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Abstract. We study the Neumann initial-boundary problem for the chemotaxis system
ut = 1u−∇ · (u∇v), x ∈ �, t > 0,
0 = 1v − µ(t)+ w, x ∈ �, t > 0,
τwt + δw = u, x ∈ �, t > 0,

(?)

in the unit disk � := B1(0) ⊂ R2, where δ ≥ 0 and τ > 0 are given parameters and µ(t) :=ffl
� w(x, t)dx, t > 0. It is shown that this problem exhibits a novel type of critical mass phenomenon

with regard to the formation of singularities, which drastically differs from the well-known thresh-
old property of the classical Keller–Segel system, as obtained upon formally taking τ → 0, in that it
refers to blow-up in infinite time rather than in finite time. Specifically, it is first proved that for any
sufficiently regular nonnegative initial data u0 and w0, (?) possesses a unique global classical solu-
tion. In particular, this shows that in sharp contrast to classical Keller–Segel-type systems reflecting
immediate signal secretion by the cells themselves, the indirect mechanism of signal production
in (?) entirely rules out any occurrence of blow-up in finite time. However, within the framework of
radially symmetric solutions it is next proved that
• whenever δ > 0 and

´
� u0 < 8πδ, the solution remains uniformly bounded, whereas

• for any choice of δ ≥ 0 and m > 8πδ, one can find initial data such that
´
� u0 = m and the

corresponding solution satisfies

‖u(·, t)‖L∞(�) →∞ as t →∞.
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1. Introduction

A chemotaxis model with indirect signal production. Chemotaxis, the biased move-
ment of cells along concentration gradients of a chemical signal, is known to play a sig-
nificant role in numerous biological circumstances such as bacterial aggregation, spatial
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pattern formation, embryonic morphogenesis, cell sorting, immune response, wounding
healing, tumor-induced angiogenesis, and also tumor invasion (see [35], [20], [28], [11],
[1], [10], [6] and [7], for instance). The renowned Keller–Segel model (cf. (1.4) below),
describing the collective behavior of cells in response to a signal produced by the cells
themselves, has been well-studied with regard to biological implications, but beyond this,
during the last decades quite a thorough comprehension of its mathematical features has
grown in various directions ([35], [13], [2]).

In contrast to this well-understood paradigmatic case, the theoretical understanding
is much less developed in situations when a chemotactic cue is not released by the cells
themselves. Typical examples for such mechanisms include cases when the signal is not
produced at all, such as in oxygenotaxis processes of swimming aerobic bacteria which
preferably move toward higher concentrations of externally provided oxygen as their nu-
trient [36], and also cases in which signal production occurs within more complex pro-
cesses, possibly involving chemical reactions or even cascades thereof, such as e.g. in the
glycolysis reaction ([9], [29]); cf. also [23] and [5] for further extensions of chemotaxis
models involving additional couplings.

It is the purpose of the present work to achieve some insight into possible features
of chemotaxis models accounting for the latter type of more complex signal production
mechanisms. Specifically, we shall be concerned with the prototypical parabolic-elliptic-
ODE system 

ut = 1u−∇ · (u∇v), x ∈ �, t > 0,
0 = 1v − µ(t)+ w, x ∈ �, t > 0,
τwt + δw = u, x ∈ �, t > 0,
∂u
∂ν
=

∂v
∂ν
= 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ �,

(1.1)

in the unit disk � := B1 := B1(0) ⊂ R2, where δ ≥ 0 and τ > 0 are fixed parameters
and

µ(t) :=

 
�

w(x, t) dx, t > 0. (1.2)

In a concrete biological framework, this model arises as a simplification of the chemotaxis
model recently proposed by Strohm, Tyson and Powell [32] to describe the spread and
aggregative behavior of the Mountain Pine Beetle (MPB) in a forest habitat considered
negligibly thin in its vertical dimension. Their model involves three variables: the density
of flying MPB, denoted by u, the density of nesting MPB, represented by w, and the
concentration v of the beetle pheromone, the latter being secreted only by those MBP
which are nested in trees. Besides random diffusive motion, the flying MPB can partially
orient their movement according to concentration gradients of the MPB pheromone. Once
MPB nest, they do not move any longer, meaning that apart from the increase ofw through
transition from the flying to the nested state, the only further quantity relevant to their
evolution remains their death rate δ. For more details on the physical background, we
refer the reader to [32, Section 2].
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From a mathematical point of view, (1.1) can be viewed as a variant of the Keller–
Segel model associated with the system{

ut = 1u−∇ · (u∇v), x ∈ �, t > 0,
0 = 1v − µ̃+ u, x ∈ �, t > 0, (1.3)

where µ̃ :=
ffl
�
u ≡

ffl
�
u0, which can formally be obtained from (1.1) upon taking τ ↘ 0.

In the case when � coincides with the entire space R2 or R3, the corresponding limit
system of the latter arises in the modeling of self-gravitating particles [4], and furthermore
it was introduced in [16] as a simplification of the well-known classical Keller–Segel
model [17] of chemotaxis, the original version of which being{

ut = 1u−∇ · (u∇v), x ∈ �, t > 0,
vt = 1v − v + u, x ∈ �, t > 0. (1.4)

Here the hypotheses justifying the reduction of (1.4) to (1.3), namely the physically mean-
ingful assumptions that chemicals diffuse much faster than cells, and that the particular
signal substance in question degrades sufficiently slowly, have been used in various re-
lated contexts and are also part of the simplification of the original model in [32] to (1.1)
(cf. also the review paper [14]).

Let us emphasize here the evident difference between (1.1) for τ > 0 on the one
hand and the two-component Keller–Segel systems (1.3) and (1.4) on the other: In both
of the latter, the quantity u directly produces the quantity v governing its cross-diffusion,
whereas the corresponding signal production in (1.1) occurs in an indirect process, with
first u producing the third quantity w, and with the latter being exclusively responsible
for the release of v.

Blow-up and critical mass phenomena. It is known that chemotactic cross-diffusion
terms, constituting the apparently most characteristic model ingredient in all systems
(1.1), (1.3) and (1.4), may have a strong destabilizing potential and even enforce the
formation of singularities. Correspondingly, a striking feature of both Keller–Segel sys-
tems (1.3) and (1.4) appears to be the occurrence of some solutions blowing up in finite
time, which is commonly viewed as mathematically expressing numerous processes of
spontaneous cell aggregation which can be observed in experiments (see [13] and also [2]
for a survey). Indeed, in the spatially two-dimensional framework considered here, the
appearance of such explosion phenomena is closely related to the initially present total
mass

´
�
u0 of cells. For instance, it was shown in [16] and [3] that in the spatially radial

setting, the system (1.3) possesses some solutions which blow up in finite time provided
that this mass

´
�
u0 is large enough, whereas solutions remain bounded whenever

´
�
u0

is small; as a precise value distinguishing the respective mass regimes either allowing for
or suppressing explosions, the critical mass mc = 8π could be identified (cf. [3], [26]
and [30] for (1.3) and closely related variants thereof).

As for the fully parabolic chemotaxis system (1.4), an analogous critical mass phe-
nomenon is known to occur, the respective threshold value again being mc = 8π in the
radially symmetric situation. For corresponding results on boundedness in the subcriti-
cal regime we refer to [25]; some quite particular blow-up solutions with

´
�
u0 > 8π
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have been detected in [12], whereas recently in [22] it was shown that such a singularity
formation indeed occurs within a considerably large set of supercritical-mass initial data,
which can even be viewed generic in an appropriate sense.

In the nonradial setting, corresponding critical mass phenomena seem to be present,
with a reduced value of mc = 4π . For parabolic-elliptic Keller–Segel systems, rigorous
proofs for this can be found in, or easily adapted from [26] and [25]; in the parabolic-
parabolic case, only a respective boundedness result is available in the case

´
�
u0 < 4π

(see [25]), whereas the occurrence of any nonradial finite-time blow-up solution to (1.4)
appears to be a challenging open problem (cf. [15] for a partial result on unboundedness).

Let us mention that in the spatially one-dimensional versions of both (1.3) and (1.4),
all solutions emanating from conveniently smooth initial data are global in time and re-
main uniformly bounded [27], while in three- or higher-dimensional balls, for arbitrarily
small values of m > 0 one can find smooth initial data fulfilling

´
�
u0 = m, for which

the corresponding solution will blow up in finite time (see [24] for a parabolic-elliptic
and [37] for the fully parabolic case). A critical mass phenomenon thus occurs only in the
two-dimensional situation.

Main results. A novel type of critical mass phenomenon. It is the purpose of the
present paper to rigorously investigate the qualitative features of the system (1.1) with
regard to its original intention to model processes of aggregation. Here our focus will be
on the question of how far the indirect signal production mechanism in (1.1) can enforce
singularity formation in the first solution component u. Our main results in this direction
show that actually also (1.1) exhibits a type of critical mass phenomenon, but that the
latter appears to be novel in the context of chemotaxis problems: Surprisingly, unlike the
cases of (1.3) and (1.4), the mass threshold property we shall identify here will refer to
blow-up in infinite time rather than in finite time.

Indeed, by deriving energy-type estimates through rather straightforward testing pro-
cedures we can first show that for all reasonably regular initial data with arbitrary mass´
�
u0, (1.1) is globally classically solvable:

Proposition 1.1. Let δ ≥ 0 and tau > 0, and suppose that u0 ∈ C
0(�̄) andw0 ∈ C

1(�)

are nonnegative. Then there exists a unique triple (u, v,w) of nonnegative functions

u ∈ C0(�× [0,∞)) ∩ C2,1(�× (0,∞)),
v ∈ C2,0(�× [0,∞)),
w ∈ C0,1(�× [0,∞)),

which solves (1.1) in the classical sense.

We shall next establish that the number

mc := 8πδ

is critical with regard to boundedness of radial solutions. The first part of this characteri-
zation is contained in the following.
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Theorem 1.2. Let δ, τ > 0, and suppose that u0 ∈ C
0(�) and w0 ∈ C

1(�) are radially
symmetric and nonnegative, and m :=

´
�
u0 satisfies

m < 8πδ.

Then the solution of (1.1) is bounded in�× (0,∞); that is, there exists a constant C > 0
such that

u(x, t) ≤ C, v(x, t) ≤ C and w(x, t) ≤ C for all x ∈ � and t > 0.

Secondly, the above picture is completed by our final statement: In fact, for anym > 8πδ
we shall derive an essentially explicit condition on the radial initial data u0 and w0 which
under the assumption

´
�
u0 = m ensures that in the large time limit, the solution diverges

exponentially in its first component when measured in L∞(�):

Theorem 1.3. Let δ ≥ 0 and τ > 0. Then for any

m > 8πδ

there exist R ∈ (0, 1) and α > 0 such that for each η > 0 one can find positive con-
stants 0u(m, η), γ (m, η) and 0w(m, η) with the property that for all radially symmetric
nonnegative functions u0 ∈ C

0(�) and w0 ∈ C
1(�) satisfying

ˆ
�

u0 = m > 8πδ, (1.5)
 
Br

u0 ≥ 0u(m, η) for all r ∈ (0, R), (1.6)
 
B1\Br

u0 ≤ γ for all r ∈ (R, 1), (1.7)
 
Br

w0 ≥

 
B1

w0 + 0w(m, η) for all r ∈ (0, R), (1.8)
 
B1\Br

w0 ≤

 
B1

w0 − η for all r ∈ (R, 1), (1.9)

the corresponding solution (u, v,w) of (1.1) is unbounded in the sense that

‖u(·, t)‖L∞(�) ≥ ce
αt for all t > 0

with some c = c(m, η, δ, τ, ‖w0‖L1(�)) > 0.

As a particular consequence, this provides some quantitative information on the damping
role of the death rate δ in (1.1). For instance, it follows from Theorem 1.2 that for any
given initial data (u0, w0) the associated solution will remain bounded whenever δ > 0
is suitably large. On the other hand, if δ vanishes then unbounded solutions can be found
for arbitrarily small values of the initial mass

´
�
u0.

Moreover, the criticality of mc = 8πδ, as thus detected to predict the possibility or
impossibility of aggregation phenomena in (1.1) for positive values of τ and δ, appears to
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be consistent with the above mass threshold properties of (1.3): Indeed, in the limit case
τ = 0, in which in (1.1) clearly any initial condition on w becomes meaningless, we will
have w ≡ (1/δ)u. Hence, upon substituting ũ := (1/δ)u we see that we may assume that
δ = 1, and that (1.1) reduces to (1.3), having critical mass mc = 8π = 8πδ; the fact that
mc is then related to finite-time blow-up, rather than to inifinite-time aggregation, may be
viewed as a consequence of the lacking relaxation mechanism reflected in the ODE for w
in (1.1) when τ > 0. In summary, varying τ over the interval [0,∞) does not change the
value of the critical mass, but it significantly affects its precise role when passing from
positive τ to the case τ = 0.

Main ideas underlying our approach. Let us briefly outline the methods we pursue in
the derivation of Theorems 1.2 and 1.3. Our approach to both of these will be based on
a transformation reducing (1.1) to an initial-boundary value problem for a scalar degen-
erate parabolic equation. Though well-established in related contexts, this transformation
results in an equation which, unlike the corresponding situation in the standard Keller–
Segel system (1.3) (see [16]), now contains a nonlinear production term that is nonlocal
in time. More precisely, we shall see that the mass distribution function U associated with
a given radial solution u = u(r, t) of (1.1), that is, the function defined by

U(ξ, t) :=

ˆ √ξ
0

ru(r, t) dr, ξ ∈ [0, 1], t ≥ 0,

satisfies the single equation

Ut = 4ξUξξ +
2
τ

{ˆ t

0
e−δ(t−s)/τ

(
U(ξ, s)−

m

2π
ξ

)
ds

}
·Uξ +2(W0(ξ)−K0ξ) ·e

−δt/τUξ

(1.10)
for ξ ∈ (0, 1) and t > 0, where W0(ξ) :=

´ √ξ
0 rw0(r) dr , ξ ∈ [0, 1], and K0 :=

W0(1) (cf. Lemma 4.1). Clearly, u is bounded if and only if the spatial gradient Uξ is
bounded. Fortunately, the corresponding parabolic operator allows for a comparison prin-
ciple (Lemma 4.2), and thus enables us to focus our subsequent analysis on the construc-
tion of appropriate super- and subsolutions.

Based on such a comparison argument, under the subcriticality assumption m < 8πδ
from Theorem 1.2 we shall first obtain an estimate of the form U(ξ, t) ≤ Cξ for all
(ξ, t) ∈ (0, 1) × (0,∞) and some C > 0 (Lemma 5.2). This means that given ε > 0,
adjusting r0 ∈ (0, 1) suitably we can achieve that the mass which the original solution
accumulates in the ball Br0(0) satisfies

´
Br0 (0)

u(x, t) dx < ε for all t > 0. In conjunction
with a corresponding ε-regularity result (Section 5.3) this will yield the desired bounded-
ness property of such solutions.

In the case m > 8πδ addressed in Theorem 1.3, we will construct subsolutions ex-
hibiting gradient grow-up at the origin; that is, we shall find a family of suitable subso-
lutions U to (1.10) with the properties U(0, t) = 0 for all t > 0 and Uξ (0, t) → ∞ as
t →∞. Proving Theorem 1.3 then amounts to finding sufficient conditions for u0 andw0
ensuring that U(ξ, 0) ≥ U(ξ, 0) for all ξ ∈ (0, 1).
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We find it worthwhile to underline here that the structure near the origin of the latter
comparison functions, to be explicitly constructed and analyzed in detail in Section 6,
will be given by

U(ξ, t) :=
a(t)ξ

b(t)+ ξ
, ξ ∈ [0, ξ0), t ≥ 0, (1.11)

with b(t) = b0e
−αt , t ≥ 0, and appropriately chosen a ∈ C1([0,∞)), ξ0 ∈ (0, 1) and

b0, α > 0. The idea for this construction originates from standard knowledge on equilibria
for the classical parabolic-elliptic Keller–Segel system obtained from (1.3) in the limit
case � = R2. Indeed, choosing a ≡ 4 and b ≡ const in (1.11) one would rediscover a
well-known family of explicit radial steady states for the corrseponding version of (1.3)
(see [19]).

2. Local existence

The following basic result on local existence of solutions to (1.1) can be proved by adapt-
ing approaches that are well-established in the context of parabolic-elliptic models for
taxis mechanisms involving both cross-diffusion terms and ODE dynamics (cf. [34], [21],
[18] and [8], for instance). Here we note that our assumption that w0 belong to C1(�)

enables us to use standard elliptic Schauder theory to gain appropriate knowledge on the
spatial regularity of v. Indeed, expressing w via the formula

w(x, t) = w0(x)e
−δt/τ

+
1
τ

ˆ t

0
e−δ(t−s)/τu(x, s) ds, x ∈ �, t > 0, (2.1)

we see that v(·, t) actually solves the Poisson equation with a temporally nonlocal inho-
mogeneity which thanks to the inclusion w0 ∈ C

1(�) will be Hölder continuous in �
provided that u(·, t) is sufficiently regular, where the latter can be guaranteed by standard
arguments involving appropriate smoothing properties of the Neumann heat semigroup
in �.

Lemma 2.1. Let δ ≥ 0, and suppose that u0 ∈ C
0(�̄) and w0 ∈ C

1(�̄) are nonnegative.
Then there exist Tmax ∈ (0,∞] and uniquely determined nonnegative functions

u ∈ C0(�× [0, Tmax)) ∩ C
2,1(�× (0, Tmax)),

v ∈ C2,0(�× [0, Tmax)),

w ∈ C0,1(�× [0, Tmax)),

which solve (1.1) classically in �× (0, Tmax) and

if Tmax <∞, then ‖u(·, t)‖L∞(�)→∞ as t ↗ Tmax. (2.2)

The following identities describing the evolution of the total masses of the first and third
components in (1.1) can easily be checked.
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Lemma 2.2. Let δ ≥ 0. Then the solution (u, v,w) of (1.1) satisfiesˆ
�

u(·, t) = m :=

ˆ
�

u0 for all t ∈ (0, Tmax), (2.3)

and for all t ∈ (0, Tmax) we have
ˆ
�

w(·, t) = e−δt/τ
ˆ
�

w0 +
m

τ

ˆ t

0
e−δ(t−s)/τ ds

=

{
e−δt/τ

´
�
w0 +

m
δ
(1− e−δt/τ ) if δ > 0,

e−δt/τ
´
�
w0 +

m
τ
· t if δ = 0.

(2.4)

Proof. Integrating the first equation in (1.1) with respect to x ∈ �, we see that d
dt

´
�
u

≡ 0, which immediately yields (2.3). Using this, we only need to integrate (2.1) in space
to obtain (2.4). ut

Based on (2.4) we can now explicitly rewrite the degradation term µ(t) in the second
equation in (1.1).

Corollary 2.3. Let δ ≥ 0. Then the function µ defined in (1.2) is given by

µ(t) =
1
π
e−δt/τ

ˆ
�

w0 +
m

πτ

ˆ t

0
e−δ(t−s)/τ ds for all t ∈ (0, Tmax), (2.5)

where m :=
´
�
u0.

3. Global existence

The following basic statement on the time evolution of the functional 1
p

´
�
up +

τ
p+1

´
�
wp+1 will be the starting point for our derivation of bounds for u, and also for w,

in spaces of the form L∞((0, Tmax);L
p(�)) with p > 1. Besides Lemma 3.2, it will be

referred to in Lemma 5.4 below.

Lemma 3.1. Let δ ≥ 0. Then for all p > 1, the solution of (1.1) satisfies

d

dt

{
1
p

ˆ
�

up +
τ

p + 1

ˆ
�

wp+1
}
+

4(p − 1)
p2

ˆ
�

|∇up/2|2 + δ

ˆ
�

wp+1

≤
p − 1
p

ˆ
�

upw +

ˆ
�

uwp for all t ∈ (0, Tmax). (3.1)

Proof. We multiply the first equation in (1.1) by up−1 and integrate by parts using the
identity 1v = µ(t)− w to find that

1
p

d

dt

ˆ
�

up +
4(p − 1)
p2

ˆ
�

|∇up/2|2 = (p − 1)
ˆ
�

up−1
∇u · ∇v = −

p − 1
p

ˆ
�

up1v

= −
p − 1
p

ˆ
�

up(µ(t)− w) ≤
p − 1
p

ˆ
�

upw for all t ∈ (0, Tmax), (3.2)
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because µ(t) ≥ 0 by Corollary 2.3. On the other hand, multiplying the third equation in
(1.1) by wp and integrating with respect to x ∈ � we see that

τ

p + 1
d

dt

ˆ
�

wp+1
+ δ

ˆ
�

wp+1
=

ˆ
�

uwp for all t ∈ (0, Tmax).

Adding this to (3.2) proves (3.1). ut

Further estimating the terms on the right of (3.1) shows that the functional in question
actually satisfies the following autonomous differential inequality.

Lemma 3.2. Let δ ≥ 0. Then for any p > 1 there exists C(p) > 0 such that the solution
of (1.1) satisfies

d

dt

{
1
p

ˆ
�

up +
τ

p + 1

ˆ
�

wp+1
}

≤ C(p) ·

{
1
p

ˆ
�

up +
τ

p + 1

ˆ
�

wp+1
}

for all t ∈ (0, Tmax). (3.3)

Proof. Let us first invoke the Gagliardo–Nirenberg inequality to fix c1 > 0 such that
ˆ
�

ϕp+1
= ‖ϕp/2‖

2(p+1)/p
L2(p+1)/p(�)

≤ c1‖∇ϕ
p/2
‖

2
L2(�)

· ‖ϕp/2‖
2/p
L2/p(�)

+ c1‖ϕ
p/2
‖

2(p+1)/p
L2/p(�)

= c1‖∇ϕ
p/2
‖

2
L2(�)

· ‖ϕ‖L1(�) + c1‖ϕ‖
p+1
L1(�)

(3.4)

for all nonnegative ϕ ∈ W 1,2(�). We now let ε := 2(p−1)
mc1p2 and use the Young inequality

to estimate the two terms on the right of (3.1) according to

p − 1
p

ˆ
�

upw+

ˆ
�

uwp ≤ 2ε
ˆ
�

up+1
+(ε−p+ε−1/p)

ˆ
�

wp+1 for all t ∈ (0, Tmax).

(3.5)
Here since ‖u‖L1(�) =

´
�
u = m for all t ∈ (0, Tmax) due to Lemma 2.2, by the Hölder

inequality and (3.4) we obtain

2ε
ˆ
�

up+1
≤ 2εc1m

ˆ
�

|∇up/2|2 + 2εc1m

(ˆ
�

u

)p
≤ 2εc1m

ˆ
�

|∇up/2|2 + 2εc1m · |�|
(p−1)/p

ˆ
�

up

=
4(p − 1)
p2

ˆ
�

|∇up/2|2 +
4(p − 1)
p2 · |�|(p−1)/p

ˆ
�

up

for all t ∈ (0, Tmax). Inserting this into (3.5) and recalling (3.1) proves (3.3). ut

We are now in a position to prove our global existence result for (1.1).
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Proof of Proposition 1.1. For any given T ∈ (0, Tmax), the ODI (3.3) yields

1
p

ˆ
�

up +
τ

p + 1

ˆ
�

wp+1
≤ c1(p, T ) for all t ∈ (0, T )

with c1(p, T ) :=
( 1
p

´
�
u
p

0 +
τ
p+1

´
�
w
p+1
0

)
· eC(p)T , where C(p) > 0 is as defined by

Lemma 3.2. Since τ > 0, this immediately yields
ˆ
�

up ≤ pc2(p, T ) for all t ∈ (0, T ) (3.6)

and
ˆ
�

wp+1
≤ c2(p, T ) for all t ∈ (0, T )

with c2(p, T ) := max{p, (p + 1)/τ } · c1(p, T ). From the latter and standard elliptic
regularity theory we obtain a bound for v in all spaces L∞((0, T );W 2,p(�)) for any
p ∈ (1,∞), whence in particular there exists c3(p, T ) > 0 such that

‖∇v(·, t)‖L∞(�) ≤ c3(p, T ) for all t ∈ (0, T ).

Along with (3.6), this ensures that Lemma 4.1 in [33] becomes applicable so as to assert
via a Moser-type iteration that

‖u(·, t)‖L∞(�) ≤ c4(p, T ) for all t ∈ (0, T )

holds for some c4(p, T ) > 0. Finally, Proposition 1.1 is an evident consequence of this
and the extensibility criterion in Lemma 2.1. ut

4. Radial solutions. A comparison principle

Throughout the following we shall assume that the initial data u0 and w0, and hence
clearly also all components of the solution (u, v,w), are radially symmetric with respect
to the spatial origin, and unless stated otherwise we fix

m :=

ˆ
�

u0. (4.1)

Then without danger of confusion we may and will switch to the usual radial notation and
write u = u(r, t) for r = |x| ∈ [0, 1] whenever this appears convenient.

Lemma 4.1. Suppose that δ ≥ 0, and given a radial solution (u, v,w) of (1.1), let

U(ξ, t) :=

ˆ √ξ
0

ru(r, t) dr, ξ ∈ [0, 1], t ≥ 0. (4.2)
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Then

U(0, t) = 0 and U(1, t) =
m

2π
for all t ≥ 0, (4.3)

Uξ (ξ, t) ≥ 0 for all ξ ∈ (0, 1) and t > 0. (4.4)

Moreover,
PU(ξ, t) = 0 for all ξ ∈ (0, 1) and t > 0, (4.5)

where the operator P is defined by setting

PŨ (ξ, t) := Ũt − 4ξŨξξ −
2
τ

{ˆ t

0
e−δ(t−s)/τ

(
Ũ (ξ, s)−

m

2π
ξ

)
ds

}
· Ũξ

− 2(W0(ξ)−K0ξ) · e
−δt/τ Ũξ (4.6)

for ξ ∈ (0, 1), t > 0 and Ũ ∈ C1((0, 1)× (0,∞)) ∩ C0((0,∞);W 2,∞((0, 1))), with

W0(ξ) :=

ˆ √ξ
0

rw0(r) dr, ξ ∈ [0, 1], and K0 := W0(1) =
ˆ 1

0
rw0(r) dr. (4.7)

Proof. The boundary properties in (4.3) are immediate from (4.2) and (2.3), whereas the
monotonicity statement in (4.4) is equivalent to the nonnegativity of u. Moreover, upon
differentiation in (1.1) we see that for ξ ∈ (0, 1) and t > 0,

Ut (ξ, t) =

ˆ √ξ
0

r ·

{
1
r
(rur)r −

1
r
(ruvr)r

}
dr

=
√
ξ ur(

√
ξ, t)−

√
ξu(

√
ξ, t)vr(

√
ξ, t),

where by (4.2) we have

u(
√
ξ, t) = 2Uξ (ξ, t) and ur(

√
ξ, t) = 4

√
ξ Uξξ (ξ, t).

Since the second equation in (1.1) implies that

rvr(r, t) = −

ˆ r

0
ρw(ρ, t) dρ + µ(t)r2/2 for all r ∈ (0, 1) and t > 0,

we thus obtain

Ut = 4ξUξξ + 2UξW − µ(t)ξUξ for all ξ ∈ (0, 1) and t > 0, (4.8)

with W(ξ, t) :=
´ √ξ

0 rw(r, t) dr , ξ ∈ [0, 1], t ≥ 0. Now by (4.7) and (2.1),

W(ξ, t) = W0(ξ)e
−δt/τ

+
1
τ

ˆ t

0
e−δ(t−s)/τU(ξ, s) ds for all ξ ∈ (0, 1) and t > 0,

whereas

µ(t) = 2K0e
−δt/τ

+
m

πτ

ˆ t

0
e−δ(t−s)/τ ds for all t > 0
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according to (2.5) and (4.7). Therefore,

2UξW − µ(t)ξUξ =
2
τ

{ˆ t

0
e−δ(t−s)/τU(ξ, s) ds

}
· Uξ (ξ, t)+ 2W0(ξ)e

−δt/τUξ (ξ, t)

− 2K0ξ · e
−δt/τUξ (ξ, t)−

{ˆ t

0
e−δ(t−s)/τ ·

m

πτ
ξ ds

}
· Uξ (ξ, t)

for all ξ ∈ (0, 1) and t > 0, which along with (4.8) proves (4.5). ut

Fortunately, the parabolic operator P introduced above falls into a class of operators al-
lowing for a comparison principle. To see this, for functions A,B and D to be specified
below, let us consider

QŨ (ξ, t) := Ũt (ξ, t)− A(ξ, t)Ũξξ (ξ, t)

−

{
B(ξ, t)+

ˆ t

0
D(ξ, t, s)Ũ(ξ, s) ds

}
· Ũξ (ξ, t), ξ ∈ (0, 1), t ∈ (t0, T ), (4.9)

for 0 ≤ t0 < T and sufficiently regular Ũ : (0, 1) × (0, T ) → R. Then assuming,
besides parabolicity, that the memory term has a favorable sign, we can indeed derive the
following comparison principle for spatially nondecreasing functions.

Lemma 4.2. Let t0 ≥ 0 and T > t0, and suppose that A ∈ C0((0, 1) × (t0, T )), B ∈
C0((0, 1)× (t0, T )) and D ∈ C0([0, 1] × [0, T ] × [0, T ]) satisfy

A ≥ 0 in (0, 1)× (t0, T ) and D ≥ 0 in [0, 1] × [0, T ] × [0, T ]. (4.10)

Moreover, assume that U and U are nonnegative functions belonging to

C0([0, 1] × [0, T ]) ∩ C1((0, 1)× (t0, T )) ∩ C0((t0, T );W
2,∞((0, 1))), (4.11)

which are such that

0 ≤ Uξ (ξ, t) ≤ M for all ξ ∈ (0, 1) and t ∈ (t0, T ) (4.12)

with some M > 0, and such that with Q as defined in (4.9) we have

QU(·, t) ≤ QU(·, t) a.e. in (0, 1) for all t ∈ (t0, T ). (4.13)

Then if
U(ξ, t) ≤ U(ξ, t) for all ξ ∈ [0, 1] and t ∈ [0, t0] (4.14)

as well as

U(0, t) ≤ U(0, t) for all t ∈ [t0, T ], U(1, t) ≤ U(1, t) for all t ∈ [t0, T ],
(4.15)

we have the global ordering property

U(ξ, t) ≤ U(ξ, t) for all ξ ∈ [0, 1] and t ∈ [0, T ]. (4.16)
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Proof. We let c1 := ‖D‖L∞((0,1)×(0,T )×(0,T )) and α :=
√
c1M with M as in (4.12), and

for arbitrary ε0 > 0 we let
ε(t) := ε0e

αt , t ≥ 0, (4.17)

and

d(ξ, t) := U(ξ, t)− U(ξ, t)− ε(t) for ξ ∈ [0, 1] and t ∈ [0, T ].

Then d is continuous in [0, 1] × [0, T ] with

d(ξ, t) ≤ −ε0e
αt < 0 for all ξ ∈ [0, 1] and t ∈ [0, t0],

d(ξ, t) ≤ −ε0e
αt < 0 for all ξ ∈ {0, 1} and t ∈ [t0, T ],

by (4.14) and (4.15) respectively. Thus,

t? := sup{t ∈ (0, T ) | d < 0 in [0, 1] × [0, t]}

is well-defined and satisfies t? ∈ (t0, T ], and if we had t? < T , then there would exist
ξ? ∈ (0, 1) such that

d(ξ?, t?) = max
ξ∈[0,1]

d(ξ, t?) = 0, (4.18)

whence evidently
dt (ξ?, t?) ≥ 0 and dξ (ξ?, t?) = 0, (4.19)

because d ∈ C1((0, 1) × (t0, T )) by (4.11). Now by (4.13) we know that there exists a
null set N ⊂ (0, 1) such that dξξ (ξ, t?) exists for all ξ ∈ (0, 1) \N and

dt (ξ, t?) ≤ A(ξ, t?)dξξ (ξ, t?)+

{
B(ξ, t?)+

ˆ t?

0
d(ξ, t?, s)U(ξ, s) ds

}
· dξ (ξ, t?)

+ Uξ (ξ, t?) ·

ˆ t?

0
D(ξ, t?, s)d(ξ, s) ds + Uξ (ξ, t?) ·

ˆ t?

0
D(ξ, t?, s) · ε(s) ds − ε

′(t?)

for all ξ ∈ (0, 1) \N. (4.20)

In order to make appropriate use of (4.19) and the maximality property in (4.18), we
observe that (4.18) necessarily implies that there exists (ξj )j∈N ⊂ (0, 1) \ N such that
ξj → ξ? as j →∞ and

dξξ (ξj , t?) ≤ 0 for all j ∈ N,

for otherwise we would have ess lim infξ→ξ? dξξ (ξ, t?) > 0, contradicting (4.18). Choos-
ing ξ = ξj in (4.20) and using the fact that (4.19) and (4.10) entail that

lim sup
j→∞

dt (ξj , t?) ≥ 0 and dξ (ξj , t?)→ 0 as j →∞,
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we deduce on taking j →∞ that

0 ≤ Uξ (ξ?, t?) ·
ˆ t?

0
D(ξ?, t?, s)d(ξ?, s) ds

+ Uξ (ξ?, t?) ·

ˆ t?

0
D(ξ?, t?, s) · ε(s) ds − ε

′(t?). (4.21)

Here since d(ξ?, s) < 0 for all s ∈ [0, t?) by definition of t?, we have

Uξ (ξ?, t?) ·

ˆ t?

0
D(ξ?, t?, s)d(ξ?, s) ds ≤ 0,

because D ≥ 0 and Uξ ≥ 0 by (4.10) and (4.12). Furthermore, (4.12) and our choice of
c1 ensure that

Uξ (ξ?, t?) ·

ˆ t?

0
D(ξ?, t?, s) · ε(s) ds ≤ Mc1

ˆ t?

0
ε(s) ds,

so that recalling (4.17), from (4.21) we obtain

0 ≤ Mc1

ˆ t?

0
ε0e

αs ds − αε0e
αt? =

Mc1ε0

α
(eαt? − 1)− αε0e

αt?

<

(
Mc1

α2 − 1
)
· αε0e

αt? .

Since Mc1/α
2
= 1 according to our definition of α, this absurd conclusion shows that

actually t? = T , and hence U ≤ U + ε0e
αt throughout [0, 1] × [0, T ]. On taking ε0 ↘ 0

we finally arrive at the desired inequality. ut

5. Boundedness for
´
�
u0 < 8πδ. Proof of Theorem 1.2

In this section we shall make sure that small-mass solutions remain bounded in the sense
of Theorem 1.2.

5.1. A pointwise upper bound for U

As a preliminary, let us prove the following elementary lemma.

Lemma 5.1. Let m > 0 and ε > 0, and suppose that ϕ ∈ W 1,∞((0, 1)) is such that
ϕ(0) = 0 and ϕ(ξ) ≤ m/(2π) for all ξ ∈ (0, 1). Then there exists b ∈ (0, 1) such that

ϕ(ξ) ≤
m

2π
·
(b + 1+ ε)ξ

b + ξ
for all ξ ∈ (0, 1). (5.1)
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Proof. Since ϕ(0) = 0 and ϕξ ∈ L∞(�), we can find c1 > 0 such that ϕ(ξ) ≤ c1ξ for all
ξ ∈ (0, 1), where we may assume that c1 > m/(2π). Therefore, our assumption warrants
that

ϕ(ξ) ≤ ϕ̂(ξ) := min
{
c1ξ,

m

2π

}
for all ξ ∈ (0, 1). (5.2)

Now writing ϕb(ξ) := m
2π ·

(b+1+ε)ξ
b+ξ

for ξ ∈ [0, 1] and b ∈ (0, 1), we see that the quotient
ϕ̂/ϕb admits a continuous extension Qb to all of [0, 1] such that

Qb(ξ) =

{ 2π
m
·
c1(b+ξ)
b+1+ε if ξ ∈ [0, ξ1],

b+ξ
(b+1+ε)ξ if ξ ∈ (ξ1, 1],

where ξ1 :=
m

2πc1
∈ (0, 1) thanks to our choice of c1. Since

∂

∂b

b + ξ

b + 1+ ε
=

1+ ε − ξ
(b + 1+ ε)2

> 0 for all ξ ∈ [0, 1],

it follows that as b ↘ 0 we have

Qb(ξ)↘ Q(ξ) :=

{
2π
m
·
c1ξ
1+ε if ξ ∈ [0, ξ1],

1
1+ε if ξ ∈ (ξ1, 1].

As Q is continuous in [0, 1], Dini’s theorem asserts that the convergence Qb → Q is
actually uniform in [0, 1]. Since Q(ξ) ≤ 1/(1+ ε) < 1 for all ξ ∈ [0, 1], we can
therefore pick some sufficiently small b ∈ (0, 1) such that Qb(ξ) ≤ 1 for all ξ ∈ [0, 1],
which in view of (5.2) implies (5.1). ut

By means of a comparison argument, we can now prove that under the assumption
´
�
u0

< 8πδ, it is possible to control the mass concentrating in small balls around the origin
uniformly with respect to t ∈ (0,∞) in the following sense.

Lemma 5.2. Let δ ≥ 0, and assume that u0 has the property that

m ≡

ˆ
�

u0 < 8πδ. (5.3)

Then there exists C > 0 such that the function U defined in (4.2) satisfies

U(ξ, t) ≤ Cξ for all ξ ∈ (0, 1) and t > 0. (5.4)

Proof. Since m < 8πδ, we can find ε > 0 such that

8 >
m

πδ
(1+ ε),

and thereupon choose t0 > 0 large satisfying

8 ≥
m

πδ
(1+ ε)+ 4c1e

−δt0/τ , (5.5)

where
c1 :=

1
2‖w0‖L∞(�). (5.6)
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With these values of ε and t0 fixed, using the fact that for all t ∈[0, t0]we have U(0, t)=0
and U(ξ, t) ≤ U(1, t) = m/(2π) for all ξ ∈ [0, 1] by (4.3) and (4.4), we can apply
Lemma 5.1 to find b ∈ (0, 1) satisfying

max
t∈[0,t0]

U(ξ, t) ≤
m

2π
·
(b + 1+ ε)ξ

b + ξ
for all ξ ∈ [0, 1]. (5.7)

This means that if we let

U(ξ, t) :=
aξ

b + ξ
for ξ ∈ [0, 1] and t ≥ 0

with

a :=
m

2π
· (b + 1+ ε),

then U(ξ, t) ≤ U(ξ, t) for all ξ ∈ [0, 1] and t ∈ [0, t0]. Moreover, clearly 0 = U(0, t) ≤
U(0, t) = 0 and U(1, t) = m

2π <
m
2π ·

b+1+ε
b+1 = U(1, t) for all t ≥ t0. Computing

U t = 0, U ξ =
ab

(b + ξ)2
and U ξξ = −

2ab
(b + ξ)3

for ξ ∈ (0, 1) and t > t0,

we see that with P as defined in (4.6) we have

PU(ξ, t) =
8abξ
(b + ξ)3

−

{
2
τ

ˆ t

0
e−δ(t−s)/τ ·

(
aξ

b + ξ
−
m

2π
ξ

)
ds

}
·

ab

(b + ξ)2

− 2(W0(ξ)−K0ξ) · e
−δt/τ

·
ab

(b + ξ)2

=
abξ

(b + ξ)2
·

{
8

b + ξ
−

2
δ
(1− e−δt/τ ) ·

(
a

b + ξ
−
m

2π

)
− 2

(
W0(ξ)

ξ
−K0

)
· e−δt/τ

}
(5.8)

for all ξ ∈ (0, 1) and t > t0. Here we use the definition of a and the nonnegativity of
e−δt/τ to estimate

2
δ
(1− e−δt/τ ) ·

(
a

b + ξ
−
m

2π

)
=

2
δ
(1− e−δt/τ ) ·

m

2π
·

(
b + 1+ ε
b + ξ

− 1
)

=
2
δ
(1− e−δt/τ ) ·

m

2π
·

1+ ε − ξ
b + ξ

≤
2
δ
·
m

2π
·

1+ ε
b + ξ

for all ξ ∈ (0, 1) and t > t0.

Since by (4.7) and (5.6) we have

W0(ξ) ≤ ‖w0‖L∞(�) · (
√
ξ)2/2 = c1ξ for all ξ ∈ (0, 1),

we moreover see that

2
(
W0(ξ)

ξ
−K0

)
· e−δt/τ ≤ 2c1e

−δt/τ
≤ 2c1e

−δt0/τ for all ξ ∈ (0, 1) and t > t0.
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According to (5.5), the identity (5.8) thus shows that

PU(ξ, t) ≥
abξ

(b + ξ)2
·

{
8

b + ξ
−

2
δ
·
m

2π
·

1+ ε
b + ξ

− 2c1e
−δt0/τ

}
=

abξ

(b + ξ)3
·

{
8−

m

πδ
(1+ ε)− 2c1(b + ξ)e

−δt0/τ

}
≥

abξ

(b + ξ)3
·

{
8−

m

πδ
(1+ ε)− 4c1e

−δt0/τ

}
≥ 0 for all ξ ∈ (0, 1) and t > t0,

where we have used b + ξ ≤ b + 1 ≤ 2, because b < 1. By comparison on the basis of
Lemma 4.2, we conclude that U ≥ U in (0, 1)× (0,∞), which in particular shows that

U(ξ, t) ≤
m(b + 1+ ε)

2πb
· ξ for all ξ ∈ (0, 1) and t > 0. ut

5.2. Boundedness away from the origin

In the case δ > 0 when the third equation in (1.1) contains an absorption term, radial
solutions can become unbounded in their first component u only near the spatial origin.
This is contained in the following lemma, the outcome of which will be an essential
ingredient to our ε-regularity result in Section 5.3, and hence in establishing Theorem 1.2.

Lemma 5.3. Let δ > 0. Then for all r0 ∈ (0, 1) there exists C(r0) > 0 such that the
solution of (1.1) satisfies

u(x, t) ≤ C(r0) for all x ∈ � \ Br0 and t > 0. (5.9)

Proof. We evidently only need to consider the case when u0 6≡ 0, in which we proceed
in six setps.

Step 1. We first claim that there exists c1 > 0 such that

|vr(r, t)| ≤ c1/r for all r ∈ (0, 1) and t > 0. (5.10)

To verify this, we write the second equation in (1.1) in the form

1
r
(rvr)r = µ(t)− w for r ∈ (0, 1) and t > 0,

multiply this by r and integrate using vr(0, t) = 0 for all t > 0 to see that

rvr(r, t) = µ(t)r
2/2−

ˆ r

0
ρw(ρ, t) dρ for all r ∈ (0, 1) and t > 0.

Since w ≥ 0 and
´ 1

0 ρw(ρ, t) dρ = µ(t)/2 for all t > 0 by (1.2), from this we obtain

−µ(t)/2 ≤ rvr(r, t) ≤ µ(t)r2/2 for all r ∈ (0, 1) and t > 0.
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This implies (5.10) if we choose c1 :=
1
2‖µ‖L∞((0,∞)) which is finite according to (2.5).

Step 2. We next assert that for all p∈(0, 1) and each r0∈(0, 1) we can find c2(p, r0)>0
satisfying ˆ t+1

t

ˆ
�\Br0

|∇up/2|2 ≤ c2(p, r0) for all t > 0. (5.11)

To this end, we fix a radially symmetric ζ ∈ C∞(�) such that 0 ≤ ζ ≤ 1 in �, ζ ≡ 1 in
� \Br0 and ζ ≡ 0 in Br0/2, and multiply the first equation in (1.1) by ζ 2up−1 to see upon
integrating by parts that

1
p

d

dt

ˆ
�

ζ 2up = (1− p)
ˆ
�

ζ 2up−2
|∇u|2 − 2

ˆ
�

ζup−1
∇u · ∇ζ

− (1− p)
ˆ
�

ζ 2up−1
∇u · ∇v + 2

ˆ
�

ζup∇v · ∇ζ for all t > 0, (5.12)

where we note that u, and hence also up−1 and up−2, is smooth and positive in�×(0,∞)
thanks to our assumption that u0 6≡ 0 and the strong maximum principle. Now by Young’s
inequality, the Hölder inequality and (2.3) we have∣∣∣∣−2

ˆ
�

ζup−1
∇u · ∇ζ

∣∣∣∣ ≤ 1− p
2

ˆ
�

ζ 2up−2
|∇u|2 +

1
1− p

ˆ
�

up|∇ζ |2

≤
1− p

2

ˆ
�

ζ 2up−2
|∇u|2 +

mp

1− p

(ˆ
�

|∇ζ |2/(1−p)
)1−p

for all t > 0.

By the same token combined with (5.10),∣∣∣∣−(1− p)ˆ
�

ζ 2up−1
∇u · ∇v

∣∣∣∣ ≤ 1− p
4

ˆ
�

ζ 2up−2
|∇u|2 + (1− p)

ˆ
�

ζ 2up|∇v|2

≤
1− p

4

ˆ
�

ζ 2up−2
|∇u|2 + (1− p)mp

(ˆ
�\Br0/2

|∇v|2/(1−p)
)1−p

≤
1− p

4

ˆ
�

ζ 2up−2
|∇u|2 + c3(p, r0) for all t > 0

with c3(p, r0) := c
2
1 ·(1−p)m

p
·(2π

´ 1
r0/2

r1−2/(1−p) dr)1−p. Similarly, we find c4(p, r0)

> 0 satisfying∣∣∣∣2ˆ
�

ζup∇v · ∇ζ

∣∣∣∣ ≤ 2mp
(ˆ

�\Br0/2

|∇v|1/1−p · |∇ζ |1/1−p
)1−p

≤ c4(p, r0) for all t > 0,

whence (5.12) altogether yields c5(p, r0) > 0 such that

1
p

d

dt

ˆ
�

ζ 2up ≥
1− p

4

ˆ
�

ζ 2up−2
|∇u|2 − c5(p, r0) for all t > 0.
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After a time integration and another application of the Hölder inequality and (2.3), we
thus obtain

1− p
4

ˆ t+1

t

ˆ
�

ζ 2up−2
|∇u|2 ≤

1
p

ˆ
�

ζ 2up(·, t + 1)+ c5(p, r0)

≤
mp · π1−p

p
+ c5(p, r0) for all t > 0,

which entails (5.11) in view of the fact that ζ ≡ 1 in � \ Br0 .

Step 3. We now make sure that for all r0 ∈ (0, 1) we can find c6(r0) > 0 satisfyingˆ t+1

t

‖u(·, s)‖L∞(�\Br0 )
ds ≤ c6(r0) for all t > 0. (5.13)

To this end, fix p ∈ (0, 1). Then again by radial symmetry we may combine the one-
dimensional version of the Gagliardo–Nirenberg inequality with the outcome of Step 2
and (2.3) to fix positive constants c7(r0), c8(r0) and c9(r0) such that
ˆ t+1

t

‖up/2(·, s)‖
2(p+1)/p
L∞((r0,1))

ds

≤ c7(r0)

ˆ t+1

t

{
‖(up/2)r(·, s)‖

2
L2((0,1)) · ‖u

p/2(·, s)‖
2/p
L2/p((r0,1))

+ ‖up/2(·, s)‖
2(p+1)/p
L2/p((r0,1))

}
ds

≤ c8(r0)

ˆ t+1

t

{‖(up/2)r(·, s)‖
2
L2((r0,1))

+ 1} ds ≤ c9(r0) for all t > 0.

Since ‖up/2(·, s)‖2(p+1)/p
L∞((r0,1))

= ‖u(·, s)‖
p+1
L∞((r0,1))

, an application of the Hölder inequality
yields (5.13).

Step 4. We proceed to show that for any r0 ∈ (0, 1) there exists c10(r0) > 0 such that

‖w(·, t)‖L∞(�\Br0 )
≤ c10(r0) for all t > 0. (5.14)

Indeed, given t > 0 we write Ij := (t − j −1, t − j)∩ (0,∞) for nonnegative integers j ,
and representing w(·, t) according to w(·, t) = e−δt/τw0 +

1
τ

´ t
0 e
−δ(t−s)/τu(·, s) ds we

can estimate

‖w(·, t)‖L∞(�\Br0 )
≤ e−δt/τ‖w0‖L∞(�) +

1
τ

∞∑
j=0

ˆ
Ij

e−δ(t−s)/τ‖u(·, s)‖L∞(�\Br0 )
ds

≤ e−δt/τ‖w0‖L∞(�) +
1
τ

∞∑
j=0

e−δj/τ
ˆ
Ij

‖u(·, s)‖L∞(�\Br0 )
ds

≤ e−δt/τ‖w0‖L∞(�) + c6(r0)

∞∑
j=0

e−δj/τ .

Since the rightmost series converges thanks to our assumption δ > 0, this proves (5.14).
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Step 5. Next, we prove that for each r0 ∈ (0, 1) we can fix c11(r0) > 0 such thatˆ t+1

t

ˆ
�\Br0

|∇u|2 ≤ c11(r0) for all t ≥ 1. (5.15)

Since t ≥ 1, Step 3 allows us to pick t0 ∈ (t − 1, t) such that

‖u(·, t0)‖L∞(�\Br0/2)
≤ c6(r0/2). (5.16)

Then using ζ as introduced in Step 2, by a straightforward testing procedure we infer that

1
2
d

dt

ˆ
�

ζu2(·, s)+

ˆ
�

ζ |∇u(·, s)|2 = −

ˆ
�

u∇u · ∇ζ +

ˆ
�

ζu∇u · ∇v+

ˆ
�

u2
∇v · ∇ζ

=
1
2

ˆ
�

u21ζ −
1
2

ˆ
�

ζu21v +
1
2

ˆ
�

u2
∇v · ∇ζ

≤
1
2

ˆ
�

u2(1ζ + ζw +∇v · ∇ζ ) for all s ∈ (t0, t + 1).

Thus, by Step 4, Step 1 and (2.3), we can find c12(r0) > 0 satisfying

1
2
d

dt

ˆ
�

ζu2(·, s)+

ˆ
�

ζ |∇u(·, s)|2 ≤ c12(r0)

ˆ
�\Br0/2

u2

≤ c12(r0) ·m · ‖u(·, s)‖L∞(�\Br0/2)
for all s ∈ (t0, t + 1),

whence integrating and using (5.16) and Step 3 shows that

1
2

ˆ
�

ζu2(·, t + 1)+
ˆ t+1

t0

ˆ
�

ζ |∇u|2

≤
1
2

ˆ
�

ζu2(·, t0)+ c12(r0) ·m ·

ˆ t+1

t0

‖u(·, s)‖L∞(�\Br0/2)
ds

≤
π

2
c2

6(r0/2)+ c12(r0) ·m · 2c6(r0/2).

As t0 < t , this implies (5.15).

Step 6 (conclusion). Again with ζ as in Step 2, we let ũ(r, t) := ζ(r)u(r, t) for r ∈ [0, 1]
and t ≥ 0. Then

ũt = ũrr + f (r, t) for all r ∈ (0, 1) and t > 0, (5.17)

with

f (r, t) :=
1
r
ζur − 2ζrur − ζrru− ζurvr − µ(t)ζu+ ζuw for r ∈ (0, 1) and t > 0.

By the outcome of Steps 1, 3, 4 and 5, for some c13(r0) > 0 we haveˆ t0+2

t0

‖f (·, s)‖2
L2((0,1)) ds ≤ c13(r0) for all t0 ≥ 1. (5.18)

Now given t ≥ 2, once more by Step 3 we can fix t0 ∈ (t − 1, t) satisfying

‖ũ(·, t0)‖L∞((0,1)) ≤ c6(r0/2). (5.19)
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Since ũr = 0 on ∂(0, 1), the variation-of-constants representation of ũ in terms of the
one-dimensional Neumann heat semigroup (eτ1)τ≥0 on the interval (0, 1) shows that

ũ(·, t) = e(t−t0)1ũ(·, t0)+

ˆ t

t0

e(t−s)1f (·, s) ds.

Therefore, using standard smoothing estimates ([31]) along with (5.19), the Hölder in-
equality and (5.18) we can find c14 > 0 such that

‖ũ(·, t)‖L∞((0,1)) ≤ ‖ũ(·, t0)‖L∞((0,1)) + c14

ˆ t

t0

(t − s)−1/4
‖f (·, s)‖L2((0,1)) ds

≤ c6(r0/2)+ c14

(ˆ t

t0

(t − s)−1/2 ds

)1/2

·

(ˆ t

t0

‖f (·, s)‖2
L2((0,1)) ds

)1/2

≤ c6(r0/2)+ c14 · (2
√

2)1/2 · (c13(r0))
1/2.

Since ũ(r, t) = u(r, t) for all r > r0, this establishes (5.9). ut

5.3. An ε-regularity result. Proof of Theorem 1.2

In deriving Theorem 1.2 from Lemma 5.2, we shall make use of a regularity statement
which says that solutions must already remain bounded if only their mass concentrating
in an arbitrarily small ball centered at the origin is sufficiently small. A first step toward
this is achieved in the following lemma.

Lemma 5.4. Let δ > 0. Then for all p > 1 there exists ε = ε(p) > 0 such that if for
some r0 ∈ (0, 1), a radial solution of (1.1) satisfiesˆ

Br0

u(x, t) dx < ε for all t > 0, (5.20)

then
sup
t>0

ˆ
�

up(x, t) dx <∞. (5.21)

Proof. Using Young’s inequality, given p > 1 we can find c1 = c1(p) > 0 such that

p − 1
p

ApB + ABp ≤
δ

2
Bp+1

+ c1A
p+1 for all A,B ≥ 0. (5.22)

Moreover, the Gagliardo–Nirenberg inequality says that with some c2 = c2(p) > 0 we
have

‖ϕ‖
2(p+1)/p
L2(p+1)/p(�)

≤ c2‖∇ϕ‖
2
L2(�)
‖ϕ‖

2/p
L2/p(�)

+ c2‖ϕ‖
2(p+1)/p
L2/p(�)

for all ϕ ∈ W 1,2(�).

(5.23)
We claim that if (5.20) holds with some r0 ∈ (0, 1) and

ε :=
p − 1
c1c2p2 , (5.24)
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then (5.21) must be valid. To see this, we apply Lemma 3.1 and estimate the terms on the
right-hand side of (3.1) by means of (5.22) to obtain

d

dt

{
1
p

ˆ
�

up +
τ

p + 1

ˆ
�

wp+1
}
+

4(p − 1)
p2

ˆ
�

|∇up/2|2 + δ

ˆ
�

wp+1

≤
δ

2

ˆ
�

wp+1
+ c1

ˆ
�

up+1 (5.25)

for all t > 0. We now fix ζ ∈ C∞0 (�) such that 0 ≤ ζ ≤ 1 in �, ζ ≡ 1 in Br0/2 and
supp ζ ⊂ Br0 , and split

c1

ˆ
�

up+1
= c1

ˆ
�

ζ 2(p+1)/pup+1
+ c1

ˆ
�

(1− ζ 2(p+1)/p)up+1, (5.26)

where according to Lemma 5.3 we can find c3 = c3(p, r0) > 0 such that

c1

ˆ
�

(1− ζ 2(p+1)/p)up+1
≤ c1

ˆ
�\Br0/2

up+1
≤ c3 for all t > 0. (5.27)

The first term on the right of (5.26) can be estimated using (5.23) according to

c1

ˆ
�

ζ 2(p+1)/pup+1
= c1‖ζu

p/2
‖

2(p+1)/p
L2(p+1)/p(�)

≤ c1c2‖∇(ζu
p/2)‖2

L2(�)
‖ζup/2‖

2/p
L2/p(�)

+ c1c2‖ζu
p/2
‖

2(p+1)/p
L2/p(�)

. (5.28)

Here since ∇(ζup/2) = ζ∇up/2 + up/2∇ζ , again by Lemma 5.3 we have

‖∇(ζup/2)‖2
L2(�)

≤ 2
ˆ
�

ζ 2
|∇up/2|2 + 2

ˆ
�

up|∇ζ |2

≤ 2
ˆ
�

|∇up/2|2 + c4 for all t > 0

with some c4 = c4(p, r0) > 0, because supp∇ζ ⊂ � \ Br0/2. Moreover, our hypothesis
(5.20) asserts that

‖ζup/2‖
2/p
L2/p(�)

=

ˆ
�

ζ 2/pu ≤

ˆ
Br0

u < ε for all t > 0,

whence (5.28) implies that

c1

ˆ
�

ζ 2(p+1)/pup+1
≤ 2c1c2ε

ˆ
�

|∇up/2|2 + c1c2c4ε + c1c2ε
p+1 for all t > 0.

(5.29)
Since 2c1c2ε = 2(p − 1)/p2 by (5.24), from (5.25)–(5.29) we thus obtain

d

dt

{
1
p

ˆ
�

up +
τ

p + 1

ˆ
�

wp+1
}
+

2(p − 1)
p2

ˆ
�

|∇up/2|2 +
δ

2

ˆ
�

wp+1

≤ c3 + c1c2c4ε + c1c2ε
p+1 for all t > 0. (5.30)
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Here we may invoke the Poincaré inequality to find c5 = c5(p) > 0 satisfying
ˆ
�

ϕ2
≤ c5

ˆ
�

|∇ϕ|2 + c5

(ˆ
�

|ϕ|2/p
)p

for all ϕ ∈ W 1,2(�),

which according to (2.3) entails that

2(p − 1)
p2

ˆ
�

|∇up/2|2 ≥
2(p − 1)
c5p2

ˆ
�

up −
2(p − 1)
p2 mp for all t > 0

with m :=
´
�
u0. Therefore, (5.30) shows that y(t) := 1

p

´
�
up(·, t) + τ

p+1

´
�
wp+1,

t ≥ 0, satisfies

y′(t)+ c6y(t) ≤ c7 for all t > 0,

where

c6 := min
{

2(p − 1)
c5p

,
(p + 1)δ

2τ

}
, c7 := c3 + c1c2c4ε + c1c2ε

p+1
+

2(p − 1)
p2 mp.

An ODE comparison thus yields (5.21). ut

By applying the above to suitably large p and using additional regularity arguments, we
can next make sure that the above assumptions already imply boundedness of u with
respect to the norm in L∞(�).

Lemma 5.5. Let δ > 0. Then there exists ε > 0 such that if for some r0 ∈ (0, 1) and
some radial solution of (1.1) we haveˆ

Br0

u(x, t) dx < ε for all t > 0, (5.31)

then
sup
t>0
‖u(·, t)‖L∞(�) <∞. (5.32)

Proof. We pick any p > 2 and apply Lemma 5.4 which says that under the assumption
(5.31) we can find c1 > 0 such that

‖u(·, t)‖Lp(�) ≤ c1 for all t > 0.

Therefore, (2.1) shows that

‖w(·, t)‖Lp(�) ≤ e
−δt/τ
‖w0‖Lp(�) +

1
τ

ˆ t

0
e−δ(t−s)/τ‖u(·, s)‖Lp(�) ds

≤ e−δt/τ‖w0‖Lp(�) +
c1

τ

ˆ t

0
e−δ(t−s)/τ ds for all t > 0.

Since δ > 0, we know that
´ t

0 e
−δ(t−s)/τ ds ≤ τ/δ, so that from this we obtain c2 > 0

satisfying
‖w(·, t)‖Lp(�) ≤ c2 for all t > 0.
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From this and standard elliptic regularity theory we obtain a bound for v in
L∞((0,∞);W 2,p(�)), which by the validity of the embedding W 2,p(�) ↪→ W 1,∞(�)

implies that

‖∇v(·, t)‖L∞(�) ≤ c3 for all t ∈ (0, T )

with some c3 > 0. Combined with (5.21), upon a Moser-type iteration [33, Lemma 4.1]
this yields (5.32). ut

Combining Lemma 5.5 with Lemma 5.2 now immediately yields boundedness of solu-
tions in the subcritical mass case.

Proof of Theorem 1.2. We let ε > 0 be as provided by Lemma 5.5 and only need to verify
the validity of (5.31) for some r0 ∈ (0, 1). In order to choose the latter appropriately, we
apply Lemma 5.2 to find c1 > 0 such that for arbitrary r0 ∈ (0, 1) we have

ˆ
Br0

u(x, t) dx = 2π
ˆ r0

0
ru(r, t) dr = 2πU(r2

0 , t) ≤ c1r
2
0 for all t > 0.

This means that if we now fix r0 ∈ (0, 1) in such a way that r0 <
√
ε/c1, then indeed

ˆ
Br0

u(x, t) dx < ε for all t > 0.

Lemma 5.5 thus ensures that (5.32) holds, whereupon recalling (2.1) and applying el-
liptic regularity theory we see that the statement in Theorem 1.2 becomes an evident
consequence. ut

6. Unbounded solutions with
´
�
u0 > 8πδ. Proof of Theorem 1.3

6.1. A class of comparison functions

We shall next prove that whenever m > 8πδ, some solutions at the mass level m asymp-
totically aggregate in the spirit of Theorem 1.3. To this end, we shall consider comparison
functions U : [0, 1] × [0,∞)→ R of the form

U(ξ, t) :=


a(t)ξ
b(t)+ξ

if ξ ∈ [0, ξ0] and t ≥ 0,
a(t)b(t)ξ+a(t)ξ2

0
(b(t)+ξ0)2

if ξ ∈ (ξ0, 1] and t ≥ 0,
(6.1)

where ξ0 ∈ (0, 1) and a and b are suitably chosen positive functions on [0,∞). Let us first
collect some basic properties of such functions, especially with regard to their behavior
under the action of the operator P defined in (4.6).
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Lemma 6.1. Let ξ0 ∈ (0, 1), and assume that a, b ∈ C1([0,∞)) are positive. Then the
function U given by (6.1) satisfies

U ∈ C1([0, 1] × [0,∞)) ∩ C0([0,∞);W 2,∞((0, 1))) ∩ C0([0,∞);C2
loc([0, 1] \ {ξ0})).

Moreover, with P as in (4.6) we have

(b(t)+ ξ)2

a(t)b(t)ξ
· PU(ξ, t) =

a′(t)(b(t)+ ξ)

a(t)b(t)
−
b′(t)

b(t)
+

8
b(t)+ ξ

−
2
τ

ˆ t

0
e−δ(t−s)/τ

{
a(s)

b(s)+ ξ
−
m

2π

}
ds

− 2
(
W0(ξ)

ξ
−K0

)
· e−δt/τ for all ξ ∈ (0, ξ0) and t > 0 (6.2)

and

(b(t)+ ξ0)
2

a(t)b(t)
· PU(ξ, t) =

a′(t)ξ

a(t)
+
b′(t)ξ

b(t)
+
a′(t)ξ2

0
a(t)b(t)

− 2
b′(t)ξ +

b′(t)
b(t)

ξ2
0

b(t)+ ξ0

−
2
τ

ˆ t

0
e−δ(t−s)/τ

{
a(s)b(s)ξ + a(s)ξ2

0
(b(s)+ ξ0)2

−
m

2π
ξ

}
ds

− 2(W0(ξ)−K0ξ) · e
−δt/τ for all ξ ∈ (ξ0, 1) and t > 0, (6.3)

where W0 and K0 are as defined in (4.7).

Proof. The claimed regularity properties can immediately be verified using the explicit
form of U which clearly allows for piecewise differentiation, resulting in

Uξ (ξ, t) =

{ ab

(b+ξ)2
for ξ ∈ (0, ξ0) and t > 0,

ab

(b+ξ0)2
for ξ ∈ (ξ0, 1) and t > 0,

(6.4)

and

Uξξ (ξ, t) =

{
−

2ab
(b+ξ)3

for ξ ∈ (0, ξ0) and t > 0,

0 for ξ ∈ (ξ0, 1) and t > 0,
(6.5)

as well as

Ut (ξ, t) =


a′ξ
b+ξ
−

ab′ξ

(b+ξ)2
for ξ ∈ (0, ξ0) and t > 0,

a′bξ+ab′ξ+a′ξ2
0

(b+ξ0)2
− 2 abb

′ξ+ab′ξ2
0

(b+ξ0)3
for ξ ∈ (ξ0, 1) and t > 0.

(6.6)

Moreover, for ξ < ξ0 we deduce from (6.4)–(6.6) that

PU(ξ, t) =
a′ξ

b + ξ
−

ab′ξ

(b + ξ)2
+

8abξ
(b + ξ)3

−
2
τ

{ˆ t

0
e−δ(t−s)/τ ·

{
a(s)ξ

b(s)+ ξ
−
m

2π
ξ

}
ds

}
·

ab

(b + ξ)2

−{2(W0(ξ)−K0ξ) · e
−δt/τ
} ·

ab

(b + ξ)2
,
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which is equivalent to (6.2). Likewise, (6.3) easily follows upon the observation that for
ξ > ξ0, we have the identity

(b + ξ0)
2

ab
· (Ut − 4ξUξξ ) =

a′bξ + ab′ξ + a′ξ2
0

ab
− 2

abb′ξ + ab′ξ2
0

ab(b + ξ0)

=
a′ξ

a
+
b′ξ

b
+
a′ξ2

0
ab
− 2

b′ξ + b′

b
ξ2

0

b + ξ0
. ut

To make the above choice as efficient as possible for our purpose, a(t) will be adjusted in
such a way that at ξ = 1, the function U attains the same boundary value as U introduced
in (4.2). The corresponding condition U(1, t) = m/(2π) for all t ≥ 0, with m :=

´
�
u0,

thus amounts to requiring that a(t) is linked to ξ0 and b(t), and accordingly we shall
concentrate on the case when

a(t) :=
m

2π
·
(b(t)+ ξ0)

2

b(t)+ ξ2
0

for t ≥ 0. (6.7)

For later use we note that if in addition we assume that b is differentiable, so will be a,
with

a′(t) =
m

2π
·

2(b + ξ0)(b + ξ
2
0 )− (b + ξ0)

2

(b + ξ2
0 )

2
· b′

=
m

2π
·
b2
+ 2bξ2

0 − ξ
2
0 + 2ξ3

0

(b + ξ2
0 )

2
· b′ for all t > 0. (6.8)

6.2. Subsolution in an annulus

We first analyze in more depth the behavior of U in the outer region where ξ > ξ0.
Here it will not be necessary to fix ξ0, and keeping this freedom will be important for our
procedure in the corresponding inner part where ξ < ξ0, in which we shall adjust ξ0 in
dependence on m > 8πδ.

To begin with, let us draw a first conclusion from Lemma 6.1 under the assump-
tion (6.7).

Lemma 6.2. Let δ ≥ 0 and m > 0, and suppose that ξ0 ∈ (0, 1), b ∈ C1([0,∞)) is
positive and nonincreasing with

b(t) ≤ ξ2
0 for all t ≥ 0, (6.9)

and a ∈ C1([0,∞)) is given by (6.7). Then the function U defined in (6.1) satisfies

(b(t)+ ξ0)
2

a(t)b(t)
· PU(ξ, t)

≤ (1− ξ) ·
{
−
b′(t)

b(t)
−

m

2πτ

ˆ t

0
e−δ(t−s)/τ ds

}
− 2(W0(ξ)−K0ξ) · e

−δt/τ

for all ξ ∈ (ξ0, 1) and t > 0, (6.10)

where P is as in (4.6).
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Proof. From (6.8) we compute

a′(t)

a(t)
=
b2
+ 2bξ2

0 − ξ
2
0 + 2ξ3

0

(b + ξ2
0 )(b + ξ0)2

· b′ for all t > 0.

Thus, on the right-hand side of (6.3) we have

J1(ξ, t) :=
a′ξ

a
+
b′ξ

b
+
a′ξ2

0
ab
− 2

b′ξ + b′

b
ξ2

0

b + ξ0

=
b′

b
·

{
(b2
+ 2bξ2

0 − ξ
2
0 + 2ξ3

0 )(bξ + ξ
2
0 )

(b + ξ2
0 )(b + ξ0)2

+ ξ −
2bξ + 2ξ2

0
b + ξ0

}
for all ξ ∈ (ξ0, 1) and t > 0,

whereupon a lengthy but straightforward computation yields

J1(ξ, t) = −
b′

b
·
ξ2

0 (1− ξ)

b + ξ2
0

for all ξ ∈ (ξ0, 1) and t > 0. (6.11)

Next, in the integrand on the right of (6.3) we again use (6.7) to see that

abξ + aξ2
0

(b + ξ0)2
−
m

2π
ξ =

m

2π
·

(
bξ + ξ2

0

b + ξ2
0
− ξ

)
=

m

2π
·
ξ2

0 (1− ξ)

b + ξ2
0

for all ξ ∈ (ξ0, 1) and t > 0,

so that

J2(ξ, t) := −
2
τ

ˆ t

0
e−δ(t−s)/τ ·

(
a(s)b(s)ξ + a(s)ξ2

0
(b(s)+ ξ0)2

−
m

2π
ξ

)
ds

= −
m

πτ
· (1− ξ) ·

ˆ t

0
e−δ(t−s)/τ ·

ξ2
0

b(s)+ ξ2
0
ds

for all ξ ∈ (ξ0, 1) and t > 0. (6.12)

Now in (6.11) we can use the nonnegativity of b to find that

ξ2
0 (1− ξ)

b + ξ2
0
≤ 1− ξ for all ξ ∈ (ξ0, 1) and t > 0,

whereas in (6.12) we employ (6.9) to estimate

ξ2
0

b + ξ2
0
≥

1
2

for all ξ ∈ (ξ0, 1) and t > 0.
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Therefore, by the nonpositivity of b′/b we have

J1(ξ, t)+ J2(ξ, t) ≤ −
b′

b
· (1− ξ)−

m

2πτ
· (1− ξ) ·

ˆ t

0
e−δ(t−s)/τ ds

for all ξ ∈ (ξ0, 1) and t > 0. In view of (6.3), this proves (6.10). ut

Now the right-hand side of (6.10) suggests choosing b in such a way that b′/b is a negative
constant. In that case, it turns out that the unfavorable contribution of−b′/b in (6.10) can
be controlled for large times by the integral on the right of (6.10), whereas for small t
it will be dominated by the expression containing W0 and K0, provided that w0 satisfies
some rather mild condition.

Lemma 6.3. Let δ ≥ 0 and m > 0, and suppose that for some ξ0 ∈ (0, 1) and η0 > 0,
with W0 and K0 as in (4.7) we have

W0(ξ)−K0ξ

1− ξ
≥ η0 for all ξ ∈ (ξ0, 1). (6.13)

Then for all α? > 0 there exists α ∈ (0, α?) such that for any choice of b0 ∈ (0, ξ2
0 ), with

b(t) := b0e
−αt for t ≥ 0

and a ∈ C1([0,∞)) as in (6.7), the function U in (6.1) satisfies

PU(ξ, t) ≤ 0 for all ξ ∈ (ξ0, 1) and t > 0, (6.14)

the operator P being defined through (4.6).

Proof. We claim that (6.14) holds whenever b0 ∈ (0, ξ2
0 ) and

α < α0 := min
{

m

2πτeδ/τ
,

2η0

e2δ/τ , α?

}
. (6.15)

Indeed, since (6.13) in particular implies that W0(ξ)−K0ξ ≥ 0 for all ξ ∈ (ξ0, 1), from
Lemma 6.2 we obtain

(b(t)+ ξ0)
2

a(t)b(t)
· PU(ξ, t) ≤ (1− ξ) ·

{
−
b′(t)

b(t)
−

m

2πτ

ˆ t

0
e−δ(t−s)/τ ds

}
= (1− ξ) ·

{
α −

m

2πτ

ˆ t

0
e−δ(t−s)/τ ds

}
for all ξ ∈ (ξ0, 1) and t > 0.

Here for large t we can estimate

ˆ t

0
e−δ(t−s)/τ ds ≥

ˆ t

t−1
e−δ(t−s)/τ ds ≥

ˆ 1

0
e−δ/τ ds = e−δ/τ for all t ≥ 2,



Critical mass in a chemotaxis model 3669

so that the first restriction implied by (6.15) warrants that

(b(t)+ ξ0)
2

a(t)b(t)
· PU(ξ, t) ≤ (1− ξ) ·

{
α −

m

2πτ
e−δ/τ

}
≤ 0 for all ξ ∈ (ξ0, 1) and t ≥ 2.

For small values of t , however, (6.10) and (6.13) yield

(b(t)+ ξ0)
2

a(t)b(t)
· PU(ξ, t) ≤ (1− ξ)α − 2η0(1− ξ)e−δt/τ

≤ (1− ξ)α − 2η0(1− ξ)e−2δ/τ

≤ 0 for all ξ ∈ (ξ0, 1) and t < 2

because of the second limitation on α asserted by (6.15). ut

6.3. Subsolution near the origin

Our argument in the associated inner region will be more subtle, and here we will in
particular rely on the supercriticality assumption m > 8πδ. Let us begin by estimating
the first term on the right of (6.2) under the hypothesis (6.7).

Lemma 6.4. Let m > 0, suppose that b ∈ C1([0,∞) is positive and nonincreasing, and
let ξ0 ∈ (0, 1). Then the function a ∈ C1([0,∞)) defined in (6.7) satisfies

a′(t)(b(t)+ ξ)

a(t)b(t)
≤

1
ξ0
·
−b′(t)

b(t)
for all ξ ∈ (0, ξ0) and t > 0.

Proof. In (6.8) we can trivially estimate

b2(t)+ 2b(t)ξ2
0 − ξ

2
0 + ξ

3
0 ≥ −ξ

2
0 for all t > 0

to obtain

a′(t) ≤ −
m

2π
·

ξ2
0

(b(t)+ ξ2
0 )

2
· b′(t) for all t > 0.

Therefore

a′(t)(b(t)+ ξ)

a(t)b(t)
≤

−
ξ2

0
(b(t)+ξ2

0 )
2 · b

′(t)

(b(t)+ξ0)2

b(t)+ξ2
0

·
b(t)+ ξ

b(t)

=
ξ2

0 (b(t)+ ξ)

(b(t)+ ξ2
0 )(b(t)+ ξ0)2

·
−b′(t)

b(t)
for all ξ ∈ (0, 1) and t > 0,
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so that since b(t)+ξ
b(t)+ξ0

≤ 1 for all ξ ∈ (0, ξ0) and t > 0, we find that

a′(t)(b(t)+ ξ)

a(t)b(t)
≤

ξ2
0

(b(t)+ ξ2
0 )(b(t)+ ξ0)

·
−b′(t)

b(t)

≤
1
ξ0
·
−b′(t)

b(t)
for all ξ ∈ (0, ξ0) and t > 0,

again because b ≥ 0 and b′ ≤ 0. ut

The technical key toward our proof of infinite-time blow-up in the supercritical case is
contained in the following lemma which says that in the supercritical mass case we can
achieve that U is a subsolution in the inner region for suitably large times upon an appro-
priate choice of the parameters.

Lemma 6.5. Let δ ≥ 0 and
m > 8πδ, (6.16)

and suppose that taking W0 and K0 from (4.7), we have

W0(ξ)−K0ξ ≥ 0 for all ξ ∈ (0, 1). (6.17)

Then there exist ξ0 ∈ (0, 1) and α? > 0 with the property that for all α ∈ (0, α?) one can
find b0 ∈ (0, ξ2

0 ) and t0 > 0 such that with

b(t) := b0e
−αt for t ≥ 0 (6.18)

and a ∈ C1([0,∞)) as given by (6.7), the function U in (6.1) satisfies

PU(ξ, t) ≤ 0 for all ξ ∈ (0, ξ0) and t ≥ t0, (6.19)

where P is given by (4.6).

Proof. We detail the proof for the case when δ is positive, leaving to the reader the minor
modifications necessary for the limit case δ = 0. Since m > 8πδ, we can pick ε ∈ (0, 1)
small enough such that

c1 :=
(1− ε)3m
(1+ ε)πδ

− 8 > 0, (6.20)

and thereafter fix α? > 0 and ξ0 ∈ (0, 1) small satisfying

α? ≤ c1/4, (6.21)

α? ≤
δ ln 1

1−ε

τ ln 1
ε

, (6.22)

ξ0 ≤ ε/2. (6.23)
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Given α ∈ (0, α?), we then choose b0 > 0 suitably small and t0 > 0 sufficiently large
such that

b0 ≤ εξ
2
0 , (6.24)

t0 ≥
1
α
· ln

1
1− ε

, (6.25)

and thereupon let b, a and U be defined by (6.18), (6.7) and (6.1). Then by (6.17),
Lemma 6.1 implies that

(b(t)+ ξ)2

a(t)b(t)ξ
· PU(ξ, t) ≤ J (ξ, t)

:=
a′(b + ξ)

ab
−
b′

b
+

8
b + ξ

−
2
τ

ˆ t

0
e−δ(t−s)/τ ·

{
a(s)

b(s)+ ξ
−
m

2π

}
ds (6.26)

for all ξ ∈ (0, ξ0) and t > 0. Here by Lemma 6.4, we can estimate

J1(ξ, t) :=
a′(b + ξ)

ab
−
b′

b
≤ −

(
1
ξ0
+ 1

)
·
b′

b
=

(
1
ξ0
+ 1

)
· α

≤
2
ξ0
· α for all t > 0. (6.27)

Next, to estimate the integral in (6.26) we first note that (6.23) guarantees that

ε ·
a(t)

b(t)+ ξ
−
m

2π
=

m

2π
·

{
ε ·
b + ξ0

b + ξ
·
b + ξ0

b + ξ2
0
− 1

}
≥
m

2π
·

{
ε · 1 ·

ξ0

2ξ2
0
− 1

}
≥ 0 for all ξ ∈ (0, ξ0) and t > 0,

and that

a(t) ≥
m

2π
·

ξ2
0

b + ξ2
0
≥
m

2π
·

ξ2
0

(1+ ε)ξ2
0
=

m

2(1+ ε)π
for all t > 0

by (6.24). Therefore,

J2(ξ, t) :=
8

b(t)+ ξ
−

2
τ

ˆ t

0
e−δ(t−s)/τ ·

{
a(s)

b(s)+ ξ
−
m

2π

}
ds

≤
8

b(t)+ ξ
−

2(1− ε)
τ

ˆ t

0
e−δ(t−s)/τ ·

a(s)

b(s)+ ξ
ds

≤
8

b(t)+ ξ
−
(1− ε)m
(1+ ε)πτ

ˆ t

0
e−δ(t−s)/τ ·

1
b(s)+ ξ

ds (6.28)

for all ξ ∈ (0, ξ0) and t > 0. Now whenever t ≥ s ≥ t − 1
α

ln 1
1−ε ≥ 0, we have

b(t)

b(s)
= e−α(t−s) ≥ e− ln 1

1−ε = 1− ε,
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which implies that

b(t)+ ξ

b(s)+ ξ
≥
b(t)+ (1− ε)ξ

b(s)+ ξ
≥ 1− ε

for all ξ > 0 and any such t and s. By means of (6.25), we can hence estimate

ˆ t

0
e−δ(t−s)/τ ·

1
b(s)+ ξ

ds ≥
1− ε
b(t)+ ξ

·

ˆ t

t− 1
α

ln 1
1−ε

e−δ(t−s)/τ ds

=
1− ε
b(t)+ ξ

·
τ

δ
(1− e−

δ
ατ

ln 1
1−ε )

≥
(1− ε)2τ
(b(t)+ ξ) · δ

for all ξ ∈ (0, ξ0) and t ≥ t0,

because (6.22) ensures that

e−
δ
ατ

ln 1
1−ε ≤ exp

(
−
δ

τ
ln

1
1− ε

·
τ ln 1

ε

δ ln 1
1−ε

)
= ε.

Accordingly, (6.28) and (6.20) yield

J2(ξ, t) ≤
1

b(t)+ ξ
·

{
8−

(1− ε)m
(1+ ε)πτ

·
(1− ε)2τ

δ

}
= −

c1

b(t)+ ξ
for all ξ ∈ (0, ξ0) and t ≥ t0,

which since by (6.24) we have

b(t)+ ξ ≤ b0 + ξ0 ≤ εξ
2
0 + ξ0 ≤ 2ξ0 for all ξ ∈ (0, ξ0) and t > 0

guarantees that

J2(ξ, t) ≤ −
c1

2ξ0
for all ξ ∈ (0, ξ0) and t ≥ t0.

In conjunction with (6.27), (6.26) and (6.21), this shows that

J (ξ, t) ≤
2
ξ0
· α −

c1

2ξ0
≤ 0 for all ξ ∈ (0, ξ0) and t ≥ t0,

and thereby proves (6.19). ut

Now for small times, we can also achieve that PU ≤ 0 if we suppose that w0 is suffi-
ciently strongly concentrated near the origin.
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Lemma 6.6. Let δ ≥ 0 and m > 0, and suppose that α, b0 > 0, ξ0 ∈ (0, 1),

b(t) = b0e
−αt for t ≥ 0, (6.29)

and a ∈ C1([0,∞)) is as given by (6.7). Then for all t0 > 0 there exists 00(α, b0, ξ0, t0)

> 0 such that whenever W0 and K0 as introduced in (4.7) satisfy

W0(ξ)/ξ −K0 ≥ 00(α, b0, ξ0, t0) for all ξ ∈ (0, ξ0), (6.30)

the function U defined in (6.1) has the property that with P as in (4.6) we have

PU(ξ, t) ≤ 0 for all ξ ∈ (0, ξ0) and t ∈ (0, t0). (6.31)

Proof. By (6.2), we have

(b + ξ)2

abξ
·PU(ξ, t) =

a′(b + ξ)

ab
−
b′

b
+

8
b + ξ

−
2
τ

ˆ t

0
e−δ(t−s)/τ ·

{
a(s)

b(s)+ ξ
−
m

2π

}
ds

− 2(W0(ξ)/ξ −K0) · e
−δt/τ for all ξ ∈ (0, ξ0) and t > 0, (6.32)

where Lemma 6.4 ensures that

a′(b + ξ)

ab
−
b′

b
≤

(
1
ξ0
+ 1

)
·
−b′

b
=

(
1
ξ0
+ 1

)
· α, (6.33)

and where
8

b + ξ
≤

8
b0
eαt0 for all ξ ∈ (0, ξ0) and t ∈ (0, t0) (6.34)

according to (6.29). Moreover, due to (6.7) we see that

a

b + ξ
−
m

2π
=
m

2π
·
b + ξ0

b + ξ
·
b + ξ0

b + ξ2
0
−
m

2π
≥ 0 for all ξ ∈ (0, ξ0) and t > 0, (6.35)

because for any choice of ξ < ξ0 we have b + ξ0 ≥ b + ξ and also b + ξ0 ≥ b + ξ
2
0 due

to the fact that ξ0 < 1. Therefore,

−
2
τ

ˆ t

0
e−δ(t−s)/τ ·

{
a(s)

b(s)+ ξ
−
m

2π

}
ds ≤ 0 for all ξ ∈ (0, ξ0) and t > 0,

which combined with (6.32)–(6.35) shows that

abξ

(b + ξ)2
· PU(ξ, t) ≤

(
1
ξ0
+ 1

)
· α +

8
b0
eαt0 − 2

(
W0(ξ)

ξ
−K0

)
· e−δt/τ (6.36)

for all ξ ∈ (0, ξ0) and t ∈ (0, t0). Thus, if

W0(ξ)/ξ −K0 ≥ 00(α, b0, ξ0, t0) :=
1
2
·

{(
1
ξ0
+ 1

)
· α +

8
b0
eαt0

}
· eδ/τ t0

for all ξ ∈ (0, ξ0), then (6.31) results from (6.36). ut
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By a careful selection of the parameters in (6.1) we can finally combine Lemmas 6.3,
6.5 and 6.6 to establish our main result on infinite-time blow-up of supercritical-mass
solutions.

Proof of Theorem 1.3. We first take ξ0 ∈ (0, 1) and α? > 0 as provided by Lemma 6.5
and let

R :=
√
ξ0. (6.37)

Again invoking Lemma 6.5, we then find b0 ∈ (0, ξ2
0 ) and t0 > 0 with the properties

listed there, and then pick α ∈ (0, α?) as given by Lemma 6.3 when applied to η0 := η/2.
Having thus fixed α, b0, ξ0 and t0, we finally fix 00 := 00(α, b0, ξ0, t0) as yielded by
Lemma 6.6, and claim that thereupon the conclusion of Theorem 1.3 holds if we let

0u(m, η) :=
m

π
·
(b0 + ξ0)

2

b0(b0 + ξ
2
0 )
, (6.38)

γ (m, η) :=
m

π
·

b0

b0 + ξ
2
0
, (6.39)

0w(m, η) := 200. (6.40)

To verify this, given u0 and w0 with the assumed properties we let W0, K0 and U be
defined by (4.7) and (4.2), respectively, and fix U as in (6.1), with b(t) := b0e

−αt and
a ∈ C1([0,∞)) given by (6.7). Then (4.7) and (1.9) imply that

W0(ξ)−K0ξ =

ˆ √ξ
0

ρw0(ρ) dρ−K0ξ =

{
K0−

ˆ 1

√
ξ

ρw0(ρ) dρ

}
−K0ξ

= (1− ξ)K0−
1− ξ

2

 
B1\B√ξ

w0 ≥ (1− ξ)K0−
1− ξ

2
·

{ 
B1

w0− η

}
= (1− ξ) ·

{
K0−

1
2

 
B1

w0+ η/2
}
= (1− ξ) · η/2 for all ξ ∈ (ξ0, 1),

because ξ0 = R
2 by (6.37). Therefore,

W0(ξ)−K0ξ

1− ξ
≥ η/2 = η0 for all ξ ∈ (ξ0, 1), (6.41)

so that Lemma 6.3 applies to show that according to our choice of α and the fact that
b0 ∈ (0, ξ2

0 ), taking P as in (4.6) we have

PU(ξ, t) ≤ 0 for all ξ ∈ (ξ0, 1) and t > 0. (6.42)

We next combine (4.7) with (1.8) and (6.40) to see that

W0(ξ)/ξ −K0 =
1
ξ

ˆ √ξ
0

ρw0(ρ) dρ −

ˆ 1

0
ρw0(ρ) dρ =

1
2

{ 
B√ξ

w0 −

 
B1

w0

}
≥

1
2 · 0w(m, η) = 00 for all ξ ∈ (0, ξ0), (6.43)
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again because ξ0 = R
2 by (6.37). Consequently, Lemma 6.6 asserts that

PU(ξ, t) ≤ 0 for all ξ ∈ (0, ξ0) and t ∈ (0, t0). (6.44)

Moreover, since (6.41) together with (6.43) clearly implies that W0(ξ)−K0ξ ≥ 0 for all
ξ ∈ (0, 1), thanks to our choice of b0 and t0 and the fact that α < α? we may employ
Lemma 6.5 to infer that

PU(ξ, t) ≤ 0 for all ξ ∈ (0, ξ0) and t ≥ t0. (6.45)

Now from the definition of U and Lemma 4.1 it is clear that

U(0, t) = U(0, t) = 0 and U(1, t) = U(1, t) =
m

2π
for all t > 0. (6.46)

In order to show that furthermore

U(ξ, 0) ≤ U(ξ, 0) for all ξ ∈ (0, 1), (6.47)

we first consider small values of ξ , for which from (1.6) and (6.37) we gain the inequality

U(ξ, 0) =
ˆ √ξ

0
ρu0(ρ) dρ =

ξ

2

 
B√ξ

u0 ≥
ξ

2
· 0u(m, η) for all ξ ∈ (0, ξ0).

On the other hand, (6.1), (6.7) and (6.38) show that

U(ξ, 0) =
a(0)ξ
b0 + ξ

≤
a(0)ξ
b0
≤

1
2
0u(m, η) · ξ for all ξ ∈ (0, ξ0),

and hence (6.47) is valid for any such ξ . For large ξ , by (6.7) we have

U(ξ, 0) =
a(0) · (b0ξ + ξ

2
0 )

(b0 + ξ
2
0 )

2
=
m

2π
·
b0ξ + ξ

2
0

b0 + ξ
2
0

=
m

2π
·

{
1−

b0

b0 + ξ
2
0
· (1− ξ)

}
for all ξ ∈ (ξ0, 1),

whereas (1.7), (6.39) and again (6.37) yield

U(ξ, 0) =
ˆ 1

0
ρu0(ρ) dρ −

ˆ 1

√
ξ

ρu0(ρ) dρ =
m

2π
−

1− ξ
2
·

 
B1\B√ξ

u0

≥
m

2π
−

1− ξ
2
· γ (m, η)

=
m

2π
−
m

2π
·

b0

b0 + ξ
2
0
· (1− ξ) for all ξ ∈ (ξ0, 1).

We conclude that the claimed ordering in (6.47) indeed holds, so that on the basis of
(6.42), (6.44), (6.45) and (6.46) we may invoke the comparison principle in Lemma 4.2
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to infer that U(ξ, t) ≤ U(ξ, t) for all ξ ∈ [0, 1] and t ≥ 0. In particular, this entails that
for each fixed t > 0 we must have

Uξ (0, t)= lim
ξ↘0

U(ξ, t)

ξ
≥ lim
ξ↘0

U(ξ, t)

ξ
= lim
ξ↘0

a(t)

b(t)+ξ
=
a(t)

b(t)
=
m

2π
·
(b(t)+ξ0)

2

b(t)+ξ2
0
·

1
b(t)

.

Since b(t) = b0e
−αt
≤ b0 < ξ2

0 for all t > 0, this ensures that

u(0, t) = 2Uξ (0, t) ≥
m

π
·
ξ2

0

2ξ2
0
·

1
b(t)
=

m

2πb0
eαt for all t > 0,

and hence completes the proof. ut
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