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The Bernstein–Sato b-function of
the Space of Cyclic Pairs

by

Robin Walters

Abstract

We compute the Bernstein–Sato polynomial of f , a function which given a pair (M, v)
in X = Mn(C) × Cn tests whether v is a cyclic vector for M . The proof includes a
description of shift operators corresponding to the Calogero–Moser operator Lk in the
rational case.
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§1. Introduction

Let f be an algebraic function on a variety X over C. Let DX be the ring of

algebraic differential operators on X. The Bernstein–Sato b-function of f is defined

to be the minimal degree monic function b(s) in C[s] such that

(1.1) Dfs+1 = b(s)fs

for some operator D in DX [s] = C[s]⊗DX . We call D the Bernstein operator and

(1.1) the Bernstein equation. A minimal b(s) must exist since the set of all b(s)

satisfying (1.1) form an ideal in C[s]. Existence of non-zero solutions to (1.1) was

proved by Bernstein in 1971 [1]. The rationality of the roots of b(s) was proved

by Kashiwara in 1976 [9]. The b-function is interesting, in part, because it is an

invariant of the singularities of the divisor given by f .

In [11], Opdam proves a conjecture of Yano and Sekiguchi [14] by computing

the b-function corresponding to I =
∏
α∈R+ α2, a W -invariant function on h. (The

notation is defined in Section 5.) In type An, the function I is the square of the
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Vandermonde determinant. Opdam proves the result by realizing the Bernstein

operator as a shift operator related to the Calogero–Moser operator.

For this paper, let X = Mn(C)×Cn. For (M,v) ∈ X, we say v is cyclic for M

or that (M, v) is a cyclic pair if the set {v,Mv,M2v, . . .} is a spanning set of Cn.

Let C(M,v) denote the square matrix

[v Mv M2v . . . Mn−1v].

We define f(M,v) = det(C(M, v)), a polynomial on X. Then (M, v) is cyclic if

and only if f(M,v) 6= 0.

The function f maps to I via radial reduction. Since radial reduction maps

the standard Laplacian operator ∆ to the Calogero–Moser operator on h [5], we

can think of X and f as describing a broader, yet simpler, precursor situation to

the one studied in [11]. More generally, the function f and the space X are relevant

to the study of mirabolic D-modules and rational Cherednik algebras [2–4].

The main result of the paper is the computation of the b-function of f .

Theorem 1.1. The b-function of f is

(1.2) b̃(s) =
∏

0≤c<d≤n

(s+ 1 + c/d).

Since f is a semi-invariant, the calculation has some similarity to the prehomo-

geneous case originally considered by Sato in [12] and [13]. In that case, G acts on

a vector space with open dense orbit. However, our space is not prehomogeneous,

so some additional work is required.

The proof will proceed in three parts. First we will define a differential oper-

ator S in DX [s], and show that one has an equation

(1.3) Sfs+1 = b′(s)fs

for an unknown function b′(s) in C[s]. Secondly, we show b̃(s), our specific candi-

date function, is the monic associate of b′(s). Thirdly, we will show that b̃(s) has,

in fact, the minimal degree, completing the proof.

Section 2 contains some results about f and cyclic vectors. Then we continue

to the proof of our main theorem. This is the content of Sections 3 through 6. In

the Appendix (Section 7), we will give a proof characterizing the structure of the

space of shift operators of the rational Calogero–Moser operator, an analog of a

similar result for the trigonometric case in [11].

§2. Cyclic vectors and semi-invariants

The following result is well-known.
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Proposition 2.1. The matrix M has a cyclic vector if and only if each Jor-

dan block Bi has a distinct eigenvector λi, that is, if each eigenspace is one-

dimensional.

We conjecture that f is irreducible. The above result allows us to prove some-

thing weaker but still sufficient for our purposes. Let g = Mn(C).

Proposition 2.2. The function f has no non-constant, proper factor h ∈ C[g].

Proof. Such a proper factor would correspond to a set of codimension 1 in g

containing matrices M with no cyclic vector. By the assumption that at least

two Jordan blocks share an eigenvalue, we have k − 1 choices of λi. Assuming

λ1 = λ2 = λ and reordering the basis so that the true eigenvectors of B1 and B2

are the first two vectors followed by all the generalized eigenvectors, we see that

B1 ⊕B2 is (
λ Id2 A

0 B

)
.

The submatrix B is upper triangular with λ on its diagonal, and the entries of A

and of B above the diagonal are 1 or 0. Then this matrix is stabilized by(
GL(2) 0

0 C∗ Idn−2

)
.

Thus the dimension of this partition is less than or equal to

n2 + (k − 1)− (k − 2)− 1− 4 = n4 − 4.

So we are done.

Given a space Y with a G-action, we denote the G-invariant operators on Y

as DG
Y . Denote pg(y) = p(g · y). The function p is said to be a G-semi-invariant

corresponding to a character χ if

pg = χ(g)p for all g ∈ G.

We denote the semi-invariant functions corresponding to χ as C[Y ]χ and differen-

tial operators corresponding to χ as Dχ
Y .

In our case, we have G = GLn(C) acting on X = gln(C)×Cn via conjugation

on the first factor and multiplication on the second factor. The one-dimensional

representations (or characters) are just powers of the determinant, χ = detr. Note

that f ∈ C[X]det. The space of diagonal matrices in gln(C) is isomorphic to Cn.

We denote it by h. Let Z = h× V ⊂ X.
The following result is originally due to Weyl, although we give a different

proof.
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Proposition 2.3. Let p ∈ C(s)[X]χ where χ = detr. Then

p = frh,

where h ∈ C(s)[g]G.

Proof. Consider q = pf−r ∈ C(s)(X)G.

Now define the matrix

d = diag(1, . . . , 1, λ, 1, . . . , 1) ∈ G

containing λ in its ith entry. This acts on Z by fixing h and scaling vi, the ith co-

ordinate of V . However, since q|Z is invariant, it must be homogeneous of degree 0

in vi, that is, it is independent of vi. By invariance, q is independent of vi on G ·Z,

which is dense in X, and thus q ∈ C(s)(g)G.

It is not hard to see that

C(s)(g)G =

{
a

b

∣∣∣∣ a, b ∈ C(s)[g]G
}

since a general element of C(s)(g)G is a ratio of semi-invariants, but C(s)[g] has

no non-invariant semi-invariants.

So we know

p = fr
a

b

where a, b ∈ C(s)[g]G and are, we can assume, relatively prime. This equation

implies that b divides fr. However, by Proposition 2.2, fr has no factor in C[g]

and thus none in C(s)[g] either.

§3. The operator S

When we use the term order in reference to a differential operator in DX [s], we

refer to the traditional filtration in which ∂xi = ∂/∂xi has degree 1 and functions

in C[s][X] have degree 0. We will also refer to a Z-grading on DX [s] in which

|∂xi | = −1 and |xi| = 1. The ring C[s] lives in the grade 0. Note that the grading

is well-defined on DX [s] since it respects the defining relation ∂xixi − xi∂xi = 1.

When we refer to this grading, we will use term degree.

We define a differential operator S which is given by taking the function f

and replacing all variables with the corresponding partial derivatives. That is,

S = det([∂v ∂M∂v ∂
2
M∂v . . . ∂n−1M ∂v])

where [∂v]i = ∂vi and [∂M ]ij = ∂mij . Then S is an order n(n+ 1)/2 differential



Bernstein–Sato Polynomial Computation 277

operator and S ∈ Ddet−1

X . The definition of S here is analogous to that of the

Bernstein operator in Sato’s prehomogeneous case.

We can now prove the following:

Proposition 3.1. There exists a function b′ ∈ C[s] such that Sfn+1 = b′(s)fn.

Further, deg(b′(s)) ≤ n(n+ 1)/2.

Proof. Since S has weight det−1 and fs+1 has weight dets+1, the operator S◦ f̂s+1

has weight dets. Applying this operator to 1, we get a polynomial p ∈ C[s][X]det
s

.

Therefore by Proposition 2.3, there exists q ∈ C[s][X]G such that

Sfs+1 = fsq.

Taking the degree of both sides we see

−n(n+ 1)

2
+ (s+ 1)

n(n+ 1)

2
= s

n(n+ 1)

2
+ deg(q).

Thus deg(q) = 0 and so q ∈ C[s] as desired. Denote q as b′(s). Moreover since S is

an n(n+ 1)/2-order operator, we see deg(b′) ≤ n(n+ 1)/2.

§4. Localization

In this and the next section, we will show that b′(s) equals

(4.1) b̃(s)αn =
∏

0≤c<d≤n

(d(s+ 1) + c),

where αn =
∏n
d=1 d

d ∈ C. We factor this as:

b1(s) = n!(s+ 1)n,

b2(s) =
∏

1≤c<d≤n

(d(s+ 1) + c),

so that b1b2 = b̃αn.

Proposition 4.1. The polynomial b1(s) divides the b-function of f .

Proof. Consider the following local coordinates for X:

Cn(n−1) × Cn × Cn → X,

ϕ : ({tij}i 6=j , {ai}ni=1, {vi}ni=1) 7→ (TAT−1, T v),
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where

T =


1 t12 t13 . . . t1n
t21 1 t23 . . . t2n
t31 t32 1 . . . t3n
...

...
...

. . .
...

tn1 tn2 tn3 . . . 1

 and A =


a1 0 0 . . . 0

0 a2 0 . . . 0

0 0 a3 . . . 0
...

...
...

. . .
...

0 0 0 . . . an

 .

Let p ∈ X be defined by tij = 0, ai = i and vi = 0. It is straightforward to compute

that det(Dϕ)|p 6= 0, and thus ϕ gives local coordinates at p.

In these local coordinates we have

f = det(T ) det(C(A, v)).

Note C(A, v)ij = via
j−1
i is the Vandermonde matrix with rows multiplied by vi.

So

det(C(A, v)) = v1 · · · vn
∏

1≤i<j≤n

(aj − ai).

Let 1 = (1, . . . , 1). Since at p, ai = i, the quantity

det(C(A, 1)) =
∏

1≤i<j≤n

(aj − ai) 6= 0.

Similarly, T = In at p, so det(T ) = 1. Thus in a small open neighborhood U of p,

the function det(T ) det(C(A, 1)) is invertible.

We will show that the b-function for f on U is b1(s), which will finish the proof

since the global b-function is the least common multiple of the local b-functions

[6, Proposition 2.1].

Let

D = det(C(A, 1))−1 det(T )−1∂v1 . . . ∂vn .

Then

Dfs+1 = b1(s)fs.

Since vi are not invertible near p, the Bernstein operator D must include the factor

∂v1 . . . ∂vn . Thus b1 is minimal.

§5. Radial parts reduction

For b2, we relate our problem to the situation of [11]. To do this we require the

radial parts map from [5, Appendix].

We introduce more notation. Denote by R and R+ the sets of roots and

of positive roots respectively for type An−1. Let W = Sn be the Weyl group
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corresponding to gln. Consistent with the notation in [5], we define Xreg to consist

of pairs (M,v) where M ∈ grs. Lastly define hreg ⊂ h to be those points which

avoid the root hyperplanes.

The radial parts map is more clearly described in [5]. We give an overview.

To derive it, we start with the map

ρ : Xreg/G→ hreg/W, (M, v) 7→ eigenvalues of M,

which induces the map

ρ∗ : C[hreg]W → C[Xreg]G.

For k ∈ C, we define the radial parts map Radk : DG
X → DW

hreg as follows. Let

D ∈ DG
X and g ∈ C[hreg]W . Then

Radk(D)(g) = f−kD(fkρ∗(g))|h.

Let δ = f |hreg be the Vandermonde determinant and Lk be the Calogero–Moser

operator

Lk = ∆h −
∑
α∈R+

k(k + 1)
(α, α)

α2
.

Note that since δ is the product of the positive roots, α−1 as well as δ−1 are in

C[hreg]. Let ∆g be the standard Laplacian on g. Since X = g×V , we can view ∆g

as a differential operator on X. By [5, Appendix],

(5.1) Radk(∆g) = δ−k−1Lkδ
k+1.

Define P+ =
∑
α∈R+ α−1∂Xα . Then we can simplify (5.1) using the equations

δ−1∆hδ = ∆h + 2P+ and δ−1P+δ = P+ + 2
∑
α∈R+(α, α)α−2 to get

(5.2) Radk(∆g) = ∆h + 2(k + 1)P+,

an operator which we will call Lh(k + 1).

We say that D ∈ DW
hreg ⊗ C[k] is a shift operator if

(5.3) DLh(k) = Lh(k + r)D.

Denote the set of shift operators with shift r as Sh(r, k), or just Sh(r) if k is

clear from context. Note that Sh(0) is just the centralizer of Lh(k).

The following is a rational case analog to the trigonometric case given in

[11, Theorem 3.1].

Proposition 5.1. The set Sh(r, k) is a free, rank-one Sh(0, k)-module.

We defer the proof until Section 7. We denote the single generator of Sh(r, k)

over Sh(0, k) by g(r, k). We denote the operator p 7→ f · p by f̂ .
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Proposition 5.2. The operator Radk(Sf̂) belongs to Sh(−1, k + 2).

Proof. As noted before, Sf̂ is a semi-invariant with character det ·det−1 = 1, so

Sf̂ ∈ DG
X , and thus we can take its radial part Rad(Sf̂) ∈ DW

hreg .

The set Sh(−1, k + 2) is a subset of DW
hreg ⊗ C[k]. So we need to show that

k 7→ Radk(Sf̂) is a polynomial map C → DW
hreg . Given p ∈ C[X], we denote

the corresponding differential operator as ∂p or ∂(p). Let p = x1 · · ·xm. Denote

(k + 1)r = (k + 1) . . . (k − r + 2), the falling Pochhammer symbol. Then from the

formula

f−k∂pf
k+1g =

∑
q·p1···pr=p

(k + 1)rf
1−r
( r∏
i=1

∂pif
)
∂qg,

we can see Radk(Sf̂) is a polynomial in k, since k appears only in the polynomial

coefficients (k + 1)r.

Now we need to show that Radk(Sf̂) satisfies (5.3). Since S and ∆g are

constant coefficient operators, they commute, which gives the equation

Sf̂ f̂−1∆gf̂ = ∆gSf̂ .

Applying Radk, which is a homomorphism, we get

Radk(Sf̂) Radk(f̂−1∆gf̂) = Radk(∆g) Radk(Sf̂).

Thus we obtain

Radk(Sf̂)Lh(k + 2) = Lh(k + 1) Radk(Sf̂),

as required.

The operator Radk(Sf̂) helps us compute b′(k), since

Radk(Sf̂)(1) = (f−kSfk+1)|h = b′(k).

We now introduce the relation to the trigonometric case studied in [11]. Let

H be the complex torus with Lie(H) = h. For h ∈ H, denote hα = exp(α)(h). We

then set

Hreg = {h ∈ H | hα 6= 0 for all α ∈ R+}.

Define the trigonometric Calogero–Moser operator with parameter k ∈ C on Hreg :

LH(k) = ∆h −
∑
α∈R+

k
1 + hα

1− hα
∂(Xα).

We also define

ρ(k) = k
1

2

∑
α∈R+

α.
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Then we define the related operator L̃H(k) = LH(k) + (ρ(k), ρ(k)). Let SH(r, k)

be the space of shift operators with respect to this trigonometric operator,

SH(r, k) = {D ∈ DW
H | DL̃H(k) = L̃H(k + r)D}.

The relationship to the rational case comes from the map ε : DH → Dh which

takes the lowest homogeneous part of the operator with respect to the grading

defined by the degree of the differential operator. This map is more carefully defined

in [11, Section 3]. The lowest homogeneous degree or lhd of L̃H(k) is −2, and so

ε(L̃H(k)) = ∆h + 2k
∑
α∈R+

1

α
∂Xα ,

which is Lh(k) from above. Note that ε satisfies

ε(D1D2) = ε(D1)ε(D2) for all D1, D2,(5.4)

ε(D1 +D2) = ε(D1) + ε(D2) for all D1, D2 with lhd(D1) = lhd(D2).(5.5)

Thus if D ∈ SH(r, k), we get

ε(D)Lh(k) = Lh(k + r)ε(D).

So ε(D) ∈ Sh(r, k).

From [11, Theorem 3.1] we know that SH(r, k) is a rank-one SH(0, k)-module,

similar to the case of Sh. We denote the generator by G(r, k). Moreover, we prove

the following proposition in Section 7.

Proposition 5.3. The map ε sends G(−1, k) to g(−1, k).

Since Radk(Sf̂) ∈ Sh(−1, k+ 2), we know there exists some D0 ∈ Sh(0, k+ 2)

such that D0 · ε(G(−1, k + 2)) = Radk(Sf̂). By [11, Theorem 3.3], we know

G(−1, k + 2) has lowest homogeneous degree 0. Thus it can be written

G(−1, k + 2) =
∑
i∈I

pi∂(qi)

for some pi and qi, homogeneous polynomials with deg(pi) ≥ deg(qi). Thus

ε(G(−1, k + 2)) =
∑
i

pi∂(qi)

where the sum is over {i ∈ I |deg(pi) = deg(qi)}. Given a differential operator

P , we define the constant term of P , denoted CT(P ), to be the scalar part of

the operator, i.e., the summand with order zero and degree zero. If we write P =∑
i pi∂(qi), then CT(P ) = pk∂(qk) where deg(pk) = deg(qk) = 0. We see that

ε(G(−1, k + 2)) · 1 = CT(ε(G(−1, k + 2))) = CT(G(−1, k + 2)).
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Let r0 = CT(D0) ∈ C[k]. Then

CT(Radk(Sf)) = Radk(Sf) · 1 = D0ε(G(−1, k + 2))) · 1
= D0 · CT(G(−1, k + 2)) = r0 CT(G(−1, k + 2)).

We deduce that CT(G(−1, k + 2)) divides CT(Radk(Sf)) = b′(k).

Let Γ be the Gamma function. For a reduced root system define

c̃(λ, k) =
∏
α∈R+

Γ(−(λ, α∨))

Γ(−(λ, α∨) + k)
.

In the special case of type An we have

(5.6)
1

c̃(−ρ(k), k)
=

n∏
d=2

Γ(dk)

Γ(k)
.

By [11, Theorem 3.1, Corollary 3.4, Corollary 5.2], we know that

(5.7) CT(G(−1, k + 2)) =
c̃(−ρ(k + 1), k + 1)

c̃(−ρ(k + 2), k + 2)
.

So substituting (5.6) into (5.7) and canceling, we arrive at

CT(G(−1, k + 2)) = n!

n∏
d=2

d−1∏
j=1

(d(k + 1) + j).

In summary, we have proved the following.

Proposition 5.4. The polynomial b2(s) =
∏n
d=2

∏d−1
j=1(d(s+ 1) + j) divides b′(s)

in C[s].

Thus we have shown b1 and b2 divide b′. Since b1 and b2 are coprime and

deg(b̃) ≤ n(n+ 1)/2, it follows that b′ = b̃αn = b1b2.

§6. Minimality of b̃

To complete the proof of Theorem 1.1, we must show that b̃ has minimal degree.

In our case, this will follow directly from Proposition 6.1. Set m = n(n+ 1)/2 =

deg(f).

The proof that Sato’s b-function in the prehomogeneous case gives the Bern-

stein polynomial (see, e.g., [8]) is general enough to cover our situation. The ar-

gument given in [8] proves the following result.
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Proposition 6.1. Let f ∈ C[x1, . . . , xn] be homogeneous of degree d. If the op-

erator D ∈ C[s, ∂x1
, . . . , ∂xn ] satisfies (1.1) for some polynomial bD(s) and is not

divisible by any non-scalar factor in C[s], then bD is the Bernstein polynomial

for f .

Proof. The proof is identical to the proof of [8, Theorem 6.3.1]. We give a sketch

of it for the reader’s convenience.

For any polynomial p(s) =
∏
µ(s− µ), we define

γp(s) =
∏
µ

Γ(s− µ).

Let b(s) be a polynomial satisfying (1.1) with respect to f ∈ C[X]. Define the

zeta function corresponding to f as

Zf (s) =

∫
X

|f(x)|se−2π|x|
2

dx.

By [8, Theorem 5.3.2], Zf (s)/γb(s) is holomorphic on C. Each root of b corresponds

to infinitely many zeros of Zf (s)/γb(s). Thus if Zf (s)/γb(s) is nowhere-vanishing,

b must be minimal. We will now show this for bD.

The integration by parts argument from [8, Theorem 6.3.1], applied with D

instead of f(∂), shows that

Zf (s) = (2π)−dsγbD (s)
∏
µ

1

Γ(−µ)

for Re(s) > 0. Thus Zf (s)/γbD (s) is a nowhere-vanishing holomorphic function.

Remark 1. LetD ∈ C[s, ∂x1
, . . . , ∂xn ] be an operator satisfying (1.1) with respect

to the Bernstein polynomial b. Let D̃ be the degree −m part of D. Then taking the

degree ms part of (1.1) we get D̃fs+1 = b(s)fs. Since G acts locally finitely on DX ,

we can write D̃ =
∑
i D̃i where g · D̃i = det(g)iD̃i. Then since gf = det(g)f , this

means D̃if
s+1 = 0 unless i = −1. Thus we have D̃−1f

s+1 = b(s)fs. Then by

Proposition 2.3, since deg(f) = deg(S) we have

D̃−1 = cS

where c ∈ C. So we have, in fact, shown that any Bernstein operator independent

of x ∈ X realizing b(s) is our differential operator S up to a constant factor.

§7. Appendix: Proof of Propositions 5.1 and 5.3

In this section, we will prove Propositions 5.1 and 5.3.



284 R. Walters

Given j ∈ ZR+

, an index on R+, we define a partial order by j ≤ 0 if jα ≤ 0

for all α. We represent the basis of ZR+

by eα where α ∈ R+. Also denote

αj =
∏
α∈R+ αjα . If p ∈ C[k] ⊗ C[h], then as above, we denote the correspond-

ing differential operator in C[k]⊗Dh as ∂p or ∂(p).

Let h1, . . . , hn be an orthonormal basis of h∗. As a shorthand we write ∂i =

∂(hi). So ∆h =
∑n
i=1 ∂

2
i .

The following lemma is a straightforward calculation.

Lemma 7.1. Let
∑

r =
∑n
i=1 ri and p(r) =

∏n
i=1 ∂

ri
ti p(t) and

AV(r) =
(
∑

r)!∏n
i=1(ri!)

(−1)
∑

r.

Then

(7.1) ∂(p)(α−1etλ) =

∞∑
r=0

AV(r)α−1−
∑

r
n∏
i=1

(∂iα)rip(r).

The key lemma we need for proving Proposition 5.1 reads as follows.

Lemma 7.2. The map

pN : Sh(−1, k)→ C[k]⊗ C[h],
∑
j≤N

αj∂(pj) 7→ pN,

is injective.

Proof. First note that if D ∈ Sh(r, k) and S ∈ Sh(0, k), then commuting S and

Lh(k) yields

(DS)Lh(k) = Lh(k + r)(DS).

So Sh(r, k) is an Sh(0, k)-module.

We will solve for an arbitrary element D of the set Sh(r, k). Since D is in

C[k]⊗DW
hreg , we can write

D =
∑
j≤N

αj∂(pj).

Let etλ = et1λ1+···+tnλn . If α =
∑
i ciλi, then denote tα =

∑
i citi. Then applying

(5.3) to etλ, we solve for D (i.e. solve for the pi) in

DLh(k)etλ = Lh(k + r)Detλ.
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Using Lemma 7.1, we expand this into

0 = DLh(k)etλ − Lh(k + r)Detλ

= etλ
∑
j≤N

αj
[
2k

∑
α∈R+

tα

∞∑
r=0

AV(r)α−1−
∑

r
∏
i

(∂iα)rip(r)(t)

−pj(t)
{ ∑
α∈R+

(j2α−jα)α−2
( n∑
l=1

(∂lα)2
)

+2jαα
−1tα

+2jα
∑
α6=β

jβα
−1β−1

( n∑
l=1

(∂lα)(∂lβ)
)

+2(k+r)
( ∑
α∈R+

α−2jα2+α−1tα+2
∑
α6=β

β−1α−1jα(∂βα)
)}]

.

Hence extracting the coefficient of αN−eβetλ, we get

0 = pNtβ2(k −Nβ − (k + r))

and so assuming that pN 6= 0 we find that Nβ = −r for all β. That is, N =

(−r, . . . ,−r).
Denote ∇α = (∂1α, . . . , ∂mα). In general, if we look at the coefficient of αM

we see that the following expression is 0:

(7.2) 2k
∑
α∈R+

∞∑
r=0

p
(r)
M+eα(1+

∑
r)tα AV(r)

n∏
i=1

(∂iα)ri

−
∑
α∈R+

pM+2eα(Mα + 2)(Mα + 1)∇α·∇α−
∑
α∈R+

pM+eα2(Mα + 1)tα

−
∑
α6=β

pM+eα+eβ2(Mα + 1)(Mβ + 1)∇α·∇β −
∑
α∈R+

pM+2eα4(k + r)(Mα + 2)

−
∑
α∈R+

pM+eα2(k + r)tα −
∑
α∈R+

pM+eα+eβ4(k + r)(Mα + 1)(α, β).

This equation involves only pj with j ≥ M. Define deg(j) =
∑
α∈R+ jα and |j| =

|deg(j)|. Then note that even though some of the pj are differentiated, none of the

ones with |M− j| = 1 are. We can use (7.2) to solve for one of the pj in terms of pj
of greater degree. If we move through the αM with decreasing degree, we can thus

show that all pj are ultimately determined by pN alone. It is lengthy although not

difficult to give a precise algorithm for how one should progress downward through

the indices.

Thus we know that pN determines D.
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Proof of Proposition 5.3. We first note that since Lh(k) is homogeneous of degree

−2, the generator of Sh(r, k) must be homogeneous. If D ∈ Sh(r, k) is not homoge-

neous, then DLh(k) = Lh(k + r)D implies ε(DLh(k)) = ε(Lh(k + r)D), and since

Lh(k) is already homogeneous, ε(D)Lh(k) = Lh(k + r)ε(D). So ε(D) is in Sh(r, k)

but is not a multiple of D.

Now since the degree of differential operators is additive, g(−1, k) must have

the minimal degree. We know from [10, Corollary 3.12] that deg(G(−1, k)) =

n(n+ 1)/2, and it has lowest homogeneous degree 0 [10, Theorem 4.4]. Thus,

since N = (1, . . . , 1), we can only have pj 6= 0 for j whith deg(pj) =
∑

j ≥ 0.

Now we know D ∈ DW
h , so w · pj(t) = pw.j(t) where W acts on the indices j

by permutation. Thus pN is W -invariant.

Let α ∈ R+. By (7.2) with M = (1, . . . , 1)− 2eα, we see that

0 = 2kpN−eαtα +

n∑
i=1

2k(∂ipN)tα AV(ei)(∂iα)− 4(1− k)pN − tαpN−eα2(k − 1)

since Mα = −1. Then we see that tα divides pN unless

0 = 2kpN−eαtα +

n∑
i=1

2k(∂ipN)tα AV(ei)(∂iα)− tαpN−eα2(k − 1).

This requires pN to be 0, which makes g(−1, k) zero, contradicting the fact that

it is a generator.

Thus for all α, tα divides pN. Then the positive roots give n(n+ 1)/2 inde-

pendent divisors of pN and so deg(g(−1, k)) ≥ n(n + 1)/2. Thus the pN term of

g(−1, k) is a scalar multiple of the pN term of ε(G(−1, k)). So the operators are

scalar multiples of each other and thus ε(G(−1, k)) is a generator.

Proof of Proposition 5.1. By Lemma 7.2, D is determined by pN(D). Given D ∈
Sh(−1, k) and S ∈ Sh(0, k), the lead coefficients are multiplicative,

pN(SD) = pN(S)pN(D).

Hence Lemma 7.2 reduces the proof to showing that pN(Sh(−1, k)) is a rank-one

pN(Sh(0, k))-module.

By [7, Theorem 1.7] we know that

C[t1, . . . , tn]W ⊂ pN(Sh(0, k)).

By Proposition 5.3, we know that
∏
α∈R+ tα divides pN(D) for all D ∈ Sh(−1, k).

Now since D is W -invariant and N is fixed by W , we know that the lead term( ∏
α∈R+

α
)
∂(pN)
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is W -invariant. Since w acts on
∏
α∈R+ by sgn(w), this means w acts on pN by

sgn(w) and is thus equal to

q(t)
( ∏
α∈R+

α
)

where q(t) ∈ C[t1, . . . , tn]W ⊂ pN(Sh(0, k)). Since pN(ε(G(−1, k))) = c(
∏
α∈R+ α),

we know
∏
α∈R+ α ∈ pN(Sh(−1, k)). Thus

pN(Sh(−1, k)) = C[t1, . . . , tn]W
( ∏
α∈R+

α
)

is clearly a rank-one pN(Sh(0, k))-module.
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