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Abstract. In this paper we consider Riemannian manifolds (Mn, g) of dimension n ≥ 5 with
semi-positive Q-curvature and non-negative scalar curvature. Under these assumptions we prove
(i) the Paneitz operator satisfies a strong maximum principle; (ii) the Paneitz operator is a posi-
tive operator; and (iii) its Green’s function is strictly positive. We then introduce a non-local flow
whose stationary points are metrics of constant positive Q-curvature. Modifying the test function
construction of Esposito–Robert, we show that it is possible to choose an initial conformal metric
so that the flow has a sequential limit which is smooth and positive, and defines a conformal metric
of constant positive Q-curvature.
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1. Introduction

In 1983 S. Paneitz introduced a fourth-order conformally invariant differential opera-
tor acting on smooth functions, which is defined on any pseudo-Riemannian manifold
[Pan08]. Subsequently, T. Branson [Bra85] recognized that this operator describes the
conformal transformation of a curvature quantity which is fourth order in the metric.

To describe the operator and associated curvature quantity, let A denote the Schouten
tensor

A =
1

n− 2

(
Ric−

1
2(n− 1)

Rg

)
,

where Ric is the Ricci tensor and R the scalar curvature, and σk(A) denote the kth sym-
metric function of the eigenvalues of A. Then the Q-curvature of Branson is defined by

Q = −1σ1(A)+ 4σ2(A)+
n− 4

2
σ1(A)

2, (1.1)

and the eponymous operator of Paneitz is

Pgu = 1
2
gu+ divg{(4Ag − (n− 2)σ1(Ag)g)(∇u, ·)} +

n− 4
2

Qgu. (1.2)
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The formula connecting P to Q is the following: if n 6= 4, suppose ĝ = u4/(n−4)g is a
conformal metric; then the Q-curvature of ĝ is given by

Qĝ =
2

n− 4
u−

n+4
n−4Pgu. (1.3)

When the dimension is four, one writes ĝ = e2wg, and

Qĝ = e
−4w(
−

1
2Pgw +Qg

)
. (1.4)

Branson pointed out that the formulas (1.3)–(1.4) naturally suggest a higher order
version of the Yamabe problem: given (Mn, g), find a conformal metric of constant Q-
curvature. In dimensions n 6= 4 this is equivalent to finding a positive solution of

Pgu = λu
n+4
n−4 , (1.5)

where λ is a constant. In four dimensions the equation is

Pgw + 2Qg = λe
4w. (1.6)

In both cases the sign of λ is determined by the conformal structure.
Considerable progress has been made on the existence problem for solutions of (1.6);

see for example [CY95], [DM08], [LLL12], and references therein. Our interest in this
paper is dimensions n ≥ 5, where the lack of a maximum principle (since the equation is
higher order) presents an obvious difficulty when seeking positive solutions of (1.3). Con-
sequently, the existence theory is far less developed. Note that for (1.6) no sign condition
on w is required.

There are some results in special geometric settings. Djadli–Hebey–Ledoux [DHL00]
studied the optimal constant in the Sobolev embedding W 2,2 ↪→ L2n/(n−4) when n ≥ 5.
As a corollary of their analysis they proved some compactness results for solutions of
(1.5) assuming a size condition on λ, and that Pg has constant coefficients (which holds,
for example, if (Mn, g) is an Einstein metric). The assumption of constant coefficients
allowed them to factor P into the product of two second order operators, then apply the
standard maximum principle (see also [VdV93]). Esposito–Robert [ER02] were able to
find solutions to the PDE

Pgu = λ|u|
8
n−4 u

in dimension n ≥ 8 for non-locally conformally flat manifolds, in the spirit of [Aub76],
but with no information on their sign.

The first general existence result for (1.5) was due to Qing–Raske [QR06]. They con-
sidered locally conformally flat manifolds of positive scalar curvature, which allowed
them to appeal to the work of Schoen–Yau [SY88] to lift the metric to a domain in the
sphere via the developing map. Assuming the Poincaré exponent is less than (n − 4)/2,
they proved the existence of a positive solution to the Paneitz–Branson equation with
λ > 0. Hebey–Robert [HR04] also considered the locally conformally flat case with pos-
itive scalar curvature, and assumed in addition that the Paneitz operator and its Green’s
function were positive. They showed that when the Green’s function satisfies a positive
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mass theorem, then the space of solutions to (1.5) is compact. Later, Humbert–Raulot
[HR09] verified the positive mass result (see Theorem 2.9 is Section 2.1). Collectively,
the work of Hebey–Robert and Humbert–Raulot removed the topological assumption of
Qing–Raske on the Poincaré exponent, but replaced it with strong positivity assumptions.

Our goal in this paper is to show that one can prove a maximum principle for P
and existence of solutions to (1.5) under considerably weaker positivity assumptions. The
conditions we impose are the following:{

Qg is semi-positive: Qg ≥ 0, and Qg > 0 somewhere;
the scalar curvature Rg is non-negative. (1.7)

The first main result of the paper is

Theorem A (see Theorem 2.2 below). Let (Mn, g) be a closed Riemannian manifold of
dimension n ≥ 5 satisfying (1.7). If u ∈ C4 satisfies

Pgu ≥ 0,

then either u > 0 or u ≡ 0 on Mn.

Theorem A is proved in Section 2.1, where we also show that (1.7) implies positivity of
the Paneitz operator:

Proposition B (see Proposition 2.3 below). Let (Mn, g) be a closed Riemannian mani-
fold of dimension n ≥ 5 satisfying (1.7). Then the Paneitz operator is positive:∫

φPgφ dv ≥ µ(g)

∫
φ2 dv,

with µ(g) > 0.

The proof is a simple extension of [Gur99], which considered the four-dimensional case.
Since Pg > 0, given any p ∈ Mn the Green’s function with pole at p, denotedGp, exists.
As a corollary of Theorem A we have the positivity of Gp:

Proposition C (see Proposition 2.4). Let (Mn, g) be a closed Riemannian manifold of di-
mension n ≥ 5 satisfying (1.7). IfGp denotes the Green’s function of the Paneitz operator
with pole at p ∈ Mn, then Gp > 0 on Mn

\ {p}.

Armed with Theorem A, we then address the question of existence of solutions to (1.5).
Given a Riemannian metric g0 satisfying the positivity assumptions (1.7), we introduce a
non-local flow whose stationary points are solutions of (1.5) with λ > 0:

∂u

∂t
= −u+ µP−1

g0
(|u|

n+4
n−4 ),

u(·, 0) = 1,
µ =

∫
uPg0u dv0∫
|u|

2n
n−4 dv0

. (1.8)

Using the strong maximum principle and some elementary integral estimates, we
show in Section 3 that the flow (1.8) has a positive solution u for all time t ≥ 0. We



2140 Matthew J. Gursky, Andrea Malchiodi

also show (see Section 3.2) that the flow has a variational structure. An important conse-
quence of this fact is the monotonicity of the conformal volume:

d

dt
Vol(g) =

d

dt

∫
u

2n
n−4 dv0 ≥ 0.

This monotonicity property also implies the following space-time estimate:∫
∞

0

(∫
Mn

|−u+ µP−1
g0
(u

n+4
n−4 )|

2n
n−4 dv0

) n−4
n

dt <∞.

Using these facts, it is possible to choose a sequence of times tj ↗∞ so that the sequence
uj = u(·, tj ) has a weak limit which is a solution of the Q-curvature equation.

To rule out trivial limits, in Sections 4–6 we show that it is possible to choose an initial
metric in the conformal class of g0 for which the solution of the flow satisfies∫

u2 dv0 ≥ ε0 > 0

for all time. The idea is to construct a test function whose Paneitz–Sobolev quotient is
strictly less than the Euclidean value, and use this test function to define an initial confor-
mal metric satisfying the positivity assumptions (i)–(ii) above.

When the dimension is n = 5, 6, or 7, or the manifold is locally conformally flat
(LCF), the construction of initial data relies on a local expansion on the Green’s func-
tion of the Paneitz operator. This is proved in Section 2, where we also prove a positive
mass theorem. The positive mass result extends the version of Humbert–Raulot [HR09],
which they proved in the LCF setting (see Proposition 2.5 and Theorem 2.9) below. When
n ≥ 8 and the metric is not locally conformally flat, we exploit instead some estimates of
Esposito–Robert [ER02]. In all cases, we need to find positive test functions with semi-
positive Q-curvature, and the strong maximum principle is crucial in this construction.

Finally, in Section 6 we show that the flow converges (up to choosing a suitable se-
quence of times) to a solution of the Q-curvature equation:

Theorem D (see Theorem 6.1). Let (Mn, g) be a closed Riemannian manifold of dimen-
sion n ≥ 5 satisfying (1.7). Then there is a conformal metric h = u4/(n−4)g with positive
scalar curvature and constant positive Q-curvature.

Remarks. 1. After a preliminary version of this manuscript was circulated, it was pointed
out to us by E. Hebey and F. Robert that the maximum principle of Theorem A can be
combined with compactness results in the literature, along with our positive mass result
(Theorem 2.9), to give a proof of Theorem D by direct variational methods. When the
dimension n ≥ 8 and (Mn, g) is not locally conformally flat, one can use the expansions
in Esposito–Robert [ER02] together with Proposition 4.1 and Theorem 5.2 in Robert’s
unpublished notes [Rob09] to obtain existence. When n = 5, 6 or 7, we construct the
necessary test functions to deduce compactness in Proposition 5.1. When (Mn, g) is lo-
cally conformally flat, Theorem A and Propositions B and C imply that the Paneitz oper-
ator is “strongly positive” in the sense of Hebey–Robert [HR04], and their result provides
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the necessary compactness theory (see also the comment at the end of their paper regard-
ing the subcritical equation). In particular, this implies that any conformal class of metrics
which admits a metric with positiveQ-curvature and positive scalar curvature also admits
a minimizer of the total Q-curvature functional (with the same positivity conditions).

2. Since this paper was submitted, a number of preprints have appeared studying the
Q-curvature in various settings; see [HYa], [HY14], [HYb], and [CC]. In particular, in
[HY14], [HYb] the authors have improved our result by weakening the assumption on
the scalar curvature; positive Yamabe invariant is sufficient.

We conclude the Introduction by explaining how the flow (1.8) is precisely the W 2,2-
gradient flow for normalized totalQ-curvature (up to a dimensional constant). We remark
that Baird–Fardoun–Regbaoui [BFR06]considered a non-local flow for the Q-curvature
in four dimensions. While their flow differs from ours, some of their ideas inspired our
approach.

Given a Riemannian manifold of dimension n ≥ 5, if the Paneitz operator satisfies
Pg > 0 then as P is self-adjoint we can define the W 2,2 inner product by

〈φ,ψ〉W 2,2(g) =

∫
(Pgφ)ψ dvg

=

∫ [
(1gφ)(1gψ)−4Ag(∇φ,∇ψ)+(n−2)σ1(Ag)g(∇φ,∇ψ)+

n− 4
2

Qgφψ

]
dvg,

which induces the W 2,2-norm. Denote the normalized total Q-curvature by

Q[g] = Vol(g)−
n−4
n

∫
Qg dvg.

By standard variational formulas, if g′ = φg is an infinitesimal conformal variation of a
metric, then the variation of Q is given by

Q′(g)φ =
n− 4

2

∫
φ(Qg −Qg) dvg,

where Qg is the mean value of Q. Since Pg is invertible,

Q′(g)φ =
n− 4

2

∫
φPg(P

−1
g (Qg −Qg)) dvg =

n− 4
2

∫
(Pgφ)(P

−1
g (Qg −Qg)) dvg

=
n− 4

2
〈φ, P−1

g (Qg −Qg)〉W 2,2 .

Therefore, the negative W 2,2-gradient flow for the total Q-curvature is

∂

∂t
g = −

n− 4
2

P−1
g (Qg −Qg) · g. (1.9)

To see that (1.9) is equivalent to our flow, write

g = u
4
n−4 g0. (1.10)
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Using the conformal transformation law for the Q-curvature we find

Qg =
2

n− 4
u
n+4
n−4Pg0u,

Qg =
2

n− 4

∫
uPg0u dv0∫
u

2n
n−4 dv0

=
2

n− 4
µ.

(1.11)

Also, by the conformal covariance of the Paneitz operator, its inverse is also covariant:

P−1
g = u

−1P−1
g0
(u

n+4
n−4 ·). (1.12)

Therefore, using (1.10)–(1.12), we can rewrite (1.9) as

∂

∂t
u =

n− 4
4
{−u+ µP−1

g0
(u

n+4
n−4 )},

which only differs from our flow by the dimensional constant.

2. The Paneitz operator and its Green’s function

In this section we prove various properties of the Paneitz operator and its Green’s function
that will be used throughout the paper.

2.1. Positivity of Paneitz operator and the Strong Maximum Principle

We begin with two results on the Paneitz operator: a comparison principle, and a coerciv-
ity estimate. We also prove a technical lemma; it shows that a metric with semi-positive
Q-curvature and non-negative scalar curvature must have positive scalar curvature. The
proof is a simple application of the maximum principle, and a similar idea will be used
elsewhere in the paper. We first state the technical lemma:

Lemma 2.1. Let (Mn, g) be a closed Riemannian manifold of dimension n ≥ 5. Assume

(i) Qg is semi-positive, i.e., Qg ≥ 0 and Qg > 0 somewhere,
(ii) the scalar curvature Rg is non-negative.

Then the scalar curvature is strictly positive: Rg > 0.

Proof. By (1.1) the Q-curvature can be expressed as

Qg = −
1

2(n− 1)
1gRg + c1(n)R

2
g − c2(n)|Ric(g)|2, (2.1)

where c1(n), c2(n) > 0. Since Qg is non-negative, it follows that

1
2(n− 1)

1gRg ≤ c1(n)R
2
g.

By the strong maximum principle, either Rg > 0 or Rg ≡ 0. In the latter case, by (2.1)
we would have Qg = −c2(n)|Ric(g)|2 ≤ 0, which is a contradiction. ut



A strong maximum principle for the Paneitz operator 2143

We now prove Theorem A of the Introduction:

Theorem 2.2. Let (Mn, g) be a closed Riemannian manifold of dimension n ≥ 5. As-
sume

(i) Qg is semi-positive,
(ii) Rg ≥ 0.

If u ∈ C4 satisfies
Pgu ≥ 0,

then either u > 0 or u ≡ 0 on Mn. Moreover, if u > 0, then h = u4/(n−4)g is a metric
with non-negative Q-curvature and positive scalar curvature

Proof. For λ ∈ [0, 1] we let
uλ = (1− λ)+ λu. (2.2)

Then u0 ≡ 1, while u1 = u. Assume

min
Mn

u ≤ 0. (2.3)

Define λ0 ∈ (0, 1] by

λ0 = min
{
λ ∈ (0, 1] : min

Mn
uλ = 0

}
. (2.4)

Then for 0 < λ < λ0, it follows that uλ > 0. Let

gλ = u
4
n−4
λ g, (2.5)

and let Qλ denote the Q-curvature of gλ. Note that for 0 < λ < λ0, we have

Qλ ≥ 0

and Qλ > 0 somewhere. This follows from the transformation law for the Q-curvature:

Qλ =
2

n− 4
u
−
n+4
n−4

λ Pguλ =
2

n− 4
u
−
n+4
n−4

λ {Pg((1− λ)+ λu)}

=
2

n− 4
u
−
n+4
n−4

λ {(1− λ)Pg(1)+ λPgu} =
2

n− 4
u
−
n+4
n−4

λ

{
(1− λ)

n− 4
2

Qg + λPgu

}
≥ (1− λ)Qgu

−
n+4
n−4

λ .

Since λ < λ0 ≤ 1 and Qg is semi-positive, it follows that Qλ is semi-positive.
Let Rλ denote the scalar curvature of gλ. We also claim that for 0 ≤ λ < λ0,

Rλ > 0. (2.6)

This certainly holds for λ = 0; but if there were a λ1 ∈ (0, λ0) with minRλ1 = 0, then
this would contradict Lemma 2.1.
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By the formula for the transformation of the scalar curvature under a conformal
change of metric,

Rλ = u
−

n
n−4

λ

{
−

4(n− 1)
n− 4

1guλ −
8(n− 1)
(n− 4)2

|∇guλ|
2

uλ
+ Rguλ

}
. (2.7)

Since Rλ > 0, this implies uλ satisfies the differential inequality

1guλ ≤
n− 4

4(n− 1)
Rguλ. (2.8)

Taking the limit as λ↗ λ0, this also holds for λ = λ0. By the strong maximum principle,
(2.4) and (2.8) imply uλ0 ≡ 0. If λ0 = 1, then we are done. Therefore, assume λ0 ∈ (0, 1).
It follows from (2.2) that u = −(1− λ0)/λ0, hence

Pgu = −
n− 4

2
1− λ0

λ0
Qg.

Since by assumption Qg > 0 somewhere, this contradicts Pgu ≥ 0. We conclude that
u ≡ 0 or u > 0.

If u > 0, then the metric h = u4/(n−4)g is well defined and has non-negative Q-
curvature. Once again, we can define the family of functions {uλ} as in (2.2) and the
metrics gλ as in (2.5). Then the scalar curvature of gλ satisfies (2.7), and by the strong
maximum principle it follows that either Rλ > 0 or Rλ ≡ 0. Recall by Lemma 2.1
that Rg > 0. Therefore, we cannot have Rλ ≡ 0, since a conformal class which admits a
metric of positive scalar curvature cannot admit a scalar-flat metric. It follows thatRλ > 0
for all λ ∈ [0, 1]. ut

We now show that the positivity assumptions of the preceding theorem imply the positiv-
ity of the Paneitz operator. This is easy to prove in dimensions n ≥ 6, but for n = 5 we
need to adapt the idea of the n = 4 case appearing in [Gur99].

Proposition 2.3. Under the assumptions of Theorem 2.2 the Paneitz operator is positive:
there exists µ(g) > 0 such that∫

φPgφ dv ≥ µ(g)

∫
φ2dv.

Consequently, the Paneitz–Sobolev constant is also positive:

q0(M
n, g) ≡ inf

φ∈W 2,2\{0}

∫
φPgφ dv

(
∫
|φ|

2n
n−4 dv)

n−4
n

> 0.

Proof. By (1.2),∫
φPφ dv =

∫ {
(1φ)2−4A(∇φ,∇φ)+(n−2)σ1(A)|∇φ|

2
+
n−4

2
Qφ2

}
dv, (2.9)
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where we have omitted the subscript g. There are two cases to consider: n = 5 and n ≥ 6.
In the latter case we use the integrated Bochner formula∫

(1φ)2 dv =

∫
|∇

2φ|2 dv +

∫
Ric(∇φ,∇φ) dv

=

∫
|∇

2φ|2 dv + (n− 2)
∫
A(∇φ,∇φ) dv +

∫
σ1(A)|∇φ|

2 dv,

which gives∫
−4A(∇φ,∇φ) dv =

∫ {
−

4
n− 2

(1φ)2 +
4

n− 2
|∇φ|2 +

4
n− 2

σ1(A)|∇φ|
2
}
dv.

Substituting this into (2.9) we find∫
φPφ dv

=

∫ {
n− 6
n− 2

(1φ)2 +
4

n− 2
|∇

2φ|2 +
(n− 2)2 + 4

n− 2
σ1(A)|∇φ|

2
+
n− 4

2
Qφ2

}
dv.

Consequently, when n ≥ 6 the positivity of P follows.
When n = 5 we need to adapt the argument for the four-dimensional case in [Gur99].

First, when n = 5 we note that∫
φPφ dv =

∫
(1φ)2 dv− 4

∫
A(∇φ,∇φ) dv+ 3

∫
σ1(A)|∇φ|

2 dv+
1
2

∫
Qφ2 dv,

(2.10)
while the Q-curvature is given by

0 ≤ Q = −1σ1(A)− 2|A|2 + 5
2σ1(A)

2. (2.11)

Consider the second term on the right-hand side of (2.10). Since by Lemma 2.1 the
scalar curvature is positive, using the arithmetic/geometric mean inequality (AGM) we
estimate

4A(∇φ,∇φ) ≤ 2
|A|2

σ1(A)
|∇φ|2 + 2σ1(A)|∇φ|

2.

By (2.11),

2
|A|2

σ1(A)
|∇φ|2 ≤ −

1σ1(A)

σ1(A)
|∇φ|2 +

5
2
σ1(A)|∇φ|

2,

hence

4
∫
A(∇φ,∇φ) ≤ −

∫
1σ1(A)

σ1(A)
|∇φ|2 dv +

9
2

∫
σ1(A)|∇φ|

2 dv. (2.12)
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For the first term on the right, we integrate by parts and use the AGM inequality to get

−

∫
1σ1(A)

σ1(A)
|∇φ|2 dv =

∫ {
−
|∇σ1(A)|

2

σ1(A)2
|∇φ|2 +

〈
∇σ1(A)

σ1(A)
,∇|∇φ|2

〉}
dv

=

∫ {
−
|∇σ1(A)|

2

σ1(A)2
|∇φ|2 + 2∇2φ

(
∇σ1(A)

σ1(A)
,∇φ

)}
dv

≤

∫ {
−
|∇σ1(A)|

2

σ1(A)2
|∇φ|2 + 2|∇2φ|

|∇σ1(A)|

σ1(A)
|∇φ|

}
dv

≤

∫ {
−
|∇σ1(A)|

2

σ1(A)2
|∇φ|2 +

|∇σ1(A)|
2

σ1(A)2
|∇φ|2 + |∇2φ|2

}
dv

=

∫
|∇

2φ|2 dv.

Substituting this back into (2.12) gives

4
∫
A(∇φ,∇φ) ≤

∫
|∇

2φ|2 dv +
9
2

∫
σ1(A)|∇φ|

2 dv. (2.13)

In dimension five the Bochner formula gives∫
|∇

2φ|2 dv =

∫
(1φ)2 dv − 3

∫
A(∇φ,∇φ) dv −

∫
σ1(A)|∇φ|

2 dv,

and substituting this into (2.13) we arrive at

4
∫
A(∇φ,∇φ) ≤

∫
(1φ)2 dv − 3

∫
A(∇φ,∇φ) dv +

7
2

∫
σ1(A)|∇φ|

2 dv.

Combining the Schouten tensor terms we have

7
∫
A(∇φ,∇φ) ≤

∫
(1φ)2 dv +

7
2

∫
σ1(A)|∇φ|

2 dv,

hence
4
∫
A(∇φ,∇φ) ≤

4
7

∫
(1φ)2 dv + 2

∫
σ1(A)|∇φ|

2 dv,

or
−4

∫
A(∇φ,∇φ) ≥ −

4
7

∫
(1φ)2 dv − 2

∫
σ1(A)|∇φ|

2 dv.

Finally, substituting this into (2.10) gives∫
φPφ dv =

∫
(1φ)2 dv − 4

∫
A(∇φ,∇φ) dv + 3

∫
σ1(A)|∇φ|

2 dv +
1
2

∫
Qφ2 dv

≥
3
7

∫
(1φ)2 dv +

∫
σ1(A)|∇φ|

2 dv +
1
2

∫
Qφ2 dv,

and the positivity of P follows. ut

From Proposition 2.3 we conclude that under the assumptions of Lemma 2.1, for any
p ∈ Mn the Green’s function Gp of the Paneitz operator exists, satisfying PgGp = δp,
where δp is the Dirac mass at p. We now prove Proposition C of the Introduction:
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Proposition 2.4. Suppose (Mn, g) satisfies the assumptions of Theorem 2.2. If Gp de-
notes the Green’s function of the Paneitz operator with pole at p ∈ Mn, then Gp > 0 on
Mn
\ {p}.

Proof. Consider a sequence of continuous functions fj on M which are non-negative,
whose supports shrink to {p}, and such that

∫
M
fj dv = 1 for all j . Then fj ⇀ δp in the

sense of distributions. If Gj is the solution to PgGj = fj , it is easy to show that

Gj → Gp in C4
loc(M

n
\ {p}).

By Theorem 2.2 one has Gj > 0 on Mn, which immediately implies that

Gp ≥ 0 on Mn
\ {p}.

Suppose there exists x0 6= p such that Gp(x0) = 0, and consider the sequence of
conformal metrics gj = G

4/(n−4)
j g. By construction PgGj ≥ 0, hence by Theorem 2.2

the metrics gj have positive scalar curvature and semi-positive Q-curvature. It follows
that the scalar curvature of gj satisfies

1
2(n− 1)

1gjRgj ≤ c1(n)R
2
gj
.

Also, arguing as in the proof of Lemma 2.1 (see (2.8)), we find that Gj satisfies the
differential inequality

1gGj ≤
n− 4

4(n− 1)
RgGj on Mn.

Passing to the limit j →∞ on Mn
\ {p} we have

1gGp ≤
n− 4

4(n− 1)
RgGp.

By the strong maximum principle, Gp(x0) = 0 implies Gp ≡ 0, a contradiction. ut

2.2. Regularity of the Green’s function

Our next results concern the behavior of the Green’s function near the pole. We will show
that if the dimension is 5, 6 or 7, or if the manifold is locally conformally flat, then in
conformal normal coordinates the Green’s function of the Paneitz operator is equal to
the sum of the fundamental solution of the bi-Laplace equation and a weighted Lipschitz
function:

Proposition 2.5. Let (Mn, g) be a closed Riemannian manifold, satisfying the assump-
tions of Lemma 2.1:

(i) Qg is semi-positive,
(ii) Rg ≥ 0.

In addition, assume one of the following holds:

• n = 5, 6, or 7; or
• (Mn, g) is locally conformally flat and n ≥ 5.
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For p ∈ M , consider the conformal normal coordinates centered at p constructed in
[LP87] with conformal metric g̃. IfGp(x) is the Green’s function for the Paneitz operator
with pole at p, then there exists a constant α such that in conformal normal coordinates,

Gp(x) =
cn

dg̃(x, p)
n−4 + α +O

(4)(r), (2.14)

where cn = 1
(n−2)(n−4)ωn−1

, ωn−1 = |S
n−1
|, and O(k)(rm) denotes any quantity f satis-

fying
|∇
jf (x)| ≤ Cj r

m−j for 1 ≤ j ≤ k,

where r = |x| = dg̃(x, p).

Proof. In the locally conformally flat case, one can conformally change and use Eu-
clidean coordinates near p, and the expansion (2.14) appears in [HR09]. For the non-LCF
cases we will use the classical parametrix method; namely we start with functions which
properly approximate Gp and then use elliptic regularity theory. We begin with some
preliminary lemmas.

Lemma 2.6. In conformal normal coordinates, if u is a radial function then one has the
following expansions:

∇i∇ju =
xixj

r2 u′′ −
xixj

r3 u′ +
δij

r
u′ +O(r)|u′|, (2.15)

1g̃u = u
′′
+
n− 1
r

u′ +O ′′(rN−1)u′, (2.16)

12
g̃u = 1

2
0u+O(r

N−1)u′′′ +O(rN−2)u′′ +O(rN−3)u′, (2.17)

where N ≥ 5 and 10 denotes the Euclidean Laplacian.

Proof. Let {xi} denote conformal normal coordinates associated with the metric g̃, and
let {r, ϑα} denote the corresponding polar coordinates, where r = |x| and {ϑα} are co-
ordinates on the unit sphere. We let g̃ = g̃ij denote the matrix of components of g̃ with
respect to the {xi} coordinates, and g̃′ = g̃′αβ the components of g̃ the polar coordinate
system. It follows that √

det g̃′ = rn−1
√

det g̃.

If u is radial, then

1u(r) =
1√

det g̃′
∂r
(√

det g̃′ ∂ru
)
= u′′ + ∂r

(
log

√
det g̃′

)
u′

= u′′ + ∂r
(
log rn−1

√
det g̃

)
u′ = u′′ +

n− 1
r

u′ + u′∂r log
√

det g̃

= 10u+ u
′∂r log

√
det g̃. (2.18)

In conformal normal coordinates (see [LP87, Theorem 5.1]) the determinant of g̃ ap-
proaches 1 smoothly at the origin at order N , where N ≥ 5, and in particular

det g̃ = 1+O(3)(rN ). (2.19)
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Therefore,
∂r log

√
det g̃ = O ′′(rN−1).

Substituting into (2.18), we arrive at (2.16). The formula (2.17) for the bi-Laplacian fol-
lows immediately.

Recall that, in normal coordinates,

g̃ij = δij −
1
3Riαjβx

αxβ +O(4)(r3),

where R∗ denotes the curvature tensor (with respect to g̃) evaluated at p. As

0kij =
1
2g
km
[∂i g̃jm + ∂j g̃im − ∂mg̃ij ],

we deduce that |0kij (x)| = O
′′′(r) and |∂l0kij (x)| = O

′′(1). This implies that

∇i∇ju = ∂i∂ju+O(r)|u
′
|.

As u is radial, we obtain the conclusion. ut

Remark. In the estimates that follow we will only need the order of flatness in (2.19) to
be N = 5. Therefore, we will assume from now on that N ≥ 5 is fixed.

Lemma 2.7. In conformal normal coordinates one has the following expansions for the
Schouten tensor Aij = 1

n−2

[
Rij −

1
2(n−1)Rg̃ g̃ij

]
and for the Q-curvature:

Aij (0) = 0, (∇kAij +∇iAjk +∇jAik)(0) = 0,

∇k∇lAij (0)xkxlxixj = −
r2

n− 2
∇k∇lσ1(0)xkxl,

Q = −
1

2(n− 1)

[
−

1
6 |W |

2(0)+O(r)
]
.

Proof. Recall that in conformal normal coordinates one has

Rij (0) = 0, (∇kRij +∇iRjk +∇jRik)(0) = 0,
(∇k∇lRij +∇l∇iRjk +∇i∇jRkl +∇j∇kRli)(0) = 0,

R(0) = 0, ∇g̃R(0) = 0, 1g̃R(0) = 1
6 |W |

2(0).

Then the conclusion follows immediately from the definition of Aij and Q. ut

Lemma 2.8. If u is a radial function, then in conformal normal coordinates and confor-
mal metric g̃ one has

Pg̃u = 1
2
0u+∇k∇lσ1(0)xkxlQ(u)+

n− 4
24(n− 1)

|W |2(0) u+O(r3)|u′′|

+O(r2)|u′| +O(r)u+O(rN−1)u′′′ +O(rN−2)u′′ +O(rN−3)u′,

where

Q(u) =
u′

r

(
2(n− 1)
n− 2

−
(n− 1)(n− 2)

2
+ 6− n

)
− u′′

(
n− 2

2
+

2
n− 2

)
.
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Proof. Recall that

Pgu = 1
2
g̃u+ divg̃

{(
4Ag̃ − (n− 2)σ1(Ag̃)g̃

)
(∇u, ·)

}
+
n− 4

2
Qg̃u.

We consider the term

divg̃
{(

4Ag̃−(n−2)σ1(Ag̃)g̃
)
(∇u, ·)

}
= 4Aij∇i∇ju−(n−2)σ11g̃u+(6−n)〈∇σ1,∇u〉.

Using Lemma 2.6 for the Hessian of u and Lemma 2.7 for the vanishing of Aij (0) we
find that

Aij∇i∇ju =
(
Aij (0)+∇kAij (0)xk + 1

2∇k∇lAij (0)x
kxl +O(r3)

)
(∂2
iju+O(r)|u

′
|)

=
(
∇kAij (0)xk + 1

2∇k∇lAij (0)x
kxl +O(r3)

)
×

[(
δij

r2 −
xixj

r3

)
u′ +

xixj

r2 u′′ +O(r)|u′|

]
= I + II + III + IV + V,

where

I = ∇kAij (0)xk
δij

r2 u
′, II = ∇kAij (0)xk

(
xixj

r2 u′′ −
xixj

r3 u′
)
,

III = 1
2∇k∇lAij (0)x

kxl
δij

r2 u
′, IV = 1

2∇k∇lAij (0)x
kxl
(
xixj

r2 u′′ −
xixj

r3 u′
)
,

V = O(r3)(∂2
iju+O(r)|u

′
|)+

(
∇kAij (0)xk + 1

2∇k∇lAij (0)x
kxl
)
×O(r)|u′|.

As the scalar curvature vanishes to first order at p we find immediately that I = 0. Also,
since II stays unchanged after permutation of the indices i, j, k, by the second statement
of Lemma 2.7 we find that also II = 0. Turning to III, we have

III = 1
2∇k∇lσ1x

kxl
u′

r
.

Concerning IV instead, using the third identity in Lemma 2.7 we find that

IV = −
1

2(n− 2)
∇k∇lσ1x

kxl
(
u′′ −

u′

r

)
.

Expanding then also V one finds

4Aij∇i∇ju =
2

n− 2
∇k∇lσ1(0)xkxl

[
(n− 1)

u′

r
− u′′

]
+O(r3)|u′′| +O(r2)|u′|.

Similarly, using the second assertion of Lemma 2.6 and a Taylor expansion of the scalar
curvature one finds

−(n− 2)σ11u = −
n− 2

2
∇k∇lσ1(0)xkxl

[
(n− 1)

u′

r
+ u′′

]
+O(r3)|u′′| +O(r2)|u′|.



A strong maximum principle for the Paneitz operator 2151

Furthermore

(6− n)〈∇σ1,∇u〉 = (6− n)∇k∇lσ1(0)xkxl
u′

r
+O(r2)|u′|.

By the third assertion of Lemma 2.6 and summing all the above terms in Pg̃u (taking into
account the expression of Qg̃ in Lemma 2.7) one gets the conclusion. ut

Using the preceding technical lemmas, we can now compute Pg̃(r4−n). By Lemma 2.8,
one has

Pg̃(r
4−n) = Anδp +∇k∇lσ1(0)xkxlQnr

2−n
+

n− 4
24(n− 1)

|W |2(0) r4−n
+O(r5−n),

(2.20)
where

An = 2(n− 2)(n− 4)|Sn−1
|,

Qn = (4− n)
[(

2(n− 1)
n− 2

−
(n− 1)(n− 2)

2
+ 6− n

)
− (3− n)

(n− 2)2 + 4
2(n− 2)

]
.

It follows from (2.20) that

Pg̃

(
Gp −

1
An
r4−n

)
= O(r4−n). (2.21)

By elliptic regularity, if we can show that the right-hand side of (2.21) is in Lp for some
p > n/3, then we would conclude

Gp −
1
An
r4−n
∈ W 4,p ↪→ C1,α

with α > 0, and (2.14) would follow. However, r4−n
∈ Lp for p < n/(n− 4), hence

we need p to satisfy
n

3
< p <

n

n− 4
.

This can only hold if n = 5 or n = 6; when n = 7 we have equality, so this is the
borderline case.

When n = 7 we can add a further correction term to study the asymptotics ofGp. We
begin by writing the trailing terms in (2.20) as

∇k∇lσ1(0)xkxlQn|x|
2−n
+

n− 4
24(n− 1)

|W |2(0) |x|4−n = B0|x|
−3
+B2(θ)|x|

−3,

where B0 is a constant and B2(θ) is a second spherical harmonic function (with zero
average) on S6, with θ denoting the spherical coordinates. As the second eigenvalue of
the Laplace–Beltrami operator on S6 is equal to 14, using polar coordinates one can easily
check that

12
0|x| = −

24
|x|3

, 12
0(B2(θ)|x|) =

172
|x|3

.
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Therefore in conformal normal coordinates one finds that

1

(
−

1
24

B0|x| +
B2(θ)

172
|x|

)
= B0|x|

−3
+B2(θ)|x|

−3
+O(r−2),

which implies that

Pg̃

(
Gp −

1
An
|x|4−n +

1
24

B0|x| −
B2(θ)

172
|x|

)
= O(r−2).

By elliptic regularity theory and by Morrey’s embedding theorems we then deduce that
the function

Gp −
1
An
|x|4−n +

1
24

B0|x| −
B2(θ)

172
|x|

possesses Hölder continuous derivatives, which, taking Schauder’s estimates into account,
implies the conclusion when n = 7. ut

2.3. A positive mass theorem for the Paneitz operator

We conclude this section by proving an inequality for the constant α in the expansion
for the Green’s function in Proposition 2.5. In the locally conformally flat case, this was
proved by Humbert–Raulot [HR09]. In fact, their proof is easily adapted to the non-LCF
case when the dimension is 5, 6, or 7.

Theorem 2.9. Under the assumptions of Proposition 2.5, the constant α in the expansion
(2.14) satisfies α ≥ 0, with equality if and only if (Mn, g) is conformally equivalent to
the round sphere.

Proof. Let 0p denote the Green’s function for the conformal Laplacian L = −1 +
n−2

4(n−1)R with pole at p. As in [HR09], we consider the conformal blow-up of g defined
by

ĝ = 0
4
n−2
p g.

This defines an asymptotically flat, scalar-flat metric on Xn = Mn
\ {p}. Let

8 = 0
−
n−4
n−2

p Gp.

By the conformal covariance of the Paneitz operator, on Xn we have

Pĝ8 = P04/(n−2)
p g

(0
−
n−4
n−2

p Gp) = 0
−
n+4
n−2

p Pg(Gp) = 0.

Also, since ĝ is scalar flat, its Q-curvature is given by

Qĝ = −2|A(ĝ)|2,

where A is the Schouten tensor. By the formula for the Paneitz operator (1.2),

0 = Pĝ8 = 1
2
ĝ
8+ divĝ{4Aĝ(∇8, ·)} − (n− 4)|A(ĝ)|28. (2.22)
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Fix δ > 0 small and let Bδ once again denote the geodesic ball centered at p of radius
δ > 0 (as measured in the metric g, not ĝ). As in [HR09], we integrate (2.22) overMn

\Bδ
and apply the divergence theorem:

0 =
∫
Mn\Bδ

Pĝ8dvĝ

=

∫
Mn\Bδ

{
12
ĝ
8+ divĝ{4Aĝ(∇8, ·)} − (n− 4)|A(ĝ)|28

}
dvĝ

=

∮
∂Bδ

{
∂

∂ν
(1ĝ8)+ 4Aĝ(∇8, ν)

}
dSĝ − (n− 4)

∫
Mn\Bδ

|A(ĝ)|28dvĝ, (2.23)

where ν is the (outward) normal to ∂Bδ in the metric ĝ.
Considering the boundary integrals, we first note that since ĝ is scalar-flat,

∂

∂ν
(1ĝ8) = −

∂

∂ν
(Lĝ8).

Using the covariance of the conformal Laplacian and the definition of 8, we find that

Lĝ8 = 0
−
n+2
n−2

p Lg(0
2
n−2
p Gp).

Let r(x) = dg(x, p) denote the distance function from p in the metric g. By Lemma 6.4
of [LP87], we can normalize 0p so that

0
2
n−2
p =


r−2
+O(r) if n = 5,

r−2
+O(r2 log r) if n = 6,

r−2
+O(r2) if n = 7.

(2.24)

Combining this with Proposition 2.5, for n = 5, 6, 7 we have

0
2
n−2
p Gp = cnr

2−n
+ αr−2

+O(r−1). (2.25)

Using Lemma 2.6 and the fact that Rg = O(r2) in conformal normal coordinates, we get

Lg(0
2
n−2
p Gp) = −1g(0

2
n−2
p Gp)+

n− 2
4(n− 1)

Rg0
2
n−2
p Gp

= 2(n− 4)αr−4
+O(r4−n)

= 2(n− 4)αr−4
+O(r−3) if 5 ≤ n ≤ 7.

Note that in dimensions n ≥ 8 the second term is no longer lower order. By (2.24),

0
−
n+2
n−2

p = rn+2
+O(rn+3),

hence

Lĝ8 = 0
−
n+2
n−2

p Lg(0
2
n−2
p Gp) = 2(n− 4)αrn−2

+O(rn−1). (2.26)
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It is easy to verify that
∂

∂ν
= −0

−
2
n−2

p

∂

∂r
,

so combining (2.25) and (2.26) we find

∂

∂ν
(Lĝ8)|∂Bδ = −2(n− 2)(n− 4)αδn−1

+O(δn).

Also, the surface measure transforms by∮
∂Bδ

dSĝ =

∮
∂Bδ

0
2(n−1)
(n−2)
p dSg = ωn−1δ

1−n
+O(δ2−n).

Consequently, the leading boundary term in (2.23) is∮
∂Bδ

∂

∂ν
(1ĝ8) dSĝ = 2(n− 2)(n− 4)ωn−1α + o(1).

We can argue as in [HR09] to show that the second boundary integral in (2.23) satisfies∮
∂Bδ

4Aĝ(∇8, ν)dSĝ = o(1),

hence
2(n− 2)(n− 4)ωn−1α = (n− 4)

∫
Mn\Bδ

|A(ĝ)|28dvĝ + o(1). (2.27)

It follows that α ≥ 0. Moreover, if α = 0 then ĝ is Ricci-flat, which implies (Xn, ĝ) is
isometric to flat Euclidean space (see, for example, [Sch84, Proposition 2, p. 492]). This
completes the proof. ut

3. The flow

3.1. The initial assumptions

In the following, we assume (Mn, g0) is a closed Riemannian manifold of dimension
n ≥ 5 with

Qg0 is semi-positive, and Rg0 ≥ 0. (3.1)

Note that by Lemma 2.1, the assumption on the Q-curvature implies Rg0 > 0. Also, by
Proposition 2.3, Pg0 is invertible. Therefore, we can consider the flow

∂u

∂t
= −u+ µP−1

g0
(|u|

n+4
n−4 ),

u(·, 0) = 1,
(3.2)

where

µ =

∫
uPg0u dv0∫
|u|

2n
n−4 dv0

.
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Lemma 3.1. The flow (3.2) has a smooth solution for 0 ≤ t < T , where 0 < T ≤ ∞.
Proof. Consider the flow 

∂v

∂t
= −v + P−1

g0
(|v|

n+4
n−4 ),

v(·, 0) = 1,
(3.3)

which differs from (3.2) by the normalizing term µ. In fact, these flows just differ by a
rescaling in space-time. To see this, suppose v ∈ C4,α(Mn

×[0, T )) is a solution of (3.3),
and define

ν = ν(t) =

∫
vPg0v dv0∫
|v|

2n
n−4 dv0

, s(t) =

∫ t

0
ν(τ) dτ.

Let
u(x, t) = es(t)−tv(x, s(t)).

It is easy to see that u satisfies (3.2) on some time interval [0, T̃ ).
Short-time existence for the flow (3.3) follows from the Picard–Lindelöf theorem on

Banach spaces; if we denote Xε = C4,α(Mn
× [0, ε]), then the mapping

v 7→ 9(v)(x, t) = 1−
∫ t

0
v(x, τ ) dτ +

∫ t

0
P−1
g0
(|v|

n+4
n−4 )(x, τ ) dτ

is a contraction on a small neighborhood of v0 ≡ 1 in Xε for ε > 0 small. A fixed point
of 9 solves (3.3).

Note that as (3.3) is a non-local ODE in C4,α(M), there is in general no gain of
(spatial) derivatives. ut

Proposition 3.2. For all 0 ≤ t < T ,

u(t, x) > 0.
Proof. By (3.2),

∂

∂t
Pg0u = Pg0

(
∂

∂t
u

)
= −Pg0u+ µ|u|

n+4
n−4 , (3.4)

hence
∂

∂t
Pg0u ≥ −Pg0u.

Integrating this inequality we get

Pg0u(t, x) ≥ e
−tPg0u(0, x) = e

−tPg0(1) =
n− 4

2
e−tQg0(x).

It follows that Pg0u ≥ 0, and Pg0u > 0 somewhere (namely, where the Q-curvature is
initially positive). By the strong maximum principle of Theorem 2.2 it follows that u > 0
for t ∈ [0, T ). ut

Remark 3.3. It follows from the proof of Lemma 3.2 that Qg > 0 for all t ∈ (0, T ):
since u > 0 for all time, from (3.4) we have

∂

∂t
Pg0u ≥ −Pg0u+ µu

n+4
n−4 ,

and integrating this we see that Pg0u > 0 for t ∈ (0, T ).
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3.2. Variational properties

Since u > 0 for as long as the flow exists, we can rewrite (3.2) as

∂

∂t
u = −u+ µPg0(u

n+4
n−4 ) (3.5)

with

µ =

∫
uPg0u dv0∫
u

2n
n−4 dv0

. (3.6)

Lemma 3.4.
d

dt

∫
uPg0u dv0 = 0.

Proof. From (3.5) and (3.6),

d

dt

∫
uPg0u dv0 =

∫ {
∂u

∂t
Pg0u+ uPg0

(
∂u

∂t

)}
dv0 = 2

∫
uPg0

(
∂u

∂t

)
dv0

= 2
∫
uPg0(−u+ µP

−1
g0
(u

n+4
n−4 )) dv0

= 2
∫
(−uPg0u+ µuPg0P

−1
g0
(u

n+4
n−4 )) dv0

=

∫
{−2uPg0u+ 2µu

2n
n−4 } dv0

= −2
∫
uPg0u dv0 + 2

(∫
uPg0u dv0∫
u

2n
n−4 dv0

)∫
u

2n
n−4 dv0 = 0. ut

To state the next lemma, we denote

f = −u+ µP−1
g0
(u

n+4
n−4 ).

Lemma 3.5. The conformal volume satisfies

d

dt
V =

d

dt

∫
u

2n
n−4 dv0 =

2n
n− 4

1
µ

∫
fPg0f dv0 ≥ 0. (3.7)

In particular, the volume is increasing along the flow, while µ and the Paneitz–Sobolev
quotient are both decreasing:

d

dt
µ =

d

dt

(∫
uPg0u dv0

V

)
≤ 0,

d

dt
Fg0 [u] =

d

dt

(∫
uPg0u dv0

V
n−4
n

)
≤ 0.

Finally, the volume is bounded above:

V ≤ C0(g0).



A strong maximum principle for the Paneitz operator 2157

Proof. To prove the lemma, we differentiate:

d

dt

∫
u

2n
n−4 dv0 =

2n
n− 4

∫
u
n+4
n−4
∂u

∂t
dv0 =

2n
n− 4

∫
u
n+4
n−4 {−u+ µP−1

g0
(u

n+4
n−4 )} dv0

=
2n
n− 4

∫
{−u

2n
n−4 + µu

n+4
n−4P−1

g0
(u

n+4
n−4 )} dv0. (3.8)

Note that∫
fPg0f dv0 =

∫
{−u+ µP−1

g0
(u

n+4
n−4 )}{−Pg0u+ µu

n+4
n−4 } dv0

=

∫
{uPg0u− µu

2n
n−4 − µP−1

g0
(u

n+4
n−4 )Pg0u+ µ

2u
n+4
n−4P−1

g0
(u

n+4
n−4 )} dv0

=

∫
{−µu

2n
n−4 + µ2u

n+4
n−4P−1

g0
(u

n+4
n−4 )} dv0. (3.9)

Comparing (3.8) and (3.9), we arrive at (3.7).
To see that the volume is bounded above, we use the fact that the Paneitz–Sobolev

constant is positive:

0 < q0 ≤ Fg0 [u] = V
−
n−4
n

∫
uPg0u dv0 = V

−
n−4
n

∫
u0Pg0u0 dv0

=
n− 4

2
V −

n−4
n

∫
Qg0 dv0,

hence V ≤ C(g0). ut

Corollary 3.6. We have the space-time estimates

∫ T

0
‖f ‖W 2,2 dt ≤ C1(g0),

∫ T

0

(∫
|f |

2n
n−4 dv0

) n−4
n

dt ≤ C2(g0). (3.10)

Proof. From the upper bound on volume we have

∫ T

0

(∫
Mn

fPg0f dv0

)
dt ≤ C1(g0).

Since Pg0 is positive,

‖φ‖W 2,2 ≈

∫
φPg0φ dv0,

and the first estimate in (3.10) follows. The second estimate follows from the lower bound
on the Paneitz–Sobolev quotient. ut
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3.3. Long time existence

Proposition 3.7. The flow (3.2) has a smooth solution for all time. Moreover,

u ≤ C′eCt , (3.11)

where C,C′ > 0 are constants depending on g0 and the initial datum.

Proof. Let s > 1. Since u > 0 and Pg0u > 0 for as long as the flow exists, by (3.4) we
have

d

dt

∫
(Pg0u)

s dv0 = s

∫
(Pg0u)

s−1 ∂

∂t
(Pg0u) dv0

= s

∫
(Pg0u)

s−1
{−Pg0u+ µu

n+4
n−4 } dv0

= −s

∫
(Pg0u)

s
+ sµ

∫
(Pg0u)

s−1u
n+4
n−4 dv0. (3.12)

For the second integral above we use Hölder’s inequality to write∫
(Pg0u)

s−1u
n+4
n−4 dv0 ≤

(∫
(Pg0u)

s dv0

) s−1
s
(∫

u
n+4
n−4 s dv0

) 1
s

(3.13)

Assume
2n
n+ 4

< s <
n

4
. (3.14)

Then we can apply Hölder’s inequality again to get(∫
u
n+4
n−4 s dv0

) 1
s

≤

(∫
u

ns
n−4s dv0

) n−4s
ns
(∫

u
2n
n−4 dv0

) 4
n

. (3.15)

By the Sobolev embedding theorem W s,4 ↪→ Lns/(n−4s) for 1 < s < n/4. Also, since
Pg0 > 0 we have ‖u‖W s,4 ≈ ‖Pg0u‖Ls . Therefore,(∫

u
ns
n−4s dv0

) n−4s
ns

≤ Cs

(∫
(Pg0u)

s dv0

) 1
s

for s in the range given by (3.14). Substituting this into (3.15) and using the conformal
volume bound of Lemma 3.5 we have∫

(Pg0u)
s−1u

n+4
n−4 dv0 ≤ Cs

∫
(Pg0u)

s dv0.

Substituting this into (3.12) gives

d

dt

∫
(Pg0u)

s dv0 ≤ Cs

∫
(Pg0u)

s dv0,
2n
n+ 4

< s <
n

4
.

Integrating this we get ∫
(Pg0u)

s dv0 ≤ C0e
Cs t , 0 ≤ t < T .
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By the Sobolev embedding, this implies

‖u‖
L

ns
n−4s
≤ C1e

C′s t .

By choosing s sufficiently close to n/4, we conclude that ‖u‖Lp ≤ C3e
Cp t , for any p > 1.

Now fix s > n/4; say s = n/4+ 1. Returning to (3.13), we have∫
(Pg0u)

s−1u
n+4
n−4 dv0 ≤

(∫
(Pg0u dv0)

s

) s−1
s
(∫

u
n+4
n−4 s dv0

) 1
s

≤

(∫
(Pg0u)

s dv0

) s−1
s

(C3e
Cnt )

1
s ≤ C4e

C5t

(∫
(Pg0u)

s dv0

) s−1
s

≤

∫
(Pg0u)

s dv0 + C6e
C7t .

Substituting this into (3.12) gives

d

dt

∫
(Pg0u)

s dv0 ≤ C
′eCt , s =

n

4
+ 1.

Integrating this and using the Sobolev–Kondrashov theorem we conclude that ‖u‖Cα ≤
C′eCt for some α ∈ (0, 1). This implies (3.11) and, via (3.4), that the Cα-norm of Pg0u

grows at most exponentially fast. It follows that the C4,α-norm of u grows at most expo-
nentially fast, so we cannot have blow-up in finite time. ut

4. Constructing the initial data, part I: n ≥ 8

To prove the convergence of the flow we will show that it is possible to construct initial
data satisfying the positivity conditions (3.1) and with energy below the Euclidean value.
By a standard argument (see Section 6) the latter fact will imply that the flow has a non-
zero weak limit which defines a metric of constant Q-curvature.

Our first result in this direction considers the case where the dimension is large (i.e.,
n ≥ 8) and the underlying manifold is not locally conformally flat:

Proposition 4.1. Let (Mn, ḡ) be a closed Riemannian manifold of dimension n ≥ 8.
Assume

(i) Qḡ is semi-positive,
(ii) Rḡ ≥ 0,

(iii) (Mn, ḡ) is not locally conformally flat.

If at x0 ∈ M the Weyl tensor W(x0) is non-zero, then for ε > 0 small there exists a
function ψε ∈ C∞ and a dimensional constant cn such that

Fḡ(ψε) ≤
{
Sn − cnε

4
|log ε| |W(x0)|

2 if n = 8,
Sn − cnε

4
|W(x0)|

2 if n ≥ 9,
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where Sn is the Euclidean Paneitz–Sobolev constant:

Sn = inf
ϕ∈C∞0 (Rn)

∫
(10ϕ)

2 dx

(
∫
|ϕ|

2n
n−4 dx)

n−4
n

.

Moreover, ψε is positive and induces a conformal metric h = ψ4/(n−4)
ε ḡ with the follow-

ing properties:

(i′) Qh is semi-positive,
(ii′) Rh > 0,
(iii′)

Fh(1) ≤
{
Sn − cnε

4
|log ε| |W(x0)|

2 if n = 8,
Sn − cnε

4
|W(x0)|

2 if n ≥ 9.
(4.1)

Proof. Let g̃ = ϕ4/(n−4)ḡ denote the metric satisfying the conformal normal coordinate
conditions of [LP87] at x0 (we assume ϕ is globally defined). Consider the test function
in [ER02, Section 6] defined by

ũε(x) =
η(x)ϕ(x)

(ε2 + dg̃(x, x0)2)
n−4

2
,

where η(x) is a cut-off function with support in a ball B2δ(x0), identically equal to 1 in
Bδ(x0).

In [ER02, Section 7] it was shown that, for ε > 0 small one has the estimates

Fḡ(ũε) ≤
{
Sn − C(n)ε

4
|log ε| |W(x0)|

2 if n = 8,
Sn − C(n)ε

4
|W(x0)|

2 if n ≥ 9.

We will show that it is possible to modify these test functions in order to produce a strictly
positive conformal factor which defines a metric with semi-positiveQ and positive scalar
curvatures, while preserving the property of the Paneitz–Sobolev quotient being below
the Euclidean value. We begin with the following lemma:

Lemma 4.2. If g̃ is as above, if we set

uε(x) =
η(x)

(ε2 + dg̃(x, x0)2)
n−4

2
,

then

Pg̃(uε) =
n(n− 4)(n2

− 4)ε4

(ε2 + |x|2)
n+4

2
+

O(1)

(ε2 + r2)
n−4

2
in B2δ(x0). (4.2)

Notice that by the conformal covariance of the Paneitz operator we have Fḡ(ũε) =
Fg̃(uε). From now on we will work in the metric g̃.
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Proof. The estimate is trivial in B2δ(x0) \ Bδ(x0) (where the second term on the r.h.s. of
(4.2) dominates the first one). It is therefore sufficient to prove it in Bδ(x0), where η is
identically equal to 1, and hence here it is enough to estimate

Pg̃
(
(ε2
+ r2)

4−n
2
)
.

Let us first consider the bi-Laplacian term: for a radial function f (r) in conformal normal
coordinates we have

1f (r) =
1

√
det g

∂r(
√

det g ∂rf ) = f ′′ +
n− 1
r

f ′ +O(rN−1)f ′,

where N ≥ 5. Therefore, if 10 denotes the Euclidean Laplacian, then

12f (r) = 12
0f +O(r

N−1)f ′′′ +O(rN−2)f ′′ +O(rN−3)f ′.

By an explicit computation we find that, if f (r) = (ε2
+ r2)(4−n)/2, then

12
0f = n(n− 4)(n2

− 4)
ε4

(ε2 + r2)
n+4

2
=: bn

ε4

(ε2 + r2)
n+4

2
,

and (for a dimensional constant an)

|f ′| ≤
anr

(ε2 + r2)
n−2

2
, |f ′′| ≤

an

(ε2 + r2)
n−2

2
, |f ′′′| ≤

anr

(ε2 + r2)
n
2
.

Therefore we obtain

12f (r) = bn
ε4

(ε2 + r2)
n+4

2
+

O(rN−2)

(ε2 + r2)
n−2

2
=
bnε

4
+O(rN−2(ε2

+ r2)3)

(ε2 + r2)
n+4

2
.

Next, we check the lower order terms of the Paneitz operator. Recall

Pf = 12f + c1Rij∇i∇jf + c2R1f + c3〈∇R,∇f 〉 + c4Qf,

where Rij are the components of the Ricci tensor, and the ci’s are dimensional constants.
In conformal normal coordinates,

Ric
(
∂

∂r
,
∂

∂r

)
= O(r2), R = O(r2), |∇R| = O(r), |Q| = O(1).

Therefore, the terms in Pf involving first and second derivatives of f are of the order

rf ′ + r2f ′′,

which are bounded by
O(r2)

(ε2 + r2)
n−2

2
=

O(1)

(ε2 + r2)
n−4

2
.
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The term Qg̃uε is bounded by a constant times f , namely

O(1)

(ε2 + r2)
n−4

2
.

In conclusion we find that

Pg̃(uε) =
bn ε

4

(ε2 + |x|2)
n+4

2
+
O(rN−2(ε2

+ r2)3)

(ε2 + r2)
n+4

2
+

O(1)

(ε2 + r2)
n−4

2
.

For N sufficiently large the second term on the r.h.s. can be absorbed into the third, so we
obtain the desired estimate. ut

Recalling the invertibility of P from Proposition 2.3, we consider next the function ûε
defined by the equation

Pg̃ûε = η(x)
bn ε

4

(ε2 + |x|2)
n+4

2
. (4.3)

We aim to estimate the difference between this new function and uε.

Lemma 4.3. If ûε is as above, set

vε = ûε − uε.

Then there exists C > 0 such that in B2δ(x0) we have the estimates

|vε| ≤


C(ε2

+ |x|2)
8−n

2 if n > 8,

C log
(

1
ε2 + |x|2

)
if n = 8.

On M \ B2δ(x0) we have simply
|vε| ≤ C.

Proof. We notice that, by Lemma 4.2,

Pg̃(vε) = Pg̃(ûε − uε) = η(x)
bn ε

4

(ε2 + |x|2)
n+4

2
− Pg̃uε =

O(1)

(ε2 + r2)
n−4

2
.

Recall also that the r.h.s. is supported inB2δ(x0) as η and uε are. We estimate now the con-
volution of the r.h.s. with the Green’s function of the Paneitz operator, which is bounded
above by O(1)/dg̃(x, y)n−4.

For n = 8 we can divide between the regime |x| = O(ε) and |x| ≥ C0ε for a large
constant C0. When n = 8 and |x| = O(ε) the convolution is bounded by

C

∫
|y|≤1

1
|x − y|4

dy

(ε2 + |y|2)
n−4

2
.
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By a change of variables (y = εw) one finds that this integral can be controlled by

C

∫
|w|≤1/ε

1
|x − w|4

dw

(1+ |w|2)
n−4

2
,

where |x| = O(1). One can easily see that the latter integral is of order log(1/ε). On the
other hand, for |x| ≥ C0ε we can write∫

|y|≤1

1
|x − y|4

dy

(ε2 + |y|2)
n−4

2
=

∫
|y|≤ 1

|x|

dw∣∣ x
|x|
− w

∣∣4( ε2

|x|2
+ |w|2

)2 ≤ log
1
|x|
.

In conclusion for n = 8 we get

|vε|(x) ≤ log
(

1
ε2 + |x|2

)
, x ∈ B2δ(x0).

The estimate on vε outside B2δ(x0) is immediate.
Let us consider now the case n ≥ 9. We distinguish again between |x| = O(ε) and

|x| ≥ C0ε. In the former case we get, similarly to before

C

∫
|y|≤1

1
|x − y|n−4

dy

(ε2 + |y|2)
n−4

2
= Cε8−n

∫
|w|≤1/ε

1
|x − w|n−4

dw

(1+ |w|2)
n−4

2
,

with |x| = O(1). The last integral is uniformly bounded for n > 9.
If the case |x| ≥ C0ε we write∫
|y|≤1

1
|x − y|n−4

dy

(ε2 + |y|2)
n−4

2
= |x|8−n

∫
|y|≤ 1

|x|

dw∣∣ x
|x|
− w

∣∣n−4( ε2

|x|2
+ |w|2

) n−4
2

≤ C|x|8−n.

In conclusion for n > 8 we get

|vε|(x) ≤ C(ε
2
+ |x|2)

8−n
2 , x ∈ B2δ(x0).

The estimate on vε outside B2δ(x0) is again quite easy.
This concludes the proof. ut

We check next the effect of the correction vε on the Paneitz–Sobolev quotient, and in
particular how much it deviates from the Euclidean one.

Lemma 4.4. One has

Fg̃(ûε) =
{
Fg̃(uε)+ o(ε4

|log ε|) for n = 8,

Fg̃(uε)+ o(ε4) for n ≥ 9.
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Proof. Denoting by N and D the numerator and the denominator in the quotient, we have

N (ûε) =
∫
M

ûεPg̃ûε dvg̃ =

∫
M

uεPg̃uε dvg̃ + 2
∫
M

vεPg̃uε dvg̃ +

∫
M

vεPg̃vε dvg̃.

The second term by Lemma 4.2 can be estimated by

2
∫
M

vε

(
bnε

4

(ε2 + |x|2)
n+4

2
+

O(1)

(ε2 + |x|2)
n−4

2

)
dvg̃.

By Lemma 4.3 we can write∫
M

vε
O(1)

(ε2 + |x|2)
n−4

2
dvg̃ ≤ C

∫
B1(0)

log
(

1
ε2 + |x|2

)
dx

(ε2 + |x|2)
n−4

2

for n = 8, and ∫
M

vε
O(1)

(ε2 + |x|2)
n−4

2
dvg̃ ≤ C

∫
B1(0)

dx

(ε2 + |x|2)
n−4

2 +
n−8

2
(4.4)

for n ≥ 9. In the former case, using the change of variables s = ε2
+ |x|2 we can write∫

B1(0)
log
(

1
ε2 + |x|2

)
dx

(ε2 + |x|2)
8−4

2
≤ C

∫ 1

0
log
(

1
ε2 + |x|2

)
(ε2
+ |x|2)3|x|

d|x|

(ε2 + |x|2)2

≤ C

∫ 1

0
log
(

1
s

)
s ds ≤ C. (4.5)

In the latter case, one can also easily check boundedness of the l.h.s. of (4.4) using a
change of variables. In either case we can write that

2
∫
M

vεPg̃uε dvg̃ = 2
∫
M

vε
bnε

4

(ε2 + |x|2)
n+4

2
dvg̃ +O(1).

In conclusion we get

N (ûε) =
∫
M

uεPg̃uε dvg̃ + 2bn ε4
∫
M

u
n+4
n−4
ε vε dvg̃ +O(1).

We turn next to the denominator D, for which we have

D(ûε) =
(∫

M

|uε + vε|
2n
n−4 dvg̃

) n−4
n

.

In Bδ(x0), by Lemma 4.3 and the explicit expression of uε, we have |vε| ≤ C|uε|, so a
Taylor expansion gives∣∣∣∣|uε + vε| 2n

n−4 − u
2n
n−4
ε −

2n
n− 4

u
n+4
n−4
ε vε

∣∣∣∣ ≤ Cu 8
n−4
ε v2

ε in Bδ(x0).



A strong maximum principle for the Paneitz operator 2165

Hence, using again Lemma 4.3 and the explicit expression of uε we can write∫
M

|uε + vε|
2n
n−4 dvg̃ =

∫
Bδ(x0)

|uε + vε|
2n
n−4 dvg̃ +

∫
M\Bδ(x0)

|uε + vε|
2n
n−4 dvg̃

=

∫
Bδ(x0)

(
u

2n
n−4
ε +

2n
n− 4

u
n+4
n−4
ε vε +O(u

8
n−4
ε v2

ε )

)
dvg̃ +O(1)

=

∫
M

u
2n
n−4
ε dvg̃ +

2n
n− 4

∫
M

u
n+4
n−4
ε vε dvg̃ +

∫
Bδ(x0)

O(u
8
n−4
ε v2

ε ) dvg̃ +O(1).

Similarly to (4.5) for n = 8 and with a change of variables for n ≥ 9 we obtain∫
Bδ(x0)

O(u
8
n−4
ε v2

ε ) dvg̃ = O(1),

and hence we find

D(ûε) =
(∫

M

u
2n
n−4
ε dvg̃ +

2n
n− 4

∫
M

u
n+4
n−4
ε vε dvg̃ +O(1)

) n−4
n

.

In conclusion we deduce

Fg̃(ûε) =
∫
M
uεPg̃uε dvg̃ + 2bn ε4 ∫

M
u
n+4
n−4
ε vε dvg̃ +O(1)

(
∫
M
u

2n
n−4
ε dvg̃ +

2n
n−4

∫
M
u
n+4
n−4
ε vε dvg̃ +O(1))

n−4
n

,

which means

Fg̃(ûε) =
N (uε)
D(uε)

1+ 2bn ε4 ∫
M u

n+4
n−4
ε vε dvg̃∫

M uεPg̃uε dvg̃
+

O(1)∫
M uεPg̃uε dvg̃(

1+ 2n
n−4

∫
M u

n+4
n−4
ε vε dvg̃∫

M u

2n
n−4
ε dvg̃

+
O(1)∫

M u

2n
n−4
ε dvg̃

) n−4
n

.

Notice that by Lemma 4.2,∫
M

uεPg̃uε dvg̃ = bnε
4(1+ oε(1))

∫
M

u
2n
n−4
ε dvg̃,

which implies

Fg̃(ûε) =
N (uε)
D(uε)

1+ 2
∫
M u

n+4
n−4
ε vε dvg̃

(1+oε(1))
∫
M u

2n
n−4
ε dvg̃

+
O(1)∫

M u

2n
n−4
ε dvg̃(

1+ 2n
n−4

∫
M u

n+4
n−4
ε vε dvg̃∫

M u

2n
n−4
ε dvg̃

+
O(1)∫

M u

2n
n−4
ε dvg̃

) n−4
n

. (4.6)
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Now notice that we have the asymptotics∫
M

u
2n
n−4
ε dvg̃ ' ε

−n and
∫
M

u
n+4
n−4
ε vε dvg̃ =

{
O(ε−4

|log ε|) for n = 8,
O(ε4−n) for n ≥ 9.

Hence from a Taylor expansion of the denominator in (4.6) we find that

Fg̃(ûε) =
{
(1+ o(ε4

|log ε|))Fg̃(uε) for n = 8,
(1+ o(ε4))Fg̃(uε) for n ≥ 9.

This concludes the proof. ut

Lemma 4.5. ûε is positive.

Proof. By the defining equation for ûε and the conformal covariance of the Paneitz oper-
ator,

Pḡ(ϕûε) = ϕ
n+4
n−4Pg̃(ûε) = ϕ(x)

n+4
n−4 η(x)

n(n− 4)(n2
− 4)ε4

(ε2 + |x|2)
n+4

2
≥ 0.

Since Qḡ ≥ 0 and Rḡ > 0, by the strong maximum principle of Theorem 2.2 it follows
that ûε > 0. ut

Let

ψε = ϕûε, h = ψ
4
n−4
ε ḡ = û

4
n−4
ε g̃.

Lemma 4.6. The scalar curvature of the metric h is positive.

Proof. For 0 ≤ s ≤ 1 let

ws = (1− s)ϕ−1
+ sûε, hs = w

4
n−4
s g̃.

Then

h0 = ϕ
−

4
n−4 g̃ = ϕ−

4
n−4 {ϕ

4
n−4 g} = ḡ,

and h1 = h. Observe that the Q-curvature of hs is semi-positive; this follows from the
fact that

Pg̃(ws) = (1− s)Pg̃(ϕ−1)+ sPg̃ûε = (1− s)Pϕ4/(n−4)ḡ(ϕ
−1)+ sPg̃ûε

= (1− s)ϕ−
n+4
n−4Pḡ(1)+ sPg̃ûε = (1− s)

n− 4
2

ϕ−
n+4
n−4Qḡ + sPg̃ûε ≥ 0,

and clearly Pg̃(ws) > 0 somewhere. Also, note that Rh0 = Rḡ > 0. Therefore, if there
were an s1 ∈ (0, 1] such that minRhs0 = 0, then this would contradict Lemma 2.1. It
follows that Rh > 0. ut

To conclude the proof of Proposition 4.1, we point out that the defining equation for ûε
clearly implies that Pg̃ûε ≥ 0, with Pg̃ûε > 0 near x0. In particular, the Q-curvature of
h is non-negative everywhere, and positive near x0. We conclude that (i′) and (ii′) both
hold. Finally, (4.1) follows from Lemma 4.4 and the conformal invariance of F . ut
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5. Constructing the initial data, part II: n = 5, 6, 7 or ḡ locally conformally flat

In low dimensions (i.e., n = 5, 6, 7) or in the locally conformally flat case, the Green’s
function plays a role in the Paneitz–Sobolev quotient expansion, just as for Yamabe’s
problem in Schoen’s work [Sch84]. Using Theorem 2.9, we will prove

Proposition 5.1. Let (Mn, ḡ) be a closed Riemannian manifold of dimension n, with
n = 5, 6, or 7; or let (Mn, ḡ) be locally conformally flat of dimension n ≥ 5. Assume

(i) Qḡ is semi-positive,
(ii) Rḡ ≥ 0.

If (Mn, ḡ) is not conformally equivalent to the standard sphere, then for ε > 0 small and
every x0 ∈ M , there exists a function ψε ∈ C∞ and a constant cx0 > 0 such that

Fḡ(ψε) ≤ Sn − cx0ε
n−4. (5.1)

Moreover, ψε is positive and induces a conformal metric h = ψ4/(n−4)
ε ḡ with the follow-

ing properties:

(i′) Qh is semi-positive,
(ii′) Rh > 0,
(iii′) Fh(1) ≤ Sn − cx0ε

n−4.

Proof. If n = 5, 6 or 7, we let ϕ be as in the proof of Proposition 4.1. If ḡ is locally
conformally flat, we choose ϕ so that g̃ = ϕ4/(n−4)ḡ is flat near x0. We still consider the
functions ûε as in (4.3), with base point x0, and we try to deduce estimates by evaluating
the Paneitz operator on an approximation.

We consider a cut-off function χ̃δ̃(x) = χ̃(x/δ̃), where χ̃ is a cut-off function equal
to 1 in B1 and equal to zero outside B2. We then define an approximate solution ǔε by

ǔε := χ̃δ̃(uε + β)+ (1− χ̃δ̃)ḡx0 ,

where β = βx0 = (1/cn)αx0 > 0, αx0 appears in the expansion of Gx0 in (2.14), and
ḡx0 = (1/cn)Gx0 with δ̃ � δ. Notice that by the positivity of the Green’s function (see
Section 2), the function ǔε is positive on M . The Paneitz operator on uε was already
estimated in the previous section. We have the following estimate of Pg̃ǔε in B2δ̃ \ Bδ̃:

Lemma 5.2. There exists a constant C > 0 such that

|Pg̃ǔε| ≤ Cδ̃
−3 in B2δ̃ \ Bδ̃.

Proof. We can write ǔε = ḡx0 + χ̃δ̃(uε + β − ḡx0), and hence, in B2δ̃ \ Bδ̃ ,

|Pg̃ǔε| ≤ |∇
4χ̃δ̃| |uε + β − ḡx0 | + |∇

3χ̃δ̃| |∇(uε + β − ḡx0)|

+ |∇
2χ̃δ̃| |∇

2(uε + β − ḡx0)|

+ |∇χ̃δ̃| |∇
3(uε + β − ḡx0)| + |Pg̃(uε + β − ḡx0)|.
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As χδ̃ satisfies the estimates

|∇χ̃δ̃| ≤ C/δ̃, |∇
2χ̃δ̃| ≤ C/δ̃

2, |∇
3χ̃δ̃| ≤ C/δ̃

3, |∇
4χ̃δ̃| ≤ C/δ̃

4,

it will be sufficient to show that in B2δ̃ \ Bδ̃ ,

|uε + β − ḡx0 | ≤ Cδ̃, |∇(uε + β − ḡx0)| ≤ C, |∇
2(uε + β − ḡx0)| ≤ C/δ̃,

|∇
3(uε + β − ḡx0)| ≤ C/δ̃

2, |Pg̃(uε + β − ḡx0)| ≤ C/δ̃
3.

We begin with the last inequality: we have

Pg̃(uε + β − ḡx0) = Pg̃(uε + β) = Pg̃uε + β Qg̃ = O(δ̃
−3),

where we have used Lemma 4.2 (in the locally conformally flat case it is obvious). To
prove the remaining estimates we use the fact that in B2δ̃ ,

uε + β − ḡx0 = (ε
2
+ |x|2)

4−n
2 − |x|4−n +Op(1),

by Proposition 2.5. We remark that in the locally conformally flat case the above estimate
simply follows from the fact that, in the metric g̃, ḡx0(·) − β − dg̃(x0, ·) is a smooth
bi-harmonic function.

From a Taylor expansion of (ε2
+ |x|2)(4−n)/2 one easily finds that

uε + β − ḡx0 = O(ε
2
|x|2−n)+Op(1).

This implies the conclusion. ut

Combining the estimates of Lemmas 4.2 and 5.2 we find∣∣∣∣Pg̃ǔε − n(n− 4)(n2
− 4)ε4

(ε2 + |x|2)
n+4

2

∣∣∣∣ ≤
{
O(1)/(ε2

+ r2)
n−4

2 for |x| ≤ δ̃,

O(δ̃−3) for δ̃ ≤ |x| ≤ 2δ̃.

We can use the latter estimate to control the difference between uε and ǔε by convolving
with the Green’s function.

Lemma 5.3. The following estimate holds, for some constant C > 0:

|ûε − ǔε| ≤ o(1)+ Cδ̃n−3 min{|x|4−n, δ4−n
} = o(1), δ̃→ 0.

Proof. By the formula before the lemma we can write |ûε − ǔε| ≤ u1 + u2, where

u1(x) =

∫
B
δ̃
(0)
Gx(y)

dy

(ε2 + |y|2)
n−4

2
, u2(x) = δ

−3
∫
δ̃≤|y|≤2δ̃

Gx(y) dy.

To estimate u1 we reason as in the proof of Lemma 4.3: we divide again into the cases
|x| = O(ε) and |x| ≥ C0ε. In the former case we get

C

∫
|y|≤δ̃

1
|x − y|n−4

dy

(ε2 + |y|2)
n−4

2
= Cε8−n

∫
|w|≤δ̃/ε

1
|x − w|n−4

dw

(1+ |w|2)
n−4

2
,
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with |x| = O(1). The last integral is uniformly bounded by δ̃n−8εn−8, so we get a quantity
of order o(1) as δ̃→ 0.

In the case |x| ≥ C0ε we write∫
|y|≤δ̃

1
|x − y|n−4

dy

(ε2 + |y|2)
n−4

2
= |x|8−n

∫
|y|≤δ̃/|x|

dw∣∣ x
|x|
− w

∣∣n−4( ε2

|x|2
+ |w|2

) n−4
2

≤ δ̃n−8.

Therefore we get a uniform bound on u1 of order o(1) as δ̃→ 0.
Turning to u2, one can distinguish the cases |x| ≤ 2δ̃ and |x| > 2δ̃. In the former one

finds |u2(x)| ≤ Cδ̃, in the latter |u2(x)| ≤ Cδ̃
n−3
|x|4−n. The bounds on u1 and u2 yield

the conclusion. ut

To estimate the quotient of ûε, we have, by definition of ûε,∫
M

ûεPg̃ûε dvg̃ =

∫
M

ûε
η(x)bnε

4

(ε2 + |x|2)
n+4

2
dvg̃

=

∫
M

(
χ̃δ̃(uε + β)+ (1− χ̃δ̃)ḡx0 + (ûε − ǔε)

) η(x)bnε
4

(ε2 + |x|2)
n+4

2
dvg̃

=: I1 + I2 + I3.

We next estimate each of these three terms. Concerning I1 we have

I1 = bnε
4
(∫

M

u
2n
n−4
ε dvg̃ + β

∫
M

u
n+4
n−4
ε dvg̃ +O(1)

)
, δ̃→ 0.

For I2, since 1− χ̃δ̃ vanishes in a δ̃-neighborhood of p we simply have

I2 = ε
4O(1).

For I3 we can use Lemma 5.3 to find that

|I3| ≤ Co(1)
∫
M

η(x)bnε
4

(ε2 + |x|2)
n+4

2
dvg̃.

Therefore, we obtain

N (ûε) = bnε4
(∫

M

u
2n
n−4
ε dvg̃ + β(1+ o(1))

∫
M

u
n+4
n−4
ε dvg̃ +O(1)

)
. (5.2)

On the other hand for the denominator we have∫
M

û
2n
n−4
ε dvg̃ =

∫
B
δ̃
(x0)
(uε + β)

2n
n−4 dvg̃ +O(1).
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Since in Bδ̃(x0), β is bounded by uε, we have∫
M

û
2n
n−4
ε dvg̃ =

∫
B
δ̃
(x0)

u
2n
n−4
ε dvg̃ +

2n
n− 4

β

∫
B
δ̃
(x0)

u
n+4
n−4
ε dvg̃

+ β2
∫
Bδ(x0)

O(u
8
n−4
ε ) dvg̃ +O(1)

=

∫
M

u
2n
n−4
ε dvg̃ +

2n
n− 4

β

∫
M

u
n+4
n−4
ε dvg̃ + β

2
∫
B
δ̃
(x0)

O(u
8
n−4
ε ) dvg̃ +O(1).

Therefore one finds that

Fg̃(ûε) =
bnε

4(∫
M
u

2n
n−4
ε dvg̃ + β(1+ oδ̃(1))

∫
M
u
n+4
n−4
ε dvg̃ +Oδ̃(1)

)
(∫
M
u

2n
n−4
ε dvg̃ +

2n
n−4β

∫
M
u
n+4
n−4
ε dvg̃ + β

2
∫
B
δ̃
(x0)

O(u
8
n−4
ε ) dvg̃ +Oδ̃(1)

) n−4
n

.

We now notice that the following asymptotics hold:∫
M

u
2n
n−4
ε dvg̃ ' ε

−n,

∫
M

u
n+4
n−4
ε dvg̃ ' ε

−4,

∫
B
δ̃
(x0)

O(u
8
n−4
ε ) dvg̃ ' ε

n−8.

These and a Taylor expansion of the denominator in Fg̃(ûε) imply

Fg̃(ûε) = Sn
(

1− β(1+ o(1))

∫
M
u
n+4
n−4
ε dvg̃∫

M
u

2n
n−4
ε dvg̃

)
.

This completes the proof of (5.1). The proof of (i′)–(iii′) is the same as in the proof of
Proposition 4.1. ut

6. Sequential convergence of the flow

In this section we prove the main existence result: under the assumptions of Proposition
4.1 or 5.1, we show the flow converges (up to choosing a suitable sequence of times) to a
solution of the Q-curvature equation.

Theorem 6.1. Let (Mn, ḡ) be a closed Riemannian manifold of dimension n ≥ 5 which
is not conformally equivalent to the standard sphere. Suppose that

(i) Qḡ is semi-positive,
(ii) Rḡ ≥ 0.

Let g0 = h, where h is the metric constructed in Proposition 5.1 (when 5 ≤ n ≤ 7, or ḡ
is locally conformally flat and n ≥ 5) or Proposition 4.1 (when n ≥ 8 and ḡ is not locally
conformally flat). Then the flow (3.2) has a solution for all time satisfying∫

u2 dv0 ≥ C0
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for some constant C0 > 0. Moreover, it is possible to choose a sequence of times tj ↗∞
such that uj = uj (tj , ·) converges weakly in W 2,2(Mn) to a smooth solution u > 0 of

Pg0u = µ̄u
n+4
n−4 ,

where µ̄ > 0. In particular, g∞ = u4/(n−4)g0 defines a metric with positive scalar curva-
ture and constant positive Q-curvature.

Proof. If we take our initial metric g0 to be the metric in the conclusion of Proposition
4.1 or 5.1, then by Proposition 3.7 the flow (3.2) exists for all time. In addition, by the
same propositions we know

Fg0 [u0] ≤ Sn − ε0,

where u0 ≡ 1 is our initial datum for the flow and ε0 > 0. It follows from Lemma 3.5
that

Fg0 [u] =

∫
u(Pg0u) dv0

(
∫
u

2n
n−4 dv0)

n−4
n

≤ Sn − ε0 (6.1)

for all times.
Recall the Euclidean Paneitz–Sobolev constant is

Sn = inf
ϕ∈C∞0 (Rn)

∫
(10ϕ)

2 dx

(
∫
|ϕ|

2n
n−4 dx)

n−4
n

.

On the compact Riemannian manifold (M, g0), given δ > 0 we can use a cut-and-paste
argument to prove that(∫

|ϕ|
2n
n−4 dv0

) n−4
n

≤ (S−1
n + δ)

∫
(1g0ϕ)

2 dv0 + Cδ

∫
ϕ2 dv0,

which implies(∫
|ϕ|

2n
n−4 dv0

) n−4
n

≤ (S−1
n + 2δ)

∫
ϕ(Pg0ϕ) dv0 + C

′
δ

∫
ϕ2 dv0. (6.2)

Plugging (6.1) into (6.2) gives(∫
u

2n
n−4 dv0

) n−4
n

≤ (S−1
n + 2δ)

∫
u(Pg0u) dv0 + C

′
δ

∫
u2 dv0

≤ (S−1
n + 2δ)(Sn − ε0)

(∫
u

2n
n−4 dv0

) n−4
n

+ C′δ

∫
u2 dv0.

If we take δ = ε0/10, then the first term on the right-hand side can be absorbed into the
left-hand side, and we get(∫

u
2n
n−4 dv0

) n−4
n

≤ C(ε0)

∫
u2 dv0.
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Since the l.h.s. is just a power of the conformal volume (which is non-decreasing), we
conclude that

∫
u2 dv0 ≥ C0 > 0 for all time, as claimed.

By Lemma 3.5 and Corollary 3.6 we can choose a sequence of times tj ↗ ∞ such
that uj = u(tj , ·) and µj = µ(tj ) satisfy

µj ↗ µ̄,

uj ⇀ u weakly in W 2,2(Mn),

uj → u strongly in L2(Mn),

fj = −uj + µjP
−1
g0
(u

n+4
n−4
j )→ 0 strongly in W 2,2(Mn).

It follows that u ≥ 0 satisfies

u = µ̄P−1
g0
(u

n+4
n−4 ),

and by elliptic regularity u is a strong solution of

Pg0u = µ̄u
n+4
n−4 .

By the strong maximum principle (Theorem 2.2), in fact u > 0. This completes the proof
of the theorem. ut
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