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Abstract. Various scientific models demand finer and finer resolutions of
relevant features. Paradoxically, increasing computational power serves to
even heighten this demand. Namely, the wealth of available data itself be-
comes a major obstruction. Extracting essential information from complex
structures and developing rigorous models to quantify the quality of informa-
tion leads to tasks that are not tractable by standard numerical techniques.
The last decade has seen the emergence of several new computational method-
ologies to address this situation. Their common features are the nonlinearity
of the solution methods as well as the ability of separating solution char-
acteristics living on different length scales. Perhaps the most prominent
examples lie in multigrid methods and adaptive grid solvers. These have
advanced the frontiers of computability for certain problem classes in nu-
merical analysis. Other highly visible examples are: regression techniques
in nonparametric statistical estimation, the design of universal estimators in
the context of mathematical learning theory and machine learning; the inves-
tigation of greedy algorithms in complexity theory, compression techniques
and encoding in signal and image processing; the solution of global operator
equations through the compression of fully populated matrices arising from
boundary integral equations with the aid of multipole expansions and hier-
archical matrices; attacking problems in high spatial dimensions by sparse
grid or hyperbolic wavelet concepts.

This workshop proposed to deepen the understanding of the underlying
mathematical concepts that drive this new evolution of computation and to
promote the exchange of ideas emerging in various disciplines. A special
emphasis was placed on high dimensional problems since these amplify even
further the need for novel theory and computation.

Mathematics Subject Classification (2000): 16xx (Numerical Analysis and Scientific Computing).
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Introduction by the Organisers

Complex scientific models of turbulence, fluid structure interaction, nanoscien-
ces and reliability control, demand finer and finer resolution in order to increase re-
liability. This demand is not simply solved by increasing computational power. In-
deed, higher computability even contributes to the problem by generating wealthy
data sets for which efficient organization principles are not available. Extracting
essential information from complex structures and developing rigorous models for
quantifying the quality of information is an increasingly important issue. This
manifests itself through recent developments in various areas. Examples include
regression techniques such as projection pursuit in stochastic modeling, the inves-
tigation of greedy algorithms in complexity theory, or compression techniques and
encoding in signal and image processing. Further representative examples are the
compression of fully populated matrices arising from boundary integral equations
through concepts like multipole expansions, panel clustering or, more generally,
hierarchical matrices, and adaptive solution techniques in numerical simulation
based on continuous models such as partial differential or integral equations.

The mathematical methods emerging to address these problems have several
common features including the nonlinearity of the solution methods as well as the
ability of separating solution characteristics living on different length scales. Hav-
ing to deal with the appearance and interaction of local features at different levels
of resolution has, for instance, brought about multigrid methods as a key method-
ology that has advanced the frontiers of computability for certain problem classes
in numerical analysis. In fact, the separation of frequencies plays an important role
in preconditioning linear systems arising from elliptic partial differential equations
so that the corresponding large scale systems could be solved with discretization
error accuracy optimally in linear time.

A related but different concept for managing the interaction of different length
scales centers on wavelet bases and multilevel decompositions. In the very spirit
of harmonic analysis they allow one to decompose complex objects into simple
building blocks that again support analyzing multiscale features.

While this ability was exploited first primarily for treating explicitly given ob-
jects, like digital signals and images or data sets, the use of such concepts for
recovering also implicitly given objects, like solutions of partial differential or
boundary integral equations, has become a major recent focus of attention. The
close marriage of discretization, analysis and the solution process based on adaptive
wavelet methods has led to significant theoretical advances as well as new algorith-
mic paradigms for linear and nonlinear stationary variational problems. Through
thresholding and best N -term approximation based on wavelet expansions, con-
cepts from nonlinear approximation theory and harmonic analysis become prac-
tically manageable. In our opinion, these ideas open promising perspectives not
only for signal and image processing but also for the numerical analysis of differ-
ential and integral equations covering, in particular, such operator equations with
stochastic data.
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These various concepts have developed relatively independently of one another.
Our previous Oberwolfach Workshops ‘Wavelet and Multiscale Methods’ held in
July 2004 and August 2007 sought to bring various disciplines utilizing multiscale
techniques together by inviting leading experts and young emerging scientists in
areas that rarely interact. Those workshops not only accelerated the advance-
ment of nonlinear and multiscale methodologies but also provided beneficial cross–
fertilizations to an array of diverse disciplines which participated in the workshop,
see the Oberwolfach Reports 34/2004 and 36/2007. Among the several recogniz-
able outcomes of the workshops were: (i) the emergence of compressed sensing as
an exciting alternative to the traditional sensing-compression paradigm, (ii) fast
online computational algorithms based on adaptive partition for mathematical
learning, (iii) clarification of the role of coarsening in adaptive numerical methods
for PDEs, (iv) injection of the notion of sparsity into stochastic models to identify
computational paradigms that are more efficient than Monte Carlo techniques.

Compressed sensing, as developed by Candes, Donoho, Vershynin, Gilbert,
Strauss, the organizers and others, advocates a fascinating alternative to the usual
sensing and compression methodology. The classical model of limited bandwidth is
replaced by sparsity models and the role of traditional sampling is played by sens-
ing functionals that are typically based on random vectors. One can then prove
that under certain circumstances the amount of observations which are needed
to record all the information on general classes of signals is by far less than the
amount required by the classical bandwidth mode.

Adaptive methods for numerically solving a wide range of partial differential
equations with proven optimality (in terms of the number of computations needed
to achieve a prescribed error tolerance) originally involved coarsening procedures.
The necessity of such coarsening was brought into question at the previous work-
shop and subsequent work of Stevenson has shown that it is possible to avoid
coarsening for scalar elliptic problems through cautious bulk chasing.

A new methodology for solving stochastic partial differential equations based
on sparsity was advocated at the last workshop by Schwab. This has led to the
interaction between experts in nonlinear approximation and numerical PDEs to
quantify the possible gains of such an approach over the traditional Monte Carlo
methods.

As in the previous workshops, the proposed participants are experts in areas
like nonlinear approximation theory (e.g., DeVore, Temlyakov), statistics (e.g.,
Picard, Kerkyacharian), finite elements (e.g., Braess, Oswald), multigrid methods
(e.g., Braess), spectral methods (e.g., Canuto), harmonic analysis and wavelets
(e.g., Cohen, Petrushev, Schneider, Stevenson), numerical fluid mechanics (e.g.,
Süli), conservation laws (e.g., Tadmor), systems of stationary operator equations
(e.g., Dahmen, Kunoth) or numerical methods for stochastic PDEs (e.g., Schwab).

One of the main objectives of this workshop was to foster synergies by the inter-
action of scientists from different disciplines resulting in more rapid developments
of new methodologies in these various domains. It also served to bridge theoretical
foundations with applications.
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Examples of conceptual issues that were advanced by our workshop are:

• convergence theory for adaptive and nonlinear multilevel methods for high-
dimensional PDEs;

• tensor methods for high dimensional problems;
• convergence theory for model reduction concepts for parameter dependent
PDEs;

• extension of fast solution methods such as multigrid and multiscale meth-
ods to more complex models such as nonlinear elasticity and kinetic models
of dilute polymers, or partial differential equations with stochastic data;

• adaptive multiscale methods for coupled systems involving partial differ-
ential and integral equations;

• multilevel meshless methods;
• incorporating anisotropy in analysis, estimation, compression and encod-
ing;

• adaptive treatment of nonlinear and time–dependent variational problems;
• interaction of different scales under nonlinear mappings, e.g., for flow prob-
lems and for problems with stochastic data.

The proposed workshop has propelled further advancement of several emerging
areas: the opening lecture by E. Süli reported on a recent breakthrough concern-
ing the global existence of weak solutions to kinetic models of dilute polymers;
the numerical aspects of compressed sensing including stability and optimality;
deterministic methods for compressed sensing based on coding theory; the de-
sign and analysis of universal estimators in nonparametric statistical estimation
and machine learning — nonlinear multiscale techniques may offer much more
efficient alternatives to schemes based on complexity regularization; solution con-
cepts for problems of high spatial dimension by utilizing anisotropy, for instance,
in mathematical finance, in quantum chemistry and electronic structure calcula-
tions; quantifying the notion of sparsity in high space dimension — this leads to
the development of more efficient high dimensional algorithms which avoid the
curse of dimensionality.

In summary, the conceptual similarities that occur in these diverse application
areas suggest a wealth of synergies and cross–fertilization. These concepts are in
our opinion not only relevant for the development of efficient solution methods for
large scale problems but also for the formulation of rigorous mathematical models
for quantifying the extraction of essential information from complex objects.
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Abstracts

Hyperbolic Wavelet Discretization of the Electronic Schrödinger
Equation: Explicit Correlation and Separable Approximation of

Potentials

Markus Bachmayr

One of the major difficulties in discretizing the stationary electronic Schrödinger
equation lies in the singular electron-electron Coulomb interaction, which causes
cusps in the eigenfunctions that cannot be resolved efficiently by expansions into
tensor products of single-electron basis functions.

The classical starting point for studying this issue is the two-electron case of
the Helium atom, where the Schrödinger equation takes the form

(1) −1

2
∆u− 2

|x|u− 2

|y|u+
1

|x− y|u = λu ,

with spatial electron coordinates x, y ∈ R3. Here the eigenfunction u0 corre-
sponding to the lowest eigenvalue λ0, which is of most practical importance, has
a diagonal electron-electron cusp at {x = y}.

A common approach for obtaining approximate solutions with improved conver-
gence consists in incorporating factors with the correct first-order behavior of the
electron-electron cusps into the equation. We consider a particular instance of such
an explicitly correlated method in which an ansatz of the form u = exp(12 |x−y|)w
leads to the modified problem

(2) −1

2
∆w − 2

|x|w − 2

|y|w − 1

2

x− y

|x− y| · (∇x −∇y)w − 1

4
w = λw .

Different variants using bounded correlation factors or preserving symmetry are
possible, but (2), known as the transcorrelated method in computational chemistry
literature, is the most accessible approach for our purposes, and also has the
advantage over self-adjoint formulations of avoiding integrals coupling four or more
electrons in the many-particle case.

Adapting the basic strategy of [Ys1], it can be shown that in the weak formula-
tion of (2), the factor w has higher regularity in terms of mixed weak deriva-
tives than u: if u0 ∈ H1(R6) is an eigenfunction of (1) with eigenvalue λ0,
then w0 = exp(− 1

2 |x − y|)u0 is an eigenfunction of (2) with eigenvalue λ0 and

∂xi
∂yj

w0 ∈ H1(R6) for i, j ∈ {1, 2, 3}. See [Ba] for a proof; this result is also
contained as a special case in the recent work [Ys2].

On the basis of this regularity, one can obtain convergence rates for a hyperbolic
wavelet discretization of (2), where the approximation error of w0 in H1(R6) is
guaranteed to decay like N−1/3 up to logarithmic factors, see [Ba] and [Ze]. The
approximation results are based on anisotropic tensor product basis functions

Ψ(νx,νy)(x, y) := γνx(x) γνy (y) , νx, νy ∈ Λ ,
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where {γν}ν∈Λ is an isotropic tensor product wavelet basis on R
3, which in turn

is generated from wavelets and scaling functions on R. Denoting by |ν| ∈ Z the
wavelet level, by k(ν) ∈ Z3 the translation parameter, and by s(ν) ∈ {0, 1}3 the
combination of one-dimensional scaling functions and wavelets corresponding to
γν , a hyperbolic wavelet basis is obtained as a subset of the full tensor product by
imposing a restriction of the type |νx|+ |νy| ≤ L, which in the present case needs
to be complemented by a condition on k(νx), k(νy) that takes the decay properties
of the eigenfunctions into account.

For solving the accordingly discretized eigenvalue problem, orthonormal wave-
lets with sufficient smoothness, such as the Daubechies family, offer a number of
important advantages. In particular, H1-stability of the wavelet basis means that
one obtains a well-conditioned system matrix by a simple diagonal scaling.

A crucial point for solving the eigenvalue problem by inverse iteration-type it-
erative methods is the efficient computation of matrix-vector products. This is
particularly problematic for the two-electron operator in (2), and wavelet com-
pression methods by themselves do not yield a tractable numerical cost.

However, due to their special structure the potential terms occurring in (2) ad-
mit a separable approximation based on best approximation of completely mono-
tone functions by exponential sums. For instance, as shown in [BH], for r > 0 and
for each N ∈ N there exist αk, ωk such that

sup
x∈R3,|x|≥r

∣∣∣∣
1

|x| −
N∑

k=1

ωk

r

3∏

i=1

exp
(
−αk

r2
x2i

)∣∣∣∣ ≤ 8
√
2 r−1 exp(−π

√
N/2) ,

with slightly better estimates for bounded domains, and hence one obtains highly
efficient approximations of the form

(3)
1

|x| ≈
∑

k

3∏

i=1

fk(xi) ,
x− y

|x− y| ≈ (x− y)
∑

k

3∏

i=1

gk(xi − yi) .

Replacing the potential terms by such sums of separable functions, for each fixed
combination of νx, νy, s(νx), s(νy) the corresponding block of the discretization
matrix can be written as a sum of Kronecker products of lower-dimensional ma-
trices. Given a suitable tensor product structure of active indices k(νx), k(νy) for
each such block, these Kronecker products can be applied by successively oper-
ating along one or two tensor modes, respectively. The error in operator norm
introduced by this further approximation can be estimated with the help of the
Schur lemma, making use of H1-stability of the wavelet basis, see [Ba].

First numerical experiments for determining the lowest eigenvalue of Helium
from (2) show on the one hand that the rank of the exponential sums can be
chosen fairly low in practice, but on the other hand that despite the explicit
correlation factor, the hyperbolic wavelet approximation of w0 still requires a very
large number of degrees of freedom.

The structure of the approximations (3) used for the operator suggests a possible
strategy for achieving further compression of w0, keeping the advantages of the
underlying hyperbolic wavelet approximation, by using a suitable structured tensor
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representation for the wavelet coefficients. As a preliminary test, a rank reduction
in the Tucker format is applied to the approximate solutions obtained for (2). This
tensor decomposition is again done separately for each combination of νx, νy, s(νx),
s(νy), where coordinate pairs (xi, yi), i = 1, 2, 3 are separated to obtain a tensor
of order three. Making use of wavelet norm equivalences, by a simple weighting of
errors on different levels one has explicit control over the truncation error in H1-
norm; truncating the ranks such that the error is balanced with the discretization
error, a substantial reduction in the number of unknowns for representing w0,
with computationally tractable multilinear ranks, is observed. For computational
purposes, this structure also matches very well the sums of Kronecker product
matrices in the approximate operator.
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“Localized” Nonlocal Means with Application to Electron Microscopy

Peter G. Binev

(joint work with F. Blanco-Silva, D. A. Blom, W. Dahmen, P. Lamby, R.
Sharpley, T. Vogt)

Many data gathering processes can be described using the observation model

y = Hx+ n,

where x is the data we want to recover, y is the actual data we are receiving, H
is an operator that depends upon the observation procedure and the instrument,
and n is an additive noise component. Often the operator H is considered approx-
imately known and it is approximated by a linear operator H0 to define a linear
observation model. In case the norm of the difference ‖H−H0‖ is small, the effect
of approximating H by H0 is not significant and (for bounded x) the error of this
approximation can be considered as part of the additive noise.

In this presentation we target cases in which the error of approximating H is
large and cannot be treated by linear methods. Usually, the ideal model of the
instrument (identifying the operator H0) is subject to significant distortions in its
practical use. An important class of such problems is characterized by the fact
that the position of the instrument and/or the observed object cannot be fixed
and is subjected to unspecified motions.
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Let P be the set of positions at which the observations are intended to be made.
Thus, we mean to observe the signal x as a function f of p ∈ P and based on our
knowledge of the operator H0 we want to recover f using the data y. However, we

can only observe a function f̃ of measurements y at some positions p̃ ∈ P̃ , which
are not p but their distorted versions p̃ := Dp. Here D is an unknown distortion
map projecting the set of intended positions P onto the set of actual positions

P̃ := DP . Thus, we have that y = f̃(p̃) instead of y = f̃(p). If the difference

p− p̃ is insignificant and both f̃ and f are Lipschitz functions with well bounded
Lipschitz constants, the problem can be solved by the usual methods. This is the
case in standard video and photography but not in several other areas such as
scanning transmission electron microscopy (STEM). For these other cases one has
to find a way to obtain a good approximation of the distortion map D to use it in

the recovery of f̃ from its values at p̃.
The basic idea is to design a data gathering process in which instead of using

a dense set of positions P , say 1024 × 1024, we set a relatively coarse grid, say
256× 256, and repeat sampling it several times, recording the results as different
“frames” Yt. This way we will have data subjected to different distortion mappings
Dt. A comparison of two different frames Yt and Yt′ could provide information
about the mapping Dt→t′ := D−1

t Dt′ . Thus, our goal is to collect the information
about Dt→t′ for different pairs (t, t′) and through a learning routine to extract
good approximations of all mappings Dt and by this to resolve the problem of
finding p̃.

Since Dt→t′ is a very complex motion, its estimation is a serious issue. In addi-
tion, the images Yt are usually very noisy and that makes a good identification of
local features in them extremely difficult. Denoising based on time series requires
processing of the same specimen portion appearing in different frames. It is there-
fore crucial to employ a technique that avoids an explicit registration and motion
tracking. The concept of nonlocal means (NLM) has been developed by Buades,
Coll and Morel in [BCM] as a denoising algorithm for a single image. The key idea
is to define the result as a weighted average of the image portions whose intensity
distributions are close to each other. This can be done as follows. We set Yt(p) to
be the value received at the (intended) position p in the frame with time stamp
t. Then, we associate the pair (p, t) with a set of descriptors R(p, t) that reflects
the behavior of the data at positions close to p in the same frame. Given the pairs
(p, t) and (p′, t′), we define the weight w(p, t; p′, t′) based solely on the similarity
of the sets of descriptors R(p, t) and R(p′, t′) in such a way that w(p, t; p′, t′) = 1,
if R(p, t) = R(p′, t′), and this weight is close to 0, if R(p, t) and R(p′, t′) differ
significantly. In the standard formulation of NLM, R(p, t) is a vector of the values
Yt(q) taken at the intended positions q in a small rectangular patch centered at p.
The similarity is then measured as the distance

dist
(
R(p, t), R(p′, t′)

)
:=
∥∥R(p, t)−R(p′, t′)

∥∥
ℓ2



Wavelet and Multiscale Methods 1963

and the weights are defined via

w(p, t; p′, t′) := exp

{
−dist

(
R(p, t), R(p′, t′)

)2

2σ2

}
,

where σ is a tuning parameter that is specific for the similarity notion. Finally,
the updated value z(p, t) associated with the pair (p, t) is produced by

z(p, t) =

∑

p′,t′

w(p, t; p′, t′)Yt′(p
′)

∑

p′,t′

w(p, t; p′, t′)

where the sum is usually running over all possible pairs (p′, t′). In this classical
formulation NLM has significant computational cost and tends to introduce blur-
ring effects due to the averaging of too many elements. Thus, it is often suggested
to restrict the sum over relevant neighborhood windows for both p′ and t′. The
result of such application of NLM is presented in Figure 1 (c).

The STEM images of crystallographic materials show a lot of symmetries and
repetitions of similar patterns. However, the main goal is not to confirm the
general structure but to detect the anomalies in it. One significant drawback of
NLM in its standard application to STEM is the tendency to find the idealized
pattern and to introduce it in the processed image.

Our approach is to adopt the idea of NLM to the specifics of the problem by
localizing the spatial window to a small area. Below, we briefly describe the three
main steps in our approach in processing of high angle annular dark field STEM
images.

In the first step we take advantage of the smoothing and denoising effects of
the standard NLM to eventually define a better similarity distance by compar-
ing the smoothed versions of the frames. In this step the time window for t′ is
usually restricted to one or few frames, while the spatial window Np is as large
as possible. The intent is not to modify the values Yt(p) but to use z(p, t) in the
definition of new descriptors R(p, t) based on the better general structure provided
by the smoothed version z(p, t) of the frame Yt(p). Using the new descriptors and
eventually smaller spatial windows Np, we consider the recovery of z(p, t) based
on the values Yt′(p

′) only from the nearby frame at t′.
In the second step we analyze the concentration regions of the weights of this

recovery, w(p, t; p′, t′), to find an initial approximation of the mapping Dt→t′ . It-
erating the process, we can further reduce the size of the spatial neighborhood Np.
At the same time, we can exploit the fact that Dt→t′ = Dt→t′′Dt′′→t′ and receive
an approximation of Dt→t′ for more distant values of t and t′, that is, increase the
time window. Iterating further passes of NLM with improved descriptors and sim-
ilarity criteria, one can gradually decrease the size of spatial neighborhoods while
increasing time neighborhoods, so as to average eventually only image patches
that correspond to each other. It is important to stress though that these iterative
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passes will always apply to the original data, just using upgraded information con-
cerning local registration extracted from the intermediate frames. In a way such
an iterative procedure may be viewed as gradually refining the image formation
in STEM and modeling the distortions encountered during the imaging process.
Moreover, from the possible change of the weights over time one may be able to
learn more about beam damage.

In the third step we map the values Yt′(p
′) from all the frames using the cal-

culated mappings Dt′→t onto one single frame and combine them (eventually dis-
carding the outliers) with a simple learning routine to receive a single image based
on all of the observations.

(a) (b) (c)

Figure 1. NLM processing M1 catalyst using a sequence of 11
frames: (a) original reference frame; (b) result by our routine; (c)
result using nonlocal means.

In Figure 1 (b) we present the results of combining 11 frames aligned by the
procedure described above. The resolution of the image is set to twice the one of
the original single frames. Very low dose exposure (7 µs per pixel with a coarse
raster) is used to receive the original frames. It is remarkable that our routine was
able to depict a Te atom(s) in the central pore at the bottom (the standard NLM
scheme displayed in Figure 1 (c) misses it completely). Using the conventional
high resolution HAADF STEM requires much higher total doses to be able to
identify such features in this material, but recall that Te is highly beam sensitive.
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Some Results about Adaptive Fourier Approximation of PDEs

Claudio Canuto

(joint work with Ricardo H. Nochetto, Marco Verani)

The design of adaptive spectral-element (or h-p) discretization algorithms for
elliptic self-adjoint problems relies on the dynamic interplay between two funda-
mental stages: the refinement of the geometric decomposition into elements and
the enrichment of the local basis within an element. While the former stage is by
now well understood in terms of practical realization and optimality properties,
less attention has been devoted to the latter one.

With the aim of shedding light on this topic, we focus on what happens in
a single element of the decomposition. In order to reduce at a minimum the
technical burdens, we actually assume periodic boundary conditions on the d-
dimensional box Ω = (0, 2π)d, in order to exploit the orthogonality properties of
the Fourier basis. Thus, we consider a fully adaptive Fourier method, in which
at each iteration of the adaptive algorithm the Galerkin solution is spanned by a
dynamically selected, finite subset of the whole set of Fourier basis functions. The
active set is determined by looking at a fixed fraction of largest (scaled) Fourier
coefficients of the residual, according to the bulk-chasing (or Dörfler marking)
philosophy. The algorithm is proven to be convergent; in addition, exploiting the
concentration properties of the inverse of the elliptic operator represented in the
Fourier basis, one can show that the error reduction factor per iteration tends to
0 as the bulk-chasing fraction tends to 1.

After convergence has been established, one is faced with the issue of optimality.
This leads to the comparison of the adaptive Galerkin solution spanned by, say,
N Fourier modes, with the best N -term approximation of the exact solution.
Consequently, we are led to introduce suitable classes of periodic H1-functions for
which the best N -term approximation error fulfils a prescribed decay as N tends
to infinity. These classes can also be characterized in terms of behavior of the
rearranged sequence of the (normalized) Fourier coefficients of the functions.

If the best N -term approximation error of the exact solution decays at an al-
gebraic rate (this occurs if the solution belongs to a certain ”oblique” scale of
Besov spaces of periodic functions, corresponding to a finite regularity), then the
arguments developed by Cohen, Dahmen and DeVore and by Stevenson in the
framework of wavelet bases apply to our situation as well, and one can establish
the optimality of the approximation without coarsening. The crucial ingredients
in the analysis are the minimality property of the active set of degrees of freedom
determined by bulk-chasing, and a geometric-series argument (essentially, the es-
timated number of degrees of freedom added at each iteration is comparable to
the total number of degrees of freedom added in all previous iterations).

On the other hand, if the best N -term approximation error of the exact so-
lution decays at an exponential (or even sub-exponential rate), the analysis is
more delicate, as the previous argument fails to apply. Note that the case of a
solution having (local) infinite-order regularity is quite significant in dealing with
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spectral (spectral-element) methods. For the Navier-Stokes equations, regularity
results in Gevrey classes have been first established by Foias and Temam; in these
classes, the best N -term approximation error of a function decays precisely at a
sub-exponential or exponential rate. In the present situation, optimality is guar-
anteed by the fact that at each iteration either the number of added degrees of
freedom is bounded by a constant, or - if more degrees of freedom are added - a
faster error decay is achieved. Numerical results, in the case of analytical solutions,
confirm this kind of behavior.

References

[CNV] C. Canuto, R.H. Nochetto and M. Verani, Adaptive Fourier Galerkin Methods, Internal
Report 2010-10, Dipartimento di Matematica, Politecnico di Torino.
http://calvino.polito.it/rapporti/2010/2010.en.html

Adaptive Sparse Methods for High Dimensional Parametric PDE’s

Albert Cohen

(joint work with Ronald DeVore and Christoph Schwab)

We are interested in the model elliptic equation

−div(a∇u) = f,

on a domain D ⊂ R
d with homogeneous Dirichlet boundary conditions, and pa-

rameter dependent coefficients

a = a(x, y) = ā(x) +
∑

j>0

yjψj(x), x ∈ D, y = (yj) ∈ U = [−1, 1]N,

where the functions a and ψj are in L∞(D). The yj may be either thought as
deterministic parameters that should be tuned in control or optimization problems
for the solution u(y) = u(·, y), or as random variables which is the typical situation
in stochastic modelling.

We work under the uniform ellipticity assumption (UEA)

0 < r ≤ a(x, y) ≤ R <∞, x ∈ D, y ∈ U,

so that for all y ∈ U , the solution u(y) is well defined as an element of V = H1
0 (D)

with a-priori estimate

‖u(y)‖V = ‖∇u(y)‖L2(D) ≤ C0 :=
‖f‖V ∗

r
.

Numerical approximation of the map y 7→ u(y) is a challenging task since it de-
pends on infinitely many variable yj, and in addition it takes its values in an
infinite dimensional Hilbert space. We study its Taylor expansion

u(y) =
∑

ν∈F
tνy

ν ,
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where yν :=
∏

j>0 y
νj
j for ν = (νj) ∈ F the set of finitely supported sequences of

positive integers, and where

tν :=
1

ν!
∂νu(0) ∈ V, ν! :=

∏

j>0

νj !,

with the convention that 0! = 1. Our main result, which is proved in [CDS2] is
the following.

Theorem 1. If (UEA) holds and if (‖ψj‖L∞)j>0 ∈ ℓp(N) for some p < 1, then
(‖tν‖V )ν∈F ∈ ℓp(F).

A similar result holds when Taylor coefficients are replaced by Legendre coeffi-
cients. This result reveals that the sequence (‖tν‖V )ν∈F inherits the same amount
of sparsity as the coefficient expansion reflected by the sequence (‖ψj‖L∞)j>0. An
immediate consequence is the existence of sets Λ∗

N ⊂ F with #(Λ∗
N ) = N and

such that

sup
y∈U

‖u(y)−
∑

ν∈Λ∗
N

tνy
ν‖V ≤

∑

ν /∈Λ∗
N

‖tν‖V ≤ CN−s, s :=
1

p
− 1.

In particular, this holds with C = ‖(‖tν‖V )‖ℓp if we choose for Λ∗
N the indices

corresponding to the N largest ‖tν‖V . The fact that we may get an algebraic rate
in the approximation of a function that depends of infinitely many variable is quite
remarkable. The proof of this theorem is based on the analytic dependence of u
with respect to the variable yj . We believe that the method of proof can be ex-
tended to other parameter dependent PDE’s for which such analyticity properties
hold.

Another consequence of this theorem is that the solutions u(y) are simultane-
ously approximated at rate N−s by the N -dimensional space

EN := Span{tν ; ν ∈ Λ∗
n}.

Consequently, the set K := {u(y) ; y ∈ U} is compact in V with Kolmogorov
width

dN (K) := infdim(E)=N maxv∈K minw∈E ‖v − w‖V
≤ maxv∈K minw∈EN

‖v − w‖V
≤ supy∈U ‖u(y)−∑ν∈Λ∗

N
tνy

ν‖V
≤ CN−s.

This suggest the possibility of reduced modeling for approximately the parametric
problem. Recent results on the so-called reduced basis method in [BCDDPW]
have shown that one may select particular solutions {u1, · · · , uN} ∈ K by a greedy
procedure and obtain that

max
v∈K

min
w∈FN

‖v − w‖V ≤ C̃N−s,

where FN := Span{u1, · · · , uN}, therefore reducing the work to the accurate com-
putation of N particular solutions. The greedy procedure being difficult to apply
in high parameter dimension, one may prefer to search for a direct approximation
of u(y) by its partial Taylor series. One of the main difficulty is that the optimal
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sets Λ∗
N are unknown to us. We propose a strategy - based on a bulk chasing

procedure - that adaptively builds a sequence of sets

Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λn ⊂ · · · ,
and computing the corresponding coefficient tν for ν ∈ Λn. We show that this
strategy has the optimal convergence rate

sup
y∈U

‖u(y)−
∑

ν∈Λn

tνy
ν‖V ≤

∑

ν /∈Λn

‖tν‖V <∼ #(Λn)
−s, s :=

1

p
− 1,
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Convergence Rates for Greedy Algorithms in Reduced Basis Methods

Wolfgang Dahmen

(joint work with Peter Binev, Albert Cohen, Ronald DeVore, Guergana Petrova,
and Przemyslaw Wojtaszczyk)

The reduced basis method was introduced for the accurate online evaluation of
solutions to a parameter dependent family of elliptic partial differential equations.
The idea is to determine offline for any given target accuracy a suitable problem
dependent space of possibly small dimension so that the Galerkin projection onto
that subspace provides for any parameter value an approximation to the corre-
sponding exact solution within the desired target accuracy tolerance. Frequent
online parameter queries, e.g. in an optimization context, are then reduced to
solving the low dimensional Galerkin problems where again offline computations
facilitate rapidly assembling the corresponding stiffness matrices.

Abstractly, the core task can be viewed as determining a “good” n dimensional
space Hn to be used in approximating the elements of a compact set F in a Hilbert
space H. One by now popular computational approach is to find Hn through a
greedy strategy, see e.g. [3, 4]. In idealized form this greedy strategy can be
described as follows. Having computed a basis {f0, . . . , fn−1} for Hn, the next
basis function fn is obtained as

(1) fn = argmaxf∈F‖f − Pn‖H.
However, the actual computation of such a maximizer would not be feasible. In-
stead, one tries to find a surrogate rn(f) which, on one hand, satisfies

(2) crn(f) ≤ ‖f − Pnf‖H ≤ Crn(f), f ∈ F ,
and, on the other hand, can be evaluated much more efficiently, see [4]. For
families of uniformly H-elliptic variational problems such computable surrogates
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can indeed be formulated in terms of residuals of Galerkin projections. It is then
readily seen that

(3) fn := argmaxf∈Frn(f)

satisfies

(4) ‖fn − Pnfn‖H ≥ γmax
f∈F

=: γσn(F),

where γ := c/C and c, C are the constants from (2). The weak greedy algorithm
consists then in replacing the solutions to (1) by elements satisfying (4).

It is now natural to compare the approximation performance σn(F) of the
“(weak) greedy spaces”Hn generated by this strategy with that of the Kolmogorov
widths dn(F) since the latter gives the smallest error that can be achieved by
subspaces of fixed dimension n. The first such comparisons, given in [1], show
that the greedy approximation error, σn(F) = dist(F ,Hn), obtained by the exact
greedy strategy with γ = 1 satisfies

(5) σn(F) ≤ Cn2ndn(F).

In this talk, various improvements and extensions of this result are presented.
First, up to the factor n, (5) can be shown to be in general best possible. However,
when dispensing with direct comparisons between the greedy errors σn(F) and the
Kolmogorov widths dN (F), and this is the main point of this talk, one can still
obtain meaningful convergence rates for σn(F) when 2ndn(F) 6→ 0. Specifically, it
is shown for the general case γ ≤ 1 that, whenever dn(F) ≤Mn−α, for all n > 0,
and some M,α > 0, we also have

(6) σn(F) ≤ CαMn−α, n ∈ N,

where Cα depends only on α. Similar results are derived for generalized exponen-
tial rates of the form Me−anα

. In this case, however, the greedy error σn(F) is

only shown to decay like CMe−cnβ

with β = α/(α+1). Of course, this guarantees
a faster convergence than (6) in a range where dn(F) decays faster than n−α for
any α > 0 but not faster than 2−n. Moreover, such convergence rates are shown
to be robust under perturbations which arise, for instance, due to discretizations
for the offline computation of the greedy basis functions.

The talk concludes with some remarks on the main conceptual ingredients of
the proofs. In particular, a key tool for proving the above convergence rates is
the following “delayed comparison” when the decay of the greedy errors is “flat”
in the following sense: if for some θ ∈ (0, 1),m ∈ N and q = ⌈2(γθ)−1⌉2 one has
σn+qm(F) ≥ θσn(F), then σn(F) ≤ q1/2dm(F).
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Anisotropic Representations And Function Spaces In Rn

Shai Dekel

(joint work with Pencho Petrushev and Tal Weissblat)

We investigate representation systems and function spaces over multi-level el-
lipsoid covers of Rn which may change rapidly from point to point and in depth,
from level to level (see previous papers [DHP, DDP]). At this time we are focused
on Triebel-Lizorkin spaces and in particular the Hardy spaces. We generalize pre-
vious work [B] and classic elements of the Hardy space theory in this setting such
as the various maximal function definition, atomic decompositions, the dual BMO
spaces, etc.
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Sparsity in Learning Theory

Christine De Mol

(joint work with Ernesto De Vito, Sofia Mosci, Lorenzo Rosasco, Magali Traskine
and Alessandro Verri)

In contemporary science, we are more and more often faced with the problem
of extracting meaningful information or inferring models from a data-rich envi-
ronment. For example, in bioinformatics, one measures by means of microarrays,
for each patient (or experiment) i, a high-dimensional vector of expression levels
xi of p genes. In a supervised learning setting, besides these “input” data, one
is given, for each patient i, a response or “output” yi which can be a real-valued
index (survival time or gravity of an illness) or else, in classification problems, a
discrete label discriminating between e.g. two different pathological states. A first
approach consists in assuming a linear relationship between output and input, i.e.
that yi is just the scalar product of xi with a p-dimensional vector β. Two distinct
problems are of interest: (i) the prediction or “generalization” problem consist-
ing in predicting the response y for new patients to come on the basis of their
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gene expression data and (ii) the identification of the vector β defining the model.
This latter problem is also referred to as “variable selection” when the vector
β is assumed to be sparse, i.e. to contain many zeroes corresponding to irrele-
vant predictors/variables. To cope with the fact that there are generically many
more variables (genes) than patients or experiments, i.e. to address the so-called
“large p, small n paradigm”, the problem can be reformulated as a multivariate
least-squares regression with a regularizing penalty whose aim is to provide the
dimension reduction necessary to get stable estimates of β. In so-called “ridge”
regression, one uses a quadratic penalty, namely the square of the euclidean norm
of the vector β (L2-norm), whereas in “lasso” regression [Ti], one uses instead
a L1-norm penalty which enforces sparsity and allows for variable selection. In
the presence of correlation among the variables, however, the lasso presents some
drawbacks which can be overcome by the use of an additional L2-norm penalty.
This allows to select sparse groups of correlated variables without knowing in ad-
vance the composition of the groups (for known groups one could use instead the
so-called “group lasso” or “joint sparsity” strategies). This “elastic-net” strategy
was proposed by Zou and Hastie [ZH] for fixed-design linear regression. In the pa-
per [DDR], we extend this setting to the framework of supervised learning theory,
i.e. of random-design nonlinear regression. The regression function fβ is assumed
to have a sparse expansion, with coefficients βγ , on the elements (atoms or fea-
tures) ϕγ of a possibly infinite dictionary: fβ(x) =

∑
γ βγϕγ(x). For example,

one could consider frames of wavelets or of some of their relatives. On the ba-
sis of a collection of examples (training set) made of n independent input-output
random pairs (Xi, Yi), i = 1, . . . , n (the inputs belong to a separable metric space
and the outputs to R or to a separable Hilbert-space), distributed according to an
unknown probability distribution, we define the following elastic-net estimator for
the regression function

βn
λ = argminβ

[
1

n

n∑

i=1

|Yi − fβ(Xi)|2 + λ
∑

γ

(uγ |βγ |+ εvγ |βγ |2)
]

where λ is a tunable positive regularization parameter, whereas ε > 0 is considered
as fixed, and where uγ and vγ are two sets of weights (positive and bounded from
below) encoding the regularity of the regression function through the assumptions∑

γ uγ |βγ | < ∞ and
∑

γ vγ |βγ |2 < ∞. In [DDR], by means of appropriate con-
centration inequalities, we derive consistency results for this estimator as n→ ∞,
both for prediction and for variable/feature selection. Our results include finite-
sample bounds and an adaptive scheme to select the regularization parameter λ.
Thanks to the additional quadratic penalty, stability is guaranteed with respect to
the fluctuations arising from random design and no assumptions have to be made
to restrict the possible correlations between the features as usually done in the
literature dealing with pure lasso strategies.

The paper [DMTV] deals with an application to bioinformatics and proposes
a new method, based on linear regression with an elastic-net penalty, to select
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relevant groups of correlated genes from microarray data. Using a two-stage ap-
proach and an appropriate tuning of the regularization parameters, we are able to
demonstrate the good performances of the method on benchmark microarray data
sets and to produce expanding gene lists which are almost perfectly nested when
increasing the parameter ε. The proposed methodology could also be applied to
other practical problems where the goal is to select relevant variables or features
in the presence of high correlation among certain groups of these variables.
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Hard Thresholding Pursuit: An Algorithm for Compressive Sensing

Simon Foucart

We introduce a new iterative algorithm to find s-sparse solutions x ∈ CN of
underdetermined linear systems Az = y, A ∈ Cm×N , y ∈ Cm. The algorithm,
called Hard Thresholding Pursuit, is a simple combination of the Iterative Hard
Thresholding [BD1, BD2] algorithm and of the Compressive Sampling Matching
Pursuit [NT] or Subspace Pursuit [DM] algorithms. It reads:
Start with an s-sparse x0 ∈ CN , typically x0 = 0, and iterate the scheme

Sn+1 =
{
indices of s largest entries of xn +A∗(y −Axn)

}
,(HTP1)

xn+1 = argmin
{
‖y −Az‖2, supp(z) ⊆ Sn+1

}
,(HTP2)

until the stopping criterion Sn+1 = Sn is met.
We first notice that the sequence (xn) is eventually periodic, so that, assuming
convergence of the algorithm, its limit is exactly achieved after a finite number of
iterations. Next, we give a short and elegant proof of the following theorem:
Suppose that the 3sth order restricted isometry constant of the matrix A ∈ Cm×N

satisfies δ3s < 1/
√
3. Then, for any s-sparse x ∈ C

N , the sequence (xn) defined
by the Hard Thresholding Pursuit algorithm with y = Ax converges towards x at
a geometric rate given by

‖xn − x‖2 ≤ ρn ‖x0 − x‖2, ρ :=

√
2δ23s

1− δ22s
< 1.

We remark that the same result (with a different ρ) holds for fast versions of the
algorithm, where the projection step (HTP2) is replaced by any number of gradient
descent iterations. We also remark that the result extends to the case of non-sparse
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x ∈ C
N acquired with an inaccurate vector y = Ax + e, e ∈ C

m. It is worth
pointing out that the sufficient condition δ3s < 1/

√
3 is heuristically better than

the sufficient conditions δt < δ∗ currently available for other Compressive Sensing
algorithms [F], in the sense that it has the smallest ratio t/δ2∗. We conclude with
some numerical experiments to demonstrate the good empirical performances and
the low complexity of the Hard Thresholding Pursuit algorithm.
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A New Multiscale Finite Element Method for High-Contrast Elliptic
Interface Problems

Ivan G. Graham

(joint work with C.-C. Chu, T.Y. Hou and R.R. Millward)

We introduce a new multiscale finite element method which is able to accurately
capture solutions of elliptic interface problems with high contrast coefficients by
using only coarse quasiuniform meshes, and without resolving the interfaces. A
typical application would be the modelling of flow in a porous medium contain-
ing a number of inclusions of low (or high) permeability embedded in a matrix
of high (respectively low) permeability. Our method is H1- conforming, with de-
grees of freedom at the nodes of a triangular mesh and requires the solution of
subgrid problems for the basis functions on elements which straddle the coefficient
interface, but uses standard linear approximation otherwise. A key point is the
introduction of novel coefficient-dependent boundary conditions for the subgrid
problems. Under some assumptions, we prove that our methods have (optimal)
convergence rate of O(h) in the energy norm and O(h2) in the L2 norm where
h is the (coarse) mesh diameter and the hidden constants in these estimates are
independent of the “contrast” (i.e. ratio of largest to smallest value) of the PDE
coefficient. For standard elements the best estimate in the energy norm would
be O(h1/2−ǫ) with a hidden constant which in general depends on the contrast.
The new interior boundary conditions depend not only on the contrast of the co-
efficients, but also on the angles of intersection of the interface with the element
edges.

Since the new boundary conditions are somewhat technical to implement, we
also present an adaptive method which formulates appropriate interior boundary
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conditions (on a fine local subgrid) automatically in a few iterations and yields
accuracy which is comparable to that of the a priori multiscale method. The
adaptive method is closely related to the adaptive local-global iterative method
of Durlovsky, Efendiev and Ginting [2]. Numerical examples showing the per-
formance of the adaptive method in the case of high contrast coefficients with
non-quasimonotone cross points were given, and these show optimal convergence
on uniform meshes independent of the contrast, despite the strong singularity at
the cross point.

The results have recently appeared [1]. Some of the arguments used are also
used in the analysis of geometric and algebraic domain decomposition methods,
e.g. [3, 4].
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Tensorization and Multiscale Methods

Lars Grasedyck

In this report we review the construction of tensors

A ∈ R
n1×···×nd , n1, . . . , nd ∈ N,

from vectors
x ∈ R

N , N := n1 · · ·nd.

The aim for such a ”tensorization” is to find a data-sparse representation of the
tensor A and thus reduce, among others, the storage complexity.

This idea was first formulated by Oseledets [OS09] in the context of matrix
tensorization. In numerical experiments he found out that the TT-rank of a ten-
sorization of the 1d and 2d Laplacian as well as the Hilbert matrix has its rank
bounded by a small constant. In [GR10] we prove that the rank is indeed bounded.
Khoromskij [KH09] was able to prove that vectors of the exponential form

xi = c · di, i = 1, . . . , N,

allow for a canonical rank one representation after tensorization. Thus, expo-
nential sums and trigonometric sums have tensorizations of small canonical and
hierarchical rank proportional to the number of addends. Khoromskij and Os-
eledets [OSKH09] have then successfully applied the tensorization for the solution
of PDEs in high dimension and with very large mode sizes.

Here, we will address the question for which vectors (respectively matrices and
tensors) such a tensorization is possible with low (hierarchical) rank. We prove that
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the tensorization of vectors that stem from the evaluation of polynomials of degree
at most p on an equispaced grid has a hierarchical rank of at most p + 1. Then,
we prove that any asymptotically smooth, i.e., piecewise analytic, function with
m singularities or discontinuities can be discretized and tensorized such that the
rank for an ε-approximation in the ‖ · ‖∞-norm is bounded by C+log2(1/ε)+2m.

The important point is that the existence can be proven independently of the
construction of an approximation. Thus, considering high-order polynomials and
additional locally singular functions is reasonable. The strongest requirement is
the structure of the underlying grid (typically equispaced).

Vector-Tensorization: For vectors x ∈ R
n1···nd we define the tensorization

F : Rn1···nd → R
n1×···×nd

for all indices iµ ∈ {1, . . . , nµ}, µ = 1, . . . , d, by

F(x)i1,...,id := xℓ, ℓ := i1 +

d∑

µ=2

(iµ − 1)

µ−1∏

ν=1

nν .

The idea why one could be interested in a tensorization of vectors is that the
tensor might allow for a low rank representation and correspondingly for a low
rank arithmetic. For dimension d > 2 there exist several notions of rank.

Matricization: For a tensor A ∈ RI , I = I1 × · · · × Id, a collection of
dimension indices t ⊂ {1, . . . , d} and the complement s := {1, . . . , d} \ t
the matricization

A(t) ∈ R
It×Is , It := ×µ∈tIµ, Is := ×µ∈sIµ,

is defined by its entries
(
A(t)

)
(iµ)µ∈t,(iµ)µ∈s

:= Ai1,...,id .

Based on the matricization of a tensor A with respect to several sets t ⊂
{1, . . . , d} one can define the hierarchical rank and the hierarchical Tucker for-
mat. In order to be able to perform efficient arithmetics, we require the sets t to
be organized in a tree, for details see [GR09].

Hierarchical rank, H-Tucker(k): The hierarchical rank kt for a node t ⊂
{1, . . . , d} of a so-called dimension tree [GR09] and a tensor A ∈ RI is
defined by

kt := rank(A(t)).

Tensors with hierarchical rank at most k are called H-Tucker(k) tensors.

In the hierarchical format only some of the possible subsets t of all modes
appear. The storage complexity for an H-Tucker(k) tensor is

(1) Storage ≤ Const

(
(d− 1)k3 + k

d∑

µ=1

nµ

)

i.e. linear in the order d.
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Basic arithmetic operations like linear combinations of tensors of hierarchical
rank k can be performed exact (efficiently), but the representation rank k will be
proportional to the sum of the representation ranks. It is therefore necessary to
reduce (truncate) the rank of a tensor A by finding (almost) best approximations
with prescribed rank, or (almost) minimal rank approximations with prescribed
truncation accuracy ε. Such a truncation is possible with complexity O(dk3 +
dnk2). [GR09, Theorem 3.11, Remark 3.12, Lemma 4.9]. Let Abest denote a best
approximation of A with hierarchical rank k and Tk̃(A) the truncation of A to

rank k̃. Then the truncation is quasi-optimal:

‖A− Tk̃(A)‖ ≤
√
2d− 3‖A−Abest‖

Polynomial Approximation: Let (xi)
n1···nd

i=1 , d ≥ 1, be the discrete eval-
uation of a polynomial f(y) of degree p on a regular (equispaced) grid of

points ξi = (i− 1)h, h := 1/(N − 1), N :=
∏d

µ=1 nµ, i.e.

xi = f(ξi).

Then for every t = {r + 1, . . . , s} ⊂ {1, . . . , d} the tensorization F(x)(t)

fulfills
rank(F(x)(t)) ≤ p+ 1.

Let f : J = [a, b] → R be a function and let S := {s1, . . . , sm} ⊂ J . The
function f is said to be asymptotically smooth with singular points S, if for all
points y ∈ J \ S holds

|∂if(y)| ≤ C1γ
σγii!, γ ≤ C2dist(y, S)

−1,

where σ is the degree of singularity.

Rank of tensorizations of asymptotically smooth functions: Let
(xi)

N
i=1, d ≥ 1, be the discrete evaluation of an asymptotically smooth

function f with singular points S = {s1, . . . , sm} on a regular (equispaced)

grid of points ξi = (i − 1)h, h := 1/(N − 1), N =
∏d

µ=1 nµ, i.e.

xi = f(ξi).

Then there exists a tensor Z ∈ Rn1×···×nd that approximates the ten-
sorization F(x) point-wise with accuracy ε and that has its hierarchical
rank bounded by

rank(Z(t)) ≤ C + log2(1/ε) + 2m, t = {1, . . . , q}.
The constant C depends on the degree of singularity σ.

We conclude that a large class of vectors that stem from the evaluation of a
polynomial or asymptotically smooth function on an equispaced grid, allows for
a tensorization with small hierarchical rank k. A truncated arithmetic for such
tensorized vectors is possible in O(k4 logN), where N is the length of the vector.
This holds independently of the number N , i.e., whether N can be factorized or
not is not relevant.

The tensorization of vectors (resp. functions) might be interesting in the context
of multiscale methods. There, in each subdomain Ωi of the domain Ω a fine-scale
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problem has to be solved in order to find a specialized basis by which the global
problem in Ω can be discretized. The reason for this is twofold. First, there are
features on the small scale that have to be resolved. Second, the global problem
can be discretized with fewer basis functions that are adapted to the problem.
By use of the tensorization one can decouple the number of global basis functions
(number of domains) from the local degrees of freedom in each subdomain. Thus,
the total complexity scales as the sum of the two as opposed to the product.

Financial support from the DFG under grant GRA2179/2-1 gratefully acknowl-
edged.
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The Range of Localization Operators and Lifting Properties of
Modulation Spaces

Karlheinz Gröchenig

(joint work with Joachim Toft)

Time-frequency localization operators arise in various applications and in math-
ematical theory: time-frequency masking in signal processing, phase-space local-
ization (Daubechies [3]), Toeplitz operators on Bargmann-Fock space (Berger-
Coburn [1]), quantization (Berezin), the approximation of pseudodifferential op-
erators for proofs of the Garding and Fefferman-Phong inequalities (Lerner).

We address the question of how to understand the range of a time-frequency
localization operator. Precisely, a localization operator is defined as follows: for a
point z = (x, ξ) in phase-space R2d define the phase-space shift π(z) acting on a
function f as

π(z)f(t) = e2πiξ·tf(t− x) x, ξ, t ∈ R
d .
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Next fix a suitable “window function” g in S(Rd), say, and a “symbol” m(z) on
R2d. Then the localization operator Ag

m is defined formally by

Ag
mf =

∫

R2d

m(z)〈f, π(z)g〉π(z)g dz

The definition resembles the definition of Fourier multipliers, except that in the
case of localization operators it is the short-time Fourier transform 〈f, π(z)g〉 that
is multiplied by the symbol m before the inverse transform is applied.

The relevant function spaces for the study of mapping properties of localization
operators are the modulation spaces (as always in time-frequency analysis). For
a non-zero test function g, usually the Gaussian, the modulation space Mp,q

µ is
defined by the norm

‖f‖Mp,q
µ

=
(∫

Rd

( ∫

Rd

|〈f, π(x, ξ)g〉|pµ(x, ξ)p dx
)q/p

dξ
)1/q

for 1 ≤ p, q ≤ ∞ and moderate weight functions µ, quite in analogy to the classical
Besov spaces.

We will discuss results of the following type, so-called isomorphism theorems.

Theorem 1. If m is a moderate weight function, then Ag
m is an isomorphism

from Mp,q
µ onto Mp,q

µ/m for every 1 ≤ p, q ≤ ∞ and moderate weight µ.

The isomorphism theorem resembles the lifting theorems for Besov spaces,
where the operator of fractional differentiation establishes an isomorphism be-
tween Besov spaces of different smoothness. Modulation spaces can be interpreted
as function spaces that describe the smoothness through the phase space distribu-
tion. In this sense the isomorphism theorem for localization operators is a lifting
theorem for modulation spaces.

Of course, the precise formulation of the isomorphism theorem requires precise
conditions on the window g and on the symbol m. For weights of polynomial
growth or decay the isomorphism theorem has been established recently with J.
Toft [5]. The techniques used pseudodifferential calculus and a deep result of Bony
and Chemin [2].

These methods fail for super-algebraic weights, for instance when m(z) = ea|z|
b

for a ∈ R \ {0} and 0 < b < 1 or m(z) = e
|z|

log(e+|z|) . To treat symbols with a
growth or decay faster than polynomial, we develop a new technique based on
pure time-frequency methods. The main ingredients of the proof are
(a) the spectral invariance of pseudodifferential operators in the generalized Sjö-
strand class M∞,1

v (R2d) [4], and
(b) the explicit construction of canonical isomorphisms between the Hilbert spaces
L2(Rd) and the modulation space M2

m(Rd). Whereas for weights of polynomial
growth such isomorphisms were constructed by Bony and Chemin [2], for radial
weights of superalgebraic growth we develop a new technique.

It is a bizarre fact that the surjectivity of certain localization operators follows
from a new class of inequalities about generalized Gamma functions labeled by
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moderate weight function θ. As a example we mention the inequality

C−1 ≤
∫ ∞

0

m(
√
x/π)

xn

n!
e−xdx

∫ ∞

0

1

θ(
√
x/π)

xn

n!
e−xdx ≤ C for all n ≥ 0 .

The obtained results yield also new insights into Toeplitz operators on the
Bargmann-Fock space of entire functions on Cd and on Gabor multipliers (earlier
considered by Feichtinger).
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On Error Estimation in FEM without Having Galerkin Orthogonality

Helmut Harbrecht

(joint work with Reinhold Schneider)

Let Ω ⊂ R2 denote a two-dimensional bounded polygonal domain with bound-
ary ∂Ω. In the present talk we intend to solve the Poisson equation

(1) −∆u = f in Ω, u = 0 on ∂Ω

by adaptive finite element methods. To do so, we need an error estimator, which
estimates the residual r = ∆uh + f in the H−1(Ω)-norm. In general, to derive
such error estimators, Galerkin orthogonality is employed.

Consider a shape regular triangulation Kh of the domain Ω by triangular or
quadrilateral elements Kh. The set of edges is indicated by Eh. The space of
continuous piecewise (bi-) linear elements will be denoted by Vh. For a given
function uh ∈ Vh, we define the element residual

q := ∆uh + f for all elements K ∈ Kh

and the jumps at the edges

δ :=

[
∂uh
∂n

]
for all edges E ∈ Eh.

Then, the standard local lower error bound (cf. [4]), related with the element
K ∈ Kh, is given by

h2K‖q‖2L2(K) +
∑

E∈∂K

hE‖δ‖2L2(E) . ‖r‖2H−1(Ω) +
∑

K′∈K: K = K′

or K and K′ have
a common edge

h2K‖f − fh‖2L2(K′)
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where the last term reflects the so-called data oscillation. Moreover, hK :=
diam(K) for all K ∈ Kh and hE := diam(E) for all E ∈ Eh are the related
local mesh sizes. We emphasize that the proof of this local lower bound does not
require Galerkin orthogonality, i.e., it holds for any given finite element function
uh ∈ Vh.

The upper error bound is nonlocal and given by

(2) ‖r‖2H−1(Ω) ∼ ‖u− uh‖2H1(Ω) .
∑

K∈K
h2K‖q‖2L2(K) +

∑

E∈E
hE‖δ‖2L2(E),

see [1, 7]. The standard trick to obtain this estimate of the error is to rewrite

‖u− uh‖2H1(Ω) ∼ sup
v∈H1

0 (Ω)

〈∇(u − uh),∇v〉L2(Ω)

‖v‖H1(Ω)

and to employ Galerkin orthogonality by introducing the local Clemónt interpolant
vh of v

‖u− uh‖2H1(Ω) ∼ sup
v∈H1

0 (Ω)

〈∇(u − uh),∇(v − vh)〉L2(Ω)

‖v‖H1(Ω)
.

Duality together with an approximation property provides the desired estimate.
To our knowledge, all this kind of a-posteriori error analysis requires that the

actually discretized finite element problem is solved exactly, or nearly exactly like
in [6] where a perturbation argument is applied. This means in the Galerkin frame-
work that the residual is perpendicular to the actual trial space. However, an exact
solution of the corresponding discrete equations can be very costly, even though
a linearly scaling iterative scheme like a multigrid method is used. Especially in
case of eigenvalue problems one has in general no Galerkin orthogonality.

The crucial problem in constructing a-posteriori error estimators is that the
residual has to be measured in the dual space H−1(Ω). Here, we will compute
the error directly by using the fact that the infinite BPX scheme enables us to
measure the residual’s norm in H−1(Ω).

The construction starts with a coarse triangulation or quadrangulation T0 =
{τ0,k} of the given domain Ω. Dyadic refinement of each element on level j − 1
into 4 elements on level j recursively yields for any j > 0 the triangulation or
quadrangulation Tj = {τj,k}. On the mesh Tj we consider standard Lagrangian
piecewise linear or bilinear continuous finite elements Φj = {ϕj,k : k ∈ △j}. This
yields a nested sequence of finite dimensional trial spaces

V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ · · · ⊂ H1
0 (Ω),

where

Vj = span{ϕj,k : k ∈ △j} = {u ∈ C(Ω) : u|τ ∈ Π1 for all τ ∈ Tj}
(△j denotes an appropriate index set) and dimVj ∼ 4j. Assuming that the La-
grangian finite elements are normalized with respect to the energy space, i.e.,

‖ϕj,k‖H1(Ω) ∼ 1,



Wavelet and Multiscale Methods 1981

the infinite collection
Φ = {ϕj,k : k ∈ ∆j , j ∈ N0}

defines a frame for H1
0 (Ω), i.e., there holds

(3) ‖r‖2H−1(Ω) ∼
∑

j∈N0

∑

k∈△j

〈r, ϕj,k〉2L2(Ω).

This frame underlies the construction of the so-called BPX preconditioner, see [3].
On the given sequence of uniform meshes we can introduce an adaptive finite

element space Vh by means of one-irregularity [2]. That is, we consider (adaptive)
triangular or quadrilateral meshes with at most one hanging node per edge. Then,
there exists an index set Σ such that the collection

ΦΣ = {ϕj,k : (k, j) ∈ Σ} ⊂ Φ

forms a finite element basis which represents a function uh ∈ Vh exactly, i.e.,
uh = ΦΣuΣ. In particular, the Galerkin discretization of the Poisson equation (1)
relative to the given triangulation yields the linear system of equations

AΣuΣ = fΣ

where

AΣ = [〈∇ϕj′,k′ ,∇ϕj,k〉L2(Ω)](j,k),(j′,k′)∈Σ, fΣ = [〈f, ϕj,k〉L2(Ω)](j,k)∈Σ.

Wewill prove that, except for the data oscillation, the residual error is equivalent
to the sum of the discrete residual rΣ = fΣ − AΣuΣ plus the interior residual q
and the jump δ across the edges, that is

‖r‖2H−1(Ω) ∼ BPX(rΣ)
2 +

∑

K∈K
h2K‖q‖2L2(K) +

∑

E∈E
hE‖δ‖2L2(E)

(modulo data oscillation).

In other words, the upper bound (2) needs just to be corrected by the discrete
residual rΣ, measured in the H−1(Ω)-norm via the BPX scheme. Additionally
this bound is not only reliable but also efficient. Notice that, due to the nonlocal
nature of the BPX multilevel scheme, this error estimator is non-local.

As a consequence of our analysis, we can finally verify the hierarchical error
estimation. If one incorporates the data oscillation in the right hand side of (3),
it is reasonable that the H−1(Ω)-norm of the remaining residual can be recovered,
up to an equivalent measure, by using a BPX scheme applied on an appropriately
refined grid. Appropriate means here that we have to uniformly refine the actual
mesh three times in case of quadrilateral and two times in case of triangular meshes.
In this talk we will show how this can be achieved rigorously.
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Well Localized Frames, Representation of Function Spaces, and Heat
Kernel Estimates

Gerard Kerkyacharian

(joint work with T. Coulhon, P.Petrushev,D. Picard)

Since during the last twenty years, wavelet theory has proved to be a very useful
tool for theorical purposes as well as for applications, in this talk, we will revisit
and provide an extension of this theory in a general geometric framework.

This extension has already been performed for different cases: the interval [PX],
the ball [PX2], the sphere [NPW1] and [NPW2], and has been extensively used in
statistical applications (see for instance [KKLPP]).

Our object here, will be a metric space (M,ρ) equipped with a positive Radon
measure, such that (M,ρ, µ) is a homogeneous space in the sense of Harmonic
Analysis (there exists d > 0 ,which plays the role of a dimension, such that for all
x ∈M, and r > 0, µ(B(x, 2r)) ≤ 2dµ(B(x, r)).
Moreover, the geometry of the space is related to a positive self-adjoint operator
L and to the associated semi-group e−tL. We suppose in addition that e−tL is
markovian.

Here is the main hypothesis : e−tL is a kernel operator, and this kernel Pt(x, y)
has the following Gaussian estimate : for all x, y in M , t > 0 ,

C1e
−c ρ2(x,y)

t

√
µ(B(x,

√
t))µ(B(y,

√
t))

≤ Pt(x, y) ≤
C2e

−c ρ2(x,y)
t

√
µ(B(x,

√
t))µ(B(y,

√
t))
.

It is well known that this property is equivalent to some Poincare inequalities, or to
a parabolic Harnack inequality, and is verified for the Laplacian of a Riemannian
manifold with non negative Ricci curvature, for Nilpotent Lie Groups, compact
Lie Groups and their homogeneous spaces ( see [G], [CS], [O], [S], ...) and many
other examples.

From the spectral decomposition
√
L =

∫∞
0 λdEλ, we consider the spectral

spaces Σλ = {f ∈ L2, Eλf = f} and more generally one can define Σp
λ the Lp−

analogues.
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The Besov spaces Bs
p,q, 0 < s, 1 ≤ p ≤ ∞, 0 < q ≤ ∞ are naturally defined as

the spaces of approximation :

‖f‖Bs
p,q

= ‖f‖p + (

∫ ∞

0

(tsσ(t, f, p))q), (usual modification for q = ∞)

σ(t, f, p) = inf{‖f − g‖p, g ∈ Σp
λ}

The main results are the following :

(1) One can build an efficient Littlewood-Paley decomposition and give a
charaterization of the Besov spaces.

(2) It is possible to build localized frames in duality : ψj,ξ, ψ̃j,ξ, j ∈ N, ξ ∈ Aj

where Aj is a maximal γbj−net, (γ > 0 and b > 1 suitably chosen) such
that :
(a)

∀f ∈ Lp, 1 ≤ p ≤ ∞, f(x) =
∑

j

∑

ξ∈Aj

〈f, ψj,ξ〉ψ̃j,ξ(x)

(b)

∃ C, ∀j ∈ N, (
∑

ξ∈Aj

|〈f, ψj,ξ〉|p‖ψ̃j,ξ‖p)1/p ≤ C‖f‖p

‖
∑

ξ∈Aj

λξψ̃j,ξ‖p ≤ C(
∑

ξ∈Aj

|λξ|p‖ψ̃j,ξ‖p)1/p

(c)

∃ c > 0, ∀j ∈ N, ξ ∈ Aj , ψj,ξ and ψ̃j,ξ ∈ Σcbj

(d) and we have the following characterization :

f ∈ Bs
p,q ⇐⇒ ∀j ∈ N, (

∑

ξ∈Aj

|〈f, ψj,ξ〉|p‖ψ̃j,ξ‖p)1/p = αjb
−js, α. ∈ lq

(with the usual modification for p = ∞.)
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High-Dimensional Scattered Data Approximation with Sparse
Occupancy Trees

Philipp Lamby

(joint work with Peter Binev, Wolfgang Dahmen and Ronald A. DeVore)

In this work we consider the following problem: Given a data set X ⊂ Ω ⊂ Rd

of N data points along with values yi ∈ Rd′

, i = 1, . . . , N , and viewing the yi as
values yi = f(xi) of some unknown function f , we wish to return for any query

point x ∈ Ω an approximation f̃(x) to y = f(x). Hereby we assume that d is large,

say 4 < d < 500. We wish to emphasize that we do not seek a representation of f̃ in
terms of a fixed set of trial functions but define f̃ through recovery schemes which,
in the first place, are designed to be fast and to deal efficiently with large data sets.
A typical example for such a recovery strategy is to determine for any given query
point its k nearest neighbors in the given data site and to use their average value
as the approximate function value. Unfortunately, exact nearest neighbor search
requires either a preprocessing time which is exponential in d or a single query time
which is linear in N , the latter characterizing the brute force algorithm where the
distance ‖xi − x‖ is computed for each training point. Actually, for function
recovery purposes one would also be satisfied with an approximate solution which
can be achieved much more efficiently, see for instance [In, LMGY]. However,
none of the currently available methods seems to perform very well if d goes into
the hundreds and N into the millions. For this reason we propose new methods
based on what we call sparse occupancy trees and piecewise linear schemes based
on simplex subdivisions.

To start with, let us assume that

{Ω} = P0 ≺ P1 ≺ . . . ≺ Pj ≺ . . .

is a hierarchy of nested partitions of the (bounded) input space Ω. This means
that for all l ≥ 0 the sets Pl = {Ωl,k, k ∈ Il} are partitions of Ω and each cell
Ωl,k ∈ Pl is the disjunct union of cells on the next finer level l + 1 :

Ωl,k =
⋃

r∈Il,k

Ωl+1,r .

In the following we assume that the partitions consist of cubes or simplices and
that the cardinality of the index sets Il,k ⊂ Il+1 is 2d, i.e., refinement is dyadic.
The hierarchy of partitions induces an infinite master tree T ∗ whose root is Ω and
whose other nodes are the cells Ωl,k. Each node Ωl,k of this tree is connected by
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an edge to its children Ωl+1,r where r ∈ Il,k. An appropriate simplex subdivision
hierarchy can be realized using the subdivision rule provided in [Ma].

A sparse occupancy tree T (X) is a finite subtree of T ∗ which consists only of
cells that are occupied, i.e., contain at least one element from the set X . The
most basic algorithm based on this data structure provides a piecewise constant
approximation. For a given point x ∈ Rd it finds the finest cell K(x) from T (X) it

falls into. Then f̃(x) is set to the average value of all the points in X ∩K(x). As
shown in [BDL] a special indexing and ordering scheme generalizing the so-called
linear octree, which is sometimes used to store voxel information in computer
graphics (see [SSB],[BWG]), allows us to store all the information about the tree
using only O(LdN) bits where L is a chosen upper limit for the number of dyadic
levels in the tree. The construction of this data structure can be performed in
O(LdN logN) time and a query can be answered in O(Ld logN) time. However,
the quality of this approximation depends significantly on the size of the cell K(x)
which can be large even if there are points from X close to x.

This disadvantage can be overcome if one constructs piecewise linear approxi-
mations on simplex subdivisions. Let T be an occupancy tree based on a hierarchy
of simplices. Then let us denote with Sl(T , v) the set of all level-l simplices in T
which have the vertex v as a corner point. Vice versa, let Vl(T ) be the set of all
vertices which are corner points of a level-l cell in T .

In the training stage of our new algorithm we prescribe values for every level
l and every vertex v ∈ Vl(T ) as averages of the points in the surrounding level-l
simplices:

yl(v) = A({yi |xi ∈
⋃

S∈Sl(T ,v)

S}).

The simplex subdivision rule in [Ma] employs edge subdivision. Hence every level
l + 1 vertex arises as average of two level l vertices p1(v) and p2(v). Therefore, if
v /∈ Vl(T ), we can define the vertex value recursively by averaging the values of its
parents:

yl(v) =
1

2
(yl−1(p1(v)) + yl−1(p2(v))).

This recursion terminates, because the level-0 values of the initial simplex are
defined, if the training data set is not empty. One has to note that this training
stage is actually executed as follows: for each vertex one stores the sum of all
the training points in the adjacent simplices and the number of contributors. If
one reads a new training point xi, one computes its path through the master tree,
adds its value to every vertex connected to the cells it belongs to, and increases the
number of contributors for these vertices by one. Hence, this algorithm is suited
for streaming data acquisition and online learning.

In the evaluation stage the level-l value of a query point x is then determined
by piecewise linear interpolation of the vertex values of the level-l cell Sl(x) in
the master tree the query falls into. Note that this cell need not to be occupied.
Concretely, for any simplex S let V(S) be the set of its vertices and τ(S, v, x) be
the barycentric coordinate of x with respect to v. Then for each refinement level
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l a response to the query is defined by

f̃l(x) =
∑

v∈V(Sl(x))

τ(Sl(x), v, x) yl(v).

This description provides a general framework for the construction of piecewise
linear approximations to the given data. To define a concrete scheme, one has still
to specify, how deep the tree T is to be refined, and what evaluation level l is to be
chosen. If, for example, one chooses the same evaluation level l for all queries, one
effectively defines a globally continuous approximation. Here we aim at another
property: we want the approximation to be interpolatory, i.e., if x coincides with
one of the data points xi we want to return its value yi. This can be achieved by
choosing the occupancy tree such that no two leafs of T have a vertex in common,
and the evaluation level l maximal, such that Sl(x) is still connected to at least
one vertex connected to the occupancy tree.

Another technical issue is, that in order to initialize the algorithm one has to
assume that all the data is contained in one initial simplex. If one originally has
data in the unit cube [0, 1]d this can be achieved by mapping all training data and
query points into the standard simplex {x ∈ Rd : 0 ≤ x1 ≤ x2 ≤ . . . ≤ xd ≤ 1}
using the so-called root transformation

x = (xi)
d
i=1 7−→ T (x) =




d∏

j=i

x
1/j
j




d

i=1

,

see [FW].
Numerical experiments show that, concerning accuracy, the above described

algorithm can compete with or even improve on the approximate nearest neighbor
method and its computational costs scale favorably if d and N become large.
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Optimal Mesh Adaptation for Finite Element Approximation

Jean-Marie Mirebeau

(joint work with Albert Cohen)

Mesh adaption procedures for finite element approximation allows one to adapt
the resolution, by local refinement in the regions of strong variation of the function
of interest. The use of anisotropic triangles allows to improve the efficiency of the
procedure by introducing long and thin triangles that fit in particular the directions
of the possible curves of discontinuity. In our work, we study the optimal mesh for
the interpolation error measured in the Lp norm or the Sobolev W 1,p semi norm.
More precisely, given a function f defined on a closed bounded and polygonal
domain Ω ⊂ R2, and an integer N > 0, we look for the mesh TN of Ω consisting of
N triangles such that the interpolation error ‖f−fN‖p, or ‖∇(f −fN)‖p, between
f and its interpolation fN by Pm finite elements on TN is minimal.

A known result, see [CSX, Mi1], bounds this error in the case of a function
f ∈ C2(Ω) and of piecewise linear P1 finite elements:

(1) lim sup
N→∞

N‖f − fN‖p ≤ C‖
√
| det d2f |‖τ ,

where τ := p/(p+1) and where C is a universal constant (independent of f , Ω and
p). In comparison, if one restricts to triangulations consisting of “isotropic” (close
to equilateral) triangles, this estimate becomes lim supN‖f − fN‖ ≤ C‖d2f‖τ ,
for the same value of τ . The introduction of anisotropy hence allows to replace
in the Lτ -norm the spectral norm of the hessian ‖d2f‖ by the smaller quantity√
| det d2f | which depends non linearly on the derivatives of f . The presence of

the lim sup operator reflects the fact that a sufficiently fine resolution is needed
to adapt the triangulation TN to the local features of the function f . Under
reasonnable hypotheses, one can establish that the estimate (1) is optimal.

Our work [Mi1, Mi2] extends these results to finite elements of arbitrary degree,
both for Lp norms or W 1,p semi-norms. For example, in the case of interpolation
by piecewise quadratic P2 elements, the corresponding estimates involve nonlinear
quantities that depend on the derivatives of order three of f . At all points of Ω
one can associate to d3f an homogeneous polynomial of degree 3 in x and y, in
the same way that one associates an homogeneous quadratic polynomial to d2f .
On the other hand we define

D
(
ax3 + 3bx2y + 3cxy2 + dy3

)4
:= (a2+2b2+ c2)(b2+2c2+d2)− (ab+2bc+ cd)2.

If f ∈ C3(Ω), and if f̃N is its P2 interpolation on the optimal mesh T̃N , we have
shown that

(2) lim sup
N→∞

N‖∇(f − f̃N)‖p ≤ C‖D(d3f)‖τ ,

where again τ := p/(p + 1) and C is a universal constant. An optimality result
completes this estimate, and similar expressions are given for arbitrary degrees of
interpolation Pm. The nonlinear quantities which appear in these estimates, such
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as det(d2f) or D(d3f), are particular cases of the theory of invariant polynomials
which allows to generalize such estimates to finite elements of arbitrary order.

Several algorithms allow to produce triangulations satisfying these optimal in-
equalities. In order to achieve the estimate (1), the area, aspect ratio and ori-
entation of the triangles T ∈ TN should obey some local prescriptions. We have
studied in [CoMi2] an algorithm that produces (nonconforming) triangulations
satisfying these requirements under certain assumptions, and also satisfies an ad-
ditional property : the triangulations form a hierarchical family, in other words
TN+1 is a refinement of TN . In the case (2) of Sobolev norms the triangulation

T̃N needs to be conforming and the maximal angle of any triangle T ∈ T̃N needs
to be uniformly bounded away from π, in addition to the requirements of area,
aspect ratio and orientation of T . Our current research involves the construction
of a practical mesh generation algorithm that combines in such a way arbitrary
anisotropy with a maximal angle condition.

The extension of the approximation results (1) and (2) to non smooth functions
requires as a first step a well posed extension of the non-linear quantities appearing
on the right hand side of these inequalities. We have studied in [CoMi1] the case
of functions featuring discontinuities along regular curves. For instance, consider
a function f which is C2 on Ω, except along a curve Γ which is also C2. Consider
a family ϕδ(z) :=

1
δ2ϕ(

z
δ ) of mollifiers and denote fδ := f ∗ ϕδ. We obtain

lim
δ→0

‖
√
| det d2fδ|‖2/32/3 =

∫

Ω\Γ
| det d2f(z)| 13 dz + C(ϕ)

∫

Γ

|κ(s)|1/3 |γ(s)|2/3ds

where κ denotes the curvature of Γ, and γ the jump of f at a point of this interface.
A parallel is established and discussed between this quantity and the total variation
TV (f) := |f |BV , which counts the length of the curves of discontinuity but does
not penalise their curvature.
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“Compactly” Supported Frames for Spaces of Distributions on the
Ball

Pencho Petrushev

(joint work with George Kyriazis)

Bases and frames for spaces of functions or distributions are valuable for var-
ious theoretical and practical reasons. In this talk we focus on the problem for
construction of multiscale frames on the unit ball Bd in R

d consisting of C∞

functions with small supports which shrink at higher scales. More precisely, we
discuss the construction of a frame in [2] of the form {θξ}ξ∈X , where X = ∪jXj

is a multilevel index set (Xj ⊂ Bd), and each jth level frame element θξ (ξ ∈ Xj)
is supported on B(ξ, c2−j) the ball centered at ξ ∈ Bd of radius c2−j with respect
to the distance

d(x, y) := arccos
{
〈x, y〉+

√
1− |x|2

√
1− |y|2

}
on Bd.

Here 〈·, ·〉 and | · | are the Euclidean inner product and norm on Rd, and hence this
is just the geodesic distance between the lifted images of x, y ∈ Bd to the upper
unit hemisphere in Rd+1. In fact, the set Xj consisting of the “centers” of the jth
level frame elements is a c2−j-net on Bd. The frame {θξ}ξ∈X is reminiscent of
compactly supported wavelets on R.

The quality of this tool is guaranteed by the fact that, as shown in [2], {θξ}ξ∈X
can be used for decomposition of weighted Triebel-Lizorkin and Besov spaces on
Bd with weight

wµ(x) := (1− |x|2)µ−1/2,

where µ ≥ 0 is a half integer.
The construction of {θξ}ξ∈X relies on the general scheme for construction of

frames from [1] and the frames (called needlets) for weighted Triebel-Lizorkin and
Besov spaces on Bd developed in [3, 4].

References

[1] G. Kyriazis, P. Petrushev, On the construction of frames for spaces of distributions, J.
Funct. Anal. 257 (2009), 2159-2187.

[2] G. Kyriazis, P. Petrushev, “Compactly” supported frames for spaces of distributions on
the ball, preprint. [http://www.math.sc.edu/∼pencho/]

[3] G. Kyriazis, P. Petrushev, and Yuan Xu, Weighted distribution spaces on the ball, Proc.
London Math. Soc. 97 (2008), 477-513.

[4] P. Petrushev, Yuan Xu, Localized polynomial frames on the ball, Constr. Approx. 27
(2008), 121–148.



1990 Oberwolfach Report 33/2010

Entropy Viscosity

Bojan Popov

(joint work with Jean-Luc Guermond and Richard Pasquetti)

We introduce a new shock-capturing technique for solving nonlinear conserva-
tion laws. The method is an extension of the work in [GP] and consists of adding
a nonlinear viscosity to the Galerkin formulation of the nonlinear equation or sys-
tem of equations. The key idea is that the added viscosity is proportional to the
residual of the entropy equation and it is always limited from above by first order
dissipation. The treatment of the nonlinear viscous term is explicit in time which
makes the method very simple to implement for various discretizations: finite ele-
ments, spectral elements, and Fourier approximations. We prove that the method
is convergent in some simple scalar cases and verify its performance numerically
on various one and two dimensional benchmarks including scalar equations and
nonlinear systems of conservation laws. The general formulation of the method
and many numerical tests are given in our paper [GPP].
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Compressive Sensing, Structured Random Matrices and Recovery of
Functions in High Dimensions

Holger Rauhut

Compressive sensing predicts that sparse vectors can be recovered efficiently
from highly undersampled measurements. While it is well-understood by now that
Gaussian random matrices provide optimal measurement matrices in this context,
such “highly” random matrices suffer from certain drawbacks: applications require
more structure arising from physical or other constraints, and recovery algorithms
such as greedy methods or algorithms for ℓ1-minimization demand fast matrix
vector multiplies in order to make them feasible for large scale problems. In order
to meet such desiderata, we study two types of structured random measurement
matrices: partial random circulant matrices, and random sampling matrices asso-
ciated to bounded orthonormal systems (e.g. random Fourier type matrices). The
latter maybe used to study reconstruction problems in high spatial dimensions.

Compressive Sensing. A vector x ∈ CN is called s-sparse if ‖x‖0 := #{ℓ, xℓ 6=
0} ≤ s. The ℓp-norm is defined as usual, ‖x‖p := (

∑N
ℓ=1 |xℓ|p)1/p, 0 < p < ∞.

The best s-term approximation error of an arbitrary vector in ℓp is defined as

σs(x)p = inf
‖z‖0≤s

‖x− z‖p.



Wavelet and Multiscale Methods 1991

Informally, x is called compressible if σs(x)p decays quickly in s. An estimate

originally due to Stechkin states that σs(x)p ≤ s1/p−1/q‖x‖q for q < p so that
BN

q = {x ∈ CN , ‖x‖q ≤ 1} is a good model for compressible vectors if q ∈ (0, 1] is
chosen small.

The task of compressive sensing is to recover a sparse or compressible vector
x ∈ CN from undersampled measurements

y = Ax ∈ C
m,

where A ∈ Cm×N is a suitable measurement matrix and m ≪ N . The first
approach for recovering x that probably comes to mind consists in solving the
ℓ0-minimization problem

min
z∈CN

‖z‖0 subject to Az = y.

Unfortunately, this combinatorial optimization problem is NP hard in general.
For this reason, several tractable alternatives have been introduced, most notably
ℓ1-minimization, which consists in solving the convex optimization problem

min
z∈CN

‖z‖1 subject to Az = y.

A very useful concept for analyzing ℓ1-minimization are the restricted isometry
constants. For s < N they are defined as the smallest constant δs such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22 for all x ∈ C
N , ‖x‖0 ≤ s.

If δ2s < 0.46 then ℓ1-minimization reconstructs all s-sparse vectors x exactly from
y = Ax, and compressible vectors approximately, see [1, 4] for precise statements.

It is an open problem to construct deterministic (explicit) measurement matri-
ces that have small restricted isometry constants for small m (or large s, respec-
tively). So far, all good constructions use randomness. A matrix with independent
standard normal distributed entries is called a Gaussian random matrix. It is by
now well-known [2] that a rescaled Gaussian matrix 1√

m
A ∈ Rm×N satisfies δs ≤ δ

with probability at least 1− ε provided

m ≥ Cδ−2(s log(N/s) + log(ε−1)),

where C > 0 is a universal constant. In particular, exact recovery of s-sparse
vectors via ℓ1-minimization is possible if m ≍ s log(N/s). This estimate for the
minimal number m of measurements is optimal as follows from lower bounds of
Gelfand widths of BN

q [5].
Partial random circulant matrices. While Gaussian random matrices are

optimal for compressive sensing, they are not structured at all, which poses severe
limitations for practical applications as mentioned above. Therefore, we consider
instead the following structured random matrix. For a vector b ∈ C

N we define
its associated circulant matrix Φ = Φ(b) ∈ CN×N with entries

Φk,j = bj−k mod N , k, j = 1, . . . , N.

For an abritrary subset Θ ⊂ {1, . . . , N} we define the restriction operator RΘ :
CN → CΘ as (RΘx)ℓ = xℓ, ℓ ∈ Θ. Then the partial circulant matrix ΦΘ =
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ΦΘ(b) = RΘΦ(b) consists of the rows of Φ = Φ(b) indexed by the set Θ. An
application of ΦΘ to a vector x corresponds to convolution with b followed by sub-
sampling on Θ. Since a circulant matrix can be diagonalized by the Fourier matrix,
the FFT can be used for fast matrix vector multiplies. For the purpose of com-
pressive sensing, the vector b is chosen at random, more precisely, as Rademacher
sequence, that is, all entries are independent, and take the value +1 or −1 with
equal probability. This turns the matrix ΦΘ = ΦΘ(b) into a partial random cir-
culant matrix. In [6] the following nonuniform recovery result for ΦΘ has been
shown.

Theorem. Let Θ ⊂ {1, . . . , N} be an arbitrary (deterministic) set of cardinality
m. Let x ∈ CN be s-sparse such that the signs of its non-zero entries form a
Rademacher or Steinhaus sequence. Choose b ∈ {−1,+1}N to be a Rademacher
sequence. Let y = ΦΘ(b)x ∈ Cm. If

m ≥ 57s ln2(17N2/ε)

then x can be recovered from y via ℓ1-minimization with probability at least 1− ε.
Unfortunately, this result does not imply the existence of a single matrix ΦΘ(b)

that guarantees recovery of all s-sparse vectors simultaneously. Such type of state-
ment is implied by the next theorem on the restricted isometry constants shown
in [7].

Theorem. Let Θ ⊂ {1, . . . , N} be an arbitrary (deterministic) set of cardinality
m. Choose b ∈ R

N to be a Rademacher sequence. Assume that

(1) m ≥ Cδ−1s3/2 log3/2(N),

and, for ε ∈ (0, 1), m ≥ Cδ−2s log2(s) log2(N) log(ε−1). Then with probability at
least 1− ε the restricted isometry constants of 1√

m
ΦΘ(b) satisfy δs ≤ δ.

The exponent 3/2 in (1) does not seem to be optimal. Unfortunately, the proof
technique in [7] is likely not powerful enough in order to obtain the expected
exponent 1.

Random Sampling in Bounded Orthonormal Systems. Let Ω ⊂ Rd be
endowed with a probability measure ν, and φ1, . . . , φN be a system of orthonormal
functions, i.e.,

∫
Ω φj(t)φk(t)dν(t) = δj,k. We further assume that the function

system is bounded in the sense that

sup
j=1,...,N

‖φj‖∞ ≤ K

for some constant K ≥ 1. A function of the form

f(t) =

N∑

j=1

xjφj(t)

is called s-sparse if ‖x‖0 ≤ s. Our goal is to reconstruct sparse (or compress-
ible) functions from sample values f(t1), . . . , f(tm) with t1, . . . , tm ∈ Ω. In-
troducing the sampling matrix A ∈ Cm×N with entries Ak,j = φj(tk) yields
y = (f(t1), . . . , f(tm))T = Ax. Therefore, we are interested in the restricted isome-
try constants of the sampling matrix. We choose the points t1, . . . , tm independent
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and distributed according to ν. This makes A a structured random matrix. The
most important example consists in choosing φj(t) = e2πit·j , j ∈ Zd, t ∈ [0, 1]d,
Ω = [0, 1]d and ν to be the Lebesgue measure. The resulting sampling matrix is
then a non-equispaced Fourier matrix for which fast (approximate) matrix vector
multiplies are available. In [6] the following estimate for the restricted isometry
constants has been derived, generalizing and improving slightly on [2, 9].

Theorem. Let A ∈ Cm×N be the random sampling matrix associated to a
bounded orthonormal system with constant K ≥ 1. If

m

ln(m)
≥ CK2δ−2s ln2(s) ln(N).

then with probability at least 1−N−γ ln2(s) ln(m) the restricted isometry constant of
1√
m
A satisfies δs ≤ δ. The constants C, γ > 0 are universal.

This result can be used to extend reconstruction from sample values via com-
pressive sensing to infinite dimensional function spaces, and in particular, to suit-
able spaces of functions of many variables. We refer to [3, 8] for details.
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Collaborative Hierarchical Structured Sparse Modeling

Guillermo Sapiro

(joint work with P. Sprechmann, I. Ramirez, Y. Eldar, G. Yu, and S. Mallat)

In addition to being very attractive at the theoretical level, sparse signal mod-
eling has been shown to lead to numerous state-of-the-art results in signal pro-
cessing. The standard model assumes that a signal can be efficiently represented
by a sparse linear combination of atoms from a given or learned dictionary. The
selected atoms form what is usually referred to as the active set, whose cardinality
is significantly smaller than the size of the dictionary. In recent years, it has been
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shown that adding structural constraints to this active set has value both at the
level of representation robustness and at the level of signal interpretation (in par-
ticular where the active set indicates some physical properties of the signal). This
leads to group or structured sparse coding, where instead of considering the atoms
as singletons, the atoms are grouped, and a few groups are active at a time. An
alternative way to add structure (and robustness) to the problem is to consider
the simultaneous encoding of multiple signals, requesting that they all share the
same active set. This is a natural collaborative filtering approach to sparse coding.

In this work we extend these models in a number of directions. First, we present
a hierarchical sparse model, where not only a few (sparse) groups of atoms are
active at a time, but also each group enjoys internal sparsity.1 At the conceptual
level, this means that the signal is represented by a few groups (models), and
inside each group only a few members are active at a time. A simple example of
this is a piece of music (numerous applications in genomics exist as well), where
only a few instruments are active at a time (each instrument is a group), and the
actual music played by the instrument is efficiently represented by a few atoms of
the sub-dictionary/group corresponding to it. Thereby, this proposed hierarchical
sparse coding framework permits to efficiently perform source identification and
separation, where the individual sources (models) that generated the signal are
identified at the same time as their efficient representation (the sparse code inside
the group) is reconstructed. An efficient optimization procedure is proposed to
solve this hierarchical sparse coding framework.

Then, we go a step beyond this. Imagine now that we have multiple recordings
of the same two instruments, each time playing different songs. Then, if we col-
laboratively apply this new hierarchical sparse coding approach, we expect that
the different recordings will share the same groups (since they are of the same in-
struments), but each will have its unique sparsity pattern inside the group (since
each recording is a different melody). We propose a collaborative hierarchical
sparse coding framework addressing exactly this, a powerful new framework for
collaborative source separation.2 An efficient optimization procedure for this case
is derived as well.

During the talk we introduce these new models and their corresponding op-
timization, theoretical bounds for the new models, present numerous examples
illustrating them (both in audio and image processing), and provide possible di-
rections of research opened by these new frameworks, including some theoretical
ones.

We conclude the talk with a brief presentation of a different model on struc-
ture sparsity, tuned to image analysis, that relates sparse modeling with Gaussian

1While we here consider only 2 levels of sparsity, the proposed framework is easily extended
to multiple levels

2Note that different recordings can also have different instruments, so some of them will share
the same groups while not necessarily all of them will be exactly the same.
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Mixture Models, and via very simple and computational efficient linear opera-
tions, achieves state-of-the-art performance in a number of image enhancement
application.
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Adaptive Multiresolution Discontinuous Galerkin Schemes for
Conservation Laws

Roland Schäfer

(joint work with N. Hovhannisyan, S. Müller)

We consider a scalar conservation law with source term

ut + f(u)x = s(u) on R

subject to the initial conditions u(0, x) = u0(x) for x ∈ R. We are interested in
approximating the entropy solution u ∈ L∞(0, T, L1

loc(R)), see [O63, TT95]. For
that purpose we introduce an adaptive scheme with the following features:

• The data is evolved on a locally coarsened grid where we never use the
fully refined grid.

• The error compared to the fully refined grid increases only by a constant
factor, therefore we retain the accuracy of the uniform grid without com-
puting on it.

• Limiting is performed only on cells next to a discontinuity. In regions
where the solution is smooth, no limiting is used at all.

• The adaptive grid does not have to be graded, in contrast to the Multires-
olution Finite Volume (MR-FV) schemes [M03, CKMP03].

• Higher polynomial degrees and therefore better compression rations and
coarser grids can easily be used due to the locality of the DG scheme,
whereas in the case of MR-FV schemes the grading of the grid increases.

The analysis is based on a reference scheme acting on the uniformly refined grid.
In this work we chose the Discontinuous Galerkin scheme by Cockburn and Shu
[CS89]. To obtain the adaptive scheme, we employ a multiscale transformation
using the biorthogonal multiwavelets of Alpert et. al. [ABGV02], and then use
hard thresholding to compress the data. This corresponds to a grid coarsening.
The time evolution is then performed on the coarsened grid, while never using the
uniformly refined grid. Between time levels we have to adapt the grid to resolve
non-stationary features of the solution. Therefore, a prediction strategy is needed
that indicates, which detail coefficients can become significant.
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Our goal will be to present a prediction strategy that allows to control the final
error introduced by the thresholding by the thresholding parameter. For a given
reference discretization, we then chose this parameter to balance the thresholding
error with the discretization error, leading to an increase in error only by a constant
factor. At the same time, the adaptive scheme significantly reduces the number
of degrees of freedom and therefore accelerates the computation. We present
numerical experiments that validate the analysis, see [HMS10] for further reference.

Using the basis expansion of uh(t, ·) =
∑

k∈Ih,0≤i<p vk,i(t)φk,i ∈ Sp, the space
of piecewise polynomial of degree less than p with spacial index k, the semi-discrete
Discontinuous Galerkin scheme reads

d

dt
vk,i(t) = − F (uh(t, x

−), uh(t, x
+))φ̃k,i(x)

∣∣∣
xk+1

xk

+〈f(uh(t)), φ̃′k,i〉+〈s(uh(t)), φ̃k,i〉

where F (v, w) is a monotone, consistent and Lipschitz continuous numerical flux

function, φ̃k,i a biorthogonal test function, xk = x0+kh and 〈g, h〉 =
∫
g(x)h(x)dx.

We then apply the explicit Euler scheme for time discretization with time step
size τ and obtain the fully discrete single scale scheme

vn+1
k,i = vnk,i − τ(Bn

i,k −Gn
i,k − Sn

i,k)

where Bn
i,k denotes the flux balance, Gn

i,k the flux quadrature and Sn
i,k the source

quadrature. This scheme will be denoted as reference scheme on the uniform
reference mesh.

Assuming that the grid stems from L dyadic grid refinements of a coarse scale
grid, we perform a multiresolution analysis on the data using biorthogonal multi-
wavelets. Let {φ0,k,i, ψl,k,i}l,k,i denote the primal and {φ̃0,k,i, ψ̃l,k,i}l,k,i the dual

multiscale basis with the biorthogonal wavelets ψl,k,i and ψ̃l,k,i. We note that the
scaling functions and wavelets are compactly supported on a single grid cell. Then
we can expand uh ∈ Sp in the multiscale basis

uh =

L∑

l=0

∑

k∈Il,0≤i<p

dl,k,i ψl,k,i +
∑

k∈I0,0≤i<p

v0,k,i φ0,k,i

with the detail dl,k,i = 〈uh, ψ̃l,k,i〉 and coarse scale coefficients v0,k,i = 〈uh, φ̃0,k,i〉.
If we perform a multiscale transformation of the single scale scheme, we obtain

the equivalent multiscale scheme

dn+1
l,k,i = dnl,k,i − τ(B̄n

l,k,i − Ḡn
l,k,i − S̄n

l,k,i)

vn+1
0,k,i = vn0,k,i − τ(Bn

0,i,k −Gn
0,i,k − Sn

0,i,k).

The adaptive scheme is then obtained from the multiscale scheme by hard
thresholding on the coefficients of the initial conditions. Starting from the thresh-
olded initial conditions, we adapt the grid and then use the equations of the
multiscale scheme to evolve the coefficients corresponding to that grid. All other
coefficients remain zero. Limiting is performed only on cells on the highest level.
Therefore in smooth regions where the grid is coarser, no limiting is used.
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Figure 1. Left: Computational savings compared to reference
scheme; Right: Solution and detail coefficient trees for optimal
value of ε

We do not know the set of detail coefficients that can become significant on the
next time level. The goal of this work is to construct, from data on the current
time level, a prediction set D̃ that contains the indices of significant details on
the current and on the next time level. This corresponds to the grid adaptation.
Under some assumptions on the reference scheme, the following holds true.

Theorem: (Reliability of the adaptive scheme) If the prediction set D̃ is

constructed such that (l, k, i) 6∈ D̃ implies |dn+1
l,k,i | ≤ εl, then the error of

the adaptive scheme with respect to the reference scheme at the final time
is bounded by ε.

In [HMS10] we give a construction of the prediction set that ensures the reliability
of the scheme, accounting for both nonlinearities, the limiting and the evolution
step.

To validate this analysis, we consider the Burgers equation with a source term

ut + uux = u(u− 1)(u− 0.5) on [0, 1]

with initial conditions u0(x) = sin(2πx). For a sequence of threshold values ε =
10−0.5, . . . , 10−3 we compute the adaptive solution and then compare it to the
reference solution on the uniform grid and the exact solution. For ε = 10−1.75

we find that the discretization error of the reference solution compared to the
exact solution and the thresholding error of the adaptive solution compared to the
reference solution are balanced. For smaller values of ε the discretization error
dominates the total error, for bigger values the thresholding error is dominant.
This numerically supports the reliability of the adaptive scheme. To asses the
efficiency, see Figure 1 (left). The computational cost is less than 2.5% of the
CPU time of the reference solution. This is due to the reduction of degrees of
freedom to less than 1% by grid coarsening. In Figure 1 (right) we see on top
the solution computed with the adaptive scheme and in the middle the tree of
detail coefficients after thresholding (where white means that the detail coefficient
is zero). At the bottom the tree of detail coefficients that was used to calculate the
current time step is shown. Each of these trees corresponds to an adaptive grid,
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where a cell is refined, if detail coefficients are non-zero. The difference of the two
grids is minimal, therefore we can conclude that the amount of over-prediction is
small. We note that the resulting grid does not need to be graded, in contrast to
MR-FV schemes. This allows for higher polynomial degrees and therefore higher
compression ratios without having larger stencils, resulting in better computational
performance.
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Tensor Product Approximation – For the Electronic Schrödinger
Equation

Reinhold Schneider

Approximation by sums of tensor products of single variate functions, herein
called tensor product approximation, offer a flexible tool for a data sparse approx-
imation. The single variate component functions have to be optimized in a sense
providing best, almost best or at least a reasonable accuracy. Recent developments
in tensor product approximation [Ko] were motivated by problems in data com-
pression and data analysis. But there are various partial differential equations in
high dimensions, for example Fokker Planck equation, chemical master equation,
boundary value problems with stochastic data and quantum dynamics. One of the
most important highdimensional problems is the stationary electronic Schrödinger
equation [He].

For convenience of exposition, we will regard a tensor U as a multivariate func-
tion of the form

U = U(x) = U(x1, . . . , xd) : I1 × · · · × Id −→ R.

In the present talk we are dealing only with the representation or approximation
of tensors U ∈ Rn1×...×nd of order (or dimension) indexed by finite index sets
Ii := {1, . . . , ni} for all i ∈ {1, . . . , d}, where d ∈ N and n1, . . . , nd.
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Unfortunately, besides in the elementary (matrix) case d = 2, classical concepts
from tensor product approximation, such as the canonical or Kronecker decompo-
sition also known as CANDECOMP or PARAFAC, see e.g. [Ko],

U(x1, . . . , xd) =

r∑

i=1

Ui =

r∑

i=1

d⊗

ν=1

ui,ν(xν) =

r∑

i=1

d⊗

ν=1

uν(xν , i) ,

suffer from various shortcomings from the theoretical as well as from the practical
point of view, making the actual computation of a low-rank approximation a nu-
merically hazardous task. This is in contrast the so-called Tucker decomposition,
In essence the Tucker format is a subspace approximation. It has been shown, e.g.
in [Lu], that the Tucker format provides an embedded manifold.

Since the representation of a tensor in the Tucker format requires O(rd + dn),
n := max{nν : 1 ≤ ν ≤ d}, degrees of freedom (DOF), it does not overcome the
curse of dimensionality, namely the scaling O(eαd), α > 0.

To overcome this dilemma, a new format built on a hierarchical structure for
tensor decomposition has been introduced in [HT]. Independently Tyrtyshnikov
and Oseledets [TT] developed the TT format (abbreviating “tree tensor” or “ten-
sor train”). It is a special and simplest case of the more general hierachical Tucker
format in [HT]. In the present talk we focuses on this representation exclusively.
Independent from those recent developments, the TT format was considered in
[Vi] in the form of matrix product states (MPS) in quantum information theory.
A representation of a tensor U ∈ R

n1×···×nd in the TT tensor format rewrites an
order-d tensor in the form

U(x) =

r1∑

k1=1

. . .

rd−1∑

kd−1=1

U1(x1, k1)U2(k1, x2, k2) . . . Ud−1(kd−2, xd−1, kd−1)Ud(kd−1, xd),

where for 2 ≤ i ≤ d − 1, Ui(ki−1, xi, ki) ∈ Rri−1×ni×ri . For brevity of notation,
it could rewritten by matrix products

U(x) = U1(x1) · · ·Uν(xν) · · ·Ud(xd) .

with matrices Uν(xν) ∈ R
rν−1×rν [Vi]. In a recent paper [HRS-1], we have shown

that the TT-format provides an embedded manifold, see. [HRS-1] for further
details. In this paper, we have parametrized corresponding tangent spaces by
introducing an appropriate gauge condition like in [Lu].

For solving elliptic linear equations or eigenvalue problems in the TT format,
let us present a (block) relaxation scheme [HRS-2], similary as the alternating
least squares scheme for the canonial format. Let us fix all tensors U(xν), ν ∈
{1, . . . , d}\{j}, except the one for index j. We are going to optimize U(kj−1, xj , kj)
in an micro-iteration step. We perform this procedure sequentially with j =
1, . . . , d, then we repeat the relaxation procedure in the opposite direction. This
scheme has the disadvantage that the ranks rj . To adapt the individual ranks rj ,
we modify the scheme, by concatenating two variables xj , xj+1 into one (xj , xj+1),
and searching for an optimized component W (kj−1, xj , xj+1, kj+1). In a decima-
tion step we approximate W(xj , xj+1) = Uj(xj)Vj(xj+1) by low rank, e.g. by
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means of SVD, up to a tolerance ǫj . We keep Uj and proceed by computing
W(xj+1, xj+2) next.

The basic equation for a quantitative description of atomic and molecular
physics is the electronic Schrödinger equation [He],

H Ψ = −1

2

∑

i

∆i −
N∑

i

K∑

ν=1

Zν

|xi − aν |
+

1

2

N∑

i6=j

1

|xi − xj |
Ψ = EΨ .

It describes the stationary and non-relativistic behavior of an ensemble of N elec-
tron exposed to an electric Coulomb field given by fixed nuclei. A quantity of
major interest is the ground state energy of a given N -electron system, which is
the eigenvalue E of the lowest eigenstate Ψ of the Schrödinger-Hamilton operator
H . Since the corresponding wave function Ψ depends on at least 3N spatial vari-
ables, its numerical approximation is a rather difficult and challenging task. The
electrons are Fermions, hence, their wavefunction Ψ obeys the Pauli antisymmetry
principle, i.e. it must be antisymmetric with respect of permutation of particle
variables xi, si, xi ∈ R3, si = ± 1

2 , i = 1, . . . , N . The hierarchical tensor formats
introduced in [HT, TT] are sensitive w.r.t. permutation of variables. Therefore
they are not appropriate for approximation of Ψ in their present form. We pursue
an alternativ way [HRS-1], using the discrete Fock space F built by all Slater
determinants

ΨSL[k1, . . . , kN ](x1, s1; . . . ;xN , sN ) :=
1√
N !

det(ϕki
(xj , sj))

N
i,j=1

to a given orthonormal basis set {ϕi : i = 1, . . . , d} and Xh := span {ϕi},

F :=

d⊕

N=1

VN
FCI =

d⊕

N=1

N∧

i=1

Xh == {Ψ : Ψ =
∑

µ

cµΨµ} .

Labeling of indices µ ∈ I by an binary string of length d [He]

e.g.: µ = (0, 0, 1, 1, 0, . . .) =:
d−1∑

i=0

µi2
i , µi = 0, 1 ,

• µi = 1 means ϕi is (occupied) in Ψ[. . .].
• µi = 0 means ϕi is absend (not occupied) in Ψ[. . .].

yields that the discrete Fock space could be parametrized by tensors

F ≃ {c : µ 7→ c(µ0, . . . , µd−1) = cµ , µi = 0, 1 } =

d⊗

i=1

R
2

With the aid of the 2× 2 matrices

A :=

(
0 1
0 0

)
, AT =

(
0 0
1 0

)
, S :=

(
−1 0
0 1

)
, I :=

(
1 0
0 1

)
,
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we can reformulate the calculus of second quantization introducing discrete cre-
ation (annihilation) operators

a(†)p ≃ A(T )
p := I ⊗ . . .⊗A

(T )
(p) ⊗ S ⊗ . . .⊗ S

where A(p) means that A appears on the p-th position in the product.
The discrete (full CI) Schrödinger equation is casted into the variational form

[HRS-1].

c = (c(µ)) = argmin{〈Hc, c〉 : 〈c, c〉 = 1 , Pc = Nc} .

With the discrete Hamiltonian H and particle number operator P =

d∑

p,q=1

AT
p Aq,

H =

d∑

p,q=1

hqpA
T
p Aq +

d∑

p,q,r,s=1

gp,qr,sA
T
r A

T
s ApAq .

where hqp and gp,qr,s denote the well known one and two electron integrals,

hpq := 〈ϕq, (
−1

2
∆− Vcore)ϕp〉 , gp,qr,s :=

1

2
〈ϕr(x, s1)ϕs(y, s2),

ϕp(x, s1)ϕq(y, s2)

|x− y| 〉 ,

the tensorized problem can be tackled by recent tensor product approximation
techniques, e.g. the TT-format and the introduced relaxation method. The modi-
fied relaxation method applied to this problem resembles exactly the DMRG (den-
sity matrix renormalization group) method introduced in [SW] for spin chains.
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Sparse Tensor Discretizations of PDEs with Stochastic Data

Christoph Schwab

(joint work with Albert Cohen, Ronald DeVore, Viet Ha Hoang)

We present recent results on the regularity, on the best N -term approximation
and on numerical solution algorithms for PDEs which depend on a vector y of
possibly countably many parameters (yj)j≥1. In a bounded Lipschitz domain
D ⊂ R

d, we study the parametric, elliptic problem

(1) −divx(a(x, y)∇xu) = f(x) for x ∈ D,

and, for 0 ≤ t ≤ T and for x ∈ D, its parabolic analog

(2) ut − divx(a(x, y)∇xu) = f(x) u|t=0 = u0,

and the corresponding parametric wave equation

(3) utt − divx(a(x, y)∇xu) = f(x) , u|t=0 = u0, ut|t=0 = u1 .

For simplicity, we consider homogeneous Dirichlet boundary conditions u|∂D = 0.
Here, D ⊂ Rd is a bounded Lipschitz domain and the diffusion coefficient a(x, y)
depends on the parameter vector y ∈ U := [−1, 1]N in an affine manner

(4) a(x, y) = ā(x) +

∞∑

j=1

yjψj(x),

where ψj ∈ L∞(D). Such coefficients arise, for example, in the parametric expan-
sion of random diffusion coefficients by Karhúnen-Loève expansions. We impose
the uniform ellipticity assumption UEA(r, R)

(5) 0 < r ≤ a(x, y) ≤ R <∞, x ∈ D, y ∈ U

which implies, in particular, that (‖ψj‖L∞(D))j≥1 ∈ ℓ1(N). Under UEA(r, R),

for every y ∈ U there exist unique solutions u(·, y) ∈ V where V := H1
0 (D) for

(1), and, for (2), (3), V is a suitable Bochner space, such as L2(0, T ;H1
0 (D)) ∩

H1(0, T ;H−1(D)) for (2).
We are interested in the numerical approximation of (1), (2) and (3) on the

infinite-dimensional parameter space U . To this end, we show that the solution
map U ∋ y → u(·; y) ∈ V is measurable, as a map from the measurable space

(U, µ(dy)) (with µ(dy) = ⊗j≥1
dyj

2 denoting the uniform probability measure on
U) into V and, moreover, that is it analytic as a V -valued function of y, with
precise estimates on the size of the analyticity domains in terms of the ‖ψj‖L∞(D).

Under UEA(r, R), the parametric solution u(·, y) admits, as V -valued function,
unconditionally convergent series expansions into several function systems in the
infinite-dimensional parameter domain U . For example, we show in [CDS1, CDS2,
HS1, HS2] that u(·, y) admits a Legendre expansion

(6) u(·, y) =
∑

ν∈F
uν(·)Lν(u), uν(·) :=

∫

U

u(·, y)Lν(y)dµ(y) ∈ V
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where the set F = {ν ∈ N
N
0 : |ν|1 < ∞} of “finitely supported” multiindices

denotes all sequences of nonnegative integers with finitely many nonzero entries.
In (6), the tensorized Legendre polynomials Lν(y) are defined as

(7) ∀ν ∈ F : Lν(y) :=
∏

j≥1

Lνj (yj)

with Ln(t) denoting the Legendre polynomial of degree n ∈ N0 on (−1, 1) with

normalization
∫ 1

−1
Ln(t)

dt
2 = 1. The series (6) converges unconditionally in the

Bochner space L2(U, µ(dy);V ). Our main results in [CDS2, HS1, HS2] quantify
sparsity of the coefficient sequence (uν)ν∈F in the Legendre expansion (6) in terms
of the p-summability of the sequence ‖ψj‖L∞(D):

Theorem 1. Assume (UEA)(r, R) and that for some 0 < p ≤ 1,

(8)
∑

j≥1

‖ψj‖pL∞(D) <∞

Then (‖uν‖V )ν∈F ∈ ℓp(F) for the same value of p as in (8).

Thus, the sequence of Legendre coefficients of the polynomial chaos type expan-
sion (6) of the parametric solution u(·, y) on the infinite dimensional parameter
space U inherits exactly the sparsity of the input’s coefficient function sequence
ψj . There are two proofs of Theorem 1: in [CDS1], analyticity was quantified
by estimates on the growth of derivatives of the solution w.r. to yj, whereas in
[CDS2, HS1, HS2], analyticity was quantified by a continuation argument and p-
summability was shown to follow from derivative-free estimates on the Legendre
coefficients uν(·) by Cauchy’s integral formula.

The p-summability of (‖uν‖V )ν∈F in Theorem 1 immediately implies, via a
classical argument due to Stechkin (see, e.g., [DeV] and the references there) that
the map U ∋ y → u(·, y) ∈ V can be approximated as follows.

Theorem 2. If (‖ψj‖L∞(D))j≥1 ∈ ℓp(N), then for every N ∈ N there exists an
index set Λ∗

N ⊂ F of cardinality not exceeding N such that the N -term approxi-
mation converges with rate r := 1/p− 1/2 ≥ 1/2, i.e. for all N it holds

(9) ‖u−
∑

ν∈Λ∗
N

uνLν‖L2(U,µ(dy);V ) ≤ ‖(‖uν‖V )‖ℓp(F)N
−(1/p−1/2)

This result is to be contrasted with the rate N−1/2 obtained, for example,
by Monte-Carlo (MC) sampling the parametric problems at N points in U with
respect to the probability measure µ(dy): if the coeffiecient sequence is p-summable
with exponent p = 1 (which is a minimal necessary condition for UEA(r, R) to
hold and, hence, for well-posedness of the parametric problems), N term truncated
polynomial chaos type expansions yield the same convergence rate as MC sampling,
at the expense of N coefficient functions in V to be determined. Theorem 2
indicates, however, that as soon as the sequence (‖ψj‖L∞(D))j≥1 ∈ ℓp(N) with
p < 1, the polynomial chaos type N -term approximations offer the rate r =
1/p− 1/2 > 1/2.
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In the recent papers [CDS1, CDS2, HS1, HS2], we also obtained apriori es-
timates for ‖(‖uν‖V )‖ℓp(F) in terms of

∥∥(‖ψj‖L∞(D))j≥1

∥∥
ℓp(N)

. We remark that

earlier results [TS] showed even superalgebraic N -term convergence rates of Tay-
lor expansions of u(·, y) about y = 0 ∈ U , albeit under the substantially stronger
assumption of exponential decay of (‖ψj‖L∞(D))j≥1. These results open the per-
spective of efficient numerical approximations of solutions to the parametric prob-
lems (1), (2), (3) on the infinte dimensional parameter space U . In [CDS1, CDS2],
results analogous to (9) were also obtained for best N -term Taylor expansions of
U ∋ y → u(·, y) ∈ V about y = 0 ∈ U (see the abstract of A. Cohen in this volume
for a statement of these results).

To develop viable numerical algorithms, two additional questions must be ad-
dressed: first, the localization of (sequences of) (near) optimal index sets ΛN ⊂ F
of cardinality not exceeding N and, second, the numerical approximation of the
“active” coefficients uν , ν ∈ ΛN . The first question allows several answers: based
on the sharp apriori estimates of the Legendre coefficients uν in (6), in [ABS],
under the assumption of monotonic decay of the fluctuation sequence ‖ψj‖L∞(D)

an algorithm was proposed for the apriori localization of index sets ΛN of cardi-
nality not exceeding N with log-linear complexity in #(ΛN ) such that Galerkin
projections of the parametric solutions in L2(U, µ(dy);V ) onto truncated Legendre
expansions achieve the optimal rate r (see also [Acta]). A second approach which
yields quasi optimal index sequences (ΛN )N≥1 ⊂ F is based on variants of the
bulk-chasing algorithms which were developed in the context of adaptive Finite
Element Methods (FEM). This is subject of current research.

Finally, the discretization of the “active” coefficients uν , ν ∈ ΛN , from a dense,
one-parameter family (Vh)h>0 ⊂ V with dimVh < ∞ is considered. If (Vh)h>0

is hierarchic (as is the case with e.g. FEM on nested families of triangulations,
wavelets, spectral methods or hp-FEM) with approximation rate t > 0 for solutions
u belonging to a smoothness space W ⊂ V (as, e.g., W = (H2 ∩ H1

0 )(D)), i.e.
infv∈Vh

‖u − v‖V ≤ CM−t for M = dim(Vh) → ∞, we show in [CDS2] that for
the sequence (Λ∗

N )N≥1 of optimal active coefficients uν , there exists a sequence
(hν)ν∈Λ∗

N
of discretization parameters such that the corresponding sparse tensor

approximations satisfy

(10) ‖u−
∑

ν∈Λ∗
N

uν,hν
‖L2(U,µ(dy);V ) ≤ CN

−min{r,t}
tot

where Ntot =
∑

ν∈Λ∗
N
dim(Vhν

) denotes the total number of degrees of freedom.

The estimate (10) requires the regularity (‖uν‖W )ν∈F ∈ ℓp(F) for the same value
of p as in Theorem 2 for (1), (2), (3) (see [CDS2, HS1, HS2]).
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Adaptive Wavelet Schemes for Evolution Problems

Rob Stevenson

(joint work with Christoph Schwab, Nabi Chegini)

This talk will be concerned with the numerical solution of linear evolution equa-
tions, in particular parabolic equations. In general, even for a smooth source term
and initial condition, the solution of such a problem has a reduced smoothness
near the bottom and walls of the space-time cylinder. As a consequence, standard
discretization methods based on uniform meshes will converge at reduced rates.

A general approach to retrieve the best possible rate allowed by the order of the
discretization is to apply adaptive methods. Standard methods for solving time
evolution problems first discretize in space and then in time (method of lines),
or first in time and then in space (Rothe’s method). As a consequence, with
these time marching methods it seems hard to be able to arrive at an optimal
distribution of the “mesh-points” or degrees of freedom simultaneously over space
and time.

Therefore, we consider a simultaneous space-time variational formulation of the
parabolic problem. This formulation is well-posed in the sense that it defines a
boundedly invertible operator between a Hilbert space and the dual of another
Hilbert space. We equip both Hilbert spaces – being Bochner spaces or intersec-
tions of those – by Riesz bases that are tensor products of temporal and spatial
wavelet bases. In this way, we arrive at an equivalent, well-posed bi-infinite matrix
vector problem. We solve this problem with an adaptive wavelet method applied
to the normal equations.

The advantages of our approach are two-fold: Firstly, thanks to the tensor-
product construction of the basis, there is a nearly neglectable penalty in asymp-
totic computational complexity due to the additional time dimension, an effect that
is well-known for so-called sparse-grid or hyperbolic cross approximation methods.
Secondly, the adaptive wavelet method is proven to converge at the best possible
rate, in linear complexity.
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Our approach was investigated earlier in [SS09], and on a more heuristical level,
in [GO07]. Compared to the first work, here we introduce an alternative varia-
tional formulation in which the initial condition is incorporated more naturally.
Furthermore, we design a new wavelet basis with respect to which any parabolic
differential operator of second order with constant coefficient gives rise to a bi-
infinite system matrix that is truly sparse. Having such a matrix largely simpli-
fies the implementation and improves the quantitative properties of the adaptive
wavelet method. We present numerical results for an ordinary differential equation
and for the heat equation.

Finally, we will show that the instationary Stokes equations can also be given
a well-posed space-time variational formulation, so that our approach applies to
these equations as well.
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Existence and Equilibration of Global Weak Solutions to Kinetic
Models of Dilute Polymers

Endre Süli

(joint work with John W. Barrett)

We show the existence of global-in-time weak solutions to a general class of
coupled FENE-type bead-spring chain models that arise from the kinetic theory
of dilute solutions of polymeric liquids with noninteracting polymer chains. The
class of models involves the unsteady incompressible Navier–Stokes equations in
a bounded open Lipschitz domain Ω in Rd, d = 2 or 3, for the velocity u

∼
and

the pressure p of the fluid, with the divergence of the elastic extra-stress tensor τ
≈

appearing on the right-hand side of the Navier–Stokes momentum equation. Let
k denote the product of the Boltzmann constant and the absolute temperature.
The extra-stress tensor τ

≈
stems from the random movement of the polymer chains

and is defined by the Kramers expression

τ
≈
(x
∼
, t) = k

(
K∑

i=1

∫

D

ψ(x
∼
, q
∼
, t) q

∼
i q

∼

T
i U

′
i

(
1
2 |q∼i|2

)
dq

∼
−
∫

D

ψ(x
∼
, q
∼
, t) I

≈
dq

∼

)
,

through the associated probability density function (x
∼
, q
∼
, t) ∈ Ω × D × [0, T ] 7→

ψ(x
∼
, q
∼
, t) 7→ R≥0 that satisfies a Fokker–Planck-type parabolic equation on Ω ×

D × [0, T ], a crucial feature of which is the presence of a center-of-mass diffusion
term, with diffusion coefficient ε > 0. Here D := D1×· · ·×DK is the configuration
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space, defined as the Cartesian product of Di, i = 1, . . . ,K, where each Di is a
bounded open ball of radius

√
bi, with bi > 2, centred at the origin 0

∼
∈ Rd.

We require no structural assumptions on the drag term in the Fokker–Planck
equation; in particular, the drag term need not be corotational. With a square-
integrable and divergence-free initial velocity datum u

∼0 for the Navier–Stokes
equation and a nonnegative initial probability density function ψ0 for the Fokker–
Planck equation, which has finite relative entropy with respect to the Maxwellian
M , we prove the existence of a global-in-time weak solution t 7→ (u

∼
(t), ψ(t)) to

the coupled Navier–Stokes–Fokker–Planck system, satisfying the initial condition
(u
∼
(0), ψ(0)) = (u

∼0, ψ0), such that t 7→ u
∼
(t) belongs to the classical Leray space

and t 7→ ψ(t) has bounded relative entropy with respect to M and t 7→ ψ(t)/M
has integrable Fisher information (w.r.t. the measure dν :=M(q

∼
) dq

∼
dx

∼
) over any

time interval [0, T ], T > 0. If the density of body forces f
∼
on the right-hand side

of the Navier–Stokes momentum equation vanishes, then t 7→ (u
∼
(t), ψ(t)) decays

exponentially in time to (0
∼
,M) in the L

∼

2×L1 norm, at a rate that is independent
of (u

∼0, ψ0) and of ε. The precise statements of these results are given below.
Let Oi ⊂ [0,∞) denote the image of Di under the mapping q

∼
i ∈ Di 7→ 1

2 |q∼i|2,
and consider the spring-potential Ui ∈C2(Oi;R≥0), i = 1, . . . ,K. Clearly, Oi =[
0, bi2

)
. We shall suppose that Ui(0) = 0 and that Ui is monotonic increasing and

unbounded on Oi for each i = 1, . . . ,K. The elastic spring-force F
∼ i : Di ⊆ Rd →

Rd of the ith spring in the chain is defined by F
∼ i(q

∼
i) = U ′

i(
1
2 |q∼i|2) q

∼
i, i = 1, . . . ,K.

We shall further suppose that for i = 1, . . . ,K there exist constants cij > 0,
j = 1, 2, 3, 4, and γi > 1 such that the (normalized) Maxwellian Mi, defined by

Mi(q
∼
i) =

1

Zi
e
−Ui(

1
2 |q

∼
i|2)

, Zi :=

∫

Di

e
−Ui(

1
2 |q

∼
i|2)

dq
∼
i ,

and the associated spring potential Ui satisfy

ci1 [dist(q
∼
i, ∂Di)]

γi ≤Mi(q
∼
i) ≤ ci2 [dist(q

∼
i, ∂Di)]

γi ∀q
∼
i ∈ Di,(1a)

ci3 ≤ [dist(q
∼
i, ∂Di)]U

′
i(

1
2 |q∼i|2) ≤ ci4 ∀q

∼
i ∈ Di.(1b)

The Maxwellian in the model is then defined by M(q
∼
) :=

∏K
i=1Mi(q

∼
i) where q

∼
:=

(q
∼
1, . . . , q

∼
K) ∈ D. Let H

∼
and V

∼ σ denote, respectively, the closure of divergence-

free d-component C
∼

∞
0 (Ω) functions in the norm of L

∼

2(Ω) and H
∼

σ(Ω) ∩ H
∼

1
0(Ω),

σ ≥ 1. When σ = 1, we write V
∼

instead of V
∼ 1. For a function space X , X ′ will

denote the dual space of X and 〈·, ·〉X the duality pairing between X ′ and X .
Let F(s) := s(log s − 1) + 1, s > 0; and F(0) := 1. We adopt the notation

ψ̂ := ψ/M , and introduce the following assumptions on the data:

∂Ω ∈ C0,1; u
∼0 ∈ H

∼
; ψ̂0 :=

ψ0

M
≥ 0 a.e. on Ω×D with

F(ψ̂0) ∈ L1
M (Ω×D) and

∫

D

M(q
∼
) ψ̂0(x∼, q∼) dq∼ = 1 for a.e. x

∼
∈ Ω;(2)

γi > 1, i = 1, . . . ,K in (1a,b); and f
∼
∈ L2(0, T ;V

∼

′).



2008 Oberwolfach Report 33/2010

Here, Lp
M (Ω×D), for p ∈ [1,∞), denotes the Maxwellian-weighted Lp space over

Ω×D with norm

‖ϕ̂‖Lp
M(Ω×D) :=

{∫

Ω×D

M |ϕ̂(x
∼
, q
∼
)|p dq

∼
dx

∼

} 1
p

.

Theorem 1. Let the assumptions (2) hold. Then, there exists a pair of functions

(u
∼
, ψ̂) such that

u
∼
∈ L∞(0, T ;L

∼

2(Ω)) ∩ L2(0, T ;V
∼
) ∩H1(0, T ;V

∼

′
σ), σ ≥ 1

2d, σ > 1,

and

ψ̂ ∈ L1(0, T ;L1
M(Ω×D)) ∩H1(0, T ;M−1Hs(Ω×D)′), s > 1 + 1

2 (K + 1)d,

with ψ̂ ≥ 0 a.e. on Ω×D × [0, T ],
∫

D

M(q
∼
) ψ̂(x

∼
, q
∼
, t) dq

∼
= 1 for a.e. (x, t) ∈ Ω× [0, T ],

whereby ψ̂ ∈ L∞(0, T ;L1
M(Ω × D)); and finite relative entropy and Fisher infor-

mation, i.e.,

F(ψ̂) ∈ L∞(0, T ;L1
M(Ω×D)) and

√
ψ̂ ∈ L2(0, T ;H1

M(Ω×D));

such that the pair of functions (u
∼
, ψ̂) is a global weak solution to the Navier–Stokes–

Fokker–Planck system in the sense that, for all w
∼

∈ L2(0, T ;V
∼ σ),

∫ T

0

〈
∂u

∼

∂t
, w
∼

〉

Vσ

dt+

∫ T

0

∫

Ω

[[
(u
∼
· ∇
∼

x)u
∼

]
· w

∼
+ ν∇

≈
xu
∼
: ∇

≈
x w

∼

]
dx

∼
dt

=

∫ T

0

[
〈f
∼

, w
∼
〉V − k

K∑

i=1

∫

Ω

C
≈

i(M ψ̂) : ∇x
≈

w
∼
dx

∼

]
dt,

where ν > 0 is the kinematic viscosity and f
∼
the density of body forces; and, for

all ϕ̂ ∈ L2(0, T ;Hs(Ω×D)),
∫ T

0

〈
M

∂ψ̂

∂t
, ϕ̂

〉

Hs(Ω×D)

dt+

∫ T

0

∫

Ω×D

M
[
ε∇

∼
xψ̂ − u

∼
ψ̂
]
· ∇

∼
xϕ̂ dq

∼

dx
∼
dt

+
1

2λ

∫ T

0

∫

Ω×D

M
K∑

i=1

K∑

j=1

Aij ∇qj
∼

ψ̂ · ∇qi
∼

ϕ̂ dq
∼

dx
∼
dt

−
∫ T

0

∫

Ω×D

M

K∑

i=1

[(∇
≈

xu
∼
) q

∼

i] ψ̂ · ∇
∼

qi ϕ̂ dq
∼

dx
∼
dt = 0.

Here, λ > 0 is the Weissenberg number and (Aij)
K
i,j=1 the symmetric positive

definite Rouse matrix. The initial conditions u
∼
(·, 0) = u

∼0(·) and ψ̂(·, ·, 0) = ψ̂0(·, ·)
are satisfied in the sense of weakly continuous functions, in the function spaces
Cw([0, T ];H∼ ) and Cw([0, T ];L

1
M(Ω×D)), respectively.
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The weak solution (u
∼
, ψ̂) satisfies the following energy inequality for t ∈ [0, T ]:

‖u
∼
(t)‖2L2(Ω) + ν

∫ t

0

‖∇
≈ xu∼(s)‖2L2(Ω) ds+ 2k

∫

Ω×D

MF(ψ̂(t)) dq
∼
dx

∼

+8k ε

∫ t

0

∫

Ω×D

M |∇
∼ x

√
ψ̂|2 dq

∼
dx

∼
ds+

2a0k

λ

∫ t

0

∫

Ω×D

M |∇
∼ q

√
ψ̂|2 dq

∼
dx

∼
ds

≤ ‖u
∼0‖2L2(Ω) +

1

ν

∫ t

0

‖f
∼
(s)‖2V ′ ds+ 2k

∫

Ω×D

MF(ψ̂0) dq
∼
dx

∼
.

Theorem 2. Let the assumptions of Theorem 1 hold and let M satisfy the Bakry–
Émery condition; i.e. there exists κ > 0 such that Hessian(− logM(q

∼
)) ≥ κ Id, in

the sense of symmetric Kd×Kd matrices, on D. Then, for any T > 0,

‖u
∼
(T )‖2L2(Ω) +

k

|Ω| ‖ψ̂(T )− 1‖2L1
M(Ω×D)

≤ e−γ0T

[
‖u

∼
0‖2L2(Ω) + 2k

∫

Ω×D

MF(ψ̂0) dq
∼

dx
∼

]
+

1

ν

∫ T

0

‖f
∼

‖2V ′ ds,

where γ0 := min
(

ν
C2

P

, κ a0

2λ

)
and CP is the constant in the Poincaré inequality

‖w
∼
‖L2(Ω) ≤ CP‖∇≈ xw∼ ‖L2(Ω), w∼ ∈ V

∼
. In particular if f

∼
≡ 0

∼
then

‖u
∼
(T )‖2L2(Ω)+

k

|Ω| ‖ψ̂(T )− 1‖2L1
M

(Ω×D)≤e−γ0T

[
‖u

∼
0‖2L2(Ω)+2k

∫

Ω×D

MF(ψ̂0) dq
∼

dx
∼

]
.

The FENE potential Ui(s) = − bi
2 log

(
1− 2s

bi

)
, s ∈ Oi :=

[
0, bi2

)
, bi > 2, i =

1, . . . ,K, satisfies the hypotheses of the two theorems above. For further details,
we refer to [BS2010]. In the case of Hookean-type springs existence and decay
results analogous to Theorems 1 and 2 above hold. The numerical approximation
of these high-dimensional problems is the subject of ongoing research.
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Multiscale Solutions in Critical Spaces: A Constructive Proof of the
Closed Range Theorem

Eitan Tadmor

We begin with a prototype example. Let Ld
#(T

d) denote the Lebesgue space

of periodic functions with zero mean over the d-dimensional torus Td. Given
f ∈ Ld

#(T
d), we seek a uniformly bounded solution, U ∈ L∞(Td,Rd), of the

problem

(1a) div U = f, U ∈ L∞(Td,Rd).
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A classical solution is given by U = ∇∆−1f , which in addition to (1a), satisfies
the irotationality constraint,

(1b) curl U = 0.

Clearly, this solution lies in W 1(Ld
#). But since W 1(Ld

#) is not contained in L∞,
the solution may — and in fact does fail to satisfy the uniform bound sought
for the solution of (1a). Thus, the question is whether (1a) admits a uniformly
bounded solution by giving up on the additional constraint of irotationality (1b).
The existence of such solutions was proved by Bourgain and Brezis, [BB03, Propo-
sition 1] using a straightforward but non-constructive duality argument based on
the closed range theorem. We present here another duality-based approach for
the existence of such solutions. Our approach is constructive: the solution U is
constructed as the sum, U =

∑
uj , where the {uj}’s are computed recursively as

appropriate minimizers,

uj+1 = arg min
u

{
‖u‖L∞ + λ12

j
∥∥f − div

( j∑

k=1

uk

)
− div u

∥∥d
Ld

}
, j = 0, 1, . . . ,

and λ1 is a sufficiently large parameter specified below.

This construction is in fact a special case of our main result which applies to
general linear problems of the form

(2) LU = f, f ∈ Lp
#(Ω), Ω ⊂ R

d, 1 < p <∞.

Here, L : B 7→ Lp
#(Ω) is a linear operator densely defined on a Banach space B with

a closed range in Lp
#(Ω). The subscript {·}# indicates an appropriate subspace,

Lp
#(Ω) = Lp(Ω) ∩ Ker(P). Here, P : Lp 7→ Lp is a linear operator whose null is

“compatible” with the range of L so that the dual of L is injective, namely, there
exists β > 0 such that

(3) ‖g − P∗g‖Lp′ ≤ β‖L∗g‖B∗, ∀g ∈ Lp′

(Ω).

The closed range theorem combined with the open mapping principle tell us that
equation (2) has a bounded solution, U ∈ B. Our main result [Ta10] is a construc-
tive proof for the existence of such solutions in this setup.

Theorem 1. Assume that the apriori estimate (3) holds. Then, for any given
f ∈ Lp

#(Ω), 1 < p <∞, equation (2) admits a solution of the form U =
∑∞

j=1 uj ∈
B,

(4) ‖U‖B <∼ β‖f‖Lp ,

where the {uj}’s are constructed recursively as minimizers of
(5)

uj+1 = arg min
u

{
‖u‖B + λj+1

∥∥rj − Lu
∥∥p
Lp

}
, rj := f−L

( j∑

k=1

uk

)
, j = 0, 1, . . . .
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Here, {λj}j≥1 can be taken as any exponentially increasing sequence, λj+1 :=

λ1ζ
j , j = 0, 1, . . . with a sufficiency large λ1 >∼

β

‖f‖p−1
Lp

.

Remark 1. The description of U as the sum U =
∑

uj provides a multiscale
hierarchical decomposition of a solution for (2). The role {λj}’s as the different
scales associated with the uj’s, is realized in terms of the “energy bound”

(6)

∞∑

j=1

1

ζj
‖uj‖B <∼ β‖f‖Lp, f ∈ Lp

#(Ω), λj+1 = λ1ζ
j .

Remark 2. We emphasize that the hierarchical construction U =
∑

uj does
not require apriori knowledge of the constant β appearing in the duality estimate
(3). If the initial scale λ1 is underestimated then the hierarchical expansion will
yield zero hierarchical terms, uj ≡ 0, j = 1, 2, . . ., until reaching the critical scale

λ12
j0 >∼ β‖f‖1−p

Lp which will dictate the initial non-zero step of the hierarchical
decomposition, U =

∑
j=j0

uj. The value of a finite β is only needed to guarantee
that the hierarchical construction will indeed pick up at some finite scale λj0 .

Bounded solutions of div U = f ∈ Lp
#

Let P denote the averaging projection, Pg := g where g is the average value of
g. Given f ∈ Lp

#(T
d) :=

{
g ∈ Lp(Td) | g = 0

}
, then according to theorem 1, we

can construct hierarchical solutions of

(7) div U = f, f ∈ Lp
#(T

d), 1 < p <∞,

in an appropriate Banach space, U ∈ B, provided the corresponding apriori esti-
mate (3) holds, namely, there exists a constant β > 0 (which may vary of course,
depending on p, d and B), such that

(8) ‖g − g‖Lp′ ≤ β‖∇g‖B∗ , ∀g ∈ Lp′

(Td).

We specify two cases of such relevant B’s.

#1. Solutions of (7) in Lp∗

. By Sobolev inequality

‖g − g‖Lp′(Td) ≤ β‖∇g‖L(p∗)′ (Td,Rd),
1

p∗
=

1

p
− 1

d
, d ≤ p <∞, ∀g ∈ Lp′

(Td),

where the case p = d corresponds to the Sobolev-Gagliardo-Nirenberg inequality,
‖g − g‖Ld′(Td) ≤ β‖g‖BV (Td). We distinguish between two cases.

(i) The case d < p < ∞: the equation div U = f ∈ Lp
#(T

d) has a hierarchical

solution U ∈ Lp∗

(Td,Rd), with the same integrability as the irrotational Helmholtz

solution, ∇∆−1f ∈ W 1,p(Td,Rd) ⊂ Lp∗

(Td,Rd).

(ii) The case d = p: the equation div U = f ∈ Ld
#(T

d) has a solution U ∈
L∞(Td,Rd). This is the the prototype example discussed in the beginning of
the introduction. According to the intriguing observation of Bourgain & Brezis,
[BB03, Proposition 2], there exists no bounded right inverse K : Ld

# 7→ L∞ for
the operator div , and therefore, there exists no linear construction of solutions
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f 7→ U (in particular, ∇∆−1f cannot be uniformly bounded). Theorem 1 provides
a nonlinear hierarchical construction of such solutions.

#2. Solutions of (7) in L∞ ∩ Ẇ 1,d. A central question raised and answered
in [BB03] is whether (7) has a solution which captures the joint regularity, U ∈
B = L∞ ∩ Ẇ 1,d(Td,Rd). To this end, one needs to verify the duality estimate (8),
which now reads

(9) ‖g − g‖Ld′(Td) ≤ β‖∇g‖L1+Ẇ−1,d′ (Td,Rd), ∀g ∈ Ld′

(Td).

This key estimate was proved in [BB03] and theorem 1 converts (9) into a con-
structive proof of:

Corollary 1. The equation div U = f ∈ Ld
#(T

d) admits a solution U ∈ L∞ ∩
Ẇ 1,d(Td,Rd), given by the hierarchical decomposition U =

∑
j=1 uj, which is

constructed by the refinement step,

uj+1 = arg min
u

{
‖u‖L∞∩Ẇ 1,d + λ1ζ

j
∥∥f − div

( j∑

k=1

uk

)
− div u

∥∥d
Ld

}
,

for j = 0, 1, 2 . . ., with ζ > 1 and λ1 >∼ β‖f‖1−d
Ld .

Remark 3. We note that the duality estimate (9) is in fact a byproduct of Bour-

gain & Brezis construction of L∞∩Ẇ 1,d solutions for div U = f , [BB03, theorem
1]: their construction, which is based on Littlewood-Paley decomposition, is rather
involved. Corollary 1 offers a simpler construction of such solutions which could
be implemented in actual computations based on the construction of minimizers
for, ∨div (r, λ;L

∞, Ld
#) := infu

{
‖u‖L∞ + λ‖r − div u‖dLd

}
.

Since the proof of the dual estimate (9) in d > 2 dimensions is indirect, a specific
value of β is not known. As noted earlier, however, the hierarchical construction
can proceed without a precise knowledge of β: if one sets λ1 = ‖f‖1−d

Ld and this
initial scale underestimates a correct value of β > 1, then it will take at most j0 ∼
log(β) steps before picking-up non-trivial terms in the hierarchical decomposition,
U =

∑
j=j0

uj.
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Complexity of Recovering Functions of Few Variables in High
Dimension

Przemek Wojtaszczyk

We have a function f defined on [0, 1]N where N is big. We assume that there
exists a g on [0, 1]ℓ with ℓ small and integers j1 < j2 < · · · < jℓ ≤ N such that

f(x1, . . . , xN ) = g(xj1 , . . . , xjℓ) exact case

or

‖f(x1, . . . , xN )− g(xj1 , . . . , xjℓ)‖∞ ≤ ǫ approximate case

We know ℓ (or an estimate for ℓ). We do not know g, j1, j2, . . . , jℓ nor ǫ. We
assume g is smooth.

We want to find a subset B ⊂ [0, 1]N of small cardinality such that values f(P )

with P ∈ Bwill allow us to find f̂ := g̃(xj′1 , . . . , xj′ℓ) which is a good approximation
to f in sup norm.

• Even in the exact case we cannot expect to find j1, . . . , jℓ. There may be
coordinates of g that do not show when we take our point values.

• Obviously there is no hope to recover g exactly.
• Our algorithms are rather theoretical

This was discussed in a recent paper [DPW] with R.DeVore and G.Petrova.

Here we are interested in the number of points needed.

Let h = 1/L with L an integer. Lattice of equally spaced points L := {i/L :
0 ≤ i ≤ L} ⊂ [0, 1] and Lℓ ⊂ [0, 1]ℓ and /LN ⊂ [0, 1]N . For each h, we have a nice
linear operator Ah : C(Lℓ) → C([0, 1]ℓ) such that:

(1) ‖Ah‖ ≤ C0, for all L = 1, 2, . . . .
(2) If g depends on k ≤ ℓ variables then Ah(g) depends only on these variables.

So, Ah(g) = g, for any g ≡ const.

We consider the following approximation class:

As := As((Ah)) = {g ∈ C([0, 1]ℓ) : ‖g −Ah(g|Lℓ)‖∞ ≤ Chs},
with semi-norm |g|As := suph

{
h−s‖g −Ah(g|Lℓ)‖∞

}
.

For natural Ah’s those are real smoothness spaces.

Now let us describe main results from [DPW]. For g ∈ As we get f̂ so that in
the exact case we get the estimate

‖f − f̂‖∞ ≤ |g|As
hs

and in the approximate case we get

‖f − f̂‖∞ ≤ |g|As
hs +K(C0, ℓ)ǫ
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Exact Approximate

Adaptive pts C(ℓ)(L + 1)ℓ logN C(ℓ)(L + 1)ℓ logN + C′(ℓ) log2N

Non− adaptive C(ℓ)(L+ 1)ℓ+1 log2N C(ℓ)(L + 1)ℓ+1 log2N

So the question: Do we really need more points in the nonadaptive case then in
adaptive?

To get f̂ we need two things

(1) Active variables j1, j2, . . . , jℓ.
(2) Values of g in points from L.

This will give us approximation up to Chs. Even when we know j1, . . . , jℓ for (2)
we need at least (L+ 1)ℓ points.

How much do we have to pay to find appropriate coordinates?
I will discuss only the non-adaptive case.
Theorem (Approximate case) Suppose that f ∈ C([0, 1]N ) and there exists

a function g ∈ As and a coordinates j1, . . . , jℓ such that ‖f − g̃‖C([0,1]N) ≤ ǫ where

g̃(x1, . . . , xN ) = g(xj1 , . . . , xjℓ). There exists a set B ⊂ LN such that

(1) #B ≤ C(ℓ)(L + 1)ℓ logN

(2) Using values f(P ) for P ∈ B we can get function f̂ ∈ C([0, 1]N which

depends only on ℓ variables and such that

‖f − f̂‖C([0,1]N) ≤ |g|Ashs + Cǫ,

where C is the constant dependent on the approximation process Ah and

ℓ.

In the exact case we can have constants C(ℓ) and C smaller and the procedure

to find f̂ is more userfriendly.
Description of B
Let A be a collection of partitions A of {1, 2, . . . , N}. A is ν–separating if

(1) each A consists of ν disjoint sets A1, . . . , Aν

(2) given any ν distinct integers i1, . . . , iν ∈ {1, . . . , N}, there is a partition
A in A such that each set in A contains precisely one of the integers
i1, . . . , iν .

There exist such collections A of cardinality ≤ 2νeν lnN
We fix a 2ℓ–separating collection A.
For any A = (A1, A2, . . . , A2ℓ) ∈ A and V ⊂ {1, . . . , 2ℓ} with #V = ℓ we

construct points

PA,V = {P =

ℓ∑

i∈V

αiχAi
, : αi ∈ L}

i.e. P has coordinate value αi at each coordinate index in Ai for i ∈ V and other
coordinates are equal to 0. We put PA =

⋃
V PA,V and B =

⋃
A∈A PA.

Finding f̂ We put ‖φ‖B = max{|φ(P )| : P ∈ B}.
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For a set A ⊂ {1, . . . , N}, #A = ℓ and x ∈ LN we put

α(f,A, x) = max{f(P ) : P ∈ B and P |A = x|A}
β(f,A, x) = min{f(P ) : P ∈ B and P |A = x|A}

and we define

(1) hA(x) =
α(f,A, x) + β(f,A, x)

2
.

Clearly each hA depends only on variables from A.
We define set A0 as argminA‖f−hA‖B. From the very definition ‖f−hA0‖B ≤

‖f − hB‖B where B =: {j1, . . . , jℓ}. We check that ‖f − hB‖B ≤ 2ǫ. We put

f̂ = hA0 so

‖f − f̂‖B ≤ 2ǫ.

Why this works? We define

osc(B \A0) =: max{|f(P )− f(P ′)| : P, P ′ ∈ LN , P |(B \A0)
c = P ′|(B \A0)

c.

Proposition:We have osc(B \A0) ≤ 8ǫ.
Proof: If osc(B \ A0) > 8ǫ we can fix P, P ′ ∈ LN such that P and P ′ differ

only on B \ A0 and 8ǫ < |f(P ) − f(P ′)|. Since #B,#A0 ≤ ℓ we fix Q,Q′ ∈ B

such that Q|B = P |B and Q′|B = P ′|B and Q|A0 \B = 0 = Q′|A0 \B. Note that
Q|A0 = Q′|A0. Now we have

8ǫ < |f(P )− f(P ′)| ≤ |g(P )− g(P ′)|+ 2ǫ

= |g(Q)− g(Q′)|+ 2ǫ ≤ |f(Q)− f(Q′)|+ 4ǫ

≤ |hA0(Q)− hA0(Q
′)|+ 8ǫ = 8ǫ

This contradiction completes the proof.
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On the Regularity and Approximability of Electronic Wave Functions

Harry Yserentant

Approximating the solutions of the electronic Schrödinger equation is one of the
basic tasks of quantum chemistry. The electronic Schrödinger equation describes
the motion of a finite set of electrons in the field of a given number of clamped
nuclei. Its solutions are the eigenfunctions of the Hamilton operator

(1) H = − 1

2

N∑

i=1

∆i + Vne +
1

2

N∑

i,j=1
i6=j

1

|xi − xj |
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that is written down here in atomic units. It acts on functions with arguments
x1, . . . , xN in the three-dimensional space, which are associated with the positions
of the considered electrons. The external potential

(2) Vne = −
N∑

i=1

K∑

ν=1

Zν

|xi − aν |

covers the interaction of the electrons with the nuclei that are kept fixed at the po-
sitions a1, . . . , aK . The Zν are the charges of the nuclei in multiples of the electron
charge. The problem with this equation is its high dimensionality which imme-
diately rules out classical discretization methods for partial differential equations
as they are used in engineering applications. To overcome this curse of dimen-
sionality, procedures like the Hartree-Fock method or density functional theory
based methods have been developed over the decades. While these methods are
applied with much success, they suffer, however, either from modeling errors or
from the fact that it is not clear how the accuracy can be systematically improved
without the effort truly exploding for larger numbers of electrons. It is therefore
rather surprising that simple expansions of the electronic wave functions can be
constructed whose convergence rate, measured in terms of the number of determi-
nants involved, is independent of the number of electrons and does not fall below
that for a two-electron system [4]. It is even possible to reach a convergence rate
as for the case of a single electron adding a simple regularizing factor that depends
explicitly on the interelectronic distances [5].

The wave functions depend on the three-dimensional position vectors x1, . . . , xN
of the electrons that split into the coordinates xi,1, xi,2, and xi,3. Accordingly, we
label partial derivatives doubly, that is, by multi-indices

(3) α = (α1, . . . , αN ), αi = (αi,1, αi,2, αi,3).

The differentiation operator Dα of order |α| =∑i,ν αi,ν reads in this notation

(4) Dα =

N∏

i=1

3∏

ν=1

( ∂

∂xi,ν

)αi,ν

.

The key to the mentioned results is the existence of high-order weak derivatives
of the solutions representing bound states and, as the domain of definition is
unbounded, the rapid decay of these derivatives. To describe the differentiability
properties, let A be the set of the multi-indices α = (α1, . . . , αN ) for which

(5) αi,1 + αi,2 + αi,3 ≤ 1.

The maximum order that the assigned differentiation operators Dα can reach is N
and grows therefore with the number of electrons; their order is, however, at most
one in the components of the position vectors of the single electrons i. Subsets of
this set of multi-indices are the set A− consisting of the α in A with components
αi = 0 for all electrons i with spin +1/2 and the correspondingly defined set A+

consisting of the α in A with components αi = 0 for the electrons i with spin −1/2.
The corresponding operators Dα intermix only partial derivatives with respect to
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coordinates of electrons of the same spin. One of our main results [2, 3] is that
the weak derivatives

(6) Dαu,
∂

∂xi,ν
Dαu

of the bound state solutions u of the electronic Schrödinger equation exist for all
α in A− and in A+ and are square integrable. Moreover, they decay exponentially
in the L2-sense [4], that is, the functions

(7) exp

(
γ

N∑

i=1

|xi|
)
Dαu, exp

(
γ

N∑

i=1

|xi|
)

∂

∂xi,ν
Dαu,

with a coefficient γ > 0 depending on the distance of the eigenvalue under con-
sideration to the bottom of the essential spectrum, are square integrable. A more
precise formulation and a proof can be found in [4].

This proof utilizes that the admissible wave functions are by the Pauli principle
antisymmetric under the exchange of electrons of same spin. Thus they vanish
where such electrons meet, which counterbalances the singularities of the electron-
electron interaction potential there. The singularities at the places where electrons
of distinct spin meet are considerably stronger. This is the reason why it is not
possible to show that the derivatives (6) and their exponentially weighted coun-
terparts (7) are square integrable for all multi-indices α in the set A. To overcome
this problem, the electron correlation has to be taken into account explicitly. We
partition the solutions u of the electronic Schrödinger equation into a regular part

(8) u0(x) = exp

(
−
∑

i<j

φ(xi − xj)

)
u(x)

and a universal factor that covers the electron cusps already to a large extent.
The function φ has to satisfy some technical conditions [5] that mainly concern
the decay behavior of its first and second-order derivatives and its behavior at the
origin. A possible example is

(9) φ(xi − xj) = ln
(
1 +

1

2
|xi − xj |

)
,

or even simpler than this,

(10) φ(xi − xj) =
1

2
|xi − xj |.

The crucial point is that the weak derivatives

(11) Dαu0,
∂

∂xi,ν
Dαu0

and even their exponentially weighted counterparts (7) are square integrable for
all multi-indices α in the set A introduced above, not only for the multi-indices α
in A− and A+. This reflects the fact that the regularizing factor largely compen-
sates the singular behavior of the wave functions at the points where two or more
electrons meet [5]. Approximations of the wave functions u can thus be found first
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approximating their regular parts (8) and then dividing the result by the given
universal factor. With the sparse grid techniques described in [4] it is possible to
approximate the regular parts of the wave functions, and with that indirectly also
the wave functions themselves, with an order of convergence that comes arbitrarily
close to that for the one-electron case.

We remark that the same kind of results as for the regular parts (8) of the
eigenfunctions u also hold for their modifications

(12) u1(x) = exp

(
2
∑

i,ν

Zν φ(xi − aν) −
∑

i<j

φ(xi − xj)

)
u(x)

that contain an additional term smoothing the singularities at the positions of
the nuclei. This observation might be helpful in the approximation of the wave
functions in view of their analytic structure [1] outside the points where more than
two particles meet.
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Approximating Electronic Wave Functions by Wavelets

Andreas Zeiser

The non-relativistic electronic Schrödinger equation describes the chemical be-
havior of molecules very accurately. However depending on the number of electrons
N a function in 3N variables has to be discretized in order to solve the governing
eigenvalue equation. Therefore classical discretization schemes fail due to the curse
of dimensionality. Recently it has been shown that the eigenfunctions posses a cer-
tain high derivatives which in addition also decay exponentially [Ys1, Ys2]. Now
approximating the wave function with anisotropic wavelets one can exploit this
regularity and obtain approximation rates which are independent of the number
of electrons [Ze].

Let u(~x), ~x = (x1, . . . ,xN ), xi ∈ R3, be a bounded state of the electronic
Schrödinger equation with N electrons. Now decomposing u according to

u(~x) = exp
(
−
∑

i,ν

Zν |xi − aν |2 + 1/2
∑

i,j

|xi − xj |2
)
u0(~x),
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Yserentant showed [Ys1, Ys2] that both u and u0 are in weighted Sobolev spaces

of mixed order, that is u ∈ H
1/2,1
mix

(
(Rd)N , wγ

)
and u0 ∈ H1,1

mix

(
(Rd)N , wγ

)
for some

γ. Here wγ =
∏

exp(γ|xi|2) denotes an exponential weight function.
Given a positive weight function w and integers m, k the weighted Sobolev

spaces Hk,m
mix

(
(Rd)N , w

)
of mixed order are defined as the set of all measurable

functions such that

‖u‖2mix,w,k,m :=
∑

~
α∈Ak,m

∫

Ω

∣∣∂~αu(~x)
∣∣2 · w(~x) d~x

is finite. Here the index set Ak,m is given by

Ak,m =
{
~α+ ~β

∣∣ max
i=1,...,N

|βi|1 ≤ k,

N∑

i=1

|αi|1 ≤ m
}
⊂
(
N

d
)N
.

That is in addition to m order of isotropic smoothness we are allowed to differen-
tiate the function in each variable xi another k times. Weighted Sobolev spaces of
mixed order with fractional order of smoothness are defined through interpolation
theory.

Our goal now is to characterize these spaces in terms of wavelet coefficients
and use these discrete norm for constructing efficient approximations. For that
purpose we assume that we are given a biorthogonal and compactly supported
multiresolution analysis {ψλ | λ ∈ ∇}, {ψ̃λ | λ ∈ ∇}. Here the multi-index λ =
(ε, j,k) consists of the type ε, the level j and the translation k. We furthermore
assume that for 0 ≤ s < τ the norm equivalence

‖u‖2Hs(Rd) ∼
∑

λ∈∇
22j(λ)s |uλ|2, uλ = 〈ψ̃λ, u〉

holds for Sobolev spaces Hs(Rd). Here j(λ) denotes the level of the wavelet ψλ.
Wavelets which satisfy these assumptions are well known, see for example [Co].
One may take for example Daubechies wavelets, biorthogonal spline wavelets or
orthogonal spline multiwavelets. By taking the anisotropic tensor product

ψ~λ =

N⊗

i=1

ψλi
, ψ̃~λ analogously

with multi-index ~λ = (λ1, . . . , λN ) we construct a biorthogonal multiresolution

analysis {ψ~λ | ~λ ∈ ∇N}, {ψ̃~λ | ~λ ∈ ∇N} in dN variables.

As a first central result we characterize the spaces Hs,m
mix

(
(Rd)N , w

)
in terms of

wavelet coefficients. Defining

κiso(~λ) = 2|
~j(~λ)|∞ , κmix(~λ) = 2|

~j(~λ)|1 , κs,m(~λ) = κsmix(
~λ) · κmiso(~λ).

the discrete norm

|||u|||2mix,w,m,s =
∑

~λ∈∇N

w(~x~λ)κ
2
s,m(~λ) |u~λ|

2, u~λ = 〈ψ̃~λ, u〉L2(RdN).
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is an equivalent norm on Hs,m
mix

(
(Rd)N , w

)
. Here we have to assume that the

weight functions is regular enough, i.e. there exists a constant Cw such that for all
~x, ~y ∈ RdN with |~x− ~y|∞ ≤ 1

w(~y) ≤ Cw w(~x).

In order to proof the assertion we first introduce a localized norm (see for example
[Tr]) on overlapping cubes of equal size covering the whole space. This equivalent
norm is a weighted sum of unweighted mixed norms on these cubes. Now we can
use the results on unweighted Sobolev spaces of mixed order [GK] and the fact
that both the primal as well as the dual wavelets are compactly supported to show
the norm equivalence.

Using this norm equivalence we can construct approximations to functions u ∈
Hs,m

mix

(
(Rd)N , w

)
. For that purpose set

uL =
∑

~λ∈ΦL

u~λψ~λ, u~λ = 〈ψ̃~λ, u〉,

where the index set ΦL is defined by ΦL =
{
~λ ∈ ∇N

∣∣ w(~x~λ)κ
2s
mix(

~λ) ≤ 22L
}
.

Then using the norm equivalence twice

‖u− uL‖m . 2−L‖u‖.mix,w,s,m

That is we can achieve arbitrary accuracy.
In order to estimate the convergence rate we have to fix the weight function w.

In view of the regularity result on the bounded states of the electronic Schrödinger
equation we analyze the case for the family wγ of exponential weight functions.
In this case the set of indices ΦL form a sparse grid in both the position as well
as the level of the wavelet. In particular the number of elements can be estimated
by

♯ΦL . γ−dN · LN−1 2dL/s.

Relating the error of approximation to the number of elements in the index set
we finally can show the second central result: for each ε > 0 we can construct an
approximation uε such that ‖u − uε‖m ≤ ε ‖u‖mix,wγ ,s,m. Moreover the number
of terms can be bounded by

♯uε . γ−dN · Cdnξ/(2s)
γ · | log ε|N−1 · ε−d/s.

Or stated the other way round for an approximation un of u containing n terms
we can achieve an error of

‖u− un‖m . (logn)s(N−1) · n−s/d.

The rate of convergence is up to logarithmic factors independent of the number of
dimensions N .

In the case of bounded states of electronic wave functions these approximation
results can readily be applied. However the convergence rate can be improved if
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one takes the antisymmetry of the wave function into account. Due to the Pauli
principle

u(P~x) = sign(P )u(~x),

where P is any permutation in the symmetric group SN satisfying P (~σ) = ~σ for
a fixed spin configuration ~σ ∈ {±1/2}N . This finally leads to an approximation
rate of

‖u− un‖1 . e2
√

2/3 log2 n · n−1/6.

for the full wave function and

‖u0 − u0,n‖1 . e4/3
√

2/3 log2 n · n−1/3.

for the more regular part u0. The rate of convergence is therefore independent on
the number of electrons, the curse of dimensionality is therefore broken.
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Institut für Informatik und
Praktische Mathematik
Universität Kiel
Hermann-Rodewald-Str. 3/1
24118 Kiel

Prof. Dr. Dietrich Braess

Fakultät für Mathematik
Ruhr-Universität Bochum
Universitätsstr. 150
44801 Bochum

Prof. Dr. Claudio Canuto

Dipartimento di Matematica
Politecnico di Torino
Corso Duca degli Abruzzi, 24
I-10129 Torino

Prof. Dr. Albert Cohen

Laboratoire Jacques-Louis Lions
Universite Pierre et Marie Curie
4, Place Jussieu
F-75005 Paris

Prof. Dr. Stephan Dahlke

FB Mathematik & Informatik
Philipps-Universität Marburg
Hans-Meerwein-Strasse (Lahnbg.)
35032 Marburg

Prof. Dr. Wolfgang Dahmen

Institut für Geometrie und
Praktische Mathematik
RWTH Aachen
Templergraben 55
52056 Aachen

Prof. Dr. Christine De Mol

Department of Mathematics
Universite Libre de Bruxelles
CP 217 Campus Plaine
Bd. du Triomphe
B-1050 Bruxelles

Dr. Shai Dekel

GE Healthcare
27 Hamaskit St.
Herzelia 46733
ISRAEL

Prof. Dr. Ronald A. DeVore

Department of Mathematics
Texas A & M University
College Station , TX 77843-3368
USA

Prof. Dr. Nira Dyn

School of Mathematical Sciences
Tel Aviv University
Ramat Aviv
Tel Aviv 69978
ISRAEL

Dr. Massimo Fornasier

Johann Radon Institute for Comput.
and Applied Mathematics (RICAM)
Austrian Academy of Sciences
Altenbergerstr. 69
A-4040 Linz



Wavelet and Multiscale Methods 2023

Dr. Simon Foucart

Laboratoire Jacques-Louis Lions
Universite Pierre et Marie Curie
4, Place Jussieu
F-75005 Paris

Prof. Dr. Ivan G. Graham

Department of Mathematical Sciences
University of Bath
Claverton Down
GB-Bath BA2 7AY

Prof. Dr. Lars Grasedyck

Institut für Geometrie und
Praktische Mathematik
RWTH Aachen
Templergraben 55
52061 Aachen

Prof. Dr. Karlheinz Gröchenig
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