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Abstract. We characterise the big pieces of Lipschitz graphs property in terms of projections.
Roughly speaking, we prove that if a large subset of an n-Ahlfors–David regular set E ⊂ Rd has
plenty of projections in L2, then a large part of E is contained in a single Lipschitz graph. This is
closely related to a question of G. David and S. Semmes.
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1. Introduction and statement of results

The purpose of this paper is to characterise the big pieces of Lipschitz graphs (BPLG)
condition in terms of projections, and only projections. We begin with some definitions,
and then formulate the characterisation. After that, we will discuss the context of the
result and provide an outline of the proof.

We are concerned with n-Ahlfors–David regular sets in Rd :

Definition 1.1 (n-ADR). Given n ∈ N, a set E ⊂ Rd is n-Ahlfors–David regular
(n-ADR) if C1r

n
≤ Hn(E ∩ B(x, r)) ≤ C2r

n for all points x ∈ E and radii r ∈
(0, diam(E)], and some constants 0 < C1 ≤ C2 < ∞. The constants C1, C2 are re-
ferred to as the ADR constants of E.

By an n-dimensional Lipschitz graph 0 = 0A in Rd , we mean a set of the form

0 = {p + A(p) : p ∈ P },

where P ⊂ Rd is an n-dimensional subspace andA : P → P⊥ is a Lipschitz map. By the
Lipschitz constant of 0, we mean the Lipschitz constant Lip(A) of A. Our main object of
study is the following subclass of n-ADR sets:

Definition 1.2 (BPLG). An n-ADR set E ⊂ Rd has big pieces of Lipschitz graphs if
there exist constants M < ∞ and δ > 0 with the following property: for every x ∈ E
and r ∈ (0, diam(E)], there exists an n-dimensional Lipschitz graph 0x,r with Lipschitz
constant at most M such that Hn(E ∩ 0x,r ∩ B(x, r)) ≥ δr

n.
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The closely related uniformly rectifiable sets are defined as follows:

Definition 1.3 (n-UR). A closed set E ⊂ Rd is n-uniformly rectifiable (n-UR) if it is
n-ADR, and there exist constants δ > 0 and M < ∞ with the following property: for
every x ∈ E and r ∈ (0, diam(E)] there is a Lipschitz mapping g : BRn(0, r)→ Rd such
that Lip(g) ≤ M and

Hn
(
E ∩ B(x, r) ∩ g(BRn(0, r))

)
≥ δrn.

For the basics of UR and BPLG sets, we refer to the monographs [2, 3] of David and
Semmes. Notice that BPLG trivially implies UR. However, the converse is not true by
an unpublished example of T. Hrycak (see the discussion after Theorem 1.6). Let us also
mention the recent deep geometric result by J. Azzam and R. Schul [1], which says that
UR = (BP)2LG, that is, UR sets contain big pieces of sets which have BPLG.

We need the following final definitions. For any 1 ≤ k < d , denote by G(d, k) the
Grassmannian manifold of all k-dimensional subspaces of Rd , equipped with the distance
‖V −W‖G(d,k) := ‖πV − πW‖. Here πV is the orthogonal projection onto V and ‖ · ‖
is the usual operator norm of linear mappings. There is also a natural Borel probability
measure γd,k on G(d, k)—see [7, Chapter 3]. Closed metric balls on G(d, k) are usually
denoted by B(V, r), or BG(d,k)(V , r) if there is any risk of confusion.

The next proposition gives an easy necessary condition for a set to have BPLG:

Proposition 1.4. Assume that E ⊂ Rd has BPLG. Then there exist constants ρ > 0 and
C < ∞ (depending only on M and δ in the definition of BPLG) such that the following
holds: for every x ∈ E, and every radius r ∈ (0, diam(E)], there exists a subspace Vx,r ∈
G(d, n) and a subset Ex,r ⊂ E∩B(x, r) with the properties that Hn(Ex,r) ≥ r

n/C, and
πV ]Hn

|Ex,r ∈ L
∞(V ) for every V ∈ B(Vx,r , ρ) with the uniform bound

‖πV ]Hn
|Ex,r‖L∞(V ) ≤ C.

Proof. Fix x ∈ E, 0 < r ≤ diam(E), and let Ex,r = E ∩ B(x, r) ∩ 0x,r , where 0x,r =
{p+A(p) : p ∈ P } is given by the BPLG condition, and Lip(A) ≤ M . Then, set Vx,r = P
and ρ = [2(1+M)]−1. If V ∈ B(Vx,r , ρ) one can also write 0x,r = {v+AV (v) : v ∈ V },
where AV : V → V ⊥ and Lip(AV ) ≤ 3(1+M).

Suppose that V is as above, v ∈ V and s > 0. Then

π−1
V (BV (v, s)) ∩ 0x,r ⊂ B

(
v + AV (v), 4(1+M)s

)
,

which implies that
πV ]Hn

|Ex,r (BV (v, s))

Hn(BV (v, s))
. 1.

The proposition now follows from [7, Theorem 2.12]. ut

Remark 1.5. We write A .p B if A ≤ CB for some constant C > 0 depending only on
the parameter p; the notation A . B means that the constant C is absolute, or depends
only on parameters which can be regarded as “fixed” in the current situation. The two-
sided inequality B .p A .p B is abbreviated to A ∼p B.
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The main result of the paper asserts that the necessary condition for BPLG in Proposition
1.4 is also sufficient, and the uniform L∞-bound for the projections can even be relaxed
to an averaged bound for L2-norms:

Theorem 1.6. Let E ⊂ Rd be an n-ADR set. Suppose that there exist constants κ > 0
and C < ∞ such that the following holds: for every x ∈ E and r ∈ (0, diam(E)], there
is an Hn-measurable subset Ex,r ⊂ E ∩B(x, r) and a subspace Vx,r ∈ G(d, n) with the
following properties:
(1) Hn(Ex,r) ≥ κr

n,
(2) πV ]Hn

|Ex,r ∈ L
2(V ) for γd,n-a.e. V ∈ B(Vx,r , κ), and∫

B(Vx,r ,κ)

‖πV ]Hn
|Ex,r‖

2
L2(V )

dγd,n(V ) ≤ Cr
n.

Then E has BPLG. In particular, E is n-UR.

We now discuss the context and history of the result. The Besicovitch–Federer projec-
tion theorem is a characterisation of rectifiability in terms of projections. Since the in-
troduction of uniform rectifiability, it has been a natural question to find a quantitative
analog of the Besicovitch–Federer result for UR sets. However, an unpublished example
of T. Hrycak shows that uniform rectifiability does not imply quantitatively large pro-
jections, at least in the obvious sense: given ε > 0, Hrycak’s construction produces a
UR-set E ⊂ R2, with constants independent of ε, such that H1(πL(E)) ≤ ε for every
line L ∈ G(2, 1).

The slightly stronger BPLG condition, however, does imply quantitatively large pro-
jections (this is well-known but also follows from Proposition 1.4), and so characterising
BPLG in terms of projections seems to be a more natural question to ask. Perhaps the most
obvious candidate for such a characterisation is through the big projections in plenty of
directions (BPPD) assumption. An n-ADR set E ⊂ Rd has BPPD if there exists a con-
stant δ > 0 with the following property: for every x ∈ E and r ∈ (0, diam(E)], there is
an n-plane Vx,r ∈ G(d, n) such that

Hn(πV (E ∩ B(x, r))) ≥ δr
n (1.1)

for every V ∈ B(Vx,r , δ). Indeed, G. David and S. Semmes ask in [2, 4] whether BPLG
is equivalent to BPPD. This remains open to date. It is clear that BPLG implies BPPD.
In the converse direction, the quantitative Besicovitch projection theorem of T. Tao [9]
yields some structural information about BPPD sets, but the conclusions are weaker than
BPLG.

It is also known (see [4]) that BPLG is characterised by a combination of BPPD and an
extra hypothesis called the weak geometric lemma—an additional regularity assumption
not connected with projections. In contrast, our result is the first to characterise BPLG
using projections, and projections only.

Let us briefly see how the BPPD hypothesis is connected with our assumptions. To
this end, suppose that a set E′ ⊂ E ∩ B(x, r) satisfies Hn(E′) & rn, πV ]Hn

|E′ ∈ L
2(V )

and ‖πV ]Hn
|E′‖

2
L2(V )

. rn for some V ∈ G(d, n). Then

r2n . ‖πV ]Hn
|E′‖

2
L1(V )

≤ Hn(πV (E
′)) ·‖πV ]Hn

|E′‖
2
L2(V )

. Hn(πV (E∩B(x, r))) ·r
n,
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which implies (1.1) for this particular V . Therefore, for those V in Theorem 1.6 such that
‖πV ]Hn

|Ex,r‖
2
L2(V )

. rn, our hypothesis is strictly stronger than (1.1); on the other hand,
our “averaged” hypothesis is more relaxed than the uniform requirement of BPPD.

1.1. Outline of the proof

After a suitable translation, scaling and rotation, the proof of Theorem 1.6 reduces to
verifying the following statement:

Theorem 1.7. Let E0 ⊂ Rd be an n-ADR set, and assume that E1 ⊂ E0 ∩ B(0, 1) is an
Hn-measurable subset satisfying the following two conditions:

(i) Hn(E1) ≥ κ > 0, and
(ii) πV ]Hn

|E1 ∈ L
2(V ) for γd,n-a.e. V ∈ B(Rn, κ), and∫

B(Rn,κ)
‖πV ]Hn

|E1‖
2
L2(V )

dγd,n(V ) ≤ C <∞.

Then there exists a Lipschitz function A : Rn → Rd−n such that Lip(A) .κ,C 1 and the
Lipschitz graph 0 = {(x,A(x)) : x ∈ Rn} satisfies

Hn(E1 ∩ 0) &κ,C 1.

The proof divides into one main lemma and one main proposition.

Definition 1.8 (Cones). For x ∈ Rd , V ∈ G(d, k) and α ∈ (0, 1), we set

X(x, V, α) = {y ∈ Rd : |πV⊥(x − y)| ≤ α|x − y|}.

Given a cone X(x, V, α) and two radii 0 < r < R <∞, we write

X(x, V, α,R, r) := X(x, V, α) ∩ [B(x,R) \ U(x, r)],

where B(x,R) and U(x, r) are, respectively, the closed and open balls of radii R > 0 and
r > 0 centred at x. Note thatX(x, V, α,R, r) is a closed set for 0 < r < R <∞. Finally,
writing Rd = Rn × Rd−n, we use the shorthand notation X(x, α) := X(x,Rd−n, α) and
X(x, α,R, r) := X(x,Rd−n, α, R, r).

Our main lemma reads as follows:

Lemma 1.9. Assume that E0 and E1 satisfy the hypotheses of Theorem 1.7. Then there
exist numbers M0 = M0(κ, C) ∈ N, θ0 = θ0(κ, d) > 0 and an Hn-measurable subset
E2 ⊂ E1 with the following properties: Hn(E2) ∼κ,C 1, and if x ∈ E2, then

#{j ∈ Z : X(x, θ0, 2−j , 2−j−1) ∩ E2 6= ∅} ≤ M.

Before stating the main proposition, we need another definition:

Definition 1.10. A set E ⊂ Rd has the n-dimensional (θ,M)-property if

#{j ∈ Z : X(x, θ, 2−j , 2−j−1) ∩ E} ≤ M for all x ∈ E.
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Remark 1.11. Observe that if E has the (θ,M)-property with M = 0, then E is entirely
contained in a Lipschitz graph 0 with Lipschitz constant ≤ 1/θ . Indeed, then

|πRn(x − y)| ≥ θ |x − y|, x, y ∈ E.

In particular, the restriction πRn |E of the orthogonal projection πRn to E is one-to-one,
and one can define a (1/θ)-Lipschitz inverse f : πRn(E)→ E. By Kirszbraun’s theorem
[6, Theorem 2.10.43], this can be extended to a Lipschitz mapping f̃ : Rn → Rd with
Lip(f̃ ) ≤ 1/θ , and then

E ⊂ {(y,A(y)) : y ∈ Rn},

where A : Rn → Rd−n is defined by A = πRd−n ◦ f̃ . This is essentially the argument
from Mattila’s book [7, Lemma 15.13].

In the language of Definition 1.10, Lemma 1.9 claims that E2 has the n-dimensional
(θ0,M0)-property for some θ0,M0 depending only on κ and C. Here is the main propo-
sition:

Proposition 1.12. Assume that E0 is n-ADR, and assume that E2 ⊂ E0 ∩ B(0, 1) is an
Hn-measurable subset with Hn(E2) ∼κ,C 1 and satisfying the n-dimensional (θ,M)-
property for some θ > 0 and M ≥ 0. Then there is an Hn-measurable subset E3 ⊂ E2
with Hn(E3) ∼κ,C,M,θ 1 and satisfying the (θ/b, 0)-property. Here b ≥ 1 is a constant
depending only on d .

Taking Lemma 1.9 and Proposition 1.12 for granted, it is straightforward to complete the
proof of Theorem 1.7:

Proof of Theorem 1.7. Use Lemma 1.9 to find θ0 and M0, and a set E2 ⊂ E1 satisfy-
ing the n-dimensional (θ0,M0)-property. Then, use Proposition 1.12 to find E3 ⊂ E2
with Hn(E3) ∼κ,C 1 and satisfying the n-dimensional (θ0/b, 0)-property. Now, E3 is
contained in a Lipschitz graph 0 with Lipschitz constant ≤ b/θ0 by Remark 1.11, and

Hn(E1 ∩ 0) ≥ Hn(E3) &κ,C 1.

This completes the proof. ut

2. Proof of the main lemma

We start by proving an easy but very useful auxiliary lemma:

Lemma 2.1. Let E0 be an n-ADR set with Hn(E0) ≥ c > 0, let E1 ⊂ E0 ∩ B(0, 1) be
an Hn-measurable subset, and let

E1,ε := {x ∈ E1 : Hn(E1 ∩ B(x, rx)) ≤ εr
n
x for some radius 0 < rx ≤ 1}.

Then Hn(E1,ε) . ε with the bound depending only on c and the ADR constants of E0.
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Proof. The set E1,ε is covered with the balls B(x, rx/5), x ∈ E1,ε , so the 5r-covering
lemma can be used to extract a disjoint subcollection {B(xi, rxi/5)}i∈N with the property
that the balls {B(xi, rxi )}i∈N cover E1,ε . Let C0 > 5 be so large that rxi/C0 ≤ diam(E0)

(since rxi ≤ 1 uniformly, C0 depends only on c and the ADR constants of E0). Now, we
have

Hn(E1,ε) ≤
∑
i∈N

Hn(E1 ∩ B(xi, rxi )) ≤ ε
∑
i∈N

rnxi

. ε
∑
i∈N

Hn(E0 ∩ B(xi, rxi/C0)) ≤ εHn(E0 ∩ B(0, 2)) . ε,

as claimed. ut

Of course, the lemma cannot be used to conclude that the set E1 \ E1,ε is n-ADR, but it
is still somewhat more regular than E1, and this will be useful in the following proofs.

We also need another technical lemma:

Lemma 2.2. Fix υ, δ > 0 and let W ∈ G(d, n). Assume that z ∈ Rd satisfies δ/|z| <
min(δ0, υ/2), where δ0 is a small constant depending only on d , and |πW z| ≤ α0|z| for a
small enough α0 = α0(n, υ) > 0. Define Bz = {V ∈ G(d, n) : |πV z| ≤ δ}. Then

A(z) := γd,n(Bz ∩ BG(d,n)(W, υ)) &υ (δ/|z|)
n.

We postpone the proof to Appendix A.

Proof of Lemma 1.9. In what follows, the ADR constants ofE0 and the constants κ andC
from the statement of Lemma 1.9 will be treated as “fixed” in the sense that “.κ,C” is
abbreviated to “.”. We begin by applying Lemma 2.1 twice. First, with ε ∼ Hn(E1),
we remove E1,ε from E1: thus, for a suitable ε ∼ 1, the set E′ := E1 \ E1,ε satisfies
Hn(E′) ∼ 1 and has the property that if x ∈ E′ and 0 < r ≤ 1, then

Hn(E1 ∩ B(x, r)) ∼ r
n. (2.1)

Then, we apply the lemma again to E′, this time with ε′ ∼ Hn(E′), so that the set
E := E′ \ E′

ε′
still satisfies Hn(E) ∼ 1, and if x ∈ E and 0 < r ≤ 1, then

Hn(E′ ∩ B(x, r)) ∼ rn. (2.2)

Let θ0 = α0/2, where α0 > 0 appears in Lemma 2.2 with υ = κ . Given M > 0 let
EM consist of those x ∈ E for which there are at least M scales 2−j , j ∈ Z, such that

X(x, θ0, 2−j , 2−j−1) ∩ E 6= ∅. (2.3)

In symbols,

EM =
{
x ∈ E : #{j ∈ Z : X(x, θ0, 2−j , 2−j−1) ∩ E 6= ∅} ≥ M

}
.

In a moment, we will show that Hn(EM) . 1/M; this completes the proof, because then,
for a large enough M , the set E2 = E \ E

M will be the one we are looking for.
We start with a preliminary reduction. Let C0 ≥ 1 be a large constant depending

only on κ , to be specified later. Observe that for every x ∈ EM , there is a constant
δx > 0 such that there are at least M scales 2−j ≥ C0δx satisfying (2.3). If EM,δ =
{x ∈ EM : δx ≥ δ}, we can choose δ > 0 so small that Hn(EM,δ) ≥ Hn(EM)/2. In



Characterisation of BPLG using projections 1061

particular, it suffices to show that Hn(EM,δ) . 1/M , where the implicit constant does
not depend on δ. This is what we will do, but in order to avoid obscuring the notation any
further, we assume that EM = EM,δ; note that (2.1) and (2.2) are obviously unaffected
by the passage from EM to EM,δ .

With δ as in the previous paragraph, let FM and F ′ be maximal δ-separated sets
inside EM and E′, respectively; since EM ⊂ E′, we can also arrange that FM ⊂ F ′.
We wish to find lower and upper bounds on the number of triples (x, y, V ) such that
x, y ∈ F ′, V ∈ B(Rn, κ), and

|πV (x − y)| ≤ δ.

The idea is that assumption (ii) of Theorem 1.7 will give us an upper bound for the
number of such triples, whereas a lower bound can be obtained, via (2.3), by choosing
x ∈ FM ⊂ F ′ and y ∈ F ′.

We start with the lower bound. Note that

#FM & Hn(EM)δ−n, (2.4)

because EM is covered with the balls B(x, 2δ), x ∈ FM , and the AD-regularity of
E0 ⊃ E

M implies that Hn(B(x, 2δ) ∩ EM) . δn. Fix x ∈ FM for the moment. Now, let
2−j ≥ C0δ be one of the scales such that (2.3) holds, and choose a point

yj ∈ X(x, θ0, 2−j , 2−j−1) ∩ E.

First, choose c0 = c0(θ0) > 0 so small that

B(yj , c02−j ) ⊂ X(x, 2θ0, 2−j+1, 2−j−2).

This is depicted in Figure 1. Since yj ∈ E, we infer from (2.2) that

Hn(E′ ∩ B(yj , c02−j−1)) & 2−jn.

x

yj1

yj2

Fig. 1. Finding the balls B(yj , c2−j ) ⊂ X(x, 2θ0, 2−j+1, 2−j−2).
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Choosing C0 = C0(κ) so large that C0 ≥ 2/c0 we find that

E′ ∩ B(yj , c02−j−1) ⊂
⋃

w∈F ′∩B(yj ,c02−j )

B(w, 2δ).

To see this, notice that if u ∈ E′ ∩ B(yj , c02−j−1), there is w ∈ F ′ such that |w − u| ≤
δ ≤ 2−jC−1

0 ≤ c02−j−1. We now conclude that

#(F ′ ∩ B(yj , c02−j )) & δ−n2−jn, (2.5)

again by the AD-regularity of E0. In order to use Lemma 2.2 we enlarge C0 = C0(κ) so
that for y ∈ B(yj , c02−j ) ⊂ X(x, 2θ0, 2−j+1, 2−j−2) we have

|x − y| ≥ 2−j−2
≥

1
4
C0δ ≥

δ

min(δ0, κ/2)
.

Hence, Lemma 2.2 applies to z = x − y (since |πRn(z)| ≤ 2θ0|z| = α0|z|), and so

∑
y∈F ′∩B(yj ,c02−j )

γd,n(Bx−y ∩ B(Rn, κ)) & δ−n2−jn
(
δ

2−j

)n
= 1,

where Bx−y = Bz was defined in Lemma 2.2. Then, varying the scale 2−j , hence the
point yj , we find & M disjoint ballsB(yj , c02−j ) insideX(x, 2θ0) as above, and therefore∑

y∈F ′∩X(x,2θ0)

γd,n(Bx−y ∩ B(Rn, κ)) & M.

This finally yields∑
x,y∈F ′

γd,n(Bx−y ∩ B(Rn, κ)) ≥
∑
x∈FM

∑
y∈F ′∩X(x,2θ0)

γd,n(Bx−y ∩ B(Rn, κ))

& M ·Hn(EM)δ−n.

We then turn to the upper bound. For V ∈ G(d, n) define fV : V → R by setting

fV (z) =
∑
x∈F ′

1B(πV x,δ)(z).

Notice that ∫
V

fV (z)
2 dHn(z) =

∑
x,y∈F ′

∫
V

1B(πV x,δ)∩B(πV y,δ)(z) dH
n(z)

& δn#{(x, y) ∈ F ′ × F ′ : |πV (x − y)| ≤ δ}.
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Therefore, we now have

Hn(EM)M . δn
∑
x,y∈F ′

γd,n(Bx−y ∩ B(Rn, κ))

= δn
∫
B(Rn,κ)

#{(x, y) ∈ F ′ × F ′ : |πV (x − y)| ≤ δ} dγd,n(V )

.
∫
B(Rn,κ)

∫
V

fV (z)
2 dHn(z) dγd,n(V ).

Recall that if x ∈ F ′ ⊂ E′, then Hn(E1 ∩B(x, δ)) ∼ δ
n by (2.1). Using this we estimate

fV pointwise:

fV (z) ≤ δ
−n

∑
x∈F ′

|πV x−z|≤δ

Hn(E1 ∩ B(x, δ))

. δ−nHn(E1 ∩ π
−1
V (BV (z, 2δ))) . MV (πV ]Hn

|E1)(z).

Here MV is the Hardy–Littlewood maximal function on V . The operator MV is bounded
on L2(V ) (see Stein’s book [8, p. 13, Theorem 1]). Therefore, we can conclude the proof
as follows, using assumption (ii) from Theorem 1.7:

Hn(EM)M .
∫
B(Rn,κ)

‖πV ]Hn
|E1‖

2
L2(V )

dγd,n(V ) . 1. ut

3. Proof of the main proposition

Recall the notation for general cones from Definition 1.8. When V = span(w) ∈ G(d, 1),
w ∈ Sd−1, we introduce shorthand notation for one-dimensional one-sided cones:

X+(x,w, α) := X(x, span(w), α) ∩ {y ∈ Rd : (y − x) · w ≥ 0}.

The restricted version X+(x,w, α,R, r), 0 < r < R < ∞, is defined in the obvious
way. We start with a lemma which states that cones of arbitrary codimension with a fixed
aperture can be covered with a bounded number of one-dimensional one-sided cones—
even ones with a slightly smaller aperture:

Lemma 3.1. Fix α ∈ (0, 1), s ∈ (0, 1] and V ∈ G(d, k). Then there exist vectors
w1, . . . , wm ∈ Sd−1, with m . (αs)1−d , such that

X(0, V , α) ⊂
m⋃
j=1

X+(0, wj , αs) ⊂
m⋃
j=1

X+(0, wj , α) ⊂ X(0, V , bα). (3.1)

Here b ≥ 1 is a constant depending only on d.
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Proof. It suffices to find w1, . . . , wm ∈ Sd−1 such that (3.1) holds with all the cones
intersected with Sd−1. Find an (αs)-net w1, . . . , wm ⊂ X(0, V , α) ∩ Sd−1. Then m .
(αs)1−d . Now, write Wj := w⊥j , fix y ∈ X(0, V , α) ∩ Sd−1, and pick wj such that
|y − wj | ≤ αs. Then y · wj ≥ 0 and

|πWj (y)| = |πWj (y − wj )| ≤ αs,

which proves that y ∈ X+(0, wj , αs) ∩ Sd−1, and hence the first inclusion of (3.1). To
prove the second inclusion, fix 1 ≤ j ≤ m and z ∈ X+(0, wj , α) ∩ Sd−1. Observe that
|z− wj | ≤ b

′α for some constant b′ = b′(d), whence

|πV⊥(z)| ≤ |πV⊥(z− wj )| + |πV⊥(wj )| ≤ |z− wj | + α ≤ (b
′
+ 1)α.

This proves the lemma with b = b′ + 1. ut

Lemma 3.1 allows us to reduce the proof of the main Proposition 1.12 to the “codimen-
sion 1” case. The relevant (one-dimensional, one-sided) cones in this codimension are
directed, which is quite useful in the proof.

Proposition 3.2 (Main proposition in codimension 1). Let w ∈ Sd−1. Assume that an
Hn-measurable set F ⊂ Rd satisfies the following conditions:

(a) Hn(F ) =: τ > 0, and F ⊂ E0 ∩ B(0, 1) for some n-ADR set E0,
(b) for some α > 0, M ∈ N, and for every point x ∈ F ,

#{j ∈ Z : X+(x,w, α, 2−j , 2−j−1) ∩ F 6= ∅} ≤ M.

We abbreviate (a) and (b) by saying that F has the (α,M,w)-property. Then, if M ≥ 1
and α > 0 is small enough (depending only on d), there exists a compact setK ⊂ F with
Hn(K) ∼τ,α 1 which has the (α/2,M − 1, w)-property.

The general idea of the argument is to write down an explicit algorithm which refines F
by deleting some points in several stages, but all the time we keep track of the process to
prevent too much waste. When the algorithm eventually stops, it will output the desired
setK . Before giving the details, let us see how the general version of the main proposition
follows from Proposition 3.2.

Proof of Proposition 1.12. Assume that E2 ⊂ E0 has the n-dimensional (θ0,M0)-prop-
erty. Then, with V = (Rn)⊥,

#{j ∈ Z : X(x, V, θ0, 2−j , 2−j−1) ∩ E2 6= ∅} ≤ M0

for all x ∈ E2. Now, use Lemma 3.1 with α = θ0/b and s = 2−M0 to find vectors
w1, . . . , wm ∈ S1, with m . (θ0/(2M0b))1−d , such that

X(0, V , θ0/b) ⊂

m⋃
j=1

X+(0, wj , θ0/(2M0b)) ⊂

m⋃
j=1

X+(0, wj , θ0/b) ⊂ X(0, V , θ0).
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It follows from translation invariance that

X(x, V, θ0/b, 2−j , 2−j−1) ⊂

m⋃
j=1

X+(x,wj , θ0/(2M0b), 2−j , 2−j−1) (3.2)

for all x ∈ Rd and j ∈ Z. Further, E2 has the (θ0/b,M0, wj )-property from Propo-
sition 3.2 for all 1 ≤ j ≤ m. Thus, iterating that proposition ≤ M0 times for each
1 ≤ j ≤ m, hence ≤ mM0 times altogether, one finds a set E3 ⊂ E2 satisfying the
(θ0/(2M0b), 0, wj )-property for all 1 ≤ j ≤ m. It follows from (3.2) that E3 has the
n-dimensional (θ0/b, 0)-property, and Proposition 1.12 is proved. ut

Proof of Proposition 3.2. We assume that w = ed = (0, 0, . . . , 0, 1). Before starting to
describe the algorithm to find K ⊂ F , we make two easy reductions: first, without loss
of generality, we may assume that if x ∈ F and

X+(x,w, α, 2−j , 2−j−1) ∩ F 6= ∅

then 2−j ≥ δ for some small constant δ > 0. Simply, for every x ∈ F , there is some
δx > 0 with this property, and then we can take δ > 0 so small that Hn(F ′) ≥ Hn(F )/2,
where F ′ := F \ {x ∈ F : δx < δ}. After this, we would proceed with the proof as below,
only replacing F by F ′. Second, we may assume that F is compact; otherwise we can
always find a compact subset of F (or F ′) with almost the same Hn-measure, and then
we can find K inside this subset as below.

We now begin to describe the algorithm. The following points (I)–(IV) summarise the
key features.

(I) There will be a sequence of compact sets F = F 0
⊃ F 1

⊃ F 2
⊃ · · · , where F k+1

is obtained from F k by deleting a certain open set Dk .
(II) Thus, there will also be a sequence of deleted sets Dk ⊂ F k , k ∈ {0, 1, . . .}.

(III) There will be a sequence of saved sets Sk ⊂ F k ⊂ F , k = {0, 1, . . .}, which are
disjoint from each other and all the deleted sets Di , i ≥ k,1 satisfy

Hn(Sk) & max{Hn(Dk), δn},

and have the property that if x ∈
⋃
i≤k S

i , then there are at most M − 1 scales 2−j

such that
X+(x,w, α/2, 2−j , 2−j−1) ∩

⋃
i≤k

Si 6= ∅.

(IV) We describe the structure of the saved sets. Let F k,M be the set of points in F k such
that there are exactly M scales 2−j ≥ δ such that

X+(x,w, α/2, 2−j , 2−j−1) ∩ F k 6= ∅.

A point x ∈ F k is then called k-bad if x ∈ F k,M and furthermore

Hn(B(x, r) ∩ F k,M) ≥ εrn

1 The sets Sk are also disjoint from the deleted sets Di with i < k, as Sk ⊂ F k = F \
⋃
i<k D

i .
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for all radii 0 < r ≤ 1, where ε ∼ Hn(F ) is a constant to be specified in Stopping
Condition 3.4 below. Using the compactness of F k and the uniform lower bound for
the numbers 2−j , it is easy to verify that the set of k-bad points is compact. Thus, if
there are any k-bad points to begin with, there exists a (possibly non-unique) k-bad
point xk with the smallest last coordinate xdk . With such a choice of xk , the saved
set Sk will be defined as B(xk, rk) ∩ F k,M for some suitable radius rk & δ.
Note that if x is k-bad and k ≥ 1, then x is also (k − 1)-bad, simply because
F k ⊂ F k−1 and F k,M ⊂ F k−1,M . This implies, by the definition of xk , that the last
coordinates of the points x0, x1, . . . , xk form a non-decreasing sequence.
Finally, to every set Sk = B(xk, rk) ∩ F

k,M we associate a somewhat larger set
Bk := B(xk, 100rk) ∩ F k , which will have the property that if x ∈ Bk , then there
are at most M − 1 scales 2−j such that

X+(x,w, α/2, 2−j , 2−j−1) ∩ F k+1
6= ∅.

There will be two different stopping conditions, which bring the algorithm to a halt and
output the desired set K .

Stopping Condition 3.3. Assume that the sets D0, . . . , Dk and S0, . . . , Sk have been
defined and either

k∑
i=0

Hn(Di) ≥ Hn(F )/2 or
k∑
i=0

Hn(Si) ≥ Hn(F )/2.

In both cases, we set
K :=

⋃
i≤k

Si .

By (III), the setK satisfies the requirements of Proposition 3.2, and the proof is complete.

Stopping Condition 3.4. Assume that the set F k has been defined and satisfies Hn(F k)

≥ Hn(F )/2, and that the set of k-bad points, as in (IV), is empty. Thus, for every x in
F k,M , we have

Hn(F k,M ∩ B(x, rx)) ≤ εr
n
x

for some radius 0 < rx ≤ 1. Now choose ε ∼ Hn(F ) ∼ 1 so small that, using Lemma
2.1, we have Hn(F k,M) ≤ Hn(F )/4. We set

K := F k \ F k,M .

Then Hn(K) ≥ Hn(F k)−Hn(F k,M) ≥ Hn(F )/4, and for every x ∈ K there are at most
M − 1 scales 2−j such that

X+(x,w, α/2, 2−j , 2−j−1) ∩K 6= ∅.

Thus, K satisfies the requirements of Proposition 3.2, and the proof is complete.
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Remark 3.5. Notice that, since Hn(Sk) & δn for every k, the first stopping condition
will be reached in . δ−n steps (unless the second stopping condition was reached before
that). In particular, the algorithm terminates and outputs K after finitely many steps.

Next, we will explicitly describe how to construct the various sets F k , Sk and Dk . De-
fine S−1

= ∅, D−1
= ∅ and F 0

:= F . Assume that k ≥ 0 and the sets F 0, . . . , F k ,
D1, . . . , Dk−1 and S1, . . . , Sk−1 have already been defined, and have the properties listed
in (I)–(IV); in particular, also the balls Bi , i < k, have been defined. Assume that the first
stopping condition is not satisfied; otherwise the algorithm terminates and the proof is
complete. In particular,

Hn(F k) ≥ Hn(F )−
∑
i<k

Hn(Di) ≥ Hn(F )/2. (3.3)

Next, assume that the second stopping condition is not satisfied; because of (3.3), this
means that the set of k-bad points is non-empty, and—as required by (IV)—we find one
of them, xk , with minimal last coordinate. Let 2−jk be one of the M scales such that

X+(xk, w, α/2, 2−jk , 2−jk−1) ∩ F k 6= ∅. (3.4)

Let rk := c2−jk for a suitable small c = c(d, α) > 0 to be specified later, and set

Sk := B(xk, rk) ∩ F
k,M , Bk := B(xk, 100rk) ∩ F k,

as required by (IV). Then
Hn(Sk) & 2−jkn ≥ δn, (3.5)

by the definition of k-badness. Furthermore, Sk is disjoint from all the previous sets Si ,
i < k, and even from the larger sets Bi , i < k, because Sk ⊂ F k,M , but if x ∈ Bi , then

X+(x,w, α/2, 2−m, 2−m−1) ∩ F k 6= ∅ (3.6)

can only hold for M − 1 scales 2−m by (IV). Next, we define the deleted set Dk by

Dk := F k ∩
⋃

l∈{−1,0,1}

⋃
x∈Bk

X◦(x,w, α, 2−jk+l, 2−jk−1+l).

Here X◦ stands for the interior of the cone X+ (we want the deleted set to be relatively
open in F k). ThenDk is contained in a single ball of radius . 2−jk , so Hn(Dk) . 2−jkn.
Combining this with (3.5), we see that

Hn(Sk) & max{Hn(Dk), δn},

as required in (III).
To complete the proof, we still need to show the disjointness of Dk from the previous

saved sets Si , i < k, the latter claim in (III) about
⋃
i≤k S

i , and the claim about the set Bk

at the end of (IV).
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z

B( )
k

x
xk

zk

B(xk, 100rk)

Fig. 2. Some of the points and regions associated with Dk .

We begin with the last and easiest task. By the definition of 2−jk in (3.4), there exists
a point

zk ∈ X
+(xk, w, α/2, 2−jk , 2−jk−1) ∩ F k.

Now, if the constant c in rk = c2−jk is chosen small enough (depending on α), and
x ∈ Bk ⊂ B(xk, 100rk), one can check that

zk ∈
⋃

l∈{−1,0,1}

X+(x,w, α, 2−jk+l, 2−jk−1+l)

(see Figure 2). In particular, one of the three scales 2−jk+l , l ∈ {−1, 0, 1}, is among the
at most M scales 2−m such that X+(x,w, α, 2−m, 2−m−1) ∩ F k 6= ∅. Then Dk certainly
contains all the points in the intersection X+(x,w, α/2, 2−m, 2−m−1) ∩ F k , so

X+(x,w, α/2, 2−m, 2−m−1) ∩ F k+1
= X+(x,w, α/2, 2−m, 2−m−1) ∩ (F k \Dk) = ∅.

Thus, there can only remain at most M − 1 scales 2−m such that

X+(x,w, α/2, 2−m, 2−m−1) ∩ F k+1
6= ∅, x ∈ Bk, (3.7)

and this is exactly what is claimed at the end of (IV).
Finally, we establish the remaining claims in (III) by proving that Dk is disjoint from

the saved sets Si , i ≤ k. In fact, this implies that Si ∩ Dl = ∅ for all pairs i, l ≤ k.
Indeed, if i ≤ l < k, we may assume by induction that Si is disjoint from Dl (since this
is precisely what we are about to prove for l = k). Further, Si is disjoint from Dl with
l < i simply because

Si ⊂ F i = F \
⋃
l<i

Dl .

From the previous discussion, we conclude that⋃
i≤k

Si ⊂ F \
⋃
l≤k

Dl = F k+1. (3.8)
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Observe that for every x ∈
⋃
i≤k S

i there are at most M − 1 scales 2−j such that

X+(x,w, α/2, 2−j , 2−j−1) ∩ F k+1
6= ∅.

This follows from (3.7) for x ∈ Sk ⊂ Bk , and by induction for x ∈ Si ⊂ Bi for i < k

(recalling (3.6) and noting that Fk+1 ⊂ Fk). Hence, we infer from the inclusion (3.8) that
there are also at most M − 1 scales 2−j such that

X+(x,w, α/2, 2−j , 2−j−1) ∩
⋃
i≤k

Si 6= ∅

for x ∈
⋃
i≤k S

i . This is what was claimed at the end of (III).

ri

x
i

xx ri

xixk
100rk

100ri

X(x, α)

Fig. 3. The case 100rk ≤ ri .

Now, we fix i ≤ k, and establish thatDk is disjoint from Si . If i = k, this is immediate
from the construction (recall that Sk ⊂ B(xk, rk), whereas Dk lies inside the union of
certain annuli, all at distance � rk from xk). So, we assume that i < k. There are two
cases to consider. First, assume that 100rk ≤ ri (see Figure 3). In this case, we simply
prove that if x ∈ Bk ⊂ B(xk, 100rk) ⊂ B(xk, ri), then

X+(x,w, α) ∩ B(xi, ri) = ∅, (3.9)

which is clearly a stronger statement than Dk ∩ Si = ∅. Fix x ∈ Bk , and recall that
xk /∈ B

i
= B(xi, 100ri) ∩ F i for i < k (because xk ∈ Sk , and Sk is disjoint from Bi , as

remarked below (3.5)). Since xk ∈ Sk ⊂ F k ⊂ F i , this implies that xk /∈ B(xi, 100ri),
and hence, by 100rk ≤ ri ,

x /∈ B(xi, 50ri). (3.10)

Now, recall that the last coordinate of xk is no smaller than the last coordinate of xi
by (IV). So, if we write y = (yu)du=1 for a general point y ∈ Rd , we have

xd ≥ xdk − ri ≥ x
d
i − ri . (3.11)

It is now easy to check, by using (3.10) and (3.11), that (3.9) holds if we assume that, say,
α ≤ 1/10.
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x

xi

rixk100rk

y

X(x, α, 2−jk+l, 2−jk+l−1

Fig. 4. The case 100rk > ri .

Next, assume that 100rk > ri (see Figure 4). Recall that rk = c2−jk , and Dk is
contained in the union of the annuli X◦(x,w, α, 2−jk+l, 2−jk−1+l), where x ∈ Bk ⊂
B(xk, 100rk) and l ∈ {−1, 0, 1}. If x ∈ Bk is fixed, then by the same argument that gave
(3.11), we now have

xd ≥ xdk − 100rk ≥ xdi − 100c2−jk . (3.12)

If
y ∈ X◦(x,w, α, 2−jk+l, 2−jk−1+l),

then, using (3.12) and choosing c > 0 small enough, we find that

yd ≥ xd + 2−jk−10
≥ xdi + 2−jk−20

≥ xdi + 1000c2−jk ≥ xdi + 10ri .

In particular, y cannot lie in B(xi, ri) ⊃ Si , and the proof is complete. ut

Appendix. A measure estimate on the Grassmannian

This section contains the proof of Lemma 2.2. Let us recall the statement:

Lemma A.1. Fix υ, δ > 0 and let W ∈ G(d, n). Assume that z ∈ Rd satisfies δ/|z| <
min(δ0, υ/2), where δ0 is a small constant depending only on d , and |πW z| ≤ α0|z| for a
small enough α0 = α0(n, υ) > 0. Define Bz = {V ∈ G(d, n) : |πV z| ≤ δ}. Then

A(z) := γd,n(Bz ∩ BG(d,n)(W, υ)) &υ (δ/|z|)
n.
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Proof. Let us begin by showing that there exists V0 ∈ BG(d,n)(W, υ/2) for which
πV0z = 0. Let e1, . . . , en ∈ Rd be an orthonormal basis for W . Notice that for every
j ∈ {1, . . . , n} we have

|z · ej | ≤ |πW z| ≤ α0|z|.

The plan is now to form new vectors u1, . . . , un by perturbing the vectors e1, . . . , en
slightly. Let u0 := e0 := z/|z|, Z−1 := ∅ and ε0 := α0. Assume that u0, . . . , uk ,
0 ≤ k < n, have already been defined so that they satisfy:

(1) (u0, u1, . . . , uk) is an orthonormal sequence;
(2) if Zi = span(u0, u1, . . . , ui) for i ∈ {0, . . . , k} then

ui =
πZ⊥

i−1
ei

|πZ⊥
i−1
ei |

and
|πZi ei+1| ≤ εi . (A.1)

As will be apparent in a moment, the numbers εi will be defined via a simple recurrence
relation. Observe that (A.1) also gives

|πZ⊥i
ei+1| ≥ (1− ε2

i )
1/2, i ∈ {0, . . . , k}.

Now, let

uk+1 =
πZ⊥k

ek+1

|πZ⊥k
ek+1|

and Zk+1 = span(Zk, uk+1). If k = n − 1, the vectors {u1, . . . , un} have now been
defined, and the induction terminates. If k < n− 1, notice that

|πZk+1ek+2|
2
=

k+1∑
i=0

(ek+2 · ui)
2
= (ek+2 · u0)

2
+

k+1∑
i=1

(
ek+2 ·

πZ⊥
i−1
ei

|πZ⊥
i−1
ei |

)2

= (ek+2 · u0)
2
+

k+1∑
i=1

(
ek+2 ·

πZi−1ei

|πZ⊥
i−1
ei |

)2

≤ α2
0 +

k+1∑
i=1

ε2
i−1

1− ε2
i−1
=: ε2

k+1.

Now, properties (1) and (2) have been verified for the vectors u0, . . . , uk+1.
Define V0 = span(u1, . . . , un). By (1) it follows that πV0z = 0. Therefore, it remains

to show that V0 ∈ BG(d,n)(W, υ/2) for a small enough α0. First, it is easy to check using
the definition of ui that

ui − ei =
−πZi−1ei

|πZ⊥
i−1
ei |
+

(
1

|πZ⊥
i−1
ei |
− 1

)
ei .

It follows that

|ui − ei | ≤
εi−1

(1− ε2
i−1)

1/2
+

(
1

(1− ε2
i−1)

1/2
− 1

)
=: ri .
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Choose α0 so small that max{ri : i = 1, . . . , n} ≤ υ/(4n1/2); this can clearly be done,
given that the numbers εi satisfy the recurrence relation above. It follows that

‖W − V0‖G(d,n) = ‖πW − πV0‖ ≤ υ/4,

ending the proof of the existence of V0.
Let F = {V ∈ G(d, n) : πV z = 0} and identify F with G(d − 1, n) (notice that

F is exactly the n-planes contained in z⊥ ≈ Rd−1). Now V0 ∈ F . Let H be a maxi-
mal δ/|z|-separated collection of V ∈ BG(d−1,n)(V0, υ/2). Then BG(d−1,n)(V0, υ/2) ⊂⋃
{BG(d−1,n)(V , 2δ/|z|) : V ∈ H }, yielding

1 .υ #H · (δ/|z|)n(d−1−n).

Here we have used γd−1,n(BG(d−1,n)(V0, υ/2)) ∼υ 1 and [5, Proposition 4.1] (we also
implicitly used δ/|z| < δ0, which, for small enough δ0, guarantees that [5, Proposition
4.1] applies to the balls BG(d−1,n)(V , 2δ/|z|)). Notice that⋃

V∈H

BG(d,n)(V , δ/(2|z|)) ⊂ Bz ∩ BG(d,n)(W, υ)

by the definition of Bz, the inclusion H ⊂ F , and the inequalities δ/(2|z|) ≤ υ/4, and

‖V −W‖G(d,n) ≤ ‖V − V0‖G(d−1,n) + ‖V0 −W‖G(d,n) ≤ 3υ/4, V ∈ H.

Also, the G(d, n)-balls in the union are disjoint, so

A(z) ≥
∑
V∈H

γd,n(BG(d,n)(V , δ/(2|z|))) &υ

(
δ

|z|

)n(d−n)
·

(
δ

|z|

)−n(d−1−n)

=

(
δ

|z|

)n
,

using the cardinality estimate for H , and [5, Proposition 4.1] again. ut
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