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Abstract. We characterize the autonomous, divergence-free vector fields b on the plane such that
the Cauchy problem for the continuity equation ∂tu+div(bu) = 0 admits a unique bounded solution
(in the weak sense) for every bounded initial datum; the characterization is given in terms of a
property of Sard type for the potential f associated to b. As a corollary we obtain uniqueness under
the assumption that the curl of b is a measure. This result can be extended to certain nonautonomous
vector fields b with bounded divergence.
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1. Introduction

In this paper we consider the continuity equation

∂tu+ div(bu) = 0, (1.1)

where b : [0, T ) × Rd → Rd is a bounded, time-dependent vector field on Rd (with T
possibly equal to +∞). We recall that (1.1) is the equation satisfied by the density u
of a continuous distribution of particles moving according to the velocity field b, that
is, u(t, x) is the number of particles per unit volume at time t and position x, and the
trajectory of each particle satisfies the ordinary differential equation

ẋ = b(t, x). (1.2)

Throughout this paper, the vector field b will not be any more regular than just
bounded and with bounded (distributional) divergence.1 Accordingly, solutions of the
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Cauchy problem for (1.1) are intended in the weak (or distributional) sense: a function
u : [0, T )× Rd → R solves (1.1) with the initial condition u(0, ·) = u0 if∫ T

0

∫
Rd
(∂tϕ + b · ∇ϕ)u dx dt +

∫
Rd
ϕ(0, ·)u0 dx = 0

∀ϕ ∈ C∞c ([0, T )× Rd).
(1.3)

Concerning the existence of solutions, it can be shown that if the divergence of b is
bounded from below then, for every bounded initial datum u0, a solution of the Cauchy
problem for (1.1) exists for all times in the future and is bounded for finite times.2

We focus therefore on the problem of uniqueness, and precisely on the following
question: Under which assumption on b does the Cauchy problem for (1.1) admit a unique
bounded solution for every bounded initial datum u0?

In the fundamental paper [13], R. J. DiPerna and P.-L. Lions have proved uniqueness
under the assumption that b is in the Sobolev class W 1,1 (locally in space), and later
L. Ambrosio [4] extended this uniqueness result to vector fields b of class BV (locally in
space).3

When b is a divergence-free autonomous vector field on the plane (d = 2), uniqueness
has been proved with the BV or Sobolev regularity of b replaced by various assumptions
on the direction of b ([7, 17], see also [10, 8] for the bounded divergence case). In the
opposite direction, N. Depauw [11] gave an example of a time-dependent, divergence-
free, bounded vector field b on the plane for which there is no uniqueness (see also [1, 9]).

We can now turn to the main result of this paper. Let b : R2
→ R2 be a bounded,

divergence-free, autonomous vector field on the plane; then b admits a Lipschitz potential
f : R2

→ R, that is, b = ∇⊥f , where ∇⊥ := (−∂2, ∂1). In Theorem 4.7 we prove that
the Cauchy problem for (1.1) admits a unique bounded solution for every bounded initial
datum if and only if the potential f has what we call the weak Sard property.

We recall that a differentiable function f : R2
→ R has the (strong) Sard property if

the image under f of the critical set S (the set of all x where ∇f (x) = 0) is negligible,
that is, L 1(f (S)) = 0.4 The weak Sard property is a measure-theoretic version of the

2 The bound div b ≥ −m implies that the Jacobian determinant J of the flux associated to (1.2)
satisfies J ≥ e−mt , and therefore, according to the mechanical interpretation given above, the
particle density u should satisfy ‖u(t, ·)‖∞ ≤ emt‖u0‖∞. This estimate can indeed be proved for
smooth b, and then used to obtain solutions for nonsmooth b by approximation.

3 Both uniqueness results, besides being deeply interesting per se, had relevant applications
to other problems, among which we mention the Boltzmann [14] and Vlasov–Poisson equations
[15], and the Keyfitz–Kranzer system [5]. The mechanical interpretation given above suggests that
uniqueness for (1.1) should be connected with uniqueness of solutions of (1.2) with initial condition
x(0) = x0 for a generic initial point x0, but not necessarily for every x0. This relation can be made
rigorous in terms of uniqueness of the regular Lagrangian flow associated to (1.2) (see [4]), and
explains why the regularity assumptions on b in the theorems of DiPerna–Lions and Ambrosio are
distinctly weaker than those required for the uniqueness of (1.2) at every initial point.

4 Sard’s theorem states that functions of class C2 have the Sard property (see [20], or [18, Chap-
ter 3, Theorem 1.3]), while this is not always the case for functions of class C1.
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Sard property; the precise formulation requires a few additional definitions, and will be
given in §2.13. Conditions on f (and therefore on b) that imply the weak Sard property
are discussed in detail in §2.15; here we just recall that this property holds whenever b is
non-zero a.e. (§2.15(i)), or is of class BV;5 indeed it suffices that the curl of b is a measure
(§2.15(vi)).

We stress once again that while the results in the literature give only sufficient con-
ditions for uniqueness, Theorem 4.7 gives a necessary and sufficient condition. Accord-
ingly, the examples of functions without the weak Sard property constructed in the com-
panion paper [2] immediately yield examples of divergence-free autonomous vector fields
in the plane for which there is no uniqueness (Corollary 4.8). Note that the weak Sard
property, like the Sard property, is completely nonlinear in character, and is satisfied by a
generic divergence-free vector field (in the category sense, see §2.15(i)).

We conclude this introduction with an outline of the proof of Theorem 4.7. An es-
sential ingredient is the description of (generic) level sets of Lipschitz functions on the
plane given in [2]; we refer to that paper for a detailed discussion of all related measure-
theoretic and real-analytic issues, and in particular for counterexamples.

The first step is a dimension-reduction argument (Theorem 3.10) that can be summa-
rized as follows: a bounded function u solves the continuity equation (1.1) if and only
if it solves a suitable one-dimensional variant of the same equation on every nontrivial
connected component of the level set Ey := f−1(y) for almost every y.6 In other words,
the problem of uniqueness for equation (1.1) is reduced to the uniqueness for the corre-
sponding equations on the nontrivial connected components of a (generic) level set Ey .

The proof of Theorem 3.10 relies on the notion of disintegration of a measure with
respect to the level sets of a function and on the coarea formula for Lipschitz functions,
and it works in every space dimension. The rest of the proof of Theorem 4.7 is strictly
two-dimensional.

The next key fact is that, for a.e. y, every connected componentC ofEy is a rectifiable
simple curve (as shown in [2]), and more precisely it is possible to choose an interval I and
a Lipschitz parametrization γ : I → C so that, under the change of variable x = γ (s),
the equation on C becomes

∂t (u(1+ λ))+ ∂su = 0, (1.4)

where λ is a suitable singular measure on I .7 Note that, due to the particular choice of γ ,
the vector field b no longer appears in the equation.

Next we observe that the Cauchy problem for (1.4) admits a unique bounded solution
for every bounded initial datum if and only if the measure λ is trivial. Indeed, if λ = 0

5 Thus we recover the uniqueness results in [7, 17] in full generality, and those in [4, 13] limited
to our particular class of b.

6 The notion of “solving the equation on (a subset of) a level set” is properly defined in §3.6; a
connected component is nontrivial if it contains more than one point. Note that this statement is a
close relative of the method of characteristics: indeed the vector field b, being orthogonal to ∇f , is
tangent to the level set Ey at a.e. point (with respect to the length measure) and for a.e. y. Hence
these level sets are the proper replacement for characteristic curves.

7 The precise definition of λ and the weak formulation of (1.4) are given in Lemma 4.4.
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equation (1.4) reduces to ∂tu+ ∂su = 0, for which uniqueness is well-known. To under-
stand why the converse holds, assume that I is the real line and λ is a Dirac mass at 0; if
u represents the density of a distribution of particles, then equation (1.4) means that each
particle moves at constant speed 1 from left to right, except when it reaches the point 0,
where it may stop for any given period of time. Therefore, if u0 is an initial datum with
support contained in (−∞, 0), a solution of (1.4) with initial condition u(0, s) = u0(s) is
given by the function u : [0,+∞)× R→ R defined by

u(t, s) :=

{
u0(s − t) if s 6= 0,
0 if s = 0

(no particle stops at 0), while another solution is

ũ(t, s) :=


u0(s − t) if s < 0,∫ 0

−t

u0(τ ) dτ if s = 0,

0 if s > 0

(all particles stop at 0).
We conclude that uniqueness for (1.1) holds if and only if λ = 0 for every nontrivial

connected component C of a.e. level set Ey , which in turn is equivalent to the weak Sard
property (Lemma 2.14). Without entering into details, we just mention that the connection
between the weak Sard property, which is related to the critical set S, and the measures
λ lies in the fact that these measures are given by the disintegration (with respect to the
level sets of f ) of the restriction of Lebesgue measure to S ∩ E∗, where E∗ is the union
of all nontrivial connected components of all levels sets of f .

As one might expect, Theorem 4.7 can be extended in many different ways. In Theo-
rem 5.2 we consider the case of a vector field on the plane of the form b = a∇⊥f , where
f is a Lipschitz function as above and a a scalar function depending also on time. Further
extensions are mentioned in §6.1. It is indeed conceivable to apply the strategy outlined
above even in higher space dimension (see §6.2).

This paper is organized as follows: Section 2 contains the measure-theoretic and real-
analytic results used in the rest of the paper: the disintegration of a measure with respect to
the level sets of a function, the coarea formula for Lipschitz functions, the description of
connected components of the level sets of a Lipschitz function on the plane, the definition
of weak Sard property and some related results. Section 3 is devoted to the dimension-
reduction argument (Theorem 3.10); Sections 4 and 5 contain the proof of the main result
(Theorem 4.7) and of the generalization mentioned above (Theorem 5.2). Section 6 con-
tains some additional remarks, and finally the Appendix contains a measurable selection
lemma used in the proof of Theorem 3.10.

2. Measure-theoretic preliminaries

We begin this section by recalling the notion of disintegration of a measure, focusing in
particular on the disintegration of the Lebesgue measure with respect to Lipschitz maps
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(§2.7 and Lemma 2.8). We then restrict our attention to Lipschitz functions on the plane
(Lemma 2.11); in this setting we introduce the notion of weak Sard property (§2.13),
prove a characterization of this property in terms of disintegration of the Lebesgue mea-
sure (Lemma 2.14), and list some conditions which imply it (§2.15). We conclude with a
change-of-variable formula used in the proof of Lemma 4.5.

2.1. Basic notation. In this paper we follow the standard notation of measure theory.
Sets and functions are always assumed to be Borel measurable, and measures are always
defined on the Borel σ -algebra of some locally compact, separable metric spaceX. Unless
otherwise stated, a measure on X is assumed to be positive and locally finite. We write
λ � µ when the measure λ is absolutely continuous with respect to the measure µ, and
λ ⊥ µ when λ is singular with respect to µ.8 We say that the measure µ is supported on
the set E if µ(X \ E) = 0.9

Given a function ρ : X→ [0,+∞], we denote by ρ ·µ the measure on X defined by

(ρ · µ)(E) :=

∫
E

ρ dµ

for every Borel set E contained in X. Given a set A contained in X, we write 1A : X →
{0, 1} for the characteristic function of A, and therefore 1A ·µ is the restriction of µ to A.

Given a metric space Y and a map f : X → Y , the push-forward of µ by f is the
measure f#µ on Y defined by

[f#µ](E) := µ(f
−1(E))

for every Borel set E contained in Y . Thus∫
Y

ϕ d(f#µ) =

∫
X

ϕ ◦ f dµ

for every function ϕ : Y → [0,+∞], and therefore also for every real- or vector-valued ϕ
in L1(f#µ).

As usual, L d is the Lebesgue measure on (domains in) Rd while H d is the d-
dimensional Hausdorff measure on every metric space—the usual d-dimensional volume
for d-dimensional surfaces of class C1 in some Euclidean space. When the measure is not
specified, it is assumed to be the Lebesgue measure, and we often write

∫
g(x) dx instead

of
∫
g dL d .

2.2. Borel families of measures. Let Y be a metric space and {µy : y ∈ Y } a family of
measures on a locally compact, separable metric space X. We say that such a family, or
more precisely the map y 7→ µy , is Borel if the function

y 7→

∫
X

ϕ dµy (2.1)

8 Recall that λ � µ if λ(E) = 0 whenever µ(E) = 0, or equivalently (in the context of this
paper) when λ can be written as λ = ρ · µ for a suitable density ρ; λ is singular with respect to µ
if it is supported on a µ-negligible set, or equivalently if λ and µ are supported on disjoint sets.

9 Note that E need not be closed, and does not necessarily contain the support of µ (defined in
the usual distributional sense).
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is Borel for every test function ϕ : X → R which is continuous and compactly sup-
ported.10 It then follows that the function in (2.1) is Borel measurable also for every
Borel test function ϕ on X × Y such that the integral at the right-hand side of (2.1) is
well-defined.

2.3. Disintegration of measures. Let X and Y be locally compact, separable metric
spaces, µ a measure on X, f : X → Y a Borel map, and ν a measure on Y such that
f#µ� ν. Then there exists a Borel family {µy : y ∈ Y } of measures on X such that

(i) µy is supported on the level set Ey := f−1(y) for every y ∈ Y ;
(ii) µ can be decomposed as µ =

∫
Y
µy dν(y), which means that

µ(A) =

∫
Y

µy(A) dν(y) (2.2)

for every Borel set A contained in X.

Any family {µy} satisfying (i) and (ii) is called a disintegration of µ with respect to f
and ν. The disintegration is unique in the sense that given another disintegration {µ̃y}
there holds µy = µ̃y for ν-a.e. y ∈ Y .

The existence and uniqueness of the disintegration is a standard result in case X is
compact, µ is finite, and ν := f#µ (see for instance [12, Chapter III, §70 and §71]). The
statement given above can be easily derived from this particular case.

2.4. Properties of disintegration. We list here some general properties of disintegration
that will be used (often tacitly) throughout the paper.

(i) Formula (2.2) implies that∫
X

ϕ dµ =

∫
Y

[∫
Ey

ϕ dµy

]
dν(y) (2.3)

for every Borel function ϕ : X→ [0,+∞].
If ϕ is a real-valued or vector-valued function in L1(µ), by applying identity (2.3)

with |ϕ| in place of ϕ we find that ϕ belongs to L1(µy) for ν-a.e. y, and the function
y 7→

∫
|ϕ| dµy is in L1(ν). Thus both sides of (2.3) make sense, and the equality holds

even for such ϕ.
(ii) If A is a set in X with µ(A) < ∞, formula (2.2) implies that µy(A) is finite for

ν-a.e. y. In particular, if µ is finite then µy is finite for ν-a.e. y.
(iii) Formula (2.2) shows that a set A in X is µ-negligible if and only if it is µy-

negligible for ν-a.e. y. We infer the following: (a) µ(f−1(N)) = 0 for every set N such
that ν(N) = 0; (b) µ is supported on a set F if and only if µy is supported on F ∩Ey for
ν-a.e. y; (c) if P(x) is a proposition that depends on the variable x ∈ X, then P(x) holds
for µ-a.e. x if and only if it holds for µy-a.e. x and ν-a.e. y.

10 This is equivalent to the notion of Borel measurability for maps with values in the space of
locally finite measures on X, when the latter has been endowed with the weak* topology (as dual
of the space of continuous functions with compact support).



A uniqueness result for the continuity equation 207

(iv) If µ′ is a measure on the metric spaceX′, we write µ⊗µ′ for the product measure
on X × X′ and we consider the function f̃ : X × X′ → Y defined by f̃ (x, x′) = f (x).
Then the disintegration of µ⊗ µ′ with respect to f̃ and ν is {µy ⊗ µ′}.

2.5. Lipschitz maps. For the rest of this section d, k are integers such that 0 ≤ k < d ,
and f : Rd → Rd−k is a Lipschitz map. For every y ∈ Rd−k we write Ey for the level
set f−1(y).

By the Rademacher theorem f is differentiable at almost every point in Rd , and at all
such points we define the Jacobian

J := [det(∇f · ∇ tf )]1/2.

We define the critical set of f to be the set S of all points in Rd where either f is not
differentiable or J = 0, that is, the rank of ∇f is strictly less than d − k.

A connected component C of Ey is a connected subset of Ey which is maximal with
respect to inclusion. Notice that every such connected component is a closed set. For
every y ∈ Rd−k we denote by Cy the family of all connected components C of Ey such
that H k(C) > 0; we then define E∗y as the union of all C in Cy , and E∗ as the union of
all E∗y with y ∈ Rd−k . Note that the sets E∗ and E∗y are Borel (see [2, Proposition 6.1]).

2.6. Lemma. In the context of the previous subsection, the following statements hold:

(i) if µ := J · L d then f#µ is absolutely continuous with respect to L d−k and its
disintegration with respect to f and L d−k is µy := 1Ey ·H k;

(ii) for a.e. y ∈ Rd−k we have H k(Ey ∩ S) = 0, and for every bounded set A in Rd we
have H k(A ∩ Ey) < +∞ and∫

A∩Ey

1
J
dH k < +∞;

(iii) if µ̃ := 1Rd\S ·L d then f#µ̃ is absolutely continuous with respect to L d−k , and its
disintegration with respect to f and L d−k is given by µ̃y := (1/J )1Ey ·H k;

(iv) the family Cy is countable and H k(Ey \ E
∗
y ) = 0 for L d−k-a.e. y;

(v) L d(Rd \ (E∗ ∪ S)) = 0.

Proof. Statement (i) is just a reformulation of the coarea formula for Lipschitz maps (see
for instance [16, §3.2.11], [21, §10], or [19, Corollary 5.2.6]).

Using statement (i) and formula (2.2) we obtain

0 = µ(S) =
∫
Rd−k

µy(S) dy =

∫
Rd−k

H k(Ey ∩ S) dy,

and therefore H k(Ey ∩ S) = 0 for a.e. y. Similarly,

+∞ > µ(A) =

∫
Rd−k

µy(A) dy =

∫
Rd−k

H k(A ∩ Ey) dy
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implies that H k(Ey ∩ A) is finite for a.e. y. The last part of the statement follows by
applying (2.3) with ϕ := (1/J )1A\S :

+∞ > L d(A \ S) =

∫
ϕ dµ =

∫
Rd−k

[∫
Ey

ϕ dµy

]
dy =

∫
Rd−k

[∫
A∩Ey

1
J
dH k

]
dy.

Similarly, statement (iii) follows by applying (2.3) with ϕ := (1/J )1A\S and A an
arbitrary Borel set in Rd .

Statement (iv) is proved in [2, Theorem 2.5(iii)].
Statement (v) follows from statements (iii) and (iv):

L d(Rd \ (E∗ ∪ S)) = µ̃(Rd \ E∗) =
∫
Rd−k

µ̃y(Rd \ E∗) dy

=

∫
Rd−k

[∫
Ey\E∗y

1
J
dH k

]
dy = 0. ut

2.7. Disintegration of Lebesgue measure. We take f as above and choose a measure νs

on Rd−k so that νs is singular with respect to L d−k and f#L d
� ν with ν := L d−k

+νs .
For the rest of this section we denote by {µy} the disintegration of L d with respect to f
and ν.

2.8. Lemma. In the context of the previous subsection, the following statements hold:

(i) for νs-a.e. y the measure µy is supported on S ∩ Ey;
(ii) for L d−k-a.e. y the measure µy can be decomposed as

µy = (1/J )1Ey\S ·H
k
+ µsy

with µsy a measure supported on Ey ∩ S; moreover µsy is singular with respect to
(1/J )1Ey\S ·H k , and the latter measure agrees with (1/J )1Ey ·H k .

Proof. Note that L d can be written as the sum of µ1
:= 1S ·L d and µ2

:= 1Rd\S ·L d ,
and therefore its disintegration (with respect to f and ν) is obtained by summing the
disintegrations of µ1 and µ2.

Now µ1 is supported on S and then µ1
y is supported on S ∩ Ey for ν-a.e. y; on the

other hand, Lemma 2.6(iii) implies that µ2
y = 0 for νs-a.e. y and µ2

y = (1Ey/J ) ·H k

for L d−k-a.e. y. Putting together these facts we immediately obtain statement (i) and the
first part of (ii).

Finally,µsy is singular with respect to (1Ey\S/J )·H k because these measures are sup-
ported on the disjoint setsEy \S andEy∩S. The latter measure agrees with (1Ey/J )·H k

because H k(Ey ∩ S) = 0 (Lemma 2.6(ii)). ut

2.9. Lipschitz functions on the plane. For the rest of this section we assume d = 2
and k = 1, that is, f is a Lipschitz function on R2. Therefore J = |∇f |, S is the set
of all points where either f is not differentiable or ∇f = 0, and Cy is the family of all
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nontrivial connected components of the level set Ey , namely those which contain more
than one point.

2.10. Simple curves. We denote by [0, L]∗ the space obtained by identifying the end-
points of the interval [0, L], endowed with the distance

d(x, y) := |x − y| ∧ (L− |x − y|).

The canonical measure on [0, L]∗ is the Lebesgue measure, which we denote simply
by L .

We say that a set C in Rd is a closed, simple curve with finite length if there exist
L > 0 and a Lipschitz bijection γ : [0, L]∗ → C. We call any such γ a parametrization
of C.

2.11. Lemma. Assume that f has compact support, and take µy , µsy as in Lemma 2.8.
The following statements hold for L 1-a.e. y ∈ R and every connected componentC∈Cy:

(i) C is a closed simple curve with finite length;
(ii) there exists a parametrization γ : [0, L]∗ → C such that γ̇ = ∇⊥f (γ ) 6= 0 a.e.

(recall that ∇⊥ := (−∂2, ∂1));
(iii) the push-forward of L according to γ is (1/J )1C ·H 1;
(iv) there exists a measure λ on [0, L]∗ such that λ is singular with respect to L , and

the push-forward of λ according to γ is the restriction of µsy to C;
(v) the push-forward of L + λ according to γ is the restriction of µy to C.

2.12. Remark. (i) The assumption that f has compact support was made for the sake of
simplicity, and it can be easily removed. In that case statement (i) should be modified,
allowing for connected components that are simple curves with end points at infinity.

(ii) It is always possible to choose the parametrization γ in such a way that the mea-
sure λ has no atom at 0, that is, λ({0}) = 0. This assumption makes certain proofs much
simpler, and will be tacitly made in the following.

Proof of Lemma 2.11. By Lemma 2.8(ii) we can assume that H 1(S ∩ C) = 0 and∫
C

1
J
dH 1 < +∞. (2.4)

Then statement (i) is proved in [2, Theorem 2.5(iv)].
The same theorem shows that C admits a parametrization ϕ : [0, L′]∗→ C such that

J (ϕ) 6= 0 and ϕ̇ =
∇
⊥f (ϕ)

|∇f (ϕ)|
=
∇
⊥f (ϕ)

J (ϕ)
a.e. (2.5)

Thus the parametrization in (ii) is given by γ := ϕ ◦ τ−1 where τ : [0, L′] → [0, L] is
the function defined by

τ(t) :=

∫ t

0

1
J (ϕ(s))

ds and L :=

∫ L′

0

1
J (ϕ(s))

ds.



210 Giovanni Alberti et al.

The definition of τ is well-posed because the integral that defines L is finite, and more
precisely it agrees with the integral on the left-hand side of (2.4) (because |ϕ̇| = 1 a.e.).
Since J ≤ m, where m denotes the Lipschitz constant of f , we have

τ(t2)− τ(t1) ≥
1
m
(t2 − t1)

whenever t1 < t2, which implies that τ−1 is a Lipschitz function, and therefore so is γ .
Moreover τ is of class W 1,1 and τ̇ = 1/J (ϕ) 6= 0 a.e.; using this fact one obtains

(τ−1)′ = J (γ ) = |∇f (γ )| a.e.

This equation and (2.5) yield γ̇ = ∇⊥f (γ ) a.e., concluding the proof of statement (ii).
Statement (iii) follows by the fact that |γ̇ | = |∇f (γ )| = J (γ ) a.e.
To prove statement (iv), let λ be the push-forward according to γ−1 of 1C ·µsy . In order

to prove that λ ⊥ L , note that µsy is supported on S ∩C, and therefore λ is supported on
γ−1(S∩C). Moreover S∩C is H 1-negligible, and therefore γ−1(S∩C) = τ(ϕ−1(S∩C))

is L -negligible because both ϕ−1 and τ map negligible sets to negligible sets.
Statement (v) follows from statements (iii) and (iv). ut

2.13. The weak Sard property. Let f : R2
→ R be a Lipschitz function.11 We say that

f has the weak Sard property if the push-forward according to f of the restriction of the
Lebesgue measure to S ∩E∗ (where S and E∗ have been defined in §2.5) is singular, that
is,

f#(1S∩E∗ ·L 2) ⊥ L 1. (2.6)

2.14. Lemma. The following statements are equivalent:

(a) f has the weak Sard property;
(b) µsy(E

∗
y ) = 0 for L 1-a.e. y ∈ R;

(c) µsy(C) = 0 for L 1-a.e. y ∈ R and every C ∈ Cy .

Proof. Take ν as in §2.7 and µsy as Lemma 2.8. Set µ̃ := 1S∩E∗ ·L 2, and let {µ̃y} be the
disintegration of µ̃ with respect to f and ν. Thus (2.6) can be restated as

µ̃y = 0 for L 1-a.e. y.

On the other hand Lemma 2.8(ii) implies that µ̃y = 1S∩E∗ · µsy for L 1-a.e. y, and there-
fore µ̃y = 0 if and only if 0 = µsy(S ∩ E

∗) = µsy(E
∗
y ) (for the second equality use that

µsy is supported on Ey ∩ S and Ey ∩ E∗ = E∗y ). We have thus proved that (2.6) holds if
and only if µsy(E

∗
y ) = 0 for L 1-a.e. y, that is, statements (a) and (b) are equivalent.

The equivalence of (b) and (c) is immediate because E∗y is the union of all C ∈ Cy ,
and Cy is countable for a.e. y (Lemma 2.6(iv)). ut

11 The weak Sard property can be defined in the more general context of Lipschitz maps from Rd
into Rd−k , but only the case d = 2, k = 1 is relevant to this paper.
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2.15. On the weak Sard property. We list here some conditions on f which imply the
weak Sard property. Indeed all of them imply the slightly stronger property

f#(1S ·L 2) ⊥ L 1. (2.7)

Since in Theorem 4.7 the function f is the potential associated to a given vector field b
by the relation ∇⊥f = b, we will express the following conditions also in terms of b.

(i) The weak Sard property is implied by the condition L 2(S ∩ E∗) = 0, which in
turn is implied by ∇f 6= 0 a.e., or, equivalently, b 6= 0 a.e. Note that the set of all vector
fields b that satisfy the last condition is residual12 in the Banach space X of divergence-
free, bounded vector fields endowed with the L∞ norm (this is a reformulation of [2,
Proposition 4.10]). In particular the set of all b whose potential f has the weak Sard
property is residual in X.

(ii) The (strong) Sard property implies the weak Sard property. Indeed the measure
f#(1S∩E∗ ·L 2) is supported on the set f (S), and if this set is negligible (Sard property),
then the measure must be singular (weak Sard property).

(iii) A function f on R2 is said to have the Lusin property of order k if there exists a
sequence of functions fn of class Ck on R2 and Borel sets An such that f = fn on An,
and the sets An cover almost all of R2.13 A Lipschitz function with the Lusin property of
order 2 satisfies (2.7) and therefore has the weak Sard property.

Let indeed Sn be the critical set of fn. Then S ∩ An is contained in Sn ∩ An up to a
negligible set, and S is contained in the union of Sn ∩An up to a negligible set. Hence the
measure 1S∩E∗ ·L 2 is supported on the union of Sn∩An, and its push-forward according
to f is supported on the union of all f (Sn ∩ An) = fn(Sn ∩ An), which is negligible
because it is contained in the union of the negligible sets fn(Sn).

(iv) Following [23, §3.5.5] we say that f admits an L1-Taylor expansion of order 2
at x if f (x+ h) = Px(h)+Rx(h) for every h, where Px is a polynomial of degree 2, and
the remainder Rx satisfies ∫

B(r)

|Rx(h)| dh = o(r
2)

(the barred integral stands for the average over the ball B(r)with centre 0 and radius r). If
f admits an L1-Taylor expansion of order 2 at a.e. point, then it has the Lusin property of
order 2 (use the Lp-version of Whitney extension theorem given in [23, Theorem 3.6.3]),
and therefore also the weak Sard property.

(v) If f is locally in the Sobolev class W 2,1 (or, equivalently, b is locally in the
class W 1,1) then f admits an L1-Taylor expansion of order 2 at a.e. point [23, Theo-
rem 3.4.2], and therefore it has the weak Sard property.

(vi) The proof of [23, Theorem 3.4.2] can be easily modified to show that f admits
an L1-Taylor expansion of order 2 at a.e. point—which implies the weak Sard property—
even when the second order distributional derivative of f is locally a vector-valued mea-
sure (that is, when b is locally of class BV ). In [3, Proposition 4.4] we prove that the same

12 A set in a topological space is residual if it contains a countable intersection of open dense sets.
13 Thus Lusin’s theorem states that a Borel function has the Lusin property of order 0.
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conclusion holds under the weaker assumption that the distributional Laplacian of f (that
is, the curl of b) is locally a signed measure.

(vii) In [2, Section 4] we construct a function on the plane without the weak Sard
property and of class C1,α for every α < 1.

We conclude this section with a particular change of variable that will be used in the
proof of Lemma 4.5.

2.16. A particular change of variable. In what follows, I is the interval [0, L], L is
the Lebesgue measure on I , λ is a measure on I which is singular with respect to L , and
A is the set of atoms of λ (points with positive measure). We set

L̂ := (L + λ)(I ) and Î := [0, L̂],

and denote by L̂ the Lebesgue measure on Î .
We denote by σ̂ the multi-valued function from I to Î that to every s ∈ I associates

the interval
σ̂ (s) := [σ̂−(s), σ̂+(s)]

where
σ̂−(s) := (L + λ)([0, s)) and σ̂+(s) := (L + λ)([0, s]),

and define σ : Î → I as the inverse of σ̂ .
Then σ̂ is surjective on Î , strictly increasing, and single-valued for every s /∈ A be-

cause σ̂− and σ̂+ are strictly increasing, and σ̂−(s) = σ̂+(s) whenever s /∈ A . Moreover

s2 − s1 ≤ ŝ2 − ŝ1 (2.8)

for every s1, s2 ∈ I with s1 < s2, and every ŝ1 ∈ σ̂ (s1), ŝ2 ∈ σ̂ (s2).
Accordingly, σ is surjective from Î onto I , single-valued and 1-Lipschitz because of

(2.8), constant on the interval σ(s) for every s ∈ A and strictly increasing at every point
outside σ(A ).

2.17. Lemma. Let F be an L -negligible set in I which supports the measure λ, and set
F̂ := σ̂ (F ). Then:

(i) the push-forward of the measure L̂ according to σ is L +λ, and this means that for
every function g : I → [−∞,+∞] which is either positive or belongs to L1(L +λ)
we have ∫

I

g d(L + λ) =

∫
Î

g ◦ σ dL̂ ; (2.9)

(ii) the derivative of σ agrees with 1Î\F̂ a.e. in Î .

Proof. Let E := (s1, s2) be an open interval in I . By the definition of σ and σ̂ we have

σ−1(E) = σ̂ (E) = (σ̂+(s1), σ̂−(s2))

and therefore
L̂ (σ−1(E)) = σ̂−(s2)− σ̂+(s1) = (L + λ)(E).
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Then a standard argument shows that the identity L̂ (σ−1(E)) = (L + λ)(E) holds for
every open set E, and hence also for every Borel set E. Thus (i) is proved.

In order to prove (ii), we first notice that by the choice of F we have 1F · (L +λ) = λ
and 1I\F · (L + λ) = L , and therefore statement (i) yields

σ#(1F̂ · L̂ ) = L and σ#(1Î\F̂ · L̂ ) = λ. (2.10)

Since λ is singular with respect to L , it is well known that the density of λ with
respect to L is equal to 0 at L -a.e. point, and equal to +∞ at λ-a.e. point. This means
that the derivatives of the monotone functions σ̂− and σ̂+ are equal to 1 at L -a.e. point,
and equal to +∞ at λ-a.e. point. Therefore, taking into account (2.10), we conclude that
the derivative of σ is equal to 1 at L̂ -a.e. point in Î \ F̂ , and equal to 0 at L̂ -a.e. point
in F̂ . ut

2.18. Remark. The definitions of σ and σ̂ and Lemma 2.17 can be extended with few
obvious modification to the case where the intervals [0, L] and [0, L̂] are replaced by the
quotients [0, L]∗ and [0, L̂]∗ (see §2.10).

2.19. List of notation. We recall here the notation that will be frequently used in the rest
of the paper. Given a Lipschitz map f : Rd → Rd−k we have defined:

J Jacobian of f (§2.5);
S critical set of f (§2.5);
Ey := f

−1(y) with y ∈ Rd−k , level set of f (§2.5);
Cy collection of connected components C of Ey with H k(C) > 0 (§2.5);
E∗ union of all C with C ∈ Cy and y ∈ Rd−k (§2.5);
ν := L d−k

+ νs , a measure such that f#L d
� ν (§2.7);

µy disintegration of L d with respect to f and ν corresponding to the level set Ey
(§2.7);

µsy disintegration of the restriction of L d to S with respect to f and ν (Lemma 2.8).

In the specific case of a Lipschitz function f : R2
→ R we have:

J = |∇f | (§2.9);
S set of points where f is not differentiable or ∇f = 0 (§2.9);

Cy collection of nontrivial connected components of Ey (§2.9);
γ : [0, L]∗→ C, parametrization of C ∈ Cy given in Lemma 2.11;

L Lebesgue measure on [0, L]∗ (§2.10);
λ measure on [0, L]∗ defined in Lemma 2.11.

3. Dimension reduction

We now begin to consider the question of uniqueness for the Cauchy problem for the
continuity equation (1.1). In this section, we still work in general space dimension. The
existence of a Lipschitz function associated to the vector field as in §3.1 gives the possi-
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bility to relate the uniqueness for the Cauchy problem in Rd to the uniqueness for suitably
defined Cauchy problems on the level sets of that Lipschitz function (Theorem 3.10).

3.1. Assumptions on the vector field. In this section b : [0, T )×Rd → Rd is a bounded
vector field and we assume that there exists a Lipschitz function f : Rd → Rd−k with
compact support such that

∇f (x) · b(t, x) = 0 for a.e. (t, x) ∈ [0, T )× Rd . (3.1)

We take S, Ey , µy and so on as in Section 2 (see §2.19). Further assumptions on b and f
will be introduced when needed.

3.2. The uniqueness problem. By linearity, the uniqueness for the Cauchy problem for
(1.1) is equivalent to the fact that every solution in the sense of distributions with initial
value u0 = 0 is trivial, that is, a.e. null in [0, T ) × Rd . Therefore, in this and in the
following sections, we only consider solutions of the Cauchy problem{

∂tu+ div(bu) = 0,
u(0, ·) = 0.

(3.2)

We recall that a bounded function u : [0, T ) × Rd → R solves (3.2) in the sense of
distributions if∫ T

0

∫
Rd
(∂tϕ + b · ∇ϕ)u dx dt = 0 ∀ϕ ∈ C∞c ([0, T )× Rd). (3.3)

3.3. Remark. In the following we will use (often tacitly) that the test functions in (3.3)
can be equivalently taken in any of the following classes:

(i) ϕ : [0, T )× Rd → R Lipschitz with compact support;
(ii) ϕ of the form ϕ1(t) ϕ2(x), with ϕ1 ∈ C

∞
c ([0, T )) and ϕ2 ∈ C

∞
c (Rd);

(iii) ϕ of the form ϕ1(t) ϕ2(x), with ϕ1 : [0, T ) → R Lipschitz with compact support
and ϕ2 : Rd → R Lipschitz with compact support.

3.4. Remark. Here and in the rest of the paper, u and b are functions defined at every
point of their domain, and not equivalence classes.14 The reason is that it is more con-
venient to use the disintegration formula (2.3) with functions defined everywhere rather
than almost everywhere.

3.5. Measure solutions. For technical reasons it is convenient to introduce the following
notion of generalized solution of (3.2). We say that a signed locally finite measure η on
[0, T )× Rd is a measure solution of (3.2) if15∫

[0,T )×Rd
(∂tϕ + b · ∇ϕ) dη = 0 ∀ϕ ∈ C∞c ([0, T )× Rd). (3.4)

14 Accordingly, we avoid the notations u ∈ L∞ and b ∈ L∞.
15 This notion is similar but not equivalent to that of measure solution considered for instance

in [6].
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3.6. Solutions on level sets. Take y ∈ Rd−k and let C be a subset of the level set Ey .
We say that a bounded function u : [0, T ) × C → R is a solution of (3.2) on C if the
measure η = u1C ·L 1

⊗ µy is a measure solution in the sense of §3.5, that is,∫ T

0

∫
C

(∂tϕ + b · ∇ϕ)u dµy dt = 0 ∀ϕ ∈ C∞c ([0, T )× Rd). (3.5)

It is important to keep in mind that this notion of solution does not involve only the
function u and the set C, but also the disintegration measure µy .

The following lemma shows that any bounded solution of (3.2) is also a solution on a
generic level set.

3.7. Lemma. Let u : [0, T ) × Rd → R be a bounded solution of (3.2). Then u solves
(3.2) on the level set Ey for ν-a.e. y ∈ Rd−k .

Proof. Fix a function ρ ∈ C∞c (Rd−k). We consider in (3.3) Lipschitz test functions of
the form ϕ(t, x)ρ(f (x)), where f : Rd → Rd−k is the Lipschitz function introduced in
§3.1 (recall Remark 3.3(i)). After immediate computations we obtain

0 =
∫ T

0

∫
Rd

[
ρ(f )∂tϕ + ρ(f )b · ∇ϕ + ϕ〈∇f · b; ∇ρ(f )〉

]
u dx dt

=

∫ T

0

∫
Rd
ρ(f )(∂tϕ + b · ∇ϕ)u dx dt = 0,

where the last equality follows from (3.1).
Using (2.3), the above integral can be rewritten as

0 =
∫
Rd−k

∫ T

0

∫
Ey

ρ(f )(∂tϕ + b · ∇ϕ)u dµy(x) dt dν(y)

=

∫
Rd−k

ρ(y)

[∫ T

0

∫
Ey

(∂tϕ + b · ∇ϕ)u dµy(x) dt

]
dν(y) = 0.

The arbitrariness of ρ gives the existence of a ν-negligible set Nϕ ⊂ Rd−k with the
property that ∫ T

0

∫
Ey

(∂tϕ + b · ∇ϕ)u dµy(x) dt = 0 for all y 6∈ Nϕ .

Finally, we consider a countable dense set D ⊂ C∞c ([0, T ) × Rd) and set N =⋃
ϕ∈D Nϕ . Since D is countable the set N is ν-negligible. Moreover, for all ϕ ∈ D we

have ∫ T

0

∫
Ey

(∂tϕ + b · ∇ϕ)u dµy(x) dt = 0 for all y 6∈ N ;

this fact and the density of D in C∞c ([0, T )× Rd) imply the result. ut
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3.8. Lemma. Take y ∈ Rd−k with y 6= 0 and let u : [0, T ) × Ey → R be a bounded
solution of (3.2) on Ey . Then u solves (3.2) on every connected component C of Ey .

Proof. The fact that u is a solution of (3.2) on Ey means that (recall §3.6)∫ T

0

∫
Ey

(∂tϕ + b · ∇ϕ)u dµy dt = 0 ∀ϕ ∈ C∞c ([0, T )× Rd). (3.6)

Given a connected component C of Ey , it is possible to find a decreasing sequence of
bounded open sets Un contained in Rd such that the boundaries ∂Un do not intersect Ey ,
and the intersection of the closures Un is C (a proof of this fact is briefly sketched in [2,
§2.8]).

Let εn be the distance between the sets ∂Un and Ey (it is positive because these sets
are closed and disjoint). Given a smooth convolution kernel ρ supported in the unit ball
of Rd we define

χn := 1Un ∗ ρεn/2.

Considering in (3.6) test functions of the form ϕ(t, x)χn(x), after standard computations
we obtain ∫ T

0

∫
Ey

χn(∂tϕ + b · ∇ϕ)u dµy dt +

∫ T

0

∫
Ey

ϕb · ∇χn u dµy dt = 0. (3.7)

Now we pass to the limit as n→+∞ in this equality. The definition of χn and the prop-
erties of the sets Un give that ∇χn = 0 on Ey for every n, so that the second integral in
(3.7) vanishes; concerning the first integral, we know that χn converges to 1C everywhere
in Ey , and therefore, using the dominated convergence theorem,∫ T

0

∫
C

(∂tϕ + b · ∇ϕ)u dµy dt = 0

for all ϕ ∈ C∞c ([0, T )× Rd), that is, u solves (3.2) on C. ut

3.9. Lemma. Given a bounded function u : [0, T )× Rd → R, the following statements
are equivalent:

(a) u solves (3.2);
(b) there exists an L d−k-negligible set N ⊂ Rd−k such that N supports νs , and setting

F := f−1(N) ∪ (Rd \ E∗) with E∗ given in §2.5 we have:
(b1) u solves (3.2) on C for every C ∈ Cy and every y 6∈ N ;
(b2) 1F u solves (3.2).

Proof. Step 1: (a)⇒ (b). Since ν = L d−k
+ νs , Lemma 3.7 implies that u solves (3.2)

on Ey for L d−k-a.e. y. Therefore, recalling Lemma 2.6(ii), we can choose an L d−k-
negligible set N so that

(i) 0 ∈ N ;
(ii) N supports νs ;
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(iii) u solves (3.2) on Ey for every y 6∈ N ;
(iv) H k(Ey) < +∞ for every y 6∈ N .

Then (b1) follows from Lemma 3.8, and it remains to prove (b2).
Let y 6∈ N be fixed for the time being. Because of (iv), Cy is countable, and therefore,

by summing (3.5) over all C ∈ Cy and recalling that their union is E∗y , we obtain∫ T

0

[∫
E∗y

(∂tϕ + b · ∇ϕ)u dµy

]
dt = 0 ∀ϕ ∈ C∞c ([0, T )× Rd), (3.8)

that is, u solves (3.2) on E∗y . By integrating (3.8) over all y 6∈ N with respect to ν we
obtain

0 =
∫ T

0

[∫
Rd−k\N

∫
E∗y

(∂tϕ + b · ∇ϕ)u dµy dν(y)

]
dt

=

∫ T

0

[∫
Rd\F

(∂tϕ + b · ∇ϕ)u dx

]
dt.

The second equality in the previous formula follows by the fact that {µy} is the disinte-
gration of L d with respect to f and ν, and by the fact that E∗y is equal to (Rd \ F) ∩ Ey
for all y 6∈ N .

Thus we have proved that 1Rd\Fu solves (3.2), and by linearity we deduce that also
1Fu = u− 1Rd\Fu solves (3.2), that is, we obtain (b2).

Step 2: (b)⇒ (a). LetN ′ be the set of all y 6∈ N such that H k(Ey) = +∞. We know by
Lemma 2.6(ii) that L d−k(N ′) = 0, and therefore ν(N ′) = 0 (because ν = L d−k

+ νs

and νs is supported on N ).
Fix y 6∈ N ∪N ′. By (b1), u solves (3.2) on every C ∈ Cy , and since H k(Ey) is finite

there are only countably many such C. Hence, proceeding as in Step 1, we find that u
solves (3.2) on E∗y and 1Rd\Fu solves (3.2). Finally (b2) and the linearity of (3.2) imply
that u = 1Fu+ 1Rd\Fu solves (3.2). ut

We can now state the main result of this section, namely that, under the additional assump-
tion (3.9), uniqueness for the Cauchy problem (3.2) in Rd is equivalent to uniqueness on
the connected components C in Cy for a.e. y.

3.10. Theorem. Take b and f as in §3.1 and assume that

b(t, x) = 0 for a.e. (t, x) ∈ [0, T )× S. (3.9)

Then the following statements are equivalent:

(a) if u : [0, T ) × Rd → R is a bounded solution of (3.2) then u = 0 for a.e. (t, x) ∈
[0, T )× Rd ;

(b) for L d−k-a.e. y ∈ Rd−k and every C ∈ Cy the following implication holds: if
u : [0, T ) × C → R is a bounded solution of (3.2) on C, then u = 0 for L 1-
a.e. t ∈ [0, T ) and µy-a.e. x ∈ C.
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Proof. Step 1: (b)⇒ (a). Let u : [0, T ) × Rd → R be a bounded solution of (3.2). We
want to show that u = 0 a.e.

From Lemma 3.9 we deduce the existence of an L d−k-negligible setN such that νs is
supported inN and u solves (3.2) onC for everyC ∈ Cy and every y 6∈ N . By assumption
(b) we can find an L d−k-negligible set N ′ such that u = 0 for L 1-a.e. t ∈ [0, T ) and
µy-a.e. x ∈ C, for every C ∈ Cy and every y 6∈ N ∪ N ′. By Lemma 2.6(ii) we can also
find an L d−k-negligible set N ′′ such that for y 6∈ N ′′ we have H k(Ey) < +∞ and
therefore Cy is countable.

The previous considerations imply that u = 0 for L 1-a.e. t ∈ [0, T ) and µy-a.e.
x ∈ E∗y for every y 6∈ N ∪N ′ ∪N ′′. Recalling that N supports νs we obtain

u = 0 a.e. in [0, T )× (E∗ \ f−1(N ∪N ′ ∪N ′′)). (3.10)

By Lemma 3.9 we know that 1Fu solves (3.2), where F := f−1(N) ∪ (Rd \ E∗).
Lemma 2.8(i) together with the fact that N is an L d−k-negligible set supporting νs im-
plies that f−1(N) ⊂ S up to negligible sets. Using Lemma 2.6(v) we deduce that F ⊂ S
up to negligible sets, thus assumption (3.9) implies that b = 0 for a.e. (t, x) ∈ [0, T )×F .
Therefore, the fact that 1Fu solves (3.2) can be rewritten as∫ T

0

∫
F

∂tϕ u dx dt = 0 ∀ϕ ∈ C∞c ([0, T )× Rd). (3.11)

Now, since every φ ∈ C∞c ((0, T ) × Rd) can be written as φ = ∂tϕ for some ϕ ∈
C∞c ([0, T )× Rd), we see that (3.11) implies that

u = 0 a.e. in [0, T )× F . (3.12)

Taking into account (3.10) and (3.12), to complete the proof it suffices to show that
f−1((N ′ ∪N ′′) \N) is negligible. This follows from the fact that ν((N ′ ∪N ′′) \N) = 0
(recall §2.4(iii)), which in turn follows from the fact that N ′ and N ′′ are L d−k-negligible
and νs is supported on N .

Step 2: (a)⇒ (b). Let H be the set of all y ∈ Rd−k such that there exist Cy ∈ Cy and
ũy : [0, T )× Cy → R a nontrivial bounded solution of (3.2) on Cy .

We have to show that L d−k(H) = 0.
Assume for contradiction that L d−k(H) > 0. Then we can find a constant m < +∞

and a subset H ′ ⊂ H with L d−k(H ′) > 0 for which the functions ũy above satisfy
|ũy | ≤ m on [0, T )× Cy for every y ∈ H ′.

At this point we claim that the function u defined by

u(t, x) :=

{
ũy(t, x) if x ∈ Cy for some y ∈ H ′,
0 otherwise,

is a nontrivial bounded solution of (3.2), in contradiction with assumption (a) of the
present theorem.
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Indeed, if the function u were Borel, we could use the implication (b)⇒ (a) in Lem-
ma 3.9 to prove the claim. Unfortunately this is not the case, and therefore we must
proceed in a (slightly) different way.

We takem as above and consider the set C ∗ of all couples (y, η) with y ∈ Rd−k and η
a nontrivial signed measure on [0, T )× Rd of the form

η = u ·L 1
⊗ µy (3.13)

where u solves (3.2) on Ey and satisfies |u| ≤ m everywhere.
The projection G of C ∗ on Rd−k contains H ′ because for every y ∈ H ′ the couple

(y, η̃y) with η̃y := ũy1Cy · L 1
⊗ µy belongs to C ∗. Hence L d−k(G) > 0, and by

Corollary 7.2 we can find a Borel set G′ ⊂ G with

ν(G′) ≥ L d−k(G′) = L d−k(G) > 0

and a Borel family {ηy : y ∈ G′} of measures such that (y, ηy) ∈ C ∗ for every y ∈ G′.
We now denote by uy the bounded solution of (3.2) on Ey associated to ηy by (3.13),

and we set

η :=

∫
G′
ηy dν(y) =

∫
G′
uy ·L

1
⊗ µy dν(y).

It is clear that η is a nontrivial measure solution of (3.2), and we deduce from §2.4(iii),
(iv) that η is absolutely continuous with respect to L 1

⊗L d ,
Thus we can find a function u : [0, T ) × Rd → R such that η = u · L 1

⊗ L d .
Moreover, passing through the disintegration of η with respect to f , we recover that for
L d−k-a.e. y ∈ G′ we have u = uy a.e. with respect to L 1

⊗ µy , and u = 0 a.e. in
[0, T )× A, where A is the complement of the union of Ey over all y ∈ G′.

Since |uy | ≤ m everywhere for every y ∈ G′ we conclude that u is a nontrivial
solution of (3.2) which satisfies |u| ≤ m a.e., and this contradicts (a). ut

3.11. Remark. (i) The converse of Lemma 3.7 also holds: if a bounded function u :
[0, T ) × Rd → R solves (3.2) on the level set Ey for ν-a.e. y ∈ Rd−k , then u is a
bounded solution of (3.2). This is an immediate consequence of (2.3).

(ii) The converse of Lemma 3.8 does not hold. It is not true in general that a bounded
function u : [0, T ) × Ey → R which solves (3.2) on every connected component of the
level setEy is also a solution of (3.2) on the level setEy . This is related to the fact that the
connected components of a level set which are H k-negligible can in principle be more
than countable.

(iii) Assumption (3.9) in Theorem 3.10 is used in the proof to show that every so-
lution of (3.2) is a.e. null on the set F defined in Lemma 3.9. Presumably we could
dispense with assumption (3.9); however, proving the corresponding variant of Theo-
rem 3.10 would require a more refined disintegration formula, to take into account all the
connected components of the level sets, including those which are H k-negligible (see
the previous remark). We decided not to pursue this refinement because we did not see
any specific use for it (in the two-dimensional context considered in Sections 4 and 5
assumption (3.9) is always satisified).
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4. Uniqueness in the autonomous, divergence-free case

4.1. Assumptions on the vector field. Throughout this section we assume that d = 2
and b : R2

→ R2 is a bounded, autonomous, divergence-free vector field with compact
support.

It follows that there exists a Lipschitz function f : R2
→ R with compact support

such that
b = ∇⊥f a.e. in R2. 16 (4.1)

Such f is unique and is called the potential associated to b; we then take S, Ey , µy and so
on as in Section 2 (see §2.19). Note that b and f satisfy the assumptions of Theorem 3.10,
namely (3.1) and (3.9).

Theorem 3.10 shows that uniqueness for the Cauchy problem (3.2) is equivalent to
uniqueness for the same problem on every nontrivial connected component C of a generic
level set Ey of f . Using the parametrization of C given in Lemma 2.11, we show that
solving (3.2) on C is equivalent to solving the Cauchy problem with zero initial datum for
the equation ∂t (u(1+λ))+ ∂su = 0 on the parametrization domain [0, L]∗ (Lemma 4.4),
and for that problem there is uniqueness if and only if λ = 0 (Lemma 4.5). In Theorem 4.7
we put together these results and prove that if b is taken as above then uniqueness for (3.2)
is equivalent to the weak Sard property for the potential f .

4.2. Assumptions on the set C. In the following C is a nontrivial connected component
of a level set Ey of f . Taking Lemma 2.11 into account, we assume in addition that

(i) C is a simple curve with finite length;
(ii) γ : [0, L]∗→ C is a one-to-one Lipschitz parametrization of C such that γ̇ 6= 0 a.e.

with respect to L (the Lebesgue measure on [0, L]∗);
(iii) the restriction of µsy to C agrees with the push-forward according to γ of some

measure λ on [0, L]∗ which is singular with respect to L .

The next lemma is a particular case of [2, Corollary 7.4], and states that the test
functions of the form ϕ := φ ◦ γ with φ ∈ C∞c (R2) are dense (in a suitable sense) in the
class of Lipschitz functions on [0, L]∗.

4.3. Lemma (see [2, Corollary 7.4]). Let a be a function in L1([0, L]) and µ a signed
measure on [0, L] such that the functional

3(ϕ) :=

∫ L

0
ϕ̇a dL +

∫ L

0
ϕ dµ

satisfies 3(ϕ) = 0 for every ϕ of the form ϕ := φ ◦ γ with φ ∈ C∞c (R2). Then 3(ϕ) = 0
for every Lipschitz function ϕ on [0, L]∗.

4.4. Lemma. Given a bounded function u : [0, T ) × C → R, the following statements
are equivalent:

16 Since div b = 0, by rotating b by 90◦ clockwise we obtain a curl-free vector field, which is
therefore the gradient of a Lipschitz function.



A uniqueness result for the continuity equation 221

(a) u solves (3.2) on C;
(b) the function ũ(t, s) := u(t, γ (s)) solves{

∂t (ũ(1+ λ))+ ∂s ũ = 0,
ũ(0, ·) = 0,

(4.2)

in the sense of distributions on [0, T )× [0, L]∗, that is,∫ T

0

[∫ L

0
(∂tϕ + ∂sϕ)ũ ds +

∫ L

0
∂tϕũ dλ

]
dt = 0 (4.3)

for every ϕ ∈ C∞c ([0, T )× [0, L]
∗).17

Proof. Step 1: (a)⇒ (b). Since µy = γ#(L + λ) and b = 0 for (γ#λ)-a.e. point of C,
the fact that u solves (3.2) on C amounts to∫ T

0

∫
C

(ϕ̇1ϕ2 + ϕ1b · ∇ϕ2)u d(γ#L ) dt +

∫ T

0

∫
C

ϕ̇1ϕ2u d(γ#λ) dt = 0 (4.4)

for all ϕ1 ∈ C
∞
c ([0, T )) and all ϕ2 ∈ C

∞
c (R2).

We set ϕ̃2(s) = ϕ2(γ (s)) and compute

˙̃ϕ2(s) = ∇ϕ2(γ (s)) · γ̇ (s) = ∇ϕ2(γ (s)) · ∇
⊥f (γ (s)) for L -a.e. s ∈ [0, L]∗. (4.5)

Using (4.5) and the change of variable x = γ (s), identity (4.4) can be rewritten as∫ L

0

[∫ T

0
ϕ1ũ dt

]
˙̃ϕ2 ds +

∫ L

0

[∫ T

0
ϕ̇1ũ dt

]
ϕ̃2(ds + dλ) = 0 (4.6)

for all ϕ1 ∈ C
∞
c ([0, T )) and all ϕ̃2 of the form ϕ̃2 = ϕ2 ◦ γ with ϕ2 ∈ C

∞
c (Rd).

Then Lemma 4.3 implies that (4.6) holds also for all Lipschitz functions ϕ̃2 on [0, L]∗,
which is enough to deduce (4.3) and obtain (b).

Step 2: (b)⇒ (a). To show that u solves (3.2) on C—that is, it satisfies (3.5)—it suffices
to observe that (4.3) holds also for all test functions of the form ϕ(t, γ (s)) with ϕ :
[0, T ) × C → R a Lipschitz function with compact support, and then apply the change
of variable x = γ (s) to the integral on the left-hand side as in the previous step. ut

4.5. Lemma. Take L > 0 and let λ be any measure on [0, L]∗ which is singular with
respect to L . Then the following statements are equivalent:

(a) if v : [0, T ) × [0, L]∗ → R is a bounded solution of (4.2) then v = 0 for L 1-
a.e. t ∈ [0, T ) and (L + λ)-a.e. s ∈ [0, L]∗;

(b) λ = 0.

17 C∞c ([0, T ) × [0, L]
∗) corresponds to the space of smooth functions on [0, T ) × R which are

L-periodic in the second variable and compactly supported in the first variable.
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Proof. Step 1: (b)⇒ (a). If λ = 0, then (4.2) reduces to{
∂tv + ∂sv = 0,
v(0, ·) = 0,

which has only the trivial solution.18

Step 2: (a)⇒ (b). We show that for λ 6= 0 the problem (4.2) has a nontrivial bounded
solution. More precisely, we construct two distinct bounded solutions of the equation

∂t (v(1+ λ))+ ∂sv = 0 (4.7)

with initial condition v(0, ·) = 1A, where A is an L -negligible compact set contained in
(0, L) with λ(A) > 0.19

It is immediate to check that v(t, s) := 1A(s) is a stationary solution of (4.7) with
initial condition v(0, ·) = 1A.

Consider now the function σ : [0, L]∗ → [0, L̂]∗ and its inverse σ̂ defined in §2.16
(see also Remark 2.18); since the (distributional) derivative of σ̂ is 1+ λ, a formal com-
putation shows that the change of variable s = σ(ŝ) reduces the equation

∂tw + ∂ŝw = 0 (4.8)

to (4.7). This suggests a way to construct the second solution we are looking for: set

v(t, s) :=

w(t, σ̂ (s)) for s 6∈ A ,∫
σ̂ (s)

w(t, ŝ) dŝ for s ∈ A ,
(4.9)

where A is the set of atoms of λ (cf. §2.16),20 and w : [0, T ) × [0, L̂]∗ → R is the
(unique) bounded solution of (4.8) with initial condition w(0, ·) = 1σ̂ (A), which means
that w satisfies ∫ T

0

∫ L̂

0
(∂tϕ + ∂ŝϕ)w dŝ dt =

∫ L̂

0
ϕ(0, ·)1σ̂ (A) dŝ (4.10)

for every ϕ ∈ C∞c ([0, T ) × [0, L̂]
∗). We claim that v is a solution of (4.7) with initial

condition v(0, ·) = 1A and is not stationary, and in particular it differs from the stationary
solution.

Step 3: v solves (4.7) with initial condition v(0, ·) = 1A. Let F be an L -negligible
set which supports λ. Then the claim can be rewritten as follows: for every test function
ϕ ∈ C∞c ([0, T )× [0, L]

∗) we have∫ T

0

∫ L

0
(∂tϕ + 1I\F ∂sϕ)v d(L + λ) dt =

∫ L

0
ϕ(0, ·)1A d(L + λ). (4.11)

18 This is well-known with [0, L]∗ replaced by R; the same proof works also for [0, L]∗.
19 Such an A can be found because the measure λ is supported in (0, L) (cf. §2.12(ii)).
20 Recall that σ̂ is single-valued for s /∈ A , and σ̂ (s) is the interval [σ̂−(s), σ̂+(s)] for s ∈ A

(cf. §2.16).
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We apply the change of variable s = σ(ŝ); letting v̂(t, ŝ) := v(t, σ (ŝ)) and ϕ̂(t, ŝ) :=
ϕ(t, σ (ŝ)) and using (2.9), identity (4.11) becomes∫ T

0

∫ L̂

0
(∂t ϕ̂ + ∂ŝ ϕ̂)v̂ dŝ dt =

∫ L̂

0
ϕ̂(0, ·)1σ̂ (A) dŝ (4.12)

(note that ∂t ϕ̂ = ∂tϕ and ∂ŝ ϕ̂ = ∂sϕ1Î\σ̂ (F )).
If v̂ were equal to w, then (4.12) would follow by writing (4.10) with the test func-

tion ϕ̂ (recall Remark 3.3). Unfortunately, v̂ agrees with w only on the complement of
σ̂ (A ). However, we can recover (4.12) from (4.10) by showing that for every t ∈ [0, T ),∫

σ̂ (A )

(∂t ϕ̂ + ∂ŝ ϕ̂)v̂ dŝ =

∫
σ̂ (A )

(∂t ϕ̂ + ∂ŝ ϕ̂)w dŝ.

Indeed,∫
σ̂ (A )

(∂t ϕ̂ + ∂ŝ ϕ̂)v̂ dŝ =
∑
s∈A

∫
σ̂ (s)

(∂t ϕ̂ + ∂ŝ ϕ̂)v̂ dŝ =
∑
s∈A

∂tϕ(t, s)

∫
σ̂ (s)

v̂ dŝ

=

∑
s∈A

∂tϕ(t, s)

∫
σ̂ (s)

w dŝ =

∫
σ̂ (A )

(∂t ϕ̂ + ∂ŝ ϕ̂)w dŝ, (4.13)

where the second and the last equalities follow from the fact that ∂ŝ ϕ̂(t, ŝ) = 0 and
∂t ϕ̂(t, ŝ) = ∂tϕ(t, s) for all ŝ in the interval σ̂ (s), while the third equality follows from
that fact that in each of these intervals the function v̂(t, ŝ) coincides with the average of
w(t, ŝ) over the same interval (see (4.9)).

Step 4: v is not stationary. This claim can be proved in many ways. We choose to look
at the maximum a(t) of the support of the function v(t, ·) (computed with respect to the
measure L + λ), and show that this function is strictly increasing at t = 0.

Let â(t) be the maximum of the support of the functionw(t, ·) (computed with respect
to the Lebesgue measure). Since w solves (4.8), a continuity equation with a regular (in
fact, constant) vector field, it is propagated along characteristics, and therefore â is strictly
increasing in t , at least as long as it does not reach the value L.

Moreover a = σ(â). Therefore, recalling the properties of σ (see §2.16), we deduce
that a is strictly increasing at t = 0 provided that â(0) does not belong to any of the
intervals σ(s) with s ∈ A , or, if it does, then it agrees with the supremum of such an
interval. Finally, one can check that this condition is always satisfied (recall that A is
closed). ut

4.6. Remark. Concerning the previous proof, it should be noted that the change of vari-
able s = σ(ŝ) reduces to (4.7) every equation of the form

∂tv + ∂ŝ(g1v + g2) = 0 (4.14)

where the functions g1 and g2 satisfy the following conditions: g1 is constant a.e. in σ̂ (F ),
g1 = 1 and g2 = 0 a.e. outside σ̂ (F ). More precisely, if w is a solution of (4.14), then
the function v defined by (4.9) is a solution of (4.7). In particular, taking g1 := 1 and
g2 := −1A we recover the stationary solution v(t, s) := 1A(s).
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4.7. Theorem. Take b and f as in §4.1. Then the following statements are equivalent:

(a) if u : [0, T ) × R2
→ R is a bounded solution of (3.2) then u = 0 for a.e. (t, x) ∈

[0, T )× R2;
(b) the potential f has the weak Sard property (defined in §2.13).

Proof. Since b and f satisfy the assumptions of Theorem 3.10, the uniqueness for the
Cauchy problem (3.2) (statement (a)) is equivalent to uniqueness for the same problem
on every C ∈ Cy for a.e. y.

By Lemma 2.11, for a.e. y, every connected component C ∈ Cy satisfies the assump-
tions in §4.2, and therefore Lemmas 4.4 and 4.5 imply that the uniqueness of (3.2) on C
is equivalent to λ = 0, which means that the restriction of µsy to C vanishes.

Finally Lemma 2.14 states that 1C ·µsy = 0 for every C ∈ Cy and a.e. y if and only if
f has the weak Sard property. ut

4.8. Corollary. There exists a divergence-free autonomous vector field b on the plane
which belongs to C0,α for every α < 1, and for which the Cauchy problem (3.2) has
nontrivial bounded solutions.

Proof. In [2, §4.8] we construct a function f ′ : R2
→ R of class C1,α for every α < 1

which does not have the weak Sard property. We modify f ′ so as to make it compactly
supported, and set b := ∇⊥f ′. Then Theorem 4.7 shows that for such b the Cauchy
problem (3.2) admits nontrivial bounded solutions. ut

5. Uniqueness in the bounded divergence case

5.1. Assumptions on the vector field. In this section we consider a bounded, time-
dependent vector field b : [0, T )× R2

→ R2 of the form

b(t, x) = a(t, x)∇⊥f (x) a.e. in [0, T )× R2, (5.1)

where f : R2
→ R is a Lipschitz function with compact support and a : [0, T )×R2

→ R
is a bounded function. We then take S, Ey , µy and so on as in Section 2 (see §2.19).

We assume moreover that b has bounded divergence in the sense of distributions, that
is, there exists a bounded function g : [0, T )× R2

→ R such that∫ T

0

∫
R2
(b · ∇ϕ + gϕ) dx dt = 0 ∀ϕ ∈ C∞c ((0, T )× R2). (5.2)

The next result extends Theorem 4.7 and provides a characterization of uniqueness
within the special class of bounded vector fields considered in the previous subsection.

5.2. Theorem. Take b, f and a as in §5.1. The following statements hold:

(i) If f has the weak Sard property then there is uniqueness for the Cauchy problem
(3.2), that is, every bounded solution u : [0, T )×R2

→ R of (3.2) satisfies u = 0 for
a.e. (t, x) ∈ [0, T )× R2.
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(ii) Conversely, if f does not have the weak Sard property and there exists δ > 0 such
that a ≥ δ a.e. on [0, T )× R2, then (3.2) admits a nontrivial bounded solution.

5.3. Remark. (i) Observe that, for given b and f , the value of a is determined (a.e.) in
[0, T )× (R2

\ S) by equation (5.1), but can be freely chosen on [0, T )× S.
(ii) The class of vector fields considered in this section clearly includes the one consid-

ered in Section 4. The structural assumption (5.1) is however very rigid, in that it allows
only for vector fields whose direction does not depend on time, and does not even include
all autonomous vector fields with bounded divergence.21

(iii) The role of the nondegeneracy assumption a ≥ δ > 0 in statement (ii) of Theo-
rem 5.2 will be discussed in detail in Remark 5.5 at the end of this section. Here we just
summarize a few conclusions:

(a) Some nonegeneracy assumption on a is needed: if b (or equivalently a) vanishes on
a neighbourhood of the critical set S, then uniqueness for (3.2) holds regardless of
whether f satisfies the weak Sard property or not.

(b) It is not enough to assume that a is strictly positive (a > 0).
(c) The assumption a ≥ δ > 0 can be clearly replaced by a ≤ −δ < 0,22 but none of

these is optimal. Yet we could not find weaker conditions that are easily expressed
only in terms of a and f .

(iv) Consider two different couples f1, a1 and f2, a2 that decompose b as in (5.1), that
is, b = a1∇

⊥f1 = a2∇
⊥f2. Under the assumption that both a1 and a2 are positive and

bounded away from zero, f1 has the weak Sard property if and only if f2 does (because by
Theorem 5.2 both conditions are equivalent to the uniqueness for (3.2)). More generally,
if a2 is positive and bounded away from zero then the weak Sard property of f1 implies
that of f2.

We first prove a lemma that characterizes the derivative of a along a nontrivial con-
nected component C of a generic level set Ey . The rest of the proof of Theorem 5.2 is a
more or less straightforward modification of the proof of Theorem 4.7, and we will only
summarize the main steps.

5.4. Lemma. For a.e. y ∈ R, every connected component C ∈ Cy satisfies the assump-
tions in §4.2, and

∂s ã = g̃ (1+ λ) (5.3)
in the sense of the distributions on (0, T )×[0, L]∗, where we have set ã(t, s) :=a(t, γ (s))
and g̃(t, s) := g(t, γ (s)) and γ , λ, L are taken as in §4.2.

Moreover there exists a function α : [0, T ) × [0, L̂]∗ → R which is bounded, uni-
formly Lipschitz in the second variable, and satisfies ã(t, s) = α(t, σ̂ (s)) for a.e. (t, s),
where L̂ and σ̂ : [0, L]∗→ [0, L̂]∗ are given in §2.16 (see also Remark 2.18).

In particular when λ = 0 we have L̂ = L, σ̂ (s) = s, and therefore ã = α a.e.

21 The vector field b(x) := x cannot be written in the form (5.1) in any neighbourhood of 0: if it
were, all level sets of f would contain the point 0, which is clearly impossible for a nonconstant
Lipschitz function.
22 Just apply the result with a and f replaced by −a and −f .
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Sketch of proof. Step 1: proof of (5.3). Following the proofs of Lemmas 3.7 and 3.8 we
find that for every C ∈ Cy and a.e. y,∫ T

0

∫
C

(b · ∇ϕ + gϕ) dµy dt = 0 ∀ϕ ∈ C∞c ((0, T )× R2). (5.4)

Moreover by Lemma 2.11 the connected component C satisfies the requirements in §4.2
and therefore, arguing as in the proof of Lemma 4.4, equation (5.4) translates into∫ T

0

[∫ L

0
(ã∂sϕ + gϕ) dL +

∫ L

0
g̃ϕ dλ

]
dt = 0 ∀ϕ ∈ C∞c ((0, T )× [0, L]

∗),

which is precisely the weak formulation of (5.3).

Step 2: construction of α. For every t ∈ [0, T ) and ŝ ∈ [0, L̂] we set

α(t, ŝ) := c(t)+

∫ ŝ

0
g̃(t, σ (·)) dL ,

and we choose c(t) so that the integrals of ã(t, ·) and α(t, σ̂ (·)) over [0, L] are the same.
The function α is clearly well-defined on [0, T ) × [0, L̂], bounded, and Lipschitz in

the second variable. Moreover (5.3) and formula (2.9) imply that for a.e. t ,

0 =
∫ L

0
g̃(t, ·) d(L + λ) =

∫ L̂

0
g̃(t, σ (·)) dL

and therefore α(t, 0) = α(t, L̂). Hence α(t, ·) is well-defined and Lipschitz also as a
function on [0, L̂]∗.

Step 3. Formula (2.9) yields

α(t, σ̂ (s)) = c(t)+

∫ s

0
g̃(t, ·) d(L + λ)

for every t and every s such that σ̂ is single-valued at s. This identity and (5.3) imply that

∂sα(t, σ̂ (s)) = g̃(1+ λ) = ∂s ã (5.5)

in the sense of distributions on (0, T )×[0, L]∗. In turn, (5.5) and the choice of c(t) imply
that α(t, σ̂ (s)) = ã(t, s) for a.e. (t, s). ut

Sketch of proof of Theorem 5.2. Step 1. Since b and f satisfy the assumptions of The-
orem 3.10, the uniqueness for the Cauchy problem (3.2) is equivalent to uniqueness for
the same problem on every C ∈ Cy for a.e. y. Moreover, in view of Lemma 5.4, we can
restrict ourselves to those C which satisfy the assumptions in §4.2 and in Lemma 5.4.

Step 2. A straightforward modification of Lemma 4.4 shows that the uniqueness for the
Cauchy problem (3.2) on C is equivalent to the uniqueness for{

∂t (ũ(1+ λ))+ ∂s(ãũ) = 0,
ũ(0, ·) = 0,

(5.6)

on [0, T )× [0, L]∗, where ã is defined as in Lemma 5.4.
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Step 3: proof of statement (i). Since f has the weak Sard property, by Lemma 2.14 we
can assume that the restriction of µsy to C vanishes, which means that λ vanishes.

By the previous steps, it suffices to show that for λ = 0 the only bounded solution of
(5.6) is the trivial one. Indeed (5.6) reduces to the standard continuity equation{

∂t ũ+ ∂s(ãũ) = 0,
ũ(0, ·) = 0.

(5.7)

Since ã agrees a.e. with the function α given in Lemma 5.4, and α is Lipschitz in the
second variable, the fact that ũ is trivial follows by a standard result.

Step 4: proof of statement (ii). In view of the first two steps, it suffices to show that if
λ 6= 0 then the problem (5.6) admits a nontrivial bounded solution.

To do this, we strictly follow the second part of the proof of Lemma 4.5 and construct
two distinct bounded solutions of the equation

∂t (v(1+ λ))+ ∂s(ãv) = 0, (5.8)

with the same initial condition v(0, ·) = 1A, where A is chosen as in that proof.
One solution is the stationary one, and the other one is the function v given by formula

(4.9) by taking as w the (unique) bounded solution of

∂tw + ∂ŝ(αw) = 0 (5.9)

on [0, T ) × [0, L̂]∗ with initial condition w(0, ·) = 1σ̂ (A), where α is the function con-
structed in Lemma 5.4.

The fact that v solves (5.8) and is different from the stationary solution can be proved
as in Lemma 4.5. ut

5.5. Remark. The assumption a ≥ δ > 0 in statement (ii) of Theorem 5.2 is used only
once in the proof above, and precisely to show that the solution v of (5.8) built out of a
certain solution w of (5.9) is not stationary. Assuming that a, and therefore α, is posi-
tive and bounded away from zero is clearly sufficient for this purpose (even though not
necessary).

In the rest of this subsection we argue that just assuming a strictly positive is not
enough. We take a function f of class C1 on R2 without the weak Sard property (see
[2, Section 4]) and construct a function a = a(x) so that ã is Lipschitz, positive, and
vanishes only on the closed set γ−1(S). We claim that the Cauchy problem (3.2) with
b := a∇⊥f admits only the trivial solution, despite the fact that f does not have the weak
Sard property and a is strictly positive.23

As pointed out in the proof above, this is equivalent to showing that (5.6) admits only
the trivial solution. Now ã vanishes on γ−1(S) by construction, and since λ is supported
on γ−1(S), it follows that ã vanishes λ-a.e. Therefore the equation in (5.6) can be rewrit-
ten as ∂tv + ∂s(ãv) = 0 with v := ũ(1 + λ), and it is known that for this equation there
is uniqueness also among measure solutions because ã is Lipschitz.

23 By construction we only imposed that a is strictly positive (a.e.) outside S, but remember that
a can be freely modified in S without affecting b. The fact that b has bounded divergence follows
by a suitable converse of Lemma 5.4.
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6. Additional remarks

6.1. Extensions of Theorems 4.7 and 5.2. (i) In both statements, the assumption that b
has compact support is made for the sake of simplicity, and can be easily removed. In that
case, one should also consider nontrivial connected components C of the level sets of f
which are simple curves with end points at infinity.

(ii) The continuity equation (1.1) can be modified so as to include a (possibly non-
linear) source term on the right-hand side, that is,

∂tu+ div(bu) = h(t, x, u),

where the function h : [0, T ) × R2
× R → R is bounded. The key point is clearly that

uniqueness holds for the corresponding one-dimensional equation

∂tv + ∂s(ãv) = h̃(t, s, v)

on [0, T )× [0, L]∗.
(iii) Uniqueness can be shown in the class of weak solutions that are integrable in

space and time (instead of being bounded). The key point is that uniqueness holds for the
corresponding one-dimensional equation ∂tv + ∂s(ãv) = 0 among solutions which are
integrable in space and time.
6.2. Extension to higher dimension. It is possible to extend Theorem 5.2 to higher
dimensions, and more precisely to bounded, time-dependent vector fields b on Rd with
bounded divergence which satisfy the following structural assumption: there exists a Lip-
schitz map f : Rd → Rd−1 such that ∇f · b = 0 a.e., and b = 0 at a.e. point where the
rank of ∇f is not maximal.

In this case, the uniqueness for the Cauchy problem (3.2) should be proved under the
following assumptions: (i) f satisfies a suitable version of the weak Sard property, and
(ii) for a.e. y the level set Ey of f does not contain triods, and therefore its nontrivial
connected components are simple curves.

It seems that both assumptions are not only sufficient for uniqueness, but also neces-
sary. Note that assumption (ii) is automatically satisfied when d = 2 (Lemma 2.11(i)),
while for d > 2 it is satisfied when f is of class C1,1/2 (see [2, Lemma 2.16]), but may
fail when f is of class C1,α with α < 1/(d − 1) (see [2, Section 3]).

Since also in this case the uniqueness for the Cauchy problem (3.2) turns out to be
equivalent to the uniqueness for the same problem on the nontrivial connected compo-
nents of a generic level set of f , the lack of triods is (presumably) also necessary for
uniqueness.
6.3. Renormalization property. The key step in the uniqueness proof by DiPerna and
Lions [13] is proving the renormalization property for weak solutions.

This property is not used in this paper, but it can be easily obtained as a consequence
of our dimension-reduction technique. Let us assume for simplicity that b is divergence-
free and autonomous; in this case the renormalization property for a weak solution u of
(1.1) simply means that β(u) is a weak solution of the same equation for every smooth
function β : R→ R;24 when the potential f associated to b has the weak Sard property

24 If u is of class C1, this follows by a straightforward computation.
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this fact follows from the renormalization property for the one-dimensional equation ∂tv+
∂sv = 0.

6.4. Regular Lagrangian flow. Under the weak regularity assumptions on b consid-
ered in this paper, the meaningful notion of flow for the ordinary differential equation
ẋ = b(t, x) is that of regular Lagrangian flow (see [4]): we say that a Borel map 8 :
[0, T )× R2

→ R2 is a regular Lagrangian flow associated to b if

(i) for a.e. x ∈ R2 the map t 7→ 8(t, x) solves ẋ = b(t, x) in the integral sense;
(ii) there exists a constant c such that for every t the push-forward of L 2 according to

8t := 8(t, ·) satisfies (8t )#L 2
≤ cL 2.

Theorems 4.7 and 5.2, together with the abstract theory of regular Lagrangian flows
developed in [6], give the following result: if b is taken as in §4.1 or §5.1, and the cor-
responding function f has the weak Sard property, then there exists a unique regular
Lagrangian flow for b.

6.5. Strong locality of the divergence operator. It is well-known that the (distributional)
gradient is strongly local for Sobolev functions, in the sense that the following implication
holds for every Sobolev function u and every Borel set A in the domain of u:

u = const. a.e. on A ⇒ ∇u = 0 a.e. on A.

It follows immediately that also every first-order differential operator is strongly local on
Sobolev spaces.

However, this is no longer true on larger spaces; in particular the divergence operator
is not strongly local on the space of vector fields with bounded divergence. Indeed, for
vector fields b on R2 of the form

b = a∇⊥f, (6.1)

where f is a Lipschitz function on R2 and a a bounded function on R2, the strong locality
of the divergence is strictly related to the weak Sard property of f . More precisely:

6.6. Proposition. Let b, f and a be given as above, and assume that b has bounded
divergence. Then the following statements hold for every v ∈ R2:

(i) If the function f (x)− v · x has the weak Sard property, then for every Borel set A in
R2 we have the implication

b = v a.e. on A ⇒ div b = 0 a.e. on A. (6.2)

(ii) Conversely, if f (x)− v · x does not have the weak Sard property then there exist b as
above and a Borel set A such that the implication (6.2) fails.

In [2, Section 5] we construct an explicit example of a bounded vector field b on the plane
whose divergence is bounded, nontrivial, and supported in the set where b = 0, and then
use it to construct a Lipschitz function without the weak Sard property.
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Sketch of proof of Proposition 6.6. With no loss of generality we can assume v = 0. We
first prove statement (i). Let g be the divergence of b, that is,∫

R2
(b · ∇ϕ + gϕ) dx = 0 ∀ϕ ∈ C∞c (R

2).

Starting from this identity and arguing as in the proof of Lemma 3.9 we find an L 1-
negligible set N in R such that the following hold: the singular measure νs defined in
§2.7 is supported on N , for every y 6∈ N and every C ∈ Cy we have∫

C

(b · ∇ϕ + gϕ) dµy = 0 ∀ϕ ∈ C∞c (R
2), (6.3)

and setting F := f−1(N) ∪ (R2
\ E∗) we have∫

F

(b · ∇ϕ + gϕ) dx = 0 ∀ϕ ∈ C∞c (R
2). (6.4)

Since F is contained (up to a negligible subset) in the critical set S, we find that b = 0
a.e. on F , and therefore (6.4) implies that

g = 0 a.e. in F . (6.5)

Moreover, choosing a parametrization γ of C as in §4.2 and recalling that the measure
λ which appears there is null because of the weak Sard property (Lemma 2.14), we can
rewrite (6.3) as ∫ L

0
(ãϕ̇ + g̃ϕ) ds = 0 ∀ϕ ∈ C∞([0, L]∗), (6.6)

where we have set ã(s) := a(γ (s)) and g̃(s) := g(γ (s)). This means that g̃ is the distri-
butional derivative of ã.

Now, the assumption b = 0 a.e. onA implies that ã = 0 a.e. on γ−1(A), and therefore
the strong locality of derivatives of Sobolev functions yields g̃ = 0 a.e. in γ−1(A), that
is,

g = 0 µy-a.e. in A ∩ C. (6.7)
Since (6.7) holds for every C ∈ Cy and for ν-a.e. y, the disintegration formula for the

Lebesgue measure (cf. §2.7) yields

g = 0 a.e. in A \ F ,

and together with (6.5) this implies that g = 0 a.e. in A, which concludes the proof of
statement (i).

We now prove statement (ii). Since f does not have the weak Sard property, there
exists a set G in R with positive measure such that for every y ∈ G there exists C ∈ Cy
for which the measure λ is nontrivial (recall Lemma 2.14).

For every such C, consider the usual parametrization γ and choose two bounded
functions ã and g̃ on [0, L]∗ so that

∂s ã = g̃(1+ λ)

in the sense of distributions on [0, L]∗, and g̃ is not λ-a.e. null.
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Now define functions g and a on R2 so that g = a = 0 out of the union of all C given
above, and a(γ (s)) = ã(s) and g(γ (s)) = g̃(s) for (L + λ)-a.e. s and every C given
above.

It can be verified that g is the distributional divergence of b := a∇⊥f , and the re-
striction of g to the singular set S is not a.e. null. Hence the implication (6.2) fails for
A := S. ut

7. Appendix: a measurable selection lemma

In this appendix we prove a measurable selection lemma used in the proof of Theo-
rem 3.10. For the notation we refer to Section 2. Givenm, T > 0, we denote by C the set
of all couples (y, η) such that y ∈ Rd−k and η is a real-valued measure on [0, T )×Rd of
the form

η = u ·L 1
⊗ µy,

where u : [0, T ) × Ey → R satisfies |u| ≤ m everywhere and solves (3.2) on Ey , or
equivalently η is a measure solution of (3.2) in the sense of §3.5.

We denote by M the Banach space of real-valued measures on [0, T ) × Rd . In the
measure-theoretic issues that will be considered below, the word “Borel” in relation to M
refers to the σ -algebra generated by the weak* topology of M (that is, the one induced
by the standard duality with the space of continuous functions on [0, T )× Rd vanishing
at infinity). The key point is that the restriction of the weak* topology to any closed
ball of M is compact and metrizable, and therefore Polish (separable and completely
metrizable).

7.1. Proposition. The set C defined above is a Borel subset of Rd−k ×M .

Proof. Step 1. We rewrite C as the set of all (y, η) such that

|η|(E) ≤ mL 1
⊗ µy(E) ∀E ⊂ [0, T )× Rd , (7.1)

where |η| denotes the variation of the real-valued measure η, and∫
(∂tϕ + b · ∇ϕ) dη = 0 ∀ϕ ∈ C∞c ([0, T )× Rd). (7.2)

Indeed (7.1) means that the measure η is absolutely continuous with respect to L 1
⊗ µy

and that the density u of the former measure with respect to the latter satisfies |u| ≤ m
almost everywhere, while (7.2) means that η is a measure solution of (3.2).

Step 2: the set of all (y, η) which satisfy (7.1) is a Borel subset of Rd−k ×M . Note that
(7.1) can be rewritten as∫

ϕ dη ≤ m

∫
|ϕ| dt dµy ∀ϕ ∈ C0([0, T )× Rd). (7.3)
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Moreover it suffices that the inequality in (7.3) is satisfied for all ϕ ∈ D , where D is a
given countable dense subset of Cc([0, T )×Rd). In other words (7.3), and therefore also
(7.1), can be rewritten as 3ϕ(y, η) ≤ 0 for all ϕ ∈ D , where

3ϕ(y, η) :=

∫
ϕ dη −m

∫
|ϕ| dt dµy . (7.4)

Now, the first integral in (7.4) is a continuous function of η (by the definition of the
topology on M ), while the second is a Borel function of y (because the family {µy} is
Borel, cf. §2.2 and §2.3), and therefore 3ϕ is a Borel function on Rd−k ×M .

Hence the set of all (y, η) satisfying 3ϕ(y, η) ≤ 0 is Borel for every given ϕ, and so
is the set of all (y, η) satisfying 3ϕ(y, η) ≤ 0 for all ϕ ∈ D .

Step 3: the set of all (y, η) which satisfy (7.2) is a Borel subset of Rd−k×M . Note that in
(7.2) we can equivalently require that the equality holds just for all test functions ϕ ∈ D ′,
where D ′ is a given countable dense subset of C∞c ([0, T ) × Rd). Therefore, arguing as
in Step 2, we only need to show that for every ϕ ∈ C∞c ([0, T ) × Rd) the integral on the
left-hand side of (7.2) is a Borel function of η.

We actually prove that for every bounded Borel function a : [0, T ) × Rd → R the
integral

∫
a dη is a Borel function of η. Let indeed F be the class of all bounded Borel

real functions a on [0, T )× Rd such that this is true. One easily checks the following:

(i) F is a vector space;
(ii) if f is the pointwise limit of an (increasing) sequence of uniformly bounded func-

tions in F , then f belongs to F ;
(iii) F contains all functions in C0([0, T )× Rd) and therefore also all bounded contin-

uous functions on [0, T )× Rd by statement (ii).

Then the functional version of the monotone class theorem (see for instance [12, Chap-
ter I, Theorem 21]) implies that F contains all bounded Borel functions. ut

7.2. Corollary. Let C ∗ be the set of all (y, η) ∈ C with η 6= 0, and letG be the projection
of C ∗ on Rd−k . ThenG is Lebesgue measurable, and there exist a Borel setG′ ⊂ G such
that L d−k(G \ G′) = 0 and a Borel family {ηy : y ∈ G′} such that (y, ηy) ∈ C ∗ for
every y ∈ G′.

Proof. Since C is a Borel set in Rd−k×M , and so is the set I of all couples (y, 0) with
y ∈ Rd−k , then C ∗ = C \I is a Borel set in Rd−k ×M , too.

In particular C ∗ belongs to the product σ -algebra generated by the σ -algebra of
Lebesgue measurable sets on Rd−k times the Borel σ -algebra on M . Therefore, by von
Neumann’s selection theorem (cf. [22, Corollary 5.5.8]), the projection G is Lebesgue
measurable, and there exists a Lebesgue measurable map that to every y ∈ G associates
ηy such that (y, ηy) ∈ C ∗.

To conclude, we choose a Borel subset G′ of G such that the restriction of this selec-
tion map to G′ is Borel, and L d−k(G \G′) = 0. ut
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