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Introduction by the Organisers

The official program consisted of 20 lectures and therefore left plenty of space for
fruitful informal collaboration for the 44 participants. One emphasis with 9 talks
at this meeting was on geometric flows. Exciting progress could be reported on

• existence results for mean curvature as well as for the Ricci flow with
singular initial data,

• stability and convergence results for the Ricci flow and new invariant cur-
vature conditions,

• an extension of Perelman’s work to open 3-manifolds with positive scalar
curvature, and an improved singularity analysis.

Another important theme was metric and Finsler geometry with five talks cov-
ering the following topics

• a survey on currents in metric spaces, and existence of a curvature tensor
in a measured sense on Alexandrov spaces which are noncollapsed limits,

• existence of path isometries to the Euclidean space for a wide range of
metric spaces,

• closed geodesics on Finsler manifolds and volume entropy of Hilbert’s
Finsler metrics on convex sets.

The other six talks covered other aspects of geometry including
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• dynamics of topological holomorphic maps on 2-sphere and geodesics of
the Weil-Petersson metric,

• a cohomogeneity one example of a positively curved manifold and Ein-
stein / Ricci-soliton solvmanifolds,

• a discrete analogue of conformal equivalence and isoparametric hypersur-
faces.

Several connections between the different areas became apparent during the work-
shop. For example, the initial value problem for the Ricci flow with singular initial
data is closely linked to smoothing problems occuring in Alexandrov geometry.
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Abstracts

Relative Expander Monotonicity and MCF with Singular Initial Data

Tom Ilmanen

Let M0 be a hypersurface in Rn+1 with isolated point singularities modeled on
regular hypercones. Consider a mean curvature flow (Mt)t≥0 with initial data M0.
We have the following questions:
(1) DoesMt evolve by self-similar expansion aymptotically near each singular point
p?
(2) Is Mt smooth for a short time?
These question are answered affirmatively for n ≤ 6 by the following theorems.

Theorem 1. (all n) Any tangent flow (Pt)t≥0 to (Mt)t≥0 at p has the form

Pt =
√
t · P, t > 0.

Such a P is called an expander and solves the elliptic equation

~H − x⊥

2
= 0, x ∈ P,

which is the Euler-Lagrange equation of the functional

K(P ) :=

∫

P

e|x|
2/4.

Theorem 2. (all n) The flow (Mt)t≥0 can be constructed so that the expander P
minimizes K with respect to compact replacements.

Theorem 3. (n ≤ 6) The flows of Theorem 2 are smooth for 0 < t < ε = ε(M0).

The proofs employ a relative forward monotonicity formula

d

dt
Kt(Mt ∩BR(t)) = −

∫

Mt∩BR(t)

φ

∣∣∣∣ ~H − x⊥

2

∣∣∣∣
2

+ o(1),

where

Kt(A) :=

∫

A

φ(x, t), φ(x, t) :=
e|x|

2/4t

tn/2
,

and R(t) → 0 is chosen suitably.
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Currents in metric spaces

Urs Lang

An m-dimensional de Rham current in an open set U ⊂ Rn is a real-valued linear
function on the space of compactly supported differential m-forms on U , con-
tinuous with respect to convergence of forms in a suitable C∞-topology. In [1],
L. Ambrosio and B. Kirchheim developed an elegant theory of currents with finite
mass in complete metric spaces, employing (m+1)-tuples of real-valued Lipschitz
functions in place of differential m-forms. The talk presented a variant of the
theory that does not rely on a finite mass condition, exposed in detail in [3].

Throughout this note, X stands for a locally compact metric space. We denote
by Dm(X) the set of (m + 1)-tuples (f, π1, . . . , πm) of real-valued functions on
X , where f is Lipschitz with compact support spt(f) and π1, . . . , πm are locally
Lipschitz. The guiding principle is that if X = U is an open subset of Rn and if
(f, π) = (f, π1, . . . , πm) ∈ C∞

c (U)× [C∞(U)]m, then this tuple represents the form
f dπ1∧ . . .∧dπm. (This correspondence is made rigorous in Theorem 2 below.) An
m-dimensional metric current T in X is defined as an (m + 1)-linear real-valued
function on Dm(X), continuous with respect to convergence of tuples in a suitable
topology involving locally uniform bounds on Lipschitz constants, and satisfying
T (f, π1, . . . , πm) = 0 whenever some πi is constant on a neighborhood of spt(f).
The vector space of m-dimensional metric currents in X is denoted by Dm(X).
The defining conditions give rise to a set of further properties, corresponding to the
usual rules of calculus for differential forms. Every T ∈ Dm(X) is alternating in
the m last arguments and satisfies the following product rule: If (f, π) ∈ Dm(X),
and if g : X → R is locally Lipschitz, then

T (f, gπ1, π2, . . . , πm) = T (fg, π1, . . . , πm) + T (fπ1, g, π2, . . . , πm).

Moreover, a chain rule holds, a special case of which states that if (f, π) ∈ Dm(X)
and g ∈ [C1,1(Rm)]m, i.e., all partial derivatives Dkgi are locally Lipschitz, then

T (f, g ◦ π) = T (f det((Dg) ◦ π), π).

Every function u ∈ L1
loc(U) on an open set U ⊂ Rm induces a metric current

[u] ∈ Dm(U) satisfying

[u](f, g) =

∫

U

uf det(Dg) dx

for all (f, g) = (f, g1, . . . , gm) ∈ Dm(U). This corresponds to the integration of a
simple m-form over U .

For every metric current T there is a smallest closed set in X , denoted by
spt(T ), such that T (f, π) depends only on the restrictions of f and π to this
set. (This would allow to define, more generally, currents with locally compact
support in arbitrary metric spaces.) For a classical m-current T̄ , the boundary is
defined so that ∂T̄ (φ) = T̄ (dφ) for every compactly supported (m − 1)-form φ.



Geometrie 1939

Correspondingly, the boundary of a metric current T ∈ Dm(X) is the (m − 1)-
current ∂T ∈ Dm−1(X) satisfying

∂T (f, π1, . . . , πm−1) = T (σ, f, π1, . . . , πm−1)

for all (f, π1, . . . , πm−1) ∈ Dm−1(X) and for all σ such that σ = 1 on some
neighborhood of spt(f). We have ∂ ◦ ∂ = 0. Given T ∈ Dm(X), another locally
compact metric space Y , and a locally Lipschitz map F : X → Y such that F |spt(T )

is proper, the push-forward F#T ∈ Dm(Y ) is defined so that

F#T (f, π) = T (f̃ , π ◦ F )

whenever (f, π) ∈ Dm(Y ) and f̃ : X → R is a compactly supported Lipschitz
function that agrees with f ◦ F on spt(T ).

Given a metric m-current T , we define its mass MV (T ) in an open set V ⊂ X
as the least number M ∈ [0,∞] such that

∑

λ∈Λ

T (fλ, π
λ) ≤M

whenever Λ is a finite set, (fλ, π
λ) ∈ Dm(X), πλ

1 , . . . , π
λ
m are 1-Lipschitz, spt(fλ) ⊂

V , and
∑

λ∈Λ |fλ| ≤ 1. There is a Borel regular outer measure ‖T ‖ on X such
that ‖T ‖(V ) = MV (T ) for all open sets V ⊂ X . If ‖T ‖ is locally finite, then ‖T ‖
is a Radon measure, and

T (f, π) ≤
∫

X

|f | d‖T ‖

whenever (f, π) ∈ Dm(X) and the restrictions of π1, . . . , πm to spt(f) are 1-
Lipschitz. This last inequality allows to extend T to all tuples (f, π) such that f
is a bounded Borel function with compact support and π1, . . . , πm are still locally
Lipschitz. For a Borel set B ⊂ X , the restriction T ⌊B is then defined as the
m-current satisfying

(T ⌊B)(f, π) = T (χBf, π)

for all (f, π) ∈ Dm(X), where χB is the characteristic function of B.
An m-current T is called locally normal if the quantity NV (T ) := MV (T ) +

MV (∂T ) (NV (T ) := MV (T ) in case m = 0) is finite for every open set V ⋐ X
(with compact closure). The following compactness theorem holds.

Theorem 1. Suppose that T1, T2, . . . ∈ Dm(X) are locally normal currents such
that spt(Tk) is separable for every k and supk NV (Tk) < ∞ for every open set
V ⋐ X. Then there is a subsequence Tk(1), Tk(2), . . . that converges weakly to
some T ∈ Dm(X), i.e., limi→∞ Tk(i)(f, π) = T (f, π) for every (f, π) ∈ Dm(X).

Since MV is lower semicontinuous with respect to weak convergence, and also
∂Tn(i) → ∂T weakly, the limit T is locally normal. In the context of classical
currents, there is a similar compactness theorem for currents with locally finite
mass. Such a result is not available for metric currents. For instance, if u1, u2, . . . is
a suitable sequence of mollifiers on Rm, the corresponding currents [uk] ∈ Dm(Rm)
satisfy M([uk]) = 1 and spt([uk]) ⊂ B(0, 1/k) for all k. No subsequence converges
weakly to a current Dm(Rm), for there is no metric m-current for m ≥ 1 whose
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support is a point. This is the first indication that the class Dm(U) of metric
currents in an open set U ⊂ Rn does not correspond exactly to the space of
general classical (de Rham) currents DdR

m (U). However, the following comparison
theorem shows, in particular, that the former constitutes a fairly large subclass
of the latter, and that the correspondence is precise for locally normal currents.
For T̄ ∈ DdR

m (U), ‖T̄‖ denotes its variation measure, and Floc
m (U) is the space of

locally flat chains in U , as defined in [2].

Theorem 2. Let U ⊂ Rn be an open set, n ≥ 1. For every m ≥ 0, there exists
an injective linear map Cm : Dm(U) → DdR

m (U) such that

Cm(T )(f dg1 ∧ . . . ∧ dgm) = T (f, g1, . . . , gm)

for all (f, g1, . . . , gm) ∈ C∞
c (U) × [C∞(U)]m. The following properties hold:

(1) For m ≥ 1, ∂ ◦ Cm = Cm−1 ◦ ∂.
(2) For all T ∈ Dm(U), ‖T ‖ ≤ ‖Cm(T )‖ ≤

(
n
m

)
‖T ‖.

(3) The restriction of Cm to the space of metric locally normal currents is an
isomorphism onto the space of classical locally normal currents.

(4) The image of Cm contains Floc
m (U).

It is an open problem whether or not Cm(Dm(U)) = Floc
m (U).

We call a current T ∈ Dm(X) locally rectifiable if the measure ‖T ‖ is locally
finite and concentrated on some countably m-rectifiable set E (the union of count-
ably many Lipschitz images of subsets of Rm), and if T satisfies the following
integrality condition: Whenever B ⊂ X is a Borel set with compact closure and
π : X → Rm is Lipschitz, then π#(T ⌊B) = [uB,π] for some uB,π ∈ L1(Rm,Z).
These properties also ensure that spt(T ) is separable and that ‖T ‖ is absolutely
continuous with respect to m-dimensional Hausdorff measure. As in the classical
theory, T is called a locally integral current if both T and ∂T are locally rectifiable
(every such T is locally normal). The following boundary rectifiability theorem
yields a simpler criterion.

Theorem 3. If T ∈ Dm(X) is locally rectifiable, m ≥ 1, and if ‖∂T ‖ is locally
finite, then ∂T is locally rectifiable, so that T is a locally integral current.

The compactness theorem for locally integral currents is now valid in arbitrary
locally compact metric spaces.

Theorem 4. Suppose that T1, T2, . . . ∈ Dm(X) are locally integral currents such
that supk NV (Tk) < ∞ for every open set V ⋐ X. Then there is a subsequence
Tk(1), Tk(2), . . . that converges weakly to some locally integral current T ∈ Dm(X).

This result allows to solve various generalized Plateau problems. An applica-
tion to the asymptotic geometry of nonpositively curved metric spaces has been
obtained in joint work (in preparation) of B. Kleiner and the author.
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Ricci flow in higher dimensions

Christoph Böhm

(joint work with Burkhard Wilking)

On a compact smooth n-dimensional manifold Mn the Ricci flow is the geometric
evolution equation

∂

∂t
g(t) = −2Ric(g(t)) , g(0) = g0

for a one-parameter family g(t)t∈I of Riemannian metrics on Mn.
The curvature operator Rp of a Riemannian manifold (Mn, g) at a point p is a

selfadjoint endomorphism of the second exterior product Λ2TpM
n. If the curvature

operator of an initial metric g0 is at any point “almost” a positive multiple of
the identity then the (volume) normalized Ricci flow will converge to a metric of
constant positive sectional curvature (see e.g. [4], [5], [1], [2]). As a consequence
the underlying manifold must be a spherical space form.

We are interested in curvature conditions C which are invariant under Ricci
flow. That is, if the curvature operator of an initial metric satisfies C (at any
point), then also the curvature operators of the evolved metrics g(t) will do so.
On the one hand the curvature condition C should be so “large” that the (volume)
normalized Ricci flow doesn’t necessarily converge to a metric of constant positive
sectional curvature but may develop singularities. On the other hand C should be
“small” enough to be able to “classify” these singularities. For instance positive
isotropic curvature is an invariant curvature condition due to independent work
of Nguyen [8] and Brendle and Schoen [2] – the four-dimensional case is due to
Hamilton [6]. The final hope is to introduce Ricci flow with surgery for initial
metrics satisfying C as done by Perelman in dimension three for arbitrary initial
metrics.

In dimensions above three the curvature operator of a Riemannian manifold
(Mn, g) is not an arbitrary element of the vector space S2(Λ2TpM

n) of selfad-
joint endomorphisms but satisfies the first (linear) Bianchi identity. The space
S2

B(Λ2TpM
n) of algebraic curvature operators can be decomposed under the nat-

ural action of the orthogonal group O(TpM
n) into three irreducible submoduls:

S2
B(Λ2TpM

n) = 〈Id〉 ⊕ 〈Ric0〉 ⊕ 〈W〉 .
Using this we write R = RId +RRic0 +RW. (Recall that 2trR = 2trRId equals to
the scalar curvature of R.)

We view any closed, convex, O(n)-invariant subset C of S2
B(Λ2TpM

n) as a
curvature condition. By Hamiltons maximum principle, C defines a Ricci flow
invariant curvature condition provided that it is invariant under the ODE

d

dt
R(t) = R2(t) +R#(t)
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where R#(t) denotes a Lie-theoretically defined square of R(t) (see e.g. [1]).
For d > 0 let

Cd := {R ∈ S2
B(Λ2TpM

n) | scal(R) > d · ‖RW‖} .
Moreover, let

d(n) :=
√

2(n− 2)(n− 1) .

Theorem 1. There exists n0 ∈ N, such that in all dimensions n ≥ n0 the following
holds true:

(1) If n is even then Cd(n) is invariant under the Ricci flow.

(2) If n is odd then Cd(n)+ǫ(n) is invariant under the Ricci flow for ǫ(n) ∈
[−ǫ1(n), ǫ2(n)].

The explicitly known numbers ǫ1(n), ǫ2(n) are positive and will converge to zero
for n → ∞. We conjecture that Cd being invariant under the Ricci flow implies
that d must be one of the above stated ones. Moreover, we conjecture that the
above theorem holds true for n0 = 12.

Corollary 1. There exists n0 ∈ N, such that in all dimensions n ≥ n0 the follow-
ing holds true: Let (Mn, g) be a simply connected Einstein manifold. Then:

(1) If n = 2m is even and R ∈ Cd(n) then either (Mn, g) is isometric to
(Sn, gstand) or to (Sm × Sm, gstand).

(2) If n = 2m+ 1 is odd and R ∈ Cd(n)−ǫ1(n) then either (Mn, g) is isometric

to (Sn, gstand) or to (Sm × Sm+1, gstand).

We turn to the class Md(n) of closed manifolds Mn which admit a Riemannian
metric g with R ∈ Cd(n). It is not hard to see that spherical space form bundles

F k → Mn → Bn−k belong to Md(n) provided that k > n − k and that the
structure group of the bundle is contained in the isometry group of the fibre. This
shows already that Md(n) is much larger then the class of spherical space forms.
The next theorem shows that the class Md(n) of manifolds has also very nice
topological properties:

Theorem 2. The class Md(n) of closed manifolds is invariant under surgery of
codimension > n

2 + 1.

Recall that the class of closed manifolds which admit Riemannian metrics of
positive scalar curvature, that is R ∈ C0, is invariant under surgery of codimension
≥ 3 due to Gromov and Lawson [3] and Schoen and Yau [9]. Also by the work of
Micallef and Wang [7] the space of closed manifoldsMn which admit a Riemannian
metric of positive isotropic curvature is invariant under surgery of codimension
≥ n, that is one can form connected sums.
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Conformal equivalence of triangulated surfaces

Ulrich Pinkall

(joint work with Peter Schröder, Boris Springborn)

A metric l on a combinatorial triangulated surfaceM assigns to every edge between
adjacent vertices i, j a positive number

(1) lij = eλij/2

such that the triangle inequalities hold for each triangle. Two metrics on the
same combinatorial surface are called conformally equivalent if there is a function
u on the vertex set for which

l̃ij = e(ui+uj)/2lij

λ̃ij = λij + ui + uj

(2)

It is not difficult to see that l and l̃ are conformally equivalent if and only if for
each interior edge (i, j) the cross ratios

(3) crij =
lihljk

likljh

coincide:

(4) c̃rij = crij

A conformal structure on a combinatorial surface M (a conformal equivalence
class of metrics) is therefore described by an assignment of crij > 0 to each edge
such that for each vertex i ∏

crij = 1

The dimension of the moduli space of conformal structures on a compact trian-
gulated surface of genus g with vertex set V turns out to be 2|V |+6g−6, which is
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the same as the dimension of the Teichmüller space of compact Riemann surfaces
of genus g with |V | punctures.

Another strong indication of the adequacy of the proposed notion of conformal
equivalence is the fact that for triangulated surfaces embedded in Rn Möbius
transformations g of the ambient space induce conformal changes of the metric.
Since it suffices to check this for the case that g is the inversion in the unit sphere,
this follows from

(5)

∣∣∣∣
p

|p|2 − q

|q|2
∣∣∣∣ =

1

|p| ·
1

|q| |p− q|

An important task is to find within a conformal class a metric with prescribed
cone angles at each vertex. (The cone angle αi at a vertex i is the sum of the
angles at i of all triangles adjacent to i.) This demand results in a set of highly
nonlinear equations for the conformal factors ui. Fortunately, these equations can
be rephrased as a variational problem: A function u on the vertex set solves these
equations if and only if u is a critical point of

E(u) =
∑

tijk∈T

α̃i
jkλjk + α̃j

kiλki + α̃k
ijλij − π(ui+uj+uk)

+ 2
(
L(α̃i

jk) + L(αj
ki) + L(α̃k

ij)
)

+
∑

vi∈V

αiui

(6)

It turns out that E is a strictly convex function of u, but due to the triangle
inequalities the domain of definition of E is not convex. However, under mild
conditions on the cone angles αi it turns out that E can be extended to a proper
convex function on the whole of R|V |.

This allows us to conclude that there indeed exists a minimum u of E on the
extended domain. If the triangle inequalities are satisfied for u, then u is unique
and provides a conformal metric with the desired cone angles.

The above yields an efficient numerical algorithm for producing conformally
equivalent metrics with prescribed cone angles. The case of outstanding practical
importance for texture mapping in computer graphics is when all but a few cone
angles are 2π, in which case (after inserting suitable cuts) we get conformal maps
into the euclidean plane.

We finally describe an approach that avoids problems with triangle inequalities
by eliminating the fixed combinatorics from the picture:

Let the initial metric triangulation define a flat metric on a compact 2-manifold
M with boundary that has finitely many cone singularities. Then choose a Delau-
nay triangulation of M (interiors of circumcircles contain no other vertices). This
triangulation then yields lengths lij and cross ratios crij as decribed above. Now
let each triangle inherit from its circumcircle the metric of an ideal hyperbolic
triangle (viewed in the Klein model). The given crossratios allow to glue all these
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triangles together to obtain a complete hyperbolic metric on M −V with cusps at
the vertices.

Definition 1. Two flat metrics with cone points v1, . . . , vn on a compact 2-
manifold are called conformally equivalent if the corresponding complete hyperbolic
metrics on M − {v1, . . . , vn} with cusps at v1, . . . , vn are isometric.

Using a theorem of Rivin [1] we then can prove the following uniformization
result.

Theorem 1. Every flat metric on S2−{v1, . . . , vn} with cone points at v1, . . . , vn

is conformally equivalent to the boundary of a convex polyhedron in R3 with vertices
on S2 (unique up to Moebius transformations)
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Ricci flow with surgery on open 3-manifolds and positive scalar
curvature

Sylvain Maillot

(joint work with Laurent Bessières, Gérard Besson)

All 3-manifolds considered here are smooth, orientable, and without boundary. A
Riemannian metric is said to have bounded geometry if it has bounded sectional
curvature, and injectivity radius bounded away from zero.

Theorem 1. Let M be a (possibly noncompact) 3-manifold. If M admits a com-
plete metric g0 of bounded geometry and scalar curvature ≥ 1, then M is a (possibly
infinite) connected sum of spherical space forms and copies of S2 × S1.

When M is compact, this was proven by Perelman [4], completing earlier work
of Schoen-Yau [5] and Gromov-Lawson [1]. Our proof is based on a generalization
of Perelman’s work.

The talk focused on the special case where M is open and irreducible. In
this case, the conclusion simply asserts that M is diffeomorphic to R3, and is a
consequence from the following result:

Theorem 2. Assume that M is open and irreducible. If M is not diffeomorphic
to R3, then for every T > 0, for every complete metric of bounded geometry g0 on
M , there exists a 1-parameter family {g(t)}t∈[0,T ] of complete Riemannian metrics
of bounded geometry on M , such that g(0) = g0, and satisfying the following two
conditions:

(1) The evolution is by Ricci flow except for a finite number of values of t,
called singular times, where the evolution is discontinuous;
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(2) if t0 is a singular time, then g(t) is continuous from the left, and admits a
right-limit g+(t0), whose infimal scalar curvature is greater than or equal
to that of g(t0).

It is a well-known fact, following from the maximum principle, that any com-
plete Ricci flow of bounded curvature satisfies an a priori lower scalar curvature
bound, which implies that the solution blows up before time 3/2 if the initial con-
dition has scalar curvature ≥ 1. Condition (2) therefore implies that if g0 has
scalar curvature ≥ 1, then any family of metrics produced by Theorem 2 satisfies
the same bound, hence cannot exist on [0, 3/2]. This shows that Theorem 1 in the
open, irreducible case follows from Theorem 2.

The proof of Theorem 2 relies heavily on previous work of Hamilton and Perel-
man on the Ricci flow. In extending Perelman’s proof to the noncompact setting,
one faces several new difficulties: first, the volume is infinite, so Perelman’s ar-
gument to rule out accumulation of surgeries breaks down; second, there may be
a time T such that Ricci flow g(t) is defined and has bounded curvature for all
t < T , but as t→ T , g(t) converges in the C∞

loc-topology to a metric of unbounded
curvature.

To overcome those difficulties, we use a surgery procedure different from Perel-
man’s, where surgery is done before the singular time rather that at the singular
time (compare [2, 3].)

In order to prove Theorem 1 in the general case, one needs a more general
notion, where the manifold (and not only the metric) may evolve with time. At
surgery times, surgery may break off connected sums, and some components whose
topology has been recognized are thrown away. The lower scalar curvature bound
ensures finite extinction, i.e. for some finite time t0 we are left with the empty set.
One can then reconstruct the topology of M .

Remark. Through conversations shortly before and during the meeting, it grad-
ually became clear to the author that Theorem 1 can be improved in two distinct
ways. Firstly, the conclusion can be strengthened by imposing that there are
finitely many summands up to diffeomorphism (excluding, e.g. a connected sum
of an infinite sequence of pairwise non-homeomorphic Lens spaces.) This is very
nice, since the converse of this strengthened version is easily shown to hold.

Secondly, the conclusion of Theorem 1 (in its original weak form) still holds
under the weaker hypothesis that the universal cover of (M, g0) has bounded ge-
ometry. This is because surgery can be done equivariantly (cf. J. Dinkelbach’s
lecture in these proceedings.)
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Complex dynamics and quasiconformal geometry

Mario Bonk

(joint work with Daniel Meyer)

A continuous map f : S2 → S2 on a topological 2-sphere S2 is called topolog-
ically holomorphic if near each point p ∈ S2 it can be written as z 7→ zk near 0
with k ∈ N in suitable local coordinates in source and target. The point p is called
a critical point of such a map f if k ≥ 2, that is, if f is not locally injective near
p. The postcritical set Pf of f is the union of all orbits of critical points under
forward-iteration of f . So

Pf :=

∞⋃

n=1

{fn(p) : p ∈ S2 critical point of f},

where fn denotes the n-th iterate of f . If Pf is a finite set, then f is called
postcritically finite. Thurston investigated such maps and found a necessary and
sufficient condition when a postcritically finite map is “equivalent” (in a suitable
sense) to a rational map on the Riemann sphere [2].

For “expanding” postcritically finite maps there is an interesting relation to
Cannon’s conjecture about Gromov hyperbolic groups whose boundary at infinity
is a topological 2-sphere [1]. In my talk I reported about some recent developments
in this area.
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Ricci soliton solvmanifolds

Jorge Lauret

Let M be a differentiable manifold. The question of whether there is a ‘best’
Riemannian metric on M is intriguing. A great deal of deep results in Riemannian
geometry have been motivated, and even inspired, by this single natural question.
For several good reasons, an Einstein metric is a good candidate, if not the best,
at least a very distinguished one (see [1, Chapter 0]). The Einstein condition is
very subtle, even when restricted to almost any subclass of metrics on M one may
like. It is too strong to allow general existence results, and sometimes even just to
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find a single example, and at the same time, it is too weak to get obstructions or
classification results.

The latest fashion generalization of Einstein metrics, although they were intro-
duced by R. Hamilton more than twenty years ago, is the notion of Ricci soliton:

(1) ricg = cg + LXg, for some c ∈ R, X ∈ χ(M),

where LXg is the usual Lie derivative of g in the direction of the field X . A more
intuitive equivalent condition to (1) is that ricg is tangent at g to the space of all
metrics which are homothetic to g (i.e. isometric up to a constant scalar multiple).
Recall that Einstein means ricg tangent to R>0g. Ricci solitons correspond to
solutions of the Ricci flow

d
dtg(t) = −2 ricg(t),

that evolves self similarly, that is, only by scaling and the action by diffeomor-
phisms, and often arise as limits of dilations of singularities of the Ricci flow. We
refer to [2] and the references therein for further information on the Hamilton-
Perelman theory of Ricci flow and Ricci solitons.

In the homogeneous case, it is known that only expanding (i.e c < 0) non-
Einstein Ricci solitons are allowed. Examples can be obtained by considering a
left invariant metric on a Lie group with Ricci operator Ric = cI + D for some
c ∈ R and some derivation D of the Lie algebra (see [5]). It is easy to see that this
neat algebraic condition is also necessary if the Lie algebra is completely solvable
(i.e. the eigenvalues of each adX are all real numbers), and it is proved in [9]
that the same holds for any Lie group. To this day, mostly nilpotent Lie groups
admitting one of these special metrics had been found, which are called nilsolitons
and are intimately related to Einstein solvmanifolds (see the survey [8]).

Let S be a solvmanifold, that is, a simply connected solvable Lie group en-
dowed with a left invariant Riemannian metric. S will be often identified with
its metric Lie algebra (s, 〈·, ·〉), where s is the Lie algebra of S and 〈·, ·〉 denotes
the inner product on s which determines the metric. We consider the orthogonal
decomposition

s = a ⊕ n,

where n is the nilradical of s (i.e. maximal nilpotent ideal). The mean curvature
vector of S is the only element H ∈ a such that 〈H,A〉 = tr adA for any A ∈ a.
If B denotes the symmetric map defined by the Killing form of s relative to 〈·, ·〉
(i.e. 〈BX,X〉 = tr (adX)2 for all X ∈ s) then B(a) ⊂ a and B|n = 0. The Ricci
operator Ric of S is given by (see for instance [1, 7.38]):

(2) Ric = R− 1
2B − S(adH),

where S(adH) = 1
2 (adH + (adH)t) is the symmetric part of adH and R is the

symmetric operator defined by

(3) 〈RX,X〉 = − 1
2

∑
〈[X,Xi], Xj〉2 + 1

4

∑
〈[Xi, Xj], X〉2, ∀X ∈ s,

where {Xi} is any orthonormal basis of (s, 〈·, ·〉).
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Remark. If s is nilpotent then Ric = R and hence the scalar curvature is simply
given by tr Ric = − 1

4 ||[·, ·]||2.
It follows from [6, Propositions 3.5, 4.2] that this anonymous tensor R in the

formula of the Ricci operator satisfies

(4) m([·, ·]) = 4
||[·,·]||2R,

where m : Λ2s∗⊗ s −→ sym(s) is the moment map for the natural action of GL(s)
on Λ2s∗ ⊗ s. In other words, R may be alternatively defined as follows:

(5) trRE = 1
4 〈π(E)[·, ·], [·, ·]〉, ∀E ∈ End(s),

where we are considering the Lie bracket [·, ·] of s as a vector in Λ2s∗ ⊗ s and π is
the corresponding representation of gl(s) on Λ2s∗ ⊗ s.

The following more explicit formula for the Ricci operator of S follows from a
straightforward computation by using (2) and (3):

(6)

〈RicA,A〉 = − 1
2

∑ ||[A,Ai]||2 − trS(adA|n)2,

〈RicA,X〉 = − 1
2

∑〈[A,Ai], [X,Ai]〉 − 1
2 tr (adA|n)t adX |n

− 1
2 〈[H,A], X〉,

〈RicX,X〉 = 1
4

∑〈[Ai, Aj ], X〉2 + 1
2

∑〈[adAi|n, (adAi|n)t](X), X〉

− 1
2

∑〈[X,Xi], Xj〉2 + 1
4

∑〈[Xi, Xj ], X〉2 − 〈[H,X ], X〉,
for all A ∈ a and X ∈ n, where {Ai}, {Xi}, are any orthonormal basis of a and
n, respectively. It is now clear from (6) that the simplification for Ric is really
substantial under the assumptions [a, a] = 0 (i.e. S standard) and adA symmetric
for all A ∈ a. This gives rise to the following natural construction of solsolitons
(i.e. Ricci soliton solvmanifolds) starting from a nilsoliton.

Proposition 1. Let (n, 〈·, ·〉1) be a nilsoliton, say with Ricci operator Ric1 =
cI +D1, c < 0, D1 ∈ Der(n), and consider a any abelian Lie algebra of symmetric
derivations of (n, 〈·, ·〉1). Then the solvmanifold S with Lie algebra s = a ⊕ n

(semidirect product) and inner product given by

〈·, ·〉|n×n = 〈·, ·〉1, 〈a, n〉 = 0, 〈A,A〉 = − 1
c trA2 ∀A ∈ a,

is a solsoliton with Ric = cI +D, where D is a derivation of s defined by D|a = 0,
D|n = D1−adH |n, H the mean curvature vector of S. Furthermore, S is Einstein
if and only if D1 ∈ a.

The aim of this talk was to show that this very simple procedure actually yields
all solsolitons up to isometry.

Theorem 1. [9] Let S be a solvmanifold with metric Lie algebra (s, 〈·, ·〉) and
consider the orthogonal decomposition s = a ⊕ n, where n is the nilradical of s.
Then Ric = cI +D for some c < 0, D ∈ Der(s) (i.e. S is a solsoliton) if and only
if the following conditions hold:
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(i) (n, 〈·, ·〉|n×n) is a nilsoliton with Ricci operator Ric1 = cI +D1, for some
D1 ∈ Der(n).

(ii) [a, a] = 0 (i.e. S standard).
(iii) (adA)t ∈ Der(s) (or equivalently, [adA, (adA)t] = 0) for all A ∈ a.
(iv) 〈A,A〉 = − 1

c trS(adA)2 for all A ∈ a.

By using [3, Proposition 2.5], we conclude that any solsoliton is isometric to one
which is constructed as in the proposition above. In this way, we obtain structural
results for solsolitons which are identical to those proved by J. Heber in [3] for
Einstein solvmanifolds.

The proof of the theorem uses tools from geometric invariant theory based
on the relationship with the moment map given in (4), mainly a GL-invariant
stratification for V = Λ2(Rn)∗ ⊗ R

n, which was defined in [7] by adapting to this
context the construction given in [4, Section 12] for reductive group representations
over an algebraically closed field (see [8, Section 7] for a kind overview).
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Ricci flow of 3-manifolds with maximal volume growth, and curvature
bounded from below

Miles Simon

In this talk we consider smooth complete Riemannian manifolds (M, g0) with
no boundary satisfying:

(a) supM |Riem(g)| <∞
(b) Ricci(g) ≥ −2
(c) vol(B1(x)) ≥ v0 > 0 for all x ∈M .

We show that a Ricci flow of such a Riemannian manifold exists for a short time
interval [0, T ) where T = T (v0) > 0. Note that T does depend on the value of the
upper bound for the curvature (as it does in the case of Shi [1]).



Geometrie 1951

Theorem 1. Let (M, g0) be a three (or two) manifold satisfying (a),(b),(c) above.
Then there exists a T = T (v0) > 0 and K = K(v0) > 0 and a solution
(M, g(t))t∈[0,T ) to Ricci-flow satisfying

sup
M

|Riem(g(t))| ≤ K2

t
∀ t ∈ (0, T )(1)

Ricci(g(t)) ≥ −K2 ∀ t ∈ (0, T ),(2)

vol(B1(x, t)) ≥
v0
2
> 0 ∀x ∈M, ∀ t ∈ (0, T ).(3)

What is happening? The diffusion term in the evolution of the curvature is
competing (and winning) against the reaction term:

∂

∂t
R = ∆R+ 2|Ricci|2.

As an application of this theorem we obtain (NOTATION: d(g)(·, ·) is the metric
on M induced by (M, g)):

Corollary 1. Let (Mi,
i

g0) be a sequence of three (or two) manifolds satisfying

the conditions (a),(b), and (c) above, and let (X, d, x) = limi→∞(Mi, d(
i

g0), xi)

be a pointed Gromov-Hausdorff limit of this sequence. Let (Mi,
i

g(t))t∈[0,T ) be the
solutions to Ricci-flow coming from the theorem above. Then there exists a Hamil-

ton limit solution (M, g(t), x)t∈(0,T ) := limi→∞(Mi,
i

g(t), xi)t∈(0,T ) satisfying (1),
(2),(3) and (M,d(g(t)), p) → (X, d, p) in the Gromov-Hausdorff sense as t → 0
(for any p ∈M).

Remark 1. One may think of this as a Ricci flow of the possibly singular space
(X, d, p).

Remark 2. Gromov’s Compactness theorem guarantees that after taking a
subsequence (X, d, x) always exists.

Remark 3. If (M3,
i

g0) have Ricci(
i

g0) ≥ −ε(i) where ε(i) → 0 as i → ∞,
then we can show that the limit solution has Ricci(g(t)) ≥ 0 for all t > 0.

Remark 4. In earlier work [2], we required the condition of Remark 3.
Remark 5. It is possible to replace Ricci by sec in everything above.
Remark 6. A result (at the moment) for dimensions n > 3 is: replace

Ricci(g0) ≥ −1 in the theorem (corollary) by R(g0) ≥ 0. Then the theorem
(corollary) holds with R(g(t)) ≥ 0 for all t ∈ (0, T ).
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Weak convergence of curvature tensor

Nina Lebedeva

(joint work with Anton Petrunin)

LetMn be a sequence ofm-dimensional manifolds with curvature ≥ −1, Assume

Mn
GH−→ A without collapse, i.e. dimA = m.

For a point p in manifold or Alexandrov space let us denote the smoothed
distance function by

d̃istBr(p) =

∮

Br(p)

distx dx.

If p ∈ A we can construct a lifting of the function d̃istBr(p) , namely we can

choose sequences pn ∈Mn, such that pn → p and take function d̃istBr(pn).
We will describe curvature of Riemannian manifold using co-sectional curvature.

Namely given a simple bi-vector x1 ∧ x2 one can consider its dual (n − 2)-vector
v1 ∧ v2 ∧ · · · ∧ vn−2, i.e. such that 〈vi, xj〉 = 0 and

x1 ∧ x2 ∧ v1 ∧ v2 ∧ · · · ∧ vn−2 = |x ∧ y|2ω

where ω is the volume form on M .

Then define R̃M (v1 ∧ · · · ∧ vm−2)
def
== RM (x1 ∧ x2).

Theorem 1. Let Mn be a sequence of m-dimensional manifolds with curvature

≥ −1. Assume Mn
GH−→ A without collapse, i.e. dimA = m. Let {pk}m−2

k=1 ∈ A

be a set of points and choose approximating sets pi
n ∈ Mn such that pk

n → pk as
n → ∞. We denote gradients of corresponding smoothed distance functions by

vk
n = ∇d̃istBr(pk

n). Then R̃Mn
(v1

n ∧ · · · ∧ vm−2
n ) — the Riemann curvature of Mn

— weakly converges to a locally finite sign-measure R̃A(v1 ∧ · · · ∧ vm−2).

Corollary 1. Assume A is an Alexandrov m-space which admits smoothing, i.e.
there is a sequence of Riemannian m-manifolds Mn with uniform lower curvature
bound such that Mn → A. Then one can define a measure valued tensor field R̃A

on A independent on the smoothing sequence.

Corollary 2. Let R(T ) denotes the space of all algebraic curvature tensors on the
space T . Assume W ⊂ R(T ) is a convex subset which is invariant with respect to
rotations of the space T and such that for any curvature tensor in W , its minimal
sectional curvature is at least −1.

Assume Mn is a sequence of Riemannian m-manifolds such that the curvature

tensor at each point belongs to W . If Mn
GH−→ M without collapse, and M is a

Riemannian manifold then its curvature tensor at each point belongs to W .

For example, let Mn be a sequence of Riemannian manifolds with non-negative
curvature operator. If it converges to a Riemannian manifold M , then M also has
non-negative curvature operator.
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Generalization of the reduced distance in the Ricci flow -
monotonicity and applications

Jörg Enders

We consider the evolution of a family of complete oriented connected smooth
Riemannian manifolds (Mn, g(t)), t ∈ [0, T ), with bounded curvature, by the Ricci
flow

∂g(t)

∂t
= −2Ricg(t),

as first introduced by Hamilton [3]. In dimensions n ≥ 3, this evolution gener-
ally develops singularities and unlike in the case of strong curvature positivity
assumptions does not limit to a constant curvature metric (after renormalization).
One of Perelman’s main analytical contributions [9] to the study of those singu-
larities is the monotone quantity of the reduced volume: For any p ∈ Mn and
0 < t0 less than the first singular time T, the reduced distance lp,t0 arises from
a space-time version of Riemannian geometry adapted to the Ricci flow. It is a
locally Lipschitz function on Mn× [0, t0] and satisfies important partial differential
inequalities. Those imply that the reduced volume based at (p, t0)

Ṽp,t0(t̄) :=

∫

Mn

(
4π(t0 − t̄)

)−n
2 e−lp,t0 (q,t̄) dvolg(t̄)(q)

is monotone nondecreasing in t̄ along the Ricci flow on [0, t0]. Moreover, Ṽp,t0(t̄)
is constant in t̄ if and only if (Mn, g(t)) is isometric to Euclidean space with the
flat (non-evolving) metric.

We report on some of our work in [2], which is partially motivated by the
following: Huisken’s monotonicity formula for the mean curvature flow [5] and
Perelman’s entropy for compact Ricci flows give rise to general self-similar solutions
in the equality case of the monotonicity. In case of the Ricci flow, those are gradient
shrinking solitons, i.e. Riemannian manifolds (Mn, g) with a potential function
f : Mn → R satisfying

Ricg + ∇g∇gf − 1

2
g = 0.

These determine a Ricci flow (gradient shrinking soliton in canonical form) on
(∞, T ), which only evolves by shrinking in scale and changing by diffeomorphism,
and were conjectured by Hamilton [4] to model singularities of type I.

We extend the reduced distance and volume to the singular time T. To do this,
we introduce a new (mild) curvature bound, which is more general than the type
I assumption: Let T < ∞. A complete n−dimensional Ricci flow (Mn, g(t)) on
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[0, T ) is said to be of type A if there exist C > 0 and r ∈ [1, 3
2 ) such that for all

t ∈ [0, T )

sup
Mn

|Rmg(t)|g(t) ≤
C

(T − t)r
.

We can then prove the following: Let (Mn, g(t)) be a complete n−dimensional
Ricci flow on [0, T ) of type A. Also let p ∈ Mn and ti ր T. Then there exists a
locally Lipschitz reduced distance based at singular time lp,T : Mn × (0, T ) → R,
which is a subsequential limit

lp,ti

C0
loc(M

n×(0,T ))−−−−−−−−−−−→ lp,T

and for all (q, t̄) ∈Mn × (0, T ) satisfies the partial differential inequality

− ∂

∂t̄
lp,T (q, t̄) − ∆g(t̄)lp,T (q, t̄) + |∇g(t̄)lp,T (q, t̄)|2g(t̄) −Rg(t̄)(q) +

n

2(T − t̄)
≥ 0

in the sense of distributions. (See also [7] for a similar result obtained indepen-
dently under the type I assumption.)

For t̄ ∈ (0, T ), we now define a reduced volume based at singular time (p, T ) by

Ṽp,T (t̄) :=

∫

Mn

(
(4π(T − t̄)

)−n
2 e−lp,T (q,t̄)dvolg(t̄)(q),

and show that any reduced volume based at singular time is monotone nondecreas-
ing in t̄. This uses the differential inequality in the theorem. Moreover, Ṽp,T (t̄) ≤ 1

for all t̄ ∈ (0, T ), and if Ṽp,T (t̄) is constant in t̄ then (Mn, g(t), lp,T (·, t)) is a gra-
dient shrinking soliton in canonical form (which is normalized for all t). While
for compact (normalized) gradient shrinking solitons f = lp,T , it is interesting to
study the relationship between f and lp,T in the noncompact case.

The reduced volume based at singular time can be used to analyze singularities
in arbitrary dimensions: One can prove Hamilton’s conjecture that rescaling limits
around type I singularities are gradient shrinking solitons (see [7] or [2]). This has
been previously shown in the special case of compact rescaling limits in [11] using
the monotonicity of Perelman’s entropy, whose scaling properties similarly imply
that it is constant on the limit flow. The conjecture implies that the study of Ricci
flow in higher dimensions requires the classification of gradient shrinking solitons
(see e.g. [7], [10], [8], [6]).

Moreover, for a type A Ricci flow on [0, T ), any (p, t0) ∈ Mn × [0, T ], and a
reduced distance lp,t0 , we define a density of (p, t0) in the Ricci flow (Mn, g(t)) by

θp,t0 = lim
t̄րt0

Ṽp,t0(t̄) ∈ (0, 1].

In the special case of gradient shrinking solitons with quadratic curvature decay,
this was discussed in [1]. We can prove the following: Let (Mn, g(t)) be a maximal
type I Ricci flow on [0, T ) with singular set Σ. If p ∈ Mn\Σ, then θp,T = 1. We
expect regularity theorems to hold for this quantity.
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A new type of a positively curved manifold

Karsten Grove

(joint work with Luigi Verdiani, Wolfgang Ziller)

Spaces of positive curvature play a special role in geometry. Although the class of
manifolds with positive (sectional) curvature is expected to be relatively small, so
far there are only a few known obstructions. In particular, for simply connected
manifolds these are: (1) The Gromoll-Meyer theorem stating that a complete non-
compact manifold with positive curvature is diffeomorphic to Euclidean space,
(2) the Betti number theorem of Gromov which asserts that the homology of a
compact manifold with non-negative sectional curvature has an a priory bound
on the number of generators depending only on the dimension, and (3) a result
of Lichnerovich implying that a spin manifold with positive scalar curvature has
trivial Â genus.

One way to gain further insight is to construct and analyze examples. This is
quite difficult and has been achieved only a few times. Aside from the classical
rank one symmetric spaces, i.e., the spheres and the projective spaces with their
canonical metrics, and the recently proposed deformation of the so-called Gromoll-
Meyer sphere [PW], examples were only found in the 60’s by Berger [Be], in the
70’s by Wallach [Wa] and by Aloff and Wallach [AW], in the 80’s by Eschenburg
[E1, E2], and in the 90’s by Bazaikin [Ba]. The examples by Berger, Wallach and
Aloff-Wallach were shown, by Wallach in even dimensions [Wa] and by Berard-
Bergery [BB] in odd dimensions, to constitute a classification of simply connected
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homogeneous manifolds of positive curvature, whereas the examples due to Es-
chenburg and Bazaikin typically are non-homogeneous, even up to homotopy. All
of these examples can be obtained as quotients of compact Lie groups G with a
biinvariant metric by a free isometric “two sided” action of a subgroup H ⊂ G×G.

Despite the fact that most of the known manifolds with positive curvature can be
described as the total space of a bundle over another positively curved base space,
as long as one also allows orbifold fibrations [FZ], there are no general methods
for constructing examples in this manner. In [CDR] a necessary and sufficient
condition was given for a connection metric on the total space of a bundle to
have positive curvature when the metric on the fiber is shrunk sufficiently. This
also applies in the setting of orbifolds. Since the projection map is a Riemannian
submersion, it is of course built into this condition that the curvature of the base
is positive. In the special case where the metric on the base is self dual Einstein,
the general Chaves-Derdziński-Rigas condition reduces simply to having positive
curvature on the base. This was used by Dearricott in [De1, De2] to construct new
examples of metrics with positive curvature. These metrics, however, were metrics
on some of the Eschenburg spaces already known to carry metrics of positive
curvature.

In general, the attempt to classify positively curved manifolds with large isom-
etry groups provides a systematic framework in the search for new examples, see
[Gr],[Wi]. Such an attempt was carried out in [V1, V2] and in [GWZ] in the sit-
uation where the isometry group is assumed to act by cohomogeneity one, i.e.,
when the orbit space is one dimensional, or equivalently the principal orbits have
codimension one. In addition to the normal homogeneous manifolds of positive
curvature and a subset among the Eschenburg and Bazaikin spaces which admit a
cohomogeneity one action, two infinite families, Pk, Qk and one exceptional man-
ifold R, all of dimension seven (with ineffective actions of S3 × S3), appeared as
new candidates (see [GWZ] and the survey [Zi]). Here P1 is the 7-sphere and Q1

is the normal homogeneous positively curved Aloff-Wallach space. It is a curious
fact, that the infinite families admit a different description: They are the two-fold
universal covers, Pk → H2k−1 and Qk → H2k of the frame bundle Hℓ of self-dual
2-forms associated to the self dual Einstein orbifolds Oℓ constructed by Hitchin
in [Hi]. As such, these manifolds come with natural 3-Sasakian metrics. Unfortu-
nately the curvature of the Hitchin metrics are positive only for O1 = S4 and for
O2 = CP 2/Z2 [Zi]. This description of the manifolds also means that Pk and Qk

are S3 principal bundles over S4, in the sense of orbifolds. It is thus natural to
consider connection metrics on the total spaces of these bundles. In this language
our main theorem can be stated as:

The manifold P2 admits a cohomogeneity one connection metric with positive
curvature.

The importance of working in the orbifold category is also reflected by the fact
that a connection metric on a smooth S3 bundle over S4 has positive curvature
only in the case of the Hopf bundle, where the total space is S7, [DR].
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Since P2 is 2-connected with π3 = Z2 (see [GWZ]) this is indeed a new example,
since the only other known 2-connected positively curved 7-manifolds are S7 and
the Berger space B7 = SO(5)/SO(3) with π3(B

7) = Z10 [Be]. Furthermore,
from [KZ],[To], it follows that the only homogeneous space or biquotient with the
same cohomology groups as P2 is T1(S

4). We do not know though whether it is
diffeomorphic to it.

In the manuscript [De3], Dearricott has offered a construction of a positively
curved metric on P2. His method is to make a conformal change of the Hitchin
metric on the base, keep the Hitchin principal connection and use the CDR condi-
tion for this special case, i.e., a condition on the Hitchin metric and the conformal
change exclusively. In the same manuscript Dearricott also offers a proof that his
method will not work for any of the other candidates. No estimates have been
provided in [De3] in support of the delicate computer assisted evidence that the
metric has positive curvature.

We now outline the proof that our example has positive curvature. As men-
tioned above, the Hitchin metrics on Oℓ do not have positive curvature when ℓ ≥ 3.
However, on O3 this metric has positive curvature on a large region and only rel-
atively small negative curvature , see Figure 8 in [Zi]. This may suggest that it
might be possible to make a small change of the Hitchin metric on O3 with positive
curvature, choose a connection close to the Hitchin connection, and get positive
curvature on the total space after shrinking the metric on the fiber sufficiently. We
use this idea only as a guide in our choice of metric and connection. Our metric
on the base, and the principal connection, are explicitly given by polynomials. For
this we divide the interval on which the metric is defined into three subintervals,
two close to the singular orbits, and a larger one in the middle. Near the singular
orbits we find functions consisting of polynomials of degree at most 3. In the
middle we glue with the unique polynomials of degree 5 such that the resulting
metric on the manifold is C2. It is then obvious that any smooth C2 perturbation
will have positive curvature as well.

To prove that our metric has positive curvature (on each piece), we use a method
due to Thorpe [Th1, Th2] as implemented in higher dimensions by Püttmann [Pü].
Specifically, rather than working only with the curvature operator, this means that
we seek to add a suitable (invariant) 4-form, not affecting the sectional curvature,
so as to make the modified operator positive definite when the fiber metric is
shrunk sufficiently. To prove positive definiteness, given our choices, boils down
to checking that specific polynomials with integer coefficients have no zeroes on a
particular closed interval. To prove this, we use Sturm’s theorem, which counts
real zeroes of such polynomials by computing the gcd of the polynomial and its
derivative (i.e. applying the Euclidean algorithm).

References

[AW] S. Aloff and N. Wallach, An infinite family of 7–manifolds admitting positively curved
Riemannian structures, Bull. Amer. Math. Soc. 81(1975), 93–97.

[Ba] Y.V. Bazaikin, On a certain family of closed 13–dimensional Riemannian manifolds of
positive curvature, Sib. Math. J. 37, No. 6 (1996), 1219-1237.



1958 Oberwolfach Report 34/2008

[BB] L. Bérard Bergery, Les variétés riemanniennes homogènes simplement connexes de dimen-
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Finsler metrics and closed geodesics

Hans-Bert Rademacher

In this talk results about the existence and stability of closed geodesics of non
reversible Finsler metrics are discussed. Lusternik and Fet proved in 1951 the ex-
istence of a closed geodesic on a compact and simply-connected manifold carrying
a Finsler metric. In contrast to the reversible case resp. the Riemannian case
there are examples of non reversible Finsler metrics on spheres S2n resp. S2n−1

carrying only 2n geometrically distinct closed geodesics. These metrics were first
introduced by Katok, they are bumpy and have constant flag curvature. For a
bumpy metric with only finitely many geometrically distinct closed geodesics an
algebraic relation between the average indices of the closed geodesics is shown in
[4]. As a consequence one obtains that a bumpy metric on S2 carries at least
two geometrically distinct closed geodesics. If there are only finitely many closed
geodesics then there are at least two elliptic ones. Bangert and Long prove in [2]
that for every non-reversible Finsler metric on S2 there are two closed geodesics.
In higher dimensions there is the following result independently shown by Duan
and Long [1] and by the author [6]:

Theorem 1. A bumpy and non-reversible Finsler metric on Sn with n ≥ 3 carries
at least two geometrically distinct closed geodesics.

In [7] it is shown that a bumpy Finsler metric on the complex projective plane
CP 2 carries at least two geometrically distinct closed geodesics.
Using a lower bound for the length of a closed geodesic one can prove the existence
of closed geodesics on positively curved manifolds and give an upper bound for
their lengths. For example one obtains:

Theorem 2. [5] Let an n-dimensional sphere Sn carry a Finsler metric with

reversibility λ and flag curvature K satisfying (λ/(λ+ 1))
2
< K ≤ 1. Then there

exist n/2 − 1 geometrically closed geodesics of length < nπ. One of these closed
geodesics is non-hyperbolic.
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Quarter pinched flag curvature and Ricci flow of 4-manifolds

Huy Nguyen

(joint work with Ben Andrews)

My research centres on the construction of invariant curvature cones and the
Ricci flow. In my thesis and together in a paper with my supervisor, Dr. Ben
Andrews, we develop a new technique to construct sets of curvature operators
that are preserved by the Ricci flow. This technique is based on the maximum
principle for geometric evolution equations. The idea is as follows. We consider a
set of curvature operators defined by an inequality of a curvature function of the
orthonormal frame bundle, F (Riijk) ≥ 0. Examples of such functions are linear
combinations of sectional curvature. To show that such sets are preserved, by
the advanced maximum principle for tensors, it suffices to show that the ODE
associated to the nonlinearity of the Ricci flow,

d

dt
F (R) = F (R)2 + F (R)#,

preserves the set. We note here that the nonlinearity is quadratic in the curvature.
Furthermore, to show that the curvature cone is preserved, we need only to show
that the ODE preserves the set at the boundary, that is where F (Rijkl) = 0.
However, F is a function of the orthonormal frame bundle, and as it takes a
minimum at the boundary, we may differentiate the equation with respect to
derivatives in O(n). Consequently, the first order derivatives are zero and the
matrix of second order derivatives is non-negative. Using the differential equality,
we simplify the curvature evolution equation. To show that the evolution equations
preserves the curvature cone, it remains to use the matrix of second derivatives
and control the remaining terms in the nonlinearity. This part of the proof has
additional subtleties, the matrix of second derivatives has entries whose terms
are linear in curvature, whereas the nonlinearity is quadratic. Using generalized
determinants we are able to overcome this problem. Using this technique, we are
able to prove the following theorem.

Theorem 1 ([AN07]). Let M be a compact 4-manifold, and g0 a Riemannian
metric on M which has λ-pinched flag curvatures, with λ > 1/4. Then M is
diffeomorphic to a spherical space form.

The condition quarter-pinched flag curvature is explained as follows. Let (M, g)
be a compact Riemannian 4-manifold, with curvature tensor R. We suppose that
M has positive sectional curvatures and that for every x ∈M and every orthonor-
mal basis {e1, . . . , e4} for TxM , we have

(1) R(e2, e1, e2, e1) ≥ λR(e3, e1, e3, e1).

To put this in a more geometric way, for each e1 in TxM there is an associated
bilinear form Re1 on the orthogonal subspace, the flag curvature in direction e1,
defined by Re1(v, v) = R(e1, v, e1, v). The condition (1) says precisely that the ra-
tio of any two eigenvalues of Re1 is bounded below by λ. That is, each of the flag
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curvatures of M is λ-pinched. The technique is first applied to show that strictly
1/4-flag pinching is preserved by Ricci flow and furthermore a lower bound on the
pinching quantity is preserved. Next, we show that the ratio sectional curvature
approaches unity at the scalar curvature blows up, this constitutes a pinching esti-
mate. Finally using a compactness argument, we show that the manifold admits a
metric with constant positive sectional curvature, hence is a spherical space form.
We note here that if we allow weak pinching that is λ ≥ 1/4, then M is diffeo-
morphic to a spherical space form, S/Γ, or isometric to CP 2. We note here this
technique was also used to show that non-negative isotropic curvature is preserved
by the Ricci flow. This was done in the authors thesis [Ngu07] and in the paper
[BS07], where it is the crucial step in proving the quarter-pinched diffeomorphism
sphere theorem.
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Ricci flow on almost flat manifolds

Galina Guzhvina

A compact Riemannian manifold Mn is called ε-flat if its curvature is bounded in
terms of the diameter as follows:

|K| ≤ ε · d(M)−2,

whereK denotes the sectional curvature and d(M) the diameter of M. If one scales
an ε−flat metric it remains ε−flat.
By almost flat we mean that the manifold carries ε-flat metrics for arbitrary ε > 0.
The (unnormalized) Ricci flow is the geometric evolution equation in which one
starts with a smooth Riemannian manifold (Mn, g0) and evolves its metric by the
equation:

(1)
∂

∂t
g = −2ricg,

where ricg denotes the Ricci tensor of the metric g.
The present talk studies how the Ricci flow acts on almost flat manifolds. We show
that on a sufficiently flat Riemannian manifold (M, g0) the Ricci flow exists for all
t ∈ [0,∞), limt→∞ |K|g(t) · d(M, g(t))2 = 0 as g(t) evolves along (1), moreover, if
π1(M, g0) is Abelian, g(t) converges along the Ricci flow to a flat metric. More
precisely, we establish the following result:
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Main Theorem (Ricci Flow on Almost Flat Manifolds.) In any dimension
n there exists an ε(n) > 0 such that for any ε ≤ ε(n) an ε-flat Riemannian
manifold (Mn, g) has the following properties:
(i) the solution g(t) to the Ricci flow (1)

∂g

∂t
= −2ricg, g(0) = g,

exists for all t ∈ [0,∞), (ii) along the flow (1) one has

lim
t→∞

|K|gt
· d2(M, gt) = 0

(iii) g(t) converges (in the C∞-sense) to a flat metric along the flow (1), if and
only if the fundamental group of M is (almost) Abelian (= Abelian up to a sub-
group of finite index).

Fundamental results concerning the algebraic structure of almost flat manifolds
were obtained by Gromov at the end of 70’s.
In fact, Gromov [1] showed that each nilmanifold (= compact quotient of a nilpo-
tent Lie group) is almost flat. It means that almost flat manifolds which do not
carry flat metrics exist and occur rather naturally. Moreover, he showed that nil-
manifolds are, up to finite quotients, the only almost flat manifolds.

The above-mentioned results establish a close connection between the ε-flat man-
ifolds with ε sufficiently small and nilmanifolds. In addition, we can show that
sequences of universal covers of εk-flat manifolds with εk → 0 subconverge to
nilmanifolds thus giving a kind of motivation to consider first the Ricci flow on
nilmanifolds.
Interesting observations concerning the behaviour of the Ricci flow on almost flat
manifolds were made by J.Lauret (cf. [3]). From [3] follows (implicitly) the next
property of the Ricci flow:
On a nilpotent Lie group Ricci flow (1) is a gradient flow of the functional F =
trRic2.
To obtain the necessary estimates it often makes sense to consider instead of (1)
the normalised Ricci flow (2):

∂g

∂t
= −2ricg − 2‖ricg‖2

gg,(2)

where ‖ricg‖2
g = trRic2g and we normalise the scalar curvature sc(g0) = −1.

Lauret [3] also showed that the critical points of flow (2) are Ricci nilsolitons.
A Ricci nilsoliton is a special solution of the Ricci flow on a nilpotent Lie group
which moves along the equation by a one-parameter group of automorphisms of
N . If ϕt = exp(− t

2D), D ∈ Der(η) then ∂
∂t |0ϕ⋆

t g = g(−D·, ·).
Operators of the type D on nilmanifolds were studied in great detail by J. Heber
[2]. In particular, he established the following property of their eigenvalues:
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For some positive multiple the operator D has all the eigenvalues integer and
positive.
This allows us to make the following important observation:
Every nilsoliton strongly contracts the metric. In other words, there exists a
constant λ > 0, such that, if (N, g) is a Ricci nilsoliton, then along the flow (2),
for any t ≥ 0, h > 0, holds g(h + t) < e−λhg(t), where g is considered as a
symmetric operator on η. Now let U be a neighbourhood of all solitons such that
on any manifold in U the corresponding left-invariant metric contracts along the
flow (2). More precisely, there exists a λ > 0 such that for any (N, g) ∈ U, as long

as g(t) ∈ U , ∀t > 0, ∀h > 0, holds: g(t+ h) < e−
λ
2 hg(t) along the flow (2). Such a

neighbourhood exists, as follows from the theory of the continuous dependence of
solutions of ODE’s on the initial data.
This permits us to obtain the following important result:
Choose a neighbourhood of the critical set as above. There exists a constant C
such that for any nilmanifold (N, g) along the normalised Ricci flow flow (2) the
measure of the set I := {t : (N, g(t)) /∈ U} is less or equal then C.
So we can conclude that no matter where we start with the flow, the metric will
be non-contracting only on a set of finite measure. It can also be shown that the
curvature declines along the Ricci flow on a nilmanifold. Since the nilmanifolds
can be considered as “limit” spaces for almost flat manifolds the same will be true
for the manifolds flat enough as well.
Now we consider manifolds with the (almost) Abelian fundamental group. The
proof of iii) will be based on three inequalities.
a) Shi estimates. Let (Mn, gij(x)) be a compact manifold with its curvature tensor
Rijkl satisfying |Rijkl|2 ≤ k0 on M , 0 < k0 < ∞. Then there exists a constant
T (n, k0) > 0, s. t. the Ricci flow has a smooth solution gij(x) > 0 on M for a
short time 0 ≤ t ≤ T (n, k0) and satisfies the following estimates: for any integer
m ≥ 0 there exist constants c(m,n), depending only on m and n such that

(3) ‖∇mRijkl(x, t)‖2 ≤ c(m,n) · k0

tm

for any t ∈ [0, T ].
b) For any n-dimensional Riemannian manifold flat enough there exists a constant
c(n) (depending only on the dimension) such that

‖R‖3/2 ≤ c(n)‖∇R‖.(4)

This inequality we prove using the standard blow-up argument.
c) In any dimension n there exist constants c(n), ε(n) such that for any ε(n)-flat
Riemannian manifold with the almost Abelian fundamental group holds:

(5) ‖∇R‖ ≤ c(n) · d(M, gt)(‖∇2R‖ + ‖R‖2),
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The last inequality is valid only in the almost Abelian case, and proof of it is
intricate. Basically, we proof the fact that the translation of tensors along the
geodesic loops of such manifolds are periodical modulo ε. The proof thereof uses
the techniques developed by Gromov (cf. [1]).
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Stability of Euclidean space under Ricci flow

Felix Schulze

(joint work with Oliver C. Schnürer, Miles Simon)

In this work, [1], we study the evolution of a family of complete non-compact
Riemannian manifolds (Rn, g(t)) under Ricci flow,

(1)
d

dt
gij = −2 Ricij

where g0 is a given initial metric on Rn. We aim at studying the long-term
behavior as t→ ∞ of solutions to (1) for initial metrics g0, which are C0-close to
the standard Euclidean metric h.

For analytic reasons, it is convenient to study the Ricci harmonic map heat flow
which is a variant of the Ricci-DeTurck flow

(2)

{
∂
∂tgij(x, t) = −2Rij(x, t) + ∇iVj + ∇jVi in Rn × [0,∞),

gij(·, t) → (g0)ij(·) in C0
loc (Rn) as tց 0,

where Vi = gik

(
gΓk

rs − hΓk
rs

)
grs, which gives for a flat metric h: Vi = gikΓk

rsg
rs.

The flow (2) and the Ricci flow (1) are equivalent up to diffeomorphisms.
Let g1 and g2 denote two Riemannian metrics on a given manifold. We say that

g1 is ε-close to g2, if

(1 + ε)−1g2 ≤ g1 ≤ (1 + ε) g2 .

We can show, using techniques from [2] and [3], that if our initial metric g0 is
a continuous Riemannian metric on Rn, which is ε0-close to the standard metric
h = δ, for ε0 sufficiently small, depending only on n, then there exists a smooth
solution (g(t))t∈(0,∞) to (2). This solution remains ε′-close to h and if in addition
g0 is ε(r)-close to h on R

n \Br(0) with ε(r) → 0 as r → ∞, then

g(t) → h in C∞ as t→ ∞.

Note that we do not have to impose any decay rates to obtain this convergence. If
(λi) are the eigenvalues of (gij) with respect to (hij), we work with the geometric
quantities φm =

∑n
i=1

1
λm

i

and ψm =
∑n

i=1 λ
m
i . To prove convergence back to
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the Euclidean metric we consider the following combination of the above quantities:
Note that

(3) φm + ψm − 2n =
n∑

i=1

(
1

λm
i

+ λm
i − 2

)
=

n∑

i=1

1

λm
i

(λm
i − 1)2 ≥ 0

is non-negative and vanishes precisely when λi = 1 for all i ∈ {1, . . . , n}. Now
if in addition, for ε′ small enough, we have that g0 is smooth and initially for
1 ≤ p < n/2, ∫

Rn

(φm + ψm − 2n)p <∞,

which is equivalent to the condition that ‖g0 − h‖L2p(Rn) <∞, then we can relate
solutions to (2) to solutions of (1): There exists a smooth family (φt)t≥0 of diffeo-
morphisms of Rn, φ0 = idRn , such that for g̃(t) := φ∗t g(t) the family (g̃(t))t≥0 is a
smooth solution to (1) satisfying

g̃(t) → (φ∞)∗h in C∞
(
R

n
)

as t→ ∞
for some smooth diffeomorphism φ∞ of Rn with φt → φ∞ in C∞ (Rn,Rn) as
t→ ∞.

The idea in the proof of the results described above is to measure the pertur-
bation of the metric g(t) from the Euclidean metric h in terms of the quantity (3).
The key estimate is to show essentially that

∫
(φm +ψm − 2n) is non-increasing in

time. Here we integrate over the manifold at a fixed time. We have interior esti-
mates for the gradient of the metric evolving under DeTurck flow, which become
better for larger times. This implies that, if at a large time t, one eigenvalue λi(x, t)
differs significantly from one, then on a controlled spatial neighborhood this is true
as well. Thus we obtain an arbitrarily large contribution to

∫
(φm + ψm − 2n),

contradicting the fact that it is monotone in time. Thus λi(x, t) → 1, uniformly
in x as t→ ∞.

In two space dimensions, Ricci flow is a conformal flow given by the evolution
equation

d

dt
g = −Rg,

where R is the scalar curvature. In this situation, we obtain that if g0 = e−u0h,
where h = δ is the standard Euclidean metric, and u0 ∈ C0(R2) such that

sup
R2\Br(0)

|u0| → 0 as r → ∞,

then there exists a smooth solution (g(t))t∈(0,∞), g(t) = e−u(·,t)h, to Ricci flow

such that u(·, t) → u0 in C0
loc

as t ց 0. Furthermore, as t → ∞, we show that
u(·, t) → 0 in C∞(R2).
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Path isometries to Euclidean space

Anton Petrunin

I consider length-metric spaces which admit path isometries to the Euclidean m-
space. The main result roughly states that the class of these spaces coincides with
the class of inverse limits of m-dimensional polyhedral spaces.

Geodesics of the Weil-Petersson metric

Ursula Hamenstädt

The Teichmüller space T (S) of a closed oriented surface S of genus g ≥ 2
is the quotient of the space of all hyperbolic metrics on S under the group of
diffeomorphisms of S which are isotopic to the identity. The Teichmüller space
admits a natural complex structure. With this structure, T (S) is biholomorphic
to a bounded domain in C

3g−3.
The mapping class group M(S) of isotopy classes of orientation preserving

diffeomorphisms of S naturally acts on T (S). This action preserves the complex
structure. In fact, M(S) is precisely the group of all biholomorphic automorphism
of T (S). The action of M(S) on T (S) is properly discontinuous, but neither free
nor cocompact.

There are several natural and interesting M(S)-invariant metrics on T (S). The
best known of these metrics is the Kobayashi metric (which is better known as the
Teichmüller metric). This metric is an M(S)-invariant complete Finsler metric
with the additional property that any two points in T (S) can be connected by a
unique geodesic.

The Weil-Petersson metric is an M(S)-invariant Kähler metric gWP on T (S).
Its sectional curvature is negative, but it is neither bounded from above by a
negative constant, nor is it bounded from below. Moreover, the Weil-Petersson
metric is not complete. Nevertheless, any two points in T (S) can be connected
by a unique geodesic which depends smoothly on its endpoints. The completion
of T (S) with respect to the Weil-Petersson metric is a CAT(0)-space which is not
locally compact.

For some ǫ > 0, the ǫ-thick part T (S)ǫ of T (S) consists of all hyperbolic metrics
whose systole, i.e. whose shortest length of a simple closed geodesic, is at least ǫ.
The mapping class group preserves T (S)ǫ and acts on it cocompactly. We explain
the following result [4] which was independently obtained by Jeff Brock, Howard
Masur and Yair Minsky [3].

Theorem 1. For every ǫ > 0 there is a number δ > 0 with the following property.
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(1) Let γ : [a, b] → T (S)ǫ be a Teichmüller geodesic. Then the Weil-Petersson
geodesic with the same endpoints is contained in T (S)δ.

(2) Let γ : [a, b] → T (S)ǫ be a Weil-Petersson geodesic. Then the Teichmüller
geodesic with the same endpoints is contained in T (S)δ.

As an application, one can investigate surface bundles M with fibre S and base
a closed surface S′ of genus g′ ≥ 2 whose fundamental group is word hyperbolic
(such bundles are conjectured not to exist). For each such bundle M → S′ there
is an exact sequence

0 → π1(S) → π1(B) → π1(S
′) → 0

and hence a monodromy homomorphism ρ : π1(S
′) → M(S).

A quasi-convex subset of (T (S), gWP ) is a set A ⊂ T (S) with the property that
there is a number c > 0 such that the Weil-Petersson geodesic connecting any two
points in A is contained in the c-neighborhood of A. We obtain.

Theorem 2. The surface bundle M → S′ is hyperbolic if and only if an orbit for
the action of ρ(π1(S

′)) on T (S) is quasi-convex for the Weil-Petersson metric.

As an application, one obtains a new proof of a result of Bowditch [1]: For each
fixed surface S′ there are only finitely many homeomorphism types of S-bundles
over S′ with word hyperbolic fundamental group.

References

[1] B. Bowditch, Atoroidal surface bundles over surfaces, preprint, October 2007.
[2] J. Brock, H. Masur, Y. Minsky, Asymptotics of Weil-Petersson geodesics I: ending lamina-

tions, recurrence and flows, arXiv:0802.1370.
[3] J. Brock, H. Masur, Y. Minsky, Asymptotics of Weil-Petersson geodesics II: bounded geom-

etry and unbounded entropy, in preparation.
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Equivariant Ricci flow with surgery and finite group actions on
geometric 3–manifolds

Jonathan Dinkelbach

(joint work with Bernhard Leeb)

Given a smooth finite group action on a closed geometric manifold, Thurston
raised the question whether the geometric structure can always be chosen to be
compatible with the action [Thu82, Question 6.2]. In other words, does there exist
an invariant complete locally homogeneous metric on the manifold?

In dimension two this follows from the geometrization of 2–orbifolds; and also
in dimension 3 this is known to be true in a lot of cases: A result of Meeks and
Scott [MS86] covers the cases where the geometry is of type H2×R, R3, S̃L(2,R),
Nil or Sol. For free actions (and any geometry), it is a consequence of Perelman’s
Geometrization Theorem [Per03a], and for non-free, orientation-preserving actions
it follows from the Orbifold Theorem of Boileau, Leeb and Porti [BLP05].
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In this talk I discussed the following result for spherical, hyperbolic and S2×R–
geometry, see [DL08], [Din08]:

Theorem. Let M be a closed geometric 3–manifold, such that the model geometry
is one of S3, S2 × R or H3. Then for any smooth finite group action ρ : G y M
there exists a ρ–invariant complete locally homogeneous metric on M .

In the spherical and hyperbolic case, geometric structures are unique in the
sense that if g1 and g2 are two spherical (respectively hyperbolic) metrics on M ,
then (M, g1) and (M, g2) are isometric. Thus, the Theorem implies the following
reformulation:

Corollary. Let ρ : G y M be a smooth finite group action on a spherical or hy-
perbolic closed 3–manifold. Then the action ρ is conjugate to an isometric action.

The idea of our approach is to apply an equivariant version of Perelman’s Ricci
flow with surgery: It suffices to consider the case thatM is orientable (otherwise we
pass to its orientable double cover and the corresponding G × Z2–action). Since
the group action is finite, we can equip M with a ρ–invariant initial metric g0.
With respect to this metric the action is isometric, but of course in general g0 is
not locally homogeneous. If one now runs the Ricci flow, its uniqueness guarantees
that the action remains isometric as long as the flow is defined. We are done if
the Ricci flow converges to a complete, locally homogeneous metric as in the case
of positive Ricci curvature [Ham82].

By the results of Perelman, one can also deal with singularities occurring during
the flow. However, his Ricci flow with surgery is a-priori not equivariant. There
are three main issues which need to be resolved:

First, one has to show that the surgery procedure can be done in an equivariant
way. This is achieved by constructing equivariant surgery-necks, i. e. approxi-
mations by round cylinders such that the pulled-back action is isometric. This
argument only concerns the neck-like part of the manifold: Here we can “average”
a covering by an invariant family of (non-equivariant) necks in order to obtain an
equivariant S2–foliation which is close to the cylindrical product foliation.

Second, at a surgery time there might be components on which scalar curvature
gets uniformly large, even though the metric does not converge to a geometric one
(the curvature operator gets only almost non-negative). Those components are
diffeomorphic to S3, RP 3, RP 3# RP 3 or S2×S1 and they are thrown away, so one
needs to control the action restricted to them. It turns out that a component with
radius (relative to scalar curvature) bounded below a certain bound C is globally
approximated by a compact κ-solution with uniform lower sectional curvature
bound, so we are in the controlled case. On the other hand, local models (κ- or
standard-solutions) with radius greater than C have a neck-cap decomposition,
i.e. are nicely covered by ǫ-necks and ǫ-caps. This decomposition carries over to
the approximated manifold. Thus the action can be controlled by extending the
invariant foliation on the neck-like part to an invariant (singular) foliation on the
caps. This is the most difficult step of the proof and uses the compactness of the
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space of model solutions and a result of Grove and Karcher on C1-close actions
[GK73].

Finally, having obtained that the action is standard on all components which
get extinct, one needs to get back to the original manifold and action. Therefore,
one has to relate the actions before and after a surgery. The result is that the
original action is an equivariant connected sum of the action on a later time slice
(which is possibly empty) and a standard action on a finite union of spherical
space forms, RP 3# RP 3’s and S2 × S1’s.

From this one can conclude the Theorem for spherical geometry: Then the
manifold M is irreducible and has finite extinction time by [Per03b], [CM05].
Therefore, the original action is an equivariant connected sum of a standard action
on M and a standard action on a finite union of 3-spheres which are attached along
a tree. This equivariant connected sum can then be shown to be trivial.

In the case of S2×R-geometry one needs an extra argument since manifolds with
this geometry are not irreducible, but the basic idea of the proof is similar. In case
of hyperbolic geometry, one has in addition to consider the long-time behavior of
the action on a component on which the metric converges (up to diffeomorphisms)
to a hyperbolic one. There one applies Mostow-rigidity to conclude that the limit
action is standard, and again by the result of Grove and Karcher also actions close
to the limit (i.e. for large time) are standard.
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Volume entropy of Hilbert metrics

Andreas Bernig

(joint work with Gautier Berck, Constantin Vernicos)

Let K be a compact convex set with non-empty interior. The Hilbert metric
on intK is defined by

d(x, y) :=
1

2
log

|ya|
|xa|

|xb|
|yb| ,

where a, b are the intersection points of the line through x and y with the boundary
of K (if x = y, then d(x, y) := 0).

The Hilbert metric is a particularly simple complete Finsler metric whose
geodesics are straight lines. Since its definition only uses cross-ratios, the Hilbert
metric is a projective invariant. In the particular case where K is an ellipsoid, the
Hilbert geometry is isometric to the hyperbolic space.

The entropy of K is defined as

EntK := lim
r→∞

log vol B(o, r)

r
,

whenever the limit exists. The entropy does not depend on the particular choice of
the base point o ∈ intK nor on the particular choice of the volume (like Holmes-
Thompson volume or Busemann volume). If the limit does not exist, one may
define lower and upper entropies Ent,Ent by replacing the limit in the definition
by lim inf or lim sup.

Instead of taking the volume of balls, another natural choice is to study the
volume growth of the metric spheres S(o, r). One may define a (spherical) entropy
by

EntsK := lim
r→∞

log vol S(o, r)

r
,

whenever the limit exists. In general, one may define upper and lower spherical
entropies Ent

s
and EntsK by replacing the limit by a lim sup or lim inf.

Conjecture 1. For any n-dimensional Hilbert geometry,

EntK ≤ n− 1.

Several particular cases of the conjecture were treated in the literature.

Theorem 1. (Colbois-Verovic [4])
If K is C2-smooth with strictly positive curvature, then the Hilbert metric of K is
bi-Lipschitz to the hyperbolic metric and therefore EntK = n− 1.

Theorem 2. (Colbois-Vernicos-Verovic [3]) The Hilbert metric associated to
a plane polygone is bi-Lipschitz to Euclidean plane. In particular, the entropy is
0.

The following theorem is a spherical version of the theorem of Colbois-Verovic.

Theorem 3. (Borisenko-Olin [2]) If K is of class C3 and of dimension n, then
Ents = n− 1.
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Definition 1. The centro-projective area of K is

Ap(K) :=

∫

∂K

√
k

〈n, p〉n−1
2

(
2a

1 + a

)n−1
2

dA,

where k is the Gauss curvature, n is the unit outward normal vector and a is the
positive function defined by −a(p)p ∈ ∂K.

The centro-projective area is a projective invariant of K. Moreover, it is upper
semicontinuous with respect to Hausdorff distance.

Theorem 4. If K is C1,1, then

(1) lim
r→∞

vol B(o, r)

e(n−1)r
=

1

2n−1(n− 1)
Ap(K).

Moreover, Ap(K) > 0 and therefore EntK = n− 1.

Theorem 5. Let K be a two-dimensional convex body. Let d be the upper Min-
kowski dimension of exK. Then the entropy of K is bounded by

EntK ≤ 2

3 − d
≤ 1.

We give examples of two-dimensional convex bodies with entropy strictly be-
tween 0 and 1.

Theorem 6. For each convex body K,

EntsK = EntK,

Ent
s
K = EntK.
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Isoparametric hypersurfaces (after S. Immervoll)

Linus Kramer

A closed connected hypersurface Mn ⊆ Sn+1 is called isoparametric if its principal
curvatures are constant [2, 10, 4]. Let g denote the number of distinct principal
curvatures.

Examples. a) (g = 1) Sn ⊆ Sn+1, or any parallel hypersurface.
b) (g = 2) Sk(r) × Sn−k(s), where r2 + s2 = 1.
c) (g = 1, 2, 3, 4, 6) principal orbits of isometric actions of cohomogeneity 1. This
includes a) and b) as special cases.
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The examples of type c) were classified by Hsiang-Lawson [7]; they arise from
isotropy representations of symmetric spaces of rank 2. Isoparametric hyper-
surfaces with g ≤ 3 were classified by Cartan [2, 9]. A fundamental result
due to Münzner [10] says that the number of distinct principal curvatures is
g ∈ {1, 2, 3, 4, 6}. Furthermore, the hypersurface is the level set of a homoge-
neous polynomial f : Rn → R of degree g satisfying the differential equations
|∇f(x)|2 = g2|x|2g−2 and ∆f(x) = g2 m2−m1

2 |x|g−2. The numbers m1,m2 are the
multiplicities of the principal curvatures (there are at most two different multiplic-
ities). Isoparametric hypersurfaces with g = 6 and m1 = m2 = 1 were classified
by Dorfmeister-Neher [5] and by Abresch; the remaining open case for g = 6 is
m1 = m2 = 2 [1]. Ferus-Karcher-Münzner [6] constructed an infinite family of
isoparametric hypersurfaces with g = 4 as follows.

Example. d) (g = 4). Let A be a Euclidean vector space with Clifford algebra
Cl(A) and orthonormal basis a0, . . . , am1 . Let V be an orthogonal Cl(A)-module
(i.e. |av| = |a||v| for a ∈ Cl(A), v ∈ V ) and put f(x) = |x|4 − 2

∑
i〈aix, x〉, with

dimV = 2(m1 +m2 + 1). If m2 ≥ 1, then the regular level sets of f in the sphere
are isoparametric.

There is some overlap between the cases c) and d). Stolz [11] determined the
possible values m1,m2 for the multiplicities and showed that topologically, every
isoparametric hypersurface with g = 4 looks like one of the examples in c) and d).

The following result was proved recently by Cecil-Chi-Jensen [3] and, indepen-
dently and in a completely different way, by Immervoll [8].

Theorem. Let M be an isoparametric hypersurface with g = 4 and multiplicities
m1 ≤ m2. If m2 ≥ 2m1−1, then M is one of the examples d) arising from Clifford
modules.

In my talk I explained the main steps of Immervoll’s proof [8]. Let S2V denote
the space of all selfadjoint operators on V . The starting point is to consider the
selfadjoint operator T : S2V ⊗ S2V → R defined by 〈T (x ⊗ x), x ⊗ x) = 3f(x)
and its perturbation Φ+ = − 1

4 (T − 2 · 1), restricted to the space S2
0V of traceless

selfadjoint operators. The following facts about Φ+ are not difficult to prove.
Let A+ denote the set of all quadratic forms which vanish on the focal manifold
M1 = f−1(1) ∩ Sn+1.
• Φ+|A+ = (m2 + 2)1.
• Spec(Φ) ⊆ [−(m1 + 1),m1 + 1] ∪ {m2 + 2}.
• If a, b ∈ A+, then aba ∈ A+.
• If m2 ≥ m1, then A+ = ker(Φ+ − (m2 + 2)1).
• If M is of type d) and if m2 ≥ 2m1 − 1, then A+ is precisely the image of A
under Cl(A) → End(V ).

The main step is to show that the highest possible eigenvalue m2 + 2 actually
occurs in the spectrum of Φ+. For a0 ∈ S2

0V let an+1 = 1
m2+2Φ+an. Immervoll

shows that there exists a0 such that the sequence 〈an, p⊗p−q⊗q〉 is bounded away
from zero, for suitable points p, q ∈ f−1(−1)∩Sn+1, provided that m2 ≥ 2m1− 1.
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It follows that A+ 6= 0. Some further analysis then shows that a2 = |a|21 for all
a ∈ A+, so V is an a natural way a Cl(A+)-module. This leads to the classification.

By Stolz’ result [11] on the multiplicities, the condition m2 ≥ 2m1−1 is almost
always satisfied. The exceptions are the pairs (m1,m2) = (2, 2), (3, 4), (4, 5), (6, 9),
(7, 8). The analysis of these cases is an ongoing joint project with S. Immervoll
and S. Stolz.
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