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Abstract. We discuss the interplay between K-theoretical dynamics and the structure theory
of certain C�-algebras arising from crossed products. In the presence of sufficiently many
projections we associate to each noncommutative C�-system .A;G; ˛/ a type semigroup
S.A;G; ˛/ which reflects much of the spirit of the underlying action. We characterize purely
infinite as well as stably finite crossed products in terms of finiteness and infiniteness in the type
semigroup. We explore the dichotomy between stable finiteness and pure infiniteness in certain
classes of reduced crossed products by means of paradoxical decompositions.
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1. Introduction

Dynamical systems and the theory of operator algebras are inextricably related [6,
14,21]. Topological dynamics has long played a significant role in the study and
classification of amenable C�-algebras by providing a wealth of examples that fall
under the umbrella of Elliott’s classification program as well as examples that lack
certain regularity properties [10,12,30,31]. The crossed product construction permits
the exploitation of symmetry through the acting group and is generous enough to
produce a variety of C�-algebraic phenomena. Onewould like to uncover information
about the the crossed product algebra by unpacking the dynamics and, conversely,
describe the nature of the system by looking at the operator algebra’s structure and
invariants.

Of particular interest in this paper is the deep theme common to groups, dynamical
systems and operator algebras; that of finiteness, infiniteness, and proper infiniteness,
the latter expressed in terms of paradoxical decompositions. The remarkable
alternative theorem of Tarski establishes, for discrete groups, the dichotomy between
amenability and paradoxical decomposability. This carries over into the realm of
operator algebras. Indeed, if a discrete group � acts on itself by left-translation,
the Roe algebra C.ˇ�/ Ì� � is properly infinite if and only if � is �-paradoxical
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and this happens if and only if � is non-amenable [28]. This is mirrored in the von
Neumann algebra setting as well; all projections in a II1 factor are finite and the
ordering of Murray–von Neumann subequivalence is determined by a unique faithful
normal tracial state. Alternatively type III factors admit no traces since all non-zero
projections therein are properly infinite. As for unital, simple, separable and nuclear
algebras, the C�-enthusiast of old hoped that the trace/traceless divide determined a
similar dichotomy between stable finiteness and pure infiniteness (the C�-algebraic
analog of type III). This hope was laid to rest with Rørdam’s example of a unital,
simple, separable, nuclear C�-algebra containing both an infinite and a non-zero
finite projection [26]. The conjecture for such a dichotomy remains open for those
algebras whose projections have dense linear span. Theorem 1.3 below is a result in
this direction.

Despite the failure of the above dichotomy, the classification program of Elliott
in its original K-theoretic formulation has witnessed much success for stably finite
algebras [11,27], as well as in the purely infinite case with the spectacular complete
classification results of Kirchberg and Phillips [16,22] modulo the UCT. One
motivation for studying purely infinite algebras stems from the fact that Kirchberg
algebras (unital, simple, separable, nuclear, and purely infinite) are classified by
their K- or KK-theory. The C�-literature has produced examples of purely infinite
C�-algebras arising from dynamical systems [4,18,19,28]. In many cases the
underlying algebra is abelian with spectrum the Cantor set. For example, Archbold,
Spielberg, and Kumjian (independently) proved that there is an action of Z2 �Z3 on
the Cantor set so that the corresponding crossed product C�-algebra is isomorphic
to O2 [29]. Laca and Spielberg [19] construct purely infinite and simple crossed
products that emerge from strong boundary actions. Jolissaint and Robertson [13]
generalized the idea of strong boundary action to noncommutative systems with the
concept of an n-filling action. They showed that AÌ� � is simple and purely infinite
provided that the action is properly outer and n-filling and every corner pAp of A is
infinite dimensional. We will give a K-theoretic proof of their result in the case that
the algebra A has a well behaved K0-group.

The transition from classical topological dynamics to noncommutative C�-
dynamics presents several challenges and subtleties. One way to approach these
issues is to interpret dynamical conditions K-theoretically via the induced actions
on K0.A/ and on the Cuntz semigroup W.A/ and use tools from the classification
literature as well as developed techniques of Cuntz comparison to uncover pertinent
algebraic information. Such an approach is seen in Brown’s work [8] as well as that of
the author in [23,24]. We continue this approach in the present paper by carrying over
ideas of paradoxical actions on spaces to the noncommutative C�-setting. The notion
of a group acting paradoxically on a set and the construction of the type semigroup
goes back to thework of Tarski (seeWagon’s book [32] for a good treatment). Rørdam
and Sierakowski [28] looked at the type semigroup S.X; �/ built from an action of
a discrete group on the Cantor set and tied pure infiniteness of the resulting reduced
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crossed product to the absence of traces on this semigroup. In effect, they prove
that if a countable, discrete, and exact group � acts continuously and freely on the
Cantor set X , and the preordered semigroup S.X; �/ is almost unperforated, then
the following are equivalent: (i) The reduced crossed product C.X/ Ì� � is purely
infinite, (ii) C.X/ Ì� � is traceless, (iii) S.X; �/ is purely infinite (that is 2x � x
for every x 2 S.X; �/), and (iv) S.X; �/ is traceless. Inspired by their work, we
construct a type semigroup S.A; �; ˛/ for noncommutative systems .A; �; ˛/ and
establish a more general result. This is Theorem 5.6 below which, in particular,
implies the following.

Theorem 1.1. Let A be a unital, separable, and exact C*-algebra with stable rank
one and real rank zero. Let ˛ W � ! Aut.A/ be a minimal and properly outer action
with S.A; �; ˛/ almost unperforated. Then the following are equivalent:

(1) The semigroup S.A; �; ˛/ is purely infinite.

(2) The C*-algebra A Ì� � is purely infinite.

(3) The C*-algebra A Ì� � is traceless.

(4) The semigroup S.A; �; ˛/ admits no non-trivial state.

As a suitable quotient ofK0.A/C, this type semigroupS.A; �; ˛/ is purely infinite
if and only if every positive element of K0.A/C is paradoxical under the induced
action with covering multiplicity at least two. Taking covering multiplicities into
account, Kerr and Nowak [15] consider completely non-paradoxical actions of a
discrete group on the Cantor set. We do the same here for noncommutative systems
using orderedK-theory and establish Theorem 4.9, of which the following is a special
case.

Theorem 1.2. Let A be a unital, separable and exact C*-algebra with stable rank
one and real rank zero . Let ˛ W � ! Aut.A/ be a minimal action. Then the following
are equivalent:

(1) A Ì� � admits a faithful tracial state.

(2) A Ì� � is stably finite.

(3) ˛ is completely non-paradoxical.

Moreover, if A is AF and � is a free group, then .1/ through .3/ are all equivalent to
A Ì� � being MF in the sense of Blackadar and Kirchberg [7].

Combining these two results we obtain the desired dichotomy, albeit for a certain
class of crossed products.

Theorem 1.3. Let A be a unital, separable, and exact C*-algebra with stable rank
one and real rank zero. Let ˛ W � ! Aut.A/ be a minimal and properly outer action
with S.A; �; ˛/ almost unperforated. Then the reduced crossed product A Ì� � is
simple and is either stably finite or purely infinite.
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We round off the introduction with a brief description of the contents of this
article. We begin by reviewing the necessary concepts, definitions, and results
that will be assumed throughout. In Section 3 we give meaning to paradoxical
and completely non-paradoxical actions and construct infinite crossed products. In
Section 4 we introduce the noncommutative type semigroup S.A; �; ˛/which “sees”
any paradoxical phenomena and use it to characterize stably finite crossed products
(Theorem 4.9). Section 5 looks at the purely infinite case. When the underlying
algebra A has a well behaved K0 group and the action is minimal and properly
outer, we characterize purely infinite crossed products (Theorem 5.6) and obtain a
dichotomy between the stably finite and the purely infinite (Theorem 5.7).

Acknowledgements. The authorwould like to express a deep sense of gratitude to his
adviser David Kerr for his unending support. A word of thanks to Adam Sierakowski
and Christopher Phillips for many meaningful discussions and answered inquiries.
Special thanks are reserved for the Department of Mathematics at Texas A&M
University.

2. Preliminaries

Wemake the blanket assumption that all C�-algebrasA are separable and unital, with
unit denoted by 1A, and all groups � are discrete.

Most results in this article have K-theory as a main ingredient; the reader may
consult [5] for a suitable treatment thereof, as well as [2] for the necessary results
concerning the Cuntz semigroup. We briefly outline the storyline of K0.A/ and
W.A/ here.

If A is a C�-algebra,Mm;n.A/ will denote the linear space of all m � n matrices
with entries from A. The square n� nmatricesMn.A/ is a C�-algebra with positive
coneMn.A/

C. If a 2Mn.A/
C and b 2Mm.A/

C, write a˚ b for the matrix

diag.a; b/ D
�
a 0

0 b

�
2MnCm.A/

C:

Set M1.A/C D
F
n�1Mn.A/

C; the set-theoretic direct limit of the Mn.A/
C with

connecting maps Mn.A/ ! MnC1.A/ given by a 7! a ˚ 0. Write P .A/ for the
set of projections in A and set P1.A/ D

F
n�1 P .Mn.A//. Elements a and b

in M1.A/C are said to be Pedersen equivalent, written a � b, if there is a matrix
v 2 Mm;n.A/ with v�v D a and vv� D b. We say that a is Cuntz subequivalent to
(or Cuntz smaller than) b, written a - b, if there is a sequence .vk/k�1 �Mm;n.A/

with kv�
k
bvk�ak ! 0 as k !1. If a - b and b - a we say that a and b are Cuntz

equivalent and write a � b. It is routine to check that � and � are equivalence
relations onM1.A/C and that a � b implies a � b. Canonically set

V.A/ D P1.A/
ı
� and W.A/ DM1.A/

C
ı
� :



Finiteness and paradoxical decompositions in C�-dynamical systems 795

We write Œp� for the equivalence class of p 2 P1.A/ and hai for the class of
a 2M1.A/

C. W.A/ has the structure of a preordered abelian monoid with addition
given by hai C hbi D ha ˚ bi and preorder hai � hbi if a - b. The monoid
W.A/ embeds into Cu.A/ WD .A ˝ K/C= �, the Cuntz semigroup of A. For
this work, the monoid W.A/ will be suitable for our purposes and we will refer to
it as the Cuntz semigroup as in [2]. With addition and ordering identical to that
of W.A/, V.A/ is also a preordered abelian monoid. However, there is a cardinal
difference between the orderings on V.A/ andW.A/; the ordering onW.A/ extends
the algebraic ordering (x; y; z 2 W.A/ with x C y D z implies x � z) but only
in rare cases agrees with it. With V.A/, the ordering agrees with the algebraic one.
Indeed, one verifies that for projections p; q 2 P1.A/, p - q if and only if there is
a subprojection r � q with p � r if and only if p ˚ p0 � q for some p0 2 P1.A/.
Thus Œp� � Œq� implies that Œp� C Œp0� D Œq�. As a brief reminder, for a unital
algebra A, K0.A/ D G .V .A// is the Grothendieck enveloping group of V.A/ and
Œp�0 D 
.Œp�/ where 
 W V.A/! K0.A/ is the canonical Grothendieck map.

A projection p in A is infinite if p � q for some subprojection q Œ p. It
was shown in [17] that p infinite if and only if p ˚ b - p for some non-zero
b 2M1.A/

C:A unital C�-algebraA is said to be infinite if 1A is infinite. Otherwise,
A is called finite. If Mn.A/ is finite for every n 2 N then A is called stably
finite. Recall that a unital, stably finite C�-algebra A yields an ordered abelian
group K0.A/ with positive cone K0.A/C WD 
.V .A// and with a distinguished
order unit Œ1A�0. Occasionally we shall require our algebras to have cancellation,
which simply means that 
 is injective. It is routine to check that algebras with
stable rank one are stably finite and have cancellation. Moreover, when A is stably
finite with cancellation the map K0.A/C ! W.A/, Œp�0 7! hpi is well-defined
and injective. Recall that a semigroup K has the Riesz refinement property if,
whenever

Pn
jD1 xj D

Pm
iD1 yi , for members x1; : : : ; xn; y1; : : : ; ym 2 K, there

exist fzij gi;j � K satisfying
P
i zij D xj and

P
j zij D yi for each i and j .

S. Zhang showed that if A is a stably finite algebra with RR.A/ D 0 then K0.A/C
has the Riesz refinement property [35].

A transformation group is a pair .X; �/ where � is a group, and X is a
locally compact Hausdorff space endowed with a continuous action � Õ X . By
a C*-dynamical system we mean a triple .A; �; ˛/, where A is a C�-algebra, � is
a group, and ˛ W � ! Aut.A/ is a group homomorphism. In the case where A
is a commutative algebra, say A D C.X/ for some compact Hausdorff space X ,
C�-systems .C.X/; �; ˛/ are in one-to-one correspondence with transformation
groups .X; �/ via the formula ˛s.f /.x/ D f .s�1:x/ where s 2 � , f 2 C.X/,
x 2 X .

A C�-dynamical system induces a natural action at the K-theoretical level, and
the order theoretical dynamics will reflect information about the nature of the action
and will at times help describe the structure of the crossed product. If .G;GC; u/
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and .H;HC; v/ are ordered abelian groups each with their distinguished order units,
a morphism in this category is a group homomorphism ˇ W G ! H which is positive
and order unit preserving, i.e. ˇ.GC/ � HC, and ˇ.u/ D v respectively. We also
write

Aut.G;GC; u/ WD
˚
� 2 Aut.G/ W �.GC/ D GC; �.u/ D u

	
for the group of order automorphisms of .G;GC; u/. When the context is understood
we might abbreviate Aut.G;GC; u/ to Aut.G/. So for every action ˛ W � ! Aut.A/,
there is an induced action Ǫ W � ! Aut.K0.A//where Ǫ .s/ D Ǫs W K0.A/! K0.A/

is the induced automorphism given by Ǫs.Œp�0/ D Œ˛s.p/�0 for a projection p
in P1.A/. In the same manner a C�-system .A; �; ˛/ induces an action Ǫ W � !
Aut.W.A// via Ǫs.hai/ D h˛s.a/i, where s 2 � , and a 2 M1.A/

C. Here
Aut.W.A// will denote the set of monoid isomorphisms of W.A/ which respect
the ordering.

Given a C�-dynamical system .A; �; ˛/, wewriteAÌ�;˛� for the reduced crossed
product algebra (at times we will omit the ˛). We briefly recall the construction and
refer the reader to [9,33] and [21] for more details. First consider the algebraic
crossed product AÌalg;˛ � which is the complex linear space of all finitely supported
functions Cc.�; A/ D f

P
s2F asus W F � �; as 2 Ag, equipped with a twisted

multiplication and involution: for s; t 2 �; a; b 2 A

.aus/.but / D a˛s.b/ust ;

.aus/
�
D ˛s�1.a�/us�1 :

If A � B.H / is faithfully represented (the choice of representation is immaterial),
the �-algebraAÌalg;˛ � can then be faithfully represented as operators on H˝`2.�/

via aus.� ˝ ıt / D ˛�1st .a/� ˝ ıst for � 2 H and s; t 2 � . Completing with respect
to the operator norm on B.H ˝ `2.�// gives the reduced crossed product AÌ�;˛ � .
We will at times make use of the conditional expectation E W A Ì�;˛ � ! A, which
is a unital, contractive, completely positive map satisfying E.

P
s2� asus/ D ae ,

and E2 D E.

3. Paradoxical decompositions

In this section we study K-theoretic conditions, in the form of paradoxical
phenomena, that characterize finite and infinite crossed products.

We first construct infinite algebras arising from crossed products by generalizing
the notion of a local boundary action to the noncommutative setting. A continuous
action � Õ X of a discrete group on a locally compact space is called a local
boundary action if for every non-empty open set U � X there is an open set V � U
and t 2 � with t:V ¨ V . Laca and Spielberg showed in [19] that such actions yield
infinite projections in the reduced crossed productC0.X/Ì�� . Sierakowski remarked
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that the condition t:V ¨ V for some non-empty open set V and group element t 2 �
is equivalent to the existence of open sets U1; U2 � X and elements t1; t2 2 � such
that U1 [U2 D X , t1:U1 \ t2:U2 D ;, and t1:U1 [ t2:U2 ¤ X . He generalized this
by defining paradoxical actions. A transformation group .X; �/ is n-paradoxical if
there exist open subsets U1; : : : ; Un � X and elements t1; : : : ; tn 2 � such that

n[
jD1

Uj D X;

nG
jD1

tj :Uj ¨ X:

He then showed that the algebra C.X/ Ì� � is infinite provided that X is compact
and the action � Õ X is n-paradoxical for some n. We do the same here in the
noncommutative setting.

Let ˛ W � ! Aut.A/ be a C�-dynamical system where � is a discrete group.
We look at the induced actions Ǫ W � Õ K0.A/

C and Ǫ W � Õ W.A/ given by
t:x D Ǫ t .x/ for t 2 � and x 2 K0.A/C or W.A/.

For what follows we introduce a convention: for x; y 2 W.A/ we shall write
x < y to mean x C z � y for some non-zero z 2 W.A/.
Proposition 3.1. Let A be a unital C*-algebra and let ˛ W � ! Aut.A/ be an action
which is W -paradoxical in the sense that there exist x1; : : : ; xn 2 W.A/ and group
elements t1; : : : ; tn 2 � with

Pn
jD1 xj � h1Ai and

Pn
jD1 Ǫ tj .xj / < h1Ai. Then

A Ì� � is infinite.

Proof. Again let � W A ! A Ì� � denote the canonical embedding and for t 2 �
write ut for the canonical unitary in AÌ� � that implements the action ˛t W A! A,
so that �.˛t .a// D ut �.a/u�t � �.a/ for every a 2 A and t 2 � . If a 2Mn.A/

C then
by amplification we have �.n/.˛.n/t .a// D .ut ˝ 1A/�

.n/.a/.ut ˝ 1n/
� � �.n/.a/ for

every t 2 � . For economy we will omit denoting the amplification when the context
is understood.

For each j D 1; : : : ; n set xj D haj i for aj 2M1.A/C. Then we have

h1Ai �

nX
jD1

xj D

nX
jD1

haj i D ha1 ˚ � � � ˚ ani;

which implies 1A - ˚njD1aj in M1.A/
C. Applying � we get 1AÌ�� -

˚njD1�.aj / � ˚
n
jD1�.˛tj .aj // inM1.A Ì� �/C.

By our convention there is some non-zero b 2M1.A/C for which

h˛t1.a1/˚ � � � ˚ ˛tn.an/˚ bi D

nX
jD1

Ǫ tj .xj /C hbi � h1Ai:

Thus ˛t1.a1/˚ � � � ˚ ˛tn.an/˚ b - 1A and �.˛t1.a1//˚ � � � ˚ �.˛tn.an//˚ �.b/ -
1AÌ�� . Together we get

1AÌ�� ˚ �.b/ - �.˛t1.a1//˚ � � � ˚ �.˛tn.an//˚ �.b/ - 1AÌ�� :
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Since 1AÌ�� ˚ �.b/ - 1AÌ�� and �.b/ ¤ 0, Lemma 3.1 in [17] implies that A Ì� �
is infinite as claimed.

We make the brief remark that an action � Õ A is W -paradoxical in the above
sense with n D 2 if and only if there is a non-zero a inAC and t 2 � with Ǫ t .x/ < x,
where x D hai.
Corollary 3.2. LetA be a stably finite C*-algebra with cancellation and let ˛ W � !
Aut.A/ be aK0-paradoxical action in the sense that there exist x1; : : : ; xn 2 K0.A/C
and group elements t1; : : : ; tn 2 � with

nX
jD1

xj � Œ1A�0 and
nX
jD1

Ǫ tj .xj / < Œ1A�0:

Then A Ì� � is infinite.

Proof. Given that A is stably finite and has cancellation we know that there is a
well-defined, order-preserving, injective monoid homomorphism

K0.A/
C
! W.A/; Œp�0 7! hpi:

Also, if x < y inK0.A/C, then xC z D y for a non-zero z. The proof follows from
these facts and Proposition 3.1.

Perhaps what has been called paradoxical is misleading because, in a sense,
paradoxicality implies the idea of duplication of sets. Gleaning from the ideas
explored in [15], we define a notion of paradoxical decomposition with covering
multiplicity in the noncommutative setting.
Definition 3.3. Let A be a C�-algebra, � a discrete group and ˛ W � ! Aut.A/ an
action with its induced action Ǫ . Let 0 ¤ x 2 K0.A/

C and k > l > 0 be positive
integers. We say x is .�; k; l/-paradoxical if there are x1; : : : ; xn in K0.A/C and
t1; : : : ; tn in � such that

nX
jD1

xj � kx and
nX
jD1

Ǫ tj .xj / � lx:

If an element x 2 K0.A/C fails to be .�; k; l/-paradoxical for all integers k >
l > 0 we call x completely non-paradoxical. The action ˛ will be called completely
non-paradoxical if every member of K0.A/C is completely non-paradoxical.

The notion of a quasidiagonal action was first introduced in [15] and further
studied in [23] from a K-theoretic viewpoint. The author of [23] observed that
MF (or equivalently QD) actions of discrete groups � on AF algebras admit, in a
local sense, �-invariant traces on K0.A/, so it should come to no surprise that these
actions do not allow paradoxical decompositions at the K-theoretic level. The next
proposition illustrates this principle and provides us with our first class of examples
of completely non-paradoxical actions.
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Proposition 3.4. If ˛ W � ! Aut.A/ is an MF action of a discrete group � on a
unital AF algebra, then ˛ is completely non-paradoxical.

Proof. Suppose 0 ¤ x 2 K0.A/C is .�; k; l/-paradoxical for some positive integers
k > l > 0, so that there are x1; : : : ; xn in K0.A/C and t1; : : : ; tn in � such that

y WD

nX
jD1

xj � kx and z WD

nX
jD1

Ǫ tj .xj / � lx:

Consider the finite sets F D ft1; : : : ; tng � � and S D fy � kx; lx � z;

x1; : : : ; xn; xg � K0.A/
C. Since ˛ is quasidiagonal, Proposition 4.8 of [23]

guarantees existence of a subgroup H � K0.A/ which contains all the F -iterates
of S , and a group homomorphism ˇ W H ! Z with ˇ. Ǫ t .g// D ˇ.g/ for each t 2 F
and g 2 S . Also, ˇ.g/ > 0 for 0 < g 2 S . Clearly y, z, kx, lx all belong to the
subgroupH , and since ˇ.y � kx/ � 0, we have kˇ.x/ D ˇ.kx/ � ˇ.y/. Similarly,
ˇ.z/ � lˇ.x/. Now using the �-invariance of ˇ,

kˇ.x/ � ˇ.y/ D ˇ

� nX
jD1

xj

�
D

nX
jD1

ˇ.xj / D

nX
jD1

ˇ. Ǫ tj .xj // D ˇ

� nX
jD1

Ǫ tj .xj /

�
D ˇ.z/ � lˇ.x/:

This is absurd since ˇ.x/ > 0 and l < k. Thus no such non-zero x exists.

It was shown by Kerr and Nowak [15] that quasidiagonal actions by groups whose
reduced group algebras are MF give rise to MF crossed products, which are always
stably finite. Indeed, it is the finiteness of the crossed product that is an obstruction
to a positive element being paradoxical.
Proposition 3.5. Consider aC*-dynamical system .A; �; ˛/with stably finite reduced
crossed product A Ì� � . Then the induced Ǫ W � Õ K0.A/

C is completely non-
paradoxical.

Proof. Suppose on the contrary that 0 ¤ Œp�0 WD x 2 K0.A/
C is .�; k; l/

paradoxical for some integers k > l > 0 where p 2 Pm.A/. We then have elements
x1; : : : ; xn in K0.A/C and t1; : : : ; tn 2 � with

nX
jD1

xj � kx and
nX
jD1

Ǫ tj .xj / � lx:

If � W A ,! A Ì� � , � W a 7! aue , denotes the canonical embedding, then the
induced map O� W K0.A/C ! K0.A Ì� �/C is additive and order preserving. Note
that for a projection q in P1.A/ and s 2 � we have

O�.Œq�K0.A// D Œ�.q/�K0.AÌ��/ D Œusqu
�
s �K0.AÌ��/ D Œ˛s.q/�K0.AÌ��/

D O�Œ˛s.q/�K0.A/ D O� Ǫs.Œq�K0.A//;
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so that O� D O� Ǫs agree as maps K0.A/C ! K0.A Ì� �/C. We now get

kO�.x/ D O�.kx/ � O�

� nX
jD1

xj

�
D

nX
jD1

O�.xj / D

nX
jD1

O� Ǫ tj .xj / D O�

� nX
jD1

Ǫ tj .xj /

�
� O�.lx/ D lO�.x/:

The fact that A Ì� � is stably finite implies that O�.x/ D 0, which means that
�.p/ D 0, so p D 0, a contradiction.

4. A noncommutative type semigroup

We wish to establish a converse to Proposition 3.5. For this we shall need more
machinery. Analogous to the type semigroup of a general group action (see [32]),
we associate to each suitable C�-system .A; �; ˛/ a preordered abelian monoid
S.A; �; ˛/ which correctly reflects the above notion of paradoxicality inK0.A/, and
then resort to a Hahn–Banach-type extension result (Theorem 4.6 below) in the spirit
of Tarski’s theorem tying the existence of states on S.A; �; ˛/ to non-paradoxicality.
We embark on the details.

Let us first recall the notion of equidecomposability for group actions and the
construction of the type semigroup. Suppose a group G acts on an arbitrary set Y ,
and let S be a G-invariant subalgebra of the power set P .Y /. Subsets E;F 2 S are
said to be G-equidecomposable relative to S , and we write E �G;S F , if there are
E1; : : : ; En 2 S , and g1; : : : ; gn 2 G such that:

E D

nG
jD1

Ej and F D

nG
jD1

gj :Ej :

The notation t is used to emphasize the fact that the partitioning sets are disjoint.
Reflexivity and symmetry of the relation �G;S are straightforward, and transitivity
follows from taking refined partitions. We will abbreviate �G;S by �G when the
context is clear. Note that equidecomposability behaves well with respect to disjoint
unions. Indeed, if E;F;H;K 2 S with E \H D ;, F \ K D ;, E �G F , and
H �G K, then it is routine to verify that .E tH/ �G .F tK/. This observation
is key when defining addition in the type semigroup below.

Now suppose a group � acts on a set X , and let C � P .X/ be a �-invariant
subalgebra of subsets. Orthogonality is built in as we amplify the action as follows.
Set X� D X � N0, and �� D � � Perm.N0/ where N0 D N [ f0g. There is a
natural action �� Õ X� given by

.t; �/:.x; n/ D .t:x; �.n//:



Finiteness and paradoxical decompositions in C�-dynamical systems 801

For a setE�X�, and j 2 N0, the j th level ofE is the setEj Dfx 2 X W .x; j / 2 Eg.
We say that E is bounded if only finitely many levels Ej are non-empty. The
collection

S.X;C/ D
˚
E � X� W E is bounded and Ej 2 C , 8j 2 N0

	
is clearly a ��-invariant subalgebra of subsets of X�. Consider this collection
S.X;C/ equipped with the equivalence relation ��� of ��-equidecomposability
relative to S.X;C/. Taking a quotient we obtain

S.X; �;C/ WD S.X;C/
ı
��� ;

and we write ŒE� for the equivalence class of E 2 S.X;C/. With enough room
to enforce class representatives to be disjoint, it is readily verified that addition of
classes given by� n[

jD1

Ej � fj g

�
C

� m[
iD1

Fi � fig

�
D

� n[
jD1

Ej � fj g [

m[
iD1

Fi � fnC ig

�
is well defined. Endowed with the algebraic ordering, S.X; �;C/ has the structure of
a preordered abelian monoid with neutral element Œ;�. If we take C D P .X/, then
S.X; �;C/ is customarily referred to as the type semigroup of the action [32].

We aim to construct a similar monoid for noncommutative C�-systems .A; �; ˛/,
at least in the presence of sufficiently many projections. The philosophy is that
elements of the positive cone K0.A/C would represent our “subsets” as it were,
and the idea of refined partitions is reflected by suitable refinement properties
displayed in the additive structure of K0.A/C. If we are to translate the notion
of equidecomposability to the K0-setting, we shall require that A be an algebra for
which the monoid K0.A/C has the the Riesz refinement property. This discussion
thus motivates the following definition.

Definition 4.1. Let A be a C �-algebra, � a discrete group, and let ˛ W � ! Aut.A/
an action. We define a relation on K0.A/C as follows:

x �˛ y .x; y 2 K0.A/
C/

”

9fuj g
k
jD1 � K0.A/

C; ftj g
k
jD1 � �; such that

kX
jD1

uj D x and
kX
jD1

Ǫ tj .uj / D y:

Lemma 4.2. If A is a stably finite C*-algebra such that K0.A/C has the Riesz
refinement property, then �˛ as defined above is an equivalence relation.
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Proof. Let x; y 2 K0.A/C. Clearly x �˛ x, as we may simply take u1 D x and
t1 D e. If x �˛ y, via the decomposition x D

Pk
jD1 uj and y D

Pk
jD1 Ǫ tj .uj /,

set vj D Ǫ tj .uj / and sj D t�1j for j D 1; : : : k. It clearly follows that

kX
jD1

vj D y and
kX
jD1

Ǫsj .vj / D

kX
jD1

Ǫ t�1
j
. Ǫ tj .uj // D

kX
jD1

uj D x

whence y �˛ x. Transitivity is a little harder, and here is where the fact thatK0.A/C
has the Riesz refinement property will surface. To that end, suppose x �˛ y �˛ z
via

x D

kX
jD1

uj ; y D

kX
jD1

Ǫ tj .uj / and y D

lX
jD1

vj ; z D

lX
jD1

Ǫsj .vj /:

Since
Pk
jD1 Ǫ tj .uj / D

Pl
jD1 vj and K0.A/C has the Riesz refinement property,

there are elements fwij W 1 � j � l; 1 � i � kg � K0.A/C such that

lX
jD1

wij D Ǫ ti .ui / and
kX
iD1

wij D vj :

We then compute

X
i;j

Ǫsj ti . Ǫ t�1
i
.wij // D

X
i;j

Ǫsj .wij / D
X
j

Ǫsj

�X
i

wij

�
D

X
j

Ǫsj .vj / D z;

whileX
i;j

Ǫ t�1
i
.wij / D

X
i

Ǫ t�1
i

�X
j

wij

�
D

X
i

Ǫ t�1
i
. Ǫ ti .ui // D

X
i

ui D x:

which gives the desired decomposition for x �˛ z.

We can now make the following definition.

Definition 4.3. Let A be a C�-algebra such that K0.A/C has the Riesz refinement
property. Let � ! Aut.A/ be an action. We set S.A; �; ˛/ WD K0.A/

C= �˛ , and
write Œx�˛ for the equivalence class with representative x 2 K0.A/C.
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We can define addition of classes simply by Œx�˛ C Œy�˛ WD Œx C y�˛ for x; y
in K0.A/C. It is routine to check that this operation is well defined; indeed if
x0 �˛ x and y0 �˛ y via x D

Pk
jD1 uj , y D

Pm
jD1 vj and x0 D

Pk
jD1 Ǫ tj .uj /,

y0 D
Pm
jD1 Ǫsj .vj /, then

Œx0�˛ C Œy
0�˛ D Œx

0
C y0�˛ D

� kX
jD1

Ǫ tj .uj /C

mX
jD1

Ǫsj .vj /

�
˛

D

� kX
jD1

uj C

mX
jD1

vj

�
˛

D Œx C y�˛ D Œx�˛ C Œy�˛:

We make a few elementary observations concerning S.A; �; ˛/ when A is stably
finite. Firstly, S.A; �; ˛/ is not just a semigroup but an abelian monoid as Œ0�˛ is
clearly the neutral additive element. Impose the algebraic ordering on S.A; �; ˛/,
that is, set Œx�˛ � Œy�˛ if there is a z 2 K0.A/C with Œx�˛ C Œz�˛ D Œy�˛ . This
gives S.A; �; ˛/ the structure of an abelian preordered monoid. Notice at once
that if x; y 2 K0.A/C with x � y (in the ordering of K0.A/) then Œx�˛ � Œy�˛
inS.A; �; ˛/. To see this, x � y impliesy�x WD z 2 K0.A/C, so Œy�˛ D ŒxCz�˛ D
Œx�˛C Œz�˛ which gives Œx�˛ � Œy�˛ . Next, we observe that if Œx�˛ D Œ0�˛ , for some x
in K0.A/C, then in fact x D 0. Indeed, say x D

P
i ui , and

P
i Ǫ ti .ui / D 0 for

some elements ti 2 � and ui 2 K0.A/C, then for each i , Ǫ ti .ui / D 0 and so ui D 0
which gives x D 0. Here we used the important fact that for stably finite algebras A,
K0.A/

C \ .�K0.A/
C/ D .0/. All together, there is an order preserving, faithful,

monoid homomorphism

� W K0.A/
C
! S.A; �; ˛/ given by �.g/ D Œg�˛:

This next result shows thatwe have in fact constructed a noncommutative analogue
of the type semigroup studied in [32].
Proposition 4.4. Let X be the Cantor set, � a discrete group, and � Õ X a
continuous action with corresponding action ˛ W � ! Aut.C.X//. Write C for the
�-invariant algebra of all clopen subsets of X . Then the type semigroup S.X; �;C/
is isomorphic to S.C.X/; �; ˛/ constructed above.

Proof. Let f 2 K0.C.X//C D C.X IZ/C, then we can write f D
Pn
jD1 1Ej

where the Ej are clopen subsets of X . Note that such a representation is not unique.

Claim. Suppose f D
Pn
jD1 1Ej D

Pm
jD1 1Fj . Then

nG
jD1

Ej � fj g DW E ��� F WD

mG
jD1

Fj � fj g;

so that ŒE� D ŒF � in the type semigroup S.X; �;C/.
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It is clear that [njD1Ej D [
m
jD1Fj . By choosing a common clopen refinement,

we may assume that there are disjoint clopen setsH1; : : : ;Hr , where r � n;m, such
that each Ej and each Fj is a union of distinct Hi . For each i D 1; : : : ; r set the
multiplicities of theHi as

ni WD
ˇ̌
fj W Hi � Ej g

ˇ̌
D
ˇ̌
fj W Hi � Fj g

ˇ̌
:

In this case we have f D
Pr
iD1 ni1Hi . Now set H D

Fr
iD1

Fni
jD1Hi � fj g, and

for each pair .i; j / set

�i;j D

(
Hi ; ifHi � Ej ;
;; ifHi \Ej D ;:

With a j fixed we run through all theHi and get
Fr
iD1�i;j �fj g D Ej �fj g. Then

E D

nG
jD1

Ej � fj g D

nG
jD1

rG
iD1

�i;j � fj g

D

rG
iD1

nG
jD1

�i;j � fj g ���

rG
iD1

niG
jD1

Hi � fj g D H:

By a similar argument F ��� H , and transitivity gives E ��� F and the claim is
thus proved.

We now define a map  W K0.C.X//C ! S.X; �;C/ by

 .f / D

� nG
jD1

Ej � fj g

�
where f has representation f D

Pn
jD1 1Ej with Ej � X clopen. Thanks to the

claim, this map is well defined as any representation of f will do. Also, it is routine to
check that is additive and onto. Moreover, is invariant under the equivalence�˛ .
To see this, suppose f; g 2 K0.C.X//C and f �˛ g. By definition and by writing
members of K0.C.X//C as sums of indicator functions on clopen sets we can find
clopen sets E1; : : : ; En 2 C and group elements t1; : : : ; tn 2 � with

f D

nX
jD1

1Ej and g D

nX
jD1

1tj :Ej :

Since
Fn
jD1Ej � fj g ���

Fn
jD1 tj :Ej � fj g we get that  .f / D  .g/. The

map  thus descends to a surjective monoid homomorphism  W S.C.X/; �; ˛/!

S.X; �;C/with .Œf �˛/ D  .f /. To establish injectivity we construct a left inverse
' W S.X; �;C/! S.C.X/; �; ˛/ as follows. Set

'

�� nG
jD1

Ej � fj g

��
D

� nX
jD1

1Ej

�
˛

:
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To show that ' is well defined, supposeE D
Fn
jD1Ej �fj g ��� F D

Fm
jD1 Fj �

fj g, then there exist l 2 N, Ck 2 C , tk 2 � and natural numbers nk; mk for
k D 1; : : : ; l , such that

E D

lG
kD1

Ck � fnkg; F D

lG
kD1

tk :Ck � fmkg:

For each fixed j , we see that
F
fkW nkDj g

Ck D Ej , so
P
fkW nkDj g

1Ck D 1Ej .
Therefore

nX
jD1

1Ej D
nX
jD1

X
fkW nkDj g

1Ck D
lX

kD1

1Ck �˛

lX
kD1

1tk :Ck D
nX
jD1

1Fj ;

where the last equality follows from same reasoning. It follows that '.ŒE�/ D '.ŒF �/.
Also ' is clearly additive and onto. For an element Œf �˛ 2 S.C.X/; �; ˛/, where f
has representation f D

Pn
jD1 1Ej , we see that

' ı  .Œf �˛/ D ' ı  .f / D '

�� nG
jD1

Ej � fj g

��
D

� nX
jD1

1Ej

�
˛

D Œf �˛:

We conclude that  is a monoid isomorphism. Since both monoids are preordered
with the algebraic ordering is actually an isomorphism of preordered monoids.

Next we look at how .�; k; l/-paradoxically is reflected in our monoid S.A; �; ˛/.
Lemma 4.5. Let A be a stably finite C*-algebra such that K0.A/C has Riesz
refinement, and let ˛ W � ! Aut.A/ be an action. Then an element 0 ¤ x 2 K0.A/C
is .�; k; l/-paradoxical if and only if kŒx� � l Œx� in S.A; �; ˛/.

Proof. Suppose 0 ¤ x 2 K0.A/
C is .�; k; l/-paradoxical. Then kx �

Pn
jD1 xj

and
Pn
jD1 Ǫ tj .xj / � lx for some xj in K0.A/C and tj in � . Then from our above

remarks:

kŒx�˛ D Œkx�˛ �

� nX
jD1

xj

�
˛

D

� nX
jD1

Ǫ tj .xj /

�
˛

� Œlx�˛ D l Œx�˛:

Now assume kŒx�˛ � l Œx�˛ for integers k > l > 0. As the ordering is algebraic,
there is a z in K0.A/C with kŒx�˛ C Œz�˛ D l Œx�˛ . We then have

Œkx C z�˛ D Œkx�˛ C Œz�˛ D kŒx�˛ C Œz�˛ D l Œx�˛ D Œlx�˛:

By definition there are elements x1; : : : ; xn in K0.A/C and t1; : : : ; tn 2 � with

kx � kx C z D

lX
jD1

xj and
lX

jD1

Ǫ tj .xj / D lx;

which witnesses the .�; k; l/-paradoxicality of x. The proof is complete.
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Before going any further let us recall some terminology. Let .W;�/ be a
preordered abelian monoid. For positive integers k > l > 0, we say that an element
� 2 W is .k; l/-paradoxical provided that k� � l� . If � fails to be paradoxical for
all pairs of integers k > l > 0, call � completely non-paradoxical. Note that � is
completely non-paradoxical if and only if .nC 1/� — n� for all n 2 N. The above
lemma basically states that in its setting, an element x 2 K0.A/C is completely
non-paradoxical with respect to the action Ǫ exactly when Œx�˛ is completely non-
paradoxical in the preordered abelian monoid S.A; �; ˛/. An element � in W is
said to properly infinite if 2� � � , that is, if it is .2; 1/-paradoxical, or equivalently
it is .k; 1/-paradoxical for any k � 2. If every member of W is properly infinite
then W is said to be purely infinite. A state on W is a map � W W ! Œ0;1� which
is additive, respects the preordering �, and satisfies �.0/ D 0. If a state ˇ assumes
a value other than 0 or1, ˇ it said to be non-trivial. The monoid W is said to be
almost unperforated if, whenever �; � 2 W , and n;m 2 N are such that n� � m�
and n > m, then � � �.

The following result is a main ingredient in the proof of Tarski’s theorem. It is
a Hahn–Banach type extension result and is essential in establishing a converse to
Proposition 3.4. A proof can be found in [32].
Theorem 4.6. Let .W;C/ be an abelian monoid equipped with the algebraic
ordering, and let � be an element of W . Then the following are equivalent:
(1) .nC 1/� — n� for all n 2 N, that is � is completely non-paradoxical.
(2) There is a non-trivial state � W W ! Œ0;1� with �.�/ D 1.

We mean to apply Theorem 4.6 to our preordered monoid S.A; �; ˛/. Note that
such a �, which arises in the landscape of complete non-paradoxicality will not in
general be finite on all of S.A; �; ˛/. One needs the right condition on the action ˛,
or more precisely, Ǫ , to guarantee finiteness everywhere. Suppose we considered
� D Œu�˛ as in Theorem 4.6, where u D Œ1�0 is the order unit in K0.A/. If we
compose the state � with the the above � W K0.A/C ! S.A; �; ˛/, this would give
us, in a sense, an invariant ‘state’ at the K-theoretic level, but perhaps not finitely
valued everywhere, but with a finite value at Œ1�0. To ensure finiteness at every
x 2 K0.A/

C we would require that finitely many �-iterates of x lie above Œ1�0. This
is exactly the notion ofK-theoretic minimality explored in [24]. The following result
is contained therein and is sufficient for our purposes. For the sake of completeness
we include a proof. Recall that a C�-dynamical system .A; �; ˛/ is minimal if A
admits no non-trivial �-invariant ideals.
Proposition 4.7. Let .A; �; ˛/ be a C*-dynamical system with A stably finite. If ˛
is minimal then the induced action Ǫ W � Õ K0.A/ is K0-minimal, that is, for every
non-zero g 2 K0.A/C there are group elements t1; : : : ; tn in � such that

nX
jD1

Ǫ tj .g/ � Œ1�0:
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Proof. Let g D Œp�0 be non-zero in K0.A/
C with p 2 Pn.A/. Since the

algebraic ideal generated by f˛.n/s .p/ W s 2 �g is all of Mn.A/, there are elements
t1; : : : ; tm 2 � , and x1; : : : ; xm, y1; : : : ; ym inMn.A/ such that

mX
jD1

xj˛
.n/
tj
.p/y�j D

1

2
1Mn.A/:

Now set zj WD xj C yj and observe that

mX
jD1

zj˛
.n/
tj
.p/z�j D

mX
jD1

xj˛
.n/
tj
.p/y�j C

mX
jD1

yj˛
.n/
tj
.p/x�j

C

mX
jD1

xj˛
.n/
tj
.p/x�j C

mX
jD1

yj˛
.n/
tj
.p/y�j

�

mX
jD1

xj˛
.n/
tj
.p/y�j C

� mX
jD1

xj˛
.n/
tj
.p/y�j

��
D 1Mn.A/ � 1A ˚ 0m�1;

the first inequality following from the fact that the last two sums on the first line are
positive. A simple Cuntz comparison now gives

1A � 1A ˚ 0m�1

-
mX
jD1

zj˛
.n/
tj
.p/z�j D .z1; : : : ; zm/.˛

.n/
t1
.p/˚ � � � ˚ ˛

.n/
tm
.p//.z1; : : : ; zm/

�

- ˛
.n/
t1
.p/˚ � � � ˚ ˛

.n/
tm
.p/:

Therefore, in the ordering on K0.A/ we get

Œ1�0 � Œ˛
.n/
t1
.p/˚ � � � ˚ ˛

.n/
tm
.p/�0 D

mX
jD1

Œ˛
.n/
tj
.p/�0 D

mX
jD1

Ǫ tj .Œp�0/ D

mX
jD1

Ǫ tj .g/;

which gives the K0-minimality of the action.

Proposition 4.8. Let A be a stably finite unital C*-algebra for which K0.A/C has
Riesz refinement (sr.A/ D 1 and RR.A/ D 0 for example). Let ˛ W � ! Aut.A/ be
an action on A. Consider the following properties.

(1) For every 0 ¤ g 2 K0.A/
C, there is a faithful �-invariant positive group

homomorphism ˇ W K0.A/ ! R with ˇ.g/ D 1, .�-invariant in the sense that
ˇ ı Ǫ D ˇ on K0.A//.



808 T. Rainone

(2) There is a faithful �-invariant state ˇ on .K0.A/;K0.A/C; Œ1�0/.

(3) ˛ is completely non-paradoxical.

Then we have .1/) .2/) .3/. If the action ˛ is minimal, then .3/) .1/ whence
all the conditions are equivalent.

Proof. .1/) .2/: Simply take g D Œ1�0.
.2/) .3/: Assume that x 2 K0.A/C is .�; k; l/-paradoxical for some integers

k > l > 0 with paradoxical decomposition
Pn
j xj � kx and

Pn
j Ǫ tj .xj / � lx for

certain xj 2 K0.A/C and tj 2 � . Apply the Ǫ -invariant state ˇ and get

kˇ.x/ D ˇ.kx/ � ˇ

� nX
j

xj

�
D

nX
j

ˇ.xj / D

nX
j

ˇ. Ǫ tj .xj // D ˇ

� nX
j

Ǫ tj .xj /

�
� ˇ.lx/ D lˇ.x/:

Now since ˇ is faithful, we may divide by ˇ.x/ > 0 and get k � l which is
absurd.

Assuming the action ˛ is minimal we prove .3/ ) .1/. Fix a non-zero
g 2 K0.A/

C. Since the action is completely non-paradoxical, it follows from
Lemma 4.5 that for every positive integer n, .n C 1/Œg�˛ — nŒg�˛ . Theorem 4.6
then states that S.A; �; ˛/ admits a non-trivial state � W S.A; �; ˛/ ! Œ0;1� with
�.Œg�˛/ D 1.

Claim. � is finite.

To see this, employK0-minimality of the action (Proposition 4.7) to obtain group
elements t1; : : : ; tn such that

Pn
jD1 Ǫ tj .g/ � Œ1�0. Now for an arbitrary Œx�˛ in

S.A; �; ˛/ with x belonging to K0.A/C, there is a positive integer m with x �
mŒ1�0 � m

Pn
jD1 Ǫ tj .g/. Therefore

Œx�˛ �

�
m

nX
jD1

Ǫ tj .g/

�
˛

D m

� nX
jD1

Ǫ tj .g/

�
˛

D mŒng�˛ D mnŒg�˛:

Applying � yields �.Œx�˛/ � �.mnŒg�˛/ D mn�.Œg�˛/ D mn. The claim is therefore
proved.

We now compose � with our above � W K0.A/C ! S.A; �; ˛/ to yield ˇ0 W
K0.A/

C ! .Œ0;1/;C/, a finite order preserving monoid homomorphism given by
ˇ0.x/ D �.Œx�˛/. Note how ˇ0 is invariant under the action Ǫ W � Õ K0.A/

C.
Indeed, for t in � , and x in K0.A/C,

ˇ0. Ǫ t .x// D �.Œ Ǫ t .x/�˛/ D �.Œx�˛/ D ˇ
0.x/:
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By the universality of the Grothendieck enveloping group construction, there is a
unique extension of ˇ0 to a group homomorphism on all of K0.A/, which we will
denote as ˇ, given simply by ˇ.x � y/ D ˇ0.x/ � ˇ0.y/ for x; y in K0.A/C.
Clearly ˇ is still �-invariant. The final product is a bona fide �-invariant positive
group homomorphism ˇ W K0.A/ ! R, with ˇ.g/ D 1. We now show that ˇ is
faithful, which will complete this direction. Assume 0 ¤ x 2 K0.A/C. Minimality
ensures the existence of group elements t1; : : : tn with

Pn
jD1 Ǫ tj .x/ � Œ1�0. Now

we find a positive integer m for which mŒ1�0 � g, so that m
�Pn

jD1 Ǫ tj .x/
�
� g.

Applying ˇ gives

1 D ˇ.g/ � ˇ

�
m

� nX
jD1

Ǫ tj .x/

��
D m

� nX
jD1

ˇ. Ǫ tj .x//

�
D m

� nX
jD1

ˇ.x/

�
D mnˇ.x/

thus ˇ.x/ ¤ 0 and ˇ is indeed faithful.

We now are ready to establish the long desired converse.
Theorem 4.9. LetA be a stably finite unital C*-algebra for whichK0.A/C has Riesz
refinement (sr.A/ D 1 and RR.A/ D 0 for example). Let ˛ W � ! Aut.A/ be a
minimal action on A. Consider the following properties.
(1) There is an �-invariant faithful tracial state � W A! C.
(2) A Ì� � admits a faithful tracial state.
(3) A Ì� � is stably finite.
(4) ˛ is completely non-paradoxical.
(5) There is a faithful �-invariant state ˇ on .K0.A/;K0.A/C; Œ1�0/.
Then we have the following implications:

.1/, .2/) .3/) .4/) .5/:

If A is exact and projections are total in A (e.g. RR.A/ D 0) then .5/ , .1/.
Furthermore, if A is an AF-algebra and � is a free group, then .1/ through .5/ are
all equivalent to A Ì� � being MF in the sense of Blackadar and Kirchberg [7].

Proof. It is well known that .1/, .2/) .3/. Also, .3/) .4/ is Proposition 3.5
and .4/) .5/ is Proposition 4.8.

.5/ ) .1/: Since A exact, such a ˇ arises from a tracial state � W A ! C,
via �.p/ D ˇ.Œp�/ for any projection p 2 A ([27]). We need only to show the
�-invariance of � . For any s 2 � and projection p in A,

�.˛s.p// D ˇ.Œ˛s.p/�/ D ˇ ı Ǫs.Œp�/ D ˇ.Œp�/ D �.p/:
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Using linearity, continuity, and the fact that the projections are total in A, it follows
that �.˛s.a// D �.a/ for every a 2 A and s 2 � which yields the invariance.

Nowwe let � D Fr be the free group on r generators, and letA be an AF-algebra.
In [23] the author shows that A Ì� Fr is MF if and only if it is stably finite.

Recall that a continuous affine action of an amenable group � on a compact
convex subset K of a locally convex space admits a fixed point.

Corollary 4.10. Let A be a simple, unital, AF algebra and � a discrete amenable
group. Then any action ˛ W � ! Aut.A/ is completely non-paradoxical.

Proof. Let T .A/ denote the set of all tracial states on A. The group � acts on T .A/
as t:�.a/ D �.˛t�1.a// for t 2 � and a 2 A. Since � is amenable, T .A/ has a fixed
point. Now apply Theorem 4.9.

5. Purely infinite crossed products

In this section we want to characterize purely infinite crossed products by the
“properly infinite” nature of the corresponding type semigroup constructed above.
This characterization is much in line with the work of Rørdam and Sierakowski
in [28], except that we will generalize their ideas by addressing the noncommutative
setting. As a brief reminder, a projection p 2 A is properly infinite if there are two
subprojections q; r � p with qr D 0 and q � p � r . A unital C�-algebra A is
properly infinite if 1A is properly infinite. A simple algebraA is called purely infinite
if every hereditary C�-subalgebra of A contains a properly infinite projection. In the
simple case, S. Zhang showed that A is purely infinite if and only in RR.A/ D 0

and every projection in A is properly infinite [34]. It was a longstanding open
question whether there existed a unital, separable, nuclear and simple C�-algebra
which was neither stably finite or purely infinite. M. Rørdam settled the issue in [26]
by exhibiting a unital, simple, nuclear, and separable C�-algebra D containing a
finite projection p and an infinite projection q. It follows that A D qDq is unital,
separable, nuclear, simple, and properly infinite, but not purely infinite. It is natural
to ask if there is a smaller class of algebras for which a stably finite/purely infinite
dichotomy exists. Theorem 5.7 below is a result in this direction.

We first mention a few examples of purely infinite algebras arising as crossed
products.

A continuous action � Õ X of a discrete group on a compact Hausdorff space is
called a strong boundary action if X has at least three points and for every pair U; V
of non-empty open subsets of X there exists t 2 � with t:U c � V . Laca and
Spielberg showed in [19] that if � Õ X is a strong boundary action and the induced
action � Õ C.X/ is properly outer then C.X/ Ì� � is purely infinite and simple.
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Jolissaint and Robertson [13] made a generalization valid in the noncommutative
setting. They called an action ˛ W � ! Aut.A/ n-filling if, for all a1; : : : ; an 2 AC,
with kaj k D 1, 1 � j � n, and for all " > 0, there exist t1; : : : ; tn 2 � such thatPn
jD1 ˛tj .aj / � .1 � "/1A. They showed that A Ì� � is purely infinite and simple

provided that the action is properly outer and n-filling and every corner pAp of A is
infinite dimensional. Using the tools from K-theoretic dynamics that we develop in
this section, we will provide a simpler proof of their result in the real rank zero case.

First we give a necessary condition for pure infiniteness in the case where the
underlying algebra is finite.

Proposition 5.1. Let ˛ W � ! Aut.A/ be an action of a discrete group on a finite
C*-algebra A with induced action Ǫ on W.A/. Suppose A Ì� � is purely infinite.
Then for every non-zero x 2 W.A/ there is an s ¤ e in � and a non-zero y 2 W.A/
with y � x and Ǫs.y/ � x.

Proof. Given x 2 W.A/, by compressing we can find a non-zero a 2 AC with
hai � x. Since the crossed product is purely infinite, every non-zero positive
element is properly infinite. This means that a ˚ a - a relative to A Ì� � . There
is, therefore, a sequence .zn/n � 1 �M1;2.A Ì� �/ with kz�nazn � a˚ ak < 1=n.
By approximating each matrix entry we can further assume that the zn belong to
M1;2.Cc.�; A//. Writing each zn D .vn; wn/ we get



�v�navn � a v�nawn

w�navn w�nawn � a

�



 D 



�v�navn v�nawn
w�navn w�nawn

�
�

�
a 0

0 a

�




D





�v�nw�n
�
a
�
vn wn

�
�

�
a 0

0 a

�



 < 1=n:
By compressing by projections or conjugating by unitaries it follows that

v�navn �! a; v�nawn �! 0; w�navn �! 0; w�nawn �! a;

If both sequences .vn/n and .wn/n admit subsequences that belong toA, the element a
would be properly infinite in A which cannot be the case since A is finite. So without
loss of generality we may assume that for every n, vn is not in A. Thus if we write

vn D
X
s2Fn

an;sus; where Fn � � is a finite set and an;s 2 A n f0g;

we can assume that feg ¤ Fn for each n. Now we apply the conditional expectation
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E W A Ì� � ! A and get

E.v�navn/ D E

� X
s;t2Fn

u�n;sa
�
n;saan;tut

�
D

X
s;t2Fn

E.u�s a
�
n;saan;tusu

�
sut /

D

X
s;t2Fn

E.˛�1s .a�n;saan;t /us�1t / D
X
t2Fn

˛�1t .a�n;taan;t /:

Now since E is contractive and idempotent we have



a �X
t2Fn

˛�1t .a�n;taan;t /





 D kE.a � v�navn/k � ka � v�navnk < 1=n:
Since a ¤ 0we know that there is a k with

P
t2Fk

˛�1t .a�
k;t
aak;t / ¤ 0. For economy

we will suppress the k and set F D Fk , and at D ak;t for t 2 F . By Lemma 2.5
in [17] we know that there is a b 2 A with

.a � 1=k/C D b
�

�X
t2F

˛�1t .a�t aat /

�
b D

X
t2F

.˛�1t .at /b/
�˛�1t .a/˛�1t .at /b:

Pick an s 2 F with s ¤ e so that

a � .a � 1=k/C � .˛
�1
s .as/b/

�˛�1s .a/˛�1s .as/b ¤ 0;

and set c D .˛�1s .as/b/
�˛�1s .a/˛�1s .as/b. Then 0 ¤ c - a and

˛s.c/ D .as˛s.x//
�aas˛s.x/ - a:

The proof is complete with y D hci.

In the commutative case the following is immediate.

Corollary 5.2. Let .X; �/ be a transformation group with � discrete. If C0.X/Ì��
is purely infinite then for every non-empty open U � X there is an s ¤ e in � with
s:U \ U ¤ ;.

Proof. Let ; ¤ U � X be open and let f W X ! Œ0; 1� be any non-zero continuous
function whose open support supp.f / � U . By Propostion 5.1 there is an s 2 � ,
s ¤ e and a non-zero y 2 W.C0.X// with y � hf i and Ǫs.y/ � hf i. We may
assume y D hgi for some non-zero g 2 C0.X/C. Set V D supp.g/. Then we have
; ¤ V � U and s:V � U which implies s:U \ U ¤ ;.
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Wenowconcentrate on characterizing a class of purely infinite crossed products by
means of the paradoxical nature of the type semigroup. Recall that an automorphism˛
in Aut.A/ is said to be properly outer if and only if for every invariant ideal I � A and
inner automorphism ˇ in Inn.I /we have k˛jI �ˇk D 2. An action ˛ W � ! Aut.A/
is said to be properly outer if for every e ¤ t 2 � , ˛t is properly outer. The authors
of [20] prove that A Ì� � is simple provided that ˛ is minimal and properly outer.
In this setting we show that if A admits enough projections, pure infiniteness of
the reduced crossed product is witnessed by the projections in A (see Theorem 5.4
below). The following lemma contains ideas from Lemma 3.2 of [28] and Lemma 7.1
of [20].
Lemma 5.3. Let .A; �; ˛/ be a C*-dynamical system with A separable and �
countable and discrete. Assume that ˛ is properly outer. Then for every non-zero
b 2 .A Ì� �/C there is a non-zero a 2 AC with a - b.

Proof. We know that E.b/ ¤ 0 since b is non-zero and E is faithful. Set b1 D
b=kE.b/k so that kE.b1/k D 1. Let 0 < " < 1=16. Find a ı > 0with ı.1Ckb1k/1�ı

< ".
Next find a non-zero positive c 2 Cc.�; A/

C with kc � b1k < ı. Write c DP
s2F csus where F is a finite subset of � . Note that E.c/ D ce ¤ 0, and alsoˇ̌

1 � kcek
ˇ̌
� ı. Setting d D c=kcek we estimate

kb1 � dk D
1

kcek



kcekb1 � c

 D 1

kcek



kcekb1 � b1 C b1 � c


�

1

kcek

�
jkcek � 1jkb1k C kb1 � ck

�
�

1

1 � ı
.ıkb1k C ı/ D

ı

1 � ı
.1C kb1k/ < ":

Now let � > 0 be so small that jF j� < 1=8. SinceA is separable and ˛ is properly
outer, we apply Lemma 7.1 of [20] and obtain an element x 2 AC with kxk D 1

satisfying

kxE.d/xk D kxdexk > kdek � � D 1 � �; kxds˛s.x/k < �; 8s 2 F n feg:

Then we have

kxE.d/x � xdxk �





 X
s2F nfeg

xdsusx





 � X
s2F nfeg

kxdsusxk

D

X
s2F nfeg

kxdsusxu
�
s k D

X
s2F nfeg

kxds˛s.x/k � jF j� < 1=8:

A straightforward use of the triangle inequality now gives

kxE.b1/x � xb1xk � 2"C 1=8 < 1=4; kxE.b1/xk � 3=4:
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Let a WD .xE.b1/x � 1=2/C. Then a 2 A and a ¤ 0 since kxE.b1/xk > 1=2. Also
by Proposition 2.2 of [25] we know a - xb1x - b1 - b.

Theorem 4.1 in [28] concentrates on the commutative case. We, however, make
the observation that the same proof holds true for noncommutative algebras. Recall
that a C�-algebraA has property (SP) if every non-zero hereditary subalgebra admits
a non-zero projection.

Theorem5.4. Let .A; �; ˛/ be aC*-dynamical systemwithA separablewith property
(SP) and � countable and discrete. Assume that ˛ is minimal and properly outer.
Then A Ì� � is simple and the following are equivalent:

(1) A Ì� � is purely infinite.

(2) Every non-zero projection p in A is properly infinite in A Ì� � .

Proof. Simplicity of the reduced crossed product A Ì� � is Theorem 7.2 in [20].
.1/ ) .2/: Every non-zero projection in any purely infinite algebra is properly

infinite.
.2/) .1/: Since the crossed product is simple, it suffices to show that every non-

zero hereditary subalgebra admits an infinite projection. To this end, let B � AÌ� �
be a hereditary C�-subalgebra and let 0 ¤ b 2 B . By Lemma 5.3 there is a non-
zero a in A with a - b. Since A has property (SP), the hereditary subalgebra
of A generated by a, Ha D aAa, contains a non-zero projection q 2 Ha. By our
assumption q is properly infinite relative to A Ì� � , and q - a - b. Since q is
a projection, there is a z 2 A Ì� � with q D z�bz. Now consider v WD b1=2z.
Then q D v�v � vv� D b1=2zz�b1=2 2 B . Thus p WD vv� is the desired properly
infinite projection in B .

We now embark on studying to what extent paradoxical systems .A; �; ˛/
characterize purely infinite reduced crossed product algebras A Ì� � .

Proposition 5.5. Let .A; �; ˛/ be a C*-system for which A has cancellation
and K0.A/C has the Riesz refinement property. Let 0 ¤ r 2 P .A/ and set
g D Œr�0 2 K0.A/

C. The following properties are equivalent:

(1) There exist x; y 2 Cc.�; A/ that satisfy x�x D r D y�y, xx� ? yy�, xx� � r ,
yy� � r , and whose coefficients are partial isometries.

(2) g is .k; 1/-paradoxical for some k � 2.

(3) � D Œg�˛ is properly infinite in S.A; �; ˛/.

Proof. .1/) .2/: Write x D
P
s2F usvs and y D

P
s2L usws whereF;L � � are

finite subsets, and vs; ws 2 A are partial isometries. For each s in F set ps WD v�s vs
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and p0s WD vsv
�
s . Similarly for every s 2 L set qs WD w�sws and q0s WD wsw

�
s .

Observe that for s; t 2 F we have

E.v�s u
�
sutvt / D E.v�s us�1tvt .us�1t /

�us�1t /

D E.v�s ˛s�1t .vt /us�1t / D ıs;tv
�
s vs;

where E W A Ì� � ! A is the conditional expectation. Consequently, applying E to
the equality r D x�x gives

r D E.r/ D E

� X
s;t2F

v�s u
�
sutvt

�
D

X
s;t2F

E.v�s u
�
sutvt / D

X
s2F

v�s vs D
X
s2F

ps:

Therefore, the projections ps are mutually orthogonal subprojections of r that sum
to r . Similarly all the qs , for s 2 L, are mutually orthogonal subprojections of r with
r D

P
s2L qs . Thus, in K0.A/C we haveX

s2F

Œps�0 C
X
s2L

Œqs�0 D

�X
s2F

ps

�
0

C

�X
s2F

qs

�
0

D 2Œr�0:

Now we note that for s; t in F with s ¤ t we have vsv�t D vsv
�
s vsv

�
t vtv

�
t D

vspsptv
�
t D 0. Computing xx� we get

xx� D
X
s;t2F

usvsv
�
t u
�
t D

X
s2F

usvsv
�
s u
�
s D

X
s2F

˛s.p
0
s/:

Similarly yy� D
P
s2L ˛s.q

0
s/. FromX

s2F

˛s.p
0
s/C

X
s2L

˛s.q
0
s/ D xx

�
C yy� � r

we conclude that the projections ˛s.p0s/; ˛s.q0s/ are mutually orthogonal subprojec-
tions of r whence in K0.A/ we have

Œr�0 �

�X
s2F

˛s.p
0
s/C

X
s2L

˛s.q
0
s/

�
0

D

X
s2F

Œ˛s.p
0
s/�0 C

X
s2L

Œ˛s.q
0
s/�0

D

X
s2F

Ǫs.Œp
0
s�0/C

X
s2L

Ǫs.Œq
0
s�0/

D

X
s2F

Ǫs.Œps�0/C
X
s2L

Ǫs.Œqs�0/:

Therefore g D Œr�0 is (2,1)-paradoxical.
.2/ ) .1/: Suppose

Pn
jD1 xj � kŒr�0 and

Pn
jD1 Ǫ tj .xj / � Œr�0 for some

k � 2, group elements t1; : : : ; tn 2 � , and xj 2 K0.A/C. Since kŒr�0 � 2Œr�0 we
may assume k D 2. For some u 2 K0.A/C we then have

Pn
jD1 xj D Œr�0CŒr�0Cu.
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Riesz refinement implies that there are subsets fyj gnjD1, fzj g
n
jD1 and fuj gnjD1 of

K0.A/
C with

nX
jD1

yj D Œr�0;

nX
jD1

zj D Œr�0;

nX
jD1

uj � 0; and xj D yj C zj C uj ; 8j:

Using the fact that A has cancellation we know that there are mutually orthogonal
projections pj 2 P .A/ with Œpj �0 D yj for j D 1; : : : ; n. Similarly there are
mutually orthogonal projections qj 2 P .A/ with Œqj �0 D zj for j D 1; : : : ; n.
Then,X

j

Œ˛tj .pj /�0 C
X
j

Œ˛tj .qj /�0 D
X
j

Ǫ tj .yj /C
X
j

Ǫ tj .zj /

�

X
j

Ǫ tj .yj /C
X
j

Ǫ tj .zj /C
X
j

Ǫ tj .uj /

D

X
j

Ǫ tj .xj / � Œr�0:

We again use the fact that A has cancellation and find mutually orthogonal
subprojections e1; : : : ; en; f1; : : : ; fn 2 P .A/ of r with Œej �0 D Œ˛tj .pj /�0 and
Œfj �0 D Œ˛tj .qj /�0 for every j . Cancellation also implies that there are partial
isometries vj and wj in A with

v�j vj D ˛tj .pj /; vj v
�
j D ej ; w�jwj D ˛tj .qj /; wjw

�
j D fj :

Now set a D
Pn
jD1 vjuj and b D

Pn
jD1wjuj where uj D utj . For i ¤ j we

compute v�j vi D v
�
j vj v

�
j viv

�
i vi D v

�
j ej eivi D 0, so

a�a D
X
i;j

u�j v
�
j viui D

X
j

u�j v
�
j vjuj D

X
j

u�j˛tj .pj /utj

D

X
j

˛t�1
j
.˛tj .pj // D

X
j

pj WD p:

In order to compute aa� we note that for i ¤ j we have

vjuju
�
i v
�
i D vj v

�
j vjuju

�
i v
�
i viv

�
i

D vj˛tj .pj /uju
�
i ˛ti .pi /v

�
i

D vjujpju
�
juju

�
i uipiu

�
i v
�
i D vjujpjpiu

�
i v
�
i D 0;

whence

aa� D
X
i;j

vjuju
�
i v
�
i D

X
j

vjuju
�
j v
�
j D

X
j

vj v
�
j D

X
j

ej WD e:
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Similarly b�b D
P
j qj WD q, and bb� D

P
j fj D f .

Now define x WD av where v is the partial isometry in A with v�v D r and
vv� D p. Such a v exists because Œp�0 D

�P
j pj

�
0
D
P
j Œpj �0 D

P
j yj D Œr�0

and A has cancellation. Similarly define y WD bw where w 2 A satisfies w�w D r

and ww� D q. We compute

x�x D v�a�av D v�pv D v�vv�v D r2 D r;

and
y�y D w�b�bw D w�qw D w�ww�w D r2 D r:

Moreover, since a and b are partial isometries and e ? f , we have

xx�yy� D avv�a�bww�b�

D avv�a�aa�bb�bww�b�

D avv�a�ef bww�b� D 0:

Next we observe that xx� is a subprojection of r ; indeed, since e � r ,

rxx� D ravv�a� D raa�avv�a� D reavv�a�

D eavv�a� D aa�avv�a� D avv�a� D xx�

Similarly yy� is a subprojection of r .
Finally we verify that the coefficients of x and y are partial isometries. Write

x D av D

nX
jD1

vjuj v D

nX
jD1

vj˛tj .v/uj ;

and compute

.vj˛tj .v//
�vj˛tj .v/ D ˛tj .v

�/v�j vj˛tj .v/

D ˛tj .v
�/˛tj .pj /˛tj .v/ D ˛tj .v

�pj v/:

Now since pj � p for every j , v�pj v is a projection: .v�pj v/2 D v�pj vv�pj v D
v�pjppj v D v�pj v. Therefore ˛tj .v�pj v/ is a projection for each j and so the
coefficients of x, vj˛tj .v/, are partial isometries. An identical argument works for
the coefficients of y. This completes the implication .2/) .1/.

.2/, .3/: By definition Œg�˛ is infinite in S.A; �; ˛/ if and only if 2Œg�˛ � Œg�˛ ,
and by Proposition 4.5, we know this occurs if and only if g is .2; 1/-paradoxical.
Clearly g is .2; 1/-paradoxical if and only if g is .k; 1/-paradoxical for some k � 2.

nX
jD1

Ǫ tj .xj / � Œ1�0 and
2nX

jDnC1

Ǫ tj .xj / � Œ1�0:

The following result generalizes Theorem 5.4 of [28] to the noncommutative case.
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Theorem 5.6. Let A be a unital, separable, exact C*-algebra whose projections are
total. Moreover, suppose A has cancellation and K0.A/C has the Riesz refinement
property. Let ˛ W � ! Aut.A/ be a minimal and properly outer action. Consider
the following properties:

(1) The semigroup S.A; �; ˛/ is purely infinite.

(2) Every non-zero element in K0.A/C is .k; 1/-paradoxical for some k � 2.

(3) The C*-algebra A Ì� � is purely infinite.

(4) The C*-algebra A Ì� � admits no tracial state.

(5) The semigroup S.A; �; ˛/ admits no non-trivial state.

Then the following implications always hold: .1/ , .2/ ) .3/ ) .4/ ) .5/. If
the semigroup S.A; �; ˛/ is almost unperforated then .5/) .1/ and all properties
are equivalent.

Proof. .1/, .2/: We have already seen that x 2 K0.A/C is .k; 1/-paradoxical for
some k � 2 if and only if � D Œx�˛ is properly infinite in S.A; �; ˛/.

.2/ ) .3/: Let r be a non-zero projection in A. By assumption Œr�0 is .2; 1/-
paradoxical, so by proposition 5.5 r is properly infinite in A Ì� � . Then A Ì� � is
purely infinite by Theorem 5.4.

.3/) .4/: Purely infinite C�-algebras are always traceless.

.4/ ) .5/: Suppose � W S.A; �; ˛/ ! Œ0;1� is a non-trivial state. Suppose
0 < �.Œx�˛/ < 1 where x 2 K0.A/

C is non-zero. Composing with the
quotient map � W K0.A/C ! S.A; �; ˛/ we get an order preserving monoid
homomorphism ˇ0 D � ı � W K0.A/

C ! Œ0;1� with 0 < ˇ0.x/ < 1. As in
the proof of Proposition 4.8, minimality of the action ensures that ˇ0 is finite
on all of K0.A/C. Extending ˇ0 to K0.A/ gives a �-invariant positive group
homomorphism, ˇ W K0.A/ ! R. Since A is exact and projections are total,
ˇ comes from a �-invariant trace on A (Theorem 1.1.11 in [27]), so that A Ì� �
admits a tracial state, a contradiction.

Now we assume that S.A; �; ˛/ is almost unperforated and prove .5/) .1/. Let
� D Œx�˛ be a non-zero element in S.A; �; ˛/. If � is completely non-paradoxical
then by Tarski’s Theorem S.A; �; ˛/ admits a non-trivial state. So, assuming .5/, we
must have .k C 1/� � k� for some k 2 N. So

.k C 2/� D .k C 1/� C � � k� C � D .k C 1/� � k�:

Repeating this trick we get .kC1/2� � k� . Since S.A; �; ˛/ is almost unperforated
we conclude 2� � � and � is properly infinite.

Combining Theorems 4.9 and 5.6 we obtain a dichotomy.
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Theorem 5.7. Let A be a unital, separable, exact C*-algebra whose projections are
total. Moreover suppose A has cancellation and K0.A/C has the Riesz refinement
property. Let � be a countable discrete group and let ˛ W � ! Aut.A/ be a minimal
and properly outer action such that S.A; �; ˛/ is almost unperforated. Then the
reduced crossed product A Ì� � is a simple C*-algebra which is either stably finite
or purely infinite.

It is well known that AF-algebras satisfy the conditions listed in Theorem 5.7.
The following Corollary now follows from Theorems 5.7 and 4.9.

Corollary 5.8. Let ˛ W Fr ! Aut.A/ be a minimal and properly outer action on a
AF-algebra, and suppose S.A;Fr ; ˛/ is almost unperforated. Then AÌ� � is purely
infinite or MF in the sense of Blackadar and Kirchberg [7].

We end our discussion with a few remarks and interesting questions.
As promised, we mention that this work provides an order K-theoretic proof of

Jolissaint and Robertson’s main result in [13], at least in the case where K0.A/ is
sufficiently well-behaved. For the sake of brevity let us assume that A is an algebra
of real rank zero and stable rank one so that the conditions in Theorems 5.5 and 5.4
are satisfied. Assume ˛ W � ! Aut.A/ is a properly outer action that is n-filling
in the sense of [13]. If every projection p 2 A generates an infinite dimensional
corner pAp, it is not difficult to see that the ordered group .K0.A/;K0.A/C/ is
non-atomic, that is, for every non-zero g 2 K0.A/C there is a nonzero h 2 K0.A/C
with h < g. In this setting, if p is a non-zero projection in A we can inductively find
non-zero elements x1; : : : ; x2n 2 K0.A/C with

P2n
jD1 xj � Œp�0. The author shows

in [24] that an n-filling action is minimal and satisfies aK0-n-filling condition, which
implies that there are group elements t1; : : : ; t2n satisfying

nX
jD1

Ǫ tj .xj / � Œ1�0 and
2nX

jDnC1

Ǫ tj .xj / � Œ1�0:

Combining these facts we obtain
P2n
jD1 xj � Œp�0 and

P2n
jD1 Ǫ tj .xj / � 2Œ1�0 �

2Œp�0 and thus Œp�0 is .2; 1/-paradoxical. By Proposition 5.5 the projection p is
properly infinite in A Ì� � . It follows by Theorem 5.4 that A Ì� � is simple and
purely infinite.

It is unknown to the author if there are examples of minimal and properly outer
actions on C�-algebras satisfying the conditions in Theorem 5.7 for which the type
semigroup is not almost unperforated. In particular, is there a free and minimal
action of the free group F2 on the Cantor set X for which S.X;F2;C/ is not almost
unperforated? Although Ara and Exel construct actions of a finitely generated free
group on the Cantor set for which the type semigroup is not almost unperforated,
these actions are not minimal [1]. Moreover, almost unperforation may be too strong
a condition to establish .5/ ) .1/ in Theorem 5.6. What is required is that every
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“infinite element” (in the sense that .k C 1/x � kx for some k) is properly infinite
(2x � x). This is a priori a weaker condition than almost unperforation.

In the context of Definition 4.3 and the remarks that follow, we note that there is a
homomorphismofmonoids% W S.A; �; ˛/! K0.AÌ��/C satisfying%� D O�, where
O� W K0.A/

C ! K0.A Ì� �/C is the map induced by the inclusion � W A ,! A Ì� � .
Under what conditions is the map % injective? An answer to this question would shed
considerable light on the K0-group of certain crossed products.
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