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Abstract. We provide a limiting absorption principle for the self-adjoint realizations of

Laplace operators corresponding to boundary conditions on (relatively open parts † of)

compact hypersurfaces � D @�, � � Rn. For any of such self-adjoint operators we also

provide the generalized eigenfunctions and the scattering matrix; both these objects are

written in terms of operator-valued Weyl functions. We make use of a Kreı̆n-type formula

which provides the resolvent difference between the operator corresponding to self-adjoint

boundary conditions on the hypersurface and the free Laplacian on the whole space Rn.

Our results apply to all standard examples of boundary conditions, like Dirichlet, Neumann,

Robin, ı and ı0-type, either assigned on � or on † � � .
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1. Introduction

Given an open bounded set � � Rn with smooth boundary �, let �ı denote the not
positive symmetric operator in L2.Rn/ given by the restriction of the Laplacian
to C 1

comp.Rnn�/. In the recent paper [29], we provided the complete family
of self-adjoint extensions of �ı and a Kreı̆n-type formula giving the resolvent
difference between any extension and the self-adjoint (free) Laplacian � with
domain H 2.Rn/ (we recall these results in Theorem 3.1). Some sub-families of
extensions have been considered in [16] and [22] by a quadratic form approach and
in [9] by quasi boundary triple theory. In particular, in [9, Section 4], Schatten-von
Neumann estimates for the difference of the powers of the resolvent of the free and
self-adjoint extensions corresponding to ı-type boundary conditions (supported
either on � or on † � �) and ı0-type ones (supported on �) are provided;
these give existence and completeness of the wave operators of the associated
scattering systems. In [29, Theorems 4.10 and 4.11] we extended such kind of
Schatten-von Neumann estimates to a larger class containing, for example, self-
adjoint extensions corresponding to Dirichlet, Neumann, Robin, ı and ı0-type
conditions, either assigned on � or on † � �, where † is relatively open with a
Lipschitz boundary. To this concern we recall that estimates for the difference of
the powers of the resolvents and their applications to scattering in exterior domains
first appeared in the pioneering work by Birman [14].

Let us stress that, by the decomposition Rn D �in [ � [ �ex, �in � �,
�ex WD Rnn x�, one has �ı D �min

in ˚ �min
ex and so one could obtain all self-

adjoint extensions of �ı corresponding to separating boundary conditions by
using the results obtained by Grubb in [24] (building on previous work by Birman,
Kreı̆n and Vis̆ik, see [13], [28], and [39]) providing the whole family of self-
adjoint extensions of �min

in=ex; however such construction, broadened to include all
self-adjoint extensions, would lead to a Kreı̆n-type formula giving the resolvent
difference between an extension y� and the direct sum of the interior and exterior
Dirichlet Laplacians �D

in ˚ �D
ex. This is not the right operator since we are

interested in the study of the scattering system . y�; �/, where � denotes the free
Laplacian on the whole Rn; whenever one considers semi-transparent boundary
conditions (as the ones considered in [9] and in Section 6, Examples 6.4 and 6.5),
or boundary conditions assigned only on † � � (see Section 7), the choice of the
Laplacian � as the operator representing the free propagation is the most natural
one.

The first aim of this paper is to show that the Limiting Absorption Principle
(LAP for short) holds for an ample class of self-adjoint extensions of the symmet-
ric operator �ı. This is accomplished by applying abstract results due to Walter
Renger (see [35] and [36]) to our Kreı̆n-type resolvent formula (see Theorem 4.2).



Limiting absorption principle, eigenfunctions and scattering 1445

As usual, LAP implies the absence of singular continuous spectrum (see Corol-
lary 4.7). Even if interesting by itself, the result about the validity of LAP does not
show that the resolvent Kreı̆n formula itself survives in the limit. Such a limit re-
solvent formula is here provided in next Theorem 4.5. With these results at hands,
in Section 5 we construct, for a given self-adjoint extension y� of �ı, the couple of
families of generalized eigenfunctions u˙

�
related to the plane waves uı

�
.x/ D ei � �x

with incoming (C) or outgoing (�) radiation conditions. Such eigenfunctions al-
low to define the corresponding Fourier type transforms F˙ which diagonalize
the self-adjoint extension; the wave operators for the scattering system . y�; �/ are
then given by W˙ D F �

˙F , where F denotes the ordinary Fourier transform (see
Theorem 5.4). Both the eigenfunctions u˙

�
and the Fourier transforms F˙ are

expressed in terms of the Weyl functions appearing in the limit Kreı̆n resolvent
formula given in Theorem 4.5. Finally, in Theorem 5.6, using again the operator-
valued Weyl functions, we provide the kernel (proportional to the scattering am-
plitude) of 1 � Sk , where Sk is the on-shell scattering operator.

In sections 6 and 7, we show how our LAP-based results can be applied to a
wide class of self-adjoint operators which includes self-adjoint realizations of the
Laplacian with Dirichlet, Neumann, Robin, ı and ı0-type boundary conditions
assigned either on the whole � or on a relatively open subset with Lipschitz
boundary † � �. We provide a representation of the scattering matrix Sk in
terms of operator-valued Weyl functions evaluated on the traces at († �)� of the
plane waves uı

�
.

Our time-independent approach has been inspired by the work by Albeverio,
Brasche and Koshmanenko [3], where LAP and Lippman-Schwinger equations
are studied for finite-rank singular perturbations, and can be interpreted as an
extension to the case of general boundary conditions and hypersurfaces of the
paper [26] by Ikebe and Shimada concerning ı-type boundary conditions on a
sphere (see also [38]). An alternative abstract approach, which do not use LAP
but directly exploits the existence of limiting operator-valued Weyl-functions, has
been developed in [10], [11] and [12] by Behrndt, Malamud and Neidhardt (the
first two works concern the finite-rank case; see also [1], [4, Chapter 4]). In
particular, in the recent paper [12], a representation of the scattering matrix in
term of operator-valued Weyl functions is provided for couples of self-adjoint
extension of a given symmetric operator under the hypothesis that their resolvent
difference is trace-class. In our less abstract setting, which applies to Laplacian
with boundary conditions on .† �/�, we do not need the trace-class condition
and the results hold in any dimension.
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Let us remark that, once LAP and a Kreı̆n’s limit formula have been attained
(see Theorems 4.2 and 4.5), a representation formula for the scattering matrix Sk

can be obtained by using the Birman–Yafaev general scheme in stationary scat-
tering theory (see e.g. [15], [40], [41]) together with the Birman-Kato invariance
principle applied to the resolvent operators (see Remark 5.7 for more details).
However we preferred to present here a less abstract proof following the classi-
cal scheme used in potential scattering theory (see e.g. [2], [5], [25], [37], and
references therein).

We conclude the introduction with some remarks about our smoothness hy-
potheses on �. Such an hypothesis gives the existence of the wave operators (see
[29, Theorems 4.11 and 4.12]) through asymptotic estimates on the eigenvalues of
the Laplace-Beltrani operator on � (see [8, Lemma 4.7]). These estimates, ob-
tained using pseudodifferential operator techniques, require smoothness; we pre-
sume that asymptotic estimates of this kind hold under a weaker C 1;1 (or at least
C 2) hypothesis, but we did not find any proof of that in the literature. Since our
result concerning existence of LAP does not require any smoothness hypothesis,
conditional on the existence of wave operators, the general results here presented
hold in the case � is an hypersurface of class C 1;1, as for the results presented
in [29], while, as regards the explicit examples given in Section 7 considering
boundary conditions on † � �, one needs more regularity (of the kind C k;1,
where k > 1 depends on the kind of boundary conditions used, see [29, Sec-
tion 6]). In the series of papers [19]–[21], limited to the case in which n D 2 and
Dirichlet or Neumann boundary conditions are assigned on the whole �, the au-
thors provided a resolvent formula and a representation for the scattering matrix
of the same kind of the ones here given in Examples 6.1 and 6.2, only assuming
that the boundary � is a piecewise smooth curve. This suggests that our results,
which hold for a quite larger class of boundary conditions, could be extended to
include the case in which � is a planar curvilinear polygon (see e.g. [17] and [23]
for elliptic boundary value problem in not smooth domains).

Acknowledgment. We thank the anonymous referees for the stimulating re-
marks, for the useful bibliographic suggestions and in particular for inspiring Re-
mark 5.7.

2. Preliminaries

2.1. Trace maps and boundary-layer operators. Here we recall some defini-
tions and results about Sobolev spaces on subset of Rn and single and double layer
operators on their boundaries (see e.g. [32] and [30]).
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Given � � Rn open and bounded, with smooth boundary �, we adopt the
notation: �in D �, �ex D Rnn x�, while � is the exterior unit normal to �.
H s.Rn/, H s.�in/, H s.�ex/, H s.�/, s 2 R, denote the usual scales of Sobolev-
Hilbert spaces of function on Rn, �in, �ex and � respectively. The zero and
first-order traces on � are defined on smooth functions as

0u D uj�; 1u D � � ruj�; (2.1)

and extend to the bounded linear operators

0 2 B.H 2.Rn/; H
3
2 .�//; 1 2 B.H 2.Rn/; H

1
2 .�//: (2.2)

We use the symbol � to denote the distributional Laplacian; its restriction to
H 2.Rn/

�W H 2.Rn/ � L2.Rn/ �! L2.Rn/

gives rise to a self-adjoint operator which describes the free propagation of waves
in the whole space Rn; this will be our reference operator.

For z 2 Cn.�1; 0�, the single and double layer operators are defined by

SLz D .0.�� C Nz/�1/�; DLz D .1.�� C Nz/�1/�; (2.3)

and by duality there follows

SLz 2 B.H � 3
2 .�/; L2.Rn//; DLz 2 B.H � 1

2 .�/; L2.Rn//: (2.4)

The integral kernel Rz.x; y/ of the resolvent .��Cz/�1, z 2 Cn.�1; 0�, is given
by Rz.x; y/ D Gz.x � y/, where

Gz.x/ D 1

2�

�

p
z

2�kxk
�

n
2

�1

K n
2

�1.
p

z kxk/; Re.
p

z/ > 0; (2.5)

and K˛ denotes the modified Bessel functions of second kind of order ˛. Thus,
for x … � and �; ' 2 L2.�/, one has

SLz �.x/ D
Z

�

Gz.x � y/ �.y/ d�.y/; (2.6)

and

DLz '.x/ D
Z

�

�.y/�rGz.x � y/ '.y/ d�.y/; (2.7)

where � denotes the surface measure.
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Let us define  2 B.H 2.Rn/; H
3
2 .�/ ˚ H

1
2 .�// by

u WD 0u ˚ 1u

and, for any z 2 Cn.�1; 0�, Gz 2 B.H � 3
2 .�/ ˚ H � 1

2 .�/; L2.Rn// by

Gz WD ..�� C Nz/�1/� I

equivalently
Gz.� ˚ '/ WD SLz � C DLz ': (2.8)

For any z 2 Cn.�1; 0� and for any � ˚ ' 2 H � 3
2 .�/ ˚ H � 1

2 .�/ one has

Gz.� ˚ '/ 2 C
1.Rnn�/ and ..� � z/Gz.� ˚ '//.x/ D 0; x 2 R

nn�:

The one-sided trace maps


\
i 2 B.H 2.�\/; H

3
2

�i .�//; \ D in; ex; i D 0; 1;

defined on smooth (up to the boundary) functions by


\
0u\ D u\j�; 

\
1u\ D � � ru\j�; \ D in; ex; (2.9)

can be extended to

O \
i 2 B.H 0

�.�\/; H � 1
2

�i .�//; \ D in; ex; i D 0; 1;

where

H 0
�.�\/ WD ¹u\ 2 L2.�\/W �u\ 2 L2.�\/º;

ku\k2

H 0
�

.�\/
WD k�u\k2

L2.�\/
C ku\k2

L2.�\/
:

Setting
�max

\ WD �jH 0
�.�]/;

by the “half” Green formula (see [30, Theorem 4.4]), one has, for any u 2
H 1.�\/ \ H 0

�.�\/,

h��max
\ u\; u\iL2.�\/ D kru\k2

L2.�\/
C �\h O \

1u\; 
\
0u\i� 1

2
; 1

2
; (2.10)

�\ D
´

�1; \ D in;

C1; \ D ex:
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Setting
H 0

�.Rnn�/ WD H 0
�.�in/ ˚ H 0

�.�ex/;

the extended maps O \
i allow to define the bounded maps

Oi 2 B.H 0
�.Rnn�/; H � 1

2
�i .�//; i D 0; 1;

and

Œ Oi � 2 B.H 0
�.Rnn�/; H � 1

2
�i .�//; i D 0; 1;

by

Oiu WD 1

2
. O in

i .uj�in/ C Oex
i .uj�ex//; (2.11)

and
Œ Oi �u D Oex

i .uj�ex/ � O in
i .uj�in/; : (2.12)

Notice that the maps i 2 B.H 2.Rnn�/; H
3
2

�i .�// defined by

i WD Oi jH 2.Rnn�/; i D 0; 1; H 2.Rnn�/ WD H 2.�in/ ˚ H 2.�ex/;

coincide with the ones in (2.1) when restricted to H 2.Rn/.
The corresponding extension of the trace map  is

O 2 B.H 0
�.Rnn�/; H � 1

2 .�/ ˚ H � 3
2 .�//; Ou WD . O0u/ ˚ . O1u/; (2.13)

while the related jump map is

Œ O� 2 B.H 0
�.Rnn�/; H � 3

2 .�/ ˚ H � 1
2 .�//; Œ O�u D .�Œ O1�u/ ˚ .Œ O0�u/: (2.14)

Using the definition (2.8) and the mapping properties of the layer operators (see
[29, Section 3.4] and the references therein), it results

Gz 2 B.H � 3
2 .�/ ˚ H � 1

2 .�/; H 0
�.Rnn�// (2.15)

and so Œ O�Gz 2 B.H � 3
2 .�/˚H � 1

2 .�//. More precisely, by the well known jumps
relations for the layer operators, one has

Œ O�Gz D 1
H

� 3
2 .�/˚H

� 1
2 .�/

: (2.16)

2.2. Weighted spaces. We now introduce the family of weighted spaces L2
� .Rn/

and H 2
� .Rn/, defined, for any � 2 R, by

L2
� .Rn/ WD ¹u 2 L2

loc.R
n/W kukL2

� .Rn/ < C1º;

H 2
� .Rn/ WD ¹u 2 H 2

loc.R
n/W kukH 2

� .Rn/ < C1º;
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kuk2

L2
� .Rn/

WD
Z

Rn

.1 C kxk2/� ju.x/j2dx

kuk2

H 2
� .Rn/

WD kuk2

L2
� .Rn/

C
X

1�i�n

k@xi
uk2

L2
� .Rn/

C
X

1�i;j �n

k@2
xi xj

uk2

L2
� .Rn/

:

The spaces L2
� .�in/, L2

� .�ex/ and H 2
� .�in/, H 2

� .�ex/ are defined in a similar
way. Since � is bounded, one has L2

� .�in/ D L2.�in/, H 2
� .�in/ D H 2.�in/, the

equalities holding in the Banach space sense; thus

L2
� .Rn/ D L2.�in/ ˚ L2

� .�ex/

and
H 2

� .Rnn�/ WD H 2
� .�in/ ˚ H 2

� .�ex/ D H 2.�in/ ˚ H 2
� .�ex/:

Then the trace operators can be extended to H 2
� .Rnn�/, � < 0, by

ex
0 uex WD ex

0 .�uex/; ex
1 uex WD ex

1 .�uex/;

where � belongs to C
1
comp.�c/ and � D 1 on a neighborhood of �.

Remark 2.1. In the following, we use the shorthand notation h�; �i to denote both
the dualities .H �s1.�/˚H �s2.�// – .H s1.�/˚H s2.�// and L2

��.Rn/ – L2
� .Rn/.

3. Self-adjoint Laplace operators

with boundary conditions on hypersurfaces

Let us consider the restriction �j ker./. Since the kernel of  is dense in L2.Rn/,
�j ker./ is densely defined, closed and symmetric. Following the construction
developed in [29] (to which we refer for more details and proofs), we next provide
all the self-adjoint extensions of �j ker./. The adjoint operator .�j ker.//�

identifies with

dom..�j ker.//�/ D H 0
�.Rnn�/; .�j ker.//� D �max

in ˚ �max
ex :

An alternative representation of .�j ker.//� is given by (see [29, Lemma 2.3 and
Lemma 4.2])

dom..�j ker.//�/

D ¹u D uı C G.� ˚ '/W uı 2 H 2.Rn/; � ˚ ' 2 H � 3
2 .�/ ˚ H � 1

2 .�/º
� ¹u 2 L2.Rn/W uı WD .u C SLŒ O1�u � DLŒ O0�u/ 2 H 2.Rn/º;

.�j ker.//�u D �uı C G.� ˚ '/ D �u � Œ O1�u ı� � Œ O0�u � �rı� ; (3.1)
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where G WD G1 and the Schwartz distribution ı� is defined by ı�.u/ WD
R

�
u.x/ d�.x/.

Given an orthogonal projection …W H
3
2 .�/ ˚ H

1
2 .�/ ! H

3
2 .�/ ˚ H

1
2 .�/,

the dual map …0W H � 3
2 .�/ ˚ H � 1

2 .�/ ! H � 3
2 .�/ ˚ H � 1

2 .�/ is an orthogonal
projection as well and ran.…0/ D ran.…/0. We say that the densely defined linear
operator

‚W dom.‚/ � ran.…/0 ! ran.…/

is self-adjoint whenever ‚ D ‚0. Let the unitary maps ƒs represent the duality
mappings on H s=2.�/ onto H �s=2.�/; an explicit representation of ƒs is given
by ƒs D .��LB C 1/s=2, where �LB denotes the Laplace-Beltrami operator
on �. Equivalently ‚ is self-adjoint whenever the operator z‚ D ‚.ƒ3 ˚ ƒ/,
dom. z‚/ D .ƒ3 ˚ ƒ/�1dom.‚/, is a self-adjoint operator in the Hilbert space
ran.…/.

We define the operator-valued Weyl function

Cn.�1; 0� 3 z 7! Mz 2 B.H � 3
2 .�/ ˚ H � 1

2 .�/I H
3
2 .�/ ˚ H

1
2 .�//

by Mz WD .G � Gz/, i.e., using the block operator notation,

Mz D
"

0.SL � SLz/ 0.DL � DLz/

1.SL � SLz/ 1.DL � DLz/

#

: (3.2)

Given the couple .…; ‚/, … an orthogonal projector and ‚ self-adjoint, define the
set

Z…;‚ WD ¹z 2 Cn.�1; 0�W ‚ C …Mz…0 2 B.ran.…/; ran.…/0/º: (3.3)

All self-adjoint extensions of �j ker./ are provided by the following theorem (see
[29, Theorem 4.4]):

Theorem 3.1. Any self-adjoint extension of �j ker./ is of the kind

�…;‚ D .�j ker.//�jdom.�…;‚/;

where …W H
3
2 .�/ ˚ H

1
2 .�/ ! H

3
2 .�/ ˚ H

1
2 .�/ is an orthogonal projection,

‚W dom.‚/ � ran.…/0 ! ran.…/ is a self-adjoint operator and

dom.�…;‚/

WD ¹u D uı C G.� ˚ '/W uı 2 H 2.Rn/; � ˚ ' 2 dom.‚/; …uı D ‚.� ˚ '/º
D ¹u 2 H 0

�.Rnn�/W Œ O�u 2 dom.‚/; ….u C SLŒ O1�u � DLŒ O0�u/ D ‚Œ O�uº
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Moreover Z…;‚ is not void, CnR � Z…;‚ � �.�…;‚/, and the resolvent of the

self-adjoint extension �…;‚ is given by the Krĕın’s type formula

.��…;‚ C z/�1

D .�� C z/�1 C Gz…0.‚ C …Mz…0/�1….�� C z/�1; z 2 Z…;‚:

(3.4)

Remark 3.2. Let us notice that the …0 ’s appearing in formula (3.4) act there
merely as the inclusion map …0W ran.…/0 ! H �3=2.�/ ˚ H �1=2.�/. This means
that one does not need to know …0 explicitly: it suffices to know the subspace
ran.…0/ D ran.…/0.

Given the self-adjoint operator ‚W dom.‚/ � ran.…/0 ! ran.…/, we now
introduce the following assumptions:

dom.‚/ � H s1.�/ ˚ H s2.�/; s1 > �3

2
; s2 > �1

2
; (3.5)

dom.‚/ � H
1
2 .�/ ˚ H

3
2 .�/ (3.6)

and
dom.fz‚/ � H

5
2 .�/ ˚ H

3
2 .�/; (3.7)

where fz‚ is sesquilinear form associated to the self-adjoint operator in ran.…/

defined by z‚ WD ‚.ƒ3 ˚ ƒ/.
The next result gives informations on the spectrum and scattering of �…;‚;

for the proof of such results we refer to [29, Lemma 4.10, Corollary 4.12, and
Remark 4.14].

Theorem 3.3. Suppose Theorem 3.1 holds. Then,

1) assumption (3.5) implies

�ess.�…;‚/ D .�1; 0� I

2) either assumption (3.6) or (3.7) gives the existence and completeness of the

wave operators

W˙ WD s- lim
t!˙1

e�it�…;‚eit�; zW˙ WD s- lim
t!˙1

e�it�eit�…;‚Pac;

i.e. the limits exists everywhere w.r.t. strong convergence, ran.W˙/ D L2.Rn/ac,

ran. zW˙/ D L2.Rn/ and W �
˙ D zW˙, where L2.Rn/ac denotes the absolutely

continuous subspace of L2.Rn/ with respect to �…;‚ and Pac is the corresponding

orthogonal projector. This then implies

�ac.�…;‚/ D .�1; 0�: (3.8)
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Remark 3.4. Let us remark that hypothesis (3.6) holds in the case of global
boundary conditions, i.e. assigned on whole boundary � (see Section 6), whereas
hypothesis (3.7) holds in the case of local ones, i.e. assigned on † � � (see
Section 7).

Remark 3.5. Let us notice that the apparent discrepancy between the indices
in (3.6) and (3.7) is due to the fact that the first one applies to operators acting be-
tween the dual pair .ran.…/0; ran.…// whereas the second one concerns sesquilin-
ear forms in the space ran.…/; when written in terms of z‚, condition (3.6) reads
as dom. z‚/ � H

7
2 .�/ ˚ H

5
2 .�/.

Under hypothesis (3.6), it is possible to introduce an alternative description of
�…;‚ (see [29, Corollary 4.8]):

Corollary 3.6. Let �…;‚ be defined according to Theorem 3.1 with ‚ fulfill-

ing (3.6). Define

B‚ WD ‚ C …G…0W dom.‚/ � ran.…/0 �! ran.…/: (3.9)

Then

dom.�…;‚/ D ¹u 2 H 2.Rnn�/W Œ�u 2 dom.‚/; …u D B‚Œ�uº; (3.10)

and, whenever z 2 Z…;‚,

.��…;‚ C z/�1 D .�� C z/�1 C Gz…0.B‚ � …Gz…0/�1….�� C z/�1:

(3.11)

The results contained in Theorem 3.3 do not exclude the presence of negative
eigenvalues embedded in the essential spectrum, an information that is relevant
for the issues to be treated in the next sections. However, since the singular
perturbations defining �…;‚ are compactly supported, an easy application of the
unique continuation principle and Rellich’s estimate give criteria for the absence
of such eigenvalues. For successive notational convenience let us pose

E�
…;‚ WD ¹� 2 .�1; 0/W � … �p.�…;‚/º;

so that absence of negative eigenvalues is equivalent to E�
…;‚ D .�1; 0/.

Theorem 3.7. Let �0 � � be a closed set such that supp.�/ [ supp.'/ � �0

for any � ˚ ' 2 dom.‚/ � ran.…/0. If the open set Rnn�0 is connected, then

E�
…;‚ D .�1; 0/.
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Proof. Suppose that there exist � 2 .�1; 0/ and u� 2 dom.�…;‚/ � L2.Rn/ \
H 2

loc.R
nn�0/ such that �…;‚u� D � u�. Then, by (3.1), �u�.x/ D � u�.x/

for a.e. x 2 Rnn�0. Thus, by the unique continuation principle (see e.g. [34,
Theorem XIII.63]), u� D 0 a.e. whenever u� vanishes in the neighborhood of a
single point xı 2 Rnn�0. By (3.1) again, .� � �/u� D 0 outside some sufficiently
large ball B containing �in. Thus, by Rellich’s estimate, one gets u�jBc D 0 (see
e.g. [31, Corollary 4.8]) and the proof is done. �

Remark 3.8. Obviously, in the case �0 D �, one has that Rnn� D �in [ �ex is
not connected. However, if �ex is connected then, by the same kind of reasonings
as in the proof of Theorem 3.7, one gets u�j�ex D 0. Thus, if the boundary
conditions appearing in dom.�…;‚/ are such that

uj�ex D 0; .�u � �u/j�in D 0; u 2 dom.�…;‚/ H) uj�in D 0;

then E�
…;‚ D .�1; 0/. For example, two cases where this hypothesis holds are the

ı- and ı0-interactions on � which corresponds to the semi-transparent boundary
conditions

Œ0�u D 0; ˛0u D Œ1�u

and
Œ1�u D 0; ˇ1u D Œ0�u

respectively (see subsections 6.4 and 6.5).

4. The limiting absorption principle

We begin by recalling the limiting absorption principle for the self-adjoint opera-
tor representing the free Laplacian �W H 2.Rn/ � L2.Rn/ ! L2.Rn/ (see e.g. [2,
Section 4]):

Theorem 4.1. For any k 2 Rn¹0º and for any ˛ > 1
2
, the limits

R˙
�k2 WD lim

�#0
.�� � .k2 ˙ i�//�1 (4.1)

exist in B.L2
˛.Rn/; H 2

�˛.Rn//. Setting C˙ WD ¹z 2 CW ˙Im.z/ > 0º and

R˙
z WD

´

.�� C z/�1; z 2 C˙;

R˙
�

; � 2 .�1; 0/;

the maps z 7! R˙
z are continuous on C˙ [ .�1; 0/ to B.L2

˛.Rn/; H 2
�˛.Rn//.
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The existence of the resolvent limits on the continuous spectrum have been
discussed in [35],[36] for a wide class of operators including singular perturba-
tions. The general results there provided allow to prove, in our case, a limiting
absorption principle for �…;‚:

Theorem 4.2. Let �…;‚ be defined as in Theorem 3.1 and assume that it is

bounded from above and that (3.5) holds true. Then .�1; 0/ \ �p.�…;‚/ is a

( possibly empty) discrete set of eigenvalues of finite multiplicity and the limits

R˙
…;‚;�k2 WD lim

�#0
.��.…;‚/ � .k2 ˙ i�//�1 (4.2)

exist in B.L2
˛.Rn/; L2

�˛.Rn// for all ˛ > 1
2

and for all k 2 Rn¹0º such that

�k2 2 E�
…;‚.

Proof. Let us at first show that the following four assumptions hold true for any
z 2 Cn.�1; 0�:

.�� C z/�1 2 B.L2
˛.Rn//; (4.3)

.��…;‚ C z/�1 2 B.L2
˛.Rn//; (4.4)

.�� C z/�1 � .��…;‚ C z/�1 2 S1.L2.Rn/; L2
ˇ .Rn//; ˇ > 2˛; (4.5)

and for all compact subset K � .0; C1/ there exists a constant cK > 0 such that,
for any k2 2 K,

kR˙
�k2ukL2.Rn/ � cKkukL2

2˛
.Rn/; for all u 2 L2

2˛.Rn/ \ ker.RC
�k2 � R�

�k2/:

(4.6)

By [34, Lemma 1, page 170], for all � 2 R one has

.�� C z/�1 2 B.L2
�.Rn//: (4.7)

Therefore (4.3) holds true (see also [36, Lemma 5.2 and Remark 5.1]).
Introducing the equivalent norm in H 2

� .Rn/

jujH 2
� .Rn/ WD

Z

Rn

�

1 C kxk2
�� j.�� C 1/u.x/j2dx;

by

j.�� C z/�1uj2

H 2
� .Rn/

D k.�� C 1/.�� C z/�1uk2

L2
� .Rn/

� kuk2

L2
� .Rn/

C j1 � zj k.�� C z/�1uk2

L2
� .Rn/
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and by (4.7), one gets

.�� C z/�1 2 B.L2
�.Rn/; H 2

� .Rn//: (4.8)

Let � 2 C
1
comp.Rn/ such that �j z� D 1, z� � x�. Then the map u 7! �u belongs to

B.H 2
� .Rn/; H 2.Rn// and so, since .�u/ D u, by (4.8) one gets

.�� C z/�1 2 B.L2
�.Rn/; H

3
2 .�/ ˚ H

1
2 .�//: (4.9)

and, by duality,

Gz D ..�� C Nz/�1/0 2 B.H � 3
2 .�/ ˚ H � 1

2 .�/; L2
��.Rn//: (4.10)

Then, using (4.9) and (4.10) with � D ˛ and with � D �˛ respectively, (4.4)

follows from (3.4) and (4.7).
Assumption (3.5) implies that ran..‚ C …Mz…0/�1/ � H s1.�/ ˚ H s2.�/.

Thus, by the compact embedding H s1.�/ ˚ H s2.�/ ,! H �3=2.�/ ˚ H �1=2.�/,
one gets

.‚ C …Mz…0/�1 2 S1.ran.…/; ran.…0// (4.11)

(see the proof of Lemma 4.10 in [29] for more details). Therefore, by (3.4),
using (4.9) and (4.10) with � D 0 and � D �ˇ respectively, one obtains (4.5).

Finally, (4.6) holds true by [7, Corollary 5.7(b)].
Assumptions (4.3)-(4.6) permit us to apply the abstract results provided in [35]:

hypothesis (T1) and (E1) in [35, page 175] corresponds to our (4.1), (4.6) and (4.5)

respectively; then, by [35, Proposition 4.2], the latters imply hypotheses (LAP)
and (E) in [35, page 166], i.e. (4.1) again and

.�� C z/�1 � .��…;‚ C z/�1 2 S1.L2
�˛.Rn/; L2

˛.Rn//;

and hypothesis (T) in [35, page 168], a technical variant of (4.6). By [35, Theorem
3.5], these last hypotheses, together with the assumption that ��…;‚ is bounded
from below and (4.3)-(4.4) (i.e. hypothesis (OP) in [35, page 165]), finally give the
content of the theorem. �

Remark 4.3. Since the map defined in (4.9) has closed range (it is surjective),
Gz 2 B.H � 3

2 .�/ ˚ H � 1
2 .�/; L2

��.Rn// defined in (4.10) is injective and has
closed range by the closed range theorem. Hence, by [27, Theorem 5.2, page
231], for any z 2 �.A/ there exists cz > 0 such that

kGz.� ˚ '/k2

L2
�� .Rn/

� cz.k�k2

H
� 3

2 .�/
C k'k2

H
� 1

2 .�/
/ (4.12)

for all � ˚ ' 2 H � 3
2 .�/ ˚ H � 1

2 .�/.
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Lemma 4.4. For any k 2 Rn¹0º and for any ˛ > 1
2
, the limits

G˙
�k2 WD lim

�#0
G�.k2˙i�/ (4.13)

exist in B.H � 3
2 .�/ ˚ H � 1

2 .�/; L2
�˛.Rn// and

G˙
�k2 D Gz C .z C k2/R˙

�k2Gz; z 2 Cn.�1; 0�; (4.14)

.G˙
�k2/0 D R�

�k2 : (4.15)

The function G˙
�k2.� ˚ '/ solves, in the distribution space D

0.Rnn�/ and for any

� ˚ ' 2 H � 3
2 .�/ ˚ H � 1

2 .�/, the equation

.� C k2/G˙
�k2.� ˚ '/ D 0:

Moreover there exist c˙
k2 > 0 such that



G˙
�k2.� ˚ '/





2

L2
�˛.Rn/

� c˙
k2.k�k2

H
� 3

2 .�/
C k'k2

H
� 1

2 .�/
/: (4.16)

Proof. Let � 2 C 1
comp.Rn/ such that �j z� D 1, z� � x�. Then the map u 7! �u

belongs to B.H 2
�˛.Rn/; H 2.Rn// and so, by Theorem 4.1, the limits

R˙
�k2 D lim

�#0
.�� � .k2 ˙ i�//�1 (4.17)

exist in B.L2
˛.Rn/; H

3
2 .�/ ˚ H

1
2 .�//. Then the relations

G�.k2˙i�/ D ..�� � k2 � i�//0

D Gz C .z C k2 � i�/.�� � .k2 ˙ i�//�1Gz

(see [33, Lemma 2.1]), and Gz 2 B.H � 1
2 .�/ ˚ H � 3

2 .�/; L2
˛.R// (use (4.10) with

� D �˛), give (4.13), (4.14) and (4.15).

Since

lim
�#0

k.� C .k2 ˙ i�//u � .� C k2/ukL2
˛.Rn/ D 0; u 2 H 2

˛ .Rn/;

one has

R˙
�k2.�� � k2/u D u; u 2 H 2

˛ .Rn/: (4.18)



1458 A. Mantile, A. Posilicano, and M. Sini

Thus, for any test function u 2 D.Rnn�/ � C 1
comp.Rnn�/ � H 2

˛ .Rn/, one
obtains

h.� C k2/G˙
�k2.� ˚ '/; ui D hG˙

�k2.� ˚ '/; .� C k2/ui
D h.R�

�k2/0.� ˚ '/; .� C k2/ui
D �h� ˚ '; R˙

�k2.� C k2/ui
D �h� ˚ '; ui
D 0:

By (4.18) and the surjectivity of  W H 2.Rn/ ! H
3
2 .�/ ˚ H

1
2 .�/, the map

R˙
�k2 W L2

˛.Rn/ �! H
3
2 .�/ ˚ H

1
2 .�/

is surjective: given � ˚ ' 2 H
3
2 .�/ ˚ H

1
2 .�/ one has R˙

�k2v D � ˚ ', where
v D �.�Ck2/�u and �u D u D � ˚', u 2 H 2.Rn/. Therefore, by the closed
range theorem, the range of G˙

�k2 is closed; since G˙
�k2 is injective (it is the dual

of a surjective map), [27, Theorem 5.2, page 231] gives (4.16). �

While interesting, Theorem 4.2 gives no answer to the obvious question: “does
Kreı̆n’s formula survive in the limit � # 0?” That is given by the following

Theorem 4.5. Under the assumptions of Theorem 4.2, for any �k2 2 E�
…;‚,

the limits

M ˙
�k2 WD lim

�#0
M�.k2˙i�/; (4.19)

L˙
…;‚;�k2 WD lim

�#0
.‚ C …M�.k2˙i�/…

0/�1 (4.20)

exist in B.H � 3
2 .�/˚H � 1

2 .�/; H
3
2 .�/˚H

1
2 .�// and B.ran.…/; ran.…0// respec-

tively and

M ˙
�k2 D Mz � .z C k2/R˙

�k2Gz; z 2 Cn.�1; 0�: (4.21)

The linear operator ‚ C …M ˙
�k2…0 has a bounded inverse

L˙
…;‚;�k2 D .‚ C …M ˙

�k2…0/�1 (4.22)

and

R˙
…;‚;�k2 � R˙

�k2 D G˙
�k2…0.‚ C …M ˙

�k2…0/�1…R˙
�k2 : (4.23)

Moreover the map

z 7! R˙
…;‚;z WD

´

.��…;‚ C z/�1; z 2 C˙;

R˙
…;‚;�

; � 2 E�
…;‚;

is continuous on C˙ [ E�
…;‚ to B.L2

˛.Rn/; L2
�˛.Rn//.
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Proof. By [33, equation (5)], the operator family Mz , z 2 Cn.�1; 0�, satisfies
the identity

M�.k2˙i�/ D Mz � .z C k2 � i�/.�� � .k2 ˙ i�//�1Gz :

Since, by (4.10), Gz 2 B.H � 1
2 .�/ ˚ H � 3

2 .�/; L2
˛.Rn//, the norm convergence of

M�.k2˙i�/ to M ˙
�k2 is consequence of Theorem 4.1. This gives (4.19) and (4.21).

By Theorem 4.2, the limits

lim
�#0

G�.k2˙i�/…
0.‚ C …M�.k2˙i�/…

0/�1….�� � .k2 ˙ i�//�1 (4.24)

exist in B.L2
˛.Rn/; L2

�˛.Rn// and, by Lemma 4.4, the limits

G˙
�k2 D lim

�#0
G�.k2˙i�/ (4.25)

and

.G�
�k2/0 D R˙

�k2 D lim
�#0

.�� � .k2 ˙ i�//�1 (4.26)

exist in B.H � 1
2 .�/ ˚ H � 3

2 .�/; L2
�˛.Rn// and B.L2

˛.Rn/; H
1
2 .�/ ˚ H

3
2 .�//

respectively. According to (4.12) and (4.16), there exist Qc˙
k2 > 0 such that, for

all � > 0,



G�.k2˙i�/…
0.‚ C …M�.k2˙i�/…

0/�1….�� � .k2 ˙ i�//�1u




2

L2
�˛.Rn/

� Qc˙
k2k.‚ C …M�.k2˙i�/…

0/�1….�� � .k2 ˙ i�//�1uk2

H
� 3

2 .�/˚H
� 1

2 .�/
:

Let jjj � jjj denote the operator norm in B.X; Y /, the Hilbert spaces X and Y varying
according to the case. Then, by (4.24), one has

sup
�>0

jjj.‚ C …M�.k2˙i�/…
0/�1….�� � .k2 ˙ i�//�1jjj < C1:

and, by duality,

sup
�>0

jjjG�.k2˙i�/…
0.‚ C …M�.k2˙i�/…

0/�1jjj < C1:

Thus, by

jjjG�.k2˙i�/…
0.‚ C …M�.k2˙i�/…

0/�1…..�� � .k2 ˙ i�//�1 � R˙
�k2/jjj

� .sup
�>0

jjjG�.k2˙i�/…
0.‚ C …M�.k2˙i�/…

0/�1jjj/
jjj.�� � .k2 ˙ i�//�1 � R˙

�k2 jjj
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and by (4.24) and (4.26) one has that the limits

lim
�#0

G�.k2˙i�/…
0.‚ C …M�.k2˙i�/…

0/�1…R˙
�k2 (4.27)

exist in B.L2
˛.Rn/; L2

�˛.Rn// and coincide with the ones given in (4.24). Since
the map R˙

�k2 is surjective (see the end of the proof of Lemma 4.4), by [27,
Theorem 5.2, page 231] there exists Oc˙

�k2 > 0 such that

kR˙
�k2uk

H
1
2 .�/˚H

3
2 .�/

� Oc˙
�k2kukL2

˛.Rn/; for all u 2 ker.R˙
�k2/?:

Setting
ˆ� WD G�.k2˙i�/…

0.‚ C …M�.k2˙i�/…
0/�1…;

we have

sup

¹0º6D�˚'2H
1
2 .�/˚H

3
2 .�/

k.ˆ�1
� ˆ�2

/� ˚ 'kL2
�˛.Rn/

k� ˚ 'k
H

1
2 .�/˚H

3
2 .�/

D sup
u2ker.R˙

�k2
/?

k.ˆ�1
� ˆ�2

/R˙
�k2ukL2

�˛.Rn/

kR˙
�k2uk

H
1
2 .�/˚H

3
2 .�/

� sup
u2ker.R˙

�k2
/?

k.ˆ�1
� ˆ�2

/R˙
�k2ukL2

�˛.Rn/

Oc˙
�k2kukL2

˛.Rn/

:

Hence, by (4.27), the limits

lim
�#0

G�.k2˙i�/…
0.‚ C …M�.k2˙i�/…

0/�1… (4.28)

exist in B.ran.…/; L2
�˛.Rn// and, by duality, the limits

lim
�#0

.‚ C …M�.k2˙i�/…
0/�1….�� � .k2 ˙ i�//�1 (4.29)

exist in B.L2
˛.Rn/; ran.…0//. By (4.12) and (4.16), it results



G�.k2˙i�/…
0.‚ C …M�.k2˙i�/…

0/�1….� ˚ '/




2

L2
�˛.Rn/

� Qc˙
k2k.‚ C …M�.k2˙i�/…

0/�1….� ˚ '/k2

H
� 3

2 .�/˚H
� 1

2 .�/

and so (4.28) gives

sup
�>0

jjj.‚ C …M�.k2˙i�/…
0/�1jjj < C1: (4.30)
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Therefore, by (4.29), one gets that the limits

lim
�#0

.‚ C …M�.k2˙i�/…
0/�1…R˙

�k2 (4.31)

exist in B.L2
˛.Rn/; ran.…0// and coincide with the ones given by (4.29). Since

R˙
�k2 is surjective, proceeding as above one gets the existence of the limits

lim
�#0

.‚ C …M�.k2˙i�/…
0/�1 (4.32)

with respect to the operator norm in B.ran.…/; ran.…0//. Finally, taking the limit
� # 0 in the identities

.‚ C …M�.k2˙i�/…
0/�1.‚ C …M�.k2˙i�/…

0/

D .‚ C …M�.k2˙i�/…
0/.‚ C …M�.k2˙i�/…

0/�1

D 1;

one gets

.‚C…M ˙
�k2…0/�1.‚C…M ˙

�k2…0/ D .‚C…M ˙
�k2…0/.‚C…M ˙

�k2…0/�1 D 1:

By Theorem 4.1, the map z 7! R˙
z is continuous on C˙ [ .�1; 0/ to B.L2

˛.Rn/,
H

3
2 .�/ ˚ H

1
2 .�//; by duality, z 7! G˙

z D .R˙
z /0 is continuos on C˙ [ .�1; 0/

to B.H � 3
2 .�/ ˚ H � 1

2 .�/; L2
�˛.Rn//. By (4.21), z 7! M ˙

z is continuos on C˙ [
.�1; 0/ to B.H

3
2 .�/ ˚ H

1
2 .�/; H � 3

2 .�/ ˚ H � 1
2 .�// and so, by (4.30), the map

z 7! .‚ C …M ˙
z …0/�1 is continuos on C˙ [ .�1; 0/ to B.ran.…/; ran.…0//. In

conclusion z 7! R˙
…;‚;z is continuous on C˙ [ .�1; 0/ to B.L2

˛.Rn/; L2
�˛.Rn//.

�

Corollary 4.6. If, in addition to hypotheses inTheorem 4.5, hypothesis (3.6) holds,

then the Kreı̆n type formula (4.23) can be re-written as

R˙
…;‚;�k2 � R˙

�k2 D G˙
�k2…0.B‚ � …G˙

�k2…0/�1…R˙
�k2 : (4.33)

Proof. By hypothesis (3.6), one has

ran.Gz/jdom.‚/ � H 2.Rnn�/:

Then, by (4.14) and (4.17), the operator

G˙
�k2 W dom.‚/ �! H

3
2 .�/ ˚ H

1
2 .�/

is well defined and, for any � ˚ ' 2 dom.‚/, the limits

G˙
�k2.� ˚ '/ D lim

�#0
G�.k2˙i�/.� ˚ '/ (4.34)
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exists in H
3
2 .�/˚H

1
2 .�/. Thus, for any �˚' 2 dom.‚/ and for any �k2 2 E�

…;‚,
one has

.‚ C …M ˙
�k2…0/.� ˚ '/ D lim

�#0
.‚ C …M�.k2˙i�/…

0/.� ˚ '/

D lim
�#0

.B‚ � …G�.k2˙i�/…
0/.� ˚ '/

D .B‚ � …G˙
�k2…0/.� ˚ '/: �

Corollary 4.7. Under the hypotheses in Theorem 4.2, �…;‚ has empty singular

continuous spectrum, i.e.

L2.Rn/ D L2.Rn/ac ˚ L2.Rn/pp;

where L2.Rn/ac and L2.Rn/pp denote the absolutely continuous and pure point

subspaces of L2.Rn/ with respect to �…;‚.

Proof. We follow standard arguments (see e.g. [2, Theorem 6.1]): let E� the
spectral resolution of �…;‚ and let u 2 L2

˛.Rn/ \ L2.Rn/?
pp. Then, for any

compact interval Œa; b� � E�
…;‚ one has, by Stone’s formula, by the continuity

of z 7! R˙
…;‚;z and by Lebesgue’s dominated converge theorem,

h.Eb � Ea/u; uiL2.Rn/

D lim
�#0

1

2�i

Z b

a

h..��…;‚ C � � i�/�1 � .��…;‚ C � C i�/�1/u; ui d�

D 1

2�i

Z b

a

h.R�
…;‚;� � RC

…;‚;�
/u; ui d�

so that hE�u; uiL2.Rn/ is differentiable on E�
…;‚ and

d

d�
hE�u; uiL2.Rn/ D 1

2�i
h.R�

…;‚;� � RC
…;‚;�

/u; ui

for all u 2 L2
˛.Rn/. Since it is known that the set of functions for which

hE�u; uiL2.Rn/ is differentiable is a closed set, in conclusion hE�u; uiL2.Rn/ is
differentiable for any u 2 L2.Rn/?

pp. �

5. Eigenfunction expansion and the scattering matrix

All over this section we suppose that the assumptions in Theorem 4.2 hold true.
We then consider the extension z�…;‚ of the self-adjoint operator

�…;‚W dom.�…;‚/ � L2.Rn/ �! L2.Rn/
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to the larger space L2
�˛.Rn/, ˛ > 0, given by

z�…;‚W dom. z�…;‚/ � L2
�˛.Rn/ �! L2

�˛.Rn/;

z�…;‚u WD �uı C G.� ˚ '/ D �u � Œ O1�u ı� � Œ O0�u � �rı� ;

dom. z�…;‚/ WD ¹u D uı C G.� ˚ '/W
uı 2 H 2

�˛.Rn/; � ˚ ' 2 dom.‚/; …uı D ‚.� ˚ '/º:

By Theorem 4.2 and (3.1) one has

graph. z�…;‚/ \ .L2.Rn/ ˚ L2.Rn// D graph.�…;‚/:

Such an operator z�…;‚ allows the introduction of the generalized eigenfunctions
of �…;‚:

Theorem 5.1. Let Quk 2 L2
�˛.Rn/n¹0º be a generalized eigenfunction of �…;‚ with

eigenvalue �k2 2 E�
…;‚, i.e. Quk belongs to dom. z�…;‚/ and solves the equation

. z�…;‚ C k2/ Quk D 0:

Then

Quk D uk C G˙
�k2…0.‚ C …M ˙

�k2…0/�1…uk ;

where uk 2 H 2
�˛.Rn/ is a generalized eigenfunction of �W H 2.Rn/ � L2.Rn/ !

L2.Rn/ with eigenvalue �k2.

Proof. Let us set Quk D uı C G.� ˚ '/, with uı 2 H 2
�˛.Rn/ and � ˚ ' 2 dom.‚/

such that …uı D ‚.� ˚ '/. Then . z�…;‚ C k2/ Quk D 0 gives

.� C k2/uı D �.1 C k2/G.� ˚ '/:

Since ran.G/ � L2
˛.Rn/, we can apply R˙

�k2 to both sides of the above relation;
thus

uı D uk C .1 C k2/R˙
�k2G.� ˚ '/;

where uk 2 H 2
�˛.Rn/ is any solution of the equation .� C k2/uk D 0. Imposing

the boundary conditions we obtain, by (4.21) and by M1 D 0,

…uı D …uk � …M ˙
�k2.� ˚ '/ D ‚.� ˚ '/;

i.e.
� ˚ ' D .‚ C …M ˙

�k2…0/�1…uk :

The proof is then concluded by using (4.14) with z D 1. �
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Remark 5.2. Under hypothesis (3.6), by Corollary 3.6, one can alternatively
define

dom. z�…;‚/ WD ¹u 2 L2
�˛.Rn/ \ H 2

�˛.Rnn�/W Œ�u 2 dom.‚/; …u D B‚Œ�uº

and so
Quk D uk C G˙

�k2…0.B‚ � …G˙
�k2…0/�1…uk :

Before stating the next results we recall the following definition: let u solve the
Helmholtz equation .� C k2/u D 0 on the exterior of some bounded domain; we
say that u satisfies the .˙/ Sommerfeld radiation condition whenever

lim
kxk!C1

kxk.n�1/=2. Ox �r ˙ ik/u.x/ D 0

hold uniformly in Ox WD x=kxk. The plus sign corresponds to an inward wave and
the minus one corresponds to a outward wave.

Lemma 5.3. 1) the functions G˙
�k2.� ˚ '/ satisfy the .˙/ Sommerfeld radiation

condition.

2) If u 2 ker. z�…;‚ C k2/, �k2 2 E�
…;‚, satisfies the Sommerfeld radiation

condition, then u D 0.

Proof. By (4.15),

G˙
�k2.� ˚ '/ D SL˙

�k2 � C DL˙
�k2 ';

where
SL˙

�k2 WD .0R�
�k2/0; DL˙

�k2 WD .1R�
�k2/0:

By (2.5) and K˛.z/ D �
2

i˛C1H
.1/
˛ .iz/, where H

.1/
˛ denotes the Hankel function

of first kind of order ˛, it results

G�.k2˙i�/.x/ D i

4

�

p
k2 � i�

2�kxk
�

n
2

�1

H
.1/
n
2

�1
.
p

k2 � i� kxk/; Im
p

k2 � i� > 0:

Therefore, by
p

k2 � i� D �jkj C i
2

�
jkj

C o.�/ for any k 6D 0,

G
˙
�k2.x/ WD lim

�#0
G�.k2˙i�/.x/ D i

4

� �jkj
2�kxk

�
n
2

�1

H
.1/
n
2

�1
.�jkj kxk/:

Thus, for any fixed k 6D 0, one gets (see e.g. [5, Appendix 1])

sup
�>0

jG�.k2˙i�/.x/j � c.kxk� 1
2

.n�1/ C kxk�.n�2//:
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By the dominated convergence theorem, for any bounded and compactly sup-
ported u and v,

lim
�#0

hu; .R�.k2˙i�/ � zR˙
�k2/viL2.Rn/ D 0;

where zR˙
�k2 denotes the operator with integral kernel given by G

˙
�k2.x � y/.

Therefore, by Theorem 4.1, R˙
�k2 D zR˙

�k2 and so, if � and ' are in L2.�/ and
x … �,

SL˙
�k2 �.x/ D

Z

�

G
˙
�k2.x � y/ �.y/ d�.y/ (5.1)

and

DL˙
�k2 '.x/ D

Z

�

�.y/�rG
˙
�k2.x � y/ '.y/ d�.y/: (5.2)

Then, by the behavior of H
.1/
˛ .x/ and d

dx
H

.1/
˛ .x/ as kxk ! C1, there follows

that SL˙
�k2 � D G

˙
�k2 �.� ı�/ and DL˙

�k2 ' D G
˙
�k2 �.' ��rı�/, hence G˙

�k2.�˚'/

satisfy the .˙/ Sommerfeld radiation condition (see e.g. [18, Lemma 7, Subsec-
tion 7d, Section 8, Chapter II]).

2) Let us suppose that u 6D 0. Then, by Theorem 5.1,

u D uk C G˙
�k2…0.‚ C …M ˙

�k2…0/�1…uk ;

where uk 2 H 2
�˛.Rn/ is a generalized eigenfunction of � with eigenvalue �k2.

Then, by 1), u satisfies the Sommerfeld radiation condition if and only if uk does.
By Green’s formula on the ball of radius R, since .� C k2/uk.x/ D 0 for any
x 2 R3, one has

Im

�Z

kxkDR

Nuk.x/ Ox �ruk.x/d�.x/

�

D 0:

Thus, by [30, Lemma 9.9], if uk satisfies the Sommerfeld radiation condition then
uk.x/ D 0 for any kxk > R . Since R is arbitrary, this gives uk D 0, contradicting
our assumption u 6D 0. �

By Theorem 5.1 and by considering the usual family of generalized eigenfunc-
tions uı

�
2 H 2

�˛.Rn/, ˛ > n
2
, of �W H 2.Rn/ � L2.Rn/ ! L2.Rn/ given by the

plane waves
uı

�.x/ WD ei � �x;

one obtains the two families of generalized eigenfunctions of �…;‚ defined by

u˙
� WD uı

� C G�
�k2…0.‚ C …M �

�k2…0/�1…uı
� ; k D k�k; �k2 2 E�

…;‚:
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Remark 5.4. Since ran.R˙
�k2/ � H 2

�˛.Rn/, by (2.16) and (4.14), one has

Œ�G˙
�k2 D 1

H
� 3

2 .�/˚H
� 1

2 .�/
:

Thus, since Œ�uı
�

D 0, one gets

Œ�u˙
� D .‚ C …M �

�k2…0/�1…uı
� ; (5.3)

and so the functions u˙
�

2 dom. z�…;‚/ solve the Lippmann-Schwinger type
equation

u˙
� D uı

� C G�
�k2 Œ�u˙

� : (5.4)

Let us now define, for any u 2 L2
˛.Rn/,

F ı
˙u.�/ WD 1

.2�/
n
2

Z

Rn

u˙
�

.x/ u.x/ dx

D F u.�/ C 1

.2�/
n
2

h.‚ C …M �
�k2…0/�1…uı

�/; R˙
�k2ui

D F u.�/ C 1

.2�/
n
2

hŒ�u˙
� ; R˙

�k2ui;

where F denotes the Fourier transform and h�; �i denotes the .H �s1.�/˚H �s2.�//

– .H s1.�/ ˚ H s2.�// duality. Next theorem provides the main properties of the
maps F ı

˙:

Theorem 5.5. 1) The F ı
˙ extend to bounded operators F˙ 2 B.L2.Rn// such that

ker.F˙/ D L2.Rn/pp and F˙jL2.Rn/ac are unitary onto L2.Rn/.

2) Let Pac be the orthogonal projection onto L2.Rn/ac, then

.F˙Pac �…;‚u/.�/ D �k�k2F˙u.�/ for all u 2 dom.�…;‚/:

3) Assume either (3.6) or (3.7) holds, so that the wave operators

W˙ WD s- lim
t!˙1

e�it�…;‚eit�

exist and are complete; then

W˙ D F �
˙F: (5.5)
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Proof. 1) We adapt to our framework the reasonings in [2, Section 6] (see
also [25]). By (3.4), one has, for any z 2 Z…;‚,

.F.��…;‚ C z/�1u/.�/

D . k�k2 C z/�1F u.�/ C .F Gz…0.‚ C …Mz…0/�1….�� C z/�1u/.�/

D . k�k2 C z/�1F u.�/

C 1

.2�/n=2
h.‚ C …M Nz…0/�1.�� C Nz/�1uı

� ; .�� C z/�1u/i

D . k�k2 C z/�1 Muz.�/;

where

Muz.�/ WD F u.�/ C 1

.2�/n=2
h.‚ C …M Nz…0/�1uı

� ; .�� C z/�1u/i:

Then, for u 2 L2
˛.Rn/, we set

Mu˙
�k2.�/ WD lim

�#0
Mu�.k2˙i�/.�/:

By the Theorems 4.1 and 4.5, such a definition is well posed and

Mu˙
�k2.�/ D F u.�/ C 1

.2�/n=2
h.‚ C …M �

�k2…0/�1uı
� ; R˙

�k2ui;

so that, for any u 2 L2
˛.Rn/,

Mu˙
�k�k2.�/ D F ı

˙u.�/:

Then, one has (see [2, p. 191] for the reasonings that allow the exchange lim
R

D
R

lim)

h.Eb � Ea/u; uiL2.Rn/

D lim
�#0

�

�

Z b

a

k.��…;‚ C .� ˙ i�//�1uk2
L2.Rn/

d�

D lim
�#0

�

�

Z b

a

kF.��…;‚ C � ˙ i�/�1u/k2
L2.Rn/

d�

D lim
�#0

�

�

Z b

a

�Z

Rn

j k�k2 C � ˙ i�j�2j Mu�˙i�.�/j2 d�

�

d�

D
Z

Rn

�

lim
�#0

�

�

Z b

a

j k�k2 C � ˙ i�j�2j Mu�˙i�.�/j2 d�

�

d�:
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By the known properties of the Poisson integral (see e.g. [2, equation (6.16)]),

lim
�#0

�

�

Z b

a

j k�k2 C � ˙ i�j�2j Mu�˙i�.�/j2 d�

D
´

j Mu�k�k2.�/j2; a < �k�k2 < b;

0; otherwise:

(5.6)

Therefore

h.Eb � Ea/u; uiL2.Rn/ D
Z

a<�k�k2<b

j Mu�k�k2.�/j2 d�

D
Z

a<�k�k2<b

jF ı
˙u.�/j2 d�

(5.7)

and so, if Pac denotes the orthogonal projector onto L2.Rn/ac, for any u 2 L2
˛.Rn/

one has

kPac uk2
L2.Rn/

D hPac u; uiL2.Rn/ D
Z

Rn

jF ı
˙u.�/j2 d� D kF ı

˙uk2
L2.Rn/

: (5.8)

This shows that F ı
˙ can be extended by continuity to a bounded map F˙ 2

B.L2.Rn//. By (5.8), one gets ker.F˙/ D L2.Rn/pp and F˙ is an isometry
from L2.Rn/ac into L2.Rn/. By Theorem 3.3, ran.W �

˙/ D L2.Rn/ and so
ran.F˙/ D L2.Rn/ will be a consequence of (5.5) which will be proven below.

2) By (5.7) and by the polarization identity, for any u; v 2 L2.Rn/ac,

hE�u; viL2.Rn/ D
Z

�k�k2<�

F˙u.�/F˙v.�/ d�

and so, for any u; v 2 L2.Rn/ac \ dom.�…;‚/,

h�…;‚u; viL2.Rn/ D
Z 0

�1

�hE�u; viL2.Rn/ d�

D �
Z

Rn

k�k2F˙u.�/F˙v.�/ d�

D �h k � k2F˙u; F˙viL2.Rn/:

3) We equivalently show that F˙W˙u D F u for any u in the Schwartz space
of rapidly decreasing functions. Let define W˙.t / WD Pac e�it�…;‚eit�. Since
we are assuming the existence of the strong limits which define W˙, such limits
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can be replaced by the Abelian ones (see e.g. Corollary 14 and Lemma 15 in [6,
Section 6.1.2]); therefore

F˙W˙u D lim
�!0˙

�

Z ˙1

0

e��tF˙W˙.t /u dt

D lim
�!0˙

Z ˙1

0

e��t d

dt
F˙W˙.t /u dt C F˙u:

The map F˙ diagonalize Pac �…;‚, thus

.F˙W˙.t /u/.�/ D 1

.2�/n=2
hu˙

� ; eit.�Ck�k2/ui

(here and below h�; �i denotes the L2
�˛-L2

˛ duality). Since .� C k�k2/uı
�

D 0 and

u˙
�

D uı
�

C G�
�k�k2Œ�u˙

�
, we get

e��t d

dt
.F˙W˙.t /u/.�/

D ie��t

.2�/n=2

˝

u˙
� ; .� C k�k2/eit.�Ck�k2/u

˛

D ie��t

.2�/n=2
.h.� C k�k2/uı

� ; eit.�Ck�k2/ui
C hG�

�k�k2Œ�u˙
� ; .� C k�k2/eit.�Ck�k2/ui/

D i

.2�/n=2
hG�

�k�k2Œ�u˙
� ; .� C k�k2/eit.�Ck�k2Ci�/ui

D 1

.2�/n=2

d

dt
hG�

�k�k2Œ�u˙
� ;

.� C k�k2/.� C k�k2 C i�/�1eit.�Ck�k2Ci�/ui:

Therefore, a.e. (eventually taking the limit along a subsequence)

.F˙W˙u/.�/

D lim
�!0˙

Z ˙1

0

e��t d

dt
.F˙W˙.t /u/.�/ dt C F˙u.�/

D � 1

.2�/n=2
lim

�!0˙

˝

G�
�k�k2Œ�u˙

� ; .� C k�k2/.� C k�k2 C i�/�1u
˛

C F˙u.�/

D � 1

.2�/n=2

˝

G�
�k�k2Œ�u˙

� ; u
˛

C F˙u.�/

D F u.�/: �
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Let us now introduce the scattering operator S WD W �
CW�, so that, by W˙ D

F �
˙F , one gets FSF � D FCF �

� . The scattering matrix

SkW L2.Sn�1/ �! L2.Sn�1/;

where Sn�1 denotes the unit sphere in Rn, is then defined by the relation

Sk.F u/k D .F Su/k ; .F u/k. O�/ WD F u.k O�/:

Therefore
Sk.F�u/k D .FCu/k :

The next results shows how the kernel (proportional to the scattering amplitude)
of the linear operator 1� Sk can be expressed in terms of the limit Weyl functions
‚ C …M ˙

�k2…0; here � denotes Lebesgue measure on Sn�1.

Theorem 5.6. Assume either (3.6) or (3.7) holds, so that W˙ and hence Sk exist.

Then, for any k > 0 such that �k2 2 E�
…;‚,

Skf . O�/ D f . O�/ �
Z

Sn�1

sk. O�; O� 0/ f . O� 0/ d�. O� 0/;

where

sk. O�; O� 0/ WD i

4�

� k

2�

�n�2

h…uı

k O� 0
; .‚ C …M �

�k2…0/�1…uı

k O�
i

D i

4�

� k

2�

�n�2

h.‚ C …M C
�k2…0/�1…uı

k O� 0
; …uı

k O�
i:

In the case (3.6) holds, one also has the equivalent representation

sk. O�; O� 0/ D i

4�

� k

2�

�n�2

h…uı

k O� 0
; .B‚ � …G�

�k2…0/�1…uı

k O�
i

D i

4�

� k

2�

�n�2

h.B‚ � …GC
�k2…0/�1…uı

k O� 0
; …uı

k O�
i:

Proof. Here we follow the same strategy as in [37] and [5]. By the definition of
Sk we only need to show that, for any u 2 L2

˛.Rn/, one has

.FCu/k. O�/ D .F�u/k. O�/ �
Z

Sn�1

sk. O�; O� 0/ .F�u/k. O� 0/ d�. O� 0/: (5.9)

Let us define the auxiliary functions

v
k O�

WD u�

k O�
� uC

k O�
�
Z

Sn�1

sk. O�; O� 0/ u�

k O� 0
d�. O� 0/:
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By (5.4),

v
k O�

D GC
�k2 Œ�u�

k O�
� G�

�k2 Œ�uC

k O�
�
Z

Sn�1

sk. O�; O� 0/ GC
�k2 Œ�u�

k O� 0
d�. O� 0/

� i

4�

� k

2�

�n�2
Z

Sn�1

huı

k O� 0
; Œ�uC

k O�
iuı

k O� 0
d�. O� 0/:

By
Z

Sn�1

Nuı

k O�
.x/ uı

k O�
.y/ d�. O�/ D 4�i

�2�

k

�n�2

.G �
�k2.x � y/ � G

C
�k2.x � y//

(see [5, formula (15)]) and by (5.1) and (5.2), one gets

� i

4�

� k

2�

�n�2
Z

Sn�1

huı

k O� 0
; Œ�uC

k O�
i uı

k O� 0
d�. O� 0/ D .G�

�k2 � GC
�k2/Œ�uC

k O�

and so
v

k O�
D GC

�k2 Œ�v
k O�

:

Therefore, by 1) in Lemma 5.3, v
k O�

satisfies the Sommerfeld radiation condition.

Since u˙

k O�
2 ker. z�…;‚ C k2/, one has v

k O�
2 ker. z�…;‚ C k2/. Thus, by 2) in

Lemma 5.3, v
k O�

D 0 and so

uC

k O�
D u�

k O�
�
Z

Sn�1

sk. O�; O� 0/ u�

k O� 0
d�. O� 0/:

Considering the duality product of both the left and right functions with u 2
L2

˛.Rn/, one gets (5.9) and the proof is done. �

Remark 5.7. Given � 2 .0; C1/ \ �.�…;‚/, let W
�

˙ denote the wave operators
for the scattering couple ..��…;‚ C �/�1; .�� C �/�1/. Since both W˙ and
W

�
˙ exist and are complete, by the Birman-Kato invariance principle one gets

W
�

˙ D W˙. By (3.4) one has

.��…;‚ C �/�1 � .�� C �/�1 D G�…0.‚ C …M�…0/�1…G0
�: (5.10)

The Birman–Yafaev general scheme in stationary scattering theory (see e.g. [15],
[40], and [41]), conditional on the existence of the limit operator

BC
�

WD lim
�#0

B�Ci�; Bz WD …G0
�..�� C �/�1 � z/�1G�…0

and of the inverse .1CBC
�

.‚C…M�…0/�1/�1, allows the representation formula
for the scattering matrix S

�

�
, corresponding to the scattering operator S� D

.W
�

C /�W �
� , given by (see e.g. [41, equation (2.8)])

S
�

�
D 1� 2�iL�…0.‚ C …M�…0/�1.1C BC

�
.‚ C …M�…0/�1/�1…L0

�: (5.11)
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Here

L�W H �3=2.�/ ˚ H �1=2.�/ �! L2.Sn�1/;

.L�.� ˚ '//. O�/ WD 1

�
Œ.F0G�.� ˚ '//.�/�. O�/;

is defined in terms of the unitary map F0W L2.Rn/ ! L2..0; ��1/I L2.Sn�1// such
that the operator F0.�� C �/�1F �

0 acts as multiplication by �, i.e.

Œ.F0u/.�/�. O�/ WD 2� 1
2

�

� 1

�
� �

�
n�2

4

.F u/
�� 1

�
� �

�
1
2 O�
�

:

By the identities

..�� C �/�1 � z/�1 D �1

z

�

1C 1

z

�

� � C � � 1

z

��1�

;

G0
�.�� C � � 1

z
/�1 D z.G0

�� 1
z

� G0
�/;

M�� 1
z

D M� � 1

z
G0

�� 1
z

G�;

one obtains

.‚ C …M�…0/�1.1C Bz.‚ C …M�…0/�1/�1

D .‚ C …M�…0 � Bz/�1

D
�

‚ C …M�…0 � …G0
�

�

1

z
C 1

z2
.�� C � � 1

z
/�1

�

G�…0
��1

D
�

‚ C …M�…0 � 1

z
…G0

�G�…0 � 1

z
….G0

�� 1
z

� G0
�/G�…0

��1

D
�

‚ C …M�…0 � 1

z
…G0

�� 1
z

G�…0
��1

D .‚ C …M�� 1
z
…0/�1:

Therefore, by Theorems 4.2 and 4.5, both BC
�

and .1 C BC
�

.‚ C …M�…0/�1/�1

are well defined and

S
�

�
D 1 � 2�iL�…0

�

‚ C …M C

�� 1
�

…0
��1

…L0
�; � � 1

�
2 E�

…;‚: (5.12)

In case Theorems 4.2 and 4.5 were not available, using the results contained in
[40, Chapter 7, Sections 4 and 6], the representation formula (5.11) could be
still obtained under Kato-smoothness or trace-class hypotheses on the resolvent
difference (5.10). However for the models we are here considering, the trace-class
condition is not always fulfilled while checking the smoothness property may be
a substantial problem (see e.g. [40, Chapter 7, Section 4, Proposition 1]).
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Finally, using the correspondence S
�

�
D Sk, which holds whenever � � 1

�
D

�k2 (see [40, Section 6, Chapter 2]), and the identity

.L�.� ˚ '//. O�/ D 2� 1
2

�

� 1

�
� �

�
n�2

4

.2�/� n
2 huı

.��1��/
1
2 O�

; � ˚ 'i;

one gets that (5.12) matches the formula provided in Theorem 5.6.

6. Examples: Boundary conditions on �

In this section we apply our results to self-adjoint realizations of the Laplacian
with various kind of boundary conditions on �. For more details on such models
we refer to [29, Section 5]. In particular, by the results given there, hypothesis (3.6)

holds for all the examples presented here. As regards the semi-boundedness hy-
potheses required in Theorem 4.2, the semi-boundedness of the operators �D and
�N in subsections 6.1 and 6.2 is clear, semi-boundedness of �R in subsection 6.3
is provided in [29, Remark 5.2] and semiboundedness of �˛;ı and �ˇ;ı0 in sub-
sections 6.4 and 6.5 is provided in [9, Theorem 3.16] (see also the next Section,
the proofs being essentially the same). In the following, in order to simplify the
exposition, we suppose that �ex is connected.

6.1. Dirichlet boundary conditions. Let us consider the self-adjoint extension
�D corresponding to Dirichlet boundary conditions on the whole �; it is given
by the direct sum �D D �D

in ˚ �D
ex, where the self-adjoint operators �D

in and
�D

ex are defined by �D
in W D �jdom.�D

in / and �D
ex WD �jdom.�D

ex/, with do-
mains dom.�D

in / D ¹uin 2 H 2.�in/W  in
0 uin D 0º and dom.�D

ex/ D ¹uex 2
H 2.�ex/W ex

0 uex D 0º. Since

dom.�D
in / ˚ dom.�D

ex/ D¹u 2 H 2.Rnn�/W Œ0�u D 0; 0u D 0º
D¹u 2 H 1.Rn/ \ H 2.Rnn�/W 0u D 0º;

that corresponds, in Corollary 3.6, to the choice ….� ˚ '/ WD � ˚ 0, and B‚ D 0.
Thus (see [29, Subsection 5.1])

.�D
in ˚ �D

ex/u D �u � Œ1�u ı�

and, by .0 SLz/�1 D P in
z � P ex

z , where P in
z and P ex

z denote the Dirichlet-to-
Neumann operators for �in and �ex respectively (see e.g. [29, equation (5.4)]),
one has, for any z 2 Cn.�1; 0�,

.�.�D
in ˚ �D

ex/ C z/�1 D.�� C z/�1 C SLz.P ex
z � P in

z /0.�� C z/�1:



1474 A. Mantile, A. Posilicano, and M. Sini

Then, by Theorem 5.6, one has, for any k > 0 such that �k2 … �.�D
in /,

sk. O�; O� 0/ D i

4�

� k

2�

�n�2

h.P ex
�k2 � P in

�k2/C0uı

k O� 0
; 0uı

k O�
i;

where

.P ex
�k2 � P in

�k2/C WD lim
�#0

.P ex
�k2Ci�

� P in
�k2Ci�

/ D �.0 SLC
�k2/�1:

Such a limit exists in B.H
3
2 .�/; H � 3

2 .�// by Theorem 4.5. Notice that, restricted
to the case n D 2, similar formulae have been obtained (without the smoothness
condition on �) in [19, Theorems 5.3 and 5.6].

6.2. Neumann boundary conditions. Let us consider the self-adjoint exten-
sion �N corresponding to Neumann boundary conditions on the whole �; it is
given by the direct sum �N D �N

in ˚ �N
ex, where the self-adjoint operators �N

in
and �N

ex are defined by �N
in WD �jdom.�N

in / and �N
ex WD �jdom.�N

ex/, with
domains dom.�N

in / D ¹uin 2 H 2.�in/W  in
1 uin D 0º and dom.�N

ex/ D ¹uex 2
H 2.�ex/W ex

1 uex D 0º. Since

dom.�N
in / ˚ dom.�N

ex/ D ¹u 2 H 2.Rnn�/W Œ1�u D 1u D 0º;

that corresponds, in Corollary 3.6, to the choice ….� ˚ '/ WD 0 ˚ ', and B‚ D 0.
Thus (see [29, Subsection 5.2])

.�N
in ˚ �N

ex/u D �u � Œ0�u � �rı� ;

and, by .1 DLz/�1 D Qex
z � Qin

z , where Qin
z and Qex

z denote the Neumann-to-
Dirichlet operators for �in and �ex respectively (see e.g. [29, equation (5.7)]), one
has, for any z 2 Cn.�1; 0�,

.�.�N
in ˚ �N

ex/ C z/�1 D.�� C z/�1 C DLz.Qin
z � Qex

z /1.�� C z/�1:

Then, by Theorem 5.6, one has, for any k > 0 such that �k2 … �.�N
in /,

sk. O�; O� 0/ D i

4�

� k

2�

�n�2

h.Qin
�k2 � Qex

�k2/C1uı

k O� 0
; 1uı

k O�
i;

where

.Qin
�k2 � Qex

�k2/C WD lim
�#0

.Qin
�k2Ci�

� Qex
�k2Ci�

/ D �.1 DLC
�k2/�1:

Such a limits exists in B.H
1
2 .�/; H � 1

2 .�// by Theorem 4.5. Notice that, restricted
to the case n D 2, similar formulae have been obtained (without the smoothness
condition on �) in [21, Theorems 4.2 and 4.3].
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6.3. Robin boundary conditions. Let us consider the self-adjoint extension �R

corresponding to Robin boundary conditions on the whole �; it is given by the
direct sum �R D �R

in ˚ �R
ex, where

�R
in WD �jdom.AR

in/; �R
ex WD �jdom.�R

ex/;

dom.�R
in/ D ¹uin 2 dom.�max

in /W  in
1 uin D bin  in

0 uinº;

dom.�R
ex/ D ¹uex 2 dom.�max

ex /W ex
1 uex D bex ex

0 uexº:

Here bin and bex are real-valued multipliers in H
1
2 .�/. Since, in case bex.x/ 6D

bin.x/ for a.e. x 2 �, the domain of �R
in ˚ �R

ex is given by

dom.�R
in ˚ �R

ex/ D
°

u 2 H 2.Rnn�/W
.bex � bin/0u D Œ1�u � 1

2
.bex C bin/Œ0�u;

.bex � bin/1u D 1

2
.bex C bin/Œ1�u � bexbinŒ0�u

±

:

that corresponds, in Corollary 3.6, to the choice … D 1 and B‚ D BR, where

BR D � 1

Œb�

�

1 hbi
hbi bexbin

�

; hbi WD 1

2
.bex C bin/; Œb� WD bex � bin;

Thus (see [29, Subsection 5.3])

.�R
in ˚ �R

ex/u D �u � 4

Œb�
..hbi 1u � bexbin0u/ ı� C .1u � hbi 0u/ � �rı�/

and, for any z 2 �.�R
in/ \ �.�R

ex/ \ Cn.�1; 0�,

.�.�R
in ˚ �R

ex/ C z/�1

D .�� C z/�1� Gz

"

1=Œb� C 0 SLz hbi=Œb� C 0 DLz

hbi=Œb� C 1 SLz bCb�=Œb� C 1 DLz

#�1

.�� C z/�1;

where Gz.� ˚ '/ D SLz � C DLz '. Let us notice that the case in which one has
the same Robin boundary conditions on both sides of � corresponds to the choice
bex D bı D �bin.

Then, by Theorem 5.6, one has, for any k > 0 such that �k2 … �.�R
in/,

sk. O�; O� 0/

D� i

4�

� k

2�

�n�2
*"

1=Œb� C 0 SLC
�k2 hbi=Œb� C 0 DLC

�k2

hbi=Œb� C 1 SLC
�k2 bCb�=Œb� C 1 DLC

�k2

#�1

uı
k� 0 ; uı

k�

+

:
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6.4. ı-interactions. Here we consider the self-adjoint extension corresponding
to the choice ….� ˚ '/ D � ˚ 0 and ‚.� ˚ '/ D �.�=˛ C 0 SL �/ ˚ 0, where
˛ is a real-valued multiplier in H

3
2 .�/ such that 1=˛ 2 L1.�/. Such a kind

of self-adjoint extensions correspond to the boundary conditions ˛0u D Œ1�u

and so one obtains the self-adjoint extensions usually called “ı-interactions on �”
(see [16], [9] and references therein). By Corollary 3.6 (see [29, Subsection 5.4]),
one gets the self-adjoint extension

�˛;ı u D �u � ˛0u ı� ;

dom.�˛;ı/ WD ¹u 2 H 1.Rn/ \ H 2.Rnn�/W ˛0u D Œ1�uº I
its resolvent is given by

.��˛;ı C z/�1 D .�� C z/�1 � SLz..1=˛/ C 0 SLz/�10.�� C z/�1

D .�� C z/�1 � SLz.1 C ˛0 SLz/�1˛0.�� C z/�1:

Then, by Theorem 5.6 and Remark 3.8, one has, for any k > 0,

sk. O�; O� 0/ D � i

4�

� k

2�

�n�2

h.1 C ˛0 SLC
�k2/�1˛0uı

k O� 0
; 0uı

k O�
i:

6.5. ı
0-interactions. Here we consider the self-adjoint extension corresponding

to the choice ….� ˚ '/ D 0 ˚ ' and ‚.� ˚ '/ D 0 ˚ .'=ˇ � 1 DL '/, where
ˇ is a real-valued multiplier in H

1
2 .�/ such that 1=ˇ 2 L1.�/. Such a kind of

self-adjoint extensions correspond to the boundary conditions ˇ1u D Œ0�u and
so one obtains the self-adjoint extensions usually called “ı0-interactions on �”
(see [9] and references therein). By Corollary 3.6 (see [29, Subsection 5.5]), one
gets the self-adjoint extension

�ˇ;ı0u D �u � ˇ1u � �rı� ;

dom.�ˇ;ı0/ WD ¹u 2 H 2.Rnn�/W Œ1�u D 0; ˇ1u D Œ0�uº I
Its resolvent is given by

.��ˇ;ı0 C z/�1 D .�� C z/�1 C DLz..1=ˇ/ � 1 DLz/�11.�� C z/�1

D .�� C z/�1 C DLz.1 � ˇ1 DLz/�1ˇ1.�� C z/�1:

Then, by Theorem 5.6 and Remark 3.8„ one has, for any k > 0,

sk. O�; O� 0/ D i

4�

� k

2�

�n�2

h.1 � ˇ1 DLC
�k2/�1ˇ1uı

k O� 0
; 1uı

k O�
i:
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7. Examples: Boundary conditions on † � �

In this section we consider boundary conditions supported on a relatively open
part † � � with Lipschitz boundary. For more details and proof regarding
such models we refer to [29, Section 6]. In particular, by the results given there,
hypothesis (3.7) holds for all the examples presented here; moreover, the semi-
boundedness hypothesis required in Theorem 4.2 holds true as well: this point is
next discussed case-by-case. In order to apply Theorem 3.7, so to simplify the
exposition, we suppose that Rnnx† is connected.

In the following, given X � � closed, we use the definition

H s
X .�/ WD ¹� 2 H s.�/W supp.�/ � Xº:

Given † � � relatively open of class C
0;1, we denote by …† the orthogonal

projector in the Hilbert space H s.�/, s > 0, such that ran.…†/ D H s
†c .�/?. One

has ran.…0
†/ D H �s

x†
.�/, where …0

† D ƒ2s…†ƒ�2s is the dual projection. In the

following, we use the identifications H s
†c .�/? ' H s.†/ and H �s

x†
.�/ ' H s.†/0.

In particular, by the former, the orthogonal projection …† can be identified with
the restriction map R†W H s.�/ ! H s.†/, R†� WD �j†.

7.1. Dirichlet boundary conditions. We denote by �D;† the self-adjoint ex-
tension corresponding to the orthogonal projector defined by ….� ˚ '/ WD
.…†�/˚0 � .�j†/˚0 and to the self-adjoint operator ‚.�˚'/W D .�‚D;†�/˚0,

‚D;†W dom.‚D;†/ � H
� 3

2

x†
.�/ ! H

3
2 .†/; ‚D;†� WD .0 SL �/j†;

dom.‚D;†/ WD ¹� 2 H
� 1

2

x†
.�/W .0 SL �/j† 2 H

3
2 .†/º:

By Theorem 3.1 (see [29, Subsection 6.1]),

�D;†u D �u � Œ O1�u ıx†; (7.1)

dom.�D;†/ D ¹u 2 H 1.Rn/ \ H 0
�.Rnn�/W

Œ O1�u 2 dom.‚D;†/; . in
0 u/j† D .ex

0 u/j† D 0º

is self-adjoint and

.��D;† C z/�1 D .�� C z/�1 � SLz …0
†.R†0 SLz …0

†/�1R†0.�� C z/�1:

Denoting by h�; �i�1;1 the H �1.Rn/-H 1.Rn/ duality, for any

u 2 dom.�D;†/ � H 1.Rn/
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one has, by (7.1) and hı†; ui�1;1 D 0 whenever supp.0u/ � †c ,

h��D;†u; uiL2.Rn/ D h��u; ui�1;1 D kruk2
L2.Rn/

and so �D;† � 0.
By Theorems 5.6 and 3.7, one gets, for any k > 0,

sk. O�; O� 0/ D � i

4�

� k

2�

�n�2

h.R†0 SLC
�k2 …0

†/�1R†0uı

k O� 0
; R†0uı

k O�
i:

7.2. Neumann boundary conditions. We denote by �N;† the self-adjoint ex-
tension corresponding to the orthogonal projector defined by

….� ˚ '/ WD 0 ˚ .…†'/ � 0 ˚ .'j†/

and to the self-adjoint operator ‚.� ˚ '/ WD 0 ˚ .�‚N;†'/,

‚N;†W dom.‚N;†/ � H
� 1

2

x†
.�/ �! H

1
2 .†/; ‚N;†' D .1 DL '/j†;

dom.‚N;†/ WD ¹' 2 H
1
2

x†
.�/W .1 DL '/j† 2 H

1
2 .†/º:

By Theorem 3.1 (see [29, Subsection 6.2]),

�N;†u D �u � Œ0�u � �rıx†; (7.2)

dom.�N;†/ D ¹u 2 H 1.Rnnx†/ \ H 0
�.Rnn�/W

Œ0�u 2 dom.‚N;†/; Œ O1�u D 0; . O in
1 u/j† D . Oex

1 u/j† D 0º

is self-adjoint and

.��N;† C z/�1

D .�� C z/�1 � DLz …0
†.R† O1 DLz …0

†/�1R†1.�� C z/�1:

By Green’s formula (2.10), for any

u 2 dom.�N;†/ � H 1.Rnn�/ \ H 0
�.Rnn�/

one has

h��N;†u; uiL2.Rn/ D kruk2
L2.�in/

C kruk2
L2.�ex/

C h O1u; Œ0�uiL2.�/

D kruk2
L2.�in/

C kruk2
L2.�ex/

and so �N;† � 0.
Then, by Theorems 5.6 and 3.7, one gets, for any k > 0,

sk. O�; O� 0/ D � i

4�

� k

2�

�n�2

h.R† O1 DLC
�k2 …0

†/�1R†1uı

k O� 0
; R†1uı

k O�
i:
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7.3. Robin boundary conditions. We denote by �R;† the self-adjoint extension
corresponding to the orthogonal projector defined by ….� ˚ '/ WD …˚

†.� ˚ '/ D
.…†�/ ˚ .…†'/ � R˚

†.� ˚ '/ WD .�j†/ ˚ .'j†/ and to the self-adjoint operator
‚ WD �‚R;†,

‚R;†W dom.‚R;†/ � H
� 3

2

x†
.�/ ˚ H

� 1
2

x†
.�/ �! H

3
2 .†/ ˚ H

1
2 .†/;

‚R;†.�; '/ D ...1=Œb� C 0 SL/� C .hbi=Œb� C O0 DL/'/j†/

˚ ...hbi=Œb� C O1 SL/� C .bexbin=Œb� C O1 DL/'/j†/;

dom.‚R;†/ WD ¹.�; '/ 2 L2
x†
.�/ � H

1
2

x†
.�/W

..1=Œb� C 0 SL/� C .hbi=Œb� C O0 DL/'/j† 2 H
3
2 .†/;

..hbi=Œb� C O1 SL/� C .bexbin=Œb� C O1 DL/'/j† 2 H
1
2 .†/º:

Here bin and bex satisfy the same hypotheses as in Subsection 6.3 and bin > bex.
By Theorem 3.1 (see [29, Subsection 6.3]),

�R;†u D �u � 4

Œb�
..hbi 1u � bexbin0u/ ıx† C .1u � hbi 0u/ � �rıx†/;

dom.�R;†/ D ¹u 2 H 1.Rnnx†/ \ H 0
�.Rnn�/W Œ O�u 2 dom.‚R;†/;

. in
1 u � bin in

0 u/j† D .ex
1 u � bexex

0 u/j† D 0º

is self-adjoint and

.��R;† C z/�1 � .�� C z/�1

D �Gz.…˚
†/0

 

R˚
†

"

1=Œb� C 0 SLz hbi=Œb� C 0 DLz

hbi=Œb� C 1 SLz bCb�=Œb� C 1 DLz

#

.…˚
†/0

!�1

R˚
†.�� C z/�1;

where .…˚
†/0 is the orthogonal projection onto H

� 3
2

x†
.�/ ˚ H

� 1
2

x†
.�/ and Gz is

defined in (2.8).

Remark 7.1. By [29, Remark 6.15], �R;† depends only on †, binj† and bexj†.

Thus, by considering z� � Rn such that z�in D z� � �ex, �in � z�ex D Rnn xz� and
† � z� D @ z�, it is possible to convert the assumption bin > bex into bex > bin.
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By Green’s formula (2.10) and by Ehrling’s lemma, for any u 2 dom.�R;†/ �
H 1.Rnn�/ \ H 0

�.Rnn�/ one has (here the Sobolev index s belongs to
�

1
2
; 1
�

and
B c �in is an open ball)

h��R;†u; uiL2.Rn/

D kruk2
L2.�in/

C kruk2
L2.�ex/

� hbin in
0 uin;  in

0 uiniL2.†/ C hbexex
0 uex; ex

0 uexiL2.†/

� kruk2
L2.�in/

C kruk2
L2.�ex/

� .kbinkL1.�/ C kbexkL1.�//.k in
0 uink2

L2.�/
C kex

0 uexk2
L2.�/

/

� kruk2
L2.�in/

C kruk2
L2.�ex/

� c.kbinkL1.�/ C kbexkL1.�//.kuink2
H s.�in/ C kuexk2

H s.B\�ex//

� kruk2
L2.�in/

C kruk2
L2.�ex/

� c.kbinkL1.�/ C kbexkL1.�//

.�.kuink2
H 1.�in/

C kuexk2
H 1.�ex/

/ C c�kuk2
L2.Rn/

/

� ���kuk2
L2.Rn/

and so and so �R;† � �� . Then, by Theorems 5.6 and 3.7, one gets, for any k > 0,

sk. O�; O� 0/ D � i

4�

� k

2�

�n�2

* 

R˚
†

"

1=Œb� C 0 SLC
�k2 hbi=Œb� C 0 DLC

�k2

hbi=Œb� C 1 SLC
�k2 bCb�=Œb� C 1 DLC

�k2

#

.…˚
†/0

!�1

R˚
†uı

k� 0 ;

R˚
†uı

k�

+

:

7.4. ı-interactions. We denote by �˛;ı;† the self-adjoint extension correspond-
ing to the orthogonal projector defined by ….� ˚ '/ WD .…†�/ ˚ 0 � .�j†/ ˚ 0

and to the self-adjoint operator ‚.� ˚ '/ WD .�‚˛;D;†�/ ˚ 0,

‚˛;D;†W dom.‚˛;D;†/ � H
� 3

2

x†
.�/ �! H

3
2 .†/;

‚˛;D;†� WD ..1=˛ C 0 SL/�/j†;

dom.‚˛;D;†/ WD ¹� 2 L2
x†
.�/W ..1=˛ C 0 SL/�/j† 2 H

3
2 .†/º:
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Here ˛ satisfies the same hypothesis as in Subsection 6.4 and we further require
that it has constant sign on (each component of) �. By Theorem 3.1 (see [29,
Subsection 6.4]; notice a misprint in [29, Corollary 6.21]: the condition Œ0�u D 0,
implying u 2 H 1.Rn/, is missing in dom.�˛;ı;†/),

�˛;ı;† u D �u � ˛0u ıx†;

dom.�˛;ı;†/ D ¹u 2 H 1.Rn/ \ H 2�.Rnnx†/ \ H 0
�.Rnn�/W

Œ1�u 2 dom.‚˛;D;†/;

.˛0u � Œ1�u/j† D 0º

is self-adjoint and

.��˛;ı;† C z/�1u

D .�� C z/�1 � SLz …0
†.R†.1 C ˛0 SLz/…0

†/�1R†˛0.�� C z/�1:

For any u 2 dom.�˛;ı;†/, by Ehrling’s lemma, one has (here the Sobolev index s

belongs to
�

1
2
; 1
�

)

h��˛;ı;†u; uiL2.Rn/ D h��u; ui�1;1 C h˛0u; 0uiL2.†/

D kruk2
L2.Rn/

C h˛0u; 0uiL2.†/

� kruk2
L2.Rn/

� k˛kL1.�/k0uk2
L2.�/

� kruk2
L2.Rn/

� c k˛kL1.�/kuk2
H s.�/

� kruk2
L2.Rn/

� c k˛kL1.�/.� kuk2
H 1.�/

C c�kuk2
L2.�/

/

� ���kuk2
L2.�/

and so �˛;ı;† � ��. By Theorems 5.6 and 3.7, one gets, for any k > 0,

sk. O�; O� 0/ D � i

4�

� k

2�

�n�2

h.R†.1 C ˛0 SLz/…0
†/�1R†˛0uı

k O� 0
; R†0uı

k O�
i:

7.5. ı
0-interaction. We denote by �ˇ;ı0;† the self-adjoint extension correspond-

ing to the orthogonal projector defined by ….� ˚ '/ WD 0 ˚ .…†'/ � 0 ˚ .'j†/

and to the self-adjoint operator ‚.� ˚ '/ WD 0 ˚ .�‚ˇ;N;†/',

‚ˇ;N;†W dom.‚ˇ;N;†/ � H
� 1

2

x†
.�/ �! H

1
2 .†/;

‚ˇ;N;†� WD ..�1=ˇ C O1 DL/�/j†;

dom.‚ˇ;N;†/ WD ¹' 2 H
1
2

x†
.�/W ..�1=ˇ C O1 DL/'/j† 2 H

1
2 .†/º:
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Here ˇ satisfies the same hypothesis as in Subsection 6.5. By Theorem 3.1 (see [29,
Subsection 6.5]; notice a misprint in [29, Corollary 6.26]: the condition Œ O1�u D 0

is missing in dom.�ˇ;ı0;†/),

�ˇ;ı0;†u D �u � ˇ1u � �rıx†;

dom.�ˇ;ı0;†/ D ¹u 2 H 1.Rnnx†/ \ H 0
�.Rnn�/W

Œ0�u 2 dom.‚ˇ;N;†/; Œ O1�u D 0;

.ˇ O1u � Œ0�u/j† D 0º

is self-adjoint and its resolvent is given by

.��ˇ;ı0;† C z/�1u

D .�� C z/�1 C DLz …0
†.R†.1 � ˇ O1 DLz/…0

†/�1R†ˇ1.�� C z/�1:

By Green’s formula (2.10) and by Ehrling’s lemma, for any

u 2 dom.�ˇ;ı0;†/ � H 1.Rnn�/ \ H 0
�.Rnn�/

one has (here the Sobolev index s belongs to
�

1
2
; 1
�

and B c �in is an open ball)

h��ˇ;ı0;†u; uiL2.Rn/

D kruk2
L2.�in/

C kruk2
L2.�ex/

C h.1=ˇ/Œ0�u; Œ0�uiL2.†/

� kruk2
L2.�in/

C kruk2
L2.�ex/

� 2 k1=ˇkL1.�/.k in
0 uink2

L2.�/
C kex

0 uexk2
L2.�/

/

� kruk2
L2.�in/

C kruk2
L2.�ex/

� c k1=ˇkL1.�/.kuink2
H s.�in/ C kuexk2

H s.B\�ex//

� kruk2
L2.�in/

C kruk2
L2.�ex/

� c k1=ˇkL1.�/.�.kuink2
H 1.�in/

C kuexk2
H 1.�ex/

/ C c�kuk2
L2.Rn/

/

� ���kuk2
L2.Rn/

and so and so �ˇ;ı0;† � �� . Then, by Theorems 5.6 and 3.7, one gets, for any
k > 0,

sk. O�; O� 0/ D � i

4�

� k

2�

�n�2

h.R†.1 � ˇ O1 DLC
�k2/…0

†/�1R†ˇ1uı

k O� 0
; R†1uı

k O�
i:
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