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Introduction by the Organisers

This mini-workshop has been organized by Fabrizio Catanese and Ciro Cilib-
erto. Unfortunately Catanese was unable to participate.

The classification of algebraic surfaces is a long-standing research subject in
algebraic geometry, started by Castelnuovo and Enriques more than one hundred
years ago, and continued by the Italian school (Severi, de Franchis, etc.) until
about 1950.

In more recent times, fundamental contributions have been given by Kodaira
in the 1950’s and later in the 1970’s by Bombieri, whose works on pluricanonical
maps gave a strong impulse in studying surfaces of general type, and Mumford.

Adding important information to classical results by Noether and Castelnuovo,
sharp bounds on the invariants have been given by Miyaoka and Bogomolov-Yau,
allowing many authors to develop a systematic study of the “geography” of surfaces
of general type.

Interesting investigations about the moduli space of surfaces of general type
have been worked out in the last twenty years by Catanese, Manetti, and others.

Despite the intensive effort made in the last decades in order to make more
precise our knowledge about surfaces of general type, their fine classification is still
an open problem, even for small invariants. It is actually rather embarassing that,
after more than one century of research on the subject, a complete classification
of surfaces with geometric genus zero or one is still lacking.
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This mini-workshop carried together 14 mathematicians actively working on
this subject, and related arguments, with the idea of updating the state-of-the-
art, exchanging information, discussing interesting open problems and stimulating
collaborations. In this respect, the workshop has been very successful.

The atmosphere has been lively and very collaborative. During every talk,
several questions have been posed and interesting problems pointed out. It has
been especially remarkable the active presence of young participants.

During the week, 16 formal lectures have been given by the participants. This
report contains extended abstracts of all the talks and also a contribution by
Catanese, in collaboration with Pignatelli, about the lecture he was supposed to
give.

The topics include: pluri-canonical maps for surfaces of general type (M. Mendes
Lopes), canonical rings, projective embeddings and birational techniques (C. Böhn-
ing, F. Catanese, S. Papadakis, U. Persson, R. Pignatelli), irregular surfaces with
low invariants (F. Polizzi, F. Zucconi), surfaces with pg = 0 (A. Calabri, C. Cilib-
erto, K. Keum, M. Mendes Lopes, C. Werner), general techniques (V. Br̂ınzănescu,
K. Konno). Ulf Persson chaired an “open problem and discussions” session, which
especially concerned surfaces with pg = 0.

The organizers thank the Institute staff for providing a comfortable environment
to the participants.
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Abstracts

Canonical surfaces in P
4 and Gorenstein algebras in codimension 2
Christian Böhning

Consider minimal surfaces of general type S with pg = 5, q = 0 such that
the 1-canonical map π is a birational morphism onto a surface Y ⊂ P4, the
latter being referred to as a canonical surface in P4. The canonical ring R :=⊕

n≥0 H0(S,OS(nK)) is then a Gorenstein algebra of codimension 2 with twist
−6 over A := C[x0, . . . , x4], the homogeneous coordinate ring of P4. In general I
make the

Definition. Let S = S0 ⊕ S1 ⊕ S2 ⊕ . . . be a positively graded ring with S0 a
field, S finitely generated over S0 as an algebra; a finite graded perfect S-algebra
B is called a Gorenstein S-algebra of codimension c (and with twist t ∈ Z) if
B ∼= ExtcS(B, S(t)) as B-modules where c = dimS − dimS B.

By Castelnuovo’s second inequality and Bogomolov-Miyaoka-Yau 8 ≤ K2 ≤ 54
for the above surfaces, the complete intersections of type (2, 4) resp. (3, 3) being
the only solutions for K2 = 8 resp. = 9. Moreover (cf. [Cil], [Cat4], [Böh1])

Theorem 1. For a canonical surface in P4 with q = 0, pg = 5, K2 ≥ 10 one has
a resolution of the canonical ring R

(1) R• : 0 → A(−6) ⊕A(−4)n (−βt

αt )
−−−−→ A(−3)2n+2 (α β)−−−→ A⊕A(−2)n → R → 0,

where n := K2 − 9.

Resolution (1) displays the symmetry of a “generalized” Koszul complex (cf.
[Gra]). The important point, however, is that knowledge of the resolution (1)
easily allows us to reconstruct our entire geometric set-up; more precisely (cf.
[Böh1], [Böh2])

Theorem 2. Let R be some finite A-module with minimal graded free resolution
as in (1). Write A := (α β), A′ := A with first row erased, In(A′) = Fitting ideal
of n × n minors of A′, and assume depth In(A′) ≥ 4.

Then R is a Gorenstein algebra, and if one assumes that AnnA(R) is a prime
ideal, then Y := Supp(R) ⊆ P

4 with its reduced induced subscheme structure (thus
the ideal of polynomials vanishing on Y is IY = AnnA R) is an irreducible surface,
and if furthermore one assumes X := Proj(R) has only rational double points as
singularities, then X is the canonical model of a surface S of general type with
q = 0, pg = 5, K2 = n + 9. More precisely, writing AY for the homogeneous
coordinate ring of Y , one has that the morphism ψ : X → Y ⊂ P4 induced by the
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inclusion AY ⊂ R is a finite birational morphism, and is part of a diagram

S
π

κ

Y ⊂ P4

X
ψ

where S is the minimal desingularization of X, κ is the contraction morphism
contracting exactly the (-2)-curves of S to rational double points on X, and the
composite π := ψ ◦ κ is a birational morphism with π∗OP4(1) = OS(KS) (i.e. is
1-canonical for S).

In some sense the most delicate part of the above theorem consists in recovering
the ring structure of R from the resolution (1), cf. [Böh2], thm. 1.3 and 2.5.
To see how the above theorem may be applied, take K2 = 11 as sample case: here
the symmetry condition αβt = βαt can be explicitly solved (cf. [Böh1], section 2)
in order to re-prove by this method a result previously obtained by D. Roßberg
(cf. [Roß]) with different techniques:

Theorem 3. There is a unique irreducible component of the moduli space of regu-
lar surfaces of general type with pg = 5, K2 = 11 containing points corresponding
to surfaces with canonical map a birational morphism onto a surface Y ⊂ P4 with
only isolated singularities, which is unirational and of dimension 38.

It may be hoped that this method will facilitate the study of canonical surfaces
with higher K2, the first unsolved case being K2 = 13.
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On the classification of surfaces of general type with non birational
bicanonical map and Du Val double planes

Giuseppe Borrelli

Let S be a minimal surface of general type and consider the bicanonical map ϕ2K

associated to the linear system |2KS|. If there exists a rational map S → B onto
a curve B with the general fiber a smooth irreducible curve of genus 2 then ϕ2K

is not birational, and in this situation one says that S presents the standard case
(for the non birationality of ϕ2K). By a theorem of I. Reider the standard case is
the only possible exception to ϕ2K being birational when K2

S ≥ 10. In the 1950’s
P. Du Val [6] considered the problem for regular surfaces (q = h1(S,OS) = 0), he
obtained a list of possible surfaces with non birational bicanonical map and do not
presenting the standard case. The examples of Du Val are as follows. Let X be a
smooth surface and G ⊂ X a reduced curve such that

B) either X = F2 and G = C0 + G′, where G′ ∈ |7C0 + 14Γ| and G′ has at
most non essential singularities;

D) or X = P2 and G is a smooth curve of degree 8;
Dn) or X = P2 and G = G′ + L1 + · · · + Ln, with n ∈ {0, 1, . . . , 6} (G = G′ if

n = 0), where L1, . . . , Ln are distinct lines meeting at a point γ and G′ is
a curve of degree 10 + n. The singularities of G, besides the non essential
ones, are a (2n+2)-tuple point at γ, a [5, 5]-point lying on Li, i = 1, . . . , n,
possibly some 4-tuple points or [3, 3]-points;

then S is the smooth minimal model of the double cover X ′ → X branched along
G. Here F2 is the Hirzebruch surface P(OP1 ⊕ OP1(2)) and Γ, C0 its fibre and
negative section with C2

0 = −2. We will refer to X ′ as a Du Val double plane (of
type B, D or Dn).

The exceptions to the standard case have been classified for surfaces with pg ≥ 4
by C. Ciliberto, P. Francia and M. Mendes Lopes [4]; F. Catanese, C. Ciliberto
and M. Mendes Lopes classified those with pg = 3, q > 0 [3], and C. Ciliberto
and M. Mendes Lopes worked out the regular case with pg = 3 [5]. Finally, I
classified the regular case with pg = 2 under the assumption that the canonical
system has no fixed part [1]. It follows from [5, 4], that if q = 0, pg ≥ 3 and ϕ2K
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is non birational then S either presents the standard case or is one of the Du Val
examples.

It is easy to see that if ϕ2K is non birational, the conditions pg ≥ 2, q = 0 force
ϕ2K to be a map of degree 2 (generically) onto a rational ruled surface. Hence,
it is natural to consider more in general a surface whose bicanonical map factors
through a rational map of degree 2 onto a rational or ruled surface, that is if there
exists the following commutative diagram

S

φ

ϕ2K
S2

Σ

φ2

where φ is a (generically finite) rational map of degree two and Σ is a rational or
ruled surface. The result is the following,

Theorem 1. Let S be a smooth minimal surface of general type which does not
present the standard case. Then the following three conditions are equivalent:

a) the bicanonical map of S factors through a rational map of degree 2 onto
a rational or ruled surface

b) the bicanonical map of S factors through a rational map of degree 2 onto
a rational surface

c) S is the smooth minimal model of a Du Val double plane.
Moreover, let S be as in (c) (resp. (a) or (b)) then:

d) q(S) = 0 unless pg(S) = q(S) = 1;
e) unless KS is ample and pg(S) = 6, K2

S = 8 or pg(S) = 3, K2
S = 2, there

is a rational pencil whose general member is a smooth hyperelliptic curve
of genus 3 such that the bicanonical map of S induces the hyperelliptic
involution on it.

Sketch of the proof of Theorem 1, (a) ⇒ (b), (c). (See [2] for the complete proof.)
Consider the quotient Σσ of S by the involution σ induced by φ. Then Σσ is a
rational or ruled surface birational equivalent to Σ whose only singularities are the
k nodes, which corresponds to the isolated fixed points of σ. Let Σ̂ → Σσ be the
minimal resolution, then we have the commutative diagram

Ŝ

ρ

S

Σ̂ Σσ

where Ŝ is the blow up of S at the isolated fixed points of σ and ρ is a finite double
cover branched along a smooth curve B. Since Σ̂ is smooth it is either P2 or ruled.
When Σ̂ ∼= P2 one has that Ŝ = S and B has degree 8 or 10. Otherwise we have
that
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i) Σ̂ is rational,
ii) there exists a suitable birational morphism ψ : Σ̂ → X such that G :=

ψ∗(B) and X are as in B or Dn,
iii) Ŝ is the canonical resolution of the double cover X ′ → X branched along

G.
For the proof of i), ii) one uses a result of Xiao [9] who studied the possible images
of the bicanonical map. �

As we remarked, the result for regular surfaces with pg ≥ 3 was already known
and Theorem 1 extends the classification to regular surfaces with pg = 2,

Theorem 2. Let S be a regular surface of general type with pg ≥ 2 and non
birational bicanonical map. Then either S presents the standard case or it is the
smooth minimal model of a Du Val double plane.

For pg = 0, 1 we get some corollaries of Theorem 1.

Theorem 3 ([2, 9]). Let S be a regular surface of general type with pg = 1 and
bicanonical map of degree 2. Then,

i) either S presents the standard case
ii) or S is the smooth minimal model of a Du Val double plane of type Dn,
iii) or S2 is a K3 surface.

Theorem 4 ([2, 7, 9]). Let S be a minimal surface of general type with pg =
0, K2

S ≥ 2 and bicanonical map of degree 2. Then,
i) either S presents the standard case
ii) or K2

S = 3 and ϕ2K(S) is an Enriques surface,
iii) or S is the smooth minimal model of a Du Val double plane of type Dn

with K2
S and n as in the following table

K2
S 2 3 4 5 6 7 8

n 0, 1, 2, 3 1, 2, 3 2, 3, 4 3, 4 4, 5 5 6
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Twisted Fourier-Mukai transforms on some elliptic surfaces
Vasile Br̂ınzănescu

(joint work with Ruxandra Moraru)

Let X be a non-singular projective variety. The derived category D(X) of X is a
triangulated category whose objects are complexes of sheaves on X with bounded
and coherent cohomology sheaves. In general, there exist pairs of non-singular
projective varieties (X, Y ) for which there are triangle-preserving equivalences Φ :
D(Y ) → D(X). Such equivalences are called Fourier-Mukai transforms. In some
cases, Φ takes sheaves to sheaves (not complexes) and this fact is used to study
moduli spaces of some sheaves (for example, vector bundles). Sometimes, Fourier-
Mukai transforms can be constructed on non-projective complex varieties.

Let π : X → B be a minimal non-Kähler elliptic surface (B a smooth compact
connected curve). It is well-known that X → B is a quasi-bundle over B, i.e. all
the smooth fibres are pairwise isomorphic and the singular fibres are multiples of
elliptic curves (see [24], [8]). Let T denote the general fibre of π, which is an elliptic
curve and let T ∗ denote the dual of T (i.e. T ∗ := Pic0(T ) ∼= T non-canonically).
It is known that the Jacobian surface associated to π : X → B, in this case, is
simply J(X) = B×T ∗ → B and the surface X → B is obtained from its Jacobian
surface B × T ∗ by a finite number of logarithmic transformations.

Now, we shall define a twisted Fourier-Mukai transform on non-Kähler elliptic
surfaces. For simplicity, we shall consider that π : X → B has no multiple fibres,
i.e. X is a principal elliptic bundle over B. Then, X = Θ∗/ < τ >, where Θ
is a line bundle over B with positive Chern class l, Θ∗ is the complement of the
zero section in the total space of Θ, and < τ > is the multiplicative cyclic group
generated by a fixed complex number τ with | τ |> 1. The standard fibre of this
bundle is T ∼= C∗/ < τ >. Multiplication by τ defines a natural Z-action on X×C∗

that is trivial on X , inducing the quotient (X × C
∗)/Z = X × T ∗ = X ×B J(X).

Since X does not have multiple fibres, then the set of all holomorphic line
bundles on X with trivial Chern class is given by the zero component of the
Picard group Pic0(X) ∼= Pic0(B) × C∗. In this case, any line bundle in Pic0(X)
is therefore of the form H ⊗ Lα, where H is the pullback to X of an element
of Pic0(B) and Lα is the line bundle corresponding to the constant automorphy
factor α ∈ C∗; in particular, there exists a universal (Poincaré) line bundle U on
X ×Pic0(X) whose restriction to X ×C∗ := X ×{0}×C∗ is constructed in terms
of constant automorphy factors (for details, see [10]).
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Given a rank two vector bundle over X , its restriction to a generic fibre of π is
semistable. More precisely, its restriction to a fibre π−1(b) is unstable on at most
an isolated set of points b ∈ B; these isolated points are called the jumps of the
bundle. Furthermore, there exists a divisor in the relative Jacobian J(X) = B×T ∗

of X , called the spectral curve or cover of the bundle, that encodes the isomorphism
class of the bundle over each fibre of π. The spectral curve can be constructed as
follows: we associate to the rank-2 vector bundle E the sheaf on B × C∗ defined
by

L̃ := R1π∗(s∗E ⊗ U),

where s : X × C∗ → X is the projection onto the first factor, id is the identity
map, and π also denotes the projection π := π× id : X×C∗ → B×C∗. This sheaf
is supported on a divisor S̃E , defined with multiplicity, that descends to a divisor
SE in J(X) of the form

SE :=

(
k∑

i=1

{xi} × T ∗
)

+ C,

where C is a bisection of J(X) and x1, · · · , xk are points in B that correspond to
the jumps of E. The spectral curve of E is defined to be the divisor SE . Note
that there is also a natural Z-action on B × C∗ defined as multiplication by τ on
the second factor and (B × C∗)/Z ∼= J(X). Moreover, this action extends to the
torsion sheaf L̃ := R1π∗(s∗E ⊗ U), taking the stalk L̃(x,α) to L̃(x,τα) ⊗ Lτ−1,x.
Therefore, L̃ cannot descend to J(X) because it is not invariant with respect to
this action. To fix this problem, we construct a sheaf N on B×C∗ and a Z-action
that leaves the tensor product L̃ ⊗ N invariant (see [10], [11]). We denote the
quotient sheaf

L := (L̃ ⊗ N )/ ∼ .

Note that the support of L is SE ; moreover, if we take the pull back of L to B×C
∗

and tensor it by N ∗, then we recover L̃ (we also denote N ∗ the sheaf on B × C∗

obtained by extending the line bundle N ∗ on S̃E by zero outside S̃E).
Given a locally free sheaf E on X , we define the twisted Fourier-Mukai transform

to be the complex of sheaves Φ(E) on J(X) given by

Φ(E) := (Rπ∗ (s∗E ⊗ U) ⊗N ) / ∼ .

Conversely, if L is a sheaf on J(X), we define the “inverse” twisted Fourier-Mukai
transform as the complex of sheaves Φ̂(L) on X given by

Φ̂(L) := Rs∗ ((π∗ ((ρ∗L) ⊗N ∗) ⊗ U∗) / ∼) ,

where s : X ×B J(X) → X is projection onto the first factor, q : X × C∗ →
X × T ∗ = X ×B J(X) and ρ : B ×C∗ → B × T ∗ = J(X) are the natural quotient
maps induced by the Z-actions and π and s are the projections defined above.

We state some of their properties in:
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Theorem 1. (i) Suppose that E is a rank-2 vector bundle on X without jumps.
Then, Φ0(E) = 0 and Φ̂0(Φ1(E)) = E.

(ii) If L is a torsion sheaf on J(X), supported on a bisection C ⊂ J(X), that
has rank 1 on the smooth points of C and rank at most 2 on the singular ones,
then Φ̂1(L) = 0 and Φ1(Φ̂0(L)) = L.

For the proof, see [11].
We use this result in the classification of rank two vector bundles over non-

Kähler elliptic surfaces, including the study of moduli spaces of stable vector bun-
dles (see [11], [12]).
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[2] C. Bartocci, U. Bruzzo, D. Hernández Ruipérez, and J. Muños Porras, Mirror symmetry on
K3 surfaces via Fourier-Mukai transform, Comm. Math. Phys. 195 (1) (1998), 79–93.

[3] K. Becker, M. Becker, K. Dasgupta, and P. S. Green, Compactification of heterotic theory
on non-Kähler complex manifolds: I, preprint.

[4] M. Bershadsky, A. Johansen, T. Pantev, and V. Sadov, On four-dimentional compactifica-
tions of F-theory, Nuclear Phys. B 505 (1-2) (1997), 165–201.

[5] P. J. Braam and J. Hurtubise, Instantons on Hopf surfaces and monopoles on solid tori, J.
reine Angew. Math. 400 (1989), 146–172.

[6] T. Bridgeland and A. Maciocia, Fourier-Mukai transforms for K3 and elliptic fibrations, J.
Algebraic Geom. 11 (4) (2002), 629–657.

[7] T. Bridgeland, Fourier-Mukai transforms for elliptic surfaces, J. reine Angew. Math. 498
(1998) 115–133.

[8] V. Br̂ınzănescu, Holomorphic vector bundles over compact complex surfaces, Lect. Notes in
Math. 1624, Springer 1996.
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On the classification of numerical Godeaux surfaces with an involution
Alberto Calabri and Ciro Ciliberto

(joint work with Margarida Mendes Lopes)

In the one-century-and-a-half history of algebraic geometry in dimension two,
projective surfaces with geometric genus pg = 0 and irregularity q = 0 have been
studied from the very beginning. They were supposed to be rational by Max
Noether, until Enriques suggested the existence of the surfaces with pg = q = 0
and bi-genus P2 = 1 which now bear his name, and Castelnuovo proved in 1896
his celebrated rationality criterion, which states that a surface X is rational if and
only if P2(X) = q(X) = 0.

In 1931–32, Godeaux and Campedelli gave the first two examples of minimal
surfaces of general type with pg = 0 and K2 = 1, 2, respectively. Godeaux consid-
ered a quotient of a quintic surface in P3 by a Z/5Z-action, whereas Campedelli
constructed a double plane, i.e. a double cover of P2, branched along a degree 10
curve with six points of type [3, 3], that is a triple point with another infinitely
near triple point, not lying on a conic.

Campedelli also suggested the construction of a minimal surface of general type
with pg = 0 and K2 = 1 as the smooth minimal model of a double plane branched
along a curve C of degree 10 with a 4-tuple point and five points of type [3, 3], not
lying on a conic. The existence of a curve like C was proved only 50 years later by
Kulikov, Oort and Peters. We will say that a double plane is of Campedelli type
if the branch curve is of this type.

Minimal surfaces of general type with pg = 0 and K2 = 1, nowadays called
numerical Godeaux surfaces, have been studied by several authors in the last 30
years: Miyaoka (1976), Dolgachev (1977), Reid (1978, 1988), Barlow (1984–85),
which gave the first example of a simply connected one, Werner, Craighero-Gattaz-
zo, Naie (1994), Stagnaro (1997), Dolgachev-Werner (1999), Catanese-Pignatelli,
Keum-Lee (2000), and others (cf. e.g. [CP]).
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Miyaoka proved that the subgroup Tors(S) of torsion elements of the Picard
group of a numerical Godeaux surface S is a cyclic group of order strictly less than
6. He classified those with Tors(S) = Z/5Z by describing the canonical ring of
the 5-tuple covering given by the torsion, and similarly Miles Reid classified those
with Tors(S) = Z/4Z or Z/3Z.

Some examples of those with Tors(S) = Z/2Z or Tors(S) = 0 have been found
by Barlow, Werner and Craighero-Gattazzo (as shown by Dolgachev and Werner);
nonetheless the classification problem is still open.

Note that these surfaces are interesting also because of Bloch’s conjecture, which
states that the Chow group of degree zero 0-cycles on a surface with pg = q = 0 is
trivial.

Here we report on a work in progress about the classification of numerical
Godeaux surfaces S with an involution, i.e. with an automorphism σ : S → S
of order 2. A first investigation of this subject has been done by J. Keum and
Y. Lee in [KL]: under the assumption that the bicanonical system has no fixed
components, they described all the possibilities for the fixed locus of the involution.

We make no assumption on fixed components of the bicanonical system |2KS |
and we follow the ideas contained in joint works of the third author and Rita
Pardini, namely we combine the topological and the holomorphic fixed point for-
mulas for involutions on surfaces and the Kawamata-Viehweg vanishing theorem,
in order to prove the following:

Theorem 1. Let S be a minimal surface of general type with pg(S) = q(S) = 0
and an involution σ : S → S. The fixed locus of σ is composed of a smooth curve
R and k isolated fixed points. Then:

• 4 ≤ k ≤ K2
S + 4;

• k ≡ K2
S (mod 2);

• KS · R ≤ K2
S and equality holds if and only if k = K2

S + 4;
• if k = K2

S + 4, then the bicanonical map φ : S ��� PK2
S is composed with

σ;
• if |2KS| has no fixed component, then φ is composed with σ if and only if

k = K2
S + 4.

In particular, if S is a numerical Godeaux surface, i.e. K2
S = 1, then k = 5, φ

is composed with σ, KS ·R = 1 and R = Γ + Z, where Z are disjoint (−2)-curves,
and 0 ≤ pa(Γ) ≤ 2 (cf. also [KL]).

Then we study the quotient surface S/σ, and, by a fine use of adjunction on
S/σ and a deep analysis of some Del Pezzo surfaces, we prove the following:

Theorem 2. A numerical Godeaux surface S with an involution σ is birationally
equivalent to one of the following:

(1) a double plane of Campedelli type;
(2) a double plane branched along the union of two distinct lines r1, r2 and a

curve B of degree 12 with the following singularities:
• the point p0 = r1 ∩ r2 of multiplicity 4;
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• a point pi ∈ ri, i = 1, 2, of type [4, 4], where the tangent line is ri;
• further three points p3, p4, p5 of multiplicity 4 and a point p6 of type

[3, 3], such that there is no conic through p1, . . . , p6;
(3) a double cover of an Enriques surface.

In case (3), Tors(S) = Z/4Z, whilst in case (2), Tors(S) is either Z/2Z or Z/4Z.
Moreover if the fixed locus R of σ has an irreducible component Γ of genus 2,

then S belongs to case (3).

All the previously known constructions of numerical Godeaux surfaces as double
planes belong to case (1). Examples of case (3) have been given by Keum and
Naie.

We show the existence of examples of case (2) by constructing degree 12 curves
with the required singularities: we found out some examples with Tors(S) = Z/2Z

and some with Tors(S) = Z/4Z. Let us say that a double plane as in case (2) is
of Du Val type, because it is the degeneration of a double plane, described by Du
Val, whose smooth minimal model has pg = 4 and K2 = 8, with non-birational
bicanonical map (see [Ci], [Bo]).

In both cases (1) and (2), it is possible to determine the possible configurations
of components of the branch curve of the double planes.

In case (3) we prove that the double cover of the Enriques surface is branched
along a curve which moves in a pencil whose general member is an irreducible
curve of genus 2.

Theorem 1 suggests that it is possible to study in a similar way minimal surfaces
of general type with an involution, pg = 0 and K2 > 1, in particular with K2 = 2,
i.e. numerical Campedelli surfaces.
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On pencils of small genus
Fabrizio Catanese and Roberto Pignatelli

1. The relative canonical algebra

Throughout this abstract X will be a projective surface, f : X → B a morphism
onto a smooth curve of genus b. Without loss of generality, we may assume that
f has connected fibres F of genus g. These maps are studied (see, e.g., [Fuj1],
[Fuj2], [Xia]) analyzing their relative canonical algebra.

Definition 1. Consider the relative dualizing sheaf

ωX|B := ωX(−f∗KB).

Then the relative canonical algebra R(f) is the commutative graded algebra
⊕∞

0 Vn, where Vn is the vector bundle on B given as the direct image sheaf f∗(ωn
X|B)

Definition 2. The multiplication maps µn,m : Vn ⊗ Vm → Vn+m yield natural
sheaf homomorphisms

Sn(V1) = Sn(f∗(ωX|B)) σn−→ Vn = f∗(ωn
X|B),

and we define Tn = coker σn.

Remark 1. By Noether’s theorem on canonical curves, Tn is a torsion sheaf if the
general fibre of f is non-hyperelliptic.

Remark 1 shows that the hyperelliptic and the non hyperelliptic case should
be treated separately; assume in fact for the time being that a general fibre is
hyperelliptic. Then there is a birational involution σ on X , and σ acts linearly
on the space of sections OX(U, ωn

X/B), which splits as the direct sum of the (+1)-
eigenspace and the (−1)-eigenspace. Accordingly, we get direct sums Vn = V +

n ⊕
V −

n : therefore, in the hyperelliptic case, where obviously V1 = V −
1 , the cokernels

Tn will be bigger than in the non hyperelliptic case.

2. The structure theorems

Let f : X → B be a genus 2 fibration. The rank 2 vector bundle V1 := f∗ωX|B
induces a natural factorization of f as π ◦ ϕ, where ϕ : X ��� P(V1) is a rational
map of degree 2, and π : P(V1) → B is the natural projection.

The indeterminacy locus of ϕ is contained in the fibres of f which are not 2-
connected, i.e., which split as E1 + E2 with E1E2 = 1. Then E2

i = −1, Ei has
arithmetic genus 1 and is called an elliptic cycle. These fibres are recognizable
through T2 as follows.

Lemma 1. Let f : X → B be a genus 2 fibration. Then T2 is the structure sheaf
of an effective divisor τ ∈ Div≥0(B), whose support is given by the points whose
corresponding fibres of f are not 2-connected.
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The typical example is given by a fibre consisting of two smooth elliptic curves
E1, E2 meeting transversally in a point P ′. The blow-up of the point P ′ maps
isomorphically to the fibre F ′′ of P over the point P ∈ B, while the elliptic curves
E1, E2 are contracted to two distinct points of the fibre F ′′.

The resolution ϕ̃ of ϕ is the composition of the contraction of E1, E2 to two simple
−2-elliptic singularities, with a finite double cover where the branch curve ∆ in P

contains the fibre and has two distinct 4-tuple points on it. More complicated fibres
containing elliptic tails can produce different configurations of singularities of the
branching divisor of ϕ: a complete list is the one given by Ogg and by Horikawa
in [Ogg],[Hor]. This approach is widely used to construct genus 2 fibrations; the
main difficulty is in the construction of ∆, often very singular.

Definition 3. We denote by A the graded subalgebra of R generated by V1 and
V2; let An be its graded part of degree n, Aeven = ⊕kA2k.

It is easy to see that the natural map Sym(V2) → Aeven is surjective with
kernel generated by the image of the map i2 : detV 2

1 ↪→ S2(V2) defined locally by
i2(x0 ∧ x1)2 = σ2(x0)2σ2(x1)2 − σ2(x0x1)2.

Concretely, this gives explicit equations for Proj(A) as conic subbundle of
the P2-bundle P(V2). Proj(A) and P(V1) are clearly birationally equivalent and
biregularly equivalent outside the fibers over supp(T2). One can check that the
fibres of supp(T2) are in fact the reducible fibres of the conic bundle.

If we consider the natural morphism ϕA : X → Proj(A) induced by the inclu-
sion A ⊂ R and the natural projection morphism πA : Proj(A) → B we get a new
factorization of the fibration (‘birational’ to the previous one): f = πA ◦ ϕA. The
advantage in considering ϕA instead of ϕ is that the branch curve ∆A has only
simple singularities. In the typical example above described, the elliptic curves Ei

will not be contracted by ϕA but they will be double covers of the two lines of the
corresponding fibre of the conic bundle.

Lemma 2. A6 is the cokernel of the map detV 2
1 ⊗V2 → S3(V2) naturally induced

by the map i2 above; note that A6 depends only on B, V1 and σ2. The branch curve
∆A is induced by a map (det(V1) ⊗OB(τ))⊗2 → A6.

We can now introduce the building package of a genus 2 fibration:

Definition 4. Define the associated 5-tuple (B, V1, τ, ξ, w) of a genus 2 fibration
f : X → B as follows:

• B is the base curve;
• V1 = f∗(ωX|B);
• τ is the effective divisor of B with Oτ

∼= T2;
• ξ ∈ Ext1OB

(Oτ , S2(V1))/AutOB (Oτ ) the class induced by σ2;
• w ∈ P(H0(B,A6 ⊗ (det(V1) ⊗OB(τ))⊗−2)) inducing ∆A on Proj(A).

Definition 5. We will say that a a 5-tuple (B, V1, τ, ξ, w) is admissible if
• B is a smooth curve;
• V1 is a vector bundle on B of rank 2;
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• τ ∈ Div+(B);
• ξ ∈ Ext1OB

(Oτ , S2(V1))/AutOB (Oτ ) yields a vector bundle V2;
• w ∈ P(H0(B,A6 ⊗ (det(V1) ⊗OB(τ))⊗−2)) inducing ∆A on Proj(A),

where A6 is the vector bundle induced by ξ;
and if moreover they satisfy some open conditions ensuring that the associated
double cover has Rational Double Points as singularities.

We do not specify here the open conditions in detail for lack of space. The
vector bundle A6 is ‘induced’ taking the map σ2 induced by ξ and defining A6 as
the cokernel of the map in lemma 2.

Theorem 1. Let f be a relatively minimal genus 2 fibration. Then its associated
5-tuple is admissible. Viceversa, every admissible 5-tuple is the associated 5-tuple
of a genus 2 fibration f : X → B, and the surface X has invariants χ(OX) =
deg(V1) + (b − 1), K2 = 2 deg V1 + deg τ + 8(b− 1). Two relatively minimal genus
2 fibration having the same associated 5-tuple are isomorphic.

We can prove a very similar statement for a genus 3 fibrations f with non hy-
perelliptic general fibre, under the assumption that every fibre of f is 2-connected.

3. Applications

The first application of theorem 1 is a short proof of the following theorem
(already proved by Bombieri ([Bom]) using Ogg’s list of genus 2 fibres (cf. [Ogg])).

Theorem 2. Let S be a Godeaux surface, and let f : S → P1 be the fibration
induced by the bicanonical pencil of S. Then the genus of the fibre can only be 3
or 4.

We have an interesting application of theorem 1 to minimal surfaces of general
type with pg = q = 1. In this case 2 ≤ K2

S ≤ 9 and the Albanese map is a
morphism f : S → B where B is a smooth elliptic curve.

The case K2
S = 2 is completely described in [Cat1] where it is proved (among

other things) that the moduli space is generically smooth, unirational of dimension
7.

The class of surfaces of general type with K2 = 3, pg = q = 1 is studied in
[CC1], [CC2]. In [CC1] it is proved that for this class of surfaces the genus of the
Albanese fibre is 2 or 3. The second case is completely classified in [CC2], where
it is shown that the corresponding moduli space is generically smooth, unirational
of dimension 5.

In [CC1] all surfaces with pg = q = 1, K2 = 3 and genus 2 of the Albanese fibre
are described as double covers of B(2). It was conjectured there (see problem 5.5)
that this family of surfaces should form an irreducible family of the moduli space.
We can disprove this conjecture. More precisely (considering also the family in
[CC2])

Theorem 3. The family, in the moduli space of the minimal surfaces of general
type, corresponding to the surfaces S with pg(S) = q(S) = 1, K2

S = 3 has at least
4 connected components and at most 5 irreducible components, all of dimension 5.
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Numerical Godeaux surfaces with an involution
JongHae Keum

A minimal surface of general type with pg = 0 and K2 = 1 is called a numerical
Godeaux surface, or simply a Godeaux surface. A joint work with Y. Lee [2]
describes all possible fixed loci of an involution acting on a numerical Godeaux
surface, under an assumption that the bicanonical system has no base components.
Recently M. Mendes Lopes, R. Pardini [3] have proved the same result without
the assumption.

Let X be a numerical Godeaux surface and σ be an involution acting on it.
Its fixed locus consists of 5 isolated points, a curve l with KX l = 1, and at most
g(l) + 2 nodal curves. The genus g(l) can take values 0, 1 and 2.

Let h denote the number of nodal curves. All known examples of Godeaux
surfaces have an involution, and the corresponding (g(l), h) is as follows:

a classical Godeaux surface from D10-invariant quintic, Beauville’s example,
Barlow surface, and Craighero-Gattazzo-Dolgachev-Werner surface have (0, 0);
Werner’s example with Tors = Z/2, (1, 1); Stagnaro’s example, (1, 2); Oort-Peters’
example, (1, 3).

In [2], two families of Godeaux surfaces with Tors = Z/4 were constructed via
canonical ring method due to M. Reid. These have involutions with (g(l), h) =
(1, 0), (2, 0), respectively.

In this talk, I give an improvement as follows:

Theorem 1. If g(l) = 2, then h = 0.

Sketch of the proof of Theorem 1. If g(l) = 2, then the quotient surface X/σ is bi-
rational to an Enriques surface. This was one of the result presented by C. Ciliberto
and A. Calabri [1] during this workshop. Let W → X/σ be a resolution of the five



458 Oberwolfach Report 9/2004

nodes. Then the branch B ⊂ W is of the form B = B0 + N1 + · · ·+ N5, where Ni

are nodal curves coming from the resolution. From the double covering formulas,
we see that B0 is a smooth curve of genus 2 with B2

0 = 2. We also see that B0

is disjoint from the exceptional curves on W which are to be blown down to an
Enriques surface W ′. On W ′, the branch consists of a genus 2 curve and 5 nodal
curves. This means that no components other than l arise by the double covering
process. �

I also suggest a way of constructing examples of Godeaux surfaces as double
Enriques surfaces, whose covering involutions have (g(l), h) = (0, 1), (0, 2), the
only missing cases.
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On fibred rational surfaces
Kazuhiro Konno

(joint work with Shinya Kitagawa)

Let X be a non-singular projective surface with pg = q = 0 and f : X → P1 a
relatively minimal fibration of curves of genus g ≥ 2. We denote by F a general
fibre of f . Then KX + F is nef and the restriction map H0(X, KX + F ) →
H0(F, ωF ) is an isomorphism, because pg = q = 0. In particular, h0(X, KX +F ) =
g. If (KX + F )2 < 2g − 2, then X is automatically a rational surface. Assume
that the rational map defined by |KX + F | is generically finite onto the image W .
Then,

Theorem 1. |KX+F | is free from base points if (KX+F )2 ≤ 2g−4. Furthermore,
the ring ⊕n≥0H

0(X, n(KX + F )) is generated in degree 1 if (KX + F )2 ≤ 2g − 5.

Such an analysis is carried out by passing through the reduction (Y, G) obtained
from (X, F ) by blowing down all the (−1)-curves E satisfying (KX + F )E = 0,
where G is the image of F by the natural map µ : X → Y . The original fibration
f is obtained from a pencil Λf ⊂ |G| by blowing up the base points.

When X is a rational surface which is not P2, we can find a base point free
pencil |D| of rational curves on Y such that c = (KY + G)D is minimal among
such pencils. Then going down further to its #-minimal model (Y #, G#), we get

(KX + F )2 =
2c

c + 1
(g − c − 1) +

1
c + 1

N∑
i=1

(c + 1 − mi)(mi − 1),
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where the mi denotes the multiplicity of a singular point of G#, mi ≤ c/2 + 1.
Furthermore, we can show the following by Serrano’s theorem [5]:

Theorem 2. Assume that c ≥ 2 and G2 > (c + 2)2. Then every morphism
φ : G → P

1 of degree at most c + 2 can be extended to a morphism φ̃ : Y → P
1.

Furthermore,

(1) gon(F ) = c + 2, and

(2) the number of g1
c+2’s on G is finite. In particular, Cliff(F ) = c.

We use these results to study the Mordell-Weil lattice MWL(f) of f . Recall that
the Mordell-Weil lattice is the group of sections of f endowed with a symmetric
bilinear form coming from the intersection pairing on X . Put r = rank MWL(f).
Then Shioda [6] shows

r = ρ(X) − 2 −
∑

P∈P1

(vP − 1),

where ρ(X) denotes the Picard number and vP the number of irreducible compo-
nents of the fibre f−1(P ). In particular, we have r = ρ(X)− 2 if f has irreducible
fibres only.

MWL(f) of maximal rank for fibred rational surfaces is determined so far by
Saito-Sakakibara when f is hyperelliptic [3], by Saito-Nguyen Khac when f is of
Clifford index one [4] and by Kitagawa when f is bi-elliptic [1]. As to the general
fibrations of Clifford index two, we have the following:

Theorem 3. Let X be a non-singular rational surface, f : X → P1 a relatively
minimal fibration of genus g and of Clifford index 2. Let r be the Mordell-Weil
rank of f .

(1) If 5 ≤ g ≤ 10, then r ≤ 3g + 5.

(2) If g ≥ 11, then r ≤ 3g + 8 − (g + ε)/3, where ε is the smallest non-negative
integer with g + ε ≡ 0 modulo 3.

Assume that r attains the maximum. Then all the fibres of f are irreducible and
the reduction Y is obtained as the image of Φ|KX+F |. Furthermore, Y is a del
Pezzo surface and Λf ⊂ | − 2KY | when 5 ≤ g ≤ 10; it is a Hirzebruch surface
blown up ε points and Λf comes from a linear system of quadruple sections when
g ≥ 11.

We can completely determine MWL(f) when the rank is maximum. For exam-
ple, when 5 ≤ g ≤ 10 and Y is obtained from P2 by blowing up 10 − g points in
general position, we get the following Dynkin diagram:

��
��
2 � � �

��
��
2

��
��
2

��
��
2

��
��

3

��
��
2 � � � ��

��
2 ��

��
2

��
��

5

��
��
2 ��

��
2 ��

��
2 ��

��
2 ��

��
2
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where the numbers in circles are self-pairing numbers of elements of a suitably
fixed basis whose numbering is given near the circles. Therefore, it is an odd
unimodular lattice of rank 3g + 5.

For g ≥ 11, the maximal MWL(f) depends not only on g but also on ε and is
much more complicated. We have four different types when ε = 0, two types for
each when ε = 1, 2. The most interesting phenomena can be observed when ε = 0,
because the degree d of the Hirzebruch surface Y is an invariant of the fibration
in this case. The parity of the lattice is the same as that of g − d + 1 and the
structure of MWL(f) depends on the combination of g mod 4 and the parity of d.
In particular, even and odd lattices both occur for a fixed g. See [2] for the detail.
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The bicanonical map of surfaces of general type with pg = 0 and K2 = 6
Margarida Mendes Lopes

(joint work with Rita Pardini)

Many examples of complex surfaces of general type with pg = 0 are known,
but a detailed classification is still lacking, despite much progress in the theory of
algebraic surfaces. Surfaces of general type are often studied using properties of
their canonical curves. If a surface has pg = 0, then there are of course no such
curves, and it is natural to look instead at the bicanonical system, which is not
empty.

Let S be a minimal surface of general type with pg = 0. It is well known that
1 ≤ K2

S ≤ 9. By a theorem of Xiao Gang [12], for K2
S ≥ 2 the image of the

bicanonical map of S is a surface Σ and, by Reider’s theorem [11], the bicanonical
map ϕ is a morphism if K2

S ≥ 5.
Assume that K2

S ≥ 3. Since h0(S, 2KS) = K2
S + 1, the bicanonical image of S

is a surface of degree m ≥ K2
S − 1 in PK2

S . If, in addition, ϕ is a morphism (so, in
particular, if K2

S ≥ 5), one has dm = (2KS)2 = 4K2
S, where d is the degree of ϕ.

It is known that, if K2
S ≥ 3 and ϕ is a morphism, then d ≤ 4 [4]. Furthermore if
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K2
S = 9, ϕ is birational [3], whilst if K2

S = 7, 8 the degree of ϕ is at most 2 and
this bound is effective [6, 7, 9].

In the case K2
S = 6 one has the following numerical possibilities for the pair

(d, m): (1, 24), (2, 12), (3, 8), (6, 4).
The latter possibility occurs and in fact it can be completely characterized.

Such surfaces turn out to be Burniat surfaces (see [2, 10]). More precisely one has
the following:

Theorem 1. [5] Let S be a minimal complex surface of general type such that
pg(S) = 0 and K2

S = 6 and let ϕ : S → PK2
S the bicanonical map of S. Then

deg ϕ = 4 if and only if S is a Burniat surface.
In particular, KS is ample.

Theorem 2. [5] Smooth minimal surfaces of general type S with K2
S = 6, pg(S) =

0 and bicanonical map of degree 4 form an unirational 4-dimensional irreducible
connected component of the moduli space of surfaces of general type.

In this talk we discuss the other possible cases of non birationality of the bi-
canonical map, i.e., degrees 2 and 3. The results are the following:

Theorem 3. Let S be a minimal surface of general type with pg(S) = 0 and
K2

S = 6 for which the bicanonical map ϕ is not birational. Then the degree of ϕ
is either 2 or 4 and the image of ϕ is a rational surface.

Theorem 4. Let S be a minimal surface of general type with pg(S) = 0 and
K2

S = 6 for which the bicanonical map ϕ has degree 2. Then there is a fibration
f : S → P

1 such that the general fibre F of f is hyperelliptic of genus 3 and f
has 4 or 5 double fibres. Furthermore the bicanonical involution of S induces the
hyperelliptic involution on F .

Idea of the proof of Theorem 3. It is necessary to exclude the possibility that d =
3 occurs. For d = 3 the bicanonical image would be a rational surface of degree 8
in P6. By using repeated adjunction (an idea which dates back to Enriques), such
surfaces are studied and their geometry is used to show that d = 3 does not occur.
For details see [8]. �

Idea of the proof of Theorem 4. Let σ be the bicanonical involution. The quotient
surface T := S/σ is a rational surface whose only singularities are nodes (corre-
sponding to the isolated fixed points of σ). Since the bicanonical map factors
through T it is possible to show that T has exactly 10 nodes. The statement of
the theorem is obtained by a careful analysis of the binary linear code associated
to the nodes. For details see again [8]. �

Remark. Note that Theorem 4 is not a mere list of possibilities because there
are examples of both situations (see again [8]). G. Borrelli (see [1]) has obtained
recently with different methods the same list of possibilities and a description of
them as double planes.
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Remark. It would be very interesting to describe the moduli space of the surfaces
appearing in Theorem 4 and in particular to find whether these surfaces deform to
surfaces with birational bicanonical map (no such example is known for K2

S = 6).
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A new family of surfaces with pg = 0 and K2 = 3
Margarida Mendes Lopes

(joint work with Rita Pardini)

The starting point of the subject of this talk is the following Theorem:

Theorem 1 (Xiao Gang, [5]). Let S be a minimal complex surface of general type
with pg(S) = 0 such that the bicanonical map ϕ is not birational and let T be
the bicanonical image. If T is not a rational surface, then T is birational to an
Enriques surface and ϕ is a degree 2 morphism.

Furthermore K2
S = 3 or K2

S = 4.

This theorem lists possibilities and a natural question is whether it is sharp.
Both J. Keum, [1], and D. Naie, [4], constructed examples of surfaces S with

pg(S) = 0 and K2
S = 3 or K2

S = 4 as double covers of nodal Enriques surfaces.
For these surfaces the bicanonical map, although it factorizes through the covering
map, has degree 4 and the bicanonical image is a rational surface.
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In [2], it is shown that, in fact, if the bicanonical image of a surface S with
pg(S) = 0 is birationally an Enriques surface then, necessarily, K2

S = 3. So the
case with K2

S = 4 of Theorem 1 does not occur. Furthermore it is shown that
the minimal surfaces S with pg(S) = 0 and K2 = 4 having an involution σ such
that S/σ is birational to an Enriques surface and such that the bicanonical map
is composed with σ are precisely the Keum-Naie examples.

No example of a surface S with pg(S) = 0 and K2
S = 3, with bicanonical image

birational to an Enriques surface appears in the literature, and so the question is
whether it can occur at all. It turns out such surfaces exist.

The subject of this talk is not only showing the existence of surfaces S with
pg(S) = 0 and K2

S = 3, with bicanonical image birational to an Enriques surface,
but also explaining an explicit construction of all such surfaces. This explicit
construction enables us to show that the corresponding subset of the moduli space
of surfaces of general type is irreducible and uniruled of dimension 6. Since the
closure of this subset contains the Keum-Naie surfaces, whose fundamental group
is isomorphic to Z2

2 ×Z4 (cf. [4]), also the fundamental group of all these surfaces
is Z

2
2 × Z4.

The description of these surfaces is based on a very detailed study of the nor-
malization of their bicanonical images. These are polarized Enriques surfaces of
degree 6 with 7 nodes, satisfying some additional conditions.

For the proofs and details we refer to [3].
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Kustin–Miller unprojections
Stavros Papadakis

Kustin-Miller unprojection is a method that constructs more complicated Goren-
stein rings from simpler data. Geometrically it corresponds to the inverse of the
classical method of projection. The first talk was about the scheme–theoretic foun-
dations of the simplest type of Kustin–Miller unprojection called Type I, which
is joint work with M. Reid [3], and algebraically corresponds to the unprojection
of a codimension one ideal I of a Gorenstein ring R with the quotient R/I being
Gorenstein. In addition, I gave examples and mentioned a method, essentially due
to A. Kustin and M. Miller [1], which calculates type I unprojection in the relative
setting using projective resolutions and maps between complexes.
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The second talk was about Tom and Jerry. They are two families of codimension
four Gorenstein rings defined by M. Reid and studied by me at [2], which are
constructed as Type I unprojection and appear in a variety of examples coming
from Algebraic Geometry. Moreover, I talked about Type II unprojection, which
is work in progress, and constructs a codimension n + 2 conjecturally Gorenstein
ring, starting from a codimension n complete intersection containing a certain
codimension n + 1 subscheme.
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Surfaces in your backyard
Ulf Persson

How do you give elementary examples of surfaces? Hypersurfaces in P3 are
obvious candidates, but of course they are far too restrictive to present a wide
variety of phenomena. It is e.g. impossible to give an example of a so called
honestly elliptic surface (i.e. κ = 1 in the Kodaira classification). A natural
thing is to consider imposing singularities. Just imposing ordinary double points
(or more generally simple-singularities i.e. A-D-E singularities) does not give you
anything new, although it certainly gives you interesting ecxamples with high
Picard numbers. The next step is to consider ordinary triple points, i.e. points
whose resolutions give you smooth elliptic curves with self-intersection −3. It is
an elementary but instructive exercise to present the following list of quintics with
ordinary triple points

Theorem 1. If Q is a quintic with k ordinary triple points then 0 ≤ k ≤ 5 and
its resolution Q̃ satisfies

k = 0, c2
1 = 5, χ = 5 (minimal of general type)

k = 1, c2
1 = 2, χ = 4 (minimal of general type, a double octic)

k = 2 c2
1 = −1, χ = 3 (an elliptic surface blown up once)

k = 3 c2
1 = −4, χ = 2 (a K-3 surface blown up four times)

k = 4 c2
1 = −7, χ = 1 (a rational surface)

k = 5 c2
1 = −10, χ = 0 (a ruled surface over an elliptic curve blown up

ten times)
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The proof is completely elementary. The interesting feature is the way those
surfaces are geometrically realised. To take the example of k = 2. The line joining
the two triple points becomes exceptional, and the elliptic fibration is given by
the pencil of planes through it, intersecting the quintic residually in quartics with
two double points. Those planes incidentally cut out the canonical divisors. In
the case of k = 3 the canonical divisor consists of the plane through the three
triple points, whose intersection is a triangle of lines and a circumscribed conic,
all four easily seen to be exceptional. And finally the case of k = 5 the ruling
consists of twisted cubics passing through the five triple points. By Bezout, any
such twisted cubic having an additional intersection will be contained, and clearly
through any six points, there is a twisted cubic. The degenerate fibers will be ten
by choosing two points out of the five, defining a line and a residual conic through
the remaining three. This distinction between the reducible components allow a
canonical minimal model, which turns out to be a ruled surface over an elliptic
curve defined by a stable rank-two bundle.

Now with my co-workers Endrass and Stevens I considered whether a similar
classification can be effected for degree six, and the surprising answer is yes! How-
ever, the situation becomes more complicated. For one thing one can now no
longer in general choose the locations of the triple points arbitrarily (there will
be two many conditions). E.g. there will be no examples of eight generic triple
points, but if the triple points happen to form the base points of a net of quadrics
one can write down a simple example C(Q1, Q2, Q3) where Qi span the net, and C
is a plane cubic. This will actually be an honestly elliptic surface fibered over an
elliptic curve (given by C = 0). Other special choices of eight points will also yield
examples. In the case of nine triple points we get examples of non-minimal K-3
surfaces, as well as non-minimal fake K-3 surfces, namely honestly elliptic surfaces
gotten from elliptic K-3 surfaces through logarithmic transforms. One may also
find rational sextics with ten triple points, but ten is the upper limit.

For the complete classification I refer to the paper below. Let me only note that
a typical construction is to consider a linear space made up by highly reducible,
often not even reduced, hypersurfaces, such that the base points are of multiplicity
three. (As a simple example consider a quintic Qu with five nodes on a conic
C = H ∩ Q, where H is a plane and Q a quadric. Then consider the generic
member of the pencil spanned by HQu and Q3).

One may wonder where to go from here? One may note that we prove that for
degree seven or higher only minimal surfaces of general type occur in this way.
Thus one should either consider other elementary constructions of low degree,
like complete intersections in P

4, P5 and maybe P
6. The same thing for multi-

projective spaces. In short, I suspect that there will be no more than perhaps
a dozen different cases, similar to the ones I have refered to above. To be more
specific, try to do a similar analysis for hypersurfaces of low degree in P1×P1×P1.
The case of tri-degree (3, 3, 3) is analogous to the case of quintics, (but of course
more involved). It turns out that its chern-invariants are given by c2

1 = 18, χ = 9.
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So I would like to point this out by describing an analogy to the Godeaux
quotient, which although elementary, has never been written down and published
to my knowledge1. The key point is an action of Z9 on P1 × P1 × P1 inducing an
action on the monomials xiyjzk involving an amalgation of the cyclic permutation
of the co-ordinates and the action of a primitive 9-th root of unity. More precisely
letting a generator of Z9 act accordingly

(x, y, z) �→ (ρz, ρx, ρy)

It is easy to find the fixed points of the actions, and just like in the quintic case,
avoid those by a judicious inclusion of certain extreme monomials. Once we have
a fixed point free action the quotient will have c2

1 = 2, χ = 1. As the quotient is
regular, we conclude that pg = 0.

Finally instead of considering just triple points, one may take into account four-
tuple points, or other more subtle singularities, one thinks of elliptic singularities
with E2 = −2,−1. Those two types are easily exhibited on double covers, by
considering four-tuple points or so called infinitely close triple points.

All of those obviously are directed to the main question

Question. Is it possible to classify all surfaces of small invariants?

One first attempt would be to classify all such surfaces which can be deformed
into double coverings, especially double planes.
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Extrasymmetric matrices and surfaces with pg = 4 and K2 = 6
Roberto Pignatelli

(joint work with Ingrid Claudia Bauer and Fabrizio Catanese)

Minimal surfaces with pg = 4 have been studied by several mathematicians since
the publication of the famous book of Enriques [Enr]. By the standard inequalities
of Noether and Bogomolov-Miyaoka-Yau, for these surfaces it holds 4 ≤ K2 ≤ 45.

The case K2 = 4 is completely described in [Hor2]. All these surfaces are double
covers of an irreducible quadric in P3. Their moduli space is generically smooth,
unirational, of dimension 42; its singular locus has codimension 1, and it is exactly
the locus corresponding to the double covers of the quadric cone.

In [Hor1] (see also [Rei2], [Gri]) the case K2 = 5 is completely described: the
canonical map is either a birational morphism to a quintic in P3, or a rational
map of degree 2 onto an irreducible quadric. Their moduli space has two irre-
ducible unirational components of dimension 40 whose general point corresponds
to surfaces with canonical image respectively a quintic or a smooth quadric. The

1 I thought of it some twenty years ago, and may have circulated it around privately.
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surfaces whose canonical image is a quadric cone form a 39-dimensional subvariety
of this moduli space, the intersection of the two irreducible components.

The case K2 = 6 is the first case not completely solved. In [Hor3] Horikawa
listed all possibilities for the canonical map, dividing these surfaces in 11 classes
(and therefore their moduli space in 11 strata). He proved that each of these cases
occurs, and studying the local deformations of these surfaces (to understand how
these strata can ‘glue’), Horikawa proved that their moduli space has 4 irreducible
components (one of dimension 39, the other three of dimension 38), and at most
3 connected components.

More precisely, Horikawa named the 11 classes as Ia, Ib, II, IIIa, IIIb, IVa1 ,
IVa2 , IVb1 , IVb2 , V1, V2 (see [Hor3] for precise definitions of each class). According
to Horikawa’s notation we define

Definition. Let A and B be two of the above introduced classes. If we write
“A → B”, it means that there is a flat family with base a small disc ∆ε ⊂ C

whose central fibre is of type B and whose general fibre is of type A.

With this notation Horikawa summarized its results in the following picture

IIIa

IVa1 Ia V1 IIIb II

IVa2 IVb1 V2

IVb2 Ib

He could disprove many other degenerations, but he could neither prove nor dis-
prove the specializations II → IIIb, II → V and Ia → V ; we have shown that
the degeneration II → IIIb occurs.

Definition. A minimal surfaces of general type with pg = 4 and K2 = 6 is of
type II if the canonical map has degree 3.

Horikawa proved that in this case the canonical image is a quadric cone.
Surfaces of type IIIb are described by Horikawa as follows:

Theorem (5.2 in [Hor3]). Let S be a surface of type IIIb. Then S is birationally
equivalent to a double covering of F2 whose branch locus B consists of the 0-section
∆0 and B0 ∈ |7∆0 + 14Γ| which has a quadruple point at x ∈ Γ and a 2-fold triple
point at y ∈ Γ on a fibre Γ, with x and y being possibly infinitely near.

The canonical ring of these surfaces is very complicated: it is a quotient of a
polynomial ring of big (at least 6, maybe more) codimension. We do not know how
to investigate the flat deformations of rings of high codimension. We look then
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for a ’bigger’ and easier ring, a ring containing the canonical ring and of smaller
codimension.

By standard computations one can show that the canonical system of S is
|2L| + Z where L is the genus 3 pencil pull-back of the ruling of F2, and Z is a
fundamental cycle. Therefore, even if KS is not 2-divisible in the Picard group,
it can be divided by 2 when considered only as a Weil divisor on the canonical
model.

Definition. Let S be a surface of type IIIb, let Z be the fixed part of its canonical
system, and let δ be a generator of H0(Z).

Let R be the graded ring whose homogeneous components are the spaces Rd :=
H0(dL + �d

2Z�), d ∈ N, with product defined on the homogeneous elements as
ab = a ⊗ b or a ⊗ b ⊗ δ according if the product of the degrees of a and b is even
or odd.

Note that enlarging the ring ‘restricts’ the possible deformations. In fact, if
the canonical rings induce, given a flat family of surfaces, a flat family of rings,
the same does not hold for these ‘half-canonical’ rings, since the 2-divisibility of
the canonical divisor (as a Weil divisor on the canonical model) is not necessarily
preserved by a deformation.

As proved in [MP] (where these surfaces are studied in detail) the canonical
system of a surface of type II, can be written again as 2L+Z with L genus 3 pencils
and Z fundamental cycle. It is then natural to expect, if a family “II → IIIb”
exists, that this family preserves the genus 3 pencils and the ‘half-canonical’ rings.

Theorem 1. We have R ∼= C[x0, x1, y, z, w, v, u]/I with deg(x0, x1, y, z, w, v, u)
= (1, 1, 2, 3, 4, 5, 6), where I has codimension 4, generated by 9 equations yoked by
16 syzygies; the 9 generators of I are homogeneous polynomial of respective degrees
(4, 5, 6, 7, 8, 9, 10, 11, 12).

Miles Reid and Duncan Dicks introduced in [Rei1] (see also [Rei2], [Rei3],
[BCP]) the ‘extrasymmetric format’, for some Gorenstein rings of codimension
4 with 9 relations and 16 syzygies.

Roughly speaking, they noticed that the ideal generated by the pfaffians of order
4 of a 6 × 6 skewsymmetric matrix is, if the matrix has some further symmetry
(it is ‘extrasymmetric’) of codimension 4 with 9 generators and 16 syzygies. This
format is flexible, i.e. every deformation of the matrix preserving the symmetries
induces a flat deformation of the ideal. This property allowed us to prove our main
result.
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Theorem 2. Let (x0, x1, y, z, w, v, u) variables of degrees (1, 1, 2, 3, 4, 5, 6), Let M
be the 6 × 6 skewsymmetric matrix

M =


0 t z v y x1

0 w u P3 y
0 P9 u v

0 wP4 zP4

0 tP4

−sym 0

 .

where the Pi’s are homogeneous of degree i in the above introduced variables and t
is the parameter on a small disc ∆ε ⊂ C.

For general choice of P3, P4 and P9 the 4 × 4 pfaffians of M define a variety
X ⊂ ∆ε × P(1, 1, 2, 3, 4, 5, 6) whose projection on ∆ε is flat, with central fibre a
surface of type IIIb and with general fibre a surface of type II.

Sketch of the proof of Theorem 2. The flatness of the above family (for general
entries) follows directly from the flexibility of the format. One can check that for
general choice of the polynomials Pi and for t small the above equations define
a surface with only rational double points as singularities: the invariants can be
easily computed.

Note that the pfaffians Pf1235 and Pf1236 are of the form tu − · · · and tv −
· · · , and that the pfaffian Pf1256 can, for general choice of P4, be written as
t2w − .... Therefore, for t �= 0, we can ‘eliminate’ the variables u, v, w, and R ∼=
C[x0, x1, y, z]/J for some ideal J : a straightforward computation shows that J is
a principal ideal generated by the equation obtained by Pf1234 after ’eliminating’
u, v, w using Pf1235, Pf1236 and Pf1256.

We get then an hypersurface of degree 9 in P(1, 1, 2, 3), whose canonical system
is induced by O(2): since for general entries of M the coefficient of the monomial
z3 in its equation does not vanish, we see that the canonical map has degree 3
(and image P(1, 1, 2), a quadric cone). This shows that the surface is of type II.

If t = 0, the canonical map is given again by the projection on P(1, 1, 2), but
the surface meets the center of the projection in a point (if P4 = w+ · · · , the point
(0,0,0,0,1,0,1)), therefore the projection has only degree 2; one can easily check
that the branch locus has the behavior described by Horikawa. �

As a corollary, we can improve Horikawa’s bound on the deformation types

Corollary. The number of deformation types of minimal surfaces of general type
with pg = 4 and K2 = 6 is at most 2.

References

[BCP] I. Bauer, F. Catanese, R. Pignatelli, Canonical rings of surfaces whose canonical system
has base points, in Complex geometry (Göttingen, 2000), Springer 2002, 37–72.

[Enr] F. Enriques, Le superficie algebriche, Zanichelli, Bologna, 1949.
[Gri] E.E. Griffin, II, Families of quintic surfaces and curves, Compositio Math. 55 (1985),

no. 1, 33–62.
[Hor1] E. Horikawa, On deformations of quintic surfaces, Proc. Japan Acad. 49 (1973), 377–379.



470 Oberwolfach Report 9/2004

[Hor2] E. Horikawa, Algebraic surfaces of general type with small c21. I, Ann. of Math. (2) 104
(1976), no. 2, 357–387.

[Hor3] E. Horikawa, Algebraic surfaces of general type with small c21. III, Invent. Math. 47
(1978), no. 3, 209–248.

[MP] M. Mendes Lopes, R. Pardini, Triple canonical surfaces of minimal degree, Internat. J.
Math. 11 (2000), no. 4, 553–578.

[Rei1] M. Reid, Surfaces with pg = 3, K2 = 4 according to E. Horikawa and D. Dicks, Proc. of
Alg. Geometry mini Symposium, Tokyo Univ. Dec. 1989, 1–22.

[Rei2] M. Reid, Infinitesimal view of extending a hyperplane section—deformation theory and
computer algebra, in Algebraic geometry (L’Aquila, 1988), Lecture Notes in Math. 1417,
Springer 1990, 214–286.

[Rei3] M. Reid, Graded rings and birational geometry, Proc. of algebraic geometry symposium
(Kinosaki, 2000), 1–72.

Surfaces of general type with pg = q = 1, K2 = 8 and bicanonical map of
degree 2

Francesco Polizzi

In [Par03] R. Pardini classified the minimal surfaces S of general type with
pg = q = 0, K2

S = 8 and a rational involution, i.e. an involution σ : S −→ S such
that the quotient T := S/σ is a rational surface. All the examples constructed by
Pardini are isogenous to a product, i.e. there exist two smooth curves C, F and
a finite group G acting faithfully on C, F and whose diagonal action is free on
the product C × F , in such a way that S = (C × F )/G. Pardini’s classification
contains five families of such surfaces; in particular, four of them are irreducible
components of the moduli space of surfaces with pg = q = 0, K2

S = 8, and
represent the surfaces with the above invariants and non- birational bicanonical
map.

In this paper we deal with the irregular case, in fact we study the case pg = q =
1, K2

S = 8. Surfaces with pg = q = 1 are the minimal irregular surfaces of general
type with the lowest geometric genus, therefore they are natural candidates to
starting the investigation of irregular surfaces with q = 1 or, more generally, with
an irrational pencil. However, such surfaces are still quite mysterious, and only a
few families have been hitherto discovered. If S is a surface with pg = q = 1, then
2 ≤ K2

S ≤ 9; the case K2
S = 2 is studied in [Ca81], whereas [CaCi91] and [CaCi93]

deal with the case K2
S = 3. For higher values of K2

S only some sporadic examples
were so far known; see [Ca99], where a surface with K2

S = 4 and one with K2
S = 5

are constructed.
When pg = q = 1, there are two basic tools that one can use in order to study

the geometry of S: the Albanese fibration and the paracanonical system. First of
all, q = 1 implies that the Albanese variety of S is an elliptic curve E, hence the
Albanese map α : S −→ E is a connected fibration; we denote by F the general
fibre of α and by g = g(F ) its genus. Let us fix a zero point 0 ∈ E, and for
any t ∈ E let us write KS + t for the line bundle KS + Ft − F0. By Riemann-
Roch and semicontinuity theorem we have h0(S, KS + t) = 1 for general t ∈ E,



Classification of Surfaces of General Type with Small Invariants 471

hence denoting by Ct the only element in the complete linear system |KS + t|
we obtain a 1-dimensional algebraic family {K} = {Ct}t∈E parametrized by the
elliptic curve E. We will call it the paracanonical system of S; according to [Be88],
it is the irreducible component of the Hilbert scheme of curves on S algebraically
equivalent to KS which dominates E. The index ι = ι(K) of the paracanonical
system {K} is the number of distinct curves of {K} through a general point of
S. The paracanonical map ω : S −→ E(ι), where E(ι) := SymιE, is defined in
the following way: if x ∈ S is a general point, then ω(x) = t1 + · · · + tι, where
Ct1 , . . . , Ctι are the paracanonical curves containing x. The best result that one
might obtain would be to classify the triples (K2, g, ι) such that there exists a
minimal surface of general type S with pg = q = 1 and these invariants. Since by
the results of Gieseker the moduli space Mχ, K2 of surfaces of general type with
fixed χ(OS), K2

S is a quasiprojective variety, it turns out that there exist only
finitely many such triples, but a complete classification is still missing.

By the results of [Re88], [Fr91] and [CaCi91] it follows that the bicanonical
system |2KS| of a minimal surface of general type with pg = q = 1 is base-point
free, whence the bicanonical map φ := φ|2K| : S −→ PK2

S of S is a morphism.
Moreover such a morphism is generically finite by [Xi85], so φ(S) is a surface Σ.
We will say that a surface S contains a genus 2 pencil if there is a morphism
f : S −→ B, where B is a smooth curve and the general fibre Φ of f is a smooth
curve of genus 2. Notice that in this case the bicanonical map φ of S is not
birational, since |2KS| cuts out on Φ a subseries of the bicanonical series of Φ
which is composed with the hyperelliptic involution. In this case we say that
S presents the standard case for the non-birationality of the bicanonical map;
otherwise, namely if φ is not birational but S does not contain any genus 2 pencils,
we say that S presents the non-standard case. By the results of Bombieri (later
improved by Reider, see [Bo73] and [Re88] ) it follows that, if K2

S ≥ 10 and the
bicanonical map is not birational, then S contains a genus 2 pencil. Whence there
exist only finitely many families of surfaces of general type presenting the non-
standard case, and one would like to classify all of them; however, this problem
is still open, although many examples are known. In the paper [Xi90] G. Xiao
gave two list of possibilities for the bicanonical image of such a surface; later on
several authors investigated about their real occurrence. For more details about
this argument, we refer the reader to the paper [Ci97].

No examples of surfaces with pg = q = 1 and presenting the non-standard case
were hitherto known; if S is such a surface and K2

S ≥ 5, then a result of Xiao ([see
Xi90, Proposition 5]) implies that the degree of φ is either 2 or 4. In this work we
describe the surfaces of general type with pg = q = 1, K2

S = 8 and such that the
degree of φ is 2. It will turn out that they belong to three distinct families, which
provide as well the first known examples of surfaces which such invariants. None
of these surfaces contains a genus 2 pencil, thus they are three substantially new
pieces in the classification of surfaces presenting the non-standard case.
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What we show is that, as in the case pg = q = 0, the surfaces with pg = q =
1, K2

S = 8 and bicanonical map of degree 2 are isogenous to a product. More
precisely, our result is the following:

Theorem 1. Let S be a minimal surface of general type with pg = q = 1, K2
S = 8

and such that its bicanonical map has degree 2. Then S is a quotient of type
S = (C × F )/G, where C, F are smooth curves and G is a finite group acting
faithfully on C, F and freely on C × F . Moreover C is a curve of genus 3 which
is both hyperelliptic and bielliptic, E := C/G is an elliptic curve isomorphic to the
Albanese variety of S and F/G ∼= P1. The bicanonical map φ of S factors through
the involution σ of S induced by the involution τ × id on C × F , where τ is the
hyperelliptic involution of C. The occurrences for g(F ) and G are the following
three:

I. g(F ) = 3, G ∼= Z2 × Z2;
II. g(F ) = 4, G ∼= S3;

III. g(F ) = 5, G ∼= D4.
The curve F is hyperelliptic in case I, whereas it is not hyperelliptic in cases II
and III.

Surfaces of type I, II, III do exist and they form three generically smooth,
irreducible component SI , SII , SIII of the moduli space M of surfaces with pg =
q = 1, K2

S = 8, whose respective dimensions are:

dim SI = 5, dim SII = 4, dim SIII = 4.

The proof of Theorem 1 is somewhat involved as it requires the understanding
of many different techniques.

Sketch of the proof of Theorem 1. Step 1. We analyze the bicanonical involution
σ of S, following [Xi90] and [CM02]. It turns out that σ has 12 isolated fixed
points and that the divisorial fixed locus of σ is contained in fibres of the Albanese
pencil.
Step 2. Using the results obtained in Step 1 we prove that if S is a minimal surface
of general type with pg = q = 1, K2

S = 8 and bicanonical map of degree 2, then S
contains a rational pencil of hyperelliptic curves of genus 3 with six double fibres.
This in turn implies, by the results of Serrano contained in [Se90] and [Se96], that
S is isogenous to a product, i.e. S = (C × F )/G. We show moreover that there
are at most three families of such surfaces, and we describe them.
Step 3. We show that the three families described in Step 2 actually exist, by
constructing the two curves C, F and by exhibiting explicitly the actions of G on
them.
Step 4. We study the moduli space of the surfaces S constructed in Step 3. This is
not difficult because the group G acts separately on C and F , hence the Kuranishi
family of S turns out to be smooth. �
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On numerical Godeaux surfaces constructed as double planes
Caryn Werner

Let S be a minimal surface of general type with pg = q = 0, K2
S = 1. The

torsion of S, Tors(S), is cyclic of order at most five, and Reid has shown that in
the cases of torsion Z3, Z4, and Z5 the moduli spaces are smooth and irreducible
of dimension eight. In comparison, in the cases of Tors(S) = 0 and Tors(S) = Z2,
little is known about the moduli space; while several examples of these surfaces
have been found a more general classification is still unknown.

Surfaces with these invariants are called numerical Godeaux surfaces, after
Godeaux who provided the first example, as the Z5-quotient of a quintic hyper-
surface in P3. Most known constructions of numerical Godeaux surfaces have an
involution. One particular method for constructing these surfaces was proposed by
Campedelli: as the minimal resolution of the double cover of the plane, branched
along a degree ten curve with one quadruple point, five infinitely near triple points,
such that these six singular points do not lie on a conic. In this talk we survey
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the known numerical Godeaux surfaces constructed as double planes; the cases of
torsion equal to 0, Z2, Z4, and Z5 all occur.

The first construction of a numerical Godeaux as a double plane is due to Oort
and Peters, whose resulting surface has order four torsion. Reid proved that the
classical Godeaux construction can also be realized as a Campedelli double plane;
this construction has torsion of order five. As both the numerical Godeaux surfaces
with torsion group Z4 and Z5 have irreducible moduli spaces, and constructions
as double planes, one can ask if the same will be true for the other three cases.

For trivial torsion, a surface constructed as the resolution of a singular quintic
in P3 by Craighero and Gattazzo has been shown to be a double plane. In the case
of order two torsion there is a four dimensional family of double plane Godeaux
surfaces.

After cataloguing these known double plane Godeaux surfaces, we classify the
possible degree ten branch curves that are invariant under an involution of the
plane. The idea of looking for branch curves with this additional symmetry was
proposed by Stagnaro; following this idea one can prove

Theorem 1. Let C be a degree ten plane curve with the singularities required for
a numerical Godeaux double plane, and suppose C is invariant under involution.
Then the resulting double cover branched along C has torsion group Z4.

Moreover one can determine all possible decompositions of the branch curve;
the example of Oort and Peters belongs to this class of constructions.
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A new proof for the adjoint theorem and a Castelnuovo’s conjecture
Francesco Zucconi

Let ξ ∈ H1(X, TX) be the class of a first order deformation π : X → Spec C[ε]/(ε2)
being X a n-dimensional projective variety. Let 〈η1, . . . , ηn+1〉 be an ordered set of
n+1 linearly independent sections of Ker(δξ : H0(X, Ω1

X) → H1(X,OX)) where δξ

is the coboundary map associated to the sequence: 0 → OX → Ω1
X|X → Ω1

X → 0.

If s1, . . . , sn+1 are liftings in H0(X, Ω1
X|X) of respectively η1, . . . , ηn+1 and Ω ∈

H0(X,∧n+1Ω1
X|X) is the form corresponding to s1∧. . .∧sn+1 ∈ ∧n+1H0(X, Ω1

X|X)
then via the isomorphism Lξ : H0(X,∧n+1Ω1

X|X) → H0(X,∧nΩ1
X) we obtain

a top form ωξ,〈η1,...,ηn+1〉 = Lξ(Ω). This form is called adjoint form of ξ and
〈η1, . . . , ηn+1〉. If W is the subvector space generated by 〈η1, . . . , ηn+1〉 and ∧nW
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is the subvector space of H0(X,∧nΩ1
X) given by 〈η1 ∧ . . . ∧ η̂i . . . ∧ ηn+1〉 the

adjoint theorem states that: if ωξ,〈η1,...,ηn+1〉 ∈ ∧nW then ξ ∈ Ker(H1(X, TX) →
H1(X, TX(D))) where D is the fixed component of the sublinear system given by
| ∧nW |.

In this talk we present a new proof of this theorem based on the natural interpre-
tation of the condition s1 ∧ . . .∧ sn+1 = 0 as integrability condition for the system
s1∧ . . .∧ ŝi∗∧· · ·∧sn+1 = 0, i = 1, . . . , n+1. We explain the relations between the
solution of this system and the geometry of the natural map π : P(Ωn

X|X) → X . In
the second part of the talk we show the proof of the Castelnuovo conjecture stating
that the number m of moduli of an irregular surfaces with q ≥ 4 and Albanese
map of degree 1 is less or equal to pg + 2q − 3. In the final part we discuss some
possible applications to surfaces with q = 4.
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