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Introduction by the Organisers

This conference was on theoretical and practical aspects of error control and
self-adaptivity in the numerical solution of partial differential equations. The
organizers were Endre Süli (Oxford), Rolf Rannacher (Heidelberg) and Rüdiger
Verfürth (Bochum), and the 44 participants came from 11 different countries.

Many processes in sciences and engineering are formulated in terms of partial
differential equations. With the incorporation of more and more complete physics
these models become increasingly complex and their accurate numerical simulation
requires the use of efficient self-adaptive methods. Such “self-adptivity” is usu-
ally based on a posteriori estimates for the discretization and iteration errors in
terms of local quantities (residuals) obtained from the computed solution. During
the last few years, these approaches have seen a rapid development from simple
model situations towards real-life applications. The conference’s focus was on ba-
sic questions of the rigorous mathematical understanding of these methods and
their applications. The frame of the conference was set by six invited one-hour
survey lectures on the topics

• Adaptive hp finite element methods.
• Adaptivity in numerical optimization.
• Model adaptivity.
• Convergence of adaptive finite element methods.
• Multiscale adaptivity and wavelets.
• Space-time adaptivity in nonstationary problems.

Additionally 18 shorter talks have been given on more specialized aspects not
treated in the survey lectures and on other subjects. Important topics addressed
by these talks were “adaptivity for nonlinear, nondifferentiable PDEs”, “adaptivity
for coupled problems”, “anisotropic and moving mesh adaptation”, “local and
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global recovery techniques”, “parallelization of adaptive methods”, and “mesh
generation”. The talks showed that much progress has been made in extending
the concept of a posteriori error estimation and mesh adaptation from simple
elliptic problems to real-life situations including coupled models, multiple scales
and nonlinearity. Thanks to the restricted number of talks, there was left plenty of
time for discussion which was extensively used by the participants. The discussions
concentrated on question related to the convergence and asymptotic complexity
of adaptive finite element methods and the various strategies of using “duality-
based” a posteriori error estimates. The recent extension of these concepts to
optimization problems and to model calibration has opened a whole new world of
applications and will significantly affect the future development of PDE numerics.
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Abstracts

A survey of hp-adaptive finite element algorithms for elliptic problems

Mark Ainsworth

In this survey lecture, we gave an overview of the main adaptive algorithms
that are presently used in adaptive hp-finite element algorithms. Here, the goal is
to adaptively select the local mesh-size h and the local polynomial order p of the
elements in such a way that the method converges exponentially fast in the energy
norm, even for problems where the solution has singularities. Three basic strategies
were identified: (i) methods based, directly or indirectly, on identification of the
local regularity of the solution [3, 1, 2, 9, 10, 7, 8], (ii) methods based on local
mesh optimisation [6, 5], and (iii) methods based on ’tagging’ geometric features
where the solution is known a priori to be non-smooth [3, 4]. Numerical examples
illustrating the relative performance of the various strategies were presented.
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Parallel adaptive methods

Randolph E. Bank

(joint work with Michael J. Holst, Shaoying Lu, and Jeff Ovall)

In [2, 3], a general approach to parallel adaptive meshing for systems of el-
liptic partial differential equations was introduced. This approach was designed
to keep communications costs low, and to allow sequential adaptive software to
be employed without extensive recoding. The original paradigm has three main
components:

Step 1: Load Balancing. We solve a small problem on a coarse mesh,
and use a posteriori error estimates to partition the mesh. Each subregion
has approximately the same error, although subregions may vary consid-
erably in terms of numbers of elements or gridpoints.
Step 2: Adaptive Meshing. Each processor is provided the complete
coarse mesh and instructed to sequentially solve the entire problem, with
the stipulation that its adaptive refinement should be limited largely to
its own partition. The target number of elements and grid points for each
problem is the same. At the end of this step, the mesh could be regularized
such that the global mesh described in Step 3 will be conforming.
Step 3: Global Solve. A final mesh is computed using the union of the
refined partitions provided by each processor. A final solution computed
using a domain decomposition or parallel multigrid technique.

With this approach, the load balancing problem is reduced to the numerical solu-
tion of a small elliptic problem on a single processor, using a sequential adaptive
solver such as pltmg without requiring any modifications to the sequential solver.
The bulk of the calculation in the adaptive meshing step also takes place indepen-
dently on each processor and can also be performed with a sequential solver with
no modifications necessary for communication. The only parts of the calculation
requiring communication are (1) the initial fan-out of the mesh distribution to the
processors at the beginning of adaptive meshing step, once the decomposition is
determined by the error estimator in load balancing; (2) the mesh regularization,
requiring communication to produce a global conforming mesh in preparation for
the final global solve in Step 3; and (3) the final solution phase, that might require
local communication (e.g., boundary exchanges). In some circumstances, it might
be useful to avoid the initial fan-out communication step by allowing all proces-
sors (which are otherwise idle) to simultaneously compute the coarse solution and
load balance in Step 1. Note that a good initial guess for the final global solve is
provided by the adaptive meshing step by taking the solution from each subregion
restricted to its partition.

A more complete discussion of the overall paradigm as well as some numerical
illustrations can be found in [2, 3]. A description of a domain decomposition solver
used in Step 3 of the paradigm is given in [4]. In Mitchell [5], a parallel adaptive
procedure similar to Step 2 of our procedure is described. Our goal here is to
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present a variant of the above approach in which the load balancing occurs on a
much finer mesh. This procedure is described in detail in [1].

In Step 1 of the paradigm, we assume that Nc � p where Nc is the size of
the coarse mesh and p is the number of processors. This is necessary to allow
the load balance to do an adequate job of partitioning the domain into regions
with approximately equal error. We also assume that the that Nc is sufficiently
large and the mesh sufficiently well adapted for the a posteriori error estimates
to accurately reflect the true behavior of the error. For the second step of the
paradigm, we assume that Np � Nc where Np is the target size for the adaptive
mesh produced in Step 2 of the paradigm. Taking Np � Nc is important to
marginalize the cost of redundant computations. For example, if Np = 2Nc, then
one could expect that about half of the computation on each processor would
be redundant, which is a significant fraction of the total cost. By solving the
problem on the entire domain, using a coarse mesh in all but one subregion, we
are in effect substituting computation for communication. This trade-off is most
effective in situations where Np is much larger than Nc (e.g., Np > 10Nc) so
that the redundant computation represents a small fraction of the total cost. If
any of these assumptions is weakened or violated, there might be a corresponding
decline the effectiveness of the paradigm. In this case, we consider the possibility
of modifying Steps 1 and 2 of the paradigm as follows.

Step 1’: Load Balancing. On a single processor we adaptively create a
fine mesh of size Np, and use a posteriori error estimates to partition the
mesh such that each subregion has approximately equal error, similar to
Step 1 of the original paradigm.
Step 2’: Adaptive Meshing. Each processor is provided the complete
adaptive mesh and instructed to sequentially solve the entire problem.
However, in this case each processor should adaptively coarsen regions
corresponding to other processors, and adaptively refine its own subre-
gion. The size of the problem on each processor should remain at Np, but
this adaptive rezoning strategy will concentrate the degrees of freedom in
the processor’s subregion. At the end of this step, the mesh could be reg-
ularized such that the global mesh described in Step 3 will be conforming.
Step 3’: Global Solve. This step is the same as Step 3; the global
mesh consists of the refined partitions provided by each processor. A final
solution is computed using a domain decomposition or parallel multigrid
technique.

With this variant, the initial mesh can be of any size. Indeed, our choice of Np

is mainly for convenience and to simplify notation. Of course, allowing the mesh in
Step 1’ to be finer increases the cost of both the solution and the load balance, but
it allows for flexibility in overcoming potential deficiencies of a very course mesh
in the original paradigm. As before, all processors could simultaneously carry out
Step 1’ in order to avoid the initial fan-out communication step.

Although both procedures have simple communication patterns with small com-
munication costs, it is important to emphasize one caveat. The goal is to create



836 Oberwolfach Report 16/2004

a final global adaptive mesh in which the error is roughly equilibrated among the
elements, and the effort needed to create these meshes is roughly the same on each
processor. The idea of creating subregions of approximately equal error for the
load balancing steps really amounts to the fragile assumption that this corresponds
to approximately equal work for each processor, and that the final adaptive mesh
will have a reasonable equilibration of the error among the elements.
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Adaptive finite elements for optimization

Roland Becker

We give an overview over adaptive methods for optimization with partial dif-
ferential equations. The main tool is an a posteriori error estimator which takes
into account the specific needs originating from different types of optimization
problems. The estimator is based on the standard techniques in adaptive finite
elements: error representation and Galerkin orthogonality. The classical appli-
cation of the estimator is local mesh refinement, but it can also be used for the
adaptation of other discretization parameters and serve as a stopping criterion in
an iterative solution algorithm.

The first part of the talk describes three typical optimization problems with dif-
ferent interpretation. The three examples use the stationary Navier-Stokes equa-
tions as the state equation.

In the first example the action of the control is used for reduction of the drag
coefficient of an immersed body; here the main objective is to compute the value
of the drag coefficient at the optimum – which corresponds to the value of the cost
functional in the context of optimization.

In the second example we wish to identify the viscosity constant in the Navier-
Stokes equations from measurements. Now, the control itself is at the heart of the
matter.

The third example deals with a situation where the control parameters are used
for model calibration, and the goal of the computation is not directly related to
the control (but to another objective functional).
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The presented examples lead us to consider the following general case: we are
interest in computing an interest function I(q, u) which depends on both control
q and state variable u. The interest functional is independent of the optimization
problem which determines q and u. The second part of the talk develops this idea.
By specialization we obtain estimators for:

• error in the cost functional [3, 1]
• error in a functional of the controls [5]
• error in an independent functional of the state [4]
• norm of the controls [2]

Beside the first estimator, the others require the solution of an additional problem
involving the adjoint of the linearized state operator. The right-hand side of this
problem depends on the special context.

In the last part of the talk, we discuss the issue of sensitivity analysis. The
hope is to provide practical information for the interpretation of the results and
design of experiments. The standard procedure in optimal experimental design is
to use a statistical model: for example, the measurements are interpreted as true
value plus a white noise. Then one tries to maximize the confident region with
respect to changes in the experiment.

Here, we propose another concept based on deterministic sensitivity analysis.
The first idea is to use again the interest functional I as the guide We define
relative condition numbers τk which multiply the relative errors in measurements
∆Ck

Ck
to produce relative changes in the value of the interest functional:

∆I

I
=

nZ
∑

k=1

τk
∆Ck

Ck
.

These numbers provide an answer to questions like: which parameters have been
most important, which measurements have been most important in computing the
solution? This can also be seen as a first step towards optimal experiment design.
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Coupling adaptive modeling and mesh refinement

Malte Braack

We propose a twofold adaptive method based on a posteriori control of dis-
cretization error and modeling error with respect to functional output j(u), see [1].
Denoting by u the continuous solution of a partial differential equation in varia-
tional formulation and by uh the discrete solution of a discrete equation. The
two formulations differ not only by the variational spaces but also with respect
to different models entering the partial differential equation. The discrete varia-
tional formulation is considered to involve a simpler model. The a posteriori error
representation derived in [3] is of the following form:

j(u) − j(uh) ≈ ηh + ηm + R ,

where the terms ηh and ηm are the error estimators of the discretization error and
the modeling error, respectively. The part ηh consists of residuals with respect
to the simpler model and involves approximations of the interpolation error of
the primal solution u and the interpolation error of an associated dual solution z.
The modeling error estimator ηm involves the residual with respect to the more
accurate model. The remainder term R is (at least formally) of higher-order.

In an adaptive process, both contributions of errors are equilibrated. While
the discretization error is reduced by local mesh refinement, the modeling error is
reduced by changing to a more exact model locally. As a consequence, the model
changes from cell to cell in the computational domain.

The metholodogy is applied to two kinds of modeling errors. In the first one,
we apply the methodology to combustion problems, were complicated diffusion
models (multicomponent diffusion) are known but rarely used in practice, see [2]
and [4], due to the high numerically cost. Therefore, we use also a simpler diffusion
model (Fick’s law) and measure the introduced error. In the adaptive process, we
switch dynamically to the more accurate model (equation) and refine the mesh
simultaneously.

In the second type of problems, we consider finite element stabilization as an
introduced error, for instance streamline diffusion. We ask if the accuracy of the
discretization can be enhanced by adapting the diffusion parameters locally.
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A posteriori error analysis and adaptive mesh refinement for nonlinear
reaction diffusion problems

Graham F. Carey

(joint work with Brian Carnes)

Two classes of nonlinear reaction-diffusion problems are considered. In the first
class the nonlinearity enters through the reaction term and is scaled by a reaction
parameter. The prototype example is the catalytic reaction problem in chemical
engineering (e.g. see Aris [1], Carey and Finlayson [2]). Here the parameter is
the Thiele modulus. The first problem class exhibits multiple solutions and has
a turning point. In the present work we develop a new approach for a posteriori
error estimation in finite element approximation in which error indicators are de-
veloped for both the spatial concentration field and the scalar parameter within
an augmented arc-length continuation algorithm. Computable local element error
indicators are derived together with corresponding global error indicators using
residual and dual formulations. Numerical results illustrate the effectiveness of
the indicators and approach for a nonlinear reaction problem having a parameter
at both regular points and turning points. Details are provided in Carnes and
Carey [3].

In the second problem class the nonlinearity enters through the diffusion ten-
sor. Here applications include binary and ternary diffusion corresponding to the
nonlinear scalar and system cases respectively. Suitable structure conditions on
the associated constitutive parameters and regularity assumptions apply. Local
residuals for the primal and dual problem are constructed and used to determine
associated bubble function error indicators as the solution of corresponding local
boundary value problems on each element (see Verfürth [4]). Results of adaptive
refinement calculations and corresponding meshes are compared for different error
indicator choices including residual bubbles in the primal solution and the dual
problem contributions.
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5 further remarks on convergence of AFEM

Carsten Carstensen

The beautiful talk of Nochetto on the convergence of adaptive finite element
methods (AFEM) provoked a few open questions which are addressed in this pre-
sentation at the end of the very interactive meeting. Assuming that the reader is
familiar with the methodology of AFEM the 5 subtle issues are:

1. Removing Inner Node Refinements? This is most likely impossible. However,
there is an alternative to bisec5 (i.e. 5 newest-vertex bisections of one triangle).
There is a well-known counter example of error reduction and it is explained that
this is the only one—generically speaking, every full-star refinement will lead to
the error reduction property.

2. AFEM Beyond Fixing Poor Convergence? There is raising empirical (by
computer experiments) evidence that AFEM does not just improve the conver-
gence rates. In fact, in linear elasticity the incompressibility locking of P1 FEM
seems to be overcome by P1 AFEM. Other examples by Bänsch, Nochetto et al.
concern mixed finite element methods and nonconvex minimization problems.

3. Little Theory: ηH VS Error Reduction? The error reduction property is
advertised as something we need to prove while in the major part of the literature
it is called saturation assumption and then is some hypothesis. The presenta-
tion introduces some framework in a strongly convex minimization problem and
the equivalence of (1) error reduction (2) residual coverage and (3) reliability of
hierarchical error estimator.

4. Convergence 4 Convex Minimization? The presentation provides a general-
ization of the convergence result of AFEM for the p-Laplacian. The larger class
of energy densities in the nonlinear minimization problem of p-th order growth is
characterized by a convexity estimate in terms of stress differences. Applications
include the Nonlinear Laplacian, Optimal Design Problem, Scalar 2-Well Prob-
lem, Vectorial 2-Well Problem, Hencky elastoplasticity with hardening. Even if
the minimization problem has multiple minimizers on either the discrete or con-
tinuous level, the stress field is unique and converges strongly in some Lebesgue
space.

5. AMFEM? Nochetto presented some results of adaptive mixed FEM (AM-
FEM) in a context of H(div) spaces which required modifications and raised the
question of the convergence of AMFEM in general. The presentation concludes
with the announcement that this can be proved and will be published in joint work
with Ronald Hoppe soon.
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An adaptive method for the Hamilton-Jacobi equations

Bernardo Cockburn

(joint work with Bayram Yenikaya)

We introduce and numerically study an adaptive method for approximating the
viscosity solution of the following model steady state Hamilton-Jacobi equation

(1) u + H(ux) = f in (0, 1),

with periodic boundary conditions. For any given positive parameter τ , the
method obtains an approximation uh satisfying the quality constraint

(2) ‖u− uh ‖L∞(Gh) ≤ τ,

where Gh is the mesh on which the approximate solution is computed. Moreover,
the method achieves this with optimal complexity.

To the knowledge of the authors, there is no other adaptive method for Hamilton-
Jacobi equations. One reason might be that a posteriori error estimates in the
L∞-norm were only recently introduced. Indeed, the adaptive method we propose
uses an approximate version of the rigorous a posteriori error estimate obtained
in [1], namely,

‖u− uh ‖L∞(0,1) ≤ Φ(uh),

where Φ is a suitably defined non-linear functional; see a similar result in [2]
for the time-dependent case. A posteriori error estimates in L1-like norms for
time-dependent Hamilton-Jacobi equation with strictly convex Hamiltonians were
obtained in [3, Corollary 2.2]. However, we are not aware of any adaptive method
based on them.

On the other hand, there has been considerable amount of work on a posteriori
error estimation and adaptive methods for scalar hyperbolic conservation laws,
which are equations closely related to the Hamilton-Jacobi equations; for example,
the derivative of the viscosity solution of equation (1) is the entropy solution of
the equation

v + (H(v))x = fx.
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A posteriori error estimates for the scalar hyperbolic conservation laws have been
obtained in almost all papers concerned with error estimation for these equations;
see a review in [4]. However, only in [5] one can find an exhaustive computational
study of the corresponding effectivity index which is the ratio of the upper bound
of the error given by the a posteriori error estimate to the actual value of the
error. It was carried out for the Engquist-Osher scheme on uniform meshes for the
equation

vt + (H(v))x = 0.

The effectivity index was shown to remain very close to the ideal value of one in
two cases: When the entropy solution is smooth, and when it has a discontinuity
and the Hamiltonian H is linear. Unfortunately, no results were given for the
difficult case in which H is a non-linear function and the entropy solution has a
discontinuity. In [6] this difficult case is treated successfully by using an adaptive
method for which the effectivity index turns out to be of order one. No study of
the effectivity index is presented for the adaptive algorithm proposed in [7]. In
[8], an adaptive method for a schock-capturing discontinuous Galerkin method is
considered and an study of two effectivity indexes carried out for functionals of
the solution of hyperbolic conservation laws. Here, we also carry out a thorough
study of the effectivity index of our method extending in this way the work carried
out in [1] for the case of uniform meshes.
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Multiscale adaptivity by wavelet techniques

Wolfgang Dahmen

This talk reviews some recent developments of adaptive numerical strategies
based on multiscale decompositions into wavelet bases. The main emphasis is not
on any detailed specific applications. Instead some concepts are highlighted that
help intertwining the analysis and resolution process concerning, in particular, the
interaction of different lenght scales under nonlinear operators.

The nature of an adaptive strategy depends, of course, on the particular goal
to be pursued. Roughly, one may distinguish two classes. (i) Calculating a local
functional of the (globally defined) solution, (ii) recovering the whole solution
within some target tolerance with respect to a given norm. The focus in this talk
is on (ii).

In this regard one may distinguish two major directions :
(I) Adaptive wavelet methods for stationary variational problems that are in a well-
posed in a suitable Hilbert space setting. This covers linear and nonlinear elliptic
boundary value problems, boundary integral equations, transmission problems,
mixed formulations and indefinite problems, optimal control problems and can be
extended in a canonical way to problems of parabolic type [4, 5, 6]. The Stokes
system will serve as a model case for the latter class of problems [10].
(II) Adaptive wavelet methods for non-stationary hyperbolic conservation laws such
as the Euler equations of gas dynamics and corresponding viscous versions such
as the compressible Navier Stokes equations.
In (I) the following issues are addressed. While computational experience ap-
pears to confirm the high potential of adaptive methods, a rigorous analysis is
only now emerging. This analysis centers on deriving error and complexity esti-
mates that relate the computational work and the adaptively generated number
of degrees of freedom to the achieved accuracy. The main ingredients of such an
analysis will be indicated. It will stress the importance of closely intertwining
the analysis-discretization-solution process. This culminates in a new algorithmic
paradigm based on adaptive realizations of iterative schemes that are conceptually
formulated for the full infinite dimensional problem transformed into wavelet coor-
dinates [5, 6]. Since, due to the specific features of wavelet bases such as the norm
equivalences between certain function and sequence norms, the computational pro-
cess thereby inherits the stability properties of the continuous problem. In turn,
compatibility constraints on the choice of trial spaces such as the Ladyshenskaya-
Babuska-Brezzi condition in connection with saddle point problems become void
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[10]. A central result is to show that these new schemes exhibit an asymptotically
optimal complexity in the following sense. If the smallest number of degrees of
freedom in the given discretization framework needed to achieve accuracy ε grows
at most like N(ε) = ε−1/s (for a certain range of s depending on the wavelet ba-
sis) then the adaptive scheme produces an approximate solution with accuracy ε
at a computational expense that also stays proportional to ε−1/s, uniformly in ε.
The analytical tools developed in this context, in turn, suggest new algorithmic
ingredients. Some numerical examples e.g. for the Stokes system illustrate these
results [2, 10]. These tools come from nonlinear approximation and computational
harmonic analysis [12].

The basic approach to (II) is quite different. As originally initiated by A.
Harten, Wavelet concepts are used here more in the spirit of post processing con-
ventional discretization schemes such as finite volume discretizations [13, 13, 1, 11].
Nevertheless, the compression of a flow field represented in wavelet coordinates can
be shown to lead to a fully adaptive solver based on a realiable prediction of signif-
icant flow components when progressing in time [9, 15]. As already in connection
with nonlinear problems in (I) a key issue is the interaction of components from
different scales under nonlinear mappings. Wavelet concepts offer ways of esti-
mating such interactions in a quantitative manner e.g. for nonlinearities of power
growth [7]. This part of the talk wis kept short and mainly restricted to some
numerical experiments for aerodynamical applications [3].
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Reliable a posteriori error control for non-conforming finite element
approximation of Stokes flow

Willy Dörfler

(joint work with Mark Ainsworth)

We derive computable a posteriori error estimates for the lowest order non-
conforming Crouzeix–Raviart element in case of approximation of incompressible
Stokes flow. The estimator provides an explicit upper bound that is free of any
unknown constants in the leading order. In addition, it is shown that the estimator
provides an equivalent lower bound on the error up to a generic constant.

Let Ω ⊂ R
d, d ∈ {2, 3}, be an open polygonal or polyhedral domain. For a

given forcing term f : Ω → R
d we seek a velocity field u : Ω → R

d and a pressure
p : Ω → R satisfying the Stokes equations,

−∆u + ∇p = f in Ω,

∇·u = 0 in Ω,

u = 0 on ∂Ω

subject to the side-constraint
∫

Ω
p = 0.

This problem is discretised with the finite element method, using the non-
conforming Crouzeix–Raviart element. As a solution we get the discrete velocity
uh and the discrete pressure ph.

We prove computable a upper posteriori bounds for the error in the energy norm
of the problem. Let fK denote a constant approximation of f on the element K.
To deal with the error, it is split into a conforming and a non-conforming part.
The estimator ηc for the conforming part of the error is defined by

ηc :=
1

d2(d + 1)

(

∑

K∈K

|K|
∣

∣fK

∣

∣

2 ∑

γ : γ⊂∂K

∣

∣xγ − xK

∣

∣

2
)1/2

,

where xK and xγ denote the centroid of the element K and an edge γ respectively.
The estimator ηnc for the non-conforming part is defined by

ηnc := ||∇h(u∗ − uh)|| +
1

c0
||∇·u∗||,
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where u∗ is any function in H1
0 (Ω)2, ∇h is the piecewise defined gradient, and c0 is

the lower bound in the inf-sup condition. Fortunately, bounds for c0 are available
and can be obtained from literature. The estimator for the total error is obtained
by summing the estimators

η := ηc + ηnc.

The influence of data is measured by the data oscillation on K defined by

osc
K

(f ) :=
(

∑

K∈K

|K| ||f − fK ||2K

)

.

This term is typically of higher order.

Theorem 1. (Upper a posteriori bound) For any choice u∗ ∈ H1
0 (Ω)2 one has

the estimate

||∇h(u − uh)|| ≤ η + C osc
K

(f),

where C is a positive constant that only depends on the shape regularity of the

mesh.

Thus, the estimator η provides an explicit upper bound in the leading order.

To show a lower bound, one has to be more specific about the choice of u∗.
Here, some explicit mapping u∗ := Qhuh into a higher finite element space are
given.

Theorem 2. (Lower a posteriori bound) Suppose that each element K ∈ K
has at most one edge on the boundary. If the estimator ηnc is defined by taking

u∗ = Qhuh, where Qh is any of the operators defined, then

c η ≤ ||∇he|| + osc
K

(f ),

where c is a positive constant that depends only on the shape regularity of the

mesh.

The result can be extended to the case of non-homogeneous boundary conditions
as well. Computations of an example with regular and one with singular solution in
a two-dimensional domain shows quasi-optimal estimates with an overestimation
between 3 and 4.
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Some observations about a posteriori analysis and adaptivity for
space-time finite element methods

Donald Estep

Currently, the state of implementation of a posteriori error estimates and adap-
tive error control for evolutionary partial differential equations is relatively unfin-
ished. There are fundamental issues underlying adaptivity for space-time finite
elements that present hurdles for future progress. In this talk, we discuss three of
these.

We begin by noting that there are fundamental differences between successful
approaches to adaptivity for hyperbolic and parabolic problems. This is due in part
to the difference between finite and infinite speed of propagation of information
and reversibility/irreversibility with respect to time. The issues we discuss are
important for both types of problems, though the details are different in the context
of each type. In this talk, we focus on parabolic problems.

We consider continuous and discontinuous Galerkin discretizations of poten-
tially singular systems of reaction-diffusion equations. The systems couple one
or more parabolic problems with diffusion functions bounded away from zero and
some ordinary differential equations in time. Such systems are widely used as mod-
els in biology, chemistry, ecology, and population modeling. The discretizations we
consider use space-time “slabs” with approximation functions that are weakly or
strongly discontinuous piecewise polynomials in time, where on each time interval,
the coefficients are in the space of continuous, piecewise linear functions with re-
spect to a triangulation of the space domain. The a priori convergence properties
of these methods is well established.

We describe an a posteriori analysis of the error using residuals and the gener-
alized Green’s function. After defining a quantity of interest as a linear function
involving the solution at the final time, we pose the adjoint problem corresponding
to a linearized version of the forward problem. Then, we state the a posteriori
error representation formula obtained by a variational argument.

The standard approach to adaptive error control is to pose the problem of dis-
cretization selection as an optimal control problem. In order to carry out a calculus
of variations argument, the a posteriori error representation is replaced by an a
posteriori bound on the representation written as a sum of nonnegative element
contributions that eliminates cancellation of contributions between elements. We
derive an appropriate bound after assuming the most favorable regularity for the
generalized Green’s function that can be expected to hold and the corresponding
residuals. This bound has the form of a sum over elements of stability factors,
i.e., weights given by seminorms of the generalized Green’s function, and norms of
residuals.

We then discuss bounds on the stability factors and residuals. We state a
theorem that says that generally we can make residuals small on any given time
step by discretization enrichment. We point out that in general, boundedness of
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the stability factors requires boundedness (at least) of the true solution and the
numerical solution.

With this introduction, we present three fundamental issues that are important
for any future progress in adaptivity.

• Robust error control appears to require a global approach that uses in-
formation about the stability of the solution being approximated. How
should this information be obtained and how should it be incorporated
into the adaptive error control?

• Adaptive mesh selection is usually posed as an optimal control problem
involving a constraint given in terms of an a posteriori error bound that
eliminates cancellation of contributions between elements. Such bounds
are frequently orders of magnitude too large in evolution problems, which
seriously weakens any claims about optimality. Are there theories for
optimal mesh selection that utilize estimates that allow cancellation of
errors?

• On many problems, the adaptive criteria must be extended beyond accu-
racy to include preservation of special stability properties of the solution.
This is important not only for computing accurate solutions, but also for
computing accurate error estimates. In these cases, what are good criteria
and how should a discretization be changed in response to such criteria?

We discuss these issues in the context of several examples, including the chaotic
Lorenz ordinary differential equation, the bistable reaction-diffusion equation, and
S-I-R model of rabies, and a predator-prey system.
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Self-adaptive hp approach in the DGFEM for avoiding Gibbs
phenomenon

Miloslav Feistauer

(joint work with Vı́t Doleǰśı)

This paper is concerned with the discontinuous Galerkin finite element method
(DGFEM) and its applications in Computational Fluid Dynamics (CFD). Our
goal is to develop a sufficiently accurate and robust method for the numerical
solution of nonlinear conservation laws, nonlinear convection-diffusion problems
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and compressible flow, i.e. compressible Euler or Navier-Stokes equations. During
the last decade, mainly two competing techniques have been used in CFD: the
finite element method (FEM) and the finite volume method (FVM). A compromise
between these techniques is the dicontinuous Galerkin finite element method, using
ideas and advantages of the FEM as well as the FVM. For a survey of DGFE
techniques we refer to [2]. In CFD the DGFEM was used first in [1].

In the DGFEM the sought solution is approximated by piecewise polynomial
functions over meshes consisting of various types of elements. Usually we use
tetrahedra or hexahedra, but by [7], one can use elements of the form of general
star-shaped polyhedra. The requirement of the continuity on interfaces between
neighbouring elements is completely relaxed and replaced by interior and boundary
penalty terms combined with suitable stabilization terms. The convective terms
are approximated with the aid of a numerical flux (an important ingredient in
the FVM). As a result we obtain in a natural way higher order schemes, whose
accuracy depends on the degree of the used polynomial approximations.

Unfortunately, numerical solutions obtained by the DGFEM (similarly as by
other higher order methods) suffer from the Gibbs phenomenon, manifested by
spurious nonphysical overshoots and undershoots in the vicinity of discontinuities
or steep gradients (shock waves, contact discontinuities, boundary layers). In order
to cure this “disease”, various methods have been applied as artificial viscosity,
shock capturing streamline diffusion (see, e.g. [8], Section 4.3) or order limiting
developed originally in the FVM (see, e.g. [2]). The goal of all these methods
is to decrease the order of accuracy of the scheme near discontinuities and steep
gradients. However they have some disadvantages, as the necessity to tune various
parameters or the danger that the accuracy is diminished also out of regions, where
it is necessary, particularly when unstructured and/or anisotropic meshes are used.

Here we are concerned with a new startegy applicable in the framework of the
DGFEM on all types of meshes and allowing the limiting of the order of accuracy of
the DGFEM only in a small neighbourhood of discontinuities and steep gradients.
It is based on a suitable jump indicator marking elements on which the limiting
of accuracy is applied. On the marked elements, in the convective terms the
approximate solution is replaced by its modification obtained with the aid of an
averaging procedure. The detailed derivation and justification of this method is
described in [6].

The combination of the limiting procedure with an adaptive mesh refinement
can be treated as a special case of the hp-version of the DGFEM. In our compu-
tations we apply the anisotropic mesh adaptation (AMA) technique described in
[3]. A series of numerical experiments carried out for known test problems as well
as some technically relevant problems show the reliability, accuracy and efficiency
of this method. For details, see [5], [6], [4].
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Towards fourth order accuracy for integral outputs
from flows with shocks

Mike Giles

This talk begins with a discussion of possible limits to the effective order of
accuracy which may be achieved for integral outputs such as lift from approxima-
tions of the Euler equations when there is a shock. A heuristic argument, based
on the discrete shock width and the total number of grid nodes, suggests that the
best that may be achievable using straight-sided finite elements with anisotropic
adaptation is fourth order accuracy in 2D, and third order accuracy in 3D.

The talk then presents an extension of the technique of adjoint error correction
[1, 2, 3] to improve the accuracy of integral outputs when there are shocks. The
key is to introduce a mesh-dependent regularisation, and correct for the error in
the functional due to the regularisation, J(uε) − J(u), as well as for the error
in approximating the regularised problem, J(uh) − J(uε). Numerical results are
presented for a quasi-1D model problem with ε = h2, using adaptive grid redis-
tribution and grid refinement. The accuracy of the lift approximation from the
primal calculation is second order, but the adjoint error correction raises the ac-
curacy to fourth order. This remains the case even when there is relatively poor
resolution of the regularised shock, a result which is probably connected to recent
work on the convergence of linearised functionals and adjoint approximations of
Burgers equation with an underlying discontinuity [4, 5].



852 Oberwolfach Report 16/2004

References

[1] N.A. Pierce and M.B. Giles. Adjoint recovery of superconvergent functionals from PDE ap-
proximations. SIAM Rev., 42(2):247–264, 2000.

[2] M.B. Giles and E. Süli. Adjoint methods for PDEs: a posteriori error analysis and post-
processing by duality. In A. Iserles, editor, Acta Numerica 2002, pages 145–236. Cambridge
University Press, 2002.

[3] M.B. Giles and N.A. Pierce. Adjoint error correction for integral outputs. In T. Barth and

H. Deconinck, editors, Error Estimation and Adaptive Discretization Methods in Computa-
tional Fluid Dynamics, number 25 in Lecture Notes in Computational Science and Engineer-
ing, pages 47–96. Springer-Verlag, 2002.

[4] M.B. Giles. Discrete adjoint approximations with shocks. In T. Hou and E. Tadmor, editors,
Hyperbolic Problems: Theory, Numerics, Applications. Springer-Verlag, 2003.

[5] M.B. Giles and S. Ulbrich. Convergence of discrete linearised approximations in the presence
of a shock. In preparation, 2004.

Adaptive hp finite element method for flow problems

Vincent Heuveline

For many applications, the hp Finite Element Method offers an extremely ef-
fective discretization since it generally allows to gain an exponential convergence
with regard to the number of unknowns (see e.g. [4]). However for non smooth
solution, this convergence behavior relies on an adequate choice of the mesh size
h and of the polynomial order p which is not known a priori in many applications.

We propose a goal oriented adaptive scheme for the simultaneous control of
h and p in the context of flow problems. The proposed scheme is based on a
duality-based a posteriori error analysis which is developed for the conforming hp
Galerkin finite element approximation of second-order elliptic problems. Duality
arguments combined with Galerkin orthogonality yield representations of the error
in arbitrary quantities of interest. From these error estimates, criteria are derived
for the simultaneous adaptation of the mesh size h and the polynomial degree p
[2].

Numerical experiments considering the incompressible Navier-Stokes equations
in two and three dimensional channel around an obstacle are presented. The
computation of the drag, lift and torque acting on the obstacle can be computed
with an error less than one per cent with less than 20.000 unknowns. This is at
least an order of magnitude less than standard lower order finite element approach.
These results clearly show the effectivity of the proposed approach. Many open
questions still remain expecially in the context of instationary flows.
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Moving adaptive finite elements

Jens Lang

The purpose of this talk is to present a combination of an r–adaptive and
an h–adaptive finite element method, [1]. r–adaptivity, i.e., moving grid points
through the computational domain without destroying the mesh connectivity, is
accomplished by a moving mesh method. This method is based on a moving
mesh PDE where the gradient or an a posteriori error estimate of the numerical
solution is used to indicate the regions requiring higher mesh density. Although
moving methods have a good potential to solve non–trivial problems including free
boundaries or time–dependent domains, a fixed number of grid points may become
a major disadvantage.

Here, h–adaptivity can be useful to insert new grid points in regions where large
solution variations have to be resolved and to delete grid points where they are no
longer needed. Thus, the main idea is to run the r–method until an h–method is re-
quired to keep the estimated discretization error in space below a certain tolerance.
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Adaptive submodeling for elasticity

Mats G. Larson

Submodeling is a procedure for local enhancement of the resolution of a coarse
global finite element solution by solving a local problem on a subdomain containing
an area of particular interest. We focus on linear elasticity and computation of
local stress levels determined by the local geometry of the domain. We derive a
posteriori error estimates for the submodeling procedure using duality techniques.
Based on these estimates we propose an adaptive procedure for automatic choice of
the resolution and size of the submodel. The procedure is illustrated for problems
of industrial interest.

In many industrial engineering applications the initial grid is large due to the
complexity of the geometry of the problem. Such large initial grids make it diffi-
cult to apply standard automatic adaptive procedures based on a posteriori error
estimates since in only a few refinement steps may result in a very large mesh.
Nevertheless local mesh refinement may often be necessary to compute accurate
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local values of the stress field. In such situations submodeling is an attractive
alternative.

Submodeling is based on solving a local problem on a subdomain of the global
problem containing an area of particular interest, for instance an area with high
stress levels in the coarse grid solution, with improved resolution. Boundary con-
ditions are obtained from the coarse grid solution. The size of the submodel
problem may be much smaller than the global coarse grid and may thus be solved
in a short amount of time, sometimes close to real time. In complex engineering
applications such a technique opens up the possibility of interactive simulation and
optimization of local design changes. Another important application is simulation
of the effect of small features, for instance a hole, which are not present in the
coarse global mesh. Removing small scale features from the CAD data in order to
simplify meshing is common in industrial computations.

In this work we consider a submodeling procedure for linear elasticity based
on displacement boundary conditions. We let Ω be the global domain and KH

be a triangulation of Ω. Further we assume that the subdomain is a union of
elements K in KH and we let Kh be a finer triangulation of ω, for instance obtained
by refinement of KH . The global finite element solution to the linear elasticity
equations is called uH and the submodel solution uh.

We develop several a posteriori error estimates for this submodeling procedure.
Typically, we are interested in localized values of stresses in engineering applica-
tions and thus we seek a posteriori error estimates of the error in such specific
quantities. We derive the a posteriori error estimates using duality techniques
where a certain generalized Green’s function is introduced to represent the error
in a linear functional to the residual of the computed solution. We refer to the
recent book [1] by Bangert and Rannacher for an introduction to duality based a
posteriori error estimates.

The most basic estimate of the error in a linear functional m(e) = m(u)−m(uh)
of the submodel solution takes the form

m(e)ω =
∑

K∈Kh

RK(uh)WK(φ)

+
∑

E∈∂ω

RE(uh, uH)WE(φ).

+
∑

K∈KH

RK(uH) · WK(φ).

Here RK(·) and the weight WK(·) are computable estimates of the residual ∇ ·
σ(uH) and the local interpolation error φ − πφ in the solution φ to the dual
problem. Further RE(uh, uH) is a residual measuring the jump in the normal
stress at the submodel boundary and WE is the L2 norm of the dual solution
at face E on the submodel boundary. We note that the first term is primarily
dependendent on the resolution in the submodel mesh, the second depends on the
submodel size, and finally the third depends on the resolution in the coarse global
mesh. Assuming that the coarse global mesh is given an adaptive algorithm for
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automatic tuning of the submodel resolution and size can be designed based on the
three contributions to the error. We focus on applications of industrial interest
where the local geometry of the domain in the problem determines local stress
levels. We illustrate and evaluate the submodeling procedure on test problems of
industrial interest.

The idea of submodeling is old and frequently employed in industrial computa-
tions. Submodeling was used as a tool to construct parallel algorithms in the work
of Xu and Zhou [7]. A priori and local residual based a posteriori error estimates
are also presented for the Poisson equation. A related approach was proposed by
Bank and Holst [2] with applications to parallel adaptive meshing and [3] where
a duality based domain decomposition method is proposed and analysed. Further
submodeling is also related to local error estimates for the finite element method,
see Schatz and Wahlbin [5]. Recently submodeling has been exploited by Oden
and Venmanganti in [4] and [6] for simulation of elastic bodies with microstruc-
ture. Here the material model in the submodel is different from the global coarse
problem.
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Adaptive finite element methods for surface diffusion

Pedro Morin

(joint work with Eberhard Bänsch and Ricardo H. Nochetto)

The overall goal of this project is to devise efficient numerical tools for simu-
lating morphological changes in stressed epitaxial films and thereby study their
complicated nonlinear dynamics. To model the misfit between the crystalline
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structure of the substrate and epitaxial film, the film may be thought of as sub-
jected to mechanical stresses. This causes a plastic deformation of the film, due
to the diffusion of atoms along the interface (surface diffusion). This morpholog-
ical instability may eventually lead to crack formation and fracture, an issue of
paramount importance in Materials Science; see for instance [1, 4, 5] and the list
of references in [3].

The dynamics of the free surface Γ(t) ⊆ R
d is governed by the (4th order highly

nonlinear) geometric law

(0.3) V = −∆Γ(κ − ε),

where d = 2, 3, V and κ are the (scalar) normal velocity and mean curvature of Γ,
respectively, ∆Γ = divΓ∇Γ is the Laplace-Beltrami operator and ε is the elastic
energy density of the bulk Ω(t) enclosed by Γ(t).

We first presented a novel variational formulation for surface diffusion of para-
metric surfaces, where ε is a given forcing function. This formulation is based on
a semi-implicit time discretization, which requires no explicit parametrization of
the surface and yields a linear system of elliptic PDE to approximate at each time
step [2]. Already this simplified problem presents several difficulties and interesting
features: the former related to mesh distortion, and the latter including topologi-
cal changes of the bulk surrounded by the free surface Γ(t). An algorithm which
incorporates time and space adaptivity was discussed, and the advantage when
dealing with very disparate time scales as well as different geometric structures
was discussed.

Secondly we presented the coupling of this purely geometric evolution with the
elasticity problem in the bulk. Issues such as mesh generation, mesh smoothing
and mesh transformation arise in dealing with the fully coupled problem, and were
discussed in the talk.

The elasticity problem to be solved after each timestep is stationary and for this
specific problem we concluded that generating a mesh after modifying the surface
in every timestep is more convenient than transforming one mesh into another for
the new domain.

Animations of the computational results can be found in

http://www.math.umd.edu/~rhn/SurfDiff/Movies

For the case of graphs, a a variational formulation and optimal a priori error
estimates for a time-continuous finite element discretization was obtained [3]. We
also performed several simulations in 1d and 2d with and without forcing which
explore the smoothing effect of surface diffusion as well as the onset of singularities
in finite time, such as infinite slopes and cracks.
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Convergence of adaptive finite element methods

Ricardo Nochetto

This was a survey lecture on the basic ingredients for convergence of adaptive
finite element methods (AFEM) for elliptic PDE of the form

− div(A∇u) = f,

with piecewise constant positive definite matrix A. The first concept is that of
interior node, which allows for error reduction, and the second one is data oscilla-
tion. Counterexamples show that the interior node property as well as control of
data oscillation are necessary for error reduction. Marking of elements for refine-
ment consists of two steps: the first one, due to W. Dörfler [4], selects a number
of elements such that their element indicators amount to a fixed proportion of the
total error estimator. The second step adds elements so as to satisfy a similar
condition for data oscillation. Under these conditions, the energy error is shown
to decrease linearly as the adaptive counter tends to infinity. These results are
joint with P. Morin and K. Siebert [6, 7, 8].

The lecture also addressed convergence of AFEM for elliptic PDE with variable
coefficients, including convection,

− div(A∇u) + b · ∇u + cu = f.

This requires dealing with energy error and oscillation together since they no longer
decouple. This result hinges on a quasi-orthogonality property in the induced
energy norm, and an oscillation reduction inequality which relates oscillation and
discrete solutions in consecutive meshes; the latter is in the spirit of [2]. This is
joint work with K. Mekchay.

Finally the lecture discussed convergence of AFEM in H(div; Ω), namely for
the elliptic PDE

Au + ∇ div u = f ,

with Raviart-Thomas elements. Results similar to those above were presented,
along with applications to mixed methods via an Augmented Lagrangian formu-
lation and an Uzawa iteration in infinite dimensions; the latter is in the spirit of
[1, 3]. This is joint work with J.M. Cascón and K. Siebert.

Several live simulations were presented. They were all implemented within the
finite element toolbox ALBERT of A. Schmidt and K. Siebert [9].
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A posteriori error estimates and adaptive finite elements for meshes
with high aspect ratio

Marco Picasso

An anisotropic, a posteriori error estimator is proposed for the Laplace problem
solved with continuous, piecewise linear finite elements. Using the anisotropic
interpolation estimates derived in [1, 2] (see also [3] for similar results), the error
in the energy norm is bounded above by an error estimator, the constant being
independent of the mesh size and aspect ratio.

The error estimator contains a term measuring the alignement of the error gradi-
ent with the directions of maximum and minimum stretching. This error gradient
is approached using Zienkiewicz-Zhu post-processing [4]. A lower bound is proved
[5] provided the error is equidistributed in the directions of maximum and mini-
mum stretching. This suggests an adaptive algorithm aiming at equidistributing
the error in the directions of maximum and minimum stretching. A numerical
study of the effectivity index confirms the theoretical predictions.

The method is extended to various elliptic and parabolic problems [6, 7, 8, 9].
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A review of modeling error estimation and model adaptivity

Serge Prudhomme

Concepts and methods for modeling error estimation and model adaptivity
of computer predictions of physical events are reviewed. A motivation for model
adaptivity is founded on the observation that one often used too complicated (cost-
prohibitive) a model for what needs to be predicted. When performing computer
simulations of a physical event, one can generally select a family of mathematical
models that are liable to deliver reliable predictions. It is assumed that a base,
or reference, model can be picked, one of such details that it allows for very
precise predictions, but maybe is too complicated to be efficiently solved on current
computers. The main goal of model adaptivity is to devise algorithms which
automatically select among the surrogate models the simplest model that meets
prescribed tolerances on the modeling error. For example, model adaptivity can be
useful to locate the regions, preferably small, that require the use of the reference
model rather than a surrogate model. We note that the notion of best or simplest
models strongly depends on prescribed tolerances and on the choice of the quantity
of interests that need to be computed; hence the development of goal-oriented
approaches, in which the adaptive process is driven by the error in quantities of
interest to the analyst.

To fix ideas, we suppose that a physical event of interest can be accurately
predicted by the reference abstract model problem: find u ∈ V such that

B(u; v) = F (v), ∀v ∈ V,

where B(·; ·) denotes a semilinear form, F (·) a linear functional, and V a space of
admissible functions. A surrogate model problem, embedded in the form Bi(·; ·),
may consist in finding ui ∈ V such that

Bi(ui; v) = F (v), ∀v ∈ V.

The solution ui of the surrogate problem is further discretized by means of numer-
ical methods. In the case of the finite element method, the above problem reduces
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to finding uh ∈ V h such that

Bi(uh; v) = F (v), ∀v ∈ V h,

where V h defines a conforming finite element subspace of V . The goal is then to
assess the accuracy of uh in approximating the best prediction u. In other words,
one wants to estimate the error E = Q(u) − Q(uh), where Q(u) represents the
quantity of interest to be predicted. For adaptation purposes, the main issue is to
discern the modeling error Em = Q(u) − Q(ui), due to replacing the base model
by a surrogate model, and the discretization error Eh = Q(ui) − Q(uh), due to
employing a discretization method for the solution of the surrogate problem, i.e.

E = Em + Eh.

Goal-oriented estimation of the approximation error, i.e. Eh = Q(ui) −Q(uh) has
been the subject of extensive research works, see for example [1, 2, 4] and references
therein. The approach was extended to the modeling error Em = Q(u) − Q(ui)
in [4], where ui was defined either as the solution of the surrogate model or simply
as an arbitrary function in V . Since uh ∈ V h ⊂ V , the results can thus be used to
estimate the total error E = Q(u)−Q(uh) (note that the solution of the surrogate
problem is not available in practical applications) and the modeling error can then
be derived as:

Em = E − Eh.

A similar result is obtained in [3] where the reference model is given as B(u; v) =
a(u, v)+d(u, v) and the surrogate model as Bi(u; v) = a(u, v). In other words, the
term d(u, v) stands for the part of the model which is difficult to compute and can
be viewed as a perturbation between the surrogate and the reference models. The
quantities E and Eh are usually approximated as products of residuals by solutions
of dual problems, as shown in [1, 2, 4, 5], and the major difficulty in order to derive
computable estimates of E and Eh becomes to obtain accurate approximations of
the dual solutions. Variations in goal-oriented methods are actually related to the
means by which the dual solutions are approximated.

Several illustrative application examples for modeling error estimation and
adaptivity are presented. In particular, we mention the goal-oriented adaptive
local solution (GOALS) algorithm proposed by Oden and Vemaganti [7, 10, 9] for
the analysis of heterogeneous materials and perforated materials. We also review
approaches for the estimation of the modeling error for dimensionally reduced
models of elliptic boundary value problems posed on thin domains (see e.g. [8])
and for constitutive law models of nonlinear viscoelasticity problems [6].
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Lepp / terminal-edge algorithms: an integrated approach
for mesh generation

Maria-Cecilia Rivara

Unstructured meshes are widely used as basic tools for solving application prob-
lems by means of either the finite element or the finite volume methods. In the
finite-element context, longest-edge refinement algorithms[1, 2, 3] have been suc-
cessfully used in practice for performing adaptive finite element computations in
two and three dimensions. In 2-dimensions the algorithms were also successfully
parallelized in order to deal with big and complex applications.

In recent years, improved Lepp / terminal-edge algorithms for the refinement
of non-Delaunay triangulations[4, 7, 8], as well as a new family of algorithms for
improving Delaunay triangulations have been developed: Algorithms for triangu-
lation improvement, for automatic quality triangulation, for obtuse triangulation
improvement [5, 6](as needed in finite volume methods), and for approximate
quality triangulation [9]. These algorithms take advantage of the properties of
two related concepts: the Lepp (longest-edge propagation path) of any triangle
/ tetrahedron t and its associated terminal-edges. Either for improving or refin-
ing a mesh, the algorithms use a terminal-edge point selection criteria as follows.
For any target element to be improved or refined, the midpoint of an associated
terminal-edge is selected for point insertion. Each terminal-edge is a special edge
in the mesh which is the common longest-edge of every element (triangle or tetra-
hedron) that shares this terminal-edge in the mesh. In the case of the refinement
algorithm, this is done by longest-edge bisection of all the elements that share the
terminal-edge, which is a very local operation. In the case of the improvement
algorithms, a constrained Delaunay triangulation is assumed, and terminal-edge
midpoint insertion is performed by using a constrained Delaunay algorithm. The
process is repeatedly performed until the target element is destroyed in the mesh.
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In 2-dimensions the refinement algorithms essentially guarantee that the quality
of the input triangulation is maintained, while the improvement algorithms assure
that a 30 degrees triangulation can be obtained. In this talk, the algorithms, their
mathematical properties, some implementation issues, as well as some of their
possible extensions are discussed.
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A posteriori error analysis for the finite element approximation of
fluid-structure interaction vibration problems

Rodolfo Rodŕıguez

(joint work with Ricardo G. Durán, Claudio Padra)

We deal with a posteriori error estimates for the finite element approximation
of a second order eigenvalue problem, which arises from the computation of the
vibration modes of a coupled acoustic fluid – elastic structure interaction problem
([6, 7, 10]).

First, we consider a simple model problem: the approximation by piecewise
linear finite elements of the eigenvalue problem for the Laplace operator. We give
an elementary proof of the equivalence between the error and a residual type error
estimator, up to higher order terms. In this case, we also prove that the volumetric
part of the residual is dominated by a constant times the edge or face residuals,
again up to higher order terms ([9]).

Then we consider the approximation by lowest-order Raviart-Thomas elements
of the mixed formulation of this problem. This is equivalent at continuous and
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discrete level to the displacement formulation of the vibration problem for an
acoustic fluid. We present a residual type error estimator which has been shown
to be equivalent to the energy norm of the error, up to higher order terms ([4, 8]).

Finally, we consider the approximation of the pure displacement formulation
of the structural acoustics vibration problem. We define an error estimator by
combining variations of the two previous ones ([5]) with some additional terms to
take care of the variational crimes arising in the fluid-structure interface ([2]). We
prove that the estimator is equivalent to the energy norm of the error up to higher
order terms, for general meshes satisfying the usual regularity assumption ([3]).
The analysis shows that the estimator yields global upper and local lower bounds
for the error with constants independent of the physical parameters. So, it can
be used to design an efficient adaptive scheme. We report numerical experiments
which exhibits the efficiency of the method, even when grids non-matching on the
fluid-solid interface are used ([1]).
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A posteriori error analysis for elliptic PDEs on domains with
complicated structures

Stefan Sauter

(joint work with Carsten Carstensen)

The discretisation of boundary value problems on complicated domains cannot
resolve all geometric details such as small holes or pores. The model problem
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consists of a triangulated polygonal domain with holes of a size of the mesh-width
at most and mixed boundary conditions for the Poisson equation. Reliable and
efficient a posteriori error estimates are presented for a fully numerical discreti-
sation with conforming piecewise affine finite elements. Emphasis is on technical
difficulties with the numerical approximation of the domain and their influence on
the constants in the reliability and efficiency estimates.
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Convergence rates for an adaptive dual weighted residual finite
element algorithm

Erik von Schwerin

(joint work with K.-S. Moon and A. Szepessy)

Basic convergence rates are established for an adaptive algorithm based on the
dual weighted residual error representation,

error =
∑

elements

error density × mesh size2+d,

applied to piecewise linear tensor finite element approximation of functionals of
multi scale solutions to second order elliptic partial differential equations in bound-
ed domains of R

d. In contrast to the usual aim to derive an a posteriori error
estimate, this work derives, as the mesh size tends to zero, a uniformly conver-
gent error expansion for the error density, with computable leading order term.
It is shown that the optimal adaptive isotropic mesh uses a number of elements

proportional to the d/2 power of the L
d

d+2 quasi-norm of the error density; the
same error for approximation with a uniform mesh requires a number of elements
proportional to the d/2 power of the larger L1 norm of the same error density.
A point is that this measure recognizes different convergence rates for multi scale
problems, although the convergence order may be the same. The main result is
a proof that the adaptive algorithm based on successive subdivisions of elements
reduces the maximal error indicator with a factor or stops with the error asymp-
totically bounded by the tolerance using the optimal number of elements, up to a
problem independent factor. An important step is to prove uniform convergence of
the expansion for the error density, which is based on localized averages of second
order difference quotients of the primal and dual finite element solutions. The
averages are used since the difference quotients itself do not converge pointwise for
adapted meshes. The proof uses weak convergence techniques and a symmetrizer
for the second order difference quotients. Numerical experiments for an elasticity
problem with a crack and different variants of the averages show that the algorithm
is useful also in practice.
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Polynomial preserving recovery

Zhimin Zhang

Recovery type error estimators are widely used in engineering applications and
their practical effectiveness has been recognized by more and more researchers.
See, e.g., [1, Chapter 4], [2]-[6], [8, 9], and [13]-[16]. The most popular re-
covery technique, the Zienkiewicz-Zhu Superconvergent Patch Recovery (SPR)
[18], has been used in many commercial codes for the purpose of smoothing
and adaptive re-meshing. These codes include ANSYS, MCS/NASTRAN-Marc,
Pro/MECHANICA (a product of Parametric Technology), I-DEAS (a product
of SDRC, part of EDS), and NASA’s COMET-AR (COmputational MEchanics
Testbed With Adaptive Refinement). In a computer based investigation [2] by
Babuška et al., it was found that among all error estimators tested (including the
equilibrated residual error estimator [1] and many others), the Zienkiewicz-Zhu
error estimator [17] based on SPR is the most robust.

The idea of SPR is to fit higher-order polynomials, in a discrete least-squares
sense, with computed gradients on element patches. Recently, we proposed an
alternative recovery method [14, 15, 16]. The idea is to fit higher-order polynomials
with computed solution values (instead of gradient values) at some local sampling
points. The recovered gradient at a nodal point is obtained by evaluating the
gradient of the resultant polynomial at the same nodal point. One significant
feature of this recovery is Polynomial Preserving. For this reason, we call it PPR.

In an earlier work, Wiberg-Li [12] used function value fitting to improve con-
vergence in the L2-norm. In some much earlier works, e.g. [7], function value
interpolation (instead of least-squares fitting) was used to improve accuracy.

Numerical tests have shown PPR comparing favorably with SPR. This method
maintains the simplicity, efficiency, and superconvergence property of SPR, and
performs better than SPR under certain meshes (such as the Chevron pattern) as
well as on boundaries. In fact, PPR is superconvergent for linear element under
the uniform Chevron mesh and ultra-convergent (superconvergence of order two)
at element edge centers for quadratic element under the uniform regular mesh [16].

The major advantage of PPR is its polynomial preserving property under practi-
cal meshes, a property not shared by SPR. To be more precise, let z be an interior
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node, ωz be the associated element patch, and Gh be the recovery operator by
PPR, then

|(∇u − Ghu)(z)| ≤ Chk+1|u|W k+2
∞

(ωz);

Furthermore, if z is a grid symmetry point and k = 2r,

|(∇u − Ghu)(z)| ≤ Chk+2|u|W k+3
∞ (ωz).

Based on the polynomial preserving property, we have established, under transla-
tion invariant meshes:

a) PPR is superconvergent for a large class of triangular elements [16].
b) PPR is ultra-convergent for even-order finite elements under uniform trian-

gulation of the regular pattern [14].
As for non-uniform grids, we need to introduce a mesh condition [13, 15]. Tri-

angulation Th = T1,h ∪ T2,h is said to satisfy Condition (α, σ), if it fulfils the
maximum angle condition and

1) Two adjacent triangles inside T1,h form an O(h1+α) (α > 0) parallelogram;
2) |Ω2,h| = O(hσ), σ > 0; Ω̄2,h =

⋃

τ∈T2,h
τ̄ .

For the quadrilateral mesh, instead of 1), we have
1’) Sides of two adjacent quadrilaterals inside T1,h defer by O(h1+α) (α > 0)

from parallel; and every quadrilateral K ∈ T1,h is convex, and the distance between

the mid-points of two diagonals dK = O(h1+α
K ).

Note that α = ∞ is associated with uniform mesh and α = 0 represents com-
pletely unstructured mesh. The condition (α, σ) allows completely unstructured
mesh on a small measured region while permitting some distortions on the rest
of the domain. A mesh generated by the Delaunay triangulation usually satisfies
Condition (α, σ).

Under the aforementioned mesh condition, we have proven that the recovered
gradient by PPR is superconvergent with order O(h1+ρ), ρ = min(α, σ/2, 1/2), for
both linear and bilinear elements. The result is valid for both the energy norm and
the maximum norm in an interior region [14, 15]. As a consequence, the recovered
gradient results in an asymptotically exact error estimator. The error bound is in
the form of

ηh + O(h1+ρ) ≤ ‖∇(u − uh)‖ ≤ ηh + O(h1+ρ),

rather than

1

C
ηh + higher order term ≤ ‖∇(u − uh)‖ ≤ Cηh + higher order term

for most error bounds in the literature, where C is an unknown constant, which
may be very large and hence makes the error bound not very meaningful in prac-
tice.

Further numerical tests show that PPR is robust under some highly anisotropic
meshes. Theoretical analysis along this line is also promising.

As a recovery technique, PPR is problem independent, method independent,
and completely local, like SPR. It can be used for finite element method, finite
difference method, as well as finite volume method. Furthermore, the underlying
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differential equations are not used in the recovery procedure.
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baensch@wias-berlin.de

Weierstraß-Institut für
Angewandte Analysis und Stochastik
im Forschungsverbund Berlin e.V.
Mohrenstr. 39
D–10117 Berlin

Prof. Dr. Randolph E. Bank
rbank@ucsd.edu

Dept. of Mathematics
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0112 – USA

Prof. Dr. Roland Becker

roland.becker@univ-pau.fr

Laboratoire de Math. Appliquees
Universite de Pau et des Pays de
l’Adour, BP 1155
F-64013 Pau Cedex

Prof. Dr. Christine Bernardi
bernardi@ann.jussieu.fr

Universite Pierre et Marie Curie
Laboratoire Jacques-Louis Lions
Boite courrier 187
4 place Jussieu
F-75252 Paris Cedex 05

Dr. Malte Braack
malte.braack@iwr.uni-heidelberg.de

Institut für Angewandte Mathematik
Universität Heidelberg
Im Neuenheimer Feld 294
D–69120 Heidelberg

Prof. Dr. Graham F. Carey

carey@cfdlab.ae.utexas.edu

ASE/EM Dept.
WRW 301
University of Texas at Austin
Austin TX 78712 – USA

Prof. Dr. Carsten Carstensen
cc@math.hu-berlin.de

Institut für Mathematik
Humboldt-Universität Berlin
Unter den Linden 6
D–10099 Berlin

Prof. Dr. Bernardo Cockburn
cockburn@math.umn.edu

School of Mathematics
University of Minnesota
127 Vincent Hall
206 Church Street S. E.
Minneapolis, MN 55455 – USA



Self-Adaptive Methods for PDE 869

Prof. Dr. Wolfgang Dahmen
dahmen@igpm.rwth-aachen.de

Institut für Geometrie und
Praktische Mathematik
RWTH Aachen
Templergraben 55
D–52056 Aachen

Prof. Dr. Willy Dörfler
doerfler@math.uni-karlsruhe.de

Institut für Angewandte Mathematik II
TU Karlsruhe
D–76128 Karlsruhe

Prof. Dr. Don Estep
estep@math.colostate.edu

Dept. of Mathematics
Colorado State University
Weber Building
Fort Collins, CO 80523-1874 – USA

Prof. Dr. Miloslav Feistauer
feist@karlin.mff.cuni.cz

Department of Computational Math.
Faculty of Mathematics and Physics
Charles University Prague
Sokolovska 83
186 75 Prague 8 – Czech Republic

Dr. Jiri Felcman
felcman@karlin.mff.cuni.cz

Department of Computational Math.
Faculty of Mathematics and Physics
Charles University Prague
Sokolovska 83
186 75 Prague 8 – Czech Republic

Prof. Dr. Michael B. Giles
mike.giles@comlab.ox.ac.uk

Numerical Analysis Group
Computing Laboratory
Oxford University
Keble Road
GB-Oxford OX1 3QD

Prof. Dr. Wolfgang Hackbusch
wh@mis.mpg.de

Max-Planck-Institut für Mathematik
in den Naturwissenschaften
Inselstr. 22 - 26
D–04103 Leipzig

Priv.-Doz. Dr. Vincent Heuveline
vincent.heuveline@iwr.uni-heidelberg.de

Institut für Angewandte Mathematik
Universität Heidelberg
Im Neuenheimer Feld 294
D–69120 Heidelberg

Prof. Dr. Ralf Hiptmair
hiptmair@sam.math.ethz.ch

Seminar für Angewandte Mathematik
ETH-Zentrum
Rämistr. 101
CH-8092 Zürich
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Universitätsstr. 14
D–86159 Augsburg



870 Oberwolfach Report 16/2004

Priv.-Doz. Dr. Guido Kanschat
Kanschat@iwr.uni-heidelberg.de

kanschat@dealii.org

Institut für Angewandte Mathematik
Universität Heidelberg
Im Neuenheimer Feld 294
D–69120 Heidelberg

Prof. Dr. Dietmar Kröner
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