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Abstract. We prove, for any n, that there is a closed connected orientable surface S so that the
hyperbolic space Hn almost-isometrically embeds into the Teichmüller space of S, with quasi-
convex image lying in the thick part. As a consequence, Hn quasi-isometrically embeds in the
curve complex of S.
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1. Introduction

We denote the Teichmüller space of a surface S by T (S), and the ε-thick part by Tε(S)
(see Section 4). An almost-isometric embedding of one metric space into another is a
(1, C)-quasi-isometric embedding, for some C ≥ 0 (see Section 2). Let Hn denote hy-
perbolic n-space. The main result of this paper is the following.

Theorem 1.1. For any n ≥ 2, there exists a surface S of finite type and an almost-
isometric embedding Hn→ T (S). Moreover, the image is quasi-convex and lies in Tε(S)
for some ε > 0.

According to Proposition 4.4 below, Theorem 1.1 remains true if we replace “surface of
finite type” with “closed surface”. Our work is motivated, in part, by the following open
question (see [7] for the case n = 2).

Question 1.2. Does there exist a closed surface S of genus at least 2, a closed hyper-
bolic n-manifold B with n ≥ 2, and an S-bundle E over B for which π1(E) is Gromov
hyperbolic?

To explain the relationship with our theorem, suppose that S → E → B is an S-bundle
over B = Hn/0, for some closed surface S and some torsion free cocompact lattice
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0 < Isom(Hn). The monodromy is a homomorphism to the mapping class group of S,
ρ : π1(B) = 0→ Mod(S). The mapping class group Mod(S) acts on T (S) by isometries
with respect to the Teichmüller metric, and according to work of Farb–Mosher [7] and
Hamenstädt [12], π1(E) is δ-hyperbolic if and only if we can construct a 0-equivariant
quasi-isometric embedding f : Hn → T (S) with quasi-convex image lying in Tε(S) for
some ε > 0 (see also [25]). (In fact the 0-equivariance and quasi-isometric embedding
assumptions imply that the image lies in Tε(S).)

Our main theorem states that if we drop the assumption of equivariance, then quasi-
isometric embeddings with all the remaining properties exist. On the other hand, as was
shown in [6], one can find cocompact lattices 0 < Isom(H2) and 0-equivariant quasi-
isometries into T (S) with image in Tε(S)—for these examples the image is not quasi-
convex.

The main theorem for n = 2 also contrasts with the situation of isometrically embed-
ding hyperbolic planes in T (S). More precisely, every geodesic in T (S) is contained in an
isometrically embedded hyperbolic plane (with the Poincaré metric) called a Teichmüller
disk. However, it is well-known that no Teichmüller disk lies in any thick part—this fol-
lows from [21] which guarantees that along a dense set of geodesic rays in the Teichmüller
disk the hyperbolic length of some curve on S tends to zero.

The curve complex of S is a metric simplicial complex C(S) whose vertices are iso-
topy classes of essential simple closed curves, and for which k+1 distinct isotopy classes
of curves span a k-simplex if they can be realized disjointly. In [23], Masur and Min-
sky proved that C(S) is δ-hyperbolic. One of the key ingredients in their proof is the
construction of a coarsely Lipschitz map T (S) → C(S). The restriction of this map to
any quasi-convex subset of Tε(S) is a quasi-isometry (see for example [27, Lemma 4.4]
or [15, Theorem 7.6]). Composing the almost-isometry of Theorem 1.1 with the map
T (S)→ C(S) we have the following corollary.

Corollary 1.3. For every n ≥ 2, there exists a surface S of finite type and a quasi-
isometric embedding Hn→ C(S).

The case n = 2 here can be compared to the result of Bonk and Kleiner [5] in which
it is shown that every δ-hyperbolic group which is not virtually free contains a quasi-
isometrically embedding hyperbolic plane. The assumption that the group is not virtually
free implies the existence of an arc in the boundary. According to [9] (see also [19, 18]),
with the exception of a few small surfaces, there are indeed arcs in the boundary of C(S).
In [5], however, essential use is made of the fact that there is an action of the group, and
so even in the case n = 2, Corollary 1.3 does not follow from [5].

We now explain the idea for the construction in the case n = 2. Given a closed
Riemann surface Z and a point z ∈ Z, the Teichmüller space T (Z, z) is naturally an
H2-bundle over T (Z) (see Section 4.3). Given a biinfinite geodesic τ in T (Z), the preim-
age of τ in T (Z, z) is a 3-manifold. The parameterization t 7→ τ(t) lifts to a flow on
the preimage of τ for which the flow lines are geodesics in T (Z, z). The fiber over τ(0)
admits a pair of transverse 1-dimensional singular foliations—these are naturally associ-
ated to the vertical and horizontal foliations of the quadratic differential defining τ . Any
two flow lines meeting the same nonsingular leaf of the vertical foliation are forward
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asymptotic. Therefore, we have a 1-parameter family of forward asymptotic geodesics in
T (Z, z). We use this to define a map from H2 to T (Z, z): we pick a horocycle C ⊂ H2

and send the pencil of geodesics perpendicular to C to our set of forward asymptotic
geodesics in T (Z, z).

At the beginning of Section 5.2 we give a brief explanation of how this can be mod-
ified to give the construction for n = 3. The idea for n ≥ 4 is then a straightforward
inductive construction.

2. Hyperbolic geometry

Suppose that (X, dX) and (Y, dY ) are metric spaces.

Definition 2.1. A map F : X→Y is a K-almost-isometric embedding if for all x, x′∈X
we have

|dX(x, x
′)− dY (F (x), F (x

′))| ≤ K.

We use the exponential model for hyperbolic space: Hn = Rn−1
×R with length element

ds2
= e−2t (dx2

1 + · · · + dx
2
n−1)+ dt

2.

For two points p, q ∈ Hn we use dH(p, q) to denote the distance between them. The
exponential model of hyperbolic space is related to the upper half-space model U =
Rn−1

× (0,∞) by the map Hn→ U given by (x, t) 7→ (x, et ). In the exponential model,
for every x ∈ Rn−1 the path ηx(t) = (x, t) is a vertical geodesic and is parameterized by
arc-length.

Lemma 2.2. Suppose (X, dX) is a geodesic metric space and δ, ε, R > 0 are constants.
Suppose F : Hn→ X is a function with the following properties:

(i) F ◦ ηx is a geodesic for all x ∈ Rn−1.
(ii) For distinct x, x′ ∈ Rn−1 the geodesics F ◦ ηx and F ◦ ηx′ are two sides of an ideal

δ-slim triangle in (X, dX).
(iii) For any x, x′ ∈ Rn−1 if e−t |x − x′| < ε then dX(F (x, t), F (x′, t)) ≤ R.
(iv) If (xk, tk), (x′k, tk) ∈ Hn satisfy limk→∞ e

−tk |xk − x
′

k| = ∞, then

lim
k→∞

dX(F (xk, tk), F (x
′

k, tk)) = ∞.

Then there exists a constant K such that F is a K-almost-isometric embedding.

A useful consequence of property (iii) is that for any x, x′, t ∈ R we have

d(F (x, t), F (x′, t)) ≤
R

ε
e−t |x − x′| + R. (1)

The remainder of this section gives the proof of Lemma 2.2. We begin by controlling how
F moves the centers of ideal triangles. To be precise: Suppose that T = P ∪Q∪R ⊂ Hn
is an ideal triangle where P and Q are distinct vertical geodesics. Let r denote the point
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of R with maximal t-coordinate. We call r the midpoint of R. Thus r serves as a center
for T . Define x = x(P) and x′ = x(Q).

Observe, say from the upper half-space model, that for all t ≥ t (r) we have

dH((x, t), (x
′, t)) ≤ e−t |x − x′| ≤ e−t (r)|x − x′| = 2. (2)

Thus, by (1) we have dX(F (x, t), F (x′, t)) ≤ 2R/ε+R. Define1 = max{3δ, 2R/ε+R}
and define the displaced height of T to be

hT = h(T ) = min{t ∈ R | dX(F (x, t), F (Q)) ≤ 1 or dX(F (P), F (x′, t)) ≤ 1}.

It follows that h(T ) ≤ t (r). Note that for any vertical triangle T , property (ii) implies that
h(T ) > −∞.

Claim 2.3. For any vertical triangle T = P ∪Q ∪R ⊂ Hn,

dX(F (x, hT ), F (x
′, hT )) ≤ 31,

where x = x(P) and x′ = x(Q).

Proof. Breaking symmetry, in this setting, allows us to assume that there is some s ∈ R
such that dX(F (x′, s), F (x, hT )) ≤ 1. Let t ′ = max{s, t (r)}. Using the triangle inequal-
ity, inequality (1) and property (i) we have

t ′ − hT = dX(F (x, t
′), (x, hT ))

≤ dX(F (x, t
′), F (x′, t ′))+ dX(F (x

′, t ′), F (x′, s))+ dX(F (x
′, s), F (x, hT ))

≤ (2R/ε + R)+ (t ′ − s)+1

and similarly

t ′ − s ≤ 2R/ε + R + t ′ − hT +1.

Thus |hT − s| ≤ 2R/ε + R + 1. Another application of the triangle inequality and
property (i) implies that dX(F (x, hT ), F (x′, hT )) ≤ 2R/ε + R + 21 ≤ 31, as desired.

ut

As mentioned above, for every vertical triangle T we have h(T ) > −∞ and consequently
t (r)− h(T ) <∞. We now obtain a uniform bound on this quantity.

Claim 2.4. There is a constant C0 = C0(F ) such that t (r)− h(T ) ≤ C0 for all vertical
triangles T ⊂ Hn.

Proof. Suppose not. Then we are given a sequence of vertical triangles Tk = Pk∪Qk∪Rk

where t (rk)−h(Tk) tends to infinity with k. Here rk is the midpoint of Rk , the nonvertical
side. Define tk = t (rk) and hk = h(Tk). Define xk = x(Pk) and x′k = x(Qk) to be the
horizontal coordinates of the vertical sides of Tk .

Note that by (2), e−tk |xk − x′k| = 2 and so

e−hk |xk − x
′

k| = e
−hk · 2etk = 2etk−hk .
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Thus e−hk |xk−x′k| tends to infinity with k. From property (iv) we deduce that the quantity
dX(F (xk, hk), F (x

′

k, hk)) also tends to infinity with k. This last, however, contradicts
Claim 2.3. ut

We now give the proof of Lemma 2.2. Fix any p, q ∈ Hn. If x(p) = x(q) then we are
done by property (i). Suppose instead that x(p) 6= x(q). Let P ∪ Q ∪ R denote the
vertical triangle having vertical sides P and Q such that x(P) = x(p) and x(Q) = x(q);
let r ∈ R be the midpoint of the nonvertical side. Define C1 = 2C0 + 51+ 1. There are
now two cases to consider.

Case 1: t (p) ≥ h(T ) − C1. Let p′ ∈ P and q ′ ∈ Q be the points with t (p′) = t (q ′) =
max{t (p), t (r)}. Then by the triangle inequality and (2) we have

dH(p, q
′) ≤ dH(p, p

′)+ dH(p
′, q ′) ≤ t (p′)− t (p)+ 2

≤ t (r)− h(T )+ C1 + 2 ≤ C0 + C1 + 2.

It follows that dH(p, q) is estimated by dH(q ′, q) = |t (q ′)− t (q)| up to an additive error
at most C0 +C1 + 2. Appealing to property (i), inequality (1), and the triangle inequality
we similarly have

dX(F (p), F (q
′)) ≤ dX(F (p), F (p

′))+ dX(F (p
′), F (q ′)) ≤ t (p′)− t (p)+ 2R/ε + R

≤ C0 + C1 + 2R/ε + R.

Thus dX(F (p), F (q)) is estimated by dX(F (q ′), F (q)) = dH(q ′, q) with an additive
error at most C0 + C1 + 2R/ε + R. This completes the proof in this case.

Case 2: t (p), t (q) ≤ h(T ) − C1. In this case, since the triangle T = P ∪ Q ∪ R is
slim in Hn, we find that dH(p, q) is estimated by t (r) − t (p) + t (r) − t (q) up to an
additive error of at most 2. We now show that dX(F (p), F (q)) is also estimated by the
latter quantity, with a uniformly bounded error. Using property (i) and inequality (1) we
deduce

dX(F (p), F (q)) ≤ t (r)− t (p)+ 2R/ε + R + t (r)− t (q).

We now give a lower bound for dX(F (p), F (q)). Recall that F(P) and F(Q) are two
sides of a δ-slim triangle in X. Let RX be the third side of this triangle. Since

dX(F (p), F (Q)), dX(F (P), F (q)) > 1 ≥ δ

it follows that there are points pX, qX ∈ RX such that dX(F (p), pX), dX(qX, F (q)) ≤ δ.
Thus the distance dX(pX, qX) is an estimate for dX(F (p), F (q)) with an additive error
at most 2δ.

Define a = (x, hT ) and b = (x′, hT ). Again, as in the previous paragraph, there are
points aX, bX ∈ RX within distance δ of F(a), F (b). Since dH(a, b) ≤ 2(t (r)−h(T ))+2
we find

dX(aX, bX) ≤ 2δ + 2(t (r)− h(T ))+ 2R/ε + R ≤ 2δ + 2C0 + 2R/ε + R.
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Note that the geodesic segments [pX, aX], [bX, qX] ⊂ RX have length at least h(T ) −
t (p)− 2δ and h(T )− t (q)− 2δ respectively. Each of these is greater than C1 − 2δ.

If pX ∈ [aX, bX] then C1 − 2δ ≤ 2δ + 2C0 + 2R/ε + R and this is a contradiction.
Similarly, we deduce qX 6∈ [aX, bX]. If pX = qX then dX(F (p), F (q)) ≤ 2δ < 1, con-
tradicting our assumption that t (p) < h(T ). Finally, if pX ∈ (bX, qX) then an intermedi-
ate value argument using the fact that RX is a geodesic implies dX(F (p), F (Q)) ≤ 3δ,
again a contradiction. Similarly qX is not in (pX, aX). Thus, [pX, aX]∩ [bX, qX] is either
empty or is equal to [aX, bX]. We deduce that

dX(pX, qX) ≥ 2h(T )− t (p)− t (q)− 4δ − 2δ − 2C0 − 2R/ε − R
≥ 2t (r)− t (p)− t (q)− 71− 4C0.

The proof of Lemma 2.2 is complete. ut

3. Foliations and projections

Let Z be a closed surface of genus at least 2, and z a set of marked points. A measured
singular foliation F on (Z, z) is a singular topological foliation such that

• F has only prong-type singularties,
• all one-prong singularties of F appear at points of z, and
• F is equipped with a transverse measure of full support.

We refer the reader to [8, 20] for a detailed discussion of measured foliations. Two mea-
sured (respectively, topological) foliations are measure equivalent (respectively, topolog-
ically equivalent) if they differ by isotopy and Whitehead moves. We will only be con-
cerned with those foliations which appear as the vertical foliation for some meromorphic
quadratic differential onZ (see Section 4.1). Every measured singular foliation is measure
equivalent to such a foliation for a fixed complex structure on Z (see [13]).

The space of measure classes of measured foliations on (Z, z) is denoted by
MF(Z, z) and its projectivization by PMF(Z, z). A measured foliation F ∈MF(Z, z)
is arational if it has no closed leaf cycles. We say that F is uniquely ergodic if whenever
F ′ ∈ MF(Z, z) is topologically equivalent to F , then F and F ′ project to the same
point in PMF(Z, z). Both of these notions depend only on the topological classes of the
foliations, and not the transverse measures.

If F is a measured foliation representing an element of MF(Z), and z ⊂ Z is a set
of marked points, then F also determines an element of MF(Z, z). We note that it is
important in this case that F be a foliation, and not an equivalence class of foliations. If
F is arational as an element of MF(Z), and if z = {z} is a single point, then F is also
arational as an element of MF(Z, z) (see [19]).

By a strict subsurface Y ⊂ Z − z we mean a properly embedded surface with
nonempty boundary and a set of punctures, possibly empty, such that every component
of ∂Y is an essential curve in Z − z; that is, homotopically nontrivial and nonperiph-
eral. We also assume that Y is not a sphere with k punctures and j boundary components
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where k + j = 3. We will only refer to subsurfaces in one context: Given a pair of ara-
tional measured foliations F ,G ∈ MF(Z, z) and a proper subsurface Y ⊂ Z − z, we
have the projection distance

dY (F ,G) ∈ Z≥0

between F and G in Y . This is the distance in the arc-and-curve complex of Y between
the subsurface projections of F and G to Y . For a detailed discussion, see [23, 24]. All
we use is that dY satisfies a triangle inequality

dY (F1,F2) ≤ dY (F1,G)+ dY (G,F2)

for all arational measured foliations F1,F2,G ∈MF(Z, z). This relates to Teichmüller
geometry by Theorem 4.2 below.

4. Teichmüller spaces

Here we set notation and recall some basic properties of Teichmüller space. For back-
ground on Teichmüller space, we refer the reader to any of [2, 10, 1, 14].

4.1. Teichmüller space, quadratic differentials and geodesics

Given a closed Riemann surface Z with a finite (possibly empty) set of marked points
z ⊂ Z, let T (Z, z) denote the Teichmüller space of equivalence classes of marked Rie-
mann surfaces

T (Z, z) =
{
[f : (Z, z)→ (X, x)]

∣∣∣∣ f is an orientation preserving homeo-
morphism to the Riemann surface X

}
.

The equivalence relation is defined by

(f : (Z, z)→ (X, x)) ∼ (g : (Z, z)→ (Y, y))

if f ◦ g−1
: (Y, y)→ (X, x) is isotopic (rel marked points) to a conformal map. If z = ∅,

then we write T (Z) = {[f : Z→ X]}.
The Teichmüller distance on T (Z, z) is defined by

dT
(
[f : (Z, z)→ (X, x)], [g : (Z, z)→ (Y, y)]

)
= inf

{
1
2

log(Kh)
∣∣∣∣ h ' f ◦ g−1

}
where Kh is the dilatation of h and where h : (Y, y) → (X, x) ranges over all quasi-
conformal maps isotopic (rel marked points) to f ◦ g−1.

Given ε > 0, the ε-thick part of Teichmüller space Tε(Z, z) ⊂ T (Z, z) is the set of
points [f : (Z, z) → (X, x)] ∈ T (Z, z) where the unique complete hyperbolic surface
in the conformal class of X − x has its shortest geodesic of length at least ε. When
ε is understood from the context we will simply refer to Tε(Z, z) as the thick part of
Teichmüller space.
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Let T (Z, z) →M(Z, z) denote the projection to the moduli space obtained by for-
getting the marking,

[f : (Z, z)→ (X, x)] 7→ [(X, x)],
or equivalently, by taking the quotient by the mapping class group. Mumford’s com-
pactness criterion [3] now implies: For any ε > 0, the thick part Tε(Z, z) projects to a
compact subset of M(Z, z). Conversely, the preimage of any compact subset of M(Z, z)
is contained in Tε(Z, z) for some ε > 0.

Suppose (X, x) is a closed Riemann surface with marked points and q ∈ Q(X, x)
is a unit norm, meromorphic quadratic differential with all poles simple and contained
in x. We also use q to denote the associated Euclidean cone metric on X. We note that
Q(X) ⊂ Q(X, x) for any set of marked point x ⊂ X. Given q ∈ Q(X) we view it as an
element of Q(X, x) whenever it is convenient.

Given q ∈ Q(X, x) and t ∈ R, let gt : (X, x) → (Xt , gt (x)) denote the e2t -quasi-
conformal Teichmüller mapping defined by (q, t). Let qt ∈ Q(Xt , gt (x)) denote the
terminal quadratic differential. For any point p ∈ X which is not a zero or pole of q
we have a preferred coordinate z0 for (X, q) near p and preferred coordinate zt for
(Xt , qt ) near gt (p). In these coordinates q = dz2

0 and qt = dz2
t , and gt is given by

(u, v) 7→ (etu, e−tv). If we mark (X, x) by f : (Z, z)→ (X, x) and set ft = gt ◦f , then

τq(t) = [ft : (Z, z)→ (Xt , gt (x))]

is a Teichmüller geodesic through [f : (Z, z) → (X, x)]; note that every Teichmüller
geodesic can be described in this way. The Teichmüller geodesic τ is ε-thick if the image
of τ lies in Tε(Z, z). We also simply say a geodesic τ is thick if it is ε-thick for some
ε > 0. A collection {τα} of geodesics is uniformly thick if there is an ε > 0 such that each
τα is ε-thick.

Given q ∈ Q(X, x) we will let F(q) and G(q) denote the vertical and horizontal
foliations respectively; that is, the preimage in preferred coordinates of the foliations of C
by vertical and horizontal lines. For q ∈ Q(X, x) and t ∈ R consider the associated
Teichmüller mapping gt : (X, x) → (Xt , gt (x)) as above. If c : R → X is a nonsingular
leaf of F(q) parameterized by arc-length with respect to the q-metric, then composing
with gt we obtain a nonsingular leaf of the vertical foliation for the terminal quadratic
differential F(qt ),

gt ◦ c : R→ Xt .

From the description of gt in local coordinates we see that this is parameterized propor-
tional to arc-length and, in fact, the qt -length is given by

`qt (gt ◦ c|[x,x′]) = e
−t
|x′ − x|. (3)

4.2. Properties of Teichmüller geodesics

Suppose τ = τq is the Teichmüller geodesic determined by [f : (Z, z) → (X, x)] ∈
T (Z, z) and q ∈ Q(X, x). The forward asymptotic behavior of τ is reflected in the struc-
ture of the vertical foliation F(q). For us, the most important instance of this is a result
of Masur [22].
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Theorem 4.1 (Masur). If there exist ε > 0 and {tk}∞k=1 such that

• tk →∞ as k→∞ and
• τq(tk) ∈ Tε(Z, z) for all k,

then F(q) is arational and uniquely ergodesic.

In particular, if τq is thick then both F(q) and G(q) are uniquely ergodic. We say a pair of
arational foliations F and G are K-cobounded if for all strict subsurfaces Y ⊂ X − x we
have dY (F ,G) ≤ K . A result of Rafi [26, Theorem 1.5] relates the thickness of a geodesic
τq ⊂ T to the coboundedness of the associated vertical and horizontal foliations.

Theorem 4.2 (Rafi). For all ε > 0 there exists K > 0 such that if q ∈ Q(X, x) has
τq ε-thick then F(q) and G(q) are K-cobounded. Conversely, for all K > 0 there exists
ε > 0 such that if q ∈ Q(X, x) has F(q) and G(q) K-cobounded then τq is ε-thick.

4.3. Forgetting the marked point: the Bers fibration

Suppose now that Z is a closed surface and z ∈ Z is a single marked point; we use (Z, z)
to denote (Z, {z}). Let p : Z̃ → Z denote the universal covering. Given [f : (Z, z) →
(X, f (z))] we can forget the marked point to obtain an element [f : Z → X] ∈ T (Z).
This defines a holomorphic map

5 : T (Z, z)→ T (Z)

called the Bers fibration [4]. The fiber of this map over [f : Z → X] is holomorphically
identified with X̃, the universal covering of X. Moreover, this identification is canonical,
up to the action of the covering group on X̃.

The projection of Teichmüller spaces 5 : T (Z, z) → T (Z) descends to a projec-
tion of moduli spaces 5̂ :M(Z, z) → M(Z). The fiber of 5̂ over X ∈ M(Z) is just
X/Aut(X) and this is compact.

Recall that puncturing a closed surface once increases the hyperbolic systole. (Lift
to universal covers and apply the Schwarz–Pick lemma.) It follows that the preimage of
Tε(Z) by 5−1 is contained in Tε(Z, z).

By a theorem of Royden [28] the Teichmüller metric agrees with the Kobayashi metric
on Teichmüller space. Recall that the inclusion of the universal covering X̃ → T (Z, z)
is a holomorphic embedding [4]. Thus, if we give X̃ the Poincaré metric ρ0—one-half
of the hyperbolic metric—then (X̃, ρ0)→ (T (Z, z), dT ) is a contraction [16]. Kra [17]
further proved the following.

Theorem 4.3 (Kra). There exists a homeomorphism h : [0,∞)→ [0,∞) such that for
any [f : Z→ X] ∈ T (Z), and any x̃1, x̃2 ∈ X̃ ⊂ T (Z, z), we have

h(ρ0(x̃1, x̃1)) ≤ dT (x̃1, x̃2) ≤ ρ0(x̃1, x̃2).

The function h can be described concretely in terms of the solution to a certain extremal
mapping problem for the hyperbolic plane which was solved by Teichmüller [29] and
Gehring [11]. We will extend h to a nondecreasing function h : R→ [0,∞) by declaring
h(t) = 0 for all t ≤ 0.
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4.4. Branched covers

Here we use branched covers to induce maps on Teichmüller space.
Suppose P : 6 → Z is a branched cover, branched over some finite set of points

z ⊂ Z. Then any complex structure on Z pulls back to a complex structure on 6, and
thus induces a map P ∗ : T (Z, z) → T (6). Regarding Teichmüller space as the space
of marked Riemann surfaces, T (Z, z) = {[f : (Z, z) → (X, x)]}, the embedding is de-
scribed as follows. The branched covering P : 6 → (Z, z) induces a branched covering
U : �→ (X, x) for some Riemann surface �, namely the branched cover induced by the
subgroup (f ◦ P)∗(π1(6 − P

−1(z))) < π1(X− x). By construction, there is a lift of the
marking homeomorphism φ : 6→ �. This is described by the commutative diagram

6

P

��

φ // �

U

��
(Z, z)

f // (X, x)

Then we have
P ∗([f : (Z, z)→ (X, x)]) = [φ : 6→ �].

We now give a well-known consequence of these definitions.

Proposition 4.4. If P : 6 → Z is nontrivially branched at every point of P−1(z), then
P ∗ : T (Z, z) → T (6) is an isometric embedding. Moreover, for all ε > 0 there exists
ε′ > 0 such that P ∗(Tε(Z, z)) ⊂ Tε′(6).

Proof. When P is a covering then P ∗ is an isometric embedding (see [27, Section 7]).
The proof is identical in the presence of nontrivial branching, as a one-prong singularity
at a point of z lifts to a regular point or to a three-prong or higher singularity.

Let M̃(Z, z) be the quotient of T (Z, z) by the group of mapping classes of (Z, z)
that lift to 6. Note that M̃(Z, z) → M(Z, z) is a finite sheeted (orbifold) covering.
The embedding P ∗ : T (Z, z)→ T (6) descends to a map M̃(Z, z)→M(6), giving a
commutative square

T (Z, z) P ∗ //

��

T (6)

��
M̃(Z, z) //M(6)

By Mumford’s compactness criteria [3], the image of Tε(Z, z) in M̃(Z, z) is compact,
and hence so is the image in M(6). Appealing to Mumford’s criteria again (for M(6)),
it follows that for some ε′ > 0 we have P ∗(Tε(Z, z)) ⊂ Tε′(6). ut

In general, for any branched cover P : 6 → Z, branched over z ⊂ Z, consider σ =
P−1(z) as a set of marked points on 6. Then again there is an isometric embedding

P ∗ : T (Z, z)→ T (6, σ ).
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If ω ⊂ σ then define5ω : T (6, σ )→ T (6, ω) by forgetting the points of σ not in ω.
When ω is empty we may omit the subscript. In this notation, the composition 5 ◦ P ∗

gives the map of Proposition 4.4. So, if P is nontrivially branched at all points of σ then
5 ◦ P ∗ is an isometric embedding. If P is not branched at all points of σ then 5 ◦ P ∗

fails to be an isometric embedding; however, it remains 1-Lipschitz.

Proposition 4.5. If P : 6→ Z is branched over z and if ω ⊂ σ = P−1(z) is any subset
then

5ω ◦ P
∗
: T (Z, z)→ T (6, ω)

is 1-Lipschitz.

Proof. The Bers fibration is a holomorphic map [4] and, by forgetting the points of σ −ω
one at a time, we see that 5ω : T (6, σ ) → T (6, ω) is a composition of holomorphic
maps, hence holomorphic. In particular, because the Teichmüller metric agrees with the
Kobayashi metric [28], it follows that 5ω is 1-Lipschitz [16]. Since P ∗ is an isometric
embedding, the composition is 1-Lipschitz. ut

5. An inductive construction

The proof of Theorem 1.1 is constructive, but also appeals to an inductive procedure. We
begin by constructing the required embedding of H2 into some Teichmüller space as the
base case of the induction, then produce an embedding of H3 into some other Teichmüller
space, then an embedding of H4, and so on. All the main ideas and technical difficulties
are present in the construction of the embedding of H2 and then the embedding of H3

from that of H2. The only further complications which arise in describing the embedding
of Hn from Hn−1 for n ≥ 4 are in the notation, which becomes increasingly messy as n
increases. This is due to the fact that the proof for n really depends on the proof for all
2 ≤ k < n (rather than just n− 1). For this reason, we carefully describe the cases n = 2
and n = 3, and sketch the general inductive step indicating only those things that require
modification.

5.1. The hyperbolic plane case

Let Z be a closed hyperbolic surface. Let q ∈ Q(Z) be a nonzero holomorphic quadratic
differential on Z such that the associated Teichmüller geodesic [gt : Z → Zt ] is thick.
Write F = F(q) and G = G(q) for the vertical and horizontal foliations of q, respec-
tively. Next, let c : R → Z be a nonsingular leaf of F parameterized by arc-length with
respect to q and let z = c(0) be a marked point on Z (see Section 4).

Our goal is to construct an almost-isometric embedding

Z : H2
→ T (Z, z).

We consider an isotopy Z × R → Z, written (w, x) 7→ f x(w), where f x : Z → Z is
a homeomorphism for all x ∈ R, f 0 is the identity and f x(z) = c(x) for all x ∈ R. We
further assume that f x preserves F for all x ∈ R.
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We can construct such an isotopy by piecing together isotopies defined on small balls.
More precisely, we start with some ε-ball around z, and construct a vector field tangent
to F supported in the ball with norm identically equal to 1 on the ε/2-ball. The flow for
time t ∈ (−ε/2, ε/2) is an isotopy of the correct form. Now we repeat this for a ball
around c(ε/2). Since the arc of c from z to any point c(x) is compact, we can cover it
with finitely many such balls to produce the required isotopy.

We think of the isotopy as “pushing z along c”. This determines the horocyclic coor-
dinate

c̃ : R→ T (Z, z)
given by

c̃(x) = [f x : (Z, z)→ (Z, c(x))].

The image of c̃ lies in the Bers fiber over the basepoint [Id : Z→ Z] ∈ T (Z); the fiber is
identified with the universal cover Z̃ of Z. As such, we can identify c̃ with a lift of c to Z̃
and write

c̃ : R→ Z̃ ⊂ T (Z, z).
Applying the Teichmüller mapping gt : Z→ Zt determined by q and t ∈ R gives the

height coordinate. These coordinates together define Z : H2
→ T (Z, z) where

Z(x, t) = [gt ◦ f x : (Z, z)→ (Zt , gt (c(x)))].

Here we are using the coordinates (x, t) on H2 described in Section 2.
Since the marking homeomorphisms are determined by x and t , we simplify notation

and denote the values in Teichmüller space by

Z(x, t) = c̃t (x) = (Zt , gt (c(x))). (4)

We also write
Z(x, 0) = c̃(x) = (Z, c(x)).

As the notation suggests, c̃t : R → Z̃t ⊂ T (Z, z) is a lift of gt ◦ c : R → Zt to the
universal cover Z̃t , thought of as the fiber over [gt : Z→ Zt ].

Theorem 5.1. The map Z : H2
→ T (Z, z) is an almost-isometric embedding. Moreover,

the image lies in the thick part and is quasi-convex.
Proof. We verify the hypothesis of Lemma 2.2 to prove that Z is an almost-isometric
embedding and, along the way, prove that the image is quasi-convex and lies in the thick
part.

First, fix any x ∈ R so that ηx(t) = (x, t) is a vertical geodesic in H2. Then t 7→
Z ◦ ηx(t) = Z(x, t) = (Zt , gt (c(x))) is a Teichmüller geodesic, and hence property (i)
of Lemma 2.2 holds. Furthermore, since t 7→ Zt is a thick geodesic, it follows that
{Z◦ηx(t)}x∈R are uniformly thick geodesics. That is, the union of these geodesics, over all
x ∈ R, projects into a compact subset of M(Z, z), namely, the preimage of the compact
subset of M(Z) containing the image of t 7→ Zt (see Section 4.3). In particular, the
image of Z lies in the thick part of T (Z, z).

For each x ∈ R, the geodesic Z ◦ ηx is defined by the quadratic differential q ∈ Q(Z)
viewed as a quadratic differential in Q(Z, c(x)). We denote the vertical and horizontal
foliations of q ∈ Q(Z, c(x)) by Fx and Gx , respectively, and consider them as measured
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foliations in MF(Z, z) by pulling them back via f x . Since f x preserves F , it follows
that Fx

= F0
∈MF(Z, z) for all x ∈ R.

Now, since t 7→ Zt is a thick geodesic, by Theorem 4.1 the foliations F and G
are arational. Puncturing an arational foliation once gives an arational foliation in the
punctured surface. Hence Fx and Gx are also arational for all x. Since Fx

= F0 for all
x ∈ R and since the geodesics {Z ◦ ηx}x∈R are uniformly thick, Theorem 4.2 implies that
there exists K > 0 such that the pairs (F0,Gx) = (Fx,Gx) are K-cobounded for all x.
By the triangle inequality (applied to each subsurface Y ) we see that for all x, x′ ∈ R the
pair (Gx,Gx′) is 2K-cobounded (to see that Gx and Gx′ are different foliations, note that
(F0,Gx) and (F0,Gx′) define different geodesics Z ◦ ηx and Z ◦ ηx′ , respectively).

Appealing to the other direction in Theorem 4.2, the geodesic 0x,x
′

, determined by Gx
and Gx′ for distinct x, x′ ∈ R, is uniformly thick, independent of x and x′. From this and
[15, Theorem 4.4] it follows that there is a δ > 0 such that Z ◦ ηx , Z ◦ ηx′ and 0x,x

′

are the sides of a δ-slim triangle for every pair of distinct points x, x′ ∈ R, and hence
property (ii) of Lemma 2.2 holds. From this, it follows that Z(H2) (is contained in and)
has Hausdorff distance at most δ from the union of the geodesics

Z(H2) ∪
( ⋃
x 6=x′∈R

0x,x
′
)
=

(⋃
x∈R

Z ◦ ηx
)
∪

( ⋃
x 6=x′∈R

0x,x
′
)
.

This is precisely the weak hull of {Gx}x∈R ∪ {F0
} ⊂ PMF(Z, z), and so according to

[15, Theorem 4.5], this set, hence also Z(H2), is quasi-convex (the assumption in [15]
that the subset of PMF(Z) be closed was not used in the proof).

Finally, we must prove that properties (iii) and (iv) of Lemma 2.2 hold. For this we
can appeal directly to Theorem 4.3. More precisely, observe that because {Zt }t∈R lies in
the thick part, the pull-back of the flat metric on Z̃t (which we also denote qt ) is uniformly
quasi-isometric to the Poincaré metric ρ0 on Z̃t . That is, there exist constants A,B ≥ 0
such that

1
A
(dqt (̃z, z̃

′)− B) ≤ ρ0(̃z, z̃
′) ≤ Adqt (̃z, z̃

′)+ B (5)

for all t ∈ R and z̃, z̃′ ∈ Zt (see for example [7, Lemma 2.2]).
Applying (4), the upper bound of Theorem 4.3, (5) and (3), in that order, we find

dT (Z(x, t),Z(x′, t)) = dT (̃ct (x), c̃t (x′)) ≤ ρ0(̃ct (x), c̃t (x
′))

≤ Adqt (̃ct (x), c̃t (x
′))+ B = Ae−t |x′ − x| + B.

So, setting ε = 1 and R = A+ B yields property (iii) of Lemma 2.2.
On the other hand, (4), the lower bound of Theorem 4.3, monotonicity of h, and (3)

give

dT (Z(x, t),Z(x′, t)) = dT (̃ct (x), c̃t (x′)) ≥ h(ρ0(̃ct (x), c̃t (x
′)))

≥ h

(
1
A
(dqt (̃ct (x), c̃t (x

′))− B)

)
= h

(
1
A
(e−t |x′ − x| − B)

)
.

From this, and because h is a homeomorphism on [0,∞) and hence proper, property (iv)
of Lemma 2.2 also holds. This completes the proof of Theorem 5.1. ut
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5.2. Hyperbolic 3-space

Before diving into the construction, we explain the basic idea. Our embedding of the hy-
perbolic plane in Section 5.1 sends (x, t) to Z(x, t) ∈ T (Z, z) by pushing the marked
point z a distance x along a leaf of the vertical foliation of a quadratic differential
then traveling distance t along the Teichmüller flow. There is a simple extension of
this construction which produces a map of hyperbolic 3-space into Teichmüller space
T (Z, {z,w}). Take z and w to lie on distinct leaves and send (x, y, t) to the point of
T (Z, {z,w}) obtained by pushing z a distance x along its leaf, pushing w a distance y
along its leaf, and applying the Teichmüller flow for time t .

The problem is that whenever z and w move close to each other on Z, the correspond-
ing point in T (Z, {z,w}) is in the thin part of Teichmüller space; if z andw are very close
to each other then there is a simple closed curve surrounding z and w having an annular
neighborhood of large modulus. This also shows that this map (x, y, t) 7→ T (Z, {z,w})
is not a quasi-isometric embedding. In fact the map is not even coarsely Lipschitz.

A more subtle construction is required. We first choose a branched cover P : 6→ Z,
nontrivially branched at each point of P−1(z). According to Proposition 4.4, this induces
an isometric embedding of T (Z, z) into T (6). Fix a suitably generic point w ∈ (Z, z)
and pick a point σ ∈ P−1(w). Roughly, we map our three parameters (x, y, t) into
T (6, σ ) as follows. The coordinates (x, t) determine Z(x, t) ∈ T (Z, z) as in Section 5.1.
The map P ∗ applied to Z(x, t) gives a point in T (6) as in Section 4.4. Finally use y to
determine a point 6(x, y, t) ∈ T (6, σ ), lying in the Bers fiber above P ∗ ◦ Z(x, t). This
new construction avoids the problem we had before. To see this, we first note that in (Z, z)
we have only one marked point; after taking the branched covering over z we forget all
of the branch points over z. The single image of σ can now move freely enough so that
we stay in the thick part of T (6, σ ). We now explain this construction in more detail and
prove that the resulting map has all the required properties.

5.2.1. The construction. The notation from Section 5.1 carries over to this section with-
out change. Let P : 6 → Z be a branched cover, branched over the marked point z ∈ Z
so that P is nontrivially branched at every point of P−1(z). This determines an isometric
embedding of Teichmüller spaces

P ∗ : T (Z, z)→ T (6)

by Proposition 4.4. We write

P ∗([gt ◦ f
x
: (Z, z)→ (Zt , gt (c(x)))]) = [φ

x
t : 6→ 6xt ]

so that φxt is a lift of the marking gt ◦ f x , and P xt is the induced branched cover making
the following commute:

6

P

��

φxt // 6xt

P xt

��
(Z, z)

gt◦f
x

// (Zt , gt (c(x)))
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The quadratic differentials qt pull back to quadratic differentials λxt on 6xt , and gt lifts to
Teichmüller mappings of the covers

ψxt : 6
x
0 → 6xt

so that t 7→ 6xt is a Teichmüller geodesic for all x. The lifts satisfy φxt = ψ
x
t ◦ φ

x
0 . We

have another commutative diagram which may be helpful in organizing all the maps:

6

P

��

φx0 // 6x0
ψxt //

P x0
��

6xt

P xt

��
(Z, z)

f x // (Z, c(x))
gt // (Zt , gt (c(x)))

Denote the vertical foliation for λxt by 8xt . Each nonsingular leaf of 8xt maps isomet-
rically to a nonsingular leaf of the vertical foliation Ft for qt via the branched covering
6xt → Zt since λxt is the pull-back of qt . Choose any nonsingular leaf γ 0

0 : R → 60
0

= 6, parameterized by arc-length. Observe that γ 0
0 maps isometrically by P to a leaf

γ : R → Z for F . Note that c and γ are distinct leaves; the preimage of c in 6 consists
entirely of singular leaves, namely the leaves that meet the branch points of P .

As we vary x, we can continuously choose lifts of γ to leaves γ x0 : R → 6x0 which
agrees with our initial leaf γ 0

0 when x = 0. Specifically, we define the lift to be

γ x0 = φ
x
0 ◦ (P |γ 0

0 (R)
)−1
◦ (f x)−1

◦ γ.

Composing with the lifts ψxt , we obtain the leaves γ xt = ψxt ◦ γ
x
0 . Observe that via

the branched covering P xt : 6
x
t → Zt , γ xt projects to the leaf gt ◦ γ , independent of x.

Furthermore, this shows that the λxt -length of the arc γ xt ([y, y
′
]) is the qt -length of gt ◦γ ,

which is e−t |y − y′|.
We pick a basepoint σ = γ 0

0 (0) ∈ 6, and consider the surface (6, σ ), marked by the
identity Id = φ0

0 as a point in T (6, σ ). Just as we constructed f x by pushing along c to
c(x), we push σ along γ xt to γ xt (y) to obtain maps

ξ
x,y
t : (6, σ )→ (6xt , γ

x
t (y)).

Specifically, we take ξx,y0 to be the composition of φx0 and a map isotopic to the identity
on 6x0 which preserves the foliation 8x0 and pushes φx0 (σ ) along γ x0 to γ x0 (y). Then
ξ
x,y
t = ψxt ◦ ξ

x,y

0 maps the foliation 80
0 to 8xt .

We denote the associated point in Teichmüller space [ξx,yt : (6, σ ) → (6xt , γ
x
t (y))]

∈ T (6, σ ) simply by (6xt , γ
x
t (y)) as this point is uniquely determined in this construc-

tion by (x, y, t).
We define

6 : H3
→ T (6, σ )

in the coordinates (x, y, t) for H3 from Section 2 by

6(x, y, t) = (6xt , γ
x
t (y)).
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5.2.2. Fibration over H2 case. We also require a slightly different description of the
map 6 to take advantage of the construction in the H2 case. Observe that P ∗ ◦Z : H2

→

T (Z, z)→ T (6) is an almost-isometric embedding, and is given by

P ∗(Z(x, t)) = 6xt ,

where 6xt denotes the point [φxt : 6→ 6xt ]. Recall that

5 : T (6, σ )→ T (6)

is the Bers fibration. If we fix (x, t) ∈ H2, then for every y we see that (6xt , γ
x
t (y)) is

contained the fiber5−1(6xt ). Since5−1(6xt ) is identified with the universal covering 6̃xt
of 6xt , just as in the case of H2 we see that t 7→ (6xt , γ

x
t (y)) is a lift of γ xt to 6̃xt ⊂

T (6, σ ). As such, we use the alternative notation

γ̃ xt : R→ 6̃xt ⊂ T (6, σ )

with
γ̃ xt (y) = (6

x
t , γ

x
t (y))

whenever convenient.
Finally we record the equation

5 ◦6(x, y, t) = P ∗ ◦ Z(x, t), (6)

which holds for all (x, y, t) ∈ H3. The fact that5 is 1-Lipschitz and P ∗ ◦Z is an almost-
isometric embedding provides us with useful metric information about 6.

Theorem 5.2. The map 6 : H3
→ T (6, σ ) is an almost-isometric embedding. More-

over, the image lies in the thick part and is quasi-convex.

Proof. As before, we will verify the hypothesis of Lemma 2.2 to prove that 6 is an
almost-isometry and, along the way, prove that the image is quasi-convex and lies in the
thick part.

For all (x, y) ∈ R2, the geodesic η(x,y)(t) in H3 is sent to

6 ◦ η(x,y)(t) = (6
x
t , γ

x
t (y)) = (ψ

x
t (6

x
0 ), ψ

x
t (γ

x
0 (y))).

This is a geodesic in T (6, σ ) because ψxt : 6
x
0 → 6xt is a Teichmüller mapping; thus

property (i) follows. Furthermore, note that 6 ◦ η(x,y)(t) lies over P ∗ ◦ Z ◦ ηx(t) for all
(x, y, t). Since P is nontrivially branched over every point, the uniform thickness of the
set {Z ◦ ηx(t)}x∈R of geodesics implies the same for {P ∗ ◦ Z ◦ ηx(t)}x∈R by Proposition
4.4, and hence also for {6 ◦ η(x,y)(t) | (x, y) ∈ R2

} by (6) as discussed in Section 4.3.
That is, 6(H3) lies in the thick part.

By our choice of maps ξx,y0 , if we pull back the vertical foliation8x0 of λx0 to a foliation
8
x,y

0 ∈ MF(6, σ ) the result is independent of x and y. Furthermore, Theorem 4.1
implies that these foliations, as well as the pull-backs of the horizontal foliations, are
arational. Thus all strict subsurface projection distances are defined. Theorem 4.2 and the
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results of [15] can be applied as in the H2 case to prove that property (ii) of Lemma 2.2
is satisfied for some δ > 0. Furthermore, 6(H3) is quasi-convex.

We now come to the subtle point of the proof, which is verifying properties (iii)
and (iv) of Lemma 2.2. We start with (iii).

Claim. There exist ε > 0 and R > 0 such that if e−t
∣∣(x, y)− (x′, y′)∣∣ < ε then

dT (6(x, y, t), 6(x
′, y′, t)) < R.

Before we give the proof, we briefly explain the core technical difficulty. Fix t and define
Cx = gt (c(x)) and 0y = gt (γ (y)). Observe that, as before, when we vary y we are
simply point pushing; thus the change in Teichmüller distance is controlled by Theorem
4.3. On the other hand, varying x means that we are varying the conformal stucture on the
closed surface6xt . This is obtained by varying x in (Zt , Cx) (which is also point pushing)
and then taking a branched cover. However, while we vary Cx in Zt we must also keep
track of our y coordinate, which means we should also project γ xt (y) down to Zt–this is
precisely the point 0y . Now if Cx and 0y are close together and we vary x so as to push
these points apart, then this can result in a large distance in the “auxiliary” Teichmüller
space T (Z, {z,w}), even for small variation of x. The idea is therefore to first vary y, if
necessary, to move γ xt (y) in 6xt and so guaranteeing that 0y is not too close to Cx . We
can then vary x as required, then vary y back to its original value. Since the variation of y
can be carried out independent of x, this will result in a uniformly bounded change in
Teichmüller distance.

Proof of Claim. Since the surfaces {6xt }t,x∈R lie in the thick part, the (pulled-back) met-
rics λxt and the Poincaré metric(s) ρ0 on the universal cover 6̃xt are uniformly comparable.
That is, there exist constants A and B such that for all σ̃ , σ̃ ′ ∈ 6̃xt ,

1
A
(dλxt (̃σ , σ̃

′)− B) ≤ ρ0(̃σ , σ̃
′) ≤ Adλxt (̃σ , σ̃

′)+ B. (7)

Applying Theorem 4.3 and (7) and (3) we have

dT (6(x, y, t), 6(x, y
′, t)) = dT (γ̃

x
t (y), γ̃

x
t (y
′)) ≤ ρ0(γ̃

x
t (y), γ̃

x
t (y
′))

≤ Adλxt (γ̃
x
t (y), γ̃

x
t (y
′))+ B = A(e−t |y − y′|)+ B. (8)

We now fix t and the notation Cx = gt (c(x)) and 0y = gt (γ (y)). To understand the
effect of varying x we must consider the branched covering P xt : 6

x
t → (Zt , Cx), but

also keep track of the image of our marked point γ xt (y) = ψ
x
t (γ

x
0 (y)) down in (Zt , Cx),

that is, the point 0y . This results in the surface Zt with two marked points:

(Zt , {Cx, 0y}).

Appealing to Proposition 4.5 we have

dT (6(x, y, t), 6(x
′, y′, t)) ≤ dT ((Zt , {Cx, 0y}), (Zt , {Cx′ , 0y′})). (9)
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This is because we are taking a branched covering, 6xt → Zt , and then forgetting all but
one of the marked points in 6xt .

Since Zt lies in some fixed thick part of T (Z) for all t ∈ R, there exists ε > 0 such
that the 2ε-ball about Cx in the qt metric, Bqt (Cx, 2ε), is a disk for all t, x ∈ R (that is,
we have a lower bound on the qt -injectivity radius of Zt , independent of t). Now suppose
0y lies outside this ball:

0y 6∈ Bqt (Cx, 2ε).

Using again the fact that Zt lies in some thick part of T (Z) for all t ∈ R, it follows that
there is some R′ > 0 with the property that for any point z′ ∈ Bqt (Cx, ε) we have

dT ((Zt , {Cx, 0y}), (Zt , {z
′, 0y})) < R′.

Here the marking homeomorphism for (Zt , {z′, 0y}) is assumed to differ from that of
(Zt , {Cx, 0y}) by composition with a homeomorphism of Zt that is the identity outside
Bqt (Cx, 2ε). In particular, if e−t |x−x′| < ε and, crucially, 0y 6∈ Bqt (Cx, 2ε) then deduce
that Cx′ ∈ Bqt (Cx, ε) and, from (9), that

dT (6(x, y, t), 6(x
′, y, t)) ≤ dT ((Zt , {Cx, 0y}), (Zt , {Cx′ , 0y})) < R′. (10)

On the other hand, because the leaves of F are geodesics for qt and because
Bqt (Cx, 2ε) is a disk, if 0y ∈ Bqt (Cx, 2ε) then there exists y′ ∈ R such that e−t |y′ − y|
≤ 2ε and

0y′ 6∈ Bqt (Cx, 2ε).

Then, from (10) we have

dT (6(x, y
′, t), 6(x′, y′, t)) ≤ dT ((Zt , {Cx, 0y′}), (Zt , {Cx′ , 0y′})) < R′.

Combining this, inequalities (8) and (10), and the triangle inequality, it follows that
for any x, y, x′, t with e−t |x − x′| ≤ ε there is some y′ ∈ R with e−t |y′ − y| ≤ 2ε such
that

dT (6(x, y, t), 6(x
′, y, t)) ≤ dT (6(x, y, t), 6(x, y

′, t))+ dT (6(x, y
′, t), 6(x′, y′, t))

+ dT (6(x
′, y′, t), 6(x′, y, t))

≤ 2(A(e−t |y − y′|)+ B)+ R′

< 2(A2ε + B)+ R′ ≤ 4(Aε + B)+ R′. (11)

Now, let ε > 0 be as above and set R = 5(Aε+B)+R′. Given (x, y, t), (x′, y′, t) ∈ H3

with e−t |(x, y)−(x′, y′)|<ε, we have e−t |x−x′|, e−t |y−y′|≤e−t |(x, y)−(x′, y′)|<ε.
Applying (8), (11) and the triangle inequality we obtain

dT (6(x, y, t), 6(x
′, y′, t)) ≤ dT (6(x, y, t), 6(x

′, y, t))+dT (6(x
′, y, t), 6(x′, y′, t))

≤ 4(Aε+B)+R′+Aε+B < 5(Aε+B)+R′ = R.

This completes the proof of the claim, and so verifies property (iii) of Lemma 2.2. ut
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It remains to show property (iv) of Lemma 2.2. Suppose we have a sequence of pairs
{(xn, yn, tn), (x

′
n, y
′
n, tn)}

∞

n=1 with etn |(xn, yn)− (x′n, y
′
n)| → ∞ as n→∞. Then, up to

a subsequence, we must be in one of two cases.

Case 1: etn |xn − x′n| → ∞ as n→ ∞. Forgetting the marked point is 1-Lipschitz, and
so we have

dT (6(xn, yn, tn),6(x
′
n, y
′
n, tn)) ≥ dT (6

xn
tn
, 6

x′n
tn
) = dT ((Ztn , gtn(xn)), (Ztn , gtn(x

′
n)))

= dT (Z(xn, tn),Z(x′n, tn)).

However, we have already verified that Z : H2
→ T (Z, z) satisfies Lemma 2.2. Therefore

the last expression tends to infinity, and hence

lim
n→∞

dT (6(xn, yn, tn),6(x
′
n, y
′
n, tn)) = ∞

as required.

Case 2: etn |yn − y′n| → ∞ as n → ∞. If we also have etn |xn − x′n| → ∞, then
we can appeal to the previous case and we are done. So we assume, as we may, that
etn |xn − x

′
n| < M for some constant M > 0. Since we have already shown that there are

ε, R > 0 such that (iii) from Lemma 2.2 holds, it follows from (1) that

dT (6(xn, y
′
n, tn),6(x

′
n, y
′
n, tn)) ≤

R

ε
(e−tn |xn − x

′
n|)+ R ≤

R

ε
M + R.

Now, by the triangle inequality we have

dT (6(xn, yn, tn),6(x
′
n, y
′
n, tn)) ≥ dT (6(xn, yn, tn),6(xn, y

′
n, tn))

− dT (6(xn, y
′
n, tn),6(x

′
n, y
′
n, tn))

≥ dT (γ̃
xn
tn
(yn), γ̃

xn
tn
(y′n))−

R

ε
M − R. (12)

We can now appeal to Theorem 4.3 as in our proof for Z : H2
→ T (Z, z) to find A,B

such that

dT (γ̃
xn
tn
(yn), γ̃

xn
tn
(y′n)) ≥ h

(
1
A
e−tn |y′n − yn| − B

)
.

The right-hand side tends to infinity by the properness of h, so we can combine this with
(12) to obtain

lim
n→∞

dT (6(xn, yn, tn),6(x
′
n, y
′
n, tn)) = ∞

as required. Therefore, property (iv) from Lemma 2.2 holds, and the proof of Theorem 5.2
is complete. ut
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5.3. The general case

The previous arguments set up an inductive scheme for producing almost-isometric em-
beddings of Hn into Teichmüller spaces. The idea is as follows.

For n − 1 ≥ 3, induction gives us an almost-isometric embedding W : Hn−1
→

T (W,w) satisfying all the hypotheses of Lemma 2.2 for some closed surface W with a
marked point w. We again take a branched cover

P : �→ W

nontrivially branched over each point in P−1(w) ⊂ �. This determines a map

P ∗ ◦W : Hn−1
→ T (�).

Using the coordinates (x, t) = (x1, . . . , xn−2, t) ∈ Hn−1 we write

P ∗ ◦W(x, t) = �xt .

Inductively, we assume that Hn−1 is foliated by asymptotic geodesics {ηx(t)}x∈Rn−2

that are all mapped by W to uniformly thick geodesics in T (W,w), so the same is
true for P ∗ ◦ W . These geodesics are obtained by applying the Teichmüller mapping
ψxt : �

x
0 → �xt giving

P ∗ ◦W(x, t) = ψxt ◦ P
∗
◦W(x, 0)

for all x ∈ Rn−2 and t ∈ R. Furthermore, the defining quadratic differentials all have the
same vertical foliation.

We pick a leaf γ : R → � of this foliation, and arguing as before, this determines a
leaf γ xt : R→ �xt in each surface with γ 0

0 = γ : R→ �0
0 = �. Now, pick ω = γ 0

0 (0) to
be our marked point, add a factor of R to Hn−1 with coordinate y = xn−1 to obtain Hn
with coordinates (x, y, t) = (x1, . . . , xn−2, xn−1, t), and define

� : Hn→ T (�, ω)

by
�(x, y, t) = (�xt , γ

x
t (y)).

So we are again pushing a point along a leaf of the vertical foliation.

Theorem 5.3. The map � : Hn → T (�, ω) is an almost-isometric embedding. More-
over, the image lies in the thick part and is quasi-convex.

Sketch of proof. Again, we must verify the hypotheses of Lemma 2.2 and prove that the
image of � is quasi-convex in the thick part, assuming that this is true in all previous
steps of the construction.

We can argue exactly as in the case of H3 to prove properties (i) and (ii) of Lemma 2.2
as well as the fact that the image of � is quasi-convex in the thick part. Property (iii)
requires more care. However, once established, property (iv) follows formally, just as in
the case of H3.
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We elaborate on the proof that property (iii) holds for some ε and R. For this, we must
give a more precise description of the construction. Write �n−1 = �, �n−2 = W and

Pn−2 = P : �n−1 → �n−2

for the branched cover used in the construction. Inductively, we have a tower of branched
covers

�n−1
Pn−2
−−→ �n−2

Pn−3
−−→ · · · → �2

P1
−→ �1.

In this tower, Pj is nontrivially branched at every point P−1
j (ωj ) where ωj ∈ �j is the

marked point. To clarify, we note that �1 = Z, ω1 = z, �2 = 6 and ω2 = σ from the
preceding discussion.

We also have a quadratic differential ν1 on �1 (this is ν1 = q from the above), which
pulls back via all the branched covers to quadratic differentials νi = P ∗i−1(νi−1) ∈ Q(�i).
On�1, we have chosen n− 1 distinct nonsingular leaves from the vertical foliation of ν1,
which we denote {ζi : R→ �1}

n−1
i=1 . These leaves are parameterized by arc-length so that

ζj (0) = P1 ◦ P2 ◦ · · · ◦ Pj−1(ωj ).
Recall that y = xn−1. We can now describe �(x, y, t) = �(x1, . . . , xn−2, xn−1, t)

for any (x, y, t) ∈ Hn. At the bottom of the tower we push ω1 along ζ1 to ζ1(x1), then
take the branched cover �x1

2 → (�1, ζ1(x1)) induced by P1 (it is the induced branched
cover since it branches over ζ1(x1) rather than over ζ1(0) = ω1; see Section 4.4). Next,
the lifted marking identifies ω2 with a point in the preimage of ζ2(0), and we push this
along an appropriate lift ζ x1

2 of ζ2 to a point ζ x1
2 (x2) in the preimage of ζ2(x2). At the

next level, there is a branched cover �x1,x2
3 → (�

x1
2 , ζ

x1
2 (x2)) induced by P2. The lifted

marking identifies ω3 with a point in the preimage of ζ3(0) in the composition of branched
covers �x1,x2

3 → �
x1
2 → �1 and we push this along an appropriate lift ζ x1,x2

3 of ζ3 to a
point ζ x1,x2

3 (x3) in the preimage of ζ3(x3). We continue in this way to produce a tower of
branched covers induced by P1, . . . , Pn−2:

�
x1,...,xn−2
n−1 → �

x1,...,xn−3
n−2 → · · · → �

x1,x2
3 → �

x1
2 → �1.

The point ωn−1 is identified with a marked point in�x1,...,xn−2
n−1 in the preimage of ζn−1(0),

and then we push this point along an appropriate lift ζ x1,...,xn−2
n−1 of ζn−1 to the point

ζ
x1,...,xn−2
n−1 (y) = ζ

x1,...,xn−2
n−1 (xn−1). With this notation

�(x, y, 0) = �(x1, . . . , xn−2, xn−1, 0) = (�x1,...,xn−2
n−1 , ζ

x1,...,xn−2
n−1 (xn−1)).

To find �(x, y, t) for any t , we apply the appropriate Teichmüller deformation to
�(x, y, 0). This is the Teichmüller deformation determined by t and the pull-back of
ν1 (via the composition of branched covers). We can pull back ν1 by any of the branched
covers, and since the resulting quadratic differential depends only on the surface in this
construction, we will simply write 8t for the associated Teichmüller deformation on any
of the surfaces �

x1,...,xj−1
j . In particular, we have

�(x, y, t) = 8t (�(x, y, 0)).
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Set x′ = (x′1, . . . , x
′

n−2). We must now find ε and R such that if

e−t |(x, y)− (x′, y′)| ≤ ε

then
dT (�(x, y, t),�(x

′, y′, t)) ≤ R.

As in the case of H3, appealing to the triangle inequality it suffices to find ε and R′ such
that if (x1, . . . , xn−2, y) and (x′1, . . . , x

′

n−2, y
′) agree in all but one coordinate, and in that

coordinate differ by at most ε, then

dT (�(x, y, t),�(x
′, y′, t)) ≤ R′.

If (x, y) and (x′, y′) differ only in the last coordinate, then we can apply Theorem 4.3
just as before to produce ε = 1 andR′ = A+B. Suppose instead that y = y′ and x differs
from x′ in the (n − 2)nd coordinate only. We start at the highest coordinate, y = xn−1,
and work our way down the tower to the coordinate xn−2. The idea is similar to what was
done in varying x in (x, y, t) ∈ H3. We look on 8t (�

x1,...,xn−3
n−2 ) as an “auxiliary” surface

when it is equipped with the two marked points 8t (ζ
x1,...,xn−3
n−2 (xn−2)) and the image of

8t (ζ
x1,...,xn−2
n−1 (xn−1)) via the branched covering

8t (�
x1,...,xn−2
n−1 )→ 8t (�

x1,...,xn−3
n−2 ).

If these two points are not too close, then we can move from 8t (ζ
x1,...,xn−3
n−2 (xn−2)) to

8t (ζ
x1,...,xn−3
n−2 (x′n−2)) keeping the other marked point fixed, and the distance between

these two points in the Teichmüller space of the auxiliary surface with two marked points
is uniformly bounded. Since the branched cover induces a 1-Lipschitz map (see (9)), this
means that

dT (�(x1, . . . , xn−3, xn−2, xn−1, t),�(x1, . . . , xn−3, x
′

n−2, xn−1, t))

is uniformly bounded.
On the other hand, if the two marked points in 8t (�

x1,...,xn−3
n−2 ) are close, we

move 8t (ζ
x1,...,xn−2
n−1 (xn−1)) to 8t (ζ

x1,...,xn−2
n−1 (x′n−1)),

move 8t (ζ
x1,...,xn−3
n−2 (xn−2)) to 8t (ζ

x1,...,xn−3
n−2 (x′n−2)),

and then

move 8t (ζ
x1,...,x

′

n−2
n−1 (x′n−1)) back to 8t (ζ

x1,...,x
′

n−2
n−1 (xn−1)).

By the triangle inequality, we obtain the desired uniform bound on

dT (�(x1, . . . , xn−3, xn−2, xn−1, t),�(x1, . . . , xn−3, x
′

n−2, xn−1, t)).

Note that this required three point pushes in two different auxiliary surfaces. We varied
the (n− 1)st coordinate twice, in the highest surface, and varied the (n− 2)nd coordinate
once.



Hyperbolic spaces in Teichmüller spaces 2691

Now suppose that x differs from x′ in the (n − 3)rd coordinate only. We view
8t (�

x1,...,xn−4
n−3 ) as an auxiliary surface with three marked points: the images of the points

8t (ζ
x1,...,xn−2
n−1 (xn−1)) and8t (ζ

x1,...,xn−3
n−2 (xn−2)) under the respective branched covers and

the point 8t (ζ
x1,...,xn−4
n−3 (xn−3)). We can move this last point a little, changing the Teich-

müller distance a bounded amount, provided the other two points, higher in the tower,
are not too close to it. If they are too close, we first move them out of the way (as in
the first two pushes above), move the third point, then move the two higher points back.
The triangle inequality together with the 1-Lipschitz property of the branched cover map
applied as before, implies a uniform bound on the change in Teichmüller distance

dT (�(x1, . . . , xn−3, xn−2, xn−1, t),�(x1, . . . , x
′

n−3, xn−2, xn−1, t)).

It follows that varying xn−3 requires at most five point pushes in the three highest auxiliary
surfaces.

In general, varying xn−k in this way requires 2k − 1 point pushes in the k highest
auxiliary surfaces. Thus we can change any coordinate by a small amount ε and change
the Teichmüller distance by a bounded amount R′, as required. This completes the sketch
of the proof of Theorem 5.3. ut
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