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Distribution of full cylinders and the Diophantine properties
of the orbits in ˇ-expansions
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Abstract. Letˇ > 1 be a real number. LetTˇ denote theˇ-transformation on Œ0; 1�. A cylinder
of order n is a set of real numbers in Œ0; 1� having the same first n digits in their ˇ-expansion.
A cylinder is called full if it has maximal length, i.e., if its length is equal to ˇ�n. In this paper,
we show that full cylinders are well distributed in Œ0; 1� in a suitable sense. As an application
to the metrical theory of ˇ-expansions, we determine the Hausdorff dimension of the set

fx 2 Œ0; 1� W jT n
ˇ x � znj < e�Snf .x/ for infinitely many n 2 Ng;

where fzngn�1 is a sequence of real numbers in Œ0; 1�, the function f W Œ0; 1� ! RC is
continuous, and Snf .x/ denotes the ergodic sum f .x/C � � � C f .T n�1

ˇ
x/.
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1. Introduction

Let ˇ > 1 be a real number. Let

Tˇ W Œ0; 1� �! Œ0; 1�

be the ˇ-transformation defined by

Tˇ .x/ D ˇx � bˇxc;
where b�c denotes the integer part of a real number. It is well known [16] that every
real number x 2 Œ0; 1� can be uniquely expanded into a finite or an infinite series

x D "1.x; ˇ/

ˇ
C � � � C

"n.x; ˇ/C T n
ˇ
x

ˇn
D

1X
nD1

"n.x; ˇ/

ˇn
; (1)

where, for n � 1,
"n.x; ˇ/ D bˇT n�1

ˇ xc
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is called the nth digit of x. Sometimes we identify x with its digit sequence

".x; ˇ/ WD ."1.x; ˇ/; : : : ; "n.x; ˇ/; : : : /

and call also the digit sequence ".x; ˇ/ the ˇ-expansion of x. We call the system
.Œ0; 1�; Tˇ/ the ˇ-dynamical system.

It is well-known that the ˇ-dynamical system is, in general, not a subshift of finite
type with mixing properties. This causes difficulties in studying metrical questions
related to ˇ-expansions.

For an admissible sequence ."1; : : : ; "n/, i.e. a prefix of the digit sequence of some
x 2 Œ0; 1/, we define the cylinder In."1; : : : ; "n/ of order n by

In."1; : : : ; "n/ WD fx 2 Œ0; 1/ W "j .x; ˇ/ D "j ; for j D 1; : : : ; ng:
We write In.x/ for the cylinder of order n containing x and jIn.x/j for the length of
In.x/. It follows from the definition of the ˇ-expansion that the length of a cylinder
always satisfies

jIn."1; : : : ; "n/j � ˇ�n: (2)

We stress that there is no nontrivial universal lower bound for the length of a cylinder,
which can be much smaller than ˇ�n.

From the ergodic theorem, it is well known [13] that for almost all x,

lim
n!1

� logˇ jIn.x/j
n

D 1;

where logˇ denotes the logarithm with respect to the base ˇ. This means that, in
some sense, almost all cylinders are of almost maximal length.

Cylinders with maximal length have very good properties; see for example Lem-
ma 3.2 below. Thus, we would like to know whether there exist cylinders with
maximal length, which cylinders have maximal length and how they are distributed
in the unit interval Œ0; 1�.

Definition 1.1 (Full cylinder). A cylinder In."1; : : : ; "n/ is called full if it has maximal
length, i.e., if

jIn."1; : : : ; "n/j D ˇ�n:

The properties of full cylinders were firstly investigated in [6]. In the present
paper, we give a full characterization of full cylinders and investigate the distribution
of full cylinders in the unit interval.

Theorem 1.2. For n � 1, among every .n C 1/ consecutive cylinders of order n,
there exists at least one full cylinder.

Theorem 1.2 enables us to prove a modified mass distribution principle to study
the Hausdorff dimension of sets defined in terms of ˇ-expansions. The reader is
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referred to Falconer’s book [5] for the definition of Hausdorff dimension and the
“Mass distribution principle,” which is a classical tool to obtain a lower bound for
the Hausdorff dimension of a set.

Proposition 1.3 (Modified mass distribution principle). LetE be a Borel measurable
set in Œ0; 1� and � be a Borel measure with �.E/ > 0. Assume that there exist a
positive constant c > 0 and an integer n0 such that, for any n � n0 the measure of
any cylinder In of order n satisfies �.In/ � cjInjs . Then, dimHE � s.

In the classical form of the mass distribution principle [5], Proposition 4.2, one
needs to estimate the measure of an arbitrary ball, while the above proposition tells us
that, for ˇ-expansions, it is sufficient to consider only the measure of cylinders. This
will simplify the argument in determining the Hausdorff dimension of sets defined in
terms of ˇ-expansions.

To give an application of Proposition 1.3 to the metrical theory of ˇ-expansions,
we determine the Hausdorff dimension of the shrinking target set

S.f / WD fx 2 Œ0; 1� W jT n
ˇ x � znj < e�Snf .x/ for infinitely many n 2 Ng;

where fzngn�1 is a sequence of real numbers in Œ0; 1�, the function f W Œ0; 1� ! RC
is continuous, and Snf .x/ denotes the ergodic sum f .x/ C � � � C f .T n�1

ˇ
x/. For

the background and more results on shrinking target problems, the reader is referred
to [1], [2], [3], [4], [8], [9], [10], [11], [12], [20], [21], [24], and [25] and the references
quoted therein.

The special case when zn D z is a constant function and f .x/ D b for all
x 2 Œ0; 1� was investigated in [14] and [19]. The following result is much more
general.

Theorem 1.4. Let fzngn�1 be a sequence of real numbers in Œ0; 1� and let the map
f W Œ0; 1� ! RC be a continuous function. The Hausdorff dimension of the set S.f /
is the unique solution s to the pressure equation

P.Tˇ ;�s.f C logˇ// D 0;

where P.Tˇ ; �/ denotes the pressure function related to the potential �.

We display a particular instance of Theorem 1.4. Throughout this paper, dimH

denotes the Hausdorff dimension.

Corollary 1.5. Let fzngn�1 be a sequence of real numbers in Œ0; 1� and b be a positive
real number. Then,

dimHfx 2 Œ0; 1� W jT n
ˇ x � znj < ˇ�bn for infinitely many n 2 Ng D 1

1C b
:
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Actually, very similar ideas allow us to extend a result of [19] as follows.

Theorem 1.6. Let be a positive function defined on the set of positive integers. Let
fzngn�1 be a sequence of real numbers in Œ0; 1�. Then,

dimHfx 2 Œ0; 1� W jT n
ˇ x � znj <  .n/ for infinitely many n 2 Ng D 1

1C b
;

where

b D lim inf
n!C1

� logˇ  .n/

n
:

We omit the proof of Theorem 1.6.

Remark 1.7. We stress that the Hausdorff dimensions determined in the above the-
orem and corollary do not depend on the choice of the sequence fzngn�1. This is
not always the case for general systems; see Reeve [17] for an example of a confor-
mal iterated function system showing that sometimes the dimension depends on the
centers of the targets.

For more dimensional results related to ˇ-expansions, the reader is referred to the
papers of C.-E. Pfister and W. G. Sullivan [15], J. Schmeling [18], D. Thompson [22],
and D. Färm, T. Persson, and J. Schmeling [7] and the references therein.

The paper is organized as follows. The next section is devoted to recalling some
elementary properties of ˇ-expansions. The distribution of full cylinders is studied
in Section 3. Since no further new ideas are needed to prove Theorem 1.4, only an
outline of the proof is presented in the last section.

Throughout, we use the symbol ] to denote the cardinality of a finite set.

2. Preliminaries

In this section we give a brief account on ˇ-expansions.
From the definition of Tˇ , it is clear that, for n � 1, the nth digit "n.x; ˇ/ of

x belongs to the alphabet A D f0; : : : ; dˇ � 1eg, where dye denotes the smallest
integer greater than or equal to y. We stress that not all sequences " 2 AN are the
ˇ-expansion of some x 2 Œ0; 1�. This leads to the notion of ˇ-admissible sequence.

Definition 2.1. A finite or an infinite sequence ."1 ; : : : ; "n; : : : / is calledˇ-admissible,
if there exists anx 2 Œ0; 1/ such that theˇ-expansion ofx begins with "1; : : : ; "n; : : : .

Denote by †n
ˇ

the set of all ˇ-admissible sequences of length n and by †ˇ the
set of all infinite ˇ-admissible sequences

†ˇ D f" 2 AN W " is the ˇ-expansion of some x 2 Œ0; 1/g:



Diophantine properties in ˇ-expansions 225

When there is no possible confusion, we simply write admissible instead of ˇ-admis-
sible.

In order to characterize the admissible sequences, let us first define the infinite
expansion of 1. Let ˇ > 1 be given. If the ˇ-expansion of 1 terminates, i.e. if there
exists m � 1 such that "m.1; ˇ/ � 1 but "n.1; ˇ/ D 0 for n > m, then ˇ is called a
simple Parry number. Whence, we put

."�
1.ˇ/; "

�
2.ˇ/; "

�
3.ˇ/; : : : / D ."1.1; ˇ/; : : : ; "m�1.1; ˇ/; "m.1; ˇ/� 1/1;

where ."/1 denotes the periodic sequence ."; "; "; : : : /. If ˇ is not a simple Parry
number, we use ."�

1.ˇ/; "
�
2.ˇ/; "

�
3.ˇ/; : : : / to denote the ˇ-expansion of 1. In both

cases, we say that the sequence

"�.ˇ/ WD ."�
1.ˇ/; "

�
2.ˇ/; "

�
3.ˇ/; : : : /

is the infinite ˇ-expansion of 1 (or of unity).

The lexicographical order � on AN is defined as follows: we write

."1; "2; : : : ; "n; : : : / � ."0
1; "

0
2; : : : ; "

0
n; : : : /

if there exists k � 1 such that "j D "0
j for 1 � j < k, while "k < "0

k
. This order

can be extended to finite blocks by identifying a finite block ."1; : : : ; "n/ with the
sequence ."1; : : : ; "n; 0; 0; : : : /.

The admissible sequences and the topological entropy are characterized in the
following two theorems.

Theorem 2.2 (Parry [13]). (1) Let ˇ > 1 be given. A sequence ."1; "2; : : : / of
non-negative integers is ˇ-admissible if and only if, for any k � 1,

."k ; "kC1; : : : / � ."�
1.ˇ/; "

�
2.ˇ/; : : : /;

where ."�
1.ˇ/; "

�
2.ˇ/; : : : / is the infinite ˇ-expansion of unity.

(2) If 1 < ˇ1 < ˇ2, then †ˇ1
� †ˇ2

:

Theorem 2.3 (Rényi [16]). For any ˇ > 1, we have

ˇn � ]†n
ˇ � ˇnC1=.ˇ � 1/; lim

n!1
log ]†n

ˇ

n
D logˇ:

In particular, the topological entropy of the dynamical system .Œ0; 1�; Tˇ/ is equal to
logˇ.
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We end this section by a definition of the pressure function. In the ˇ-dynamical
system, following [26], the pressure function P associated to a continuous potential
g can be defined by the formula

P.Tˇ ; g/ WD lim
n!1

1

n
log

X
."1;:::;"n/2†n

ˇ

sup
y2In."1;:::;"n/

eSng.y/; (3)

where Sng.y/ denotes the ergodic sum
Pn�1

j D0 g.T
j

ˇ
y/.

This definition of the pressure function looks different from the one given in
P. Walters’ book [27]; however, both of them fulfill the same variational principle,
namely

P.Tˇ ; g/ D supfh� C
Z
gd� W � 2 M1.Tˇ /g;

where h� is the measure-theoretic entropy of � and M1.Tˇ / denotes the collection
of Tˇ -invariant Borel probability measures. Thus, the two definitions coincide.

3. Distribution of full cylinders

In this section, we consider the distribution of cylinders with maximal lengths. We
start with an auxiliary lemma.

Lemma 3.1. Assume that the infiniteˇ-expansion of 1 is purely periodic with minimal
period `, denoted by

"�.ˇ/ D ."�
1.ˇ/; : : : ; "

�
` .ˇ//

1:
Then

."�
iC1.ˇ/; : : : ; "

�
` .ˇ// � ."�

1.ˇ/; : : : ; "
�
`�i.ˇ//; for i D 1; : : : ; `� 1: (4)

Proof. Let i be an integer with 1 � i < `. It immediately follows from the minimality
of ` that

."�
iC1.ˇ/; : : : ; "

�
`Ci.ˇ// ¤ ."�

1.ˇ/; : : : ; "
�
` .ˇ//: (5)

Furthermore, the admissibility of "�.ˇ/ implies

."�
iC1.ˇ/; : : : ; "

�
iC`.ˇ// � ."�

1.ˇ/; : : : ; "
�
` .ˇ//: (6)

Combining (5) and (6), we get

."�
iC1.ˇ/; : : : ; "

�
iC`.ˇ// � ."�

1.ˇ/; : : : ; "
�
` .ˇ//: (7)

We are led to compare the tails of the words in (7). The left one ends with
."�

`C1
.ˇ/; : : : ; "�

iC`
.ˇ//;while the right one ends with ."�

`�iC1
.ˇ/; : : : ; "�

`
.ˇ//. Using

the periodicity and admissibility of "�.ˇ/ again, we get

."�
`C1.ˇ/; : : : ; "

�
iC`.ˇ// D ."�

1.ˇ/; : : : ; "
�
i .ˇ// 	 ."�

`�iC1.ˇ/; : : : ; "
�
` .ˇ//:
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In other words, the smaller word in (7) has larger tails, thus we conclude

."�
iC1.ˇ/; : : : ; "

�
` .ˇ// � ."�

1.ˇ/; : : : ; "
�
`�i.ˇ//;

as asserted.

Fan and Wang [6] gave several criteria and properties of full cylinders.

Lemma 3.2 (cf. [6]). .1/. The cylinder In.w1; : : : ; wn/ is full if and only if for
any m � 1 and .u1; : : : ; um/ 2 †m

ˇ
, the sequence .w1; : : : ; wn; u1; : : : ; um/ is still

admissible.

.2/. Let .w1; : : : ; wn�1; w
0
n/ be an admissible sequence with w0

n ¤ 0. Then, for
any integer wn with 0 � wn < w

0
n, the cylinder

In.w1; : : : ; wn�1; wn/

is full.

.3/: If In.w1; : : : ; wn/ is full, then for any m � 1 and any .u1; : : : ; um/ 2 †m
ˇ

,

jInCm.w1; : : : ; wn; u1; : : : ; um/j D jIn.w1; : : : ; wn/j � jIm.u1; : : : ; um/j
D ˇ�njIm.u1; : : : ; um/j:

Thus, the concatenation

InCm.w1; : : : ; wn; u1; : : : ; um/

of two full cylinders In.w1; : : : ; wn/ and Im.u1; : : : ; um/ is still full.

Proof. Items (1) and (3) are immediate. For the sake of completeness, we establish
item (2). In view of item (1), it is sufficient to check that for any .wnC1; : : : ; wnCm/ 2
†m

ˇ
with m � 1, the word

.w1; : : : ; wn; wnC1; : : : ; wnCm/

is admissible. This follows from a direct application of the criterion of admissibility
of a sequence (Theorem 2.2). When k < n, since wn < w

0
n and .w1; : : : ; wn�1; w

0
n/

is admissible, we have

.wkC1; : : : ; wn; wnC1; : : : ; wnCm/ � .wkC1; : : : ; w
0
n/ � ."�

1.ˇ/; : : : ; "
�
n�k.ˇ//:

When k � n, by the admissibility of .wnC1; : : : ; wnCm/, it is clear that

.wkC1; : : : ; wnCm/ � ."�
1.ˇ/; : : : ; "

�
nCm�k.ˇ//:

We give below a new necessary and sufficient condition ensuring that a cylinder
is full.
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Proposition 3.3. Let .w1; : : : ; wn/ be in †n
ˇ

.

(i) If "�.ˇ/, the infinite ˇ-expansion of 1, is not purely periodic, then the cylinder
In.w1; : : : ; wn/ is full if and only if for k D 0; : : : ; n � 1,

.wkC1; : : : ; wn/ � ."�
1.ˇ/; : : : ; "

�
n�k.ˇ//I

(ii) if "�.ˇ/, the infinite ˇ-expansion of 1, is purely periodic, then the cylinder
In.w1; : : : ; wn/ is full if and only if

.wkC1; : : : ; wn/ � ."�
1.ˇ/; : : : ; "

�
n�k.ˇ//; for k D 0; : : : ; n� 1; (8)

or .w1; : : : ; wn/ ends with a period of "�.ˇ/.

Proof. (i) We prove the sufficient part first. With almost the same argument as in the
proof of item (2) of Lemma 3.2, we check that, for anym � 1 and .u1; : : : ; um/ 2 †m

ˇ
,

the sequence
.w1; : : : ; wn; u1; : : : ; um/

is ˇ-admissible. Then, the sufficient part follows by applying item (1) of Lemma 3.2.
The necessary part is proved by contraposition. Assume that for some integer k D
0; : : : ; n � 1,

.wkC1; : : : ; wn/ D ."�
1.ˇ/; : : : ; "

�
n�k.ˇ//: (9)

For any m � n � k, consider the admissible sequence ."�
1.ˇ/; : : : ; "

�
m.ˇ//. Since

the interval In.w1; : : : ; wn/ is full, by item (1) of Lemma 3.2, we get an admissible
sequence

.w1; : : : ; wn; "
�
1.ˇ/; : : : ; "

�
m.ˇ//:

By the criterion of admissibility of a sequence, we have

.wkC1; : : : ; wn; "
�
1.ˇ/; : : : ; "

�
m.ˇ// � ."�

1.ˇ/; : : : ; "
�
mCn�k.ˇ//:

By (9), it then follows that

."�
1.ˇ/; : : : ; "

�
n�k.ˇ/; "

�
1.ˇ/; : : : ; "

�
m.ˇ// � ."�

1.ˇ/; : : : ; "
�
mCn�k.ˇ//: (10)

Cutting the common prefix ."�
1.ˇ/; : : : ; "

�
n�k

.ˇ// of the two sequences in (10), we
get

."�
1.ˇ/; : : : ; "

�
m.ˇ// � ."�

n�kC1.ˇ/; : : : ; "
�
mCn�k.ˇ//: (11)

By applying the criterion of admissibility again, we get an equality in (11), thus (10)
is also an equality. Consequently, ."�

1.ˇ/; : : : ; "
�
m.ˇ// is periodic of period n � k.

Since m is arbitrary, we deduce that "�.ˇ/ is periodic. This is a contradiction.
(ii). Let

"�.ˇ/ D ."�
1.ˇ/; : : : ; "

�
` .ˇ//

1

be purely periodic with ` being the minimal period.
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For the sufficient part, it is clear that In.w1; : : : ; wn/ is full if (8) holds. Thus, we
show that In.w1; : : : ; wn/ is also full if the admissible sequence .w1; : : : ; wn/ ends
with ."�

1.ˇ/; : : : ; "
�
`
.ˇ//.

Let t � 1 be the largest integer such that .w1; : : : ; wn/ can be written as

.w1; : : : ; wk; ."
�
1.ˇ/; : : : ; "

�
` .ˇ//

t/:

First we claim that
.w1; : : : ; wk/ � ."�

1.ˇ/; : : : ; "
�
k.ˇ//: (12)

If this is not the case, then, by the admissibility of .w1; : : : ; wk/, we have

.w1; : : : ; wk/ D ."�
1.ˇ/; : : : ; "

�
k.ˇ//: (13)

We show that (13) contradicts the admissibility of .w1; : : : ; wn/. Indeed, by the
maximality of t , the admissible word .w1; : : : ; wn/ can be written as

."�
1.ˇ/; : : : ; "

�
` .ˇ//

t1; "�
1.ˇ/; : : : ; "

�
i .ˇ/; ."

�
1.ˇ/; : : : ; "

�
` .ˇ//

t

for some integers t1 � 0 and 1 � i < `. Consider the subword Qw of .w1; : : : ; wn/

defined by
Qw WD ."�

1.ˇ/; : : : ; "
�
i .ˇ/; "

�
1.ˇ/; : : : ; "

�
`�i.ˇ//:

Lemma 3.1 implies that

."�
1.ˇ/; : : : ; "

�
i .ˇ/; "

�
1.ˇ/; : : : ; "

�
`�i.ˇ// 
 ."�

1.ˇ/; : : : ; "
�
` .ˇ//:

This means that Qw is not admissible. From the criterion of admissibility, it is clear that
any subword of an admissible word is admissible. Applying this fact to .w1; : : : ; wn/,
the non-admissibility of Qw contradicts the admissibility of .w1; : : : ; wn/. Thus, (12)
holds. In the same way, we can show that

.wiC1; : : : ; wk/ � ."�
1.ˇ/; : : : ; "

�
k�i .ˇ//; for i D 0; : : : ; k � 1: (14)

For any admissible word v, it can be checked directly using (14) and the criterion of
admissibility that

.w1; : : : ; wk; ."
�
1.ˇ/; : : : ; "

�
` .ˇ//

t ; v/

is admissible. This implies that the cylinder In.w1; : : : ; wn/ is full.
Now, we show the necessary part. Assume that (8) does not hold. Let then k < n

be the largest integer such that

.wkC1; : : : ; wn/ D ."�
1.ˇ/; : : : ; "

�
n�k.ˇ//:

To reach the desired conclusion, it is sufficient to show that n�k D `. Since "�.ˇ/ is
periodic with period `, by the maximality of k, it follows that n�k � `. If n�k ¤ `,
consider the word

w0 WD .wkC1; : : : ; wn; "
�
1.ˇ/; : : : ; "

�
` .ˇ//;

which is admissible since In.w1; : : : ; wn/ is full. Combined with (13), this leads to
a contradiction with the admissibility of w0. Thus we get n � k D `.
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Proposition 3.3 gives us an easily checkable criterion for full cylinders, which
will be used frequently later.

Corollary 3.4. Let .w1; : : : ; wn/be in†n
ˇ

. If In.w1; : : : ; wn/ is not full, then there ex-
ists an integer k D 0; : : : ; n�1 such that Ik.w1; : : : ; wk/ is full and .wkC1; : : : ; wn/

is a prefix of the infinite ˇ-expansion of 1.

We are now in position to prove Theorem 1.2 indicating that the full cylinders are
well distributed, in a suitable sense.

Proof of Theorem 1.2. Letw.0/; w.1/; : : : ; w.n/ be nC 1 consecutive words in†n
ˇ

in

the lexicographic order. Then In.w
.0//; : : : ; In.w

.n// are nC1 consecutive cylinders
of order n in Œ0; 1�.

Step 1. Assume that In.w
.n// is not full. Then, by Corollary 3.4, there exists an

integer 0 � k0 < n such that

Ik0
.w

.n/
1 ; : : : ; w

.n/

k0
/ is full

and
w

.n/

k0C1
D "�

1.ˇ/; : : : ; w
.n/
n D "�

n�k0
.ˇ/:

Step 2. Assume that In.w
.n�1// is as well not full. Firstly we claim that w.n�1/ and

w.n/ have a common prefix up to at least thek0-th digit. Since .w.n/
1 ; : : : ; w

.n/

k0
; "�

1.ˇ//

is admissible and "�
1.ˇ/ ¤ 0, we know that .w.n/

1 ; : : : ; w
.n/

k0
; 0/ is another admissible

sequence smaller than .w.n/
1 ; : : : ; w

.n/

k0
; "�

1.ˇ//. Thus,

.w
.n/
1 ; : : : ; w

.n/

k0
; 0/ � w.n�1/ � .w

.n/
1 ; : : : ; w

.n/

k0
; "�

1.ˇ/; "
�
2.ˇ/; : : : ; "

�
n�k0

.ˇ//:

This shows that w.n�1/ also begins with .w.n/
1 ; : : : ; w

.n/

k0
/.

Since w.n�1/ � w.n/ and they have a common prefix at least up to the k0-th
position, there exists Nk1 > k0 such that

w
.n�1/
1 D w

.n/
1 ; : : : ; w

.n�1/
Nk1�1

D w
.n/
Nk1�1

;

but
w

.n�1/
Nk1

< w
.n/
Nk1

:

By item (2) of Lemma 3.2, we know that the cylinder

I Nk1
.w

.n�1/
1 ; : : : ; w

.n�1/
Nk1

/
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is full. Then, by item (3) of Lemma 3.2, the cylinder

In� Nk1
.w

.n�1/
Nk1C1

; : : : ; w.n�1/
n /

is not full, since otherwise In.w
.n�1/
1 ; : : : ; w

.n�1/
n / would be full. Applying Corol-

lary 3.4 to the cylinder I
n� Nk1

.w
.n�1/
Nk1C1

; : : : ; w
.n�1/
n / and using then item (3) of Lem-

ma 3.2, we deduce that there exists k1 � Nk1 such that

Ik1
.w

.n�1/
1 ; : : : ; w

.n�1/

k1
/ is full (15a)

and

.w
.n�1/

k1C1
; : : : ; w.n�1/

n / D ."�
1.ˇ/; : : : ; "

�
n�k1

.ˇ//: (15b)

To sum up, if neiher In.w
.n// nor In�1.w

.n�1// is full, then there exists k1 > k0

such that (15) is satisfied.

Step 3. We repeat the argument in Step 2 to show that, if In.w
.n�2// is not full, then

there exists k2 > k1 such that

Ik2
.w

.n�2/
1 ; : : : ; w

.n�2/

k2
/ is full

and

.w
.n�2/

k2C1
; : : : ; w.n�2/

n / D ."�
1.ˇ/; : : : ; "

�
n�k2

.ˇ//:

We then continue this procedure. If there exists some ki .0 � i � n/ such that
ki D n, this procedure ends since In.w

.i// is full. Otherwise, assuming that every
In.w

.i// .0 � i � n/ is not full, we would have a sequence of integers

kn > kn�1 > � � � > k1 > k0 � 0 (16)

such that

Ikn
.w

.0/
1 ; : : : ; w

.0/

kn
/ is full (17a)

and

.w
.0/

knC1
; : : : ; w.0/

n / D ."�
1; : : : ; "

�
n�kn

/: (17b)

Since kn � n, we must have kn D n by (16). Thus the first part in (17) implies that
In.w

.0// is full which leads to a contradiction.
Therefore, there must be at least one full cylinder among In.w

.i//, for i D
0; 1; : : : ; n.
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4. Dimensional theory for ˇ-expansions

In this section, we prove Proposition 1.3. We begin with two propositions concerning
the relationship between balls and cylinders.

Proposition 4.1 (covering properties). Letˇ > 1. For any y 2 Œ0; 1� and any positive
integer `, the ball B.y; ˇ�`/ can be covered by at most 4.`C 1/ cylinders of order `.

Proof. By Theorem 1.2, among any 4.`C 1/ consecutive cylinders of order `, there
are at least 4 full cylinders. So the total length of these intervals is larger than 4ˇ�`.
Thus B.y; ˇ�`/ can be covered by at most 4.`C 1/ cylinders of order `.

Proposition 4.2 (packing properties). Let ı > 0. Let n0 � 3 be an integer such that
.ˇn0/

1Cı < ˇn0ı . Then, for any real number r with 0 < r < n0ˇ
�n0 and for any

x0 2 Œ0; 1�, there exists a cylinder In satisfying the following three conditions.

(1) The cylinder In is a full cylinder.

(2) The cylinder In is contained in the ball B.x0; r/.

(3) The length of In is comparable with r , in the sense that r1Cı < jInj < r:
Proposition 4.2 was shown for the first time in [19], by means of a constructive

method. Here, we apply Theorem 1.2 to give a simpler proof.

Proof. Let n � n0 be the integer defined by

nˇ�n � r < .n� 1/ˇ�nC1:

Since the length of every cylinder of order n is at most equal to ˇ�n, the ball B.x; r/
contains at least 2n � 2 � n C 1 consecutive cylinders of order n. Thus, by Theo-
rem 1.2, it contains a full cylinder of order n. Denote by In such a full cylinder. By
the choice of n and n0, we have

r1Cı <
�
.n � 1/ˇ�nC1

�1Cı � ˇ�n D jInj:
This completes the proof of the proposition.

We apply Proposition 4.1 to prove Proposition 1.3.

Proof of Proposition 1.3. Let � > 0. Let n0 be the smallest integer such that ˇn� �
8n. For any interval U with length jU j � ˇ�n0 , let n � n0 be the integer defined
by ˇ�n�1 < jU j � ˇ�n. It follows from Proposition 4.1 that U can be covered by
at most 8n cylinders of order n. Denoting by � the collection of these cylinders of
order n, we get

�.U / �
X

In2�

�.In/ �
X

In2�

cjInjs � c � 8nˇ�ns � cˇjU js�� :
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Since � can be chosen arbitrarily small, we conclude by the classical form of the mass
distribution principle [5], Proposition 4.2.

5. Proof of Theorem 1.4

As usual, the proof of Theorem 1.4 is divided into two parts: upper bound and lower
bound. In the following, unless otherwise specified, when we need to take a point y
in a cylinder In."1; : : : ; "n/, we always take for y the left endpoint of In."1; : : : ; "n/,
i.e.

y D "1

ˇ
C � � � C "n

ˇn
:

Instead of S.f /, we consider the following set

xS.f / D
1\

N D1

1[
nDN

[
."1;:::;"n/2†n

ˇ

J."1; : : : ; "n/;

where

J."1; : : : ; "n/ D fx 2 In."1; : : : ; "n/; jT n
ˇ x � znj < e�Snf .y/g;

with y being the left endpoint of In."1; : : : ; "n/.
It follows from the continuity of f that, for any ı > 0 and n large enough,

jSnf .x/ � Snf .y/j < nı; with x; y 2 In."1; : : : ; "n/:

Thus we have
xS.f C ı/ � S.f / � xS.f � ı/:

Therefore, it is sufficient to determine the dimension of xS.f /.
Let s.ˇ/ be the solution to the pressure equation

P.Tˇ ;�s.f C logˇ// D 0:

5.1. Upper bound. The upper bound can be obtained by considering the obvious
covering system of xS.f / given by

fJ."1; : : : ; "n/ W ."1; : : : ; "n/ 2 †n
ˇ ; n � N g; for N � 1:

The length of J."1; : : : ; "n/ satisfies

jJ."1; : : : ; "n/j � 2ˇ�ne�Snf .y/;

since, for every x in J."1; : : : ; "n/, we have

ˇ̌
ˇx �

�"1

ˇ
C � � � C "n C zn

ˇn

�ˇ̌
ˇ D

ˇ̌
ˇT

n
ˇ
x � zn

ˇn

ˇ̌
ˇ < ˇ�ne�Snf .y/:



234 Y. Bugeaud and B. Wang

Thus, for s 2 .0; 1�, we get

H s.xS.f // � lim inf
N !1

1X
nDN

X
."1;:::;"n/2†n

ˇ

jJ."1; : : : ; "n/js

� lim inf
N !1

1X
nDN

X
."1;:::;"n/2†n

ˇ

.2ˇ�ne�Snf .y//s:

By the definitions of the pressure function and of s.ˇ/, we have, for any s > s.ˇ/,

H s.xS.f // < 1:

This implies that the Hausdorff dimension of xS.f / satisfies

dimH xS.f / � s.ˇ/:

5.2. Lower bound. We apply the modified mass distribution principle (Proposi-
tion 1.3) to give a lower bound for dimH xS.f /. We first construct a large Cantor set
F1 inside xS.f / and then we define a suitable probability measure � supported on
F1 and estimate the Hölder exponent of � on cylinders.

5.2.1. Construction of a Cantor subset of xS.f /. At first, we give concisely a
family of full cylinders. Recall that the sequence "�.ˇ/ D ."�

1.ˇ/; "
�
2.ˇ/; : : : / is the

infinite ˇ-expansion of unity. When the sequence ."�
1.ˇ/; "

�
2.ˇ/; : : : / is periodic, let

ˇN D ˇ for N � 1. Otherwise, for every N with "�
N .ˇ/ � 1, define ˇN to be the

unique positive solution to the equation

1 D "�
1.ˇ/

ˇ1
N

C "�
2.ˇ/

ˇ2
N

C � � � C "�
N .ˇ/

ˇN
N

: (18)

In the latter case, it is easy to see that ˇN increases to ˇ as N ! 1, and thus
†n

ˇN
� †n

ˇ
for n � 1. Moreover, the infinite ˇN -expansion of unity is given by

."�
1.ˇ/; : : : ; "

�
N �1.ˇ/; "

�
N .ˇ/� 1/1:

The following fact, which will be used several times, is a consequence of Proposi-
tion 3.3 on the criterion of full cylinders. It should be reminded that all the cylinders
appearing below are cylinders in ˇ-expansion, but not in ˇN -expansion.

Corollary 5.1. (1) When "�.ˇ/ D ."�
1.ˇ/; "

�
2.ˇ/; : : : ; "

�
N .ˇ//

1 is a periodic se-
quence with period lengthN , for anyˇ-admissible sequence ."1; : : : ; "n/with n � 1,
the cylinder InCN ."1; : : : ; "n; 0

N / is full.

(2) When "�.ˇ/ is not periodic, for any ˇN -admissible sequence ."1; : : : ; "n/with
n � 1, the cylinder InCN ."1; : : : ; "n; 0

N / is full.



Diophantine properties in ˇ-expansions 235

Proof. We claim that for every ˇN -admissible sequence ."1; : : : ; "n/,

."1; : : : ; "n; 0
N / � ."�

1.ˇ/; "
�
2.ˇ/; : : : ; "

�
nCN .ˇ//:

Then, by applying the above claim repeatedly and by the first item of Proposition 3.3,
we get the desired result.

To check the claim, we distinguish two cases, according as whether "�.ˇ/ is
periodic or not.

(i)Assume that "�.ˇ/ D ."�
1.ˇ/; "

�
2.ˇ/; : : : ; "

�
N .ˇ//

1 is a periodic sequence with
period length N . Firstly, the admissibility of ."1; : : : ; "n; 0

N / implies that

."1; : : : ; "n; 0
N / � ."�

1.ˇ/; "
�
2.ˇ/; : : : ; "

�
nCN .ˇ//: (19)

Secondly, the periodicity of "�.ˇ/ implies that any subword of length N in "�.ˇ/
cannot be 0N . Thus the inequality � in (19) is strict.

(ii) Assume that "�.ˇ/ is not periodic. Recall that ."1; : : : ; "n/ is ˇN -admissible
and that the infiniteˇN -expansion of 1. Whenn � N , by the criterion of admissibility,
we have

."1; : : : ; "N / � ."�
1.ˇ/; ; : : : ; "

�
N �1.ˇ/; "

�
N .ˇ/ � 1/ � ."�

1.ˇ/; : : : ; "
�
N .ˇ//:

When n < N , with the same argument as in (i), we have

."1; : : : ; "n; 0
N / � ."�

1.ˇ/; "
�
2.ˇ/; : : : ; "

�
nCN .ˇ//:

This proves the claim.

Now, we are in the position to construct a Cantor subset F1 of xS.f /. Fix ı > 0
and choose a very rapidly increasing subsequence fmkgk�1 of positive integers with
m1 large enough.

Generation 1 of the Cantor set. Let n1 D m1. For every .".1/
1 ; : : : ; "

.1/
n1
/ 2 †n1

ˇN

ending with 0N , consider the set

fx 2 In1
."

.1/
1 ; : : : ; ".1/

n1
/ W jT n1

ˇ
x � zn1

j < e�Sn1
f .y1/g; (20)

where y1 2 In1
."

.1/
1 ; : : : ; "

.1/
n1
/.

Applying Proposition 4.2 to the ball B.zn1
; e�Sn1

f .y1//, we get a full cylinder
I`1
.w1/ such that

I`1
.w1/ � B.zn1

; e�Sn1
f .y1// and jI`1

.w1/j � .e�Sn1
f .y1//1Cı :

Then, we get a subset of (20), namely the cylinder

In1C`1
."

.1/
1 ; : : : ; ".1/

n1
; w1/:
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We point out that the cylinder In1C`1
given above is a full cylinder, since both the

cilinder In1
."

.1/
1 ; : : : ; "

.1/
n1
/ (by Corollary 5.1) and the cilinder I`1

.w1/ are full.
Now the first generation of the Cantor set is defined as

F1 D fIn1C`1
."

.1/
1 ; : : : ; ".1/

n1
; w1/ W .".1/

1 ; : : : ; ".1/
n1
/ 2 †n1

ˇN
ending with 0N g:

From the construction of F1, it is clear that for any x 2 In1C`1
.u1/ 2 F1,

T
n1

ˇ
x 2 I`1

.w1/ � B.zn1
; e�Sn1

f .y1//: (21)

It should be noted that `1 and w1 depend on .".1/
1 ; : : : ; "

.1/
n1
/. This dependence

will not play a role in the following argument, thus will not be indicated explicitly.
We abbreviate by u1 the word .".1/

1 ; : : : ; "
.1/
n1
; w1/.

Generation 2 of the Cantor set. Choose a large integer m2 such that

ı

1C ı
�m2 logˇ � .n1 C supf`1 W In1C`1

.u1/ 2 F1g/kf k; (22)

where kf k D supfjf .x/j W x 2 Œ0; 1�g.
Fix an element In1C`1

.u1/ 2 F1 and set n2 D n1 C `1 C m2. For every

"
.2/
1 ; : : : ; "

.2/
m2

2 †m2

ˇN
, ending with 0N , consider the set

fx 2 In2
.u1; "

.2/
1 ; : : : ; ".2/

m2
/ W jT n2

ˇ
x � zn2

j < e�Sn2
f .y2/g (23)

with y2 2 In2
.u1; "

.2/
1 ; : : : ; "

.2/
m2
/.

Applying Proposition 4.2 to the ball B.zn2
; e�Sn2

f .y2//, we get a full cylinder
I`2
.w2/ such that

I`2
.w2/ � B.zn2

; e�Sn2
f .y2//; and jI`2

.w2/j � .e�Sn2
f .y2//1Cı :

Then, we get a subset of (23), namely the cylinder

In2C`2
.u1; "

.2/
1 ; : : : ; ".2/

m2
; w2/:

As above, we note that In2C`2
is a full cylinder.

A subfamily of the second generation of the Cantor set is defined as

F2.In1C`1
.u1//

WD fIn2Cw2
.u1; "

.2/
1 ; : : : ; ".2/

m2
; w2/ W .".2/

1 ; : : : ; ".2/
m2
/ 2 †m2

ˇN
ending with 0N g:

Then, abbreviating .u1; "
.2/
1 ; : : : ; "

.2/
m2
; w2/ by u2, the second generation of the Cantor

set is defined as

F2 D fIn2C`2
.u2/ 2 F2.In1C`1

.u1// W In1C`1
.u1/ 2 F1g:

From the construction of F2, it is clear that for any x 2 In2C`2
.u2/ 2 F2,

T
n2

ˇ
x 2 I`2

.w2/ � B.zn2
; e�Sn2

f .y2//: (24)
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The Cantor set. Continuing the process, we obtain a nested sequence fFkgk�1

composed of full cylinders, called basic cylinders. And then the desired Cantor set is

F1 D
1\

kD1

[
InkC`k

.uk/2Fk

InkC`k
.uk/:

By (21) and (24), it is clear that

F1 � xS.f /: (25)

To apply the modified mass distribution principle, we will construct a probability
measure � supported on F1 and then estimate the Hölder exponent of the measure �
on cylinders. Since the construction and the estimation are quite analogous to those
in [23], we do not give all the details.

5.2.2. Supporting measure. Now we construct a probability measure � supported
on F1, which is defined by distributing masses among the cylinders with non-empty
intersection with F1.

Recall that s.ˇ/ is the solution to the equation

P.Tˇ ;�s.logˇ C f // D 0:

Fix an integer N . For k � 1, we define a sequence of real numbers connected to the
Hausdorff dimension of F1: let sk be the solution to the equation

X
."1;:::;"mk

/2†
mk
ˇN

W ending with 0N

.ˇ�mke�Smk
f .y0

k
//s D 1;

where y0
k

2 Imk
."1; : : : ; "mk

/. By the continuity of the pressure function P.Tˇ ; f /

with respect to ˇ, see [23], Theorem 4.1, it can be shown that

lim
N !1 lim

k!1
sk D s.ˇ/:

At first, we define the measure � on the basic cylinders.

(1) Define the measure � on the basic cylinders in F1. For every basic interval
In1C`1

."
.1/
1 ; : : : ; "

.1/
m1
; w1/ D In1C`1

.u1/ 2 F1, take

�.In1C`1
.u1// D

� 1

ˇm1
e�Sm1

f .y0
1

/
�s1

;

where y0
1 2 Im1

."
.1/
1 ; : : : ; "

.1/
m1
/.
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(2) Define the measure � inductively on the basic cylinders in Fk . For every
InkC`k

.uk�1; "
.k/
1 ; : : : ; "

.k/
mk
; wk/ D InkC`k

.uk/ 2 Fk , define

�.InkC`k
.uk// D �.Ink�1C`k�1

.uk�1//
� 1

ˇmk
e�Smk

f .y0
k

/
�sk

D
kY

j D1

� 1

ˇmj
e

�Smj
f .y0

j
/
�sj

;

(26)

where y0
j 2 Imj

."
.j /
1 ; : : : ; "

.j /
mj
/ for j D 1; : : : ; k.

We emphasize that there are differences between the definitions of y0 in (26) and
y in (23).

To ensure that � is indeed a measure, the measure of every cylinder which is not
a basic cylinder is defined to be the total measure of basic cylinders contained in it.

5.2.3. The lengths of cylinders. In this subsection, we estimate the lengths of the
cylinders fIn.x/ W n � 1g for all x 2 F1. As in the previous subsection, let

x D .uk�1; "
.k/
1 ; : : : ; ".k/

mk
; wk; : : : /

be the ˇ-expansion of x.

(1) Whenn D nk C`k , since Ink�1C`k�1
.uk�1/, Imk

."
.k/
1 ; : : : ; "

.k/
mk
/ and I`k

.wk/

are all full cylinders, we have

jIn.x/j D jInk�1C`k�1
.uk�1/j � jImk

."
.k/
1 ; : : : ; ".k/

mk
/j � jI`k

.wk/j
� jInk�1C`k�1

.uk�1/j � ˇ�mk � .e�Snk
f .yk//1Cı ;

where yk 2 Ink
.uk�1; "

.k/
1 ; : : : ; "

.k/
mk
/. Thus, by induction, we get

jIn.x/j �
kY

j D1

.ˇ�mj � .e�Snj
f .yj /

/1Cı/; (27)

where yj 2 Inj
.uj �1; "

.j /
1 ; : : : ; "

.j /
mj
/ for j D 1; : : : ; k.

Now, we compare Snk
f .yk/ and Smk

f .y0
k
/: by (22), we have

jSnk
f .yk/ � Smk

f .y0
k/j D jSnk�1C`k�1

f .yk/j
� .nk�1 C `k�1/kf k1

� ı

1C ı
mk logˇ:
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Combining this with (27), we get

jIn.x/j �
kY

j D1

.ˇ�mj � e�Smj
f .y0

j
/
/1Cı ; (28)

where y0
j 2 Imj

."
.j /
1 ; : : : ; "

.j /
mj
/ for j D 1; : : : ; k.

(2) When nk � n < nk C `k ,

jIn.x/j � jInkC`k
.x/j �

kY
j D1

.ˇ�mj � e�Smj
f .y0

j
/
/1Cı : (29)

(3) When nk�1 C `k�1 < n � nk , write

In.x/ D In.uk�1; "
.k/
1 ; : : : ; "

.k/

`
/:

Since Ink�1C`k�1
.uk�1/ is full and .".k/

1 ; : : : ; "
.k/

`
/ 2 †`

ˇN
, we have

jIn.x/j � jInk�1C`k�1
.uk�1/j � jI`."

.k/
1 ; : : : ; "

.k/

`
/j

� ˇ�nk�1�`k�1ˇ�`�N D ˇ�n�N :
(30)

5.2.4. Hölder exponent of the measure �. Once the �-measure of a cylinder and
the length of a cylinder are given, it only remains for us to check that �.In.x// �
jIn.x/js holds for some suitably chosen s. Here, we omit the argument and the reader
is referred to [23] for a detailed calculation.

Lemma 5.2. For any s < s.ˇ/, there exist an integer n1, a measure � supported on
F1 and a constant C0 D C0.s/ such that for all x 2 Œ0; 1� and n � n1,

�.In.x// � C0 � jIn.x/js :

We then conclude using the modified mass distribution principle (Proposition 1.3)
that

dimH xS.f / � s:

This ends the proof of the theorem.
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