L1 =
ρ

π

∫
R
∂3
xf (x)∂

3
x

(
PV

∫
R

fx(x)− fx(x − α)

φ(α)
dα

)
dx,

L2 = −
ρ

π

∫
R
∂3
xf (x)∂

3
x

(
PV

∫
R

fx(x)− fx(x − α)

φ(α)

(1εαf (x))
2 dα

1+ (1εαf (x))2

)
dx.

The term fx(x) cancels out in L1 due to the PV. An integration by parts further shows
that

L1 = −
ρ

π
C(ε)

∫
R
∂3
xf (x)3

1−ε∂3
xf (x) dx ≤ 0.

For L2 one finds

L2 =
ρ

π

∫
R
∂4
xf (x)∂

2
x

(
PV

∫
R

fx(x)− fx(x − α)

φ(α)

(1εαf (x))
2 dα

1+ (1εαf (x))2

)
dx,

which splits as L2 = M1 +M2 +M3 with

M1 =
ρ

π

∫
R
∂4
xf (x)

∫
R

∂3
xf (x)− ∂

3
xf (x − α)

φ(α)

(1εαf (x))
2 dα

1+ (1εαf (x))2
dx,

M2 =
3ρ
π

∫
R
∂4
xf (x)

∫
R

∂2
xf (x)− ∂

2
xf (x − α)

φ(α)

fx(x)− fx(x − α)

φ(α)

×
2(1εαf (x)) dα

(1+ (1εαf (x))2)2
dx,

M3 =
ρ

π

∫
R
∂4
xf (x)

∫
R

(
fx(x)− fx(x − α)

φ(α)

)3
(2− 6(1εαf (x))

2) dα

(1+ (1εαf (x))2)3
dx.

We will now estimate each of these terms from above.
For M1 we proceed as follows:

|M1| =
ρ

π

(∫
|α|>1

dα

∫
R
dx+

∫
|α|<1

dα

∫
R
dx

)
≤ C(ε)(‖f ‖L∞ + 1)‖∂3

xf ‖L2‖∂
4
xf ‖L2 .

The identity

∂2
xf (x)− ∂

2
xf (x − α) =

∫ 1

0
∂3
xf (x + (s − 1)α)α ds
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yields

|M2| ≤
6ρ
π

∫ 1

0
ds

∫
|α|<1

dα

|α|1−2ε

∫
R
dx |∂4

xf (x)| |∂
3
xf (x + (s − 1)α)|

× (|fx(x)| + |fx(x − α)|)

+
6ρ
π

∫ 1

0
ds

∫
|α|>1

dα

|α|2−3ε

∫
R
dx |∂4

xf (x)| |∂
3
xf (x + (s − 1)α)|

× (|fx(x)| + |fx(x − α)|)(|f (x)| + |f (x − α)|),

and therefore

|M2| ≤ C(ε)(1+ ‖f ‖L∞)‖∂3
xf ‖L2‖∂

4
xf ‖L2‖fx‖L∞ .

In M3 we use the splitting M3 = N1 +N2 where

N1 =
ρ

π

∫
|α|>1

dα

∫
R
dx, N2 =

∫
|α|<1

dα

∫
R
dx,

and then

|N1| ≤
16ρ
π
‖fx‖

2
L∞

∫
|α|>1

dα

|α|3−3ε

∫
R
dx |∂4

xf (x)|(|fx(x)| + |fx(x − α)|)

≤ C‖fx‖
2
L∞‖fx‖L2‖∂

4
xf ‖L2 ≤ C‖fx‖

2
L∞(‖f ‖L2 + ‖∂

3
xf ‖L2)‖∂

4
xf ‖L2 .

To finish, the equality

fx(x)− fx(x − α) =

∫ 1

0
∂2
xf (x + (s − 1)α)α ds

allows us to obtain (since 1/2+ 1/4+ 1/4 = 1)

|N2| ≤
16ρ
π
‖fx‖L∞

∫ 1

0
dr

∫ 1

0
ds

∫
|α|<1

dα

|α|1−3ε

∫
R
dx

× |∂4
xf (x)| |∂

2
xf (x + (r − 1)α)| |∂2

xf (x + (s − 1)α)|

≤ C‖fx‖L∞‖∂
4
xf ‖L2‖∂

2
xf ‖

2
L4 .

The estimate

‖∂2
xf ‖

4
L4 =

∫
R
(∂2
xf )

3∂2
xf dx = −3

∫
R
(∂2
xf )

2∂3
xf ∂xf dx ≤ 3‖fx‖L∞‖∂2

xf ‖
2
L4‖∂

3
xf ‖L2

yields
|N2| ≤ C‖fx‖

2
L∞‖∂

4
xf ‖L2‖∂

3
xf ‖L2 .

Using Young’s inequality we obtain

d

dt
‖∂3
xf ‖

2
L2 ≤ C(ε)(‖f ‖

4
L∞ + ‖f ‖

2
L∞ + ‖fx‖

4
L∞ + ‖fx‖

2
L∞ + 1)(‖f ‖2

L2 + ‖∂
3
xf ‖

2
L2),

and therefore the Gronwall inequality yields (20).
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4.3. Approximation of the initial data

The approximation of the initial data described below is needed in order to construct
a weak solution. First consider a common approximation to the identity ζ ∈ C∞c (R)
satisfying ∫

R
dx ζ(x) = 1, ζ ≥ 0, ζ(x) = ζ(−x).

Now the standard mollifier ζε(x) = ζ(x/ε)/ε continues to satisfy the normalization con-
dition above.

For any f0 ∈ W
1,∞(R) with ‖∂xf0‖L∞ < 1, we define the initial data for the regu-

larized system as follows:

f ε0 (x) =
(ζε ∗ f0)(x)

1+ εx2 .

Notice that f ε0 ∈ H
s(R) for any s > 0, and

‖f ε0 ‖L∞ ≤ ‖f0‖L∞ .

More importantly, ‖∂xf ε0 ‖L∞ < 1 when ‖∂xf0‖L∞ < 1 if ε is sufficiently small (here ε
will generally depend upon the size of ‖f0‖L∞ ).

In particular

∂xf
ε
0 (x) =

(ζε ∗ ∂xf0)(x)

1+ εx2 − 2εx
(ζε ∗ f0)(x)

(1+ εx2)2
,

and clearly ∣∣∣∣ (ζε ∗ ∂xf0)(x)

1+ εx2

∣∣∣∣ ≤ ‖(ζε ∗ ∂xf0)‖L∞(R) ≤ ‖∂xf0‖L∞(R).

On the other hand, by splitting into |x| ≤ ε−2/3 and |x| > ε−2/3 we have

2εx(1+ εx2)−2
≤ 2 max{ε1/3, ε}.

On the unbounded region we have

x(1+ εx2)−2
= (1/

√
x + εx3/2)−2

≤ 1.

Thus, the desired bound follows if ε is small enough. Therefore global existence of the
regularized system (15) holds for f ε0 if ε is small enough.

Now consider the solution to the regularized system (15) with initial data given by
the f ε0 just described above. For ε > 0 sufficiently small, we decompose∫

R
η(x, 0)f ε0 (x) dx =

∫
R
η(x, 0)

(ζε ∗ f0)(x)

1+ εx2 dx = I ε1 + I
ε
2 ,

where

I ε1 =

∫
R
η(x, 0)(ζε ∗ f0)(x)

(
1

1+ εx2 − 1
)
dx, I ε2 =

∫
R
η(x, 0)(ζε ∗ f0)(x) dx.
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We apply the dominated convergence theorem to find that I ε1 → 0 as ε ↓ 0. For I ε2 we
write

I ε2 =

∫
R
ζε ∗ (η(·, 0))f0(x) dx.

The L1 approximation of the identity property shows that

I ε2 →

∫
R
η(x, 0)f0(x) dx.

Thus, it remains to check the convergence of the rest of the terms in (6).

4.4. Weak solution

In this section we prove that solutions of the regularized system converge to a weak solu-
tion satisfying the bounds

‖f ‖L∞(t) ≤ ‖f0‖L∞ , ‖∂xf ‖L∞(t) ≤ ‖∂xf0‖L∞ < 1. (21)

Given a collection of regularized solutions {f ε} to (15), we have the uniform (in ε > 0)
bounds

‖f ε‖L∞(t) ≤ ‖f0‖L∞ , ‖∂xf
ε
‖L∞(R)(t) ≤ 1, ε > 0. (22)

This implies that there is a subsequence (denoted again by f ε) such that∫ T

0

∫
R
f ε(x, t)g(x, t) dx dt →

∫ T

0

∫
R
f (x, t)g(x, t) dx dt,∫ T

0

∫
R
∂xf

ε(x, t)g(x, t) dx dt →

∫ T

0

∫
R
∂xf (x, t)g(x, t) dx dt,

for f ∈ L∞([0, T ];W 1,∞(R)) and any g ∈ L1([0, T ] × R) by the Banach–Alaoglu
theorem. This yields weak* convergence in L∞([0, T ];W 1,∞(R)).

We denote BN = [−N,N]. Then we claim that there is a subsequence (denoted again
by f ε) such that

‖f ε − f ‖L∞([0,T ]×BN )→ 0 as ε→ 0.

We will prove this in Section 4.5. Then, up to a subsequence, we infer uniform conver-
gence of f ε to f on compact sets. Since f ε ∈ C([0, T ]×R)we find that f is continuous.

The only thing remaining to check is that as ε ↓ 0 we have∫ T

0
dt

∫
R
dx ηx(x, t)

ρ

π
PV

∫
R
dα arctan

(
f ε(x)− f ε(x − α)

φε(α)

)
→

∫ T

0
dt

∫
R
dx ηx(x, t)

ρ

π
PV

∫
R
dα arctan

(
f (x)− f (x − α)

α

)
,

where φε(α) = α/|α|ε. The other terms will converge in the usual obvious way (since
they are linear).
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Choose M > 0 so that supp(η) ⊆ BM . For any small δ > 0 and any large R � 1
with R > M + 1, we split the integral as∫

R
dα =

∫
Bδ

dα +

∫
BR−Bδ

dα +

∫
BcR

dα.

We first prove that the first and last integrals separately are arbitrarily small independent
of ε for R > 0 sufficiently large and for δ > 0 sufficiently small. One finds that∣∣∣∣arctan

(
f ε(x)− f ε(x − α)

φε(α)

)∣∣∣∣ ≤ π2 .
Here we do not need any regularity for f ε, and we conclude that∣∣∣∣∫ T

0
dt

∫
R
dx ηx(x, t)

ρ

π
PV

∫
Bδ

dα arctan
(
f ε(x)− f ε(x − α)

φε(α)

)∣∣∣∣ ≤ ρ‖ηx‖L1([0,T ]×R)δ.

Therefore this term can clearly be made arbitrarily small, depending upon the smallness
of δ.

We now estimate the term integrated over BcR . We note that

arctan y =
∫ 1

0

d

ds
(arctan(sy)) ds = y

∫ 1

0

1
1+ s2y2 ds,

and therefore

arctan y = y
(

1−
∫ 1

0

s2y2

1+ s2y2 ds

)
.

This is morally the first order Taylor expansion for arctan with remainder in integral form.
From this expression we have

PV
∫
BcR

dα arctan
(
f ε(x)− f ε(x − α)

φε(α)

)
= −H ε

R(f
ε)− PV

∫
BcR

dα

(
f ε(x)− f ε(x − α)

φε(α)

)3 ∫ 1

0

s2 ds

1+ s2
(f ε(x)−f ε(x−α)

φε(α)

)2 .
Here H ε

R is a (Hilbert-type) transform which has the form

H ε
R(f

ε) := PV
∫
BcR

dα
f ε(x − α)

φε(α)
.

The principal value is evaluated at infinity (if necessary). For the second term on the left
hand side notice that the integral is over BcR and the principal value is not necessary. In
particular, we have∣∣∣∣∫

BcR

dα

∫ 1

0
ds

∣∣∣∣ ≤ C‖f ε‖3L∞ ∫ ∞
R

dα

α3−3ε ≤
C‖f0‖

3
∞

R
.
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This term is therefore arbitrarily small if R is chosen sufficiently large. We are going to
show the same for

IR :=

∫ M

−M

dx ηx(x, t)H
ε
R(f

ε).

We write IR = JR +KR where

JR := lim
n→∞

∫ M

−M

dx ηx(x, t)

∫
−R

−n

dα
f ε(x − α)

φε(α)
,

KR := lim
n→∞

∫ M

−M

dx ηx(x, t)

∫ n

R

dα
f ε(x − α)

φε(α)
.

We shall show how to control JR; the same follows for KR . We write

JR = lim
n→∞

∫ M

−M

dx ηx(x, t)

∫ n

x+R

dα
f ε(α)

φε(x − α)
.

An integration by parts yields

JR = lim
n→∞

∫ M

−M

dx η(x, t)

(
f (x + R)|R|ε

−R
+ (1− ε)

∫ n

x+R

dα
f ε(α)

|x − α|2−ε

)
.

Then for ε ∈ (0, 1/2) we have

|JR| ≤ 2‖η‖L1‖f0‖L∞/R
1/2.

Since the same estimate holds for |KR|, one finds that IR is arbitrarily small if R is
arbitrarily large.

It remains to prove the convergence of∫ T

0

∫
BR−Bδ

dα ηx(x, t) arctan
(
f ε(x)− f ε(x − α)

φε(α)

)
.

Recall that we have uniform convergence on compact sets. Let us consider

Gε =
f ε(x)− f ε(x − α)

φε(α)
,

where x ∈ BM and α ∈ BR − Bδ . Since arctan is a continuous function, we have
arctan(Gε) → arctan(G0) uniformly. Thus the integral of arctan(Gε) over a bounded
region also converges. Hence for any R > M + 1 and any small δ > 0 as ε ↓ 0 we have∫ T

0
dt

∫
R
dx ηx(x, t)

ρ

π

∫
BR−Bδ

dα arctan
(
f ε(x)− f ε(x − α)

φε(α)

)
→

∫ T

0
dt

∫
R
dx ηx(x, t)

ρ

π

∫
BR−Bδ

dα arctan
(
f (x)− f (x − α)

α

)
.

We conclude by first choosing R sufficiently large and δ > 0 sufficiently small and then
sending ε ↓ 0. Note that R and δ will generally depend upon the size of ‖f0‖∞, but this
does not affect our argument.



On the global existence for the Muskat problem 223

4.5. Strong convergence in L∞([0, T ];L∞(BR))

In order to prove the strong convergence in L∞([0, T ];L∞(BR)), the idea is to use the
non-standard weak space W−2,∞

∗ (BR) which will be defined below. Crucially, we will
have the uniform bounds:

sup
t∈[0,T ]

‖f ε(t)‖W 1,∞(BR)
≤ C‖f0‖W 1,∞(BR)

,

sup
t∈[0,T ]

∥∥∥∥∂f ε∂t (t)
∥∥∥∥
W
−2,∞
∗ (BR)

≤ C‖f0‖L∞(R),
(23)

where C does not depend on R or ε. From this we will conclude that for any finite R > 0
there exists a subsequence such that f ε → f strongly in L∞([0, T ];L∞(BR)).

We define the space W−2,∞
∗ (BR) as follows. For v ∈ L∞(BR) we consider the norm

‖v‖−2,∞ = sup
φ∈W

2,1
0 (BR): ‖φ‖2,1≤1

∣∣∣∣∫
BR

φ(x)v(x) dx

∣∣∣∣.
Here W 2,1

0 (BR) is the usual set of functions in W 2,1(BR) which vanish on the boundary
of BR together with their first two weak derivatives. Now the Banach space W−2,∞

∗ (BR)

is defined to be the completion of L∞(BR) with respect to the norm ‖ · ‖−2,∞. In general
this is all we need for our convergence study. This will be explained after the proof of
Lemma 4.5 below. The full space W−2,∞

∗ may be large, but because we are going to deal
with f ε and df ε/dt both in L∞([0, T ];L∞(BR)), it is not difficult to find the norms of
both functions in W−2,∞

∗ (BR).
These spaces are suitable because

W 1,∞(BR) ⊂ L
∞(BR) ⊂ W

−2,∞
∗ (BR).

Now the embedding L∞(BR) ⊂ W
−2,∞
∗ (BR) is continuous, and the embedding

W 1,∞(BR) ⊂ L
∞(BR) is compact by the Arzelà–Ascoli theorem.

We now proceed to discuss the convergence argument. Arguments related to Lemma
4.5 below are described for instance in [6]. However in [6] reflexive Banach spaces are
used. None of the spaces used here are reflexive.

Lemma 4.5. Consider a sequence {um} in C([0, T ] × BR) that is uniformly bounded
in the space L∞([0, T ];W 1,∞(BR)). Assume further that the weak derivative dum/dt
is in L∞([0, T ];L∞(BR)) (not necessarily uniformly) and is uniformly bounded in
L∞([0, T ];W−2,∞

∗ (BR)). Finally suppose that ∂xum ∈ C([0, T ]×BR). Then there exists
a subsequence of um that converges strongly in L∞([0, T ];L∞(BR)).

Proof. Notice that it is enough to prove that the convergence is strong in the space
L∞([0, T ];W−2,∞

∗ (BR)) because of the following interpolation theorem: for any small
η > 0 there exists Cη > 0 such that

‖u‖L∞ ≤ η‖u‖1,∞ + Cη‖u‖−2,∞.
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This holds for all u ∈ W 1,∞(BR). See, for example, [6, Lemma 8.3]. Here we can replace
reflexivity with the Banach–Alaoglu theorem in W 1,∞(BR).

Let t, s ∈ [0, T ] be arbitrary. We have

um(t)− um(s) =

∫ t

s

dτ
∂um

∂τ
(τ ).

This holds rigorously in the sense that∫
BR

um(t)φ dx −

∫
BR

um(s)φ dx =

∫ t

s

dτ

∫
BR

∂um

∂τ
(τ )φ dx (24)

for any φ ∈ W 2,1(BR). Clearly,

‖um(t)− um(s)‖W−2,∞
∗ (BR)

≤ sup
τ∈[0,T ]

∥∥∥∥∂um∂τ (τ )
∥∥∥∥
W
−2,∞
∗ (BR)

|t − s|,

and therefore
‖um(t)− um(s)‖W−2,∞

∗ (BR)
≤ L|t − s|, (25)

where

L = sup
m∈N

sup
τ∈[0,T ]

∥∥∥∥∂um∂τ (τ )
∥∥∥∥
W
−2,∞
∗ (BR)

.

Now we consider {tk}k∈N = [0, T ] ∩ Q. We have um(tk) ∈ W 1,∞(BR) for any m and k.
By the standard diagonalization argument, we can get a subsequence (still denoted by m)
such that

um(tk)→ u(tk)

in L∞(BR) for any k as in the Arzelà–Ascoli theorem.
Consider ε > 0. Since [0, T ] is compact, there exists J ∈ N such that

[0, T ] ⊂
J⋃
j=1

(
tkj −

ε

6L
, tkj +

ε

6L

)
.

Then there exists Nj such that for all m1, m2 ≥ Nj ,

‖um1(tkj )− um2(tkj )‖W−2,∞
∗ (BR)

< ε/3.

Taking N = maxj=1,...,J Nj , it is easy to check that for all m1, m2 ≥ N ,

sup
t∈[0,T ]

‖um1(t)− um2(t)‖W−2,∞
∗ (BR)

< ε.

We find that the sequence is uniformly Cauchy in L∞([0, T ];W−2,∞
∗ (BR)), and it con-

verges strongly to an element of L∞([0, T ];W−2,∞
∗ (BR)). ut

Now we apply Lemma 4.5 to prove the strong convergence which was claimed in
Section 4.4. It remains to prove that for any solution f ε to (15) we have ∂f ε/∂t ∈
L∞([0, T ];L∞(BR)) (but not uniformly) and that the second inequality in (23) holds
for all sufficiently small ε > 0 and for any R > 0.
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Recall that f ε ∈ C([0, T ];H 3(R)). Then in (15) the first two linear terms are
bounded easily. The last term can be written as

NL = −C̃(ε)31−εf ε −

∫
R

f εx (x)− f
ε
x (x − α)

φε(α)

(1εαf
ε(x))2

1+ (1εαf ε(x))2
dα

for C̃(ε) a constant, and therefore

|NL(x, t)| ≤ C(ε)‖f ε‖H 3(t),

by Sobolev embedding.
The norm of ∂f ε/∂t ∈ W−2,∞

∗ (BR) is given by∥∥∥∥∂f ε∂t (t)
∥∥∥∥
W
−2,∞
∗ (BR)

= sup
φ∈W

2,1
0 (BR): ‖φ‖W2,1≤1

∣∣∣∣∫
R
dx

∂f ε

∂t
(x, t)φ(x)

∣∣∣∣.
Since φ vanishes on the boundary of BR , we can think of φ(x) as being zero outside of
the ball of radius R. Then we are allowed to integrate over the whole space R, which
is important because we want to estimate the non-local operator 31−ε in this norm via
integration by parts. Then we have

I =

∫
BR

31−εf (x)φ(x) dx =

∫
R
31−εf (x)φ(x) dx =

∫
R
f (x)31−εφ(x) dx,

and therefore
|I | ≤ ‖f ‖L∞(t)‖3

1−εφ‖L1 .

We compute

31−εφ(x) = c

∫
R

φ(x)− φ(x − α)

|α|2−ε
dα =

∫
|α|>1

dα +

∫
|α|<1

dα = J1(x)+ J2(x),

thus ∫
R
|J1(x)| dx ≤

∫
|α|>1

dα

|α|2−ε

∫
R
dx (|φ(x)| + |φ(x − α)|) ≤ C‖φ‖L1(BR)

.

It is easy to rewrite J2 as follows:

J2(x) = c

∫
|α|<1

φ(x)− φ(x − α)− φx(x)α

|α|2−ε
dα,

and therefore the identities

φ(x)− φ(x − α) = α

∫ 1

0
φx(x + (s − 1)α) ds,

φ(x)− φ(x − α)− φx(x)α = α
2
∫ 1

0
(s − 1) ds

∫ 1

0
dr φxx(x + r(s − 1)α)
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allow us to find∫
R
|J1(x)| dx ≤

∫
|α|<1

∫ 1

0
ds

∫ 1

0
dr

∫
R
dx |φxx(x + r(s − 1)α)| ≤ 2‖φxx‖L1(BR)

.

Now it follows from the a priori bounds that

‖31−εf ε‖
W
−2,∞
∗ (BR)

+ ‖f εxx‖W−2,∞
∗ (BR)

≤ C‖f ε‖L∞(R) ≤ C‖f0‖L∞(R).

Here the constant is independent of ε and R > 0.
For the last term in (15), integrating by parts in the definition of the norm, we are led

to estimate ∫
R
dx ∂xφ(x) PV

∫
R
dα arctan(1εαf

ε(x)).

Using exactly the arguments from Section 4.4 with say R = δ = 1 we have∣∣∣∣∫
R
dx ∂xφ(x)PV

∫
R
dα arctan(1εαf (x))

∣∣∣∣ ≤ C‖φ‖W 1,1‖f0‖L∞(R).

We thus deduce (23), completing the proof.

Acknowledgments. PC was partially supported by NSF grant DMS-0804380. DC and FG were
partially supported by MCINN grant MTM2008-03754 (Spain) and ERC grant StG-203138CDSIF.
FG was partially supported by NSF grant DMS-0901810. RMS was partially supported by NSF
grant DMS-0901463.

References

[1] Ambrose, D.: Well-posedness of two-phase Hele-Shaw flow without surface tension. Euro. J.
Appl. Math. 15, 597–607 (2004) Zbl 1076.76027 MR 2128613

[2] Bailly, J. H.: Local existence of classical solutions to first-order parabolic equations describing
free boundaries. Nonlinear Anal. 32, 583–599 (1998) Zbl 0934.35211 MR 1612026

[3] Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)
Zbl 1191.76001

[4] Bertozzi, A. L., Constantin, P.: Global regularity for vortex patches. Comm. Math. Phys. 152,
19–28 (1993) Zbl 0771.76014 MR 1207667

[5] Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations.
Acta Math. 181, 229–243 (1998) Zbl 0923.76025 MR 0972259

[6] Constantin, P., Foias, C.: Navier–Stokes Equation. Chicago Lectures in Math., Univ. of
Chicago Press, Chicago, IL (1988) Zbl 0687.35071

[7] Constantin, P., Pugh, M.: Global solutions for small data to the Hele-Shaw problem. Nonlin-
earity 6, 393–415 (1993) Zbl 0808.35104 MR 1223740
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[9] Córdoba, D., Gancedo, F.: Contour dynamics of incompressible 3-D fluids in a porous
medium with different densities. Comm. Math. Phys. 273, 445–471 (2007) Zbl 1120.76064
MR 2318314

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1076.76027&format=complete
http://www.ams.org/mathscinet-getitem?mr=2128613
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0934.35211&format=complete
http://www.ams.org/mathscinet-getitem?mr=1612026
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1191.76001&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0771.76014&format=complete
http://www.ams.org/mathscinet-getitem?mr=1207667
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0923.76025&format=complete
http://www.ams.org/mathscinet-getitem?mr=0972259
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0687.35071&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0808.35104&format=complete
http://www.ams.org/mathscinet-getitem?mr=1223740
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1229.35204&format=complete
http://www.ams.org/mathscinet-getitem?mr=2753607
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1120.76064&format=complete
http://www.ams.org/mathscinet-getitem?mr=2318314


On the global existence for the Muskat problem 227
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