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Abstract. For a smooth curve 0 and a set 3 in the plane R2, let AC(0;3) be the space of finite
Borel measures in the plane supported on 0, absolutely continuous with respect to arc length and
whose Fourier transform vanishes on3. Following [12], we say that (0,3) is a Heisenberg unique-
ness pair if AC(0;3) = {0}. In the context of a hyperbola 0, the study of Heisenberg uniqueness
pairs is the same as looking for uniqueness sets 3 of a collection of solutions to the Klein–Gordon
equation. In this work, we mainly address the issue of finding the dimension of AC(0;3) when it
is nonzero. We will fix the curve 0 to be the hyperbola x1x2 = 1, and the set 3 = 3α,β to be the
lattice-cross

3α,β = (αZ× {0}) ∪ ({0} × βZ) ,
where α, β are positive reals. We will also consider 0+, the branch of x1x2 = 1 where x1 > 0. In
[12], it is shown that AC(0;3α,β ) = {0} if and only if αβ ≤ 1. Here, we show that for αβ > 1, we
get a rather drastic “phase transition”: AC(0;3α,β ) is infinite-dimensional whenever αβ > 1. It is
shown in [13] that AC(0+;3α,β ) = {0} if and only if αβ < 4. Moreover, at the edge αβ = 4, the
behavior is more exotic: the space AC(0+;3α,β ) is one-dimensional. Here, we show that the di-
mension of AC(0+;3α,β ) is infinite whenever αβ > 4. Dynamical systems, and more specifically
Perron–Frobenius operators, play a prominent role in the presentation.

Keywords. Trigonometric system, inversion, Perron–Frobenius operator, Koopman operator, in-
variant measure, Klein–Gordon equation, ergodic theory

1. Introduction

1.1. Background: the Heisenberg uncertainty principle

The Heisenberg uncertainty principle asserts that it is not possible to have completely
accurate information about the position and the momentum of a particle at the same time.
If ψ is the spatial wave-function, which describes the position of the particle in question,
and it is known that ψ is concentrated in a small region, then the deviation of the mo-
mentum wave-function of ψ from its mean must be large. The momentum wave-function
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is essentially the Fourier transform of the spatial wave-function. So, we may consider
the Heisenberg uncertainty principle as the mathematical statement that a function and its
Fourier transform cannot both be too concentrated simultaneously; cf. [2], [10], and [11].

1.2. Heisenberg uniqueness pairs

Let 0 be a finite disjoint union of smooth curves in the plane and 3 a subset of the plane.
Let AC(0;3) be the space of bounded Borel measures µ in the plane supported on 0,
absolutely continuous with respect to arc length and whose Fourier transform

µ̂(x1, x2) =

∫
0

eiπ(x1y1+x2y2) dµ(y1, y2), (x1, x2) ∈ R2, (1.1)

vanishes on 3. Following [12], we say that (0,3) is a Heisenberg uniqueness pair if
AC(0;3) = {0}.

When 0 is an algebraic curve, that is, the zero locus of a polynomial p in two variables
with real coefficients, the requirement that the support of µ be contained in 0 means that
µ̂ solves the partial differential equation

p

(
∂x1

πi
,
∂x2

πi

)
µ̂ = 0. (1.2)

So, there is a natural interplay between the Heisenberg uniqueness pairs and the theory of
partial differential equations (PDE) (cf. [12]). The most natural examples appear when we
consider quadratic polynomials p corresponding to the standard conic sections: line, two
parallel lines, two crossing lines, hyperbola, ellipse, and parabola. The natural invariance
of Heisenberg uniqueness pairs under affine transformations of the plane allows us to
reduce to the canonical models for these curves (cf. [12]). The case when 0 is either
one line or the union of two parallel lines was solved completely for general 3 ⊂ R2

in [12]. In this direction, Blasi-Babot has solved particular cases when 0 is the union of
three parallel lines (see [4]). The case when 0 is a circle (which also covers the ellipse
case after an affine mapping) was recently studied independently by Lev and by Sjölin in
[25], [20], where, e.g., circles and unions of straight lines are considered as sets 3. Also
subsets of unions of straight lines were considered, and a connection with the Beurling–
Malliavin theory was made. More recently, Sjölin [26] has investigated the case of a
parabola. However, very little seems to be known when 0 is the union of two intersecting
lines.

1.3. Heisenberg uniqueness pairs for the hyperbola

The case of the hyperbola 0 : x1x2 = 1 and the lattice-cross

3α,β = (αZ× {0}) ∪ ({0} × βZ)

for given positive reals α, β was considered in [12], where the following result was ob-
tained.

Theorem A (Hedenmalm, Montes-Rodrı́guez). Let 0 be the hyperbola x1x2 = 1. Then
(0,3) is a Heisenberg uniqueness pair if and only if αβ ≤ 1.
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When one of the branches of the hyperbola is considered, the critical density changes
(see [13]).

Theorem B (Hedenmalm, Montes-Rodrı́guez). Let 0+ be the branch of the hyperbola
x1x2 = 1 where x1 > 0. Then AC(0+;3α,β) = {0} if and only if αβ < 4. Moreover,
when αβ = 4, AC(0+;3α,β) is one-dimensional.

For subcritical density of the lattice-cross, we have the following two theorems, corre-
sponding to the hyperbola and a branch of the hyperbola.

Theorem 1.1. Let 0 be the hyperbola x1x2 = 1. Then AC(0;3α,β) is infinite-dimen-
sional for αβ > 1.

Theorem 1.2. Let 0+ be the branch of the hyperbola x1x2 = 1 with x1 > 0. Then the
space AC(0+;3α,β) is infinite-dimensional for αβ > 4.

Although the proofs of Theorem 1.1 and 1.2 exhibit a certain parallelism, the proof of
Theorem 1.1 is more delicate. Mainly, the difference is that at the edge αβ = 4, the
Perron–Frobenius operator which appears in the context of Theorem 1.2, induced by the
classical Gauss map, has a spectral gap [acting on the space of functions of bounded vari-
ation], while the Perron–Frobenius operator associated to the edge case αβ = 1 in the
context of Theorem 1.1 does not have such a gap; this is so because the Gauss-type trans-
formation which defines the Perron–Frobenius operator has an indifferent fixed point.

The basic invariance properties of Heisenberg uniqueness pairs allow us to take α = 1
and we may appeal to duality and reformulate Theorem A as follows (cf. [12]).

Theorem A′. Let Mβ be the linear subspace of L∞(R) spanned by the functions x 7→
eimπx and x 7→ einπβ/x , wherem, n range over the integers and β is a fixed positive real.
Then Mβ is weak-star dense in L∞(R) if and only if β ≤ 1.

The analogous reformulation of Theorem 1.1 is as follows:

Theorem 1.3. Let Mβ be the linear subspace of L∞(R) spanned by the functions x 7→
eimπx and x 7→ einπβ/x , where m, n range over the integers. Then the weak-star closure
of Mβ in L∞(R) has infinite codimension in L∞(R) for β > 1.

If we instead take α = 2, we may reformulate Theorems B and 1.2 as follows.

Theorem B′. Let Nβ be the linear subspace of L∞(R+) spanned by the functions x 7→
ei2mπx and x 7→ einπβ/x , wherem, n range over the integers and β is a fixed positive real.
Then Nβ is weak-star dense in L∞(R+) if and only if β < 2. Moreover, the weak-star
closure of Nβ in L∞(R+) has codimension 1 in L∞(R+) for β = 2.

Theorem 1.4. Let Nβ be the linear subspace of L∞(R+) spanned by the functions x 7→
ei2mπx and x 7→ einπβ/x , where m, n range over the integers and β is a fixed positive
real. Then the weak-star closure of Nβ has infinite codimension in L∞(R+) for β > 2.
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By general functional analysis, the codimension of the weak-star closure of Mβ equals
the dimension of its pre-annihilator space

M⊥
β =

{
f ∈ L1(R) :

∫
R
f (x)einπx dx =

∫
R
f (x)einπβ/x dx = 0 for all n ∈ Z

}
.

(1.3)
Likewise, the codimension of the weak-star closure of Nβ equals the dimension of its
pre-annihilator space

N⊥β =
{
f ∈ L1(R+) :

∫
R+
f (x)ei2nπx dx =

∫
R+
f (x)einπβ/x dx = 0 for all n ∈ Z

}
.

(1.4)
If f ∈ N⊥β , then it is easy to see that the function g(x) = f ( 1

2x), extended to vanish
along the negative semi-axis R−, belongs to M⊥

2β . So, Theorems 1.3 and 1.4 show that
there are elements in M⊥

β with support on the positive semi-axis precisely when β ≥ 4.

Corollary 1.5. In the pre-annihilator M⊥
β there exists a nontrivial element that vanishes

on R− if and only if β ≥ 4. Moreover, if β = 4, there is only a one-dimensional subspace
of such elements, while if β > 4, there is an infinite-dimensional subspace with this
property.

Remark 1.6. In the context of Theorems 1.3 and 1.4, we actually construct rather con-
crete infinite-dimensional subspaces of M⊥

β and N⊥β , respectively; cf. Theorems 8.2
and 8.6.

1.4. Discussion about harmonic extension and the codimension problem

If 0 is the hyperbola x1x2 = 1, then for β > 1 the bounded harmonic extensions to the
upper half-plane of the functions x 7→ eimπx and x 7→ einπβ/x , where m, n range over
the integers Z, fails to separate all the points of the upper half-plane C+ := {z ∈ C :
Im z > 0}. Indeed, if we consider

z1 := m+ i

√
β

mn
− 1, z2 := −m+ i

√
β

mn
− 1, where m, n ∈ Z+, mn < β,

then f (z1) = f (z2) for every f ∈ Mβ , so that the differences of the Poisson kernels
Pzz − Pz2 are in the pre-annihilator space M⊥

β . If we use the Cauchy kernel in place of
the Poisson kernel here we also obtain elements of the pre-annihilator. But there are only
finitely many combinations of m, n ∈ Z+ with mn < β, which corresponds to finitely
many differences of Poisson or Cauchy kernels. This would lead us to suspect that that
the pre-annihilator M⊥

β might be finite-dimensional. Theorem 1.3 shows that this is far
from being true.

1.5. Structure of the paper

In Section 2, we take a closer look at the link between Theorem 1.1 and the Klein–Gordon
and Dirac equations. In order to make the paper accessible to a wider audience, we present
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in Section 3 the elementary aspects of the theory of dynamical systems and the standard
notation for Perron–Frobenius operators needed here. In Section 4, we show how the
theory of Perron–Frobenius operators is the natural tool to analyze Heisenberg uniqueness
pairs for the hyperbola 0 and for one of its branches 0+. In particular, the famous Gauss–
Kuzmin–Wirsing operator corresponds to the critical density case for 0+. In Section 5,
we state some more involved results of the theory of Perron–Frobenius operators which
are needed later on. In Section 6, we study the structure of the pre-annihilator space M⊥

β

associated with 0. In Section 7, we show the existence and uniqueness of a absolutely
continuous invariant measure for certain transformations acting on the interval [−1, 1].
This is the key point in the proof of Theorem 1.3, presented in Section 8. We end Section 8
by sketching the proof of Theorem 1.4, which turns out to be much simpler than that of
Theorem 1.3. Finally, in Section 9, we apply our results to a problem involving the linear
span of powers of two atomic singular inner functions in the Hardy space of the unit
disk. In conclusion, we can say that the study of Heisenberg uniqueness pairs related
to the Klein–Gordon equation leads to new and interesting problems involving Perron–
Frobenius operators.

2. Further motivation. The Klein–Gordon and Dirac equations

2.1. The Dirac equation in three spatial dimensions

In quantum mechanics the evolution of the position wave-functionψ associated to a phys-
ical system can be modelled by certain partial differential equations (PDE). According to
the theory of spin, in the general setting, ψ has four components,

ψ = (ψ1, ψ2, ψ3, ψ4),

which should be thought of as written in column form, where each ψj = ψj (t, x1, x2, x3)

is a mapping between an open set in R4 and a prescribed Hilbert space. Thus, these
PDEs have to be understood as a system of equations for four separate wave-functions.
The necessity of working with multiple-component wave-functions was pointed out by
Pauli in order to understand the intrinsic angular momentum (spin) of atoms. There is no
general equation whose solutions reflect faithfully the evolution of a given system from
the relativistic point of view. Depending on the features of the system one must choose
one or another type of equation. For instance, for a relativistic spin-0 particle with rest-
mass m0 we have the Klein–Gordon equation. Written in natural units it takes the form

(∂2
t − ∂

2
x1
− ∂2

x2
− ∂2

x3
+m2

0)ψ = 0.

Another example, perhaps the most important in this context, is the Dirac equation. It is
used to describe the wave-function of the electron, although it remains valid when applied
to a general relativistic spin- 1

2 particle. In natural units it takes the form

(−iγ 0∂t − iγ
1∂x1 − iγ

2∂x2 − iγ
3∂x3 +m0)ψ = 0,

commonly abbreviated as (−i 6 ∂ + m0)ψ = 0, where γ 0, γ 1, γ 2, γ 3, the Dirac matrices,
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are the 4× 4 matrices given by

γ 0
=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ 1
=


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,

γ 2
=


0 0 0 −i

0 0 i 0
0 i 0 0
−i 0 0 0

 , γ 3
=


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 .
The algebraic properties of the matrices γ 0, γ 1, γ 2, γ 3 allow us to obtain the following
factorization of the Klein–Gordon equation:

(∂2
t − ∂

2
x1
− ∂2

x2
− ∂2

x3
+m2

0)ψ = (i 6 ∂ +m0)(−i 6 ∂ +m0)ψ = 0.

Hence a solution to the Dirac equation is always a solution to the Klein–Gordon equation.
The converse statement is not true.

2.2. The Dirac equation in one spatial dimension

As before, let 0 be the hyperbola x1x2 = 1, and suppose µ ∈ AC(0;3α,β) for some
positive reals α, β. Then, in view of (1.2), the Fourier transform µ̂ given by (1.1) solves
the partial differential equation

(∂x1∂x2 + π
2)µ̂ = 0

in the sense of distribution theory. If we write ψ(t, x) := µ̂
( 1

2 (t + x),
1
2 (t − x)

)
, then ψ

solves the one-dimensional Klein–Gordon equation for a particle of mass π ,

(∂2
t − ∂

2
x + π

2)ψ = 0. (2.1)

Theorem 1.1 asserts that if αβ > 1, then there exists an infinite-dimensional space of
solutions ψ to (2.1) of the given form, subject to vanishing on the set

3′α,β = {(mα,mα) ∈ R2
: m ∈ Z} ∪ {(nβ,−nβ) ∈ R2

: n ∈ Z}.

The corresponding Dirac equation in this context is

(−iσ 0∂t − iσ
1∂x + π)ψ = 0, (2.2)

where σ 0, σ 1 are the 2× 2 matrices given by

σ 0
=

(
1 0
0 −1

)
and σ 1

=

(
0 1
−1 0

)
.
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Here, ψ = (ψ1, ψ2) in column form, and (2.2) may be written out more explicitly as the
system {

−i∂tψ1 − i∂xψ2 + πψ1 = 0,
i∂tψ2 + i∂xψ1 + πψ2 = 0.

(2.3)

The question pops up whether the Dirac equation (2.2) has an infinite-dimensional space
of solutions ψ = (ψ1, ψ2) that vanish on3′α,β for αβ > 1. As both ψ1, ψ2 automatically
solve the Klein–Gordon equation (this is a consequence of the factorization we mentioned
previously in the context of three spatial dimensions), the natural requirement is that both
ψ1, ψ2 are Fourier transform of measures in AC(0′,3′α,β). Here, 0′ is the hyperbola
t2 = x2

+ 1, which corresponds to 0 after the change of variables. From the assumptions
made on ψ1, ψ2, we have

ψj (t, x) =

∫
∞

−∞

fj (v) e
i 1

2π [v(t+x)+v
−1(t−x)] dv, j = 1, 2,

where f1, f2 belong to M⊥
β (this subspace of L1(R) is defined by (1.3)). Note that in the

last step, we tacitly imposed the normalizing assumption that α = 1. As we implement
this representation of ψ1, ψ2 into (2.3), we find that∫

∞

−∞

{(v + v−1
+ 2)f1(v)+ (v − v

−1)f2(v)}e
i 1

2π [v(t+x)+v
−1(t−x)] dv = 0

and ∫
∞

−∞

{(v + v−1
− 2)f2(v)+ (v − v

−1)f1(v)}e
i 1

2π [v(t+x)+v
−1(t−x)] dv = 0.

When we plug in t = x, we see from the uniqueness theorem for the Fourier transform
that the above two equations are equivalent to having

(v + v−1
+ 2)f1(v)+ (v − v

−1)f2(v) = 0, v ∈ R,

and
(v − v−1)f1(v)+ (v + v

−1
− 2)f2(v) = 0, v ∈ R,

in the almost-everywhere sense. These requirements are compatible, as each corresponds
to having

f2(v) =
1+ v
1− v

f1(v), v ∈ R.

This means that we have reduced the study of the dimension of the space of solutions to
the Dirac equation (2.2) subject to vanishing on 3′α,β (with α = 1) plus the condition in
terms of the Fourier transform to simply analyzing the dimension of the space

{f ∈M⊥
β : (1+ x)(1− x)

−1f (x) is in M⊥
β }.

To answer this dimension question we would need to better understand the structure of
the pre-annihilator space M⊥

β .
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3. Perron–Frobenius operators

3.1. Dynamical systems

The theory of dynamical systems deals with the time evolution of a system of points under
a fixed change rule. An important feature of a dynamical system is its attractors, sets of
points towards which the points of the system converge. A dynamical system is a four-
tuple (I,S, µ, τ ), where (I,S, µ) is a measure space and τ : I → I is a measurable
transformation. The measure µ is always positive and σ -finite; if it has finite total mass
we renormalize and assume that the mass is 1, so that µ becomes a probability measure.
We denote by τ 0 the identity map and write τn = τn−1

◦τ for n = 1, 2, . . . . The evolution
of a point x ∈ I is described by its orbit under τ , i.e., the sequence

{τn(x)}∞n=0.

In a concrete situation, the actual expression for the iterates τn tends to explode already
for rather modest values of n, which makes it extremely difficult to extract substan-
tial information based on a direct approach. The most convenient approach is then the
measure-theoretic one based on Perron–Frobenius operators. If we have a random vari-
able X : I → R distributed according to a density ρ, then the random variable X ◦ τ will
be distributed according to a new density, which is denoted by Pτρ. Instead of the orbits
τn(x), we focus on the sequence of density functions

{Pnτρ}
∞

n=0.

The key point here is that, while τ may be nonlinear and discontinuous, the operator Pτ
is linear and bounded on the space L1(I,S, µ) of integrable functions on I . The operator
Pτ is known as the Perron–Frobenius operator associated to the transformation τ . It turns
out that in most situations the sequence of density functions Pnτρ converges to certain
densities of measures on I that provide valuable information about the attractors of the
system, which are known as invariant measures. More precisely, a σ -finite Borel measure
ν on I is said to be invariant under τ if ν(τ−1(A)) = ν(A) for everyA ∈ S. The densities
of the µ-absolutely continuous invariant measures can be recovered as eigenfunctions of
the Perron–Frobenius operator corresponding to the eigenvalue λ = 1. Perron–Frobenius
operators appear in many branches of pure and applied mathematics, such as stochas-
tic processes, statistical mechanics, resonances, ordinary differential equations, thermo-
dynamics, diffusion problems, positive matrices, and algorithms associated with contin-
ued fractions expansions. For background on Perron–Frobenius operators, we refer the
reader to, e.g., [3], [5], [9]. In this work, we shall see how Perron–Frobenius operators
are intimately related to the Heisenberg uniqueness pairs associated with the hyperbola
x1x2 = 1. This leads to new and interesting questions concerning this important class of
operators.

3.2. Perron–Frobenius operators on bounded intervals

In our situation, the dynamical systems involved are of the form (I,BI , m, τ), where I is
a closed bounded interval of the real line, m is the Lebesgue measure defined on BI , the
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Borel σ -algebra of I , and τ denotes a measurable map from I into itself. For 1 ≤ p <∞,
the Banach space Lp(I ) consists of those (equivalence classes of) measurable complex-
valued functions f defined on I for which the norm

‖f ‖
p

Lp(I ) =

∫
I

|f |p dm

is finite. The spaceL∞(I ) consists of the essentially bounded measurable complex-valued
functions f supplied with the essential supremum norm. We shall use the following stan-
dard bilinear dual action:

〈f, g〉E :=

∫
E

fg dm, (3.1)

provided f, g are Borel measurable, and fg ∈ L1(E). Here, E ⊂ R is a Borel set with
positive linear measure, m(E) > 0. For instance, if f ∈ L1(E) and g ∈ L∞(E), the dual
action is well-defined. When needed, we shall think of functions in Lp(E) as extended to
all of R by setting them equal to 0 off E.

We shall need the following concepts.

Definition 3.1. The map τ : I → I is said to be a filling C2-smooth piecewise monotonic
transformation if there exists a countable collection {Iu}u∈U of pairwise disjoint open
intervals such that

(i) the set I \
⋃
{Iu : u ∈ U} has linear Lebesgue measure 0,

(ii) for any u ∈ U , the restriction of τ to Iu is strictly monotonic and extends to a C2-
smooth function on the closure of Iu, denoted τu, and τ ′u 6= 0 in the interior of Iu,

(iii) for every u ∈ U , τu maps the closure of Iu onto I .

Definition 3.2. If, in the setting of Definition 3.1, all conditions are fulfilled, except that
(iii) is replaced by the weaker condition (iii′) below, we say that τ is a partially filling
C2-smooth piecewise monotonic transformation; the alternative condition is

(iii′) there exists a δ > 0 such that for every u ∈ U , the interval τ(Iu) has length ≥ δ.

In the context of the above two definitions, each interval Iu is known as a fundamental
interval, and τu is said to be a branch. It is an important observation that each iterate
τn, with n = 1, 2, . . . , has the same basic structure as the transformation τ itself. The
fundamental intervals associated with τn are given by

In(u1,...,un)
= {x ∈ I : x ∈ Iu1 , τ (x) ∈ Iu2 , . . . , τ

n−1(x) ∈ Iun}, (u1, . . . , un) ∈ Un] ,

where Un] consists of those elements (u1, . . . , un) ∈ Un such that the above inter-
val In(u1,...,un)

becomes nonempty. The corresponding branch on In(u1,...,un)
is denoted

τn(u1,...,un)
= τun ◦ · · · ◦ τu1 .

The Koopman operator associated with τ is the composition operator which acts on
L∞(I ) by the formula Cτg = g◦τ . Clearly, Cτ is linear and norm-contractive on L∞(I ).
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The Perron–Frobenius operator Pτ : L1(I ) → L1(I ) associated with τ is just the pre-
adjoint of Cτ . Therefore, Pτ is a norm contraction on L1(I ) with

〈Pτf, g〉I = 〈f,Cτg〉I , f ∈ L1(I ), g ∈ L∞(I ). (3.2)

It is immediate from (3.2) that an absolutely continuous measure dµf = f dm has the
invariance property

µf (τ
−1(A)) = µ(A) for all A ∈ BI

if and only if
Pτf = f. (3.3)

It is clear that Cnτ = Cτn , so by duality we have

Pnτ = Pτn , n = 1, 2, . . . . (3.4)

Using (3.2), we find that

(Pτf )(x) =
∑
u∈U

Ju(x)f (τ
−1
u (x)), n = 1, 2, . . . , (3.5)

where Ju ≥ 0 is the function on I that equals |(τ−1
u )′| on τ(Iu) and vanishes elsewhere.

The map Ju is well defined, since τ is piecewise strictly monotonic. By (3.5) we see that
Pτf ≥ 0 for f ≥ 0 and ‖Pτf ‖1 = ‖f ‖1. As Pτ acts contractively on L1(I ), its spectrum
σ(Pτ ) is contained in the closed unit disk D̄.

4. Perron–Frobenius operators for Gauss-type maps and invariant measures

4.1. The Gauss-type maps and the corresponding Perron–Frobenius operators

The study of Heisenberg uniqueness pairs for a hyperbola (or a branch of it) involves the
study of eigenfunctions of certain operators, which we introduce below.

For t ∈ R, let {t}1 be the number in [0, 1[ such that t − {t}1 ∈ Z. We also need
the quantity {t}2, which is in ]−1, 1] and is uniquely determined by the requirement t −
{t}2 ∈ 2Z. For fixed 0 < γ < ∞, let θγ : [0, 1[ → [0, 1[ be the mapping defined by
θγ (x) := {γ /x}1 for x 6= 0 and θγ (0) := 0. For 1 ≤ γ <∞, we let Cθγ : L∞([0, 1[)→
L∞([0, 1[) be the Koopman operator

Cθγ g(x) := g ◦ θγ (x), x ∈ [0, 1[,

while for 0 < γ < 1, we let Cθγ : L∞([0, 1[)→ L∞([0, 1[) be the weighted Koopman
operator

Cθγ g(x) := 1[0,γ [(x) g ◦ θγ (x), x ∈ [0, 1[.

Here and below, we write 1E for the characteristic function of a setE ⊂ R, which equals 1
on E and vanishes elsewhere. The definition for 0 < γ < 1 is motivated by the applica-
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tions in [13] in the context of Heisenberg uniqueness pairs for a branch of the hyperbola.
The pre-adjoint to Cθγ is the operator Pθγ : L1([0, 1[)→ L1([0, 1[) given by

Pθγ f (x) :=
∞∑
j=1

γ

(j + x)2
f

(
γ

j + x

)
, x ∈ [0, 1[, (4.1)

with the understanding that f vanishes off [0, 1[. The operator Pθγ is a Perron–Frobenius
operator when 1 ≤ γ <∞. Note that for γ ≥ 2, it is possible to begin the summation in
(4.1) from the integer part of γ , as the terms with lower summation index do not contribute
to the sum. It is easy to see that the eigenfunction equation

Pθγ f = λf, |λ| = 1,

fails to have a solution f in L1([0, 1[) for 0 < γ < 1, which implies that (0+,3α,β) is
a Heisenberg uniqueness pair for αβ < 4. In the case γ = 1, Pθ1 is the famous Gauss–
Kuzmin–Wirsing operator, which is connected with the continued fraction algorithm. It is
known that Pθ1f = λf with |λ| = 1 has a nontrivial solution only for λ = 1, in which
case the solution f is unique (up to a scalar multiple). These observations are basic in the
proof of Theorem B (or, which is the same, Theorem B′); the natural parameter choices
are α = 2 and β = 2γ .

For 0 < β < ∞, let τβ : ]−1, 1[ → ]−1, 1[ be the mapping defined by τβ(x) :=
{−β/x}2 for x 6= 0 and τβ(0) := 0. For 1 ≤ β < ∞, we let Cτβ : L∞(]−1, 1]) →
L∞(]−1, 1]) be the Koopman operator

Cτβg(x) := g ◦ τβ(x), x ∈ ]−1, 1],

while for 0 < β < 1, we let Cτβ : L∞(]−1, 1]) → L∞(]−1, 1]) be the weighted
Koopman operator

Cτβg(x) := 1]−β,β](x) g ◦ τβ(x), x ∈ ]−1, 1].

The definition for 0 < β < 1 is motivated by the applications in [12] in the context
of Heisenberg uniqueness pairs for the hyperbola. The pre-adjoint to Cτβ is the operator
Pτβ : L1(]−1, 1[)→ L1(]−1, 1[) given by

Pτβf (x) :=
∑
j∈Z×

β

(2j − x)2
f

(
β

2j − x

)
, x ∈ ]−1, 1], (4.2)

with the understanding that f vanishes off the interval ]−1, 1]. Here, we write Z× :=
Z \ {0}. The operator Pτβ is a Perron–Frobenius operator for 1 ≤ β < ∞. A rather
elementary argument shows that the eigenfunction equation

Pτβf = λf, |λ| = 1,

fails to have a solution f in L1(]−1, 1]) for 0 < β < 1, which implies that (0,3α,β)
is a Heisenberg uniqueness pair for αβ < 1. For β = 1, the transformation τ1(x) =
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{−1/x}2 is related to the continued fraction algorithm with even partial quotients (cf.
[18], [27]). The map τ1(x) = {−1/x}2 has an indifferent fixed point at 1. This entails that
the invariant absolutely continuous density has infinite total mass; in this case, the density
is given explicitly by (1−x2)−1. Using some ergodicity properties, it is easy to show that
the equation Pτ1f = λf does not have a solution f ∈ L1(]−1, 1]) for any λ ∈ C with
|λ| = 1. These observations are basic to the proof of Theorem A (or, which is the same,
Theorem A′).

4.2. Discrete and singular invariant measures for the Gauss map

It is well-known that the Gauss map θ1(x) := {1/x}1 on the unit interval [0, 1[ [with
θ1(0) := 0] has infinitely many essentially different invariant measures. However, up to
a constant multiple, there is only one that is absolutely continuous: (1+ x)−1 dx. As we
shall see, the discrete finite invariant measures of θ1 have an explicit characterization. We
write δa for the Dirac measure at point a. We shall need the set of fixed points of iterates
of the Gauss map θ1:

6k := {a ∈ [0, 1[ : θk1 (a) = a}, 6∞ :=

∞⋃
k=1

6k.

For a ∈ 6∞, there exists a minimal k ≥ 1 such that θk1 (a) = a; we write k(a) for this k.
We put

ρa :=
1
k(a)

k(a)−1∑
j=0

δ
θ
j

1 (a)
, a ∈ 6∞.

Theorem 4.1. Let µ be a discrete finite invariant measure for the Gauss map θ1. Then
there is a function ξ : 6∞→ C with

∑
a∈6∞

|ξ(a)| <∞, such that

µ =
∑
a∈6∞

ξ(a)ρa . (4.3)

Proof. That the measure µ is invariant means that∫
[0,1[

f ◦ θ1(x) dµ(x) =

∫
[0,1[

f (x) dµ(x)

for every f integrable with respect to |µ|. It is trivial to check that all measures of the
given form are invariant. In the other direction, it is well-known that every discrete in-
variant measure µ may be decomposed into irreducible (ergodic) parts (see, e.g., [8, pp.
16–18]). We just need to show that up to a multiplicative constant, each irreducible part is
of the form ρa . So, let ρ be an ergodic discrete invariant probability measure on [0, 1[. Let
E ⊂ [0, 1[ be the minimal countable set which carries the mass of ρ. By the Birkhoff–
Khinchin Ergodic Theorem, for each x0 ∈ E we have

1
n

n−1∑
j=0

f (θ
j

1 (x0))→

∫
E

f dρ as n→∞.

In particular, if we let f equal the characteristic function of the one-point set {x0}, and
observe that from the minimality of E, we have ρ({x0}) > 0, we find that approximately
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a ρ({x0}) proportion of the time on the interval 0 ≤ j ≤ n − 1, we have θ jγ (x0) = x0.
This means that x0 ∈ 6∞. We may also conclude by picking other functions f that E
equals the orbit of x0:

E = {θ jγ (x0) : 0 ≤ j ≤ k(x0)− 1}.

By measure invariance, each point of E must have equal mass, so that ρ = ρa with
a = x0. This completes the proof. ut

Remark 4.2. (a) The proof of Theorem 4.1 did not really use the fact that we are dealing
with the Gauss map. In particular, the corresponding assertion holds for the transforma-
tion τ1(x) = {−1/x}2 in place of the Gauss map.

(b) The set6∞ consists of the reciprocals of the reduced quadratic irrationals plus the
origin.

(c) The discrete measures provided by Theorem 4.1 above extend in a natural fashion
to the positive half-axis R+. These extensions lift to the hyperbola branch 0+ where
x1x2 = 1 and x1 > 0, and the lifted measures on 0+ have Fourier transforms that vanish
on the lattice-cross 3α,β with α = β = 2. Indeed, this is the only way to obtain such
discrete measures on 0+.

4.3. The Minkowski measure

The most studied singular continuous measure for the Gauss–Kuzmin–Wirsing operator is
the Minkowski measure. It belongs to a family of singular probability measures which we
call Markovian measures (see below). The Minkowski question mark function was first
introduced by Minkowski in 1904. Let {an(x)}∞n=1 be the sequence of positive integers in
the continued fraction expansion of x. Salem [23] proved that the question mark function
can be defined by

?(x) =
∞∑
j=1

2(−1)j+1

2a1(x)+···+aj (x)
, 0 ≤ x ≤ 1,

where the series is finite for rational x. Then ? is a strictly increasing continuous singular
function. It takes rational numbers to dyadic numbers and quadratic surds to rationals.
The Riemann–Stieltjes measure d? on [0, 1] is then a singular continuous probability
measure, which can be shown to be invariant for the Gauss map θ1(x) = {1/x}1. The
numbers aj (x) ∈ Z+ are the successive remainders which we throw away as we iterate
the Gauss map at a point x. Let us say that a probability measure µ on [0, 1] is Markovian
with respect to the Gauss map if there are numbers q(j) with 0 ≤ q(j) < 1 and

∞∑
j=1

q(j) = 1

such that the µ-mass of the “cylinder set”

{x ∈ [0, 1[ : aj (x) = bj for j = 1, . . . , k}

equals
k∏

j=1

q(bj ).
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Then the Minkowski measure is Markovian with q(j) = 2−j . Problem (d) in [12] could
be settled in the negative if we could find a singular continuous measure on 0, the Fourier
transform of which tends to zero at infinity, while it vanishes along3α,β with α = β = 1.
A perhaps easier task is to find a singular invariant measure on [0, 1] with respect to the
Gauss map such that the Fourier transform tends to zero at infinity (measures whose
Fourier transforms decay to 0 at infinity are called Rajchman measures). The Markovian
measures are all invariant and singular continuous. E.g., the Minkowski measure is of this
type. But it is not known if it is Rajchman. Indeed, this question is a well-known problem
raised by Salem [23].

5. Further properties of Perron–Frobenius operators

5.1. The spectral decomposition of Perron–Frobenius operators

Let I be a closed bounded interval. The total variation of a complex-valued function
h : I → C is

varI (h) = sup
{n−1∑
j=1

|h(tj+1)− h(tj )|
}
,

where the supremum is taken over all t1, . . . , tn ∈ I with t1 < · · · < tn. The function
h is said to be of bounded variation when varI (h) < ∞. We will denote by BV(I ) the
subspace of L1(I ) functions which have representatives of bounded variation. The space
BV(I ) becomes a Banach space when supplied, e.g., with the norm

‖h‖BV = ‖h‖1 + inf
h̃∼h

varI (h̃), h ∈ BV(I ), (5.1)

where the infimum is taken over all elements in the equivalence class of h (so that h̃ = h
except on a Lebesgue null set). It is well-known that for each h ∈ BV(I ) there is a right-
continuous function in the class of h where the infimum in the definition of ‖h‖BV in
(5.1) is attained. In particular, BV(I ) is a subspace of L∞(I ) (see [16]). A perhaps more
precise description of BV(I ) is that these are the primitive functions of finite complex-
valued Borel measures on I .

Let T = {z ∈ C : |z| = 1} denote the unit circle in C and let σp(Pτ ) denote the
point spectrum of Pτ , where the Perron–Frobenius operator Pτ is thought of as acting on
L1(I ). As a consequence of the Ionescu-Tulcea and Marinescu theorem (see [5] and [16,
Section 5.3]), the following spectral decomposition holds for Pτ . We recall the notions of
filling and partially filling C2-smooth monotonic transformations in Definitions 3.1 and
3.2.

Theorem C. Suppose τ : I → I is a partially filling C2-smooth piecewise monotonic
transformation with the following properties:

(i) [uniform expansiveness] There exist an integerm ≥ 1 and a positive real ε such that
|(τm)′(x)| ≥ 1+ ε for all x ∈

⋃
{Iu : u ∈ Um] }.
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(ii) [second derivative condition] There exists a positive constantM such that |τ ′′(x)| ≤
M|τ ′(x)|2 for all x ∈

⋃
{Iu : u ∈ U}.

Then 3τ := σp(Pτ ) ∩ T is finite and nonempty, say 3τ = {λ1, . . . , λp}. Here, one of the
eigenvalues is the point 1, say λ1 = 1. If Ei denotes the eigenspace of Pτ corresponding
to λi , then Ei is finite-dimensional and Ei ⊂ BV(I ). In addition,

Pnτh =
p∑
i=1

λni Pτ,ih+ Znτh, h ∈ L1(I ), n = 1, 2, . . . ,

where the operators Pτ,i are (Banach space) projections onto Ei , and the operator Zτ
acts boundedly on L1(I ) as well as on BV(I ). Moreover, the spectrum of Zτ as an oper-
ator acting on BV(I ) is contained in the open unit disk D; i.e., Zτ acting on BV(I ) has
spectral radius < 1.

Remark 5.1. (a) It is a by-product of Theorem C that Pτ acts boundedly on BV(I ). In
fact, the way things work is that this rather elementary observation is the beginning of the
analysis that leads up to Theorem C.

(b) Since 1 is an eigenvalue of Pτ , a corresponding eigenfunction (which is then in
BV(I )) is the density for an invariant measure. If there are several such eigenfunctions
for λ1 = 1, then one of them is ≥ 0, which we can normalize so that we get an absolutely
continuous invariant probability measure with density in BV(I ); compare with the proof
of Theorem 7.2.

(c) The formulation of the Ionescu-Tulcea and Marinescu theorem in [16] initially
assumes that τ is “filling”, but it is later remarked that the theorem holds for “partially
filling” transformations (cf. Definitions 3.1 and 3.2); see [16, p. 214], and also [6] and [8,
p. 169].

(d) When considered as an operator on L1(I ), the Perron–Frobenius operator Pτ
will usually have eigenvalues at all points of the open disk, with eigenfunctions in
L∞([−1, 1]) (cf. [17]).

Remark 5.2. From the presentation in [16, Section 5.3], it is clear that if τ is “filling”,
we have a stronger assertion in Theorem C: λ1 = 1 is the only eigenvalue of Pτ on T,
and the τ -invariant absolutely continuous probability measure is unique, with a density
that is bounded from above and below by two positive constants. Cf. also [8, p. 172],
where it is shown that under the given assumptions, τ is mixing. We briefly outline the
argument, following the presentation in [16, Section 5.3]. We write fu := τ−1

u : I → Īu
for the inverse branches (u ∈ U). The assumptions (i) and (ii) of Theorem C correspond
to the conditions (Em) and (A) of [16, pp. 191–192]. Next, by [16, Proposition 5.3.3],
(Em) forces |f ′u(x)| to be uniformly bounded in x ∈ I and u ∈ U . In view of Condition
(A) of [16, p. 192], we also know that |f ′′u (x)| is uniformly bounded in x ∈ I and u ∈ U .
In particular, then, f ′u is absolutely continuous for all u ∈ U . Next, by [16, Proposition
5.3.4], we use this absolute continuity together with condition (Em) of [16, p. 191], to
see that condition (C) [Rényi’s distortion estimate] holds as well. Next, by [16, Theorem
5.3.5], we use condition (C) to find that there is a unique ergodic τ -invariant absolutely
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continuous probability measure, and that its density is bounded from above and below by
positive constants. This means that there is only one eigenvalue, namely 1. We mention
here that the condition (BV) of [16, p. 200]—which requires the sum of the variations
of f ′u over u ∈ U to be bounded—is a trivial consequence of condition (A), because the
sum of the variations of f ′u over u ∈ U amounts to summing the lengths of the intervals Iu,
which add up to the length of I .

5.2. The folklore theorem (Adler’s theorem)

We shall be interested in partially filling C2-smooth monotonic transformations of a
closed bounded interval I . In view of Remark 5.1(c), we can be sure that Theorem C also
holds in this more general situation. Moreover, Remark 5.1(b) tells us that there exists a
τ -invariant absolutely continuous probability measure, but it might not be unique. To get
uniqueness, we need to make stronger assumptions on τ . In this direction we have Adler’s
theorem, also known as the folklore theorem (see [5]).

Theorem D (Adler’s theorem). Let τ : I → I be a partially fillingC2-smooth piecewise
monotonic transformation with the following properties:

(i) [uniform expansiveness] There exist an integer m ≥ 1 and a positive real ε such
that |(τm)′(x)| ≥ 1+ ε for all x ∈

⋃
{Iu : u ∈ Un] }.

(ii) [second derivative condition] There exists a positive constantM such that |τ ′′(x)| ≤
M|τ ′(x)|2 for all x ∈

⋃
{Iu : u ∈ U}.

(iii) [Markov property 1] For every u ∈ U there is n = n(u) ≥ 1 such that clos[τn(Iu)]
= I .

(iv) [Markov property 2] Whenever τ(Iu) ∩ Iv 6= ∅ for some two indices u, v ∈ U , then
τ(Iu) ⊃ Iv .

Then τ admits a unique absolutely continuous invariant probability measure dρ = % dm.
Moreover, the density % is bounded from above and below by positive constants.

Remark 5.3. (a) A transformation τ satisfying (iii)–(iv) above is said to be a Markov
map.

(b) A well-known result which preceded Adler’s theorem is the Lasota and Yorke
theorem [19].

5.3. Dynamical properties of Gauss-type maps

We first consider the transformation τβ of the interval ]−1, 1] defined by τβ(0) := 0 and

τβ(x) := {−β/x}2, x 6= 0. (5.2)

Here, we recall that for t ∈ R, {t}2 denotes the unique number in ]−1, 1] with t − {t}2
in 2Z. We restrict our attention to β > 1 only. Let the index set U = Uβ be the subset of
the nonzero integers u for which the corresponding branch interval is nonempty:

Iu :=

]
β

2u+ 1
,

β

2u− 1

[
∩ ]−1, 1[ 6= ∅. (5.3)
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We put u0 = u0(β) :=
1
2 (β − {β}2), which is an integer ≥ 1. We note that if β is an odd

integer, then

Iu =

]
β

2u+ 1
,

β

2u− 1

[
, u ∈ U , (5.4)

and U consists of all u ∈ Z× with |u| ≥ 1
2 (β + 1). In this case, the “filling” requirement

is fulfilled: τβ(Iu) = ]−1, 1[ for all u ∈ U . More generally, when β is not an odd integer,
then U consists of all u ∈ Z× with |u| ≥ u0, and we have

Iu =

]
β

2u+ 1
,

β

2u− 1

[
, u ∈ U \ {±u0}, (5.5)

so that
τβ(Iu) = ]−1, 1[, u ∈ U \ {±u0}.

We see that the deviation from the “filling” requirement is rather slight (just two branches
fail).

Next, we quickly calculate the derivative of τβ :

τ ′β(x) = β/x
2
≥ β > 1, x ∈

⋃
{Iu : u ∈ U}, (5.6)

so the uniform expansiveness condition is met already by τβ (with m = 1). Moreover,

|τ ′′β (x)|

|τ ′β(x)|
2 ≤

2|x|
β
≤ 2, x ∈

⋃
{Iu : u ∈ U},

so we also have the second derivative control. Unfortunately, we cannot rely on Theorem
C to give us the uniqueness of the absolutely continuous invariant measure for τβ (al-
though Remark 5.2 says that in the “filling” case we really do have uniqueness). We can-
not rely on Adler’s theorem either, as τβ is not necessarily a Markov map. We will show
that condition (iii) of Adler’s theorem holds for all sufficiently large n, say n ≥ n(u); this
has the interpretation of “strong mixing”.

We are also interested in the Gauss-type map θγ of [0, 1[ defined by θγ (0) := 0 and

θγ (x) := {γ /x}1, x 6= 0. (5.7)

Here, we recall that {t}1 is the fractional part of t ∈ R, with values in [0, 1[ and t − {t}1
∈ Z. We restrict our attention to γ > 1 only. Let the index set V = Vγ be the subset of
the positive integers v for which the corresponding branch interval is nonempty:

Jv :=

]
γ

v + 1
,
γ

v

[
∩ ]0, 1[ 6= ∅.

We note that if γ is an integer, then V consists of all positive integers v with v ≥ γ , and

Jv =

]
γ

v + 1
,
γ

v

[
, v ∈ V.
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More generally, if v0 = v0(γ ) := γ − {γ }1 ∈ Z+, then

Jv =

]
γ

v + 1
,
γ

v

[
, v ∈ V \ {v0},

and
θγ (Jv) = ]0, 1[, u ∈ V \ {v0}.

So, the deviation from the “filling” requirement is rather slight (only one branch fails).
Next, we calculate the derivative of θγ :

|θ ′β(x)| = γ /x
2
≥ β > 1, x ∈

⋃
{Jv : v ∈ U},

so the uniform expansiveness condition is met already by θβ (with m = 1). Moreover,

|θ ′′γ (x)|

|θ ′γ (x)|
2 ≤

2x
γ
≤ 2, x ∈

⋃
{Jv : v ∈ V},

so we also have the second derivative control. Again, we cannot unfortunately rely on
Theorem C to give us the uniqueness of the absolutely continuous invariant probability
measure for θγ (although Remark 5.2 says that in the “filling” case we have unique-
ness). We cannot rely on Adler’s theorem either, as θγ is not necessarily a Markov map.
However, it appears that here, it is nevertheless known that the absolutely continuous
θγ -invariant probability measure is unique and has strictly positive density almost every-
where. One way to see this is to show that condition (iii) of Adler’s theorem is fulfilled
for all n ≥ n(u), and proceed in an analogous fashion as we do for τβ , with β > 1 (cf.
Lemma 7.1 and Theorem 7.2). Actually, once the “strong mixing” property of condition
(iii) of Adler’s theorem has been verified, the proof of Theorem 7.2 applies more or less
verbatim, and gives the asserted properties. Also compare with [8, pp. 168–177].

5.4. The explicit calculation of invariant measures

In general, the computation of the absolutely continuous invariant measures for τβ (as
well as for θγ ) is intractable. Only in a few particular cases is it possible to supply ex-
plicit expressions for the corresponding densities. They all correspond to values of the
parameters for which we are dealing with Markov maps. For instance, when β > 1 is an
odd integer, τβ is “filling” [i.e., we have complete branches], and the unique τβ -invariant
probability measure on [−1, 1] is given by

c(β)

1− (x/β)2
1[−1,1](x) dx, where

1
c(β)

=

∫ 1

−1

dx

1− (x/β)2
= β log

β + 1
β − 1

(β = 3, 5, 7, . . .).

It is more interesting that it is possible to obtain the τβ -invariant probability density in
a more complicated situation, when β = 3/2. The uniqueness and ergodicity of that
measure will be obtained in Section 7.
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Proposition 5.4 (β = 3/2). The density of the unique ergodic τ3/2-invariant absolutely
continuous probability measure is given by

%0(x) = c0

{
1

1− (2x/3)2
1[−1/2,1/2](x)+

3/4
(1− |x|/3)(1+ 2|x|/3)

1[−1,1]\[−1/2,1/2](x)

}
,

where c−1
0 = 3 log 5− 9

2 log 2.

Proof. To simplify the notation, we write %1(x) := c
−1
0 %0(x), so that %1(x) stands for the

bracketed expression. We note that both %0, %1 are even functions. We need to check that∑
j∈Z×

3/2
(2j − x)2

%1

(
3/2

2j − x

)
= %1(x), x ∈ [−1, 1], (5.8)

where this equality should be understood in the almost-everywhere sense. Since

3/2
2j − x

∈ [−1/2, 1/2] for |j | ≥ 2, x ∈ [−1, 1],

we may evaluate the sum of all but two terms on the left-hand side of (5.8), as most of the
terms cancel:∑
j : |j |≥2

3/2
(2j − x)2

%1

(
3/2

2j − x

)
=

∑
j : |j |≥2

3/2
(2j − x)2

×
1

1− 1
(2j−x)2

=

∑
j : |j |≥2

3/2
(2j − x)2 − 1

=
3
4

∑
j : |j |≥2

[
1

2j − x − 1
−

1
2j − x + 1

]

=
3
4

[
1

3− x
+

1
3+ x

]
=

1/2
1− (x/3)2

, x ∈ [−1, 1].

Next, we see that
3/2

2− x
∈ ]1/2, 1], x ∈ ]−1, 1/2],

and that this expression is in ]1, 3/2] for x ∈ ]1/2, 1]. Here, we may of course replace x
by −x if we make the necessary adjustments. It follows that

∑
j :|j |=1

3/2
(2j − x)2

%1

(
3/2

2j − x

)
=

3/2
(2− x)2

%1

(
3/2

2− x

)
+

3/2
(2+ x)2

%1

(
−

3/2
2+ x

)
=

3/2
(2− x)2

×
3/4(

1− 1/2
2−x

)(
1+ 1

2−x

)1[−1,1/2](x)

+
3/2

(2+ x)2
×

3/4(
1− 1/2

2+x

)(
1+ 1

2+x

)1[−1/2,1](x)

=
1/4

(1− 2x/3)(1− x/3)
1[−1,1/2](x)+

1/4
(1+ 2x/3)(1+ x/3)

1[−1/2,1](x) x ∈ ]−1, 1[,
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We may now express the whole sum in (5.8) as

∑
j∈Z×

3/2
(2j − x)2

%1

(
3/2

2j − x

)
=

1/2
1− (x/3)2

+
1/4

(1− 2x/3)(1− x/3)
1[−1,1/2](x)+

1/4
(1+ 2x/3)(1+ x/3)

1[−1/2,1](x)

=
1
4

[
1

1− x/3
+

1
1+ x/3

]
+

1
4

[
2

1− 2x/3
−

1
1− x/3

]
1[−1,1/2](x)

+
1
4

[
2

1+ 2x/3
−

1
1+ x/3

]
1[−1/2,1](x)

=
1
4

[
2

1− 2x/3
+

2
1+ 2x/3

]
1[−1/2,1/2](x)+

1
4

[
1

1− x/3
+

2
1+ 2x/3

]
1]1/2,1](x)

+
1
4

[
1

1+ x/3
+

2
1− 2x/3

]
1]−1,−1/2[(x)

=
1/2

1− (2x/3)2
1[−1/2,1/2](x)

+
3/4

(1− |x|/3)(1+ 2|x|/3)
1[−1,1]\[−1/2,1/2](x) = %1(x), x ∈ ]−1, 1[.

The constant c0 is determined by the requirement that we should have a probability den-
sity, and is easily computed. The proof is complete. ut

Remark 5.5. (a) It is possible to establish with similar means the τβ -invariant absolutely
continuous probability measure for β = n(2n+ 1)/(n+ 1), where n is a positive integer.

(b) We mention here that the analogous θγ -invariant absolutely continuous probability
measures are known explicitly for γ ∈ Z+ (see e.g. [7]):

c(γ )

1+x/γ
1[0,1](x) dx, where

1
c(γ )

=

∫ 1

0

dx

1+x/γ
= γ log(1+ 1/γ ) (γ = 1, 2, . . .).

6. Characterization of the pre-annihilator space M⊥
β

6.1. Purpose of the section; some notation

In this section we provide a characterization of the subspace M⊥
β in terms of certain

operators. We proceed in a fashion somewhat similar to that used in the proof of Lemma
5.2 in [12]. We recall from Subsection 3.2 that the Koopman operator for τβ is denoted
by Cτβ , and recall from Subsection 4.1 that the corresponding Perron–Frobenius operator
is Pτβ : L1([−1, 1])→ L1([−1, 1]), given by

Pτβh(x) =
∑
j∈Z×

β

(2j − x)2
h

(
β

2j − x

)
, x ∈ [−1, 1],
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with the understanding that h ∈ L1([−1, 1]) vanishes off [−1, 1]. Following the notation
of [12], we denote by L∞2 (R) the subspace of L∞(R) of 2-periodic functions, which is
the same as the weak-star closure of

span{einπx : n ∈ Z}.

Likewise, we let L∞
〈β〉(R) be the weak-star closure of

span{einπβ/x : n ∈ Z},

which also has a characterization in terms of periodicity [f ∈ L∞
〈β〉(R) if and only if the

function f (β/x) is in L∞2 (R)]. Let S : L∞([−1, 1])→ L∞ (R \ [−1, 1]) be the operator
defined by

Sg(x) = g({x}2), x ∈ R \ [−1, 1], (6.1)

and let T : L∞ (R \ [−β, β])→ L∞([−β, β]) be the operator given by

Tg(x) = g
(
−

β

{−β/x}2

)
, x ∈ [−β, β] \ {0}. (6.2)

It is clear that S and T are linear operators and that they both have norm 1 on the L∞

spaces where they are defined. As a consequence, their pre-adjoints S∗ and T∗ are norm
contractions on the corresponding L1 spaces. The way things are set up, we have

L∞2 (R) = {g + Sg : g ∈ L∞(−1, 1)}, (6.3)
L∞
〈β〉(R) = {g + Tg : g ∈ L∞(R \ [−β, β])}. (6.4)

We need the following restriction operators (recall that β > 1):

R1 : L
∞(R \ [−1, 1])→ L∞(R \ [−β, β]),

R2 : L
∞([−β, β])→ L∞([−1, 1]),

R3 : L
∞([−β, β])→ L∞([−β, β] \ [−1, 1]),

R4 : L
∞(R \ [−1, 1])→ L∞([−β, β] \ [−1, 1]).

These operators just restrict the given function to a subset, which makes each a norm
contraction. The corresponding pre-adjoints R∗i , for i = 1, 2, 3, 4, act on the correspond-
ing L1 spaces, and just extend the given function to a larger set by setting it equal to
zero where it was previously undefined. As β > 1, we easily check that C2

β = R2TR1S.
Taking the pre-adjoint of both sides, we get

P2
τβ
= S∗R∗1T∗R∗2. (6.5)

6.2. The characterization of the pre-annihilator space M⊥
β

We now supply the criterion which characterizes when a given f ∈ L1(R) belongs
to M⊥

β .
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Proposition 6.1 (1 < β <∞). Let f ∈ L1(R) be written as

f = f1 + f2 + f3,

where f1 ∈ L
1([−1, 1]), f2 ∈ L

1([−β, β] \ [−1, 1]), and f3 ∈ L
1(R \ [−β, β]). Then

f ∈M⊥
β if and only if

(i) (I− P2
τβ
)f1 = S∗(−R∗4 + R∗1T∗R∗3)f2,

(ii) f3 = −T∗R∗2f1 − T∗R∗3f2,

where I is the identity on L1([−1, 1]).

Proof. In view of the definition (1.3) of M⊥
β , and the representations (6.3) and (6.4) of

L∞2 (R) and L∞
〈β〉(R), we see that f = f1 + f2 + f3 is in M⊥

β if and only if

〈f, g + Sg〉R = 〈f1 + f2 + f3, g + Sg〉R = 0, g ∈ L∞([−1, 1]),
〈f, h+ Th〉R = 〈f1 + f2 + f3, h+ Th〉R = 0, h ∈ L∞(R \ [−β, β]).

Here, it is assumed that all functions f1, f2, f3 are understood to vanish outside their
domain of definition. We see that the above equations simplify to

〈f1, g〉[−1,1] + 〈f2 + f3,Sg〉R\[−1,1] = 0, g ∈ L∞([−1, 1]),
〈f3, h〉R\[−β,β] + 〈f1 + f2,Th〉[−β,β] = 0, h ∈ L∞(R \ [−β, β]).

These equations are equivalent to having

f1 = −S∗(f2 + f3),

f3 = −T∗(f1 + f2).

A more precise formulation is

f1 = −S∗R∗4f2 − S∗R∗1f3, (6.6)
f3 = −T∗R∗2f1 − T∗R∗3f2. (6.7)

We note first that (6.7) is the same as (ii). Next, we substitute (6.7) into (6.6) and take into
account (6.5); the result is (i). This completes the proof. ut

7. Exterior spectrum of the Perron–Frobenius operator for a Gauss-type map on
[−1, 1]

7.1. Purpose of the section

In this section we will show that λ1 = 1 is a simple eigenvalue of Pτβ . This corresponds to
having a unique absolutely continuous invariant probability measure for τβ with β > 1.
We will also prove that σp(Pτβ ) ∩ ∂D = {1}. In view of Theorem C, these properties
correspond to τβ possessing strong mixing, with exponential decay of correlations (cf.
[22, p. 122]; also, compare with weak mixing [8, p. 22, p. 29], and [16, p. 203]). Another
useful reference is [1].
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7.2. The iterates of an interval

We need the following lemma.

Lemma 7.1 (1 < β < ∞). Let J0 be a nonempty open interval contained in [−1, 1].
Then, for large enough positive integers n, say n ≥ n0, we have τnβ (J0) ⊃ ]−1, 1[.

Proof. We begin with the observation that if τnβ (J0) ⊃ ]−1, 1[ holds for n = n0, then
it also holds for all n ≥ n0, as most of the branches are complete (at most two may be
incomplete).

Case I: β is an odd integer. Then τβ is “filling”, that is, all branches are complete; cf.
Subsection 5.3. This case is well-understood, but it helps our presentation to review it.
We recall from Subsection 5.3 that the fundamental intervals are given by (5.4) with U
being the set of all nonzero integers u with |u| ≥ 1

2 (β + 1). We note that by (5.6), τβ
is expansive: as long as an interval J is contained in one of the fundamental intervals
Iu, u ∈ U , the image τβ(J ) is an interval of length at least β times the length of J . We
observe that if our given interval J0 contains one of the fundamental intervals Iu, u ∈ U ,
then we are done, because τβ(J0) ⊂ ]−1, 1[ in this case. There are two other possibilities:

(a) The interval J0 is contained in Iu for some u ∈ U: In this case τβ(J0) is an interval
of length at least βm(J0), by (5.6).

(b) The interval J0 has nonempty intersection with two neighboring fundamental intervals
Iu, Iu′ , and J0 ⊂ clos[Iu ∪ Iu′ ]: In this case the length of the intersection of J0 with one
of the two fundamental intervals, say Iu, is at least 1

2m(J0). So, we have

m(τβ(J0)) ≥ m(τβ(J0 ∩ Iu)) ≥
β

2
m(J0). (7.1)

In particular, τβ(J0) contains an interval τβ(J0 ∩ Iu) of length at least 1
2β m(J0).

We see that in both cases (a)–(b), the image τβ(J0) contains an interval J1 of length
at least 1

2β m(J ). We note that 1
2β ≥

3
2 as β > 1 is an odd integer. By running the same

argument starting from J1 in place of J0, we see that unless J1 contains a fundamental
interval (in which case we are done), we obtain an interval J2 contained in τβ(J1) ⊂

τ 2
β (J0) of length at least ( 1

2β)
2m(J0). Continuing, we find intervals J1, J2, . . . of length

≥ ( 1
2β)

lm(J0) with Jl ⊂ τβ(Jl−1) ⊂ τ lβ(J0), and we stop only when the interval Jl
contains a fundamental interval. For a large enough l we must stop, at least because the
length of Jl will eventually exceed twice the maximum length of a fundamental interval,
and for that l we have τ l+1

β (J0) ⊃ ]−1, 1[.

Case II: β is not an odd integer. Then we have −1 < {β}2 < 1, and with u0 :=
1
2 (β − {β}2) ∈ Z+, the set U consists of all integers u with |u| ≥ u0. We see that
β = 2u0 + {β}2 ∈ ]2u0 − 1, 2u0 + 1[. The fundamental intervals Iu are given by (5.4)
for u ∈ U \ {±u0}, while (cf. (5.3))

Iu0 =

]
β

2u0 + 1
, 1
[
, I−u0 =

]
−1,−

β

2u0 + 1

[
.

On a fundamental interval Iu, the transformation τβ is given by x 7→ 2u− β/x.
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Case II-A: J0 is an edge fundamental interval, i.e., J0 = Iu0 or J0 = I−u0 . When
J0 = I−u0 , we have

τβ(J0) = τβ(I−u0) = ]β − 2u0, 1[ ⊃ I 2
u0+1 :=

]
β − 2u0,

β

2u0 + 1

[
. (7.2)

If β − 2u0 ≤ β/(2u0 + 3), we have

τβ(I−u0) = ]β − 2u0, 1[ ⊃ I 2
u0+1 ⊃

]
β

2u0 + 3
,

β

2u0 + 1

[
= Iu0+1,

so that
τ 2
β (I−u0) ⊃ τβ(Iu0+1) = ]−1, 1[.

It remains to treat the case when β/(2u0 + 3) < β − 2u0, so that I 2
u0+1 ⊂ Iu0+1 and in

particular β−2u0 ∈ Iu0+1. We first claim that there exists a constant β ′ with 1 < β ′ ≤ β,
which only depends on β, such that

m

(
τβ

(]
y,

β

2u0 + 1

[))
≥ β ′m(]y, 1[), y ∈ I 1

u0+1 :=

[
β

2u0 + 3
, β − 2u0

]
. (7.3)

Here, it is clear that I 1
u0+1 ⊂ Iu0+1, and since τβ is given by x 7→ 2u0 + 2 − β/x on

Iu0+1, we have

τβ

(]
y,

β

2u0 + 1

[)
= ]2u0 + 2− β/y, 1[.

We note that the estimate (7.3) is equivalent to having

β ′y + β/y ≥ 2u0 + 1+ β ′, y ∈ I 1
u0+1. (7.4)

The function f (y) = β ′y+β/y is strictly decreasing in ]0, 1], so it suffices to check (7.4)
at the right endpoint of I 1

u0+1. It is a straightforward exercise to verify that (7.4) holds at
y = β − 2u0 = {β}2 provided that β ′ is chosen sufficiently close to 1; it helps to observe
that β > 2 because β/(2u0 + 3) < β − 2u0. So, (7.4) is valid for β ′ > 1 close enough
to 1. If we put J1 := τβ(I−u0) = ]β − 2u0, 1[ and J2 := τβ(I

2
u0+1) = ]τβ(β − 2u0), 1[ in

accordance with (7.2), then, in view of (7.2) and (7.3),

J2 ⊂ τβ(J1) and m(J2) ≥ β
′m(J1).

If τβ(β − 2u0) ≤ β/(2u0 + 3), then J2 ⊃ Iu0+1 and so τβ(J2) ⊃ ]−1, 1[ and hence
τ 3
β (I−u0) ⊃ ]−1, 1[. If not, then we rerun the argument and get ever bigger intervals

whose right endpoint is 1, so eventually the interval must contain Iu0+1, and we are done.
The case J = Iu0 is analogous and therefore omitted.

Case II-B: J0 is a general nonempty open subinterval of [−1, 1]. We put

x0 =
(2u0 + 1)β

2u0(2u0 + 1)+ β
.

The point x0 belongs to the fundamental interval Iu0 and has

τβ

(]
β

2u0 + 1
, x0

[)
= I−u0 and τβ

(]
−x0,−

β

2u0 + 1

[)
= Iu0 . (7.5)
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A little calculation shows that

τ ′β(x) ≥ β/x
2
0 > 2, x ∈ [−x0, x0] ∩

⋃
{Iu : u ∈ U}. (7.6)

Next, put β ′′ := min(β, β/(2x2
0)), so that β ′′ > 1. We have a general nonempty sub-

interval J0 of [−1, 1], and want to show that τnβ (J0) covers ]−1, 1[ for some large
enough n. We do this by showing that the length of τnβ (J0) must otherwise continue
growing geometrically. We observe that if J0 contains one of the fundamental intervals
Iu, u ∈ U , then τnβ (J0) ⊃ ]−1, 1[ with n = 1 for |u| > u0, and with a possibly large n if
|u| = u0 by Case II-A above. If J0 does not contain a fundamental interval, then we are
left with the following two possibilities:

(a) The interval J0 is contained in a fundamental interval Iu for some u ∈ U . Then
J1 := τβ(J0) is an interval of length at least β ′′m(J0), by (5.6).

(b) The interval J0 has nonempty intersection with two neighboring fundamental intervals
Iu, Iu′ , and J0 ⊂ clos [Iu ∪ Iu′ ]. In this case we have two subcases.

(b1) The interval J0 is contained in [−x0, x0]. Then one of the two intervals, say Iu, meets
J0 in a subinterval of length at least 1

2m(J0), and J1 := τβ(J0 ∩ Iu) is an open interval
contained in τβ(J0) of length (cf. (7.6))

m(J1) = m(τβ(J0 ∩ Iu)) ≥
βm(J0)

2x2
0
≥ β ′′m(J0).

(b2) The interval J0 is not contained in [−x0, x0]. Then

J0 ∩ Iu0 ⊃

[
β

2u0 + 1
, x0

]
or J0 ∩ I−u0 ⊃

[
−x0,−

β

2u0 + 1

]
,

so by (7.5), we have τβ(J ) ⊃ I−u0 or τβ(J ) ⊃ Iu0 .

If (b2) happens, we are done, because after one iteration of τβ we cover one of the edge
fundamental intervals. If (a) or (b1) takes place, then the set τβ(J0) contains an interval J1
of length at least β ′′m(J0). We may then consider J1 in place of J0, and we gain that J1 is
longer. Unless we stop, which occurs when the set contains a fundamental interval, we get
a sequence of sets J0, J1, J2, . . . , and their lengths grow geometrically. This is possible
only finitely many times, which means that we eventually cover a fundamental interval.
The proof is complete. ut

7.3. Exterior spectrum of the Perron–Frobenius operator

For a real-valued function f , we use the standard convention to write f+ = max{f, 0}
and f− = max{−f, 0}, so that f = f+ − f−.

Theorem 7.2 (1 < β <∞). Let Pτβ be the Perron–Frobenius operator associated to τβ
acting on L1([−1, 1]). Then λ1 = 1 is a simple eigenvalue of Pτβ and is the only one with
modulus one. Moreover, the eigenfunctions for eigenvalue 1 are nonzero scalar multiples
of %0, where %0 dm is the unique ergodic τβ -invariant absolutely continuous probability
measure. Also, %0 > 0 almost everywhere.
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Proof. To simplify the notation, we write P in place of Pτβ . The transformation τβ :
]−1, 1] → ]−1, 1] is a partially filling C2-smooth piecewise monotonic transformation,
which meets the conditions (i) [with m = 1] and (ii) of Theorem C, so that by Remark
5.1(c), the assertion of Theorem C is valid also for τβ . Consequently, λ1 = 1 is an eigen-
value of P and so there is an eigenfunction %0 ∈ BV([−1, 1]) corresponding to it. From
(3.5) together with the triangle inequality, we see that |P%0| ≤ P|%0| pointwise. Since
P%0 = %0, we then have∫

[−1,1]
|%0| dm =

∫
[−1,1]

|P%0| dm ≤

∫
[−1,1]

P|%0| dm =

∫
[−1,1]

|%0| dm.

This means that we must have |P%0| = P|%0| almost everywhere on [−1, 1], and so in
particular P|%0| = |%0|. But then |%0| is another eigenfunction for λ1 = 1. We might as
well replace %0 by |%0|, which amounts to assuming that %0 ≥ 0, and after multiplication
by a suitable positive constant we can assume that

〈%0, 1〉[−1,1] =

∫
[−1,1]

%0 dm = 1.

We consider the set
A+ := {x ∈ [−1, 1] : %0(x) > 0}.

Using (3.2), we see that τβ(A+) =̇ A+ (the dot over the equality sign means that the
sets are equal up to Lebesgue null sets). As an element of BV([−1, 1]), the function %0
can be assumed right-continuous. Then A+ will contain some nontrivial open interval I0.
By iteration, we find that τnβ (A+) =̇ A+ for n = 1, 2, . . . , so in particular, A+ contains
τnβ (I0) (up to null sets). From Lemma 7.1 we know that for large enough n, τn(I0) covers
]−1, 1[, and so %0 > 0 almost everywhere on [−1, 1].

Next, we show that the eigenspace for λ1 = 1 is one-dimensional. We argue by con-
tradiction, and suppose that there exists a nontrivial η1 ∈ L

1([−1, 1]) such that %0, η1 are
linearly independent and Pη1 = η1. From Theorem C we know that η1 ∈ BV([−1, 1]).
We consider the function

f := {〈η1, 1〉[−1,1]} %0 − η1 ∈ BV([−1, 1]),

which has 〈f, 1〉[−1,1] = 0 and Pf = f . By replacing η1 by its real or imaginary part (this
is possible since P preserves real-valuedness), we may assume that η1 is real-valued, so
that f is real-valued. We can also assume that f ∈ BV([−1, 1]) is right-continuous. We
now write f = f+ − f−, and observe that f+, f− are also right-continuous functions
in BV([−1, 1]). Unless one of f+, f− vanishes almost everywhere, both must be posi-
tive on some open intervals I+, I−, respectively. In view of (3.5), for n = 1, 2, . . . , the
functions Pnf+,Pnf− are then positive almost everywhere on the sets τn(I+), τn(I−),
respectively. Lemma 7.1 then entails that there exists a positive integer n0 such that
Pn0f+,Pn0f− are both positive almost everywhere on [−1, 1]. Since Pnf = f for all
n = 1, 2, . . . , we must then have

‖f ‖L1 = ‖Pn0f ‖L1 = ‖Pn0f+−Pn0f−‖L1 < ‖Pn0f++Pn0f−‖L1 = ‖f ‖L1 , (7.7)
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where the L1 norm is with respect to the interval [−1, 1]. This contradiction shows that at
least one of f+, f− must be identically zero (almost everywhere). But as 〈f, 1〉[−1,1] = 0,
both f+, f− must then be the 0 function. This implies that η1 is a scalar multiple of %0,
a contradiction. We conclude that λ1 = 1 is a simple eigenvalue (i.e., it has a one-
dimensional eigenspace).

Next, we turn to the assertion that %0 dm is the unique ergodic τβ -invariant abso-
lutely continuous probability measure. This is a consequence of Proposition A.2.5 in
[16], since %0 dm is an absolutely continuous measure with %0 > 0 almost everywhere
and P%0 = %0.

Finally, we show that P has no other eigenvalues than 1 on the unit circle T. Suppose λ,
with |λ| = 1 and λ 6= 1, is an eigenvalue of P, and η2 ∈ L

1([−1, 1]) is the nontrivial
eigenfunction corresponding to λ, which we may normalize: ‖η2‖L1 = 1. From (3.5)
together with the triangle inequality, we have |Pη2| ≤ P|η2| pointwise, and so, since
Pη2 = λη2,∫

[−1,1]
|η2| dm =

∫
[−1,1]

|λ η2| dm =

∫
[−1,1]

|Pη2| dm ≤

∫
[−1,1]

P|η2| dm

=

∫
[−1,1]

|η2| dm.

This means that we must have |Pη2| = P|η2| almost everywhere on [−1, 1], and con-
sequently P|η2| = |η2|. But then |η2| = %0, as the eigenspace for λ1 = 1 was one-
dimensional and spanned by %0. We write η2=χ%0, where the function χ ∈L∞([−1, 1])
has |χ | = 1 almost everywhere. When we take another look at the argument we just used
involving equality in the triangle inequality, we realize that χ must have the property

χ(τβ(x)) = λ̄χ(x), x ∈ [−1, 1],

in the almost-everywhere sense. By iteration, we get

χ(τnβ (x)) = λ̄
nχ(x), x ∈ [−1, 1], n = 1, 2, . . . . (7.8)

We pick a point x0 where ρ0(x0) > 0, and by right-continuity there exists a nonempty
(short) interval ]x0, x1[ where ρ0, η2 are both very close to the value at x0, so that χ is
close to its value at x0 as well: say, for some small ε > 0,

|χ(x)− χ(x0)| < ε, x ∈ ]x0, x1[.

Next, let n be such that τnβ (]x0, x1[) ⊃ ]−1, 1[. Then, by (7.8),

|χ(τnβ (x))− λ
nχ(x0)| < ε, x ∈ ]x0, x1[,

so that
|χ(y)− λnχ(x0)| < ε, y ∈ ]−1, 1[.

This means that χ is within distance ε of a constant function. As ε can be made as small
as we like, the only possibility is that χ is equal to a constant. But then (7.8) is impossible
unless λ = 1, contrary to assumption. The proof is complete. ut
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Remark 7.3 (1 < β < ∞). A dynamical system (I,S, µ, τ ), where µ is finite and
invariant under τ , is said to be exact when

lim
n→∞

µ(τn(A)) = µ(I), A ∈ S.

It is known that τ is strong mixing whenever (I,S, µ, τ ) is exact [22, p. 125]. If %0 stands
for the density of the unique absolutely continuous τβ -invariant probability measure, then

([−1, 1],B[−1,1], %0 dm, τβ)

is exact. In particular,

lim
n→∞

m(τnβ (A)) = m([−1, 1]), A ∈ B[−1,1].

This can be obtained from Lemma 7.1 directly, by localizing around a point of A with
density 1 and using the distortion control available from the control on the second deriva-
tive; cf. [14]. This suggests another (shorter) way to obtain the assertion of Theorem 7.2.
We deduce that τβ possesses strong mixing from exactness, and then only the eigenvalue
1 can occur and it must be simple.

8. Proofs of the main results

8.1. Proof of Theorem 1.3

To prove Theorem 1.3, we will need to consider the space BV([−β, β] \ [−1, 1]) of
complex-valued integrable functions defined on [−β,−1] ∪ [1, β] whose restrictions to
[−β,−1] belong to BV([−β,−1]) and whose restrictions to [1, β] belong to BV([1, β]).

Lemma 8.1 (1 < β < ∞). The operator −S∗R∗4 + S∗R∗1T∗R∗3 maps BV([−β, β] \
[−1, 1]) into BV([−1, 1]).

Proof. Let f2 ∈ BV([−β, β]\[−1, 1]). The operator S∗ : L1(R\[−1, 1])→ L1([−1, 1])
is given by

S∗h(x) =
∑
k∈Z×

h(x + 2k), x ∈ [−1, 1].

As
R∗4 : L

1([−β, β] \ [−1, 1])→ L1(R \ [−1, 1])

extends the function by letting it vanish where it was previously undefined, the function
S∗R∗4f2 is just a finite sum of functions of bounded variation, so that we have

S∗R∗4f2 ∈ BV([−1, 1]). (8.1)

On the other hand, we can easily check that C̃2
= TR1SR2, where C̃ = Cτ̃β is the

Koopman operator associated to the transformation τ̃β : [−β, β] → [−β, β] given by
τ̃β(0) = 0 and

τ̃β(x) = {−β/x}2, x ∈ [−β, β] \ {0}.
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If P̃ = Pτ̃β : L
1([−β, β])→ L1([−β, β]) is the corresponding Perron–Frobenius opera-

tor, whose adjoint is C̃, we find that

P̃2
= R∗2S∗R∗1T∗. (8.2)

We easily check that τ̃β satisfies conditions (i) (with m = 2) and (ii) of Theorem C.
Although τ̃β is only “partially filling”, Theorem C remains nevertheless valid in view of
Remark 5.1. In particular, P̃ transforms BV([−β, β]) into itself. Since R∗3 and R∗2 act as
extension by zero, it follows from (8.2) that

S∗R∗1T∗R∗3f2 ∈ BV([−1, 1]). (8.3)

Adding up, we see from (8.1) and (8.3) that

−S∗R∗4f2 + S∗R∗1T∗R∗3f2 ∈ BV([−1, 1])

for every f2 ∈ BV([−β, β] \ [−1, 1]). The proof is complete. ut

We have now developed the tools needed to obtain Theorem 1.3. Actually, we formulate
a more precise result.

Theorem 8.2 (1 < β < ∞). There exists a bounded operator E : BV([−β, β] \
[−1, 1])→ L1(R) with the following properties:

(i) E is an extension operator, in the sense that Ef (x) = f (x) almost everywhere on
[−β, β] \ [−1, 1] for all f ∈ BV([−β, β] \ [−1, 1]).

(ii) The range of E is infinite-dimensional, and contained in M⊥
β .

Proof. To simplify the notation, we write P,C in place of Pτβ ,Cτβ , respectively. By
Theorem C (valid by Remark 5.1(c)) together with Theorem 7.2, we have the following
representation for the iterates of P:

Pnh = {〈h, φ0〉[−1,1]} %0 + Znh, h ∈ L1([−1, 1]), n = 1, 2, . . . , (8.4)

where we write Z in place of Zτβ , and φ0 ∈ L
∞([−1, 1]) has 〈%0, φ0〉]−1,1] = 1. Here,

%0 ≥ 0 is the density of the absolutely continuous τβ -invariant probability measure on
[−1, 1]; we have %0 ∈ BV([−1, 1]). The operator Z acts on BV([−1, 1]) and its spectral
radius is < 1. Since %0 is invariant under P, we must have Z%0 = 0. We now argue that
φ0 = 1 (the constant function). Indeed, for each h ∈ BV([−1, 1]), (8.4) gives

〈h, 1〉[−1,1] = 〈h,Cn1〉[−1,1] = 〈Pnh, 1〉[−1,1]

= 〈h, φ0〉[−1,1]〈%0, 1〉[−1,1] + 〈Znh, 1〉[−1,1]

= 〈h, φ0〉[−1,1] + 〈Znh, 1〉[−1,1]→ 〈h, φ0〉[−1,1] (8.5)

as n → ∞, since Znh → 0 exponentially. Here, we used that 〈%0, 1〉[−1,1] = 1, which
follows since %0 is the density of a probability measure. Finally, as BV([−1, 1]) is dense
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in L1([−1, 1]), we conclude from (8.5) that φ0 = 1 a.e. on [−1, 1]. The formula (8.4) is
now even simpler:

Pnh = {〈h, 1〉[−1,1]} %0 + Znh, h ∈ L1([−1, 1]), n = 1, 2, . . . . (8.6)

We may now read off from (8.5) that

〈Znh, 1〉[−1,1] = 0, h ∈ L1([−1, 1]), n = 1, 2, . . . , (8.7)

if we observe that the calculation preceding the limit in the last step of (8.5) works for
general h ∈ L1([−1, 1]). Let us take an arbitrary element f ∈ BV([−β, β] \ [−1, 1]).
From Lemma 8.1 above, we know that

−S∗R∗4f + S∗R∗1T∗R∗3f ∈ BV([−1, 1]).

Since Z has spectral radius < 1 on BV([−1, 1]), the Neumann series

(I− Z2)−1
= I+ Z2

+ Z4
+ · · ·

converges to a bounded operator on BV([−1, 1]), and we may put

E1f := (I− Z2)−1S∗{−R∗4f + R∗1T∗R∗3f } ∈ BV([−1, 1]). (8.8)

We observe that

〈−S∗R∗4f + S∗R∗1T∗R∗3f, 1〉[−1,1] = 〈f, 1〉[−β,β]\[−1,1] − 〈f, 1〉[−β,β]\[−1,1] = 0,

and so, by (8.7) and (8.8),

〈E1f, 1〉[−1,1] = 〈(I− Z2)E1f, 1〉[−1,1] = 0. (8.9)

Finally, we put

E3f := −T∗(R∗2E1 + R∗3)f ∈ L
1(R \ [−β, β]). (8.10)

We define the operator E to be the mapping

E : BV([−β, β] \ [−1, 1])→ L1(R), f 7→ f + E1f + E3f,

with the understanding that each of the functions f,E1f,E2f is extended to R by putting
it equal to 0 where it was previously undefined. Then E is clearly bounded and linear,
and has the property (i). In view of (8.9) and (8.6), we have PnE1f = ZnE1f for n =
1, 2, . . . . This means that in condition (i) of Proposition 6.1, we may replace P2 by Z2,
and we just obtain the condition (i) of Proposition 6.1 rather immediately from (8.8). The
condition (ii) of Proposition 6.1 is immediate from (8.10). By Proposition 6.1, we have

im E ⊂M⊥
β ,

which proves (ii), since the range of E must be infinite-dimensional (the restriction to
[−β, β] \ [−1, 1] of the range is infinite-dimensional, being the space of all functions of
bounded variation). This completes the proof of Theorem 8.2. ut
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Proof of Theorem 1.3. This is immediate from Theorem 8.2(ii). ut

The next theorem shows that the range of E constructed in in the proof of Theorem 1.3 is
a subspace of the weighted space L2(R, ω), where ω(x) := 1+ x2, with norm

‖f ‖2
L2(R,ω) :=

∫
R
|f |2ω dm.

Proposition 8.3. The range of E is contained in L2(R, ω).
Proof. Let f ∈ BV([−β, β] \ [−1, 1]). Following the proof of Theorem 8.2, we see
that E1f ∈ BV([−1, 1]), so that the restriction of Ef to the interval [−β, β] has
bounded variation. In particular, Ef is bounded on [−β, β], so we just need to estimate
the weighted L2-norm integral on R \ [−β, β]. The restriction of Ef to R \ [−β, β]
equals E3f , given by (8.8), which we understand as E3f = −T∗h. The operator
T∗ : L1([−β, β])→ L1(R \ [−β, β]) is given explicitly by

T∗h(x) =
∑
j∈Z×

β2

(β + 2jx)2
h

(
βx

β + 2jx

)
, (8.11)

with the understanding that h vanishes off [−β, β]. We write

hj (x) = h

(
βx

β + 2jx

)
β2

(β + 2jx)2
, x ∈ R \ [−β, β].

As h is bounded, it is clear from (8.11) that E3f is bounded on R \ [−β, β]. Since E3f

is also summable, we must have∫
R\[−β,β]

|E3f (x)|
2 dx <∞.

Hence, it is enough to show that∫
R\[−β,β]

|E3f (x)|
2x2 dx =

∫
R\[−β,β]

∣∣∣∑
j∈Z×

hj (x)

∣∣∣2x2 dx <∞. (8.12)

A straightforward computation shows that∫
R\[−β,β]

|hj (x)|
2x2 dx =

∫ β
2j−1

β
2j+1

|h(x)|2x2 dx ≤ ‖h‖2L∞([−β,β])

∫ β
2j−1

β
2j+1

x2 dx

≤
β3

j4 ‖h‖
2
L∞([−β,β]).

As a consequence, we obtain∑
j∈Z×

{∫
R\[−β,β]

|hj (x)|
2x2 dx

}1/2

<∞,

which entails (8.12). The proof is complete. ut



62 Francisco Canto-Martı́n et al.

Remark 8.4. The range of the operator E is a proper subspace of M⊥
β , even if we con-

sider the closure of the range. Actually, if in the context of Proposition 6.1 we plug in
f1 := %0 (notation as in Theorem 7.2) and f2 := 0, and put f3 := −T∗R2%0, then we
obtain a function ψ0 := f1 + f2 + f3 = %0 − T∗R2%0 which is in the annihilator M⊥

β ,
but ψ0 is not in the closure of the range of E. So a natural question is whether

span{ψ0} ⊕ clos[im E] =M⊥
β .

This would be quite reasonable from the point of view of the proof of Proposition 6.1.

8.2. Proof of Theorem 1.4

We turn to the proof of Theorem 1.4. We know from [13] that N⊥β is one-dimensional for
β = 2. We shall write β = 2γ , and suppose that γ > 1. We need the operators

S+ : L∞([0, 1])→ L∞([1,∞[), S+g(x) := g({x}1),

and

T+ : L∞([γ,∞[)→ L∞([0, γ ]), T+g(x) := g
(

γ

{γ /x}1

)
.

Their pre-adjoints map contractively

S∗+ : L
1([1,∞[)→ L1([0, 1]), T∗+ : L

1([0, γ ])→ L1([γ,∞[).

We need the following restriction operators:

R5 : L
∞([1,∞[)→ L∞([γ,∞[),

R6 : L
∞([0, γ ])→ L∞([0, 1]),

R7 : L
∞([0, γ ])→ L∞([1, γ ]),

R8 : L
∞([1,∞[)→ L∞([1, γ ])

and their pre-adjoints R∗5,R∗6,R∗7,R∗8, which act on the corresponding L1-spaces. We let
P+ := Pθγ denote the Perron–Frobenius operator associated to the Gauss-type transfor-
mation θγ : [0, 1[ → [0, 1[, where θγ (0) := 0 and θγ (x) := {γ /x}1 for x ∈ ]0, 1[; cf.
Section 4. The analogue of (6.5) in this context is

P2
+ = S∗+R∗5T∗+R∗6. (8.13)

We also have an analogue of Proposition 6.1.

Proposition 8.5 (1 < γ <∞). Let f ∈ L1([0,∞[) be written as

f = f1 + f2 + f3,

where f1 ∈ L
1([0, 1[), f2 ∈ L

1([1, γ [), and f3 ∈ L
1([γ,∞[). Then f ∈ N⊥2γ if and only

if

(i) (I− P2
+)f1 = S∗+(−R∗8 + R∗5T∗+R∗7)f2,

(ii) f3 = −T∗+R∗6f1 − T∗+R∗7f2,

where I is the identity on L1([0, 1]).
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The proof is completely analogous to that of Proposition 6.1, and we omit it. Since γ > 1,
the transformation θγ is uniformly expansive, and if we analyze its spectral properties on
BV([0, 1]), we see that P+ has a spectral gap. More precisely, in the context of Theorem C
[valid by Remark 5.1(c)], we can show that σ(P+)∩T = {1} and that the eigenvalue 1 is
simple. This leads to the following assertion, analogous to Theorem 8.2. Again, we omit
the proof.

Theorem 8.6 (1 < γ < ∞). There exists a bounded operator E+ : BV([1, γ ]) →
L1([0,∞[) with the following properties:

(i) E+ is an extension operator, in the sense that E+f (x) = f (x) almost everywhere on
[1, γ ] for all f ∈ BV([1, γ ]).

(ii) The range of E+ is infinite-dimensional, and contained in N⊥2γ .

Proof of Theorem 1.4. This is immediate from Theorem 8.6(ii). ut

9. Final remarks

9.1. A related problem in the Hardy space of the unit disk

An algebra of inner functions in the Hardy spaces Hp of the unit disk was considered
by Matheson and Stessin [21]. This algebra depends on a parameter β > 0, and can be
assumed to be

Aβ = span{e−πm
1−z
1+z e−πnβ

1+z
1−z : m, n = 0, 1, 2, . . .}, (9.1)

where the span is in the sense of finite linear combinations. The main result of [21] asserts
that for any finite p, Aβ is dense in Hp for β < 1, while it fails to be dense for β > 1. It
is natural to also consider the (smaller) space

Sβ = span{e−πm
1−z
1+z , e−πnβ

1+z
1−z : m, n = 0, 1, 2, . . .}. (9.2)

For n = 0, 1, 2, . . . , let ϕn denote the function

ϕn(z) := e−πn
1−z
1+z e−πnβ

1+z
1−z , z ∈ D.

Then we clearly have the decomposition

Aβ = Sβ + ϕSβ + ϕ2Sβ + · · · ,

in the sense of finite sums. As a consequence of the main result in [12], Theorem A,
we know that S1 is dense in the weak-star topology of BMOA, and hence in the norm
topology in Hp for all finite p. It would appear rather plausible that the codimension of
the Hp-closure of Aβ might be finite for β > 1, as there are only finitely many points
in the unit disk which are not separated by the generating inner functions. However, so
far, we cannot provide an answer to this question. With the aid of Theorem 1.3 we can
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however prove that the H 2-closure of the space Sβ has infinite codimension for β > 1.
An outline of the argument is provided below.

We assume β > 1, and pick an arbitrary natural number N ≥ 1. By Theorem 8.2, we
can pick linearly independent elements f1, . . . , fN ∈ M⊥

β in the range of E, which all
vanish on some proper subinterval of [1, β], say on [1, β ′], where 1 < β ′ < β. We define
linearly independent functions f̃j , j = 1, . . . , N , on the unit circle T as follows:

1
1− ix

f̃j

(
1+ ix
1− ix

)
= (1+ ix)fj (x), j = 1, . . . , N.

Next, by Proposition 8.3, the functions f̃j belong to L2(T) and they all vanish on a certain
arc of T. Let Q : L2(T)→ H 2 denote the orthogonal (Szegö) projection.

We claim that the projected functions Qf̃j , j = 1, . . . , N , are linearly independent.
Indeed, a relation of the form

N∑
j=1

cjQf̃j = 0, cj ∈ C,

implies that the function f̃sum :=
∑N
j=1 cj f̃j belongs to L2(T) 	 H 2

= conjH 2
0 , where

“conj” means complex conjugation, andH 2
0 is the subspace ofH 2 of functions that vanish

at the origin. Now the function f̃sum is in conjH 2
0 and vanishes along an arc of the circle T,

so by e.g. Privalov’s theorem, f̃sum = 0 on all of T. From this and the linear independence
of the functions f̃1, . . . , f̃N , we obtain cj = 0 for all j = 1, . . . , N . So, the projected
functions Qf̃j , j = 1, . . . , N , are linearly independent, as claimed. Finally, we claim that
Qf̃j , j = 1, . . . , N , belong to the ortho-complement of Sβ in H 2. If (·, ·)H 2 denotes the
sesquilinear inner product of H 2, we calculate that for m = 0, 1, 2, . . . ,(

Qf̃j , e−πm
1−z
1+z
)
H 2 =

1
2π

∫
T

Qf̃j (ζ ) conj
(
e
−πm

1−ζ
1+ζ
)
| dζ |

=
1

2π

∫
T
f̃j (ζ ) conj

(
e
−πm

1−ζ
1+ζ
)
| dζ | =

1
π

∫
R
fj (x)e

iπmx dx = 0,

where we use fj ∈M⊥
β . In an analogous fashion, we find that for n = 0, 1, 2, . . . ,

(
Qf̃j , e−πβn

1+z
1−z
)
H 2 =

1
2π

∫
T

Qf̃j (ζ ) conj
(
e
−πβn

1+ζ
1−ζ
)
| dζ |

=
1

2π

∫
T
f̃j (ζ ) conj

(
e
−πβn

1+ζ
1−ζ
)
|∂ζ | =

1
π

∫
R
fj (x)e

−iπβn/x dx = 0,

where we we again use fj ∈M⊥
β . It follows that the codimension of the H 2-closure of

Sβ must be ≥ N . As N was arbitrary, this means that the H 2-closure of Sβ must have
infinite codimension in H 2.

Acknowledgments. We thank Michael Benedicks for enlightening discussions on Perron–Frobenius
operators. We also thank the referee for valuable comments and constructive criticism.



Perron–Frobenius operators and the Klein–Gordon equation 65

This research was partially supported by Plan Nacional ref MTM2009-09501. Research of the
first author was partially supported by Ministerio de Educación (FPU). Research of the second
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