Γ-Unitaries, Dilation and a Natural Example

by

Tirthankar Bhattacharyya and Haripada Sau

Abstract

This note constructs an explicit normal boundary dilation for a commuting pair (S, P) of bounded operators with the symmetrized bidisk

$$\Gamma = \{(z_1 + z_2, z_1 z_2) : |z_1|, |z_2| \le 1\}$$

as a spectral set. Such explicit dilations have hitherto been constructed only in the unit disk [11], the unit bidisk [3] and in the tetrablock [6]. The dilation is minimal and unique under a suitable condition. This paper also contains a natural example of a Γ -isometry. We compute its associated fundamental operator.

2010 Mathematics Subject Classification: Primary 47A20, 47A25; Secondary 32A70, 46E22.

Keywords: Symmetrized bidisk, spectral set, Γ -contraction, Γ -unitary, dilation.

§1. Introduction

This section contains the background and the statements of two main results. In 1951, von Neumann proved the inequality

$$||f(T)|| < \sup\{|f(z)| : |z| < 1\},$$

where T is a Hilbert space contraction and f is a polynomial. A proof, different from that of von Neumann, emerged when Sz.-Nagy proved his dilation theorem: Every contraction T can be dilated to a unitary U, i.e., if T acts on \mathcal{H} , then there is a Hilbert space $\mathcal{K} \supset \mathcal{H}$ and a unitary U on \mathcal{K} such that

$$T^n = P_{\mathcal{H}} U^n |_{\mathcal{H}}.$$

Communicated by N. Ozawa. Received November 9, 2015. Revised August 26, 2016.

T. Bhattacharyya: Department of Mathematics, Indian Institute of Science, Bangalore 560012, India;

e-mail: tirtha@member.ams.org

H. Sau: Department of Mathematics, Indian Institute of Science, Bangalore 560012, India; e-mail: ${\tt haripadasau215@gmail.com}$

© 2017 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

Indeed, the proof of von Neumann's inequality then is

$$||f(T)|| = ||P_{\mathcal{H}}f(U)|_{\mathcal{H}}||_{\mathcal{H}} \le ||f(U)||_{\mathcal{K}} \le \sup\{|f(z)| : |z| \le 1\}$$

because f(U) is a normal operator with $\sigma(f(U)) = \{f(z) : z \in \sigma(U)\} \subset \{f(z) : |z| = 1\}.$

It has long been a theme of research whether the converse direction is possible. This means that one chooses a compact subset K of the plane or of \mathbb{C}^d for d > 1, considers a d-tuple $\underline{T} = (T_1, T_2, \ldots, T_d)$ of commuting bounded operators that satisfies

$$||f(\underline{T})|| \le \sup\{|f(z)| : z \in K\}$$

for all rational functions f with poles off K and tries to see if there is a commuting tuple of bounded normal operators $\underline{N} = (N_1, N_2, \dots, N_d)$ with $\sigma(\underline{N}) \subset bK$, the distinguished boundary of K, such that

$$f(\underline{T}) = P_{\mathcal{H}} f(\underline{N})|_{\mathcal{H}}.$$

The tuple \underline{N} is then called a normal boundary dilation. An explicit construction of such an \underline{N} has succeeded, apart from in the disk [11], only in the bidisk [3], although the existence of a dilation is abstractly known for an annulus [1].

The (closed) symmetrized bidisk

$$\Gamma = \{(z_1 + z_2, z_1 z_2) : |z_1|, |z_2| \le 1\}$$

is polynomially convex. Then, by the Oka–Weil theorem, a polynomial dilation is the same as a rational dilation. In other words,

$$T_1^{k_1}\cdots T_d^{k_d} = P_{\mathcal{H}}N_1^{k_1}\cdots N_d^{k_d}|_{\mathcal{H}}$$

for $k_1, \ldots, k_d \geq 0$.

Consider the class $A(\Gamma)$ of functions continuous in Γ and holomorphic in the interior of Γ . A boundary of Γ (with respect to $A(\Gamma)$) is a subset on which every function in $A(\Gamma)$ attains its maximum modulus. It is known that there is a smallest one among such boundaries. This particular smallest one is called the *distinguished boundary* of the symmetrized bidisk and is denoted by $b\Gamma$. It is well known that $b\Gamma$ is the symmetrization of the torus, i.e., $b\Gamma = \{(z_1 + z_2, z_1 z_2) : |z_1| = 1 = |z_2|\}$.

Definition 1. A Γ -contraction is a commuting pair of bounded operators (S, P) on a Hilbert space \mathcal{H} such that the set Γ is a spectral set for (S, P), i.e.,

$$||f(S, P)|| < \sup\{|f(s, p)| : (s, p) \in \Gamma\},\$$

for any polynomial f in two variables.

Definition 2. A Γ -unitary (R,U) is a commuting pair of bounded normal operators on a Hilbert space \mathcal{H} such that $\sigma(R,U) \subset b\Gamma$ (this is automatically a Γ -contraction).

Definition 3. A Γ -isometry is the restriction of a Γ -unitary to a joint invariant subspace.

The work of the first author and other co-authors showed in [4] that given a Γ -contraction (S, P), there exists a unique operator $F \in \mathcal{B}(\mathcal{D}_P)$ with numerical radius no greater than 1 that satisfies the fundamental equation

$$(1.1) S - S^*P = D_P F D_P,$$

where $D_P = (I - P^*P)^{1/2}$ is the defect operator of the contraction P and $\mathcal{D}_P = \overline{\text{Ran}} D_P$ (the second component of a Γ-contraction is always a contraction). This operator F is called the *fundamental operator* of the Γ-contraction (S, P). Our first major result is the construction of a Γ-unitary dilation of a Γ-contraction explicitly. Let F be the fundamental operator of a Γ-contraction (S, P) on \mathcal{H} . The Γ-isometry, discovered in [4], that dilates (S, P) is described below. The space is $\widetilde{\mathcal{H}} = \mathcal{H} \oplus \mathcal{D}_P \oplus \mathcal{D}_P \oplus \cdots$, which is the same as the minimal isometric dilation space of the contraction P. In fact, the second component V of the Γ-isometric dilation (T_F, V) is the minimal isometric dilation of P. So

$$V = \begin{pmatrix} P & 0 & 0 & 0 & \cdots \\ \hline D_P & 0 & 0 & 0 & \cdots \\ 0 & I & 0 & 0 & \cdots \\ 0 & 0 & I & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

The first component T_F is

$$\begin{pmatrix}
S & 0 & 0 & 0 & \cdots \\
F^*D_P & F & 0 & 0 & \cdots \\
0 & F^* & F & 0 & \cdots \\
0 & 0 & F^* & F & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}.$$

The Γ -unitary dilation is obtained by extending the Γ -isometry above. Note that by Definition 3, every Γ -isometry is the restriction of a Γ -unitary to a joint invariant subspace. So the existence of a Γ -unitary dilation of (S,P) is guaranteed the moment one produces a Γ -isometric dilation. We construct it below.

The defining criterion of a Γ -contraction implies that the adjoint pair (S^*, P^*) is also a Γ -contraction. Consider its fundamental operator $G \in \mathcal{B}(\mathcal{D}_{P^*})$, where $D_{P^*} = (I - PP^*)^{1/2}$ is the defect operator and $\mathcal{D}_{P^*} = \overline{\operatorname{Ran}} D_{P^*}$ is its defect space. This G satisfies

$$(1.2) S^* - SP^* = D_{P^*}GD_{P^*}.$$

Just as the Γ -isometric dilation acts on the space of minimal isometric dilation of P, it turns out that the Γ -unitary dilation acts on the space of minimal unitary dilation of P. For brevity, let us denote $\mathcal{D}_{P^*} \oplus \mathcal{D}_{P^*} \oplus \cdots$ by $l^2(\mathcal{D}_{P^*})$. Note that the isometry V above has a natural unitary extension U on $\widetilde{\mathcal{H}} \oplus l^2(\mathcal{D}_{P^*})$. In operator matrix form it is

$$\left(\begin{array}{cc} V & X' \\ 0 & Y' \end{array}\right)$$

with respect to the decomposition $\widetilde{\mathcal{H}} \oplus l^2(\mathcal{D}_{P^*})$, where the operators $X' : l^2(\mathcal{D}_{P^*}) \to \widetilde{\mathcal{H}}(=\mathcal{H} \oplus \mathcal{D}_P \oplus \mathcal{D}_P \oplus \cdots)$ and $Y' : l^2(\mathcal{D}_{P^*}) \to l^2(\mathcal{D}_{P^*})$ are given by

$$\begin{pmatrix} D_{P^*} & 0 & 0 & \cdots \\ -P^* & 0 & 0 & \cdots \\ 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & I & 0 & \cdots \\ 0 & 0 & I & \cdots \\ 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \quad \text{respectively.}$$

On the same space, the Γ -unitary dilation acts. Its first component R is the following extension of T_F :

$$\begin{pmatrix} T_F & X \\ 0 & Y \end{pmatrix}$$

with respect to the decomposition $\widetilde{\mathcal{H}} \oplus l^2(\mathcal{D}_{P^*})$, where the operators $X: l^2(\mathcal{D}_{P^*}) \to \widetilde{\mathcal{H}}$ and $Y: l^2(\mathcal{D}_{P^*}) \to l^2(\mathcal{D}_{P^*})$ are given by

$$\begin{pmatrix} D_{P^*}G & 0 & 0 & \cdots \\ -P^*G & 0 & 0 & \cdots \\ 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} G^* & G & 0 & 0 & \cdots \\ 0 & G^* & G & 0 & \cdots \\ 0 & 0 & G^* & G & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \quad \text{respectively.}$$

Theorem 4. The pair (R, U) is a Γ -unitary dilation of (S, P).

Note the similarity of the construction to Schäffer's construction in [11] of the unitary dilation of a contraction. The crucial inputs are F and G in the construction of R. After we completed this work, we came to know that Pal [9] has independently proved the theorem above.

In the case of any dilation, uniqueness is a natural question, i.e., given $\underline{T} = (T_1, T_2, \dots, T_d)$ acting on \mathcal{H} and a dilation $\underline{N} = (N_1, N_2, \dots, N_d)$ acting on $\mathcal{K} \supset \mathcal{H}$, is it true that any other dilation, say $\underline{N'} = (N'_1, N'_2, \dots, N'_d)$ on $\mathcal{K'} \supset \mathcal{H}$ is unitarily equivalent to \underline{N} ? The answer is yes when the compact set $K = \overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| \leq 1\}$ and the number d of co-ordinates of \underline{T} is 1 under a certain natural condition called minimality. If T is a contraction, N is a unitary dilation and the space \mathcal{K} is minimal, i.e.,

$$\mathcal{K} = \{ N^n h : h \in \mathcal{H} \text{ and } n \in \mathbb{Z} \},$$

then any other minimal unitary dilation of T is unitarily equivalent to N. The Γ -unitary dilation constructed above is minimal. Moreover, it is unique in the sense described in the theorem below.

Theorem 5 (Uniqueness). Let (S, P) be a Γ -contraction on a Hilbert space \mathcal{H} and (R, U), as defined above, be the Γ -unitary dilation of (S, P).

- (i) If (\tilde{R}, U) is another Γ -unitary dilation of (S, P), then $\tilde{R} = R$.
- (ii) If (\tilde{R}, \tilde{U}) , on some Hilbert space \tilde{K} containing \mathcal{H} , is another Γ -unitary dilation of (S, P), where \tilde{U} is a minimal unitary dilation of P, then (\tilde{R}, \tilde{U}) is unitarily equivalent to (R, U).

This theorem is special because when $K = \overline{\mathbb{D}} \times \overline{\mathbb{D}}$, then the corresponding minimality condition does not yield unitary equivalence; see [8].

The last section of this paper, i.e., Section 5, has concrete examples of fundamental operators. Fundamental operators are of utmost importance in the study of Γ -contractions, as is clear from the discussion above and also from abundant use of fundamental operators in the literature. A few notable mentions of the uses of the fundamental operator are [5, Prop. 4.3 and Thm. 4.4] and [10, Thm. 3.5]. Computing the fundamental operator of a given Γ -contraction is usually difficult. In Section 5, we explicitly compute the fundamental operators of three natural examples. These examples originate from function theory on the bidisk, which has been a rich source of examples of Γ -contractions; see [4].

§2. Elementary results on Γ -contractions

This section contains certain preliminary results on Γ -contractions. Just as

$$(2.1) PD_P = D_{P^*}P$$

and its adjoint equation

$$(2.2) D_P P^* = P^* D_{P^*}$$

have been known since the time of Sz.-Nagy and Foias, we have a crucial operator equality in the case of a Γ -contraction (S, P) that relates S, P and the fundamental operator F. It is

$$(2.3) D_P S = F D_P + F^* D_P P.$$

The adjoint form of this equality involves the Γ -contraction (S^*, P^*) and its fundamental operator G. It is

$$(2.4) D_{P^*}S^* = GD_{P^*} + G^*D_{P^*}P^*.$$

The next lemma gives a relation between the fundamental operators of the two Γ -contractions (S, P) and (S^*, P^*) . This can be found in [5, Prop. 2.3]. Hence we omit the proof.

Lemma 6. Let (S, P) be a Γ -contraction and F, G are fundamental operators of (S, P) and (S^*, P^*) respectively. Then

$$(2.5) P^*G = F^*P^*|_{\mathcal{D}_{P^*}}.$$

Remark 7. If one applies Lemma 6 for the Γ -contraction (S^*, P^*) in place of (S, P), then the result is $PF = G^*P|_{\mathcal{D}_P}$.

The next two lemmas give new relations between the fundamental operators of Γ -contractions (S, P) and (S^*, P^*) .

Lemma 8. Let (S, P) be a Γ -contraction on a Hilbert space \mathcal{H} . If F and G are fundamental operators of (S, P) and (S^*, P^*) respectively, then

$$(SD_P - D_{P^*}GP)|_{\mathcal{D}_P} = D_P F.$$

Proof. Note that the LHS and the RHS of (2.6) are operators from \mathcal{D}_P to \mathcal{H} :

$$(SD_P - D_{P^*}GP)D_P h = S(I - P^*P)h - D_{P^*}GPD_P h$$

$$= Sh - SP^*Ph - (D_{P^*}GD_{P^*})Ph$$

$$= Sh - SP^*Ph - S^*Ph + SP^*Ph$$

$$= Sh - S^*Ph = D_PFD_P h \text{ for all } h \in \mathcal{H}.$$

Since $\mathcal{D}_P = \overline{\operatorname{Ran}} D_P$ and the operators are bounded, we are done.

Remark 9. If one applies Lemma 8 for the Γ -contraction (S^*, P^*) in place of (S, P), then the result is $S^*D_{P^*} - D_P F P^* = D_{P^*} G$.

Lemma 10. Let F and G be the fundamental operators of (S, P) and (S^*, P^*) respectively. Then

$$(2.7) (F^*D_PD_{P^*} - FP^*)|_{\mathcal{D}_{P^*}} = D_PD_{P^*}G - P^*G^*.$$

Proof. Note that the LHS and the RHS of (2.7) are operators from \mathcal{D}_{P^*} to \mathcal{D}_{P} :

$$(F^*D_PD_{P^*} - FP^*)D_{P^*}h = F^*D_P(I - PP^*)h - FP^*D_{P^*}h$$

$$= F^*D_Ph - F^*D_PP^*h - FD_PP^*h \qquad [using (2.2)]$$

$$= F^*D_Ph - (F^*D_PP + FD_P)P^*h$$

$$= (F^*D_P - D_PSP^*)h \qquad [using (2.3)]$$

$$= (D_PS^* - P^*G^*D_{P^*})h - D_PSP^*h \qquad [using (2.6)]$$

$$= D_P(S^* - SP^*)h - P^*G^*D_{P^*}h$$

$$= D_PD_{P^*}GD_{P^*}h - P^*G^*D_{P^*}h$$

$$= (D_PD_{P^*}G - P^*G^*)D_{P^*}h$$

for all $h \in \mathcal{H}$. Since $\mathcal{D}_{P^*} = \overline{\operatorname{Ran}} D_{P^*}$ and the operators are bounded, we are done.

§3. Γ -unitary dilation of a Γ -contraction: Proof of Theorem 4

The starting point of the proof of Theorem 4 is the pair (T_F, V) on $\widetilde{\mathcal{H}} = \mathcal{H} \oplus l^2(\mathcal{D}_P)$, where

$$T_F(h \oplus (a_0, a_1, a_2, \dots)) = (Sh \oplus (F^*D_Ph + Fa_0, F^*a_0 + Fa_1, F^*a_1 + Fa_2, \dots))$$

and

$$V(h \oplus (a_0, a_1, a_2, \dots)) = (Ph \oplus (D_Ph, a_0, a_1, a_2, \dots)).$$

We know from [4] that this pair is a Γ -isometric dilation for (S, P). So the job reduces to finding an explicit Γ -unitary extension of (T_F, V) . For that, it is natural to consider the minimal unitary extension U of V on $\mathcal{K} = \widetilde{\mathcal{H}} \oplus l^2(\mathcal{D}_{P^*})$. The explicit form of U due to Schäffer [11] is given in Section 1. Schäffer proved that U is the minimal unitary dilation of P.

We shall first prove that (R, U) on \mathcal{K} , defined in Section 1, is a Γ -unitary. To be able to do that, we need a tractable characterization of a Γ -unitary. This can be found in [4]: the fourth part of Theorem 2.5 there tells us that a pair of commuting operators (R, U) defined on a Hilbert space \mathcal{H} is a Γ -unitary if and only if U is unitary and (R, U) is a Γ -contraction. So, for our particular (R, U), we shall show that

- (i) RU = UR and
- (ii) $||f(R,U)|| \le ||f||_{\infty,\Gamma}$, for every polynomial f in two variables.

To show that $R = \begin{pmatrix} T_F & X \\ 0 & Y \end{pmatrix}$ and $U = \begin{pmatrix} V & X' \\ 0 & Y' \end{pmatrix}$ commute, we shall have to show YY' = Y'Y and $XY' + T_FX' = X'Y + VX$.

Commutativity of Y and Y' can be verified by direct computation, but perhaps a more elegant way to see it is to note that the space on which these operators act is unitarily equivalent to the space of \mathcal{D}_{P^*} -valued Hardy space on the disk. Under conjugation by the same unitary, Y' becomes the backward shift and Y becomes the adjoint of multiplication by the operator-valued function $G + G^*z$ (a so-called co-analytic Toeplitz operator). Thus they commute.

For all $(a_0, a_1, a_2, \dots) \in l^2(\mathcal{D}_{P^*})$ we have

$$(XY' + T_F X')(a_0, a_1, a_2, \dots)$$

$$= X(a_1, a_2, a_3, \dots) + T_F(D_{P^*} a_0 \oplus (-P^* a_0, 0, 0, \dots))$$

$$= (D_{P^*} G a_1 \oplus (-P^* G a_1, 0, 0, \dots))$$

$$+ (SD_{P^*} a_0 \oplus ((F^* D_P D_{P^*} - FP^*) a_0, -F^* P^* a_0, 0, 0, \dots))$$

$$= (SD_{P^*} a_0 + D_{P^*} G a_1)$$

$$\oplus ((F^* D_P D_{P^*} - FP^*) a_0 - P^* G a_1, -F^* P^* a_0, 0, 0, \dots)$$

and

$$(X'Y + VX)(a_0, a_1, a_2, \dots)$$

$$= X'(G^*a_0 + Ga_1, G^*a_1 + Ga_2, G^*a_2 + Ga_3, \dots)$$

$$+ V(D_{P^*}Ga_0 \oplus (-P^*Ga_0, 0, 0, \dots))$$

$$= ((D_{P^*}G^*a_0 + D_{P^*}Ga_1) \oplus (-P^*G^*a_0 - P^*Ga_1, 0, 0, \dots))$$

$$+ (PD_{P^*}Ga_0 \oplus (D_PD_{P^*}Ga_0, -P^*Ga_0, 0, 0, \dots))$$

$$= ((D_{P^*}G^* + PD_{P^*}G)a_0 + D_{P^*}Ga_1)$$

$$\oplus ((D_PD_{P^*}G - P^*G^*)a_0 - P^*Ga_1, -P^*Ga_0, 0, 0, \dots).$$

The lemmas of the previous section will now be useful. By Lemmas 10 and 6 and equation (2.4), it follows that $XY' + T_FX' = X'Y + VX$. Thus the proof of commutativity is complete.

We now prove that R is a normal operator. What we first prove is that $R = R^*U$, because this will imply that R is a normal operator. Establishing the equality $R = R^*U$ is equivalent to showing the following equalities:

- (a) $Y = Y^*Y' + X^*X'$;
- (b) $X^*V = 0$;

(c)
$$X = T_F^* X'$$
; and

(d)
$$T_F = T_F^* V$$
.

From the definitions of X and Y, it is easy to check that

$$X^*(h \oplus (a_0, a_1, a_2, \dots)) = (G^*D_{P^*}h - G^*Pa_0, \dots)$$

and

$$Y^*(a_0, a_1, a_2, \dots) = (Ga_0, G^*a_0 + Ga_1, G^*a_1 + Ga_2, \dots).$$

Thus

$$(Y^*Y' + X^*X')(a_0, a_1, a_2, \dots)$$

$$= Y^*(a_1, a_2, a_3, \dots) + X^*(D_{P^*}a_0 \oplus (-P^*a_0, 0, 0, \dots))$$

$$= (Ga_1, G^*a_1 + Ga_2, G^*a_2 + Ga_3, \dots)$$

$$+ (G^*(I - PP^*)a_0 + G^*PP^*a_0, 0, 0, \dots)$$

$$= (G^*a_0 + Ga_1, G^*a_1 + Ga_2, G^*a_2 + Ga_3, \dots) = Y(a_0, a_1, a_2, \dots),$$

which establishes (a). To prove (b), we use equation (2.1) and see that

$$X^*V(h \oplus (a_0, a_1, a_2, \dots)) = X^*(Ph \oplus (D_Ph, a_0, a_1, a_2, \dots))$$
$$= ((G^*D_{P^*}P - G^*PD_P)h, 0, 0, 0, \dots) = 0.$$

To prove (c), we use Remark 9 and Lemma 6 to get

$$T_F^*X'(a_0, a_1, a_2, \dots) = T_F^*(D_{P^*}a_0 \oplus (-P^*a_0, 0, 0, \dots))$$

= $(S^*D_{P^*}a_0 - D_PFP^*a_0) \oplus (-F^*P^*, 0, 0, \dots)$
= $X(a_0, a_1, a_2, \dots).$

Since (T_F, V) is a Γ -isometry, (d) holds, by [4, Thm. 2.14].

Now we proceed to show that (R,U) satisfies the von Neumann inequality. For any polynomial f in two variables we have

$$f(R,U) = \begin{pmatrix} f(T_F, V) & Z_f \\ 0 & f(Y, Y') \end{pmatrix},$$

where (T_F, V) and $(Y, Y') = (M_{G+G^*z}, M_z)^*$ are Γ -contractions and Z_f is an operator depending on f. We have by [7, Lem. 1] that

$$\sigma(f(R,U)) \subset \sigma(f(T_F,V)) \cup \sigma(f(Y,Y')),$$

which gives

$$r(f(R,U)) \le \max\{r(f(T_F,V)), r(f(Y,Y'))\} \le \max\{\|f(T_F,V)\|, \|f(Y,Y')\|\}$$

 $\le \|f\|_{\infty,\Gamma}.$

Since R is a normal operator, so is f(R,U) and hence r(f(R,U)) = ||f(R,U)||. This completes the proof of part (ii). Hence (R,U) is a Γ -unitary.

To complete the proof of Theorem 4, we need to show that (R, U) dilates (S, P). This is trivial because (R, U) is the extension of (T_F, V) , which is a coextension of (S, P).

§4. Minimality and uniqueness

In this section we prove Theorem 5. First we remark that the dilation is minimal.

Remark 11 (Minimality). Minimality of a commuting normal boundary dilation $\underline{N} = (N_1, N_2, \dots, N_d)$ on a space \mathcal{K} of a commuting tuple (T_1, T_2, \dots, T_d) of bounded operators on a space \mathcal{H} means that the space \mathcal{K} is no bigger than the closure of the span of the following set:

$$\{N_1^{k_1}N_2^{k_2}\cdots N_d^{k_d}N_1^{*l_1}N_2^{*l_2}\cdots N_d^{*l_d}h: h\in\mathcal{H}, \text{ where } k_i,l_i\in\mathbb{N} \text{ for } i=1,2,\ldots,d\}.$$

Note that the space \mathcal{K} has to be at least this big. In our construction, the space is just the minimal unitary dilation space of P (which is unique up to unitary equivalence). It is a bit of a surprise that one can find the Γ -unitary dilation of (S,P) on the same space, while one would have normally expected the dilation space to be bigger. Since no dilation of (S,P) can take place on a space smaller than the minimal unitary dilation space of P (because the dilation has to dilate P as well), our construction of Γ -unitary dilation is minimal. Indeed, post facto we know from our dilation that

$$\overline{\operatorname{span}}\{R^{m_1}R^{*m_2}U^nh: h \in \mathcal{H}, m_1, m_2 \in \mathbb{N} \text{ and } n \in \mathbb{Z}\}$$
$$= \overline{\operatorname{span}}\{U^nh: h \in \mathcal{H} \text{ and } n \in \mathbb{Z}\}.$$

Note the absence of R on the right-hand side.

We now prove a weaker version of the uniqueness theorem and then we use it to prove the main result.

Lemma 12. Suppose (S, P) is a Γ -contraction on a Hilbert space \mathcal{H} and (R, U) is the above Γ -unitary dilation of (S, P). If (\tilde{R}, U) is another Γ -unitary dilation of (S, P) such that \tilde{R} is an extension of T_F , then $\tilde{R} = R$.

Proof. Suppose (\tilde{R}, U) is another Γ-unitary dilation of (S, P), such that \tilde{R} is an extension of T_F . Since \tilde{R} is an extension of T_F , \tilde{R} is of the form $\begin{pmatrix} T_F & X \\ 0 & Y \end{pmatrix}$ with respect to the decomposition $\mathcal{K} = \tilde{\mathcal{H}} \oplus l^2(\mathcal{D}_{P^*})$. Since $U = \begin{pmatrix} V & X' \\ 0 & Y' \end{pmatrix}$ is unitary and $\tilde{R}U = U\tilde{R}$, we have, from easy matrix calculations,

(4.1)
$$Y'^*Y' + X'^*X' = I, \qquad X'^*V = 0$$

and

$$(4.2) \tilde{Y}Y' = Y'\tilde{Y}, \tilde{X}Y' + T_FX' = X'\tilde{Y} + V\tilde{X}.$$

Also since (\tilde{R},U) is a Γ -unitary, we have $\tilde{R}=\tilde{R}^*U$ and that gives $\tilde{X}=T_F^*X'$. So

$$\tilde{X}(a_0, a_1, a_2, \dots) = T_F^* X'(a_0, a_1, a_2, \dots)$$

$$= T_F^*(D_{P^*} a_0 \oplus (-P^* a_0, 0, 0, \dots))$$

$$= (S^* D_{P^*} a_0 - D_P F P^* a_0) \oplus (-F^* P^* a_0, 0, 0, \dots)$$

$$= (D_{P^*} G a_0 \oplus (-F^* P^* a_0, 0, 0, \dots))$$
 [by Remark 9]
$$= X(a_0, a_1, a_2, \dots).$$

Now to find \tilde{Y} , we proceed as follows: From the second equation of (4.2) we have

$$X'\tilde{Y} + V\tilde{X} = \tilde{X}Y' + T_F X'$$

$$\Rightarrow X'^*X'\tilde{Y} + X'^*V\tilde{X} = X'^*\tilde{X}Y' + X'^*T_F X' \quad [\text{multiplying } X'^* \text{ from left}]$$

$$\Rightarrow (I - Y'^*Y')\tilde{Y} = X'^*\tilde{X}Y' + X'^*T_F X' \quad [\text{using (4.1)}]$$

$$\Rightarrow \tilde{Y}^*(I - Y'^*Y') = Y'^*\tilde{X}^*X' + X'^*T_F^*X'. \quad (*)$$

Note that $(I - Y'^*Y')$ is the orthogonal projection of $l^2(\mathcal{D}_{P^*})$ onto the first component. Let $x = (a_0, a_1, a_2, \dots)$ be in $l^2(\mathcal{D}_{P^*})$. From (*) we get

$$\tilde{Y}^*(a_0, 0, 0, \dots) = Y'^* \tilde{X}^* X'(a_0, a_1, a_2, \dots) + X'^* T_F^* X'(a_0, a_1, a_2, \dots).$$

Thus

$$Y'^*\tilde{X}^*X'(a_0,a_1,a_2,\dots) + X'^*T_F^*X'(a_0,a_1,a_2,\dots)$$

$$= Y'^*\tilde{X}^*(D_{P^*}a_0 \oplus (-P^*a_0,0,0,\dots)) + X'^*T_F^*(D_{P^*}a_0 \oplus (-P^*a_0,0,0,\dots))$$

$$= Y'^*((D_{P^*}S - PF^*D_P)D_{P^*}a_0 + PFP^*a_0,0,0,\dots)$$

$$+ X'^*((S^*D_{P^*} - D_PFP^*)a_0 \oplus (-F^*P^*a_0,0,0,\dots))$$

$$= (0,(D_{P^*}S - PF^*D_P)D_{P^*}a_0 + PFP^*a_0,0,0,\dots)$$

$$+ (D_{P^*}(S^*D_{P^*} - D_PFP^*)a_0 + PF^*P^*a_0,0,0,\dots)$$

$$= (D_{P^*}(S^*D_{P^*} - D_PFP^*)a_0 + PF^*P^*a_0,(0,0,\dots))$$

$$= (D_{P^*}S - PF^*D_P)D_{P^*}a_0 + PFP^*a_0,0,0,\dots).$$

Let us denote the operator $(D_{P^*}(S^*D_{P^*} - D_PFP^*) + PF^*P^*)|_{\mathcal{D}_{P^*}}$ by C. Then we have $\tilde{Y}^*(a_0, 0, 0, \dots) = (Ca_0, C^*a_0, 0, 0, \dots)$. Note that C is an operator from \mathcal{D}_{P^*} to \mathcal{D}_{P^*} . We shall show that C = G, where G is the fundamental operator of the Γ -contraction (S^*, P^*) . The following computation establishes that. For h, h' in \mathcal{H} , we have

$$\langle CD_{P^*}h, D_{P^*}h' \rangle$$

$$= \langle (D_{P^*}(S^*D_{P^*} - D_{P}FP^*) + PF^*P^*)D_{P^*}h, D_{P^*}h' \rangle$$

$$= \langle D_{P^*}S^*(I - PP^*)h - D_{P^*}(D_{P}FD_{P})P^*h + PF^*P^*D_{P^*}h, D_{P^*}h' \rangle$$

$$= \langle D_{P^*}S^*h - D_{P^*}S^*PP^*h - D_{P^*}SP^*h + D_{P^*}S^*PP^*h + PF^*P^*D_{P^*}h, D_{P^*}h' \rangle$$

$$= \langle D_{P^*}S^*h - D_{P^*}SP^*h + PF^*P^*D_{P^*}h, D_{P^*}h' \rangle$$

$$= \langle D_{P^*}(S^* - SP^*)h + PF^*P^*D_{P^*}h, D_{P^*}h' \rangle$$

$$= \langle D_{P^*}(S^* - SP^*)h + PF^*P^*D_{P^*}h, D_{P^*}h' \rangle$$

$$= \langle (I - PP^*)GD_{P^*}h + PF^*P^*D_{P^*}h, D_{P^*}h' \rangle + \langle F^*P^*D_{P^*}h, P^*D_{P^*}h' \rangle$$

$$= \langle GD_{P^*}h, D_{P^*}h' \rangle - \langle P^*GD_{P^*}h, P^*D_{P^*}h' \rangle + \langle F^*P^*D_{P^*}h, P^*D_{P^*}h' \rangle$$

$$= \langle GD_{P^*}h, D_{P^*}h' \rangle - \langle F^*P^*D_{P^*}h, D_{P^*}h' \rangle + \langle F^*P^*D_{P^*}h, P^*D_{P^*}h' \rangle$$

$$= \langle GD_{P^*}h, D_{P^*}h' \rangle .$$

Hence C = G and hence for every a in \mathcal{D}_{P^*} ,

$$\tilde{Y}^*(a,0,0,0,\dots) = (Ga, G^*a,0,0,\dots).$$

We want to compute the action of \tilde{Y}^* on an arbitrary vector. Now using the first equation of (4.2), we have for every $n \geq 0$,

$$\tilde{Y}^{*}(0,\ldots,0,a,0,\ldots) = \tilde{Y}^{*}Y'^{*n}(a,0,0,0,\ldots)$$

$$= Y'^{*n}\tilde{Y}^{*}(a,0,0,0,\ldots)$$

$$= Y'^{*n}(Ga,G^{*}a,0,0,\ldots) = \underbrace{0,\ldots,0,Ga,G^{*}a,0,0,\ldots}_{n \text{ times}}.$$

Therefore for an arbitrary element $(a_0, a_1, a_2, \dots) \in l^2(\mathcal{D}_{P^*})$, we have

$$\tilde{Y}^*(a_0, a_1, a_2, \dots)$$

$$= \tilde{Y}^*((a_0, 0, 0, \dots) + (0, a_1, 0, \dots) + (0, 0, a_2, \dots) + \dots)$$

$$= (Ga_0, G^*a_0, 0, 0, \dots) + (0, Ga_1, G^*a_1, 0, 0, \dots)$$

$$+ (0, 0, Ga_2, G^*a_2, 0, 0, \dots) + \dots$$

$$= (Ga_0, G^*a_0 + Ga_1, G^*a_1 + Ga_2, \dots).$$

For $(a_0, a_1, a_2, ...)$ and $(b_0, b_1, b_2, ...)$ in $l^2(\mathcal{D}_{P^*})$, we have

$$\langle (a_0, a_1, a_2, \dots), \tilde{Y}^*(b_0, b_1, b_2, \dots) \rangle$$

$$= \langle (a_0, a_1, a_2, \dots), (Gb_0, G^*b_0 + Gb_1, G^*b_1 + Gb_2, \dots) \rangle$$

$$= \langle a_0, Gb_0 \rangle + \langle a_1, G^*b_0 + Gb_1 \rangle + \langle a_2, G^*b_1 + Gb_2 \rangle + \cdots$$

$$= \langle G^*a_0 + Ga_1, b_0 \rangle + \langle G^*a_1 + Ga_2, b_1 \rangle + \langle G^*a_2 + Ga_3, b_2 \rangle + \cdots$$

$$= \langle (G^*a_0 + Ga_1, G^*a_1 + Ga_2, G^*a_2 + Ga_3, \dots), (b_0, b_1, b_2, \dots) \rangle.$$

Hence, by definition of the adjoint of an operator, we have

$$\tilde{Y}(a_0, a_1, a_2, \dots) = (G^*a_0 + Ga_1, G^*a_1 + Ga_2, G^*a_2 + Ga_3, \dots) = Y(a_0, a_1, a_2, \dots),$$

for every $(a_0, a_1, a_2, \dots) \in l^2(\mathcal{D}_{P^*})$. Therefore $\tilde{R} = R$. Hence the proof is complete.

Note that when we write the operator U with respect to the decomposition $l^2(\mathcal{D}_P) \oplus \mathcal{H} \oplus l^2(\mathcal{D}_{P^*})$ then this is of the form

$$\begin{pmatrix} U_1 & U_2 & U_3 \\ 0 & P & U_4 \\ 0 & 0 & U_5 \end{pmatrix},$$

where U_1 , U_2 , U_3 , U_4 and U_5 are defined as

$$U_1(a_0, a_1, a_2, \dots) = (0, a_0, a_1, \dots), \qquad U_2(h) = (D_p h, 0, 0, \dots),$$

$$U_3(b_0, b_0, b_2, \dots) = (-P^* b_0, 0, 0, \dots), \qquad U_4(b_0, b_1, b_2, \dots) = D_{P^*} b_0,$$

$$U_5(b_0, b_1, b_2, \dots) = (b_1, b_2, b_3, \dots)$$

for all $h \in \mathcal{H}$, $(a_0, a_1, a_2, \dots) \in l^2(\mathcal{D}_P)$ and $(b_0, b_0, b_2, \dots) \in l^2(\mathcal{D}_{P^*})$. Note that this is the Schäffer minimal unitary dilation of the contraction P as in [11] (it can also be found in [12, Sect. 5, Chap. 1].

Lemma 13. Let (R, U) on K be a dilation of (S, P) on H, where P is a contraction on H, and U on K is the Schäffer minimal unitary dilation of P. Then R admits a matrix representation of the form

$$\begin{pmatrix} * & * & * \\ 0 & S & * \\ 0 & 0 & * \end{pmatrix},$$

with respect to the decomposition $\mathcal{K} = l^2(\mathcal{D}_P) \oplus \mathcal{H} \oplus l^2(\mathcal{D}_{P^*})$.

_

Proof. Let $R = (R_{kl})_{k,l=1}^3$ with respect to $\mathcal{K} = l^2(\mathcal{D}_P) \oplus \mathcal{H} \oplus l^2(\mathcal{D}_{P^*})$. Call $\widetilde{\mathcal{H}} = l^2(\mathcal{D}_P) \oplus \mathcal{H}$. Since U is minimal we have $\mathcal{K} = \bigvee_{m=-\infty}^{\infty} U^m \mathcal{H}$ and $\widetilde{\mathcal{H}} = \bigvee_{m=0}^{\infty} U^m \mathcal{H} = \bigvee_{m=0}^{\infty} V^m \mathcal{H}$, where V is the minimal isometry dilation of P. Note that

$$P_{\mathcal{H}}R(U^mh) = SP^mh = SP_{\mathcal{H}}U^mh$$
 for all $h \in \mathcal{H}$ and $m \ge 0$.

Therefore we have $P_{\mathcal{H}}R|_{\widetilde{\mathcal{H}}} = SP_{\mathcal{H}}|_{\widetilde{\mathcal{H}}}$ or equivalently $S^* = P_{\widetilde{\mathcal{H}}}R^*|_{\mathcal{H}}$. This shows that $R_{21} = 0$.

Call
$$\widetilde{\mathcal{N}} = \mathcal{H} \oplus l^2(\mathcal{D}_{P^*})$$
, then note that $\widetilde{\mathcal{N}} = \bigvee_{n=0}^{\infty} U^{*n}\mathcal{H}$. We have

$$P_{\mathcal{H}}R^*(U^{*m}h) = S^*P^{*m}h = S^*P_{\mathcal{H}}U^{*m}h \text{ for all } h \in \mathcal{H} \text{ and } m \ge 0.$$

This and a similar argument to above give us $S = P_{\tilde{N}}R|_{\mathcal{H}}$. Therefore $R_{32} = 0$. So far, we have shown that R admits a matrix representation of the form

$$\begin{pmatrix} R_{11} & R_{12} & R_{13} \\ 0 & S & R_{23} \\ R_{31} & 0 & R_{33} \end{pmatrix},$$

with respect to the decomposition $\mathcal{K} = l^2(\mathcal{D}_P) \oplus \mathcal{H} \oplus l^2(\mathcal{D}_{P^*})$. To show that $R_{13} = 0$ we proceed as follows:

From the commutativity of R with U we get, by an easy matrix calculation,

$$(4.3) R_{31}U_1 = U_5R_{31} \text{ and } R_{31}U_2 = 0,$$

(equating the 31st and 32nd entries of RU and UR respectively). By the definition of U_2 , we have $\operatorname{Ran} U_2 = \operatorname{Ran}(I - U_1U_1^*)$. Therefore $R_{31}(I - U_1U_1^*) = 0$, which with the first equation of (4.3) gives $R_{31} = U_5R_{31}U_1^*$, which gives after the nth iteration $R_{31} = U_5^n R_{31}U_1^{*n}$. Now since U_1^{*n} goes to 0 strongly as $n \to \infty$, we have that $R_{31} = 0$. This completes the proof of the lemma.

Now we are ready to prove Theorem 5, the main result of this section.

Proof of part (i). Since (\tilde{R}, U) is a dilation of (S, P), by Lemma 13 we have \tilde{R} of the form

$$\left(\begin{array}{cc} T & \tilde{R}_{12} \\ 0 & \tilde{R}_{22} \end{array}\right)$$

with respect to the decomposition $\widetilde{\mathcal{H}} \oplus l^2(\mathcal{D}_{P^*})$, where $T: \widetilde{\mathcal{H}} \to \widetilde{\mathcal{H}}$ is of the form

$$\left(\begin{array}{cc} T_{11} & T_{12} \\ 0 & S \end{array}\right)$$

with respect to the decomposition $l^2(\mathcal{D}_P) \oplus \mathcal{H}$. Since (T, V) on \tilde{H} is the restriction of the Γ -contraction (\tilde{R}, U) to $\tilde{\mathcal{H}}$ and V is an isometry, we have (T, V) is a Γ -isometry. Also note that $T^*|_{\mathcal{H}} = S^*$ and $V^*|_{\mathcal{H}} = P^*$. So (T, V) is a Γ -isometric dilation of (S, P). Also note that V is the Schäffer minimal isometric dilation of P. Now it follows from [4, Thm. 4.3(2)] that $T = T_F$, where T_F is as in Theorem 4. Therefore \tilde{R} is an extension of T_F . Now the proof follows from Lemma 12. \square

Proof of part (ii). Since \tilde{U} is a minimal unitary dilation of P, there exists a unitary operator $W: \tilde{\mathcal{K}} \to \mathcal{K}$ such that $W\tilde{U}W^* = U$ and Wh = h for all $h \in \mathcal{H}$. This shows that $(W\tilde{R}W^*, W\tilde{U}W^*)$ is another Γ -unitary dilation of (S, P). But $W\tilde{U}W^* = U$. Hence by part (i) we have $(W\tilde{R}W^*, W\tilde{U}W^*) = (R, U)$. Hence the proof is complete.

Remark 14. As in the case of Ando's dilation of a commuting pair of contractions, a minimal Γ -unitary dilation of a Γ -contraction need not be unique (up to unitary equivalence). In this section, we constructed a particular Γ -unitary dilation which is the most obvious one because it acts on the minimal unitary dilation space of the contraction P. Moreover, if the Γ -unitary dilation space is no bigger than the minimal unitary dilation space of the contraction P, then the Γ -unitary dilation is unique up to unitary equivalence.

§5. Examples of fundamental operators

§5.1. Hardy space of the bidisk

Consider the Hilbert space

$$H^{2}(\mathbb{D}^{2}) = \left\{ f : \mathbb{D}^{2} \to \mathbb{C} : f(z_{1}, z_{2}) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{ij} z_{1}^{i} z_{2}^{j} \right\}$$
with $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} |a_{ij}|^{2} < \infty$

with the inner product $\left\langle \sum_{i,j=0}^{\infty} a_{ij} z_1^i z_2^j, \sum_{i,j=0}^{\infty} b_{ij} z_1^i z_2^j \right\rangle = \sum_{i,j=0}^{\infty} a_{ij} b_{ij}^-$. Note that the operator pair $(M_{z_1+z_2}, M_{z_1z_2})$ on $H^2(\mathbb{D}^2)$ is a Γ -isometry, since it is the restriction of the Γ -unitary $(M_{z_1+z_2}, M_{z_1z_2})$ on $L^2(\mathbb{T}^2)$, where \mathbb{T} denotes the unit circle. For brevity, we call the pair $(M_{z_1+z_2}, M_{z_1z_2})$ on $H^2(\mathbb{D}^2)$ by (S, P). In this section, we shall first find the fundamental operator of (S^*, P^*) .

Note that every element $f \in H^2(\mathbb{D}^2)$ can be expressed in the matrix form

$$((a_{ij}))_{i,j=0}^{\infty} = \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & a_{11} & a_{12} & \dots \\ a_{20} & a_{21} & a_{22} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$

where the (ij)th entry in the matrix denotes the coefficient of $z_1^i z_2^j$ in $f(z_1, z_2) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{ij} z_1^i z_2^j$. We shall write the matrix form instead of writing the series. In this notation.

$$(5.1) S(((a_{ij}))_{i,j=0}^{\infty}) = (a_{(i-1)j} + a_{i(j-1)}) \text{ and } P(((a_{ij}))_{i,j=0}^{\infty}) = (a_{(i-1)(j-1)})$$

with the convention that a_{ij} is zero if either i or j is negative.

Lemma 15. The adjoints of the operators S and P are as follows:

$$S^* \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & a_{11} & a_{12} & \dots \\ a_{20} & a_{21} & a_{22} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} a_{10} + a_{01} & a_{11} + a_{02} & a_{12} + a_{03} & \dots \\ a_{20} + a_{11} & a_{21} + a_{12} & a_{22} + a_{13} & \dots \\ a_{30} + a_{21} & a_{31} + a_{22} & a_{32} + a_{23} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

and

$$P^* \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & a_{11} & a_{12} & \dots \\ a_{20} & a_{21} & a_{22} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots \\ a_{21} & a_{22} & a_{23} & \dots \\ a_{31} & a_{32} & a_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Proof. This is a matter of straightforward inner product computation.

Lemma 16. The defect space of P^* in matrix form is

$$\mathcal{D}_{P^*} = \left\{ \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & 0 & 0 & \dots \\ a_{20} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} : |a_{00}|^2 + \sum_{j=1}^{\infty} |a_{0j}|^2 + \sum_{j=1}^{\infty} |a_{j0}|^2 < \infty \right\}.$$

The defect space in the function form is $\overline{\text{span}}\{1, z_1^i, z_2^j : i, j \geq 1\}$. The defect operator for P^* is

$$D_{P^*} \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & a_{11} & a_{12} & \dots \\ a_{20} & a_{21} & a_{22} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & 0 & 0 & \dots \\ a_{20} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Proof. Since P is an isometry, D_{P^*} is a projection onto $\operatorname{Range}(P)^{\perp} = H^2(\mathbb{D}^2) \ominus \operatorname{Range}(P)$. The rest follows from the formula for P in (5.1).

Definition 17. Define $B: \mathcal{D}_{P^*} \to \mathcal{D}_{P^*}$ by

$$(5.2) B \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & 0 & 0 & \dots \\ a_{20} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} a_{10} + a_{01} & a_{02} & a_{03} & \dots \\ a_{20} & 0 & 0 & \dots \\ a_{30} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

for all a_{j0} , $a_{0j} \in \mathbb{C}$, j = 0, 1, 2, ... with $|a_{00}|^2 + \sum_{j=1}^{\infty} |a_{0j}|^2 + \sum_{j=1}^{\infty} |a_{j0}|^2 < \infty$.

Lemma 18. The operator B as defined in Definition 17 is the fundamental operator of (S^*, P^*) .

Proof. To show that B is the fundamental operator of (S^*, P^*) , we shall show that B satisfies the fundamental equation $S^* - SP^* = D_{P^*}BD_{P^*}$. Using Lemma 15, we get

$$(S^* - SP^*) \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & a_{11} & a_{12} & \dots \\ a_{20} & a_{21} & a_{22} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$= S^* \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & a_{11} & a_{12} & \dots \\ a_{20} & a_{21} & a_{22} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} - S \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots \\ a_{21} & a_{22} & a_{23} & \dots \\ a_{31} & a_{32} & a_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$= \begin{pmatrix} a_{10} + a_{01} & a_{11} + a_{02} & a_{12} + a_{03} & \dots \\ a_{20} + a_{11} & a_{21} + a_{12} & a_{22} + a_{13} & \dots \\ a_{30} + a_{21} & a_{31} + a_{22} & a_{32} + a_{23} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$- \begin{pmatrix} 0 & a_{11} & a_{12} & a_{13} & \dots \\ a_{11} & a_{21} + a_{12} & a_{22} + a_{13} & a_{23} + a_{14} & \dots \\ a_{21} & a_{31} + a_{22} & a_{32} + a_{23} & a_{33} + a_{24} & \dots \\ a_{31} & a_{41} + a_{32} & a_{42} + a_{33} & a_{43} + a_{34} & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$= \begin{pmatrix} a_{10} + a_{01} & a_{02} & a_{03} & \dots \\ a_{20} & 0 & 0 & \dots \\ a_{30} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$\vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Using Lemma 16 and Definition 17, we get

$$D_{P^*}BD_{P^*}\begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & a_{11} & a_{12} & \dots \\ a_{20} & a_{21} & a_{22} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = D_{P^*}B\begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & 0 & 0 & \dots \\ a_{20} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$= D_{P^*}\begin{pmatrix} a_{10} + a_{01} & a_{02} & a_{03} & \dots \\ a_{20} & 0 & 0 & \dots \\ a_{30} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} a_{10} + a_{01} & a_{02} & a_{03} & \dots \\ a_{20} & 0 & 0 & \dots \\ a_{30} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Hence the proof is complete.

Now we shall consider two subspaces of the Hilbert space $H^2(\mathbb{D}^2)$. The first one consists of all symmetric functions in $H^2(\mathbb{D}^2)$, i.e.,

$$H_+ = \{ f \in H^2(\mathbb{D}^2) : f(z_1, z_2) = f(z_2, z_1) \},$$

and the second one consists of all antisymmetric functions in $H^2(\mathbb{D}^2)$, i.e.,

$$H_{-} = \{ f \in H^{2}(\mathbb{D}^{2}) : f(z_{1}, z_{2}) = -f(z_{2}, z_{1}) \}.$$

It can be checked that $H^2(\mathbb{D}^2)=H_+\oplus H_-$. Since both H_+ and H_- are invariant under the pair $(M_{z_1+z_2},M_{z_1z_2})$, the spaces H_+ and H_- are reducing for $(M_{z_1+z_2},M_{z_1z_2})$. It can be easily checked from the definition of a Γ -contraction that a restriction of a Γ -contraction to an invariant subspace is again a Γ -contraction. So $(M_{z_1+z_2},M_{z_1z_2})|_{H_+}$ and $(M_{z_1+z_2},M_{z_1z_2})|_{H_-}$ are Γ -contractions. Since restriction of an isometry to an invariant subspace is again an isometry, $M_{z_1z_2}|_{H_+}$ and $M_{z_1z_2}|_{H_-}$ are isometries. Hence by [4, Thm. 2.14(2)], the pairs $(M_{z_1+z_2},M_{z_1z_2})|_{H_+}$ and $(M_{z_1+z_2},M_{z_1z_2})|_{H_-}$ are Γ -isometries. For brevity, we shall use the notation (S_+,P_+) and (S_-,P_-) for the pairs $(M_{z_1+z_2},M_{z_1z_2})|_{H_+}$ and $(M_{z_1+z_2},M_{z_1z_2})|_{H_-}$ respectively. We shall find their fundamental operators.

§5.2. Symmetric case

Every element $f \in H_+$ has the form $f(z_1, z_2) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{ij} z_1^i z_2^j$, where $a_{ij} \in \mathbb{C}$ and $a_{ij} = a_{ji}$ for all $i, j \geq 0$. So we can write f in the matrix form

$$\begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{01} & a_{11} & a_{12} & \dots \\ a_{02} & a_{12} & a_{22} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

In what follows, we shall exhibit the fundamental operator of the Γ -isometry (S_+, P_+) . The results are collected and stated in two lemmas without proof because the proofs are similar to what we did above.

Lemma 19. The adjoints of S_+ and P_+ are

$$S_{+}^{*} \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{01} & a_{11} & a_{12} & \dots \\ a_{02} & a_{12} & a_{22} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} 2a_{01} & a_{11} + a_{02} & a_{12} + a_{03} & \dots \\ a_{11} + a_{02} & 2a_{12} & a_{22} + a_{13} & \dots \\ a_{12} + a_{03} & a_{22} + a_{13} & 2a_{23} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

and

$$P_{+}^{*} \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{01} & a_{11} & a_{12} & \dots \\ a_{02} & a_{12} & a_{22} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots \\ a_{12} & a_{22} & a_{23} & \dots \\ a_{13} & a_{23} & a_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

The defect space of P_{+}^{*} in matrix form is

$$\mathcal{D}_{P_{+}^{*}} = \left\{ \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{01} & 0 & 0 & \dots \\ a_{02} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} : a_{0j} \in \mathbb{C}, j \geq 0 \text{ with } |a_{00}|^{2} + 2 \sum_{j=1}^{\infty} |a_{0j}|^{2} < \infty \right\}.$$

The defect space in function form is $\overline{\operatorname{span}}\{z_1^i+z_2^i:i\geq 0\}$. The defect operator is

$$D_{P_{+}^{*}} \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{01} & a_{11} & a_{12} & \dots \\ a_{02} & a_{12} & a_{22} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{01} & 0 & 0 & \dots \\ a_{02} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Definition 20. Define $B_+: \mathcal{D}_{P_+^*} \to \mathcal{D}_{P_+^*}$ by

$$(5.3) B_{+} \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{01} & 0 & 0 & \dots \\ a_{02} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} 2a_{01} & a_{02} & a_{03} & \dots \\ a_{02} & 0 & 0 & \dots \\ a_{03} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

for all $a_{0j} \in \mathbb{C}$, $j \ge 0$ with $|a_{00}|^2 + 2 \sum_{j=1}^{\infty} |a_{0j}|^2 < \infty$.

Lemma 21. The operator B_+ defined on $\mathcal{D}_{P_+^*}$ is the fundamental operator of (S_+^*, P_+^*) .

§5.3. Antisymmetric case

Every element $f \in H_-$ has the form $f(z_1, z_2) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{ij} z_1^i z_2^j$, where $a_{ij} \in \mathbb{C}$ and $a_{ij} = -a_{ji}$ for all $i, j \geq 0$. So we can write f in the matrix form

$$\begin{pmatrix} 0 & a_{01} & a_{02} & \dots \\ -a_{01} & 0 & a_{12} & \dots \\ -a_{02} & -a_{12} & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Lemma 22. The adjoints of S_{-} and P_{-} are

$$S_{-}^{*} \begin{pmatrix} 0 & a_{01} & a_{02} & \dots \\ -a_{01} & 0 & a_{12} & \dots \\ -a_{02} & -a_{12} & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} 0 & a_{02} & a_{12} + a_{03} & \dots \\ -a_{02} & 0 & a_{13} & \dots \\ -a_{12} - a_{03} & -a_{13} & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

and

$$P_{-}^{*} \begin{pmatrix} 0 & a_{01} & a_{02} & \dots \\ -a_{01} & 0 & a_{12} & \dots \\ -a_{02} & -a_{12} & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} 0 & a_{12} & a_{13} & \dots \\ -a_{12} & 0 & a_{23} & \dots \\ -a_{13} & -a_{23} & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

The defect space of P_{-}^{*} in matrix form is

$$\mathcal{D}_{P_{-}^{*}} = \left\{ \begin{pmatrix} 0 & a_{01} & a_{02} & \dots \\ -a_{01} & 0 & 0 & \dots \\ -a_{02} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} : a_{0j} \in \mathbb{C}, j \geq 1 \text{ with } 2 \sum_{j=1}^{\infty} |a_{0j}|^{2} < \infty \right\}.$$

The defect space in function form is $\overline{\operatorname{span}}\{z_1^i-z_2^i:i\geq 1\}$ and the defect operator is

$$D_{P_{-}^{*}} \begin{pmatrix} 0 & a_{01} & a_{02} & \dots \\ -a_{01} & 0 & a_{12} & \dots \\ -a_{02} & -a_{12} & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} 0 & a_{01} & a_{02} & \dots \\ -a_{01} & 0 & 0 & \dots \\ -a_{02} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Definition 23. Define $B_-: \mathcal{D}_{P^*} \to \mathcal{D}_{P^*}$ by

$$(5.4) B_{-} \begin{pmatrix} 0 & a_{01} & a_{02} & \dots \\ -a_{01} & 0 & 0 & \dots \\ -a_{02} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} 0 & a_{02} & a_{03} & \dots \\ -a_{02} & 0 & 0 & \dots \\ -a_{03} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

for all $a_{0j} \in \mathbb{C}$, $j \geq 1$ with $2 \sum_{j=1}^{\infty} |a_{0j}|^2 < \infty$.

Lemma 24. B_{-} is the fundamental operator of (S_{-}^{*}, P_{-}^{*}) .

§5.4. Explicit unitary equivalence

The three spaces $H^2(\mathbb{D}^2)$, H_+ and H_- described above provide us with examples of Γ -isometries. The respective operator pairs (S,P), (S_+,P_+) and (S_-,P_-) are pure Γ -isometries. Agler and Young in [2, Thm. 3.2] proved that any pure Γ -isometry is unitarily equivalent to (M_{φ},M_z) on $H^2_{\mathcal{E}}(\mathbb{D})$ for some Hilbert space \mathcal{E} . Moreover, φ is linear. It was shown later in [5, Thm. 3.1] that \mathcal{E} can be taken to be \mathcal{D}_{P^*} and $\varphi(z) = B^* + Bz$, where $B \in \mathcal{B}(\mathcal{D}_{P^*})$ is the fundamental operator of the Γ -coisometry (S^*,P^*) . In the final theorem of this paper, we explicitly find the unitary operators that implement unitary equivalence for the pure Γ -isometries (S,P), (S_+,P_+) and (S_-,P_-) .

Theorem 25. The three unitary operators are described separately below.

- (a) The unitary operator $U: H^2(\mathbb{D}^2) \to H^2_{\mathcal{D}_{P^*}}(\mathbb{D})$ that satisfies $U^*M_{B^*+zB}U = S$ and $U^*M_zU = P$ is $Uf(z) = D_{P^*}(I zP^*)^{-1}f$.
- (b) The unitary operator $U_+: H_+ \to H^2_{\mathcal{D}_{P^*}}(\mathbb{D})$ that satisfies

$$U_{+}^{*}M_{B_{+}^{*}+zB_{+}}U_{+} = S_{+}$$
 and $U_{+}^{*}M_{z}U_{+} = P_{+}$

is simply the restriction of the U above to H_+ .

(c) The unitary operator $U_-: H_- \to H^2_{\mathcal{D}_{P^*}}(\mathbb{D})$ that satisfies

$$U_{-}^{*}M_{B^{*}+zB_{-}}U_{-} = S_{-}$$
 and $U_{-}^{*}M_{z}U_{-} = P_{-}$

is the restriction of U to H_- .

Proof. (a) First note that the function $z \mapsto D_{P^*}(I - zP^*)^{-1}f$ is a holomorphic function on \mathbb{D} , for every $f \in H^2(\mathbb{D}^2)$. Its Taylor series expansion is

$$D_{P^*}(I - zP^*)^{-1}f$$

= $D_{P^*}(I + zP^* + z^2P^{*2} + \cdots)f$

$$= D_{P^*}f + zD_{P^*}P^*f + z^2D_{P^*}P^{*2}f + \cdots$$

$$= \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & 0 & 0 & \dots \\ a_{20} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} + z \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots \\ a_{21} & 0 & 0 & \dots \\ a_{31} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} + z^2 \begin{pmatrix} a_{22} & a_{23} & a_{24} & \dots \\ a_{32} & 0 & 0 & \dots \\ a_{42} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} + \cdots$$

To see that U is an isometry, we do a norm computation:

$$||Uf||_{H^{2}_{\mathcal{D}_{P^{*}}}(\mathbb{D})}^{2} = ||D_{P^{*}}f||_{\mathcal{D}_{P^{*}}}^{2} + ||D_{P^{*}}P^{*}f||_{\mathcal{D}_{P^{*}}}^{2} + ||D_{P^{*}}P^{*2}f||_{\mathcal{D}_{P^{*}}}^{2} + \cdots$$

$$= ||f||^{2} - \lim_{n \to \infty} ||P^{*n}f||^{2} = ||f||_{H^{2}(\mathbb{D}^{2})}^{2} \quad \text{[since } P \text{ is pure]}.$$

From equation (5.5) it is easy to see that U is onto $H^2_{\mathcal{D}_{P^*}}(\mathbb{D})$. Therefore U is unitary.

We now show that $U^*M_zU = P$:

$$U^*M_zU\begin{pmatrix} a_{00} & a_{01} & a_{02} \dots \\ a_{10} & a_{11} & a_{12} \dots \\ a_{20} & a_{21} & a_{22} \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = U^*\begin{pmatrix} z \begin{pmatrix} a_{00} & a_{01} & a_{02} \dots \\ a_{10} & 0 & 0 \dots \\ a_{20} & 0 & 0 \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} + z^2 \begin{pmatrix} a_{11} & a_{12} & a_{13} \dots \\ a_{21} & 0 & 0 \dots \\ a_{31} & 0 & 0 \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$+z^3 \begin{pmatrix} a_{22} & a_{23} & a_{24} \dots \\ a_{32} & 0 & 0 \dots \\ a_{42} & 0 & 0 \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} + \dots$$

$$= \begin{pmatrix} 0 & 0 & 0 & 0 \dots \\ 0 & a_{00} & a_{01} & a_{02} \dots \\ 0 & a_{10} & a_{11} & a_{12} \dots \\ 0 & a_{20} & a_{21} & a_{22} \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = P \begin{pmatrix} a_{00} & a_{01} & a_{02} \dots \\ a_{10} & a_{11} & a_{12} \dots \\ a_{20} & a_{21} & a_{22} \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

From the definition of B (Definition 17), one can easily find that for all a_{j0} , $a_{0j} \in \mathbb{C}, j = 0, 1, 2, \ldots$ with $|a_{00}|^2 + \sum_{j=1}^{\infty} |a_{0j}|^2 + \sum_{j=1}^{\infty} |a_{j0}|^2 < \infty$,

$$(5.6) B^* \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & 0 & 0 & \dots \\ a_{20} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} 0 & a_{00} & a_{01} & \dots \\ a_{00} & 0 & 0 & \dots \\ a_{10} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

To show that $U^*M_{B^*+zB}U=S$, we first calculate $M_{B^*+zB}U$. Now

$$\begin{split} M_{B^*+zB}U \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & a_{11} & a_{12} & \dots \\ a_{20} & a_{21} & a_{22} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ &= M_{B^*+Bz} \begin{pmatrix} \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & 0 & 0 & \dots \\ a_{20} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} + z \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots \\ a_{21} & 0 & 0 & \dots \\ a_{31} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ &+ z^2 \begin{pmatrix} a_{22} & a_{23} & a_{24} & \dots \\ a_{32} & 0 & 0 & \dots \\ a_{42} & 0 & 0 & \dots \\ a_{20} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ &= M_{B^*} \begin{pmatrix} \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & 0 & 0 & \dots \\ a_{20} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ &+ z^2 \begin{pmatrix} a_{22} & a_{23} & a_{24} & \dots \\ a_{32} & 0 & 0 & \dots \\ a_{42} & 0 & 0 & \dots \\ a_{42} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ &+ M_{B} \begin{pmatrix} z \begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & 0 & 0 & \dots \\ a_{42} & 0 & 0 & \dots \\ a_{20} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ &+ z^3 \begin{pmatrix} a_{22} & a_{23} & a_{24} & \dots \\ a_{32} & 0 & 0 & \dots \\ a_{32} & 0 & 0 & \dots \\ a_{42} & 0 & 0 & \dots \\ a_{42} & 0 & 0 & \dots \\ a_{42} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ &+ z^3 \begin{pmatrix} a_{22} & a_{23} & a_{24} & \dots \\ a_{32} & 0 & 0 & \dots \\ a_{42} & 0 & 0 & \dots \\ a_{42} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ &= \begin{pmatrix} \begin{pmatrix} 0 & a_{00} & a_{01} & \dots \\ a_{20} & 0 & 0 & \dots \\ a_{42} & 0 & 0 & \dots \\ a_{10} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ &+ z \begin{pmatrix} 0 & a_{11} & a_{12} & \dots \\ a_{11} & 0 & 0 & \dots \\ a_{21} & 0 & 0 & \dots \\ a_{21} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ &= \begin{pmatrix} \begin{pmatrix} 0 & a_{00} & a_{01} & \dots \\ a_{10} & 0 & 0 & \dots \\ a_{11} & 0 & 0 & \dots \\ a_{21} & 0 & 0 & \dots \\ a_{21} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ &= \begin{pmatrix} \begin{pmatrix} 0 & a_{00} & a_{01} & \dots \\ a_{10} & 0 & 0 & \dots \\ a_{21} & 0 & 0 & \dots \\ a_{21} & 0 & 0 & \dots \\ a_{21} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ &= \begin{pmatrix} \begin{pmatrix} 0 & a_{11} & a_{12} & \dots \\ a_{11} & 0 & 0 & \dots \\ a_{21} & 0 & 0 & \dots \\ a_{21} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ &= \begin{pmatrix} \begin{pmatrix} 0 & a_{01} & a_{01} & \dots \\ a_{11} & 0 & 0 & \dots \\ a_{21} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ &= \begin{pmatrix} \begin{pmatrix} 0 & a_{01} & a_{02} & \dots \\ a_{11} & 0 & 0 & \dots \\ a_{21} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ &= \begin{pmatrix} \begin{pmatrix} 0 & a_{01} & a_{02} & \dots \\ a_{11} & 0 & 0 & \dots \\ a_{21} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ &= \begin{pmatrix} \begin{pmatrix} 0 & a_{01} & a_{02} & \dots \\ a_{11} & 0 & 0 & \dots \\ a_{21} &$$

$$+z^{2}\begin{pmatrix}0&a_{22}&a_{23}&\ldots\\a_{22}&0&0&\ldots\\\vdots&\vdots&\vdots&\ddots\end{pmatrix}+\cdots\\+\left(z\begin{pmatrix}a_{10}+a_{01}&a_{02}&a_{03}&\ldots\\a_{20}&0&0&\ldots\\a_{30}&0&0&\ldots\\\vdots&\vdots&\vdots&\ddots\end{pmatrix}+z^{2}\begin{pmatrix}a_{21}+a_{12}&a_{13}&a_{14}&\ldots\\a_{31}&0&0&\ldots\\a_{41}&0&0&\ldots\\\vdots&\vdots&\vdots&\ddots\end{pmatrix}+z^{3}\begin{pmatrix}a_{32}+a_{23}&a_{24}&a_{25}&\ldots\\a_{42}&0&0&\ldots\\a_{52}&0&0&\ldots\\\vdots&\vdots&\vdots&\ddots\end{pmatrix}+\cdots\\+z^{3}\begin{pmatrix}0&a_{00}&a_{01}&\ldots\\a_{52}&0&0&\ldots\\a_{10}&0&0&\ldots\\\vdots&\vdots&\vdots&\ddots\end{pmatrix}+z\begin{pmatrix}a_{10}+a_{01}&a_{11}+a_{02}&a_{12}+a_{03}&\ldots\\a_{20}+a_{11}&0&0&\ldots\\a_{30}+a_{21}&0&0&\ldots\\\vdots&\vdots&\vdots&\ddots\end{pmatrix}+z^{2}\begin{pmatrix}a_{21}+a_{12}&a_{22}+a_{13}&a_{23}+a_{14}&\ldots\\a_{31}+a_{22}&0&0&\ldots\\a_{41}+a_{32}&0&0&\ldots\\\vdots&\vdots&\vdots&\ddots\end{pmatrix}+\cdots$$

Therefore

$$U^*M_{B^*+Bz}U\begin{pmatrix} a_{00} & a_{01} & a_{02} & \dots \\ a_{10} & a_{11} & a_{12} & \dots \\ a_{20} & a_{21} & a_{22} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$=U^*\begin{pmatrix} 0 & a_{00} & a_{01} & \dots \\ a_{00} & 0 & 0 & \dots \\ a_{10} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} + z\begin{pmatrix} a_{10} + a_{01} & a_{11} + a_{02} & a_{12} + a_{03} & \dots \\ a_{20} + a_{11} & 0 & 0 & \dots \\ a_{30} + a_{21} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$+ z^2\begin{pmatrix} a_{21} + a_{12} & a_{22} + a_{13} & a_{23} + a_{14} & \dots \\ a_{31} + a_{22} & 0 & 0 & \dots \\ a_{41} + a_{32} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} + \cdots$$

$$\vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Therefore $S = U^*M_{B^*+Bz}U$. Surjectivity of $U|_{H_+}$ and $U|_{H_-}$ can be easily checked. The rest of the argument is as above.

Acknowledgements

The authors' research is supported by Department of Science and Technology, India through the project numbered SR/S4/MS:766/12 and University Grants Commission Centre for Advanced Studies. We are particularly thankful to the referee for valuable input.

References

- J. Agler, Rational dilation on an annulus, Ann. of Math. 121 (1985), 537–563.
 Zbl 0609.47013 MR 0794373
- [2] J. Agler and N. J. Young, A model theory for Γ -contractions, J. Operator Theory **49** (2003), 45–60. Zbl 1019.47013 MR 1978320
- [3] T. Ando, On a pair of commutative contractions, Acta Sci. Math. (Szeged) 24 (1963), 88–90.Zbl 0116.32403 MR 0155193
- [4] T. Bhattacharyya, S. Pal and S. Shyam Roy, Dilations of Γ-contractions by solving operator equations, Adv. Math. 230 (2012), 577–606. Zbl 1251.47010 MR 2914959
- [5] T. Bhattacharyya and S. Pal, A functional model for pure Γ-contractions, J. Operator Theory 71 (2014), 327–339. Zbl 1324.47015 MR 3214641
- [6] T. Bhattacharyya and H. Sau, Explicit and unique construction of tetrablock unitary dilation in a certain case, Complex Anal. Oper. Theory 10 (2016), 749–768. Zbl 1344.47006 MR 3480602
- [7] H. K. Du and P. Jin, Perturbation of spectrum of 2 by 2 operator matrices, Proc. Amer. Math. Soc. 121 (1994), 761–766. Zbl 0814.47016 MR 1185266
- W. S. Li and D. Timotin, The central Ando dilation and related orthogonality properties,
 J. Funct. Anal. 154 (1998), 1–16. Zbl 0913.47008 MR 1616520
- [9] S. Pal, From Stinespring dilation to Sz.-Nagy dilation on the symmetrized bidisc and operator models, New York J. Math. 20 (2014), 645–664. Zbl 1314.47016 MR 3262025
- [10] S. Pal and O. Shalit, Spectral sets and distinguished varieties in the symmetrized bidisc, J. Funct. Anal. 266 (2014), 5779–5800. Zbl 1311.47008 MR 3182959
- [11] J. J. Schäffer, On unitary dilations of contractions, Proc. Amer. Math. Soc. 6 (1955), 322. Zbl 0064.11602 MR 0068740
- [12] B. Sz.-Nagy, C. Foias, H. Bercovici and L. Kérchy, Harmonic analysis of operators on Hilbert space, 2nd ed., Universitext, Springer, New York, 2010. Zbl 1234.47001 MR 2760647