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L-space surgeries on links
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Abstract. An L-space link is a link in S3 on which all large surgeries are L-spaces. In this

paper, we initiate a general study of the de�nitions, properties, and examples of L-space

links. In particular, we �nd many hyperbolicL-space links, including some chain links and

two-bridge links; from them, we obtain many hyperbolic L-spaces by integral surgeries,

including the Weeks manifold. We give bounds on the ranks of the link Floer homology

of L-space links and on the coe�cients in the multi-variable Alexander polynomials. We

also describe the Floer homology of surgeries on any L-space link using the link surgery

formula of Manolescu and Ozsváth. As applications, we compute the graded Heegaard

Floer homology of surgeries on 2-component L-space links in terms of only the Alexander

polynomial and the surgery framing, and give a fast algorithm to classifyL-space surgeries

among them.
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1. Introduction

1.1. Background on L-spaces. Heegaard Floer homology is a package of in-

variants for 3-manifolds and links introduced by Ozsváth and Szabó in [31].

It has many applications to topological questions. See [29, 34, 24, 27, 36, 40, 25].

An L-space is a rational homology sphere with the simplest Heegaard Floer ho-

mology. In this paper, for simplicity, we work in the �eld F D Z=2Z, and then we

use the following de�nition:

De�nition 1.1 (Z=2Z-L-space). A 3-manifold M is called an L-space, if it is a

rational homology sphere and dimF.cHF.M// D jH1.M/j.

Examples of L-spaces include all 3-manifolds with elliptic geometry and

double branched covers over quasi-alternating links. L-spaces are of interests

in 3-manifold topology. An L-space does not admit any co-oriented C 2 taut

foliations; see Theorem 1.4 from [29]. Examples of closed hyperbolic manifolds

admitting no taut foliations are very interesting and �rst found in [38] and [4]

by considering their fundamental groups. In fact, any hyperbolic Z=2Z-L-space

also provides an example of hyperbolic manifold admitting no co-oriented taut

foliations. This is because in the proof of Theorem 1.4 of [29], it is pointed out

that any Z=pZ-L-space does not admit a co-oriented taut foliation for all prime

numbers p. There is also a conjecture of Boyer, Gordon, and Watson from [2]

relating L-spaces with left-orderability of the fundamental group.

In [32],L-space knots were introduced by Oszváth and Szabó, in order to study

the Berge conjecture on lens space surgeries on knots in S3. For further results

towards the Berge conjecture, see [10, 11].

De�nition 1.2 (L-space knot). A knotK � S3 is called an L-space knot, if there

is a positive integer n, such that the n-surgery on K is an L-space.

Since every 3-manifold is a surgery on a link in S3, one can study L-spaces by

surgeries on links. In this paper, we focus on a class of links called L-space links,

whose large surgeries are all L-spaces. These links are natural generalizations of

L-space knots. The terminology of L-space links was introduced by Gorsky and

Némethi in [9] to study algebraic links. Actually, Ozsváth, Stipsicz and Szabó have

shown that all plumbing trees areL-space links in [37]. The surgeries on algebraic

links and plumbing trees are all graph manifolds. In this paper, we give many

examples of hyperbolicL-space links, including some families of two-bridge links

and chain links. In turn, these hyperbolicL-space links provide many examples of

hyperbolic L-spaces, including the famous Weeks manifold; see Section 3. All of

these hyperbolicL-spaces are derived from elliptic L-spaces, by using the surgery

exact triangle of Floer homology.
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It turns out that L-space links are rich in geometry and simple in algebra. All

the generalized Floer complexes are chain homotopy equivalent to FŒŒU �� and the

link Floer homology are controlled by their Alexander polynomials; see Sections 4

and 5. Moreover, there are L-space links of all kinds of geometry with arbitrarily

many components, including non-prime links, torus links, satellite links, and

hyperbolic links; see Example 1.13. There are also non-�bered prime L-space

links, contrasting L-space knots.

Here, all the links are oriented links in S3, and all Floer complexes are of the

completed version, meaning over the completion FŒŒU ��.

1.2. L-space knots. Examples and properties ofL-space knots have been exten-

sively studied in the literature. We list some of them here.

Example 1.3. Examples of L-space knots include lens space knots such as Berge

knots (up to mirror), algebraic knots (which are torus knots and their cables), and

.�2; 3; q/ pretzel knots with q > 1 odd (which are hyperbolic). See [32, 12, 15, 1].

Fact 1.4. In [36], it is shown that a positive rational L-space surgery implies a

positive integer L-space surgery; a positive integer L-space surgery implies that

all large surgeries are L-spaces.

Fact 1.5 ([32]). IfK is an alternatingL-space knot, thenK is a T .2; 2nC1/ torus

knot.

Fact 1.6 ([24]). An L-space knot is a �bered knot.

Fact 1.7 ([32]). Let K be an L-space knot. The knot Floer homology 1HFK.K/ is

determined by the Alexander polynomial of K, and rank.1HFK.K; s// � 1, for all

s 2 Z.

These properties provide strong constraints on L-space knots. However, it

turns out that none of the above properties extends to L-space links immediately.

1.3. L-space links. In [9], Gorsky and Némethi de�neL-space links in terms of

large surgeries.

De�nition 1.8 (L-space link). An l-component link L � S3 is called an L-space

link, if all of its positive large surgeries are L-spaces, that is, there exist integers

p1; : : : ; pl , such that S3
n1;:::;nl

.L/ is an L-space for all n1; : : : ; nl with ni > pi , for

all 1 � i � l . Note that whether L is an L-space link does not depend on the

orientation of L. A link L is called a non-L-space link, if neither L nor its mirror

is an L-space link.
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The large surgeries on the link L are governed by the generalized Floer com-

plexesA�
s .L/’s with s 2 H.L/, which were introduced by Manolescu and Ozsváth

in [20]. Here, H.L/ is de�ned below. Also, see De�nition 2.1 for the generalized

Floer complexes.

De�nition 1.9 (H.L/). For an oriented link Lwith l components, we de�ne H.L/

to be the a�ne lattice over Zl ,

H.L/ D
lM

iD1

H.L/i ; H.L/i D ZC lk.Li ; L� Li /

2
:

Based on the knowledge of A�
s .L/, we have the following necessary condition

on L-space links.

Lemma 1.10. If L is an L-space link, then all sublinks of L are L-space links.

We also describe L-space links in three other equivalent ways, which are easy

to use. To this end, we study the relation between L-space surgeries and large

surgeries on links. Using the L-space surgery induction lemma (Lemma 2.5) and

the generalized Floer complexes, we prove the following result.

Proposition 1.11. The following conditions are equivalent:

(i) L is an L-space link;

(ii) there exists a surgery framingƒ.p1; : : : ; pl /, such that for all sublinkL0 � L,

det.ƒ.p1; : : : ; pl/jL0/ > 0 and S3
ƒjL0

.L0/ is an L-space (notice that at this

time ƒ is positive de�nite);

(iii) H�.A�
s .L// D FŒŒU ��, for all s 2 H.L/;

(iv) H�.yAs.L// D F, for all s 2 H.L/.

Using grid diagrams as in [21], one can compute A
�
s combinatorially and

check condition (iii) or (iv). On the other hand, for special class of links, it is

more convenient to use condition (ii). For instance, it follows immediately that an

algebraically split link is an L-space link if and only if it admits a positive surgery

ƒ such that the surgeries restricted to sublinks are all L-spaces. Note that if we

work with Z coe�cients, conditions (i) and (ii) are also equivalent.

In contrast to Fact 1.4, a single L-space surgery (with positive surgery co-

e�cients) on L fails to imply that all the large surgeries on L are L-spaces.

See Example 2.4. It leads us to de�ne weak L-space links.
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De�nition 1.12 (weak L-space link). A link L is called a weak L-space link,

if there exists an L-space surgery on L.

There are generalizations ofL-space links, called generalized .˙� � �˙/L-space

links, by considering the corresponding types of generalized large surgeries.

There are also parallel theories of A
�
s for generalized large surgeries and the

link surgery formula. See Section 2. An L-space link is literally a generalized

.C � � �C/L-space link. Note that there are generalized .C�/L-space links that are

non-L-space links.

Example 1.13. We have the following examples of L-space links and generalized

L-space links.

(A) Split disjoint unions of L-space knots are L-space links.

(B) Two-bridge links b.rq � 1;�q/ with r; q being positive odd integers are all

L-space links, which include T .2; 2n/ torus links. See Theorem 3.8. Note

that except for T .2; 2n/, they are all hyperbolic links.

(C) A 2-component L-space link: L7n1 in the Thistlethwaite link table. See

Example 3.17.

(D) Some 3-componentL-space links: Borromean rings,L6a5,L6n1, L7a7 and

a link in Example 3.3. See Example 3.17.

(E) A hyperbolic 4-chain L-space link. See Example 3.12.

(F) A hyperbolic 5-chain generalized .C C C C �/L-space link. See Exam-

ple 3.13.

(G) Two families of hyperbolic L-space chain links. See Example 3.14 and Ex-

ample 3.15.

(H) A sequence of plumbing graphs that are generalized L-space links. See

Example 3.16.

(I) All plumbing trees of unknots areL-space links. This was proved by Ozsváth

and Szabó in [28]. See Example 3.10.

(J) All algebraic links are L-space links. This was proved by Gorsky and

Némethi in [9].

(K) See Table 3.2 for the list of which links with crossing number� 7 areL-space

links.
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In contrast to Fact 1.5, there are alternating hyperbolic L-space links, for ex-

ample, all two-bridge links b.rq � 1;�q/ with r; q > 1 being positive odd inte-

gers. Surgeries on these hyperbolicL-space links can give examples of hyperbolic

L-spaces which are neither surgery nor double branched cover over any knot. See

Example 3.1. In fact, surgeries on these L-space two-bridge links are always dou-

ble branched covers over some links. It is not clear to us whether those links are

quasi-alternating or not.

In relation to Example 1.13 (B), we make the following conjecture:

Conjecture 1.14. The set of all L-space two-bridge links is

¹b.rq � 1;�q/W r; q are positive odd integersº:

Using the algorithm from [18] for computing yAs.L/ for two-bridge links,

we verify that Conjecture 1.14 is true for all two-bridge links b.p; q/with p � 100:
Compared with Fact 1.7, we study the Alexander polynomials of L-space links

using A
�
s .L/.

Theorem 1.15. Suppose L is an l-component L-space link with l � 2, and has

the multi-variable Alexander polynomial as follows

�L.x1; : : : ; xl/ D
X

i1;:::;il

ai1;:::;il � x
i1
1 � � �x

il
l
:

Then,

rankF.HFL�.L; s// � 2l�1; for all s 2 H.L/; (1.1)

�2l�2 � ai1;:::;il � 2l�2; for all i1; : : : ; il : (1.2)

In particular, for a 2-component L-space link, the multi-variable Alexander

polynomial has non-zero coe�cients ˙1. Moreover, �xing i1, the signs of non-

zero ai1;�’s are alternating; similarly �xing i2, the signs of non-zero a�;i2’s are

alternating.

Remark 1.16. Inequality (1.1) is sharp for l D 2. For example, for the Whitehead

link Wh, HFL�.Wh; 0; 1/ equals to F˚ F. Inequality (1.1) can also be deduced

from a spectral sequence of Gorsky and Némethi from [9].

Inequality (1.2) is sharp for l D 3. The mirror of L7a7 is an L-space link with

Alexander polynomial

�L7a7.u; v; w/D
uvw � uv � uw C 2u� 2vwC v C w � 1p

uvw
:
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In contrast to knots, the Alexander polynomial condition does not give strong

constraints for alternating links. In [32], it is shown that if K is an alternating

knot with Alexander polynomial satisfying the condition in Fact 1.7, then K is a

T .2; 2nC 1/ torus knot; see Proposition 4.2 and Theorem 4.3. On the other hand,

we �nd in�nitely many hyperbolic alternating links with multi-variable Alexander

polynomial satisfying inequality (1.2), including L-space links and non-L-space

links. See Section 4.2.

Theorem 1.15 also implies that a Floer homologically thin L-space 2-compo-

nent link L has �bered link exterior.

In contrast to Fact 1.6, there are non-�bered L-space links. For example, the

split disjoint union of two L-space knots is a non-�bered L-space link, since the

complement is not irreducible any more. In fact, there are also many non-�bered

L-space links among hyperbolic two-bridge links. See Example 3.9.

Actually, there are additional constraints on the Alexander polynomials of an

L-space link; see Theorem 5.11 and Theorem 5.13 below for the precise statements.

As a consequence, either of these theorems implies that L7n2 is not an L-space

link, while Theorem 1.15 fails to do so.

1.4. Surgeries on L-space links. Despite many algorithms on computing var-

ious versions of Heegaard Floer homology, explicit computations of plus/minus

versions for 3-manifold invariants have only been done on a few cases, such as

surgeries on knots and some mapping tori of surfaces, by exploiting surgery exact

triangles. In [13], Hom pointed out that the result from [32] further implies that

the whole package of Heegaard Floer homology of surgeries on an L-space knot

K is determined by the Alexander polynomial of K and the surgery coe�cients.

In this paper, we study the computation of Heegaard Floer invariants for

integral surgeries on an L-space link L, including the completed Heegaard Floer

homology HF�, absolute gradings, and the cobordism maps, using the link surgery

formula of Manolescu–Ozsváth from [20]. The Manolescu–Ozsváth surgery

complex is an object in the category of chain complexes of FŒŒU ��-modules, while

it can also be considered as an object in the homotopy category of chain complexes

of FŒŒU ��-modules. In [18], any representative in this chain homotopy equivalence

class is called a perturbed surgery complex. Some algebraic rigidity results are

established in [18], which imply that A�
s .L/ is chain homotopic to FŒŒU �� by a

FŒŒU ��-linear chain map preserving the Z-grading.
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Thus, for an L-space link L, the perturbed surgery complex turns out to be

largely simpli�ed. When L has 1 or 2 components, all the information needed

in the perturbed surgery complex is completely determined by the Alexander

polynomial and the surgery framing matrix.

Theorem 1.17. For a 2-component L-space link
�!
L D �!L 1 [

�!
L 2, all Heegaard

Floer homology HF�.S3
ƒ.L// together with the absolute gradings on them are

determined by the following set of data:

� the multi-variable Alexander polynomial �L.x; y/,

� the Alexander polynomials �L1
.t / and �L2

.t /,

� the framing matrix ƒ.

Remark 1.18. For L-space links with more components, besides the Alexander

polynomials more information is needed to determine whether the higher diagonal

maps vanish or not.

Furthermore, we explicitly describe cHF of surgeries on an L-space link L D
L1 [ L2 by a series of formulas in terms of the Alexander polynomials and

the surgery framing matrix. These formulas give a fast algorithm computing
cHF of these surgeries. We also give a fast algorithm for classifying L-space

surgeries. As an application, we study the classi�cation of L-space surgeries

on two-bridge links, and compute some examples explicitly: .1; 1/-surgery on a

family of L-space links with linking number zero, Ln D b.4n2 C 4n;�2n� 1/.
Instead of classifyingL-space links with more than 2 components, we contend

to show the prevalence of surgeries on L-space links among 3-manifolds:

Question 1.19. Is every 3-manifold a surgery on a (generalized) L-space link?

If Question 1.19 had a positive answer, one could hope to compute Heegaard

Floer homology by L-space links. As a matter of fact, every 3-manifoldM can be

realized by a surgery on an algebraically split link after connect sum with several

lens spaces; see Corollary 2.5 from [26]. It is also interesting to ask whether this

algebraically split link can be chosen to be a generalized L-space link.

Regarding L-space surgeries, there is a more basic question:

Question 1.20. Is every L-space a surgery on a (generalized) L-space link?
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1.5. Organization and conventions. This paper is organized as follows. In

Section 2, we discuss the properties of L-space links and generalized L-space

links. In Section 3, we present examples of L-space links and contrast them

with L-space knots. Section 4 consists of the proof of Theorem 1.15 and related

discussions on �beredness of L-space links. In Section 5, we prove Theorem 1.17.

In Section 6, we give the algorithm for computing cHF of surgeries on 2-component

L-space links and compute some examples.

Since L-space links are sensitive to mirrors and the generalized Floer com-

plexes are de�ned for oriented links, we describe our conventions about oriented

two-bridge links b.p; q/ and oriented torus links T .2; 2n/ in Section 3. In addi-

tion, the Floer complex CF�.S3/ is absolutely Z-graded, and the top grading is 0.

This convention is needed to compute the d -invariants from link surgery formula

using minus version Floer complexes.

Acknowledgements. I deeply appreciate Ciprian Manolescu for providing won-

derful insights and for his continuing encouragements as my advisor. Some of

the ideas in this paper have originated from Matthew Hedden, in particular, The-

orem 1.15. Especially I wish to thank the referee for his careful reading and nu-

merous suggestions and corrections. I am also grateful to Jiajun Wang for guiding

me to L-space surgeries, to Yi Ni for helpful conversations on �beredness, to Tye

Lidman for inspiring comments on chain links, to Thomas Mark and Bulent Tosun

for inspiring comments on the Weeks manifold. I am informed that some results

in this paper such as Theorem 1.15 have been obtained by Nakul Dawra indepen-

dently.

2. L-space links

In this section, we study the large L-space surgeries on a link L. Then, we

introduce various notions of L-space links.

2.1. L-space links. Let us recall the de�nition of generalized Floer complexes

of a link L in S3 in [20] Section 4, which govern the large surgeries on L. For

simplicity, we only consider generic admissible multi-pointed Heegaard diagrams

with each component Li having only two basepoints wi ; zi . Here, we allow free

basepoints.
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De�nition 2.1 (generalized Floer complexes). Let L be a link in S3 and choose a

Heegaard diagram H. For s 2 H.L/, the generalized Floer complex A
�.H; s/ is

the free module over R D FŒŒU1; : : : ; Ul �� generated by T˛\Tˇ 2 SymgCk�1.†/,

and equipped with the di�erential:

@�
s x D

X

y2T.˛/\T.ˇ/

X

�2�2.x;y/

�.�/D1

#.M.�/=R/ � UE1
s1

.�/

1 � � �UE l
sl

.�/

l

� U nwlC1
.�/

lC1
� � �U nwk

.�/

k
� y;

(2.1)

where Ei
s.�/ is de�ned by

Ei
s.�/ D max¹s � Ai .x/; 0º �max¹s � Ai .y/; 0º C nzi

.�/

D max¹Ai.x/ � s; 0º �max¹Ai.y/ � s; 0º C nwi
.�/:

(2.2)

Here, M.�/ denotes the moduli space of the pseudo-holomorphic disks in the

homotopy class �, andAi .x/ denotes the i th Alexander grading of the intersection

point x: The stable quasi-isomorphism type of A�.H; s/ is an invariant of L. For

simplicity, we also write A�.L; s/, A�
s .L/, or A�

s , when the context is clear.

Notation 2.2. Let L be an l-component link in S3. In order to simplify the

notation, we denote the .p1; : : : ; pl/-surgery on L by S3
p1;:::;pl

.L/ and the surgery

framing matrix byƒ.p1; : : : ; pl/, where p1; : : : ; pl are surgery coe�cients on the

link; i.e. ƒ.p1; : : : ; pl/ is the matrix with p1; : : : ; pl on the diagonal and linking

numbers o� the diagonal.

Proof of Lemma 1.10. First, let us recall Theorem 10.1 in [20].

Theorem 2.3. Let zƒ be a surgery framing on the link L. For zƒ su�ciently large,

there exist quasi-isomorphisms of relative Z-graded complexes

CF�.S3
zƒ.L/; s/ �! A

�
s .L/

for all s.

Thus, L is an L-space link if and only if A
�
s .L/ has the homology FŒŒU ��

for all s 2 H.L/. When the i th component of s, say si , equals to C1, there is a

destabilization map between A
�.L; s/ andA

�.L�Li ;  
CLi .s//, which is a quasi-

isomorphism. See Example 7.2 in [20]. Roughly, this is because the generalized

Floer complexes of L � Li can be computed from the Heegaard diagram of L

by deleting the basepoint zi , which is the same as putting si D C1 in A
�.L; s/.

Thus, A�.L � Li ; s
0/ has homology FŒŒU �� for all s0 2 H.L � Li /. So L � Li is

an L-space link for Li � L: An induction will show that all sublinks are L-space

links. �
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In contrast to knots, a weak L-space link L might be a non-L-space link.

Example 2.4. LetL D L1[L2 be the link consisting of a Figure-8 knotL1 and an

unknot L2 as in Figure 2.1. Then by blowing down the unknot, the Figure-8 knot

is then unknotted, and thus the surgery S3
n;1.L/ is the lens spaceL.n�4; 1/, when

n ¤ 4. However, the Figure-8 knot is not an L-space knot. Thus, by Lemma 1.10,

L is a weak L-space link but not an L-space link. Similarly, the mirror of L is not

a L-space link neither.

L1

L2

n

C1

Figure 2.1. An example of weak L-space link.

2.2. L-space induction and generalized large surgeries. In this subsection,

we study how to characterize L-space links, by exploiting surgery exact triangles.

Lemma 2.5 (L-space surgery induction). Let L D L1 [ � � � [Ln be a link with n

components, and L0 D L � L1. Let ƒ be the framing matrix of L for the surgery

S3
p1;:::;pn

.L/, and denote by ƒ0 the restriction of ƒ on L0. Suppose S3
p1;:::;pn

.L/

and S3
p2;:::;pn

.L0/ are both L-spaces. Then,

Case I. if det.ƒ/ � det.ƒ0/ > 0, then for all k > 0, S3
p1Ck;p2;:::;pn

.L/ is an

L-space;

Case II. if det.ƒ/ � det.ƒ0/ < 0, then for all k > 0, S3
p1�k;p2;:::;pn

.L/ is an

L-space.
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Proof. Letƒk be the framing matrix of the surgery S3
p1Ck;p2;:::;pn

.L/. Notice that

det.ƒk/ D det.ƒ/C k det.ƒ0/.
For the case det.ƒ/ � det.ƒ0/ > 0, consider the following exact triangle of

surgeries:

cHF.S3
p1;p2;:::;pn

.L// cHF.S3
p1C1;p2;:::;pn

.L//

cHF.S3
p2;:::;pn

.L0//:

 !
 ! 

!

Thus, from that det.ƒ1/ D det.ƒ/ C det.ƒ0/, it follows that S3
p1C1;p2;:::;pn

.L/

is also an L-space. Iterating this argument for all k > 0, we can obtain that

S3
p1Ck;p2;:::;pn

.L/ is an L-space for all k � 0. The case where det.ƒ/ �det.ƒ0/ < 0
is similar. �

Lemma 2.6 (positive L-space surgery criterion). An l-component link L is an

L-space link if and only if there exists a surgery framing ƒ.p1; : : : ; pl/, such that

for all sublink L0 � L, det.ƒ.p1; : : : ; pl/jL0/ > 0 and S3
ƒjL0

.L0/ is an L-space.

In particular, if the surgery framing ƒ.p1; : : : ; pl/ satis�es the above condi-

tion, then for any surgery framing ƒ0 D ƒ.n1; : : : ; nl / with ni � pi for all i ,

the surgery S3
ƒ0.L/ is an L-space.

Proof. If L is an L-space link, then every sublink L0 is an L-space link, by

Lemma 1.10. Thus, there is a large .p1; : : : ; pl/-surgery on L such that for all

L0 � L, det.ƒ.p1; : : : ; pl// > 0 and S3
ƒjL0

.L0/ is an L-space.

Conversely, let ƒ.p1; : : : ; pl/ be the surgery framing satisfying the condition

in the proposition. Let ƒ0 D ƒ.p1; : : : ; pi C 1; : : : ; pl/. By the L-space surgery

induction lemma, we have that for all L0 � L, S3
ƒ0jL0

.L0/ is an L-space and

det.ƒ0jL0/ D det.ƒjL0/ C " det.ƒjL0�Li
/, where " D 1 if Li � L0 and " D 0

if Li ª L0. Thus, by induction, we can show that for any surgery framing

ƒ00 D ƒ.n1; : : : ; nl / with ni � pi , the surgery S3
ƒ00jL0

.L0/ is an L-space for

all sublinks L0 � L. In particular, S3
ƒ00.L/ is an L-space, and this �nishes the

proof. �

De�nition 2.7. A link is called algebraically split, if all the pairwise linking

numbers are 0.

Corollary 2.8. Let L D L1[ � � �[Ll be an algebraically split link. Then L is an

L-space link if and only if there exist pi > 0; i D 1; : : : ; l , such that S3
ƒjL0

.L0/ is

an L-space for all L0 � L, where ƒ D ƒ.p1; : : : ; pl/.



L-space surgeries on links 517

Proof of Proposition 1.11. Lemma 2.6 implies that condition (i) and (ii) are equiv-

alent. By Theorem 10.1 from [20], it follows L is an L-space link if and only if

A�
s .L/ has homology FŒŒU �� for all s 2 FŒŒU ��. Thus, condition (i) is equivalent

to (iii) as well as (iv). �

2.3. Generalized L-space links. We can enlarge our scope to generalized large

surgeries on a link L. Let us use ˙ signs to denote the type of the generalized

large surgeries.

De�nition 2.9 (generalized L-space links). A 2-component link L D L1 [ L2

is called a generalized .˙˙/L-space link, if there exist integers p1; p2, such that

for all positive integers k1; k2 > 0, S
3
p1˙k1;p2˙k2

.L/ is an L-space. Similarly, we

de�ne an l-component generalized .˙ � � �˙/L-space link.

Example 2.10. The split disjoint union of the left-handed trefoil and the right-

handed trefoil is a generalized .C�/L-space link. However, it is not an L-space

link, and neither is its mirror.

Let us look at some examples of 2-component generalized L-space links.

Proposition 2.11. Suppose L is a 2-component link L D L1 [ L2 with L1; L2

both being the unknots, and S3
p1;p2

.L/ is an L-space. Then,

(1) if p1p2 > lk2; p1 > 0; p2 > 0, then S3
p1Ck1;p2Ck2

.L/ are L-spaces for all

k1; k2 2 N;

(2) if p1p2 > lk2; p1 < 0; p2 < 0, then S3
p1�k1;p2�k2

.L/ are L-spaces for all

k1; k2 2 N;

(3) if p1 > 0; p2 < 0, then S3
p1Ck1;p2�k2

.L/ are L-spaces for all k1; k2 2 N;

(4) if p1p2 < lk2; p1 > 0; p2 > 0, then the surgeries S3
p1Ck1;�1�k2

.L/,

S3
�1�k1;p2Ck2

.L/ with k1 � 0; k2 � 0 and S3
p0

1
;p0

2

.L/ with 0 < p0
1 � p1,

0 < p0
2 � p2 are all L-spaces;

(5) if p1p2 < lk2; p1 < 0; p2 < 0, then the surgeries S3
p1�k1;k2

.L/; S3
k1;p2�k2

.L/

with k1 > 0; k2 > 0 and S3
p0

1
;p0

2

.L/ with 0 > p0
1 � p1; 0 > p0

2 � p2 are all

L-spaces.

The above cases are shown in Figure 2.2.
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Figure 2.2. We illustrate the cases of the .p1; p2/-surgeries in Proposition 2.11 on the

.p1; p2/ plane, where the case .30/ is similar to case .3/.

Proof. Cases (1), (2), and (3) are proved by induction using the long exact se-

quences for the surgery triple .S3
p;q.L/; S

3
pC1;q.L/; S

3
q .L2//.

Case (4). By Lemma 2.5, we have that S3
p1;�1.L/; S

3
�1;p2

.L/ are both L-space

spaces. From case (3), it follows that S3
p1Ck1;�1�k2

.L/; S3
�1�k1;p2Ck2

.L/ are all

L-spaces for all non-negative integers k1; k2: Second, we can do induction to prove

that S3
p0

1
;p0

2

.L/ with 0 < p0
1 � p1; 0 < p

0
2 � p2 are all L-spaces.

Case (5) is similar to case (4). �

Proposition 2.11 implies that ifL is a 2-component link with unknotted compo-

nents, then L is a weak L-space link if and only if L is a generalizedL-space link.

The following proposition gives another example of generalized L-space links.

Proposition 2.12. Let L be an algebraically split link. If there exists a surgery

framing ƒ.p1; : : : ; pl/ on L, such that for any sublink L0 � L, S3
ƒjL0

.L0/ is an

L-space, then L is a generalized L-space link of “�1 � � � �l”-type, where �i is the

sign of pi .
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3. Examples of L-space links and generalized L-space links

In this section, we use the lemmas and propositions in Section 2 to show some

examples of L-space links and generalized L-space links.

Example 3.1 (Two hyperbolic links: the Whitehead link and the Borromean

rings). The Whitehead link and the Borromean rings are two well-known hyper-

bolic links. In fact, they are both L-space links.

The .1; 1/-surgery on the Whitehead link is the Poincaré sphere. See Example 8

on p. 263 in [39]. The .1; 1; 1/-surgery on the Borromean rings is also the Poincaré

sphere. See Exercise 4 on p. 269 in [39]. By Corollary 2.8, they are both L-space

links.

Remark 3.2. There are no alternating hyperbolicL-space knots. See Theorem 4.3

below cited from [32]. However, Example 3.1 shows that there are L-space

alternating hyperbolic links. In fact, there are many, see Theorem 3.8.

Moreover, these hyperbolic links provide many examples of hyperbolic

L-spaces which are neither surgery over knots nor double branched cover over

knots. For example, surgeries on the Whitehead link S3
n;2n.Wh/ with n > 0 are

all L-spaces but not surgeries nor double branched cover on a knot. The reason is

that the �rst homology of these surgeries is neither cyclic nor of odd order.

Figure 3.1. The Borromean ring. The .1; 1; 1/-surgery on the Borromean link is the Poincaré

sphere.
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Example 3.3 (An L-space link providing the Weeks manifold). Consider the link

L D L1 [ L2 [ L3 in Figure 3.2, where L1 [ L2 is the Whitehead link (using

the convention in [39]) and L3 is the meridian of L2. The .1; 2; 1/-surgery is the

Poincaré sphere, and it satis�es the positive L-space surgery criterion. Thus, it is

an L-space link.

By Lemma 2.6, we have that for any n1 � 1; n2 � 2; n3 � 1, the .n1; n2; n3/-

surgery on L is an L-space. Thus, the .5; 3; 2/-surgery is an L-space, which is

the .5; 5=2/-surgery on the Whitehead link. This surgery is the Weeks manifold;

see [4]. The Weeks manifold has the smallest hyperbolic volume among closed

hyperbolic 3-manifolds; see [7]. Thus, we con�rm that the Weeks manifold does

not admit a taut foliation.

The fact that the Weeks manifold is an L-space was already known by experts

such as [14] and [5].

L1L2

L3

1

21

Figure 3.2. An L-space link giving the Weeks manifold.

Example 3.4 (T .2; 2n/ torus links). The oriented torus links T .2; 2n/ areL-space

links as Corollary 3.6 below shows. We need to distinguish them from their

mirrors, so see Figure 3.3 for the precise de�nitions of T .2; 2n/.
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Figure 3.3. The .nC 1; n � 1/-surgery on T .2; 2n/. Consider the surgery on the upper-left

link L, which is a plumbing of unknots. By blowing down the horizontal unknots Hi ’s,

we get the surgery on the lower-left link T .2; 2n/. While blowing down the black unknots

Vj ’s, we can get the surgery on the lower-right link, which is S3:

Lemma 3.5. For the torus links T .2; 2n/, we have the following identi�cations of

surgeries

S3
nC1;n�1.T .2; 2n// D S3; S3

nC1;nC1.T .2; 2n//

D L.2nC 1; 2/; S3
n;nC1.T .2; 2n//

D L.n; 1/:
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Proof. First, for the .nC1; n�1/-surgery on T .2; 2n/, we consider a surgery on the

upper-left link L in Figure 3.4, where L is a plumbing of unknots. After two dif-

ferent blowing-down procedures, we get the identi�cation of S3
nC1;n�1.T .2; 2n//

with S3.

Second, for the .n C 1; n C 1/-surgery on T .2; 2n/, we similarly consider a

di�erent surgery onL, which is drawn in Figure 3.4. After two di�erent processes

of doing Rolfsen twists, we can obtain the identi�cation of S3
nC1;nC1.T .2; 2n//

with L.2nC 1; 2/. See Figure 3.4. As is similar to the .nC 1; nC 1/-surgery, the

.n; nC 1/-surgery is L.n; 1/. �

Figure 3.4. The .nC 1; nC 1/-surgery on the T .2; 2n/ torus link. Consider the surgery on

upper-middle link L, which is a plumbing of unknots. After blowing down the horizontal

(blue) unknots Hi ’s, we get the .n C 1; n C 1/-surgery on the upper-left link T .2; 2n/.

While after doing Rolfsen twists on the black unknots Vj ’s, we can get a rational surgery

on the lower-middle linkM , which is a lens space by blowing-down the blue unknots using

Rolfsen twists again.
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Corollary 3.6. The following surgeries on the torus link T .2; 2n/are allL-spaces:

� S3
nC1Ck1;nC1Ck2

.T .2; 2n//, for all k1 � 0, k2 � 0,
� S3

nC1�k1;n�1
.T .2; 2n//, for all k1 � 0,

� S3
�1�k1;n�1Ck2

.T .2; 2n//, for all k1 � 0, k2 � 0,
� S3

n;q.T .2; 2n// with q ¤ n.

Proof. We combine Proposition 2.11 and Lemma 3.5.

� From the equality S3
nC1;nC1.T .2; 2n// D L.2n C 1; 2/, it follows that

S3
nC1Ck1;nC1Ck2

.T .2; 2n// are all L-spaces for k1; k2 � 0:

� From S3
nC1;n�1.T .2; 2n// D S3, it follows that S3

nC1�k1;n�1
.T .2; 2n// are all

L-spaces by Lemma 2.5. Thus, .�1; n�1/-surgery is an L-space, and so is any

S3
�1�k1;n�1Ck2

.T .2; 2n// with k1; k2 � 0.

� From S3
nC1;n�1.T .2; 2n// D S3, it follows that .n; n� 1/-surgery is an L-space

and thus all .n; q/-surgeries with q � n � 1 are L-spaces.

� From S3
n;nC1.T .2; 2n// D L.n; 1/; it follows that all .n; q/-surgery with

q � nC 1 are L-spaces.

�

Example 3.7 (algebraic links). Gorsky and Némethi showed in [9] that every

algebraic link is an L-space link. For example, torus links are algebraic links.

In [9], they also classify all the L-space surgeries on the T .pr; qr/ torus links,

with p; q � 2; r � 1: We also describe all possible L-space surgeries on the

T .2; 2n/ torus links; see Proposition 6.3.

The following theorem provides an in�nite set of two-bridge links, which

are hyperbolic L-space links. Before proving this theorem, let us clarify some

conventions for two-bridge links. First, the notation b.p; q/ denotes an oriented

two-bridge link of slope q
p

. For any continued fraction of q
p

:

q

p
D Œa1; a2; : : : ; am� D

1

a1 C
1

� � � C
1

am�1 C
1

am

;
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a 4-plat projection of b.p; q/ can be obtained in the following ways.

Figure 3.5. The two-bridge link b.6nC 2;�3/.

Case I. If m is odd, then the 4-plat is obtained by closing the 4-braid

B D �a1

2 �
�a2

1 � � ��am

2

in the way shown in Figure 3.6(a).

Case II. If m is even, then the 4-plat is obtained by closing the 4-braid

B D �a1

2 �
�a2

1 � � ���am

1

in the way shown in Figure 3.6(b).

Here, we follow [3] Chapter 12B. We prescribe an orientation on b.p; q/ shown in

Figure 3.6. Note that this orientation convention is di�erent from [3].

Theorem 3.8. For all positive odd integers r; q, the two-bridge link b.rq� 1;�q/
is an L-space link.
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Proof. Let r D 2nC 1 and q D 2k C 1: Let us do induction on k.

First, for k D 1, we need to show the family of two-bridge links b.6nC 2;�3/
drawn in Figure 3.5 are all L-space links. We claim that for any integer n � 1,

the .n C 2; n C 2/-surgery on the two-bridge link b.6n C 2;�3/ is an L-space.

Consider the 3-component link L D L1 [ L2 [ L3 drawn in Figure 3.7. We see

that L1 [ L2 is the T .2; 2n/ torus link with the linking number n. Now consider

the .n C 1; n C 1; 1/-surgery on L, S3
nC1;nC1;1.L/. By blowing down the .C1/-

framed component L3, we get the .n; n/-surgery on the T .2; 2nC 2/ torus link,

S3
n;n.T .2; 2nC2//, which is anL-space by Corollary 3.6. While the .nC1; nC1/-

surgery on the T .2; 2n/ torus link L1[L2, S3
nC1;nC1.L1[L2/, is also anL-space.

In addition, since

det

 nC 1 n 1

n nC 1 �1
1 �1 1

!
D �1� 2n;

det

�
nC 1 n

n nC 1

�
D 2nC 1;

from Lemma 2.5 it follows that the surgeries S3
nC1;nC1;0.L/; S

3
nC1;nC1;�1.L/

are both L-spaces. By blowing down the .�1/-framed component L3 on the

.nC1; nC1;�1/-surgery onL, we get the .nC2; nC2/-surgery on the two-bridge

link b.6nC 2;�3/: See Figure 3.8.

Figure 3.6. The 4-plat presentations of two-bridge links. For any continued fraction

Œa1; : : : ; am� D q=p, there is a 4-plat projection of the two-bridge link b.p; q/. When

m is odd, we use (a) to close the 4-braid B in the box; when m is even, we use (b) to close

the 4-braid B .
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Figure 3.7. A 3-component link used to study the surgeries on b.6nC 2;�3/. The left link

L is used to study the surgeries on b.6nC2;�3/. After blowing down the .�1/-framedL3,

we can get the two-bridge link b.6nC 2;�3/. While if we consider the .nC 1; nC 1; 1/-
surgery onL, after blowing down the .C1/-framed componentL3, we get the .n; n/-surgery

on T .2; 2nC 2/, which is an L-space.

n C 2 n C 2

b.6n C 2; 3/ ´

Figure 3.8. The .n C 2; n C 2/-surgery on the two-bridge link b.6n C 2;�3/. Consider

the .n C 1; n C 1;�1/-surgery on the left 3-component link L. After blowing down the

.�1/-framed component L3, we get the .n C 2; n C 2/-surgery on the two-bridge link

b.6nC 2;�3/.
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Since det
�

nC2 n�1

n�1 nC2

�
> 0 and nC 2 > 0, it follows from Lemma 2.5 that the

two-bridge links b.6nC 2;�3/ are all L-space links.

Fixing n, for k > 1, consider rational surgeries on the 3-component link L in

Figure 3.7, with a rational coe�cient on L3. Then we have an exact triangle for

the triple S3
nC1;nC1;0.L/, S

3
nC1;nC1;�1=k

.L/, and S3
nC1;nC1;�1=.kC1/

;

cHF.S3
nC1;nC1;0.L//

cHF.S3

nC1;nC1;� 1
k

.L//

cHF.S3

nC1;nC1;� 1
kC1

.L//:

 !
 ! 

!

We claim that S3

nC1;nC1;� 1
kC1

.L/ is an L-space for all positive integers k. We

have shown that S3
nC1;nC1;0.L/ is anL-space in the �rst step, and by the induction

hypothesis, we can assume S3

nC1;nC1;� 1
k

.L/ is an L-space. Moreover, we have

jH1.S
3

nC1;nC1;� 1
kC1

.L//j D jH1.S
3

nC1;nC1;� 1
k

.L//j C jH1.S
3
nC1;nC1;0.L//j;

since

jH1.S
3

nC1;nC1;� 1
k

.L//j D det

0
@
nC 1 n 1

n nC 1 �1
k �k �1

1
A

D �1� 2n� 2k � 4kn:

Hence, from the above exact triangle it follows that S3

nC1;nC1;� 1
kC1

.L/ is an

L-space.

Now by doing Rolfsen twists on L3, we get a .nC1Ck; nC1Ck/-surgery on

the two-bridge link b.pq � 1;�q/ D b.4knC 2kC 2n;�2k � 1/: See Figure 3.9.

Since the linking number of b.4knC2kC2n;�2k�1/ is˙.n�k/, the determinant

det
�

nC1Ck ˙.n�k/

˙.n�k/ nC1Ck

�
is positive. Thus, by Lemma 2.6, we get b.rq � 1;�q/ is an

L-space link for all positive odd integers r; q. �
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Figure 3.9. The .n C 1 C k; n C 1 C k/-surgery on the two-bridge link b.rq � 1;�q/
with r D 2n C 1; q D 2k C 1. Consider the .n C 1; n C 1;� 1

k
/-surgery on the left

3-component link L. After doing the Rolfsen twists on the .�1/-framed component L3,

we get the .nC 1C k; nC 1C k/-surgery on the two-bridge link b.rq � 1;�q/.

Example 3.9 (non-�bered hyperbolic L-space links). The two-bridge links

b.10n C 4;�5/ with n 2 N are L-space links, by Theorem 3.8. At least for

2 � n � 6, they are not �bered links, i.e., there does not exist any Seifert surface

F such that the link complement �bers over circle with �ber F . The �beredness

of links is detected by the knot Floer homology. See Corollary 1.2 in [24]: an

oriented link
�!
L in S3 is �bered if and only if the knot Floer homology 1HFK.

�!
L /

has a single copy of Z at the top Alexander grading. Thus, for a homologically

thin link L, the link L is �bered if and only if its single-variable Alexander poly-

nomial has leading coe�cient˙1. Note that two-bridge links are alternating and

thus homologically thin; see Theorem 1.3 in [33]. We compute the multi-variable

polynomials�L.x; y/ using the algorithm in [18] , and plug both .t; t / and .t; t�1/

for .x; y/ so as to get the single-variable Alexander polynomials with both possi-

ble orientations. It turns out that b.10nC4;�5/ is not �bered with any orientation,

when 2 � n � 6. See Table 3.1. In fact, the �bered two-bridge knots and links are

also classi�ed by using continued fractions due to Gabai. See [6]. One should be

able to generalize this to all n � 2 using number theoretic arguments.
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Example 3.10 (plumbing trees). Any plumbing tree L of unknots is an L-space

link. In fact, any su�ciently negative surgery on L is a negative de�nite graph

without bad vertices, and thus is an L-space, by [28] Lemma 2.6. Since the

plumbing tree is amphichiral, the su�ciently positive surgeries are also L-spaces.

Note that if M is an L-space, then so is �M .

Example 3.11 (L7a7 in the Thistlethwaite Link Table). The link L drawn in

Figure 3.10 is an L-space link. It is actually the mirror of L7a7 drawn in the

Thistlethwaite Link Table. Consider the .n; n; 1/-surgery on L. It is an L-space

when n � 0: This is because after blowing down the .C1/-framed knot L3, we

get the L-space Whitehead link b.8;�3/. Then, it follows from Lemma 2.6 that

L is an L-space link.

Example 3.12. The plumbing of unknots L in Figure 3.11 is a hyperbolic

L-space link. In fact, consider the .3; 1; 3; 1/-surgery on L, which is S3. By

Lemma 2.6, L is an L-space link. In fact, this link is derived by resolving the

Whitehead link. Thus, all the surgeries on the Whitehead link are surgeries on

this link.

Example 3.13. The plumbing shown in Figure 3.12 is a generalized .CCCC�/L-

space link. The .1; 1; 1; 1; 1/-surgery is the Poincaré sphere. See [39], p. 309.

In fact, every proper sublink is an L-space link, since the surgeries on them are

lens spaces. Thus, by Lemma 2.5, the .p1; 1; 1; 1; 1/-surgery is an L-space for all

p1 � 1, since det.ƒ.1; 1; 1; 1; 1// D �1 and det.ƒ.1; 1; 1; 1; 1/jL�L1
/ D �1:

Next, from that S3
p1;1;1;1.L � L2/ D L.p1; 1/ and det.ƒ.p1; 1; 1; 1; 1// D

det.ƒ.p1; 1; 1; 1; 1/jL�L2
/ D �p1, it follows that .p1; p2; 1; 1; 1/-surgery on L is

an L-space for all p1 � 1; p2 � 1: Similarly, we can get the .p1; p2; p3; 1; 1/-

surgery is an L-space for all p1 � 1; p2 � 1; p3 � 1: This is because we

have S3
p1;p2;1;1.L � L3/ D L.p1; 1/, and det.ƒ.p1; p2; 1; 1; 1// D �p1p2,

det.ƒ.p1; p2; 1; 1; 1/jL�L3
/ D �p1: Now, we can get that the .p1; p2; p3; p4; 1/-

surgery on L is an L-space, for all p1 � 3; p2 � 3; p3 � 2; p4 � 1; since

det.ƒ.p1; p2; p3; 1; 1// D p2�p1p2�p2p3 < 0, det.ƒ.p1; p2; p3; 1; 1/jL�L4
/ D

1�p1�p3�p1p2Cp1p2p3>0:Finally, we can obtain that the .p1; p2; p3; p4; p5/-

surgery on L is an L-space for all p1 � 0; p2 � 0; p3 � 0; p4 � 0; p5 � 1; due

to

det.ƒ.p1; p2; p3; p4; 1// D p1p2p3p4 C lower terms < 0;

det.ƒ.p1; p2; p3; p4; 1/jL�L5
/ D p1p2p3p4 C lower terms < 0:
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L7a7

C1

blow down

W h

Figure 3.10. The 3-component link L7a7. The 3-component link L drawn above on the

left is the mirror of L7a7 drawn in the Thistlethwaite Link Table on Knot Atlas. Consider

the .n; n; 1/-surgery on L. After blowing down the 1-framed component L3, we get the

.n � 1; n � 1/-surgery on the Whitehead link Wh.

Figure 3.11. A plumbing graph L-space link. Consider the link L D L1 [ � � � [ L4 in the

�gure which is a plumbing of unknots. By blowing down L2; L4, we see that the surgery

shown is S3:
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Figure 3.12. A generalized .CCCC�/L-space link. The link L D L1 [ � � � [ L5 in the

�gure is a plumbing of unknots. The surgery shown is the Poincaré sphere.

Example 3.14 (a family of L-space chain links). A n-chain link consists of n

unknotted circles, linked together in a closed chain. Hyperbolic structures on

n-chain link complements have been studied, for example, by Neumann and

Reid [23]. They show that when l � 5 they are hyperbolic links.

The family of l-component chain links in Figure 3.14 are all L-space links.

In fact, the .1; 2; : : : ; 2; l � 2/-surgery satis�es the positive L-space surgery crite-

rion. First, if we blow down L1; L2; : : : ; Ll�2 successively, then we get the .1; 1/-

surgery on the Whitehead link, the Poincaré manifold. Moreover, every proper

sublink is a union of linear plumbings of unknots, and their surgeries are all con-

nected sum of lens spaces. Thus, we only need to check the positive determinant

condition.

Since a handle slide does not change the determinants of the surgery fram-

ing matrices, blowing down a C1 framed unknot does not change the determi-

nants of the surgery framing matrices. Thus, after successively blowing down

L1; : : : ; Ll�2 from L, we see that det.ƒ.1; 2; : : : ; 2; l � 1// D 1: For the proper

sublinks, we only need to consider a linear plumbing L0 � L. Since the determi-

nant of the surgery framing matrix does not depend on the orientations, we can

always orient L0 such that all the linking numbers of adjacent components are �1:
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Let M.k; n/ denote the following k � k matrix

M.k; n/ D

0
BBBBBBB@

n �1
�1 2 �1

�1 2

� � �
2 �1
�1 2

1
CCCCCCCA
;

which is the surgery framing matrix of the linear plumbing in Figure 3.13.

Figure 3.13. A linear plubming.

Figure 3.14. A family of hyperbolicL-space chain links. The surgery labelled above satis�es

the positive L-space surgery criterion.
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There are four cases for computing det.ƒjL0/:

� if L1 … L0; Ll … L0, then ƒjL0 D M.k; 2/ with k being the number of

components in L0;

� if L1 … L0; Ll 2 L0, then ƒjL0 DM.k; l � 1/;

� if L1 2 L0; Ll … L0, then after successively blowing down L1; L2; : : : ,

we can see det.ƒjL0/ D 1I

� if L1 2 L0; Ll 2 L0, then after successively blowing down L1; L2; : : : inside

L0, we can see det.ƒjL0/ equals to det.M.k; n// with k � l � 2; n � 1:

It is not hard to see det.M.k; 2// D k C 1 by induction, and thus det.M.k; n// D
nk � k C 1: Therefore, all determinants are positive.

Example 3.15 (another sequence of L-space chain links). Similarly, the family of

l-component chain links in Figure 3.16 are also allL-space links for l � 3. In fact,

when n1; n2 are large enough, the .1; 2; : : : ; 2; n2; n1/-surgery satis�es the positive

L-space surgery criterion. This is because after blowing down L1; : : : ; Ll�2, we

have an .n1 � l C 2; n2 � 1/ framed T .2; 4/ torus link. Thus, when n1; n2 are

both large, this surgery is an L-space, since T .2; 4/ is an L-space link. As is

similar in Example 3.14, we only need to show when n1; n2 are large enough,

det.ƒ.1; 2; : : : ; 2; n2; n1/jL0/ is positive for any sublink L0: For any sublink L0, we

can blow down the circles on the side of L1, and then obtain a linear plumbing as

in Figure 3.15. The surgery matrix is a k � k matrix in the form of

0
BBBBBBB@

n1 � c �1
�1 n2 �1

�1 2

� � �
2 �1
�1 2

1
CCCCCCCA
;

where c is the number of times for blowing down C1-framed unknots. The

determinant of the above matrix is a polynomial of n1; n2, and the leading term

is det.M.k � 2; 2//n1n2 D .k � 1/n1n2. Thus, for n1; n2 large enough, all the

determinants are positive.

Note that the link in Example 3.13 is the same as the link here for l D 5:
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Figure 3.15. A linear plubming.

Figure 3.16. Another family of hyperbolic L-space chain links. The surgery labelled above

satis�es the positive L-space surgery criterion, when n1; n2 are large enough.

Example 3.16. The link L.n/ D V1 [ V2 [H1 [ � � � [Hn shown in Figure 3.17 is

a generalized L-space link of “++� � � ��” type, for any n � 1. One can do similar

induction as in Example 3.13 to show the following claim.

Claim. For any 0 � k � n and all integersp1 � 0; p2 � 0; q1� 0; : : : ; qk � 0;

the .p1; p2; q1; : : : ; qk;�1; : : : ;�1/-surgery onL.n/ is anL-space. Notice that the

determinant of framing matrix

det.ƒ..p1; p2; q1; : : : ; qk;�1; : : : ;�1/// D .�1/n�kp1p2q1 � � �qkC lower terms.

The claim will follow from two induction on n and on k.

Notice that surgeries on L.n/ are mostly graph manifolds.
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Figure 3.17. Another sequence of generalized L-space link. Consider the link L.n/ used in

the proof of Lemma 3.5. It is in fact a generalized L-space link.

Example 3.17 (Thistlethwaite link table with crossing number� 7). We examine

the links in the Thistlethwaite Link Table with crossing number � 7 and list the

results in Table 3.2.

Using the conditions of Alexander polynomials in Theorem 1.15, we conclude

that L6a1; L7a1; L7a2; L7a4; and L7a5 are all non-L-space links.

The linkL6a2 is the two-bridge link b.10; 7/. Conjecture 1.14 has been veri�ed

for all two-bridge links b.p; q/ with p � 100 using the algorithm from [18].

So L6a2 is a non-L-space link.

The link L6a5 is the mirror of the left link in Figure 3.7 with n D 1, on which

the .2; 2; 1/-surgery is an L-space. Then, it quickly follows from the positive

L-space surgery criterion that the mirror of L6a5 is an L-space link.

For the link L6n1, after blowing down a C1-framed component from it (all

three components are symmetric), we get the unlink. So the .10; 10; 1/-surgery

on L6n1 satis�es the positive surgery criterion, and thus showing that L6n1 is an

L-space link.

The mirror of L7a3 consists of two components L1 and L2, where L1 is the

right-handed trefoil andL2 is the unknot. Consider the .n; 1/-surgery on the mirror

of L7a3 with n large. After blowing down the unknot, we have a large surgery on

the right-handed torus knot T .2; 5/. This is an L-space, since the right-handed

torus knot T .2; 5/ is an L-space knot. Then it follows from the positive surgery

criterion that the mirror of L7a3 is an L-space link.

The link L7a6 is the two-bridge link b.14;�9/, and it is not L-space link by

direct computation.
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Table 3.2. Thistlethwaite Link Table with crossing number � 7. Here, by “Yes” in the column “L-space link”, it means either the link or

its mirror is an L-space link; by “Yes” in the column “Alexander polynomial”, it means the conditions on the multi-variable Alexander

polynomial in Theorem 1.15 are satis�ed.

Links L-space link Alexander polynomial Comments

L2a1 Yes Yes The Hopf link

L4a1 Yes Yes The T .2; 4/ torus link

L5a1 Yes Yes Mirror of the L-space Whitehead link

L6a1 No No

L6a2 No Yes

L6a3 Yes Yes The T .2; 6/ torus link

L6a4 Yes Yes The Borromean link

L6a5 Yes Yes The mirror is an L-space link

L6n1 Yes Yes

L7a1 No No

L7a2 No No

L7a3 Yes Yes The mirror is an L-space link

L7a4 No No

L7a5 No No

L7a6 No Yes The two-bridge link b.14;�9/
L7a7 Yes Yes The mirror is an L-space link

L7n1 Yes Yes

L7n2 No Yes Generalized .C�/L-space link
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The link L7n1 has two components L1 and L2, where L1 is the right-handed

trefoil knot and L2 is the unknot. Consider the .10; 1/-surgery on this link. After

blowing down the unknot, the trefoil is unknotted and we obtain a lens space

surgery. Since the right-handed trefoil is an L-space knot, from the positive

surgery criterion it follows that L7n1 is an L-space link.

The link L7n2 is not an L-space link; see Proposition 5.14 for the proof. Its

mirror is not anL-space link neither, since the left-handed trefoil is not anL-space

knot. However, L7n2 is a generalized .C�/L-space link. The link L7n2 consists

of two componentsL1 andL2, withL1 being the right-handed trefoil andL2 being

the unknot. Consider the .n;�1/-surgery on L7n2 with n large. After blowing

down the unknot, we get the unknot, thus getting a lens space surgery. Then, since

the right-handed trefoil is an L-space knot, .n;�k/-surgery is an L-space for all

k > 0 and large n by Lemma 2.5.

4. Floer homology and Alexander polynomials of L-space links

In this section, we study the link Floer homology and the multi-variable Alexan-

der polynomials of L-space links with l � 2 components. The Alexander poly-

nomial of L is determined by the Euler characteristics of the link Floer homology

HFL�.L; s/, due to equation (2) in [33]

�L.x1; : : : ; xl/
:D

X

.s1;:::;sl /2H.L/

�.HFL�.L; s1; : : : ; sl// � xs1

1 � � �x
sl

l
; (4.1)

where f
:D g denotes that f and g di�er by multiplication by units. Here, we

use CFL�.L/ rather than bCFL.L/ as in [32]. Note that CFL�.L; s1; s2/ is a �nite

dimensional F-vector space, and thus �.CFL�.L; s1; s2// D �.HFL�.L; s1; s2//.
Now we are ready to prove Theorem 1.15 from the introduction.

4.1. Proof of Theorem 1.15

Proof. Fixing ¹siºi , we denote the following successive quotient complexes by

C
.1/

k
D ¹x 2 CF�.S3/ j Ai.x/ D si ; 1 � i � k;

Aj .x/ � sj ; k C 1 � j � lº;

C
.2/

k
D ¹x 2 CF�.S3/ j Ai.x/ D si ; 1 � i � k;

AkC1.x/ � skC1 � 1;
Aj .x/ � sj ; k C 2 � j � lº:
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Then,

C
.1/
0 D A

�
s ; C

.2/
0 D A

�
s1�1;s2;:::;sl

;

C
.1/

l
D CFL�.L; s/;

and

C
.1/

kC1
D C .1/

k
=C

.2/

k
:

Consider the short exact sequence of chain complexes

0 �! C
.2/
0

��! C
.1/
0 �! C

.1/
1 �! 0;

where the map � is the inclusion map. It induces another short exact sequence of

homologies

0 �! coker.��/ �! H�.C
.1/
1 / �! ker.��/ �! 0:

Since H�.C
.1/
0 / D H�.C

.1/
0 / D FŒŒU ��, the map ��WFŒŒU ��! FŒŒU �� is either 0 or

a multiplication ofU k for some integer k � 0:Thus,H�.C
.1/
1 / is eitherFŒŒU ��=U k

or FŒŒU ��˚ FŒŒU ��.

In addition, since U1 acts on the chain complex C
.1/
1 as 0, it also acts as

0 on homology. Thus, H�.C
.1/
1 / is either 0 or FŒŒU ��=U , according to either

k D 0 or k D 1. Note here FŒŒU �� denotes FŒŒU1; U2; : : : ; Ul ��=.U1 � U2; : : : ;

U1 � Ul / as an FŒŒU1; U2; : : : ; Ul ��-module and the U -action denotes any action

of Ui . Furthermore, �.H�.C
.1/
1 // is either 0 or 1. In fact, if H�.C

.1/
1 / D 0,

then the grading of 1 2 FŒŒU �� D H�.C
.1/
0 / equals to the grading of 1 2

FŒŒU �� D H�.C
.2/
0 /; while if H�.C

.1/
1 / D FŒŒU ��=U , then the grading of 1 2

H�.C
.1/
0 / equals to the grading of 1 2 H�.C

.2/
0 / plus 2, and the grading of

1 2 FŒŒU ��=U D H�.C
.1/
1 / equals to the grading of 1 2 H�.C

.1/
1 /. Moreover,

the complex A
�
C1;:::;C1 is just CF�.S3/ and the absolute gradings of elements in

H�.A�
C1;:::;C1/ are all even integers. An induction will show that all the absolute

gradings of elements in the homologies of A�
s1;s2;:::;sl

are all even integers. Thus,

we have

�.H�.C
.1/
1 // D 0 or 1:

Notice that C
.1/

k
and C

.2/

k
are de�ned similarly, just with di�erent s values. Thus,

we can similarly show that

�.H�.C
.2/
1 // D 0 or 1:
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Since �.H�.C
.1/

kC1
// D �.H�.C

.1/

k
//��.H�.C

.2/

k
// and j�.H�.C

.2/
1 //j � 1 for

any �xed s, it is not hard to see that

j�.H�.C
.1/

k
//j � 2k�2; for all k D 2; : : : ; l;

j�.H�.C
.2/

k
//j � 2k�2; for all k D 2; : : : ; l:

Hence, we prove inequality (1.2) by letting k D l .
Since C

.1/

kC1
D C .1/

k
=C

.2/

k
, we have

rankF.C
.1/

kC1
/ � rankF.C

.1/

k
/C rankF.C

.2/

k
/:

From rankFH�.C
.1/
1 / � 1, it follows that rankF HFL�.L; s/ � 2l�1: Thus,

inequality (1.1) holds.

Let us look at the signs of the multi-variable Alexander polynomial when

l D 2. Suppose�.CFL�.L; s1; s2// and �.CFL�.L; s1Ck; s2/ are the consecutive

non-zero Euler characteristics among the horizontal Alexander gradings, that is,

� j�.CFL�.L; s1; s2//j D 1;

� j�.CFL�.L; s1 C k; s2//j D 1;

� �.CFL�.L; s1 C i; s2// D 0, for all i D 1; 2; : : : ; k � 1.

Then, we have

�.H�.A�
s1Ck;s2

=A�
s1Ck;s2�1// � �.H�.A�

s1�1;s2
=A�

s1�1;s2�1//

D
kX

iD0

�.CFL�.L; s1 C i; s2//

D �.CFL�.L; s1; s2//C �.CFL�.L; s1 C k; s2//:

(�)

Since �.H�.A�
s1;s2

=A�
s1;s2�1// D 0 or 1, for all .s1; s2/ 2 H.L/, the top

row of equation (�) is 0 or ˙1. Whereas by the assumption, the bottom row of

equation (�) is 0 or ˙2: Thus, we have

�.CFL�.L; s1; s2//C �.CFL�.L; s1 � k; s2// D 0: �

Corollary 4.1. A homologically thinL-space 2-component prime linkLDL1[L2

has �bered link exterior.
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Proof. The homologically thin condition means that the homology bHFL.L; s/ is

supported in a single Maslov grading, and thus is determined by its Euler char-

acteristic. Thus, the link Floer homology is determined by the multi-variable

Alexander polynomial. However, here we need to consider the hat version link

Floer homology for the discussions of �beredness. Let the symmetrized Alexan-

der polynomial be

�L.x; y/ D
X

i;j

ai;j � xi � yj :

We choose

x0 D max¹i jai;j ¤ 0º; y0 D max¹j jax0;j ¤ 0º:

Since

X

.s1;s2/2H.L/

�.bHFL.L; s1; s2// � xs1 � ys2 D ˙ .x � 1/.y � 1/p
xy

�L.x; y/;

we have that
�
x0C 1

2
; y0C 1

2

�
is an extreme point of the polytope for bHFL.L/, and

�
�
bHFL

�
L; x0C 1

2
; y0C 1

2

��
D ˙1. Furthermore, since L is homological thin, we

have that rank bHFL
�
L; x0 C 1

2
; y0 C 1

2

�
D 1, and thereby the link exterior of L is

�bered. �

4.2. Examples. Let us use Theorem 1.15 to detect L-space links among two-

bridge links. Notice that in the knot case the Alexander polynomial gives a strong

obstruction for an alternating knot to be an L-space knot. In [32], it is shown that

alternating L-space knots are only .2; 2nC 1/ torus knots.

Proposition 4.2 (Ozsváth and Szabó, [32], Proposition 4.1). IfK is an alternating

knot with the property that all the coe�cients ai of its Alexander polynomial �K

have jai j � 1, then K is the .2; 2nC 1/ torus knot.

Theorem 4.3 (Ozsváth and Szabó, [32], Theorem 1.5). IfK � S3 is an alternating

knot with the property that there is some integral surgery along K is an L-space,

then K is a .2; 2nC 1/ torus knot for some integer n.

In contrast to the knot case, by computer experiments, we �nd many hyper-

bolic two-bridge non-L-space links whose Alexander polynomials satisfy the con-

straints in Theorem 1.15. We list some interesting phenomena in the two-bridge

links b.p; q/ below, where 0 < p � 100. We conjecture that for any n > 0, the

two-bridge link b.6nC 4;�3/ is a non-L-space link with Alexander polynomial

satisfying Theorem 1.15.
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Links (A) Hyperbolic link L-space link:

b.2n;�1/ Yes Torus link T .2; 2n/ Yes

b.6nC 2;�3/ Yes Hyperbolic link Yes

b.6nC 4;�3/ Yes Hyperbolic link No, when 6nC 2 � 100

b.10n˙ 2; 5/ No Hyperbolic link No

(A) denotes the Alexander polynomial condidion.

4.3. HFL� of L-space links. Let L be an L-space link. In general, CFL�.L; s/
is an iterated quotient complex of A�

s .

For every subcomplex C1 � C , the quotient complex C=C1 is quasi-isomor-

phic to the mapping cone of the inclusion map i WC1 ! C . Thus, it leads to an

iterated mapping cone construction of CFL�.L; s/ by using A
�
s . This provides a

spectral sequence converging to HFL�.L; s/ considered asF-vector spaces, which

is stated in [8]. This spectral sequence also implies inequality (1.1).

5. Surgeries on L-space links

Using the knot surgery formula from [35], the graded Heegaard Floer homology of

surgeries on L-space knots are determined by the Alexander polynomial and the

surgery coe�cient. Using Manolescu–Ozsváth link surgery formula from [20]

and algebraic rigidity results from [18], we prove Theorem 1.17 and give some

explicit formulas in this section.

The generalized Floer complexes A
�
s ’s are FŒŒU1; : : : ; Ul ��-modules, and all

the Ui actions are homotopic to the U1 action. In fact, when L is an L-space

link, A�
s .L/ is chain homotopic to FŒŒU1�� preserving the Z-grading. This is done

by restricting our scalars to FŒŒU1�� and applying the algebraic rigidity results

Proposition 5.5 and Corollary 5.6 in [18]. There is an absolute Z-grading on A
�
s .

However, the U1 action decreases it by 2, and thus it is not a chain complex of

FŒŒU1��-modules. So the complexes here are considered as Z=2Z-graded chain

complexes of FŒŒU1��-modules, together with a Z-grading compatible with the

Z=2Z-grading where U1 lowers the Z-grading by 2.
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Proposition 5.1 (Proposition 5.5, [18]). Let A�; B� be Z-graded complexes of

F-modules withU -action dropping grading by 2 and commuting with the di�eren-

tial. Suppose A;B are both free FŒŒU ��-modules, andH�.A/ D H�.B/ D FŒŒU ��,

precisely, H2k.A/ Š H2k.B/ Š F for all k � 0 and Hi.A/ D Hi .B/ D 0

otherwise, where U �H2k.A/ D H2k�2.A/; U �H2k.B/ D H2k�2.B/.

Then, if F;GWA ! B are both quasi-isomorphisms of FŒŒU ��-modules, then

F;G are chain homotopic as maps of FŒŒU ��-modules. Moreover, ifH;K are both

chain homotopies as homomorphisms of FŒŒU ��-modules between any two chain

maps f; gWA! B , i.e. H@C @H D K@C @K D f � g, thenH �K D @T C T @,
for some FŒŒU ��-module homomorphism T WA� ! B�C2.

Using these chain homotopy equivalences, we replace A�
s .L/ by FŒŒU1�� in the

Manolescu–Ozsváth link surgery complex and replace the maps up to homotopies.

In [18], we call this new complex the perturbed surgery formula. Thus, we only

need to determine the map ˆ
�!
M
s in the perturbed surgery formula, where are

either 0 or multiplications of U k . For the de�nition of those ˆ maps, one can

see [20], Section 7, or [18], Section 4.

Combining this with conjugation symmetry, we determine the maps ˆ
˙Li
s by

the coe�cients in the multi-variable Alexander polynomials of the sublinks in L

and the linking numbers. We also show that in the perturbed surgery complex,

ˆ
˙L1[˙L2
s D 0 for all s 2 H.L/: For higher diagonal maps, more information is

needed. For 2-component case, we write down explicit formulas.

5.1. Conjugation symmetry of inclusion maps

De�nition 5.2 (p
�!
M .s/). For s 2 xH.L/ and

�!
M � L, we de�ne

p
�!
M .s/ D .p

�!
M
1 .s1/; : : : ; p

�!
M
l .sl //

by the following formulas:

p
�!
M
i .s/ D

8
ˆ̂<
ˆ̂:

C1 if Li �M has the induced orientation from LI
�1 if Li �M has the opposite orientation from LI
s if Li 6�M:

De�nition 5.3 (n
�!
M
s .L/). Suppose

�!
L is an oriented l-component L-space link

and
�!
M � �!L is a sublink which might not have the induced orientation. Choose a

Heegaard diagram H of L. The inclusion map I
�!
M
s WA�.H; s/ ! A

�.H; p
�!
M .s//
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is a chain map shifting the Z-grading by a de�nite amount, which is explicitly

expressed in equation (57) in [20]. Thus, the map induced on homologies

.I
�!
M
s /�WH�.A

�.H; s// �! H�.A
�.H; p

�!
M .s///

is a multiplication of a monomial U k WFŒŒU �� ! FŒŒU �� or 0 rather than a mul-

tiplication of a polynomial. In fact, this map is not 0. Consider the short exact

sequence

0 �! A
�
p

�!
M .s/

�! A
�
s �! A

�
s =A

�
p

�!
M .s/

�! 0

and the induced exact triangle on homology. The homology A
�
s =A

�
p

�!
M .s/

is a

torsion U1 module, which is argued similarly as in the proof of Theorem 1.15.

The integer k does not depend on the choice of H, and thus we de�ne it to be

n
�!
M
s .L/. When the context is clear, we simply denote it by n

�!
M
s .

Remark 5.4. When L is a L-space knot K, these n˙K
s .K/’s are just the same as

Vs’s and Hs’s de�ned for knots in [25].

Lemma 5.5 (conjugation symmetry of n
�!
M
s .L/). Suppose L is an oriented n-

component L-space link. Then

n
�!
M
s D n� �!

M
�s ; for all s 2 H.L/;

�!
M � L:

Proof. Choose an admissible basic Heegaard diagram H D .†;˛;ˇ;wH ; zH / for
�!
L . In order to distinguish the basepoints in di�erent Heegaard diagrams, we put

a superscriptH on w and z. Then, H0 D .�†;ˇ;˛;wH 0
; zH 0

/ is also a Heegaard

diagram for
�!
L , where wH D zH 0

; zH D wH 0
.

There is an FŒŒU1; : : : ; Un��-linear isomorphism of chain complexes

hsWA�.H; s/ �! A
�.H0;�s/;

x 7�! x; for all x 2 T¸ \ T˛:

Actually, for any x; y 2 T¸ \ T˛ and a class � 2 �2.x; y/, the moduli space of

holomorphic disks M.�;H/ is identical to M.�;H0/. See Theorem 2.4 in [30].

Moreover, it is not hard to see that the Alexander gradings are of opposite signs

A.x;H/ D �A.x;H0/:
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Thus, we just need to show hs is a chain map, i.e.

@H
0

�s .hs.x// D
X

y2T˛\Tˇ

X

�2�2.x;y/;�.�/D1

#.M.�/=R/ � UEH
0

�s1
.�/

1 � � �UEH
0

�sn
.�/

n � y

D hs.@
H

s .x//

D
X

y2T˛\Tˇ

X

�2�2.x;y/;�.�/D1

#.M.�/=R/ � UEH
s1

.�/

1 � � �UEH
sn

.�/
n � y:

In fact, by equation (2.2), for all � 2 �2.x; y/, 1 � i � n;

EH0

�si
.�/ D max.�si � AH0

i .x/; 0/�max.�si � AH0

i .y/; 0/C n
zH0

i

.�/

D max.�si C AH

i .x/; 0/�max.�si C AH

i .y/; 0/C nwH

i
.�/

D EH

si
.�/:

Moreover, by direct computation, we have the following commuting diagram

A�.H; s/ A�.H0;�s/

A
�.H; p

�!
M .s// A

�.H0;�p
�!
M .s//:

 !I
�!
M
s .H/

 !hs

 ! I �
�!
M

�s .H/

 !
h

p
�!
M .s/

Thus, it follows that

n
�!
M
s D n� �!

M
�s ; for all s 2 H.L/;

�!
M � L: �

5.2. Perturbed link surgery formula for 2-component L-space links. We

review the link surgery formula of Manolescu–Ozsváth for a 2-component link L.

See [20] and Section 4 in [18]. We need some notations. Denote the set of

orientations on a link N by �.N/. We de�ne some projection maps by

p˙L1.s1; s2/ D .˙1; s2/;

p˙L2.s1; s2/ D .s1;˙1/;

p˙L1[˙L2.s1; s2/ D .˙1;˙1/:
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Choose an admissible basic Heegaard diagram H and denote A�.H; s/ by A
�
s .

Then, the Manolescu–Ozsváth surgery complex .C�.H; ƒ/;D�.ƒ// is as fol-

lows:

.C�.H; ƒ/;D�.ƒ// WD
Y

.s1;s2/2H.L/

A
�
s1;s2

Y

.s1;s2/2H.L/

A
�
C1;s2

Y

.s1;s2/2H.L/

A
�
s1;C1

Y

.s1;s2/2H.L/

A
�
C1;C1;

 

!D11
00

.ƒ/ !D01
00

.ƒ/

 !
D10

00
.ƒ/

 ! D01
10

.ƒ/

 !
D10

01
.ƒ/

(5.1)

where for all ı1; ı2; "1; "2 2 ¹0; 1º;

Dı1ı2
"1"2

.ƒ/ D
Y

.s1;s2/2H.L/

� X

�!
M 2�.ı1L1[ı2L2/

ˆ
�!
M

pC"1L1[C"2L2 .s1;s2/

�
: (5.2)

The Manolescu–Ozsváth surgery complex is in the category of complexes

of FŒŒU1��-modules, Ch. Inspired by the idea of homotopy category K of

FŒŒU1��-modules, we can replace the complexes on the vertices of the hypercube by

its chain homotopy type and replace the maps on the edges by its homotopy type.

Then, the Manolescu–Ozsváth surgery complex becomes a perturbed surgery for-

mula.

Lemma 5.6. Let
�!
L D �!L 1 [

�!
L 2 be an L-space link. Then the Heegaard Floer

homologies on all the surgeries HF�.S3
ƒ.L// and their absolute gradings are

determined by ¹nCL1
s .L/ºs2H.L/ and ¹nCL2

s .L/ºs2H.L/.

Proof. We restrict our scalars toFŒŒU1�� from now on. Consider the chain complex

FŒŒU1��, which is freely generated by a single element over FŒŒU1�� with 0 di�er-

ential. Since L is an L-space link, i.e. H�.A�
s .L// D FŒŒU ��, for all s 2 H.L/,

A
�
s .L/ is in fact chain homotopic to FŒŒU1�� by Corollary 5.6 in [18] as a Z-graded

FŒŒU1��-module with U1 lowering grading by 2.

Thus, we can replace every A
�
s by zA�

s which is isomorphic to FŒŒU1�� with

0 di�erentials and replace the maps correspondingly so as to get a new complex

. zC�.H; ƒ/; zD�.ƒ//. We call it the perturbed surgery complex, and it is chain

homotopic to the original one.
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More concretely, we �rst replace the edge maps in the squares in equation (5.1)

ˆ
˙Li
s by

ẑ˙Li
s D U n

˙Li
s

1 WFŒŒU1�� �! FŒŒU1��:

Next, we replace the diagonal maps ˆ
˙L1[˙L2
s by

ẑ˙L1[˙L2
s D 0:

The reason we replace the diagonal maps by 0 is that, in the link surgery complex,

the FŒŒU1��-linear diagonal maps always shift the Z-gradings by an odd number.

Finally, we get the new perturbed surgery complex zC.ƒ/ as follows:

. zC�.H; ƒ/; zD�.ƒ// WD
Y

.s1;s2/2H.L/

zA�
s1;s2

Y

.s1;s2/2H.L/

zA�
C1;s2

Y

.s1;s2/2H.L/

zA�
s1;C1

Y

.s1;s2/2H.L/

zA�
C1;C1;

 

!
zD11

00
.ƒ/

 !
zD10

00
.ƒ/

 !zD01
00

.ƒ/  ! zD01
10

.ƒ/

 !zD10
01

.ƒ/

(5.3)

where

zDı1ı2
"1"2

.ƒ/ D
Y

.s1;s2/2H.L/

� X

�!
M 2�.ı1L1[ı2L2/

ẑ �!
M

pC"1L1[C"2L2 .s1;s2/

�
; (5.4)

for ı1; ı2; "1; "2 2 ¹0; 1º.
The perturbed complex zC.ƒ/ is chain homotopy equivalent to the original

surgery complex as FŒŒU1��-modules. Moreover, this chain homotopy equivalence

is preserving the Z-grading on it. For more details, see Section 5.6 in [18].

Hence, we have H�. zC.ƒ// Š HF�.S3
ƒ.L// as an FŒŒU1��-module. By Link

Surgery Theorem in [20], we have Ui actions on the homology of HF�.S3
ƒ.L//

are all the same, i.e.

HF�.S3
ƒ.L// D H�. zC.ƒ//˝FŒŒU1�� FŒŒU1; U2��=.U1 � U2/:

All the inputs of zC.ƒ/ are ¹n˙L1
s .L/ºs2H.L/ and ¹n˙L2

s .L/ºs2H.L/. Thus, the

proof is done by Lemma 5.5. To compute the absolute grading for HF�, we

only need to shift the absolute Z-grading by
c1

2.s/�2��3�
4

which can be computed

from ƒ: �
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5.3. Rede�ning knot Floer homology. We rede�ne the knot Floer homology by

using slightly generalized Heegaard diagrams with extra basepoints. The reason

we consider these diagrams is that they are used in the proof of Theorem 1.17.

In [19], there are many generalized versions of knot Floer complex and homology

discussed. Since the version in this subsection is not presented in [19], we de�ne

it here.

(1) Heegaard diagram. We choose a Heegaard diagram

H D .†;˛;ˇ; ¹w1; : : : ; wkº; ¹z1º/:

(2) Alexander grading. For any x 2 T˛ \ Tˇ ,

A.U
n1

1 � � �U
nk

k
x/ D A.x/� n1:

(3) Alexander filtration. The complex CF�.S3/ is freely generated by

x 2 T˛ \ Tˇ over FŒŒU1; U2; : : : ; Uk�� and the di�erentials are counting

holomorphic disks. For for all x 2 T˛ \ Tˇ , we have A.@x/ � A.x/. This is

because for a pseudo-holomorphic disk in � 2 �2.x; y/, nz1
.�/ � 0 and

A.x/ D A.y/C nz1
.�/ � nw1

.�/ D A.U nw1
.�/

1 � : : : U nwk
.�/

k
� y/C nz1

.�/:

Thus, the Alexander grading induces a �ltration on CF�.S3/. We de�ne the

subcomplex

A
�
s .K/ WD ¹x 2 CF�.S3/jA.x/ � sº:

(4) Filtered minus knot Floer homology. We de�ne the chain com-

plex

CFK�.K; s/ D A
�
s =A

�
s�1

and

HFK�.K; s/ D H�.CFK�.K; s//:

(5) Total minus knot Floer homology. We de�ne the chain complex

gCFK�.K/ to be freely generated by T˛ \ Tˇ , and for all x 2 T˛ \ Tˇ

@x D
X

y2T˛\Tˇ

X

�2�2.x;y/

�.�/D1;nz1
.�/D0

#.M.�/=R/ � U nw1
.�/

1 � � �U nwk
.�/

k
� y:

The homology HFK�.K/ is de�ned to be the homology of gCFK�.K/.
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Remark 5.7. Considered only as F-vector spaces,

HFK�.K/ D
M

s2Z
HFK�.K; s/:

However, considered as FŒŒU1; : : : ; Uk��-modules, HFK�.K; s/ is the associated

graded of a �ltration on HFK�.K/. Note that HFK�.K; s/’s are always torsion

modules.

Proposition 5.8. Suppose K � S3 is a knot. For a multi-pointed Heegaard

diagram H D .†;˛;ˇ; ¹w1; : : : ; wkº; ¹z1º/ for K, we have the following:

(1) the knot Floer homology HFK�.K; s/ is an FŒŒU ��-module (where FŒŒU �� WD
FŒŒU1; : : : ; Uk��=.U2; : : : ; Uk//), and does not depend on H considered as an

FŒŒU ��-module;

(2) we have the identity

X

s2Z
�.HFK�.K; s// � t s :D 1

t � 1�K.t /: (5.5)

Proof. This is actually a direct corollary of Theorem 4.10 in [20]. There are six

types of Heegaard moves according to [20],

(i) 3-manifold isotopy;

(ii) ˛-curve isotopy and ˇ-curve isotopy;

(iii) ˛-handleslide and ˇ-handleslide;

(iv) index one/two stabilizations;

(v) free index zero/three stabilizations;

(vi) free index zero/three link stabilizations.

By Proposition 4.13 in [20], we only need to check how the knot Floer homol-

ogy changes under these Heegaard moves and their inverses.

The Heegaard moves of types (i) to (iv) are chain homotopy equivalences pre-

serving the Alexander �ltration, and thus do not change the knot Floer homology.

A Heegaard move of type (v) changes the chain complex CF�.H/ into

CF�.H0/, which is the mapping cone

CF�.H/ŒŒUkC1��
UkC1�Ui0�������! CF�.H/ŒŒUkC1��:
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Notice that UkC1 does not change the Alexander grading. Thus, if i0 ¤ 1, then

CFK�.H0; s/ is the mapping cone

CFK�.H; s/ŒŒUkC1��
UkC1�Ui0�������! CFK�.H; s/ŒŒUkC1��:

If i0 D 1, then CFK�.H0; s/ is the mapping cone

CFK�.H; s/ŒŒUkC1��
UkC1����! CFK�.H; s/ŒŒUkC1��:

In both cases, we have that the homology of the mapping cone is

HFK�.H; s/˝R FŒŒU1; : : : ; UkC1��=.U2; : : : ; UkC1/;

where R D FŒŒU1; : : : ; Uk��.

The Heegaard move of type (vi) changes the complex CFK�.H; s/ by

CFK�.H; s/˝H�.S1/ Š CFK�.H; s/˚ CFK�.H; s/:

However, if H1 and H2 are equivalent Heegaard diagrams both with a sin-

gle pair of basepoints on K, then total number of copies of HFK�.H1; s/’s in

HFK�.H2; s/ is one. �

5.4. Reduction of Heegaard diagrams. Let H be Heegaard diagram for a link

L. Then there are several Heegaard diagrams r�!
M
.H/ of the sublinks of L reduced

from H. See De�nition 4.17 in [20].

Lemma 5.9. Let
�!
L D �!L 1[

�!
L 2 be a link and H D .†;˛;ˇ; ¹w1; w2º; ¹z1; z2º/

be a Heegaard diagram for
�!
L . Denote A�.H; .s1; s2// by A�

s1;s2
, for all .s1; s2/ 2

H.L/. Then

H�.A
�
C1;s2

=A�
C1;s2�1/ D HFK�

�
L2; s2 �

lk

2

�
:

In particular, �.H�.A�
C1;s2

=A�
C1;s2�1// is determined by the Alexander polyno-

mial �L2
.t /.

Proof. By Proposition 5.8, we can use A
�
C1;s2

=A�
C1;s2�1 to compute the knot

Floer homology of L2. The only issue is on the Alexander grading. From

equation (36) in [20], there is an identi�cation

A
�.H; p

�!
M .s//

Š�! A
�.r�!

M
.H/;  

�!
M .s//:
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Note that the de�nition of  
�!
M .s/ involves the linking numbers. Thus, we have

the following commuting diagram

A
�
C1;s2�1.L/ A

�
s2�1� lk

2

.L2/

A
�
C1;s2

.L/ A
�
s2� lk

2

.L2/;

 !�
CL2
C1;s2�1

 !Š

 ! �
CL2

s2�1� lk
2 !Š

where �
CL2

C1;s2�1 and �
CL2

s2�1� lk
2

are both the inclusions of subcomplex. Thus, we

have

A
�
C1;s2

.L/

A
�
C1;s2�1.L/

Š
A

�
s2� lk

2

.L2/

A
�
s2�1� lk

2

.L2/
D CFK�

�
L2; s2 �

lk

2

�
:

Thus, the lemma follows. �

5.5. Proof of Theorem 1.17.

Proof. Consider the following factorization of inclusion maps of subcomplexes

ICL2
s1;s2
WA�

s1;s2

�
CL2
s1;s2���! A

�
s1;s2C1

I
CL2
s1;s2C1

������! A
�
s1;C1:

It induces a factorization of the maps on homology

.ICL2
s1;s2

/� D .ICL2

s1;s2C1/� ı .�CL2
s1;s2

/�:

As is discussed in the proof of Theorem 1.15, we see .�
CL2
s1;s2

/� is a multiplication

of U k
CL2
s1;s2 , where

kCL2
s1;s2
D nCL2

s1;s2
� nCL2

s1;s2C1:

Moreover, k D 0 if and only if H�.A�
s1;s2C1=A

�
s1;s2

/ D 0, and k D 1 if and

only if H�.A�
s1;s2C1=A

�
s1;s2

/ D F with an even grading. Then, we have

�.H�.A�
s1;s2C1=A

�
s1;s2

// D nCL2
s1;s2
� nCL2

s1;s2C1:

Whereas,

�.H�.A�
s1Ck;s2C1=A

�
s1Ck;s2

//

D �.H�.A
�
s1;s2C1=A

�
s1;s2

//C
kX

iD1

�.HFL�.L; s1 C i; s2 C 1//; for all k > 0:

(5.6)
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Let k ! 1. We have �.H�.A�
k;s2

=A�
k;s2�1

// D �.H�.A�
C1;s2

=A�
C1;s2�1//

determined by �L2
.t /, by Lemma 5.9. Thus, all the n

CL2
s1;s2

are determined by the

Alexander polynomials. Similar results hold for L1: The theorem follows from

Lemma 5.6 and Theorem 5.10. �

In fact, when the linking number is not 0, the Alexander polynomials ofL1 and

L2 are determined by the Alexander polynomial of L D L1 [ L2 and the linking

number:

Theorem 5.10 (Murasugi, Proposition 4.1 in [22]). Let �L.x; y/ and �L1
.t / be

the Alexander polynomial of a link L D L1[L2 and L1 respectively in S3. Then

�L.t; 1/
:D 1 � t lk
1� t �L1

.t /;

where lk is the linking number of L.

5.6. Formulas for n
˙Li

s .L/’s. Using the Alexander polynomials of L;L1; L2,

we can get formulas for n
˙Li
s .L/’s.

First of all, we �x the overall signs of these Alexander polynomials to get

normalization of equations (5.5) and (4.1):

X

s2Z
�.HFK�.K; s// � t s D t

t � 1�K.t /; (5.7)

X

.s1;s2/2H.L/

�.HFL�.L; s1; s2// � xs1

1 � x
s2

2 D x
1
2

1 x
1
2

2 �L.x1; x2/: (5.8)

For an L-space knot K, to get equation (5.7), we require that t
t�1
�K.t /

has �nitely many non-zero positive powers and all the non-zero coe�cients of
t

t�1
�K.t / are 1, which is equivalent to �K.1/ D 1.

Theorem 5.11. Suppose L D L1 [ L2 is an L-space link. Let �L1
.t /, �L2

.t /,

and �L.x1; x2/ be the symmetrized Alexander polynomials, such that �L1
.1/ D

�L2
.1/ D 1: Let

t

t � 1�L1
.t / D

X

k2Z
a

L1

k
� tk;

t

t � 1�L2
.t / D

X

k2Z
a

L2

k
� tk;

�L.x1; x2/ D
X

i;j

aL
i;j � xi

1 � x
j
2 :
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Suppose .i0; j0/ satis�es that aL
i0;j0
¤ 0; aL

i;j0
D 0 for all i > i0; and aL

i0;j D 0
for all j > j0: Then,

�
�

HFL�
�
L; i0 C

1

2
; j0 C

1

2

��
D 1 () a

L1

i0C 1
2 � lk

2

D aL2

j0C 1
2 � lk

2

D 1I

�
�

HFL�
�
L; i0 C

1

2
; j0 C

1

2

��
D �1 () a

L1

i0C 1
2

� lk
2

D aL2

j0C 1
2

� lk
2

D 0:

Proof. Notice that �.A�
s1;s2

=A�
s1;s2�1/ can only be 0 or 1 for all .s1; s2/ 2 H.L/:

By equation (5.6), we have two possible cases:

(a) �.HFL�.L; s1; s2// D 1 if and only if

�.A�
s1;s2

=A�
s1;s2�1/ D 1 and �.A�

s1�1;s2
=A�

s1�1;s2�1/ D 0I

(b) �.HFL�.L; s1; s2// D �1 if and only if

�.A�
s1;s2

=A�
s1;s2�1/ D 0 and �.A�

s1�1;s2
=A�

s1�1;s2�1/ D 1:

In addition, we have

�.A�
i0C 1

2
;j0C 1

2

=A�
i0C 1

2
;j0� 1

2

/ D �.A�
C1;j0C 1

2

=A�
C1;j0� 1

2

/

D �
�

HFK�
�
L2; j0 C

1

2
� lk

2

��
:

So �.HFL�.L; s1; s2// D 1 if and only if a
L2

j0C 1
2

� lk
2

D 1: Symmetrically, we have

�.HFL�.L; s1; s2// D 1 if and only if a
L1

i0C 1
2

� lk
2

D 1: Similar argument applies to

the case (b). �

De�nition 5.12 (Normalization of Alexander polynomials for L-space links).

Suppose L D L1 [ L2 is an L-space link. Let the symmetrized Alexander

polynomial of L be

�L.x1; x2/ D
X

i;j

aL
i;j � xi

1 � x
j
2 ;

where xi corresponds to the component Li for i D 1; 2: Let the symmetrized

Alexander polynomials of L1; L2 be �L1
.t /; �L2

.t / in the forms of

t

t � 1�L1
.t / D

X

k2Z
a

L1

k
� tk; t

t � 1�L2
.t / D

X

k2Z
a

L2

k
� tk:
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Let .i0; j0/ be such that

j0 D max
°
j 2 ZC lk � 1

2

ˇ̌
ˇ aL

i;j ¤ 0
±

and

i0 D max
°
i 2 ZC lk � 1

2

ˇ̌
ˇ aL

i;j0
¤ 0

±
:

Then, these Alexander polynomials are called normalized if

(1) the leading coe�cient of�Li
.t / is 1 for both i D 1; 2, which is equivalent to

�Li
.1/ D 1;

(2) if a
L2

j0� lk
2

C 1
2

D 1, then aL
i0;j0
D 1; while if a

L2

j0� lk
2

C 1
2

D 0, then aL
i0;j0
D �1:

After normalization, we have

�.HFL�.L; s1; s2// D aL

s1� 1
2

;s2� 1
2

and

�.HFK�.Li ; s// D aLi
s for i D 1; 2:

Therefore,

�.H�.A
�
s1;s2

=A�
s1;s2�1// D a

L2

s2� lk
2

�
1X

iD1

aL

s1� 1
2

Ci;s2� 1
2

D 0 or 1:

Hence, we have

nCL2
s1;s2
D

1X

j D1

�
a

L2

s2Cj � lk
2

�
1X

iD1

aL

s1Ci� 1
2

;s2Cj � 1
2

�
: (5.9)

Similarly, we have

nCL1
s1;s2
D

1X

iD1

�
a

L1

s1Ci� lk
2

�
1X

j D1

aL

s1Ci� 1
2

;s2Cj � 1
2

�
: (5.10)

Theorem 5.13. Suppose L D L1 [ L2 is an L-space link. Under the normal-

ization in De�nition 5.12, we have that the formulas in equation (5.9) and equa-

tion (5.10) are non-negative for all .s1; s2/ 2 H.L/:

In fact, both of Theorem 5.11 and Theorem 5.13 give additional constraints for

the Alexander polynomials of an L-space 2-component link.
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Proposition 5.14. The link L7n2 is not an L-space link.

Proof. We give two proofs based on Theorem 5.11 and Theorem 5.13 respectively.

Suppose L D L7n2 is an L-space link with components L1 and L2, where L1

is the unknot and L2 is the right-handed trefoil. Then, we get the normalized

Alexander polynomials of L1 and L2:

t

t � 1�L1
.t / D 1C t�1 C t�2 C � � � ;

t

t � 1�L2
.t / D t C t�1 C t�2 C � � � :

Since �L.x; y/ D .x�1/.y�1/p
xy

and lk D 0, by Theorem 5.11, we have a
L1

1 D a
L2

1 .

This is a contradiction to a
L1

1 D 0 and a
L2

1 D 1.
Another proof is as follows. If we used the normalization in De�nition 5.12 for

L7n2, then we get nCL1
0;0 D �1 by equation (5.10). This is a contradiction to

Theorem 5.13. �

6. Applications

Classifying L-space surgeries on an L-space link L is usually challenging. One

di�culty is the lack of criterion for hyperbolic L-spaces. In [9], Gorsky and

Némethi studied L-space surgeries on the torus links T .pr; qr/ with p; q > 1

and r � 1 using Lisca-Stipsicz characterization of Seifert L-spaces. Let us look

at the case where p D 1 and r D 2, i.e. the torus links L D T .2; 2n/. We assume

n � 2, since the T .2; 2/ torus link is the Hopf link and its surgeries are lens spaces.

When both of p and q are not equal to n, the .p; q/-surgery on T .2; 2n/ is a

Seifert manifold with three singular �bers over the base S2. Using the notational

convention in [17], we can write S3
p;q.T .2; 2n// D �M

�
0I 1

n
; 1

p�n
; 1

q�n

�
. In [17],

Lisca and Stipsicz give a characterization of L-space Seifert manifolds.

Theorem 6.1 (Theorem 1.1, [17]). Suppose M is an oriented rational homology

sphere which is Seifert �bered over S2. Then,M is anL-space if and only if either

M or �M carries no positive, transverse contact structures.
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Theorem 6.2 ([16]). An oriented Seifert rational homology sphere M D M.e0I
r1; : : : ; rk/ with 1 > r1 � r2 � � � � � rk > 0 admits no positive, transverse contact

structure if and only if

� e0.M/ � 0, or

� e0.M/ D �1 and there are no relatively prime integers m > a such that

mr1 < a < m.1� r2/
and

mri < 1; i D 3; : : : ; k:

While the .n; q/-surgery on T .2; 2n/ is usually a graph manifold. The .n; q/-

surgeries are discussed in Corollary 3.6. Direct computation gives the following

result.

Proposition 6.3 (classi�cation ofL-space surgeries on T .2; 2n/with n � 2). For

all q ¤ n, the .n; q/-surgery on T .2; 2n/ is an L-space.

When p ¤ n; q ¤ n and p � q, S3
p;q.T .2; 2n// is an L-space with if and only

if one of the following conditions holds:

(1) nC 2 � p; nC 1 � q;

(2) 2n � p; n � 2 � q, and there are no relatively prime integers m > a > 0

such that

m
n � q � 1
n � q < a < m

�
1 � 1

n

�
and

m

p � n < 1I

(3) n C 2 � p � 2n; q � n � 2, and there are no relatively prime integers

m > a > 0 such that

m
n � q � 1
n � q < a < m

�
1 � 1

p � n
�

and
m

n
< 1I

(4) p D nC 1; q � nC 1; and q ¤ n;

(5) p D n� 1; q � n � 1;
(6) p � n� 2; q � p; and there are no relatively prime integersm > a > 0 such

that

m
�
1 � 1

n

�
< a < m

1

n � p and
m

n � q < 1:

See Figure 6.1 for the example of T .2; 20/. Compare this result with Theorem 7

in [9].
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3

1

2

4

6

5

3

Figure 6.1. The L-space surgeries on T .2; 20/. We draw the L-space surgeries of T .2; 20/

on the x-y plane within the range Œ�40; 40� � Œ�40; 40�. Every dot .p; q/ represents an

L-space surgery .p; q/. The blue points are Seifert L-space surgeries determined by the

characterization of Lisca-Stipsicz, while the red points are determined by induction. The

six labelled regions correspond to the six conditions (1) to (6) in Proposition 6.3. The drawn

hyperbola indicates the positions of the surgeries with b1 D 1.

Nevertheless, the links T .2; 2n/ are the simplest two-bridge links. In order

to generally study L-space surgeries on L, we give an algorithm computing
cHF.S3

ƒ.L// using the Alexander polynomials.

Another example is the Whitehead link. By the results in Section 6 in [18] or

the method introduced in this section, we can obtain the following proposition.

In order to distinguish it with its mirror, we call it the L-space Whitehead link.

Proposition 6.4. The .p1; p2/-surgery on the L-space Whitehead link is an

L-space if and only if p1 > 0; p2 > 0:
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6.1. Truncated perturbed surgery complex. The link surgery formula is an

in�nitely generated FŒŒU1; U2��-module. A truncation procedure is introduced in

Section 8.3 in [20] to reduce it to �nitely generatedFŒŒU1; U2��-module. It is called

horizontal truncation in [20], and we just call it truncation here. A truncation for

theƒ-surgery on a 2-component linkL is described by four �nite subsets of H.L/,

S00.ƒ/; S01.ƒ/; S10.ƒ/; S11.ƒ/:

The way of doing truncation is not unique. Later, we will describe an explicit way

which depends on L and ƒ.

De�ne

xC ı1ı2.ƒ/ D
M

s2Sı1ı2

A
�
pCı1L1[Cı2L2 .s/

; ı1; ı2 2 ¹0; 1º:

Then, the truncated perturbed complex xC.ƒ/ for an L-space link is de�ned as

follows:

. xC�.H; ƒ/; xD�.ƒ// WD xC 00.ƒ/ xC 10.ƒ/

xC 01.ƒ/ xC 11.ƒ/;

 !xD01
00

.ƒ/

 !
xD10

00
.ƒ/

 ! xD01
10

.ƒ/
 !xD10

01
.ƒ/

(6.1)

where xDı1ı2
"1"2

.ƒ/ are the restrictions of zDı1ı2
"1"2

.ƒ/ on the truncated complexes. See

equation (5.2) and (5.4) for the de�nitions of zDı1ı2
"1"2

.ƒ/. They are determined by

the set of integers n
˙Li
s .

The surgery complex naturally splits as a direct sum corresponding to Spinc

structures. For the ƒ-surgery on L, there is an identi�cation

Spinc.S3
ƒ.L// D H.L/=H.L;ƒ/;

where H.L;ƒ/ is the lattice spanned by ƒ. For u 2 H.L/=H.L;ƒ/, choose

s D .s1; s2/ 2 u: Denote

xC ı1ı2.ƒ; u/ D
M

i2Z

M

j 2Z
sCiƒ1Cjƒ22Sı1ı2

zA�
sCiƒ1Cjƒ2

:

Then, the summand xC.ƒ; u/ is as follows:

. xC�.H; ƒ; u/; xD�.ƒ; u// WD xC 00.ƒ; u/ xC 10.ƒ; u/

xC 01.ƒ; u/ xC 11.ƒ; u/:

 !xD01
00

.ƒ;u/

 !
xD10

00
.ƒ;u/

 ! xD01
10

.ƒ;u/

 !
xD10

01
.ƒ;u/

(6.2)
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By putting U1 D 0, we can get the chain complex of F-vector spaces xCy.ƒ; u/,
whose homology is isomorphic to cHF.S3

ƒ.L/; u/.

Lemma 6.5. Suppose A;B; C;D are �nite dimensional F-vector spaces and the

following diagram commutes

A B

C D:

 !h1

 !v1  ! v2

 !
h2

We form a chain complex .R�; d�/ supported on degrees 0; 1; 2;

RWA d2�! B ˚ C d1�! D

with d2 D h1 C v1 and d1 D h2 ˚ v2: Then, we have the following conclusions.

(1) We have

dimH�.R/ D 2 dim.Kerh1 \Ker v1/ � 2 dim.Im v2 C Im h2/

� dimAC dimB C dimC C dimDI

(2) dimH�.R/ D 1 if and only if one of the following is true:

a. � D dimA � dimB � dimC C dimD D 1 and

dim.Ker.h1/ \Ker.v1//C dim Coker.v2 C h2/ D 1I

b. � D dimA � dimB � dimC C dimD D �1 and

dim.Ker.h1/ \ Ker.v1//C dim Coker.v2 C h2/ D 0:

Proof. Part (1) is a straightforward computation. Notice that

H0 D Coker.h2 ˚ v2/ and H2 D Ker.h1 C v1/:

For Part (2), there are only three cases when H�.R/ D F happens:

(1) H0.R/ D F; H1.R/ D H2.R/ D 0I
(2) H1.R/ D F; H0.R/ D H2.R/ D 0I
(3) H2.R/ D F; H0.R/ D H1.R/ D 0:

In cases (1) and (3), we have that � D 1 and dimH0 C dimH2 D 1; in case (2),

we have that � D �1 and dimH0 C dimH1 D 0: It is not hard to check the

converse. �
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If Ker.v1/;Ker.h1/ are both known, then computing dim.Ker.v1/ \ Ker.h1//

is equivalent to computing dim.Ker.v1/CKer.h1//, which can be done by Gauss

Elimination.

While computing Coker.v2Ch2/ is the dual question for computing Ker.v�
2 /\

Ker.h�
2/. While the dual maps v�

2 and h�
2 can be obtained by reversing the arrows,

since we are working over F.

We can directly apply the above lemma for each truncated perturbed complex
xCy.ƒ; u/ for each Spinc structure. Thus, we only need to describe the truncated

regions S00.ƒ/; S01.ƒ/; S10.ƒ/; S11.ƒ/ and the kernels of the maps xDy��
��.ƒ; u/

and their dual.

Proposition 6.6. Suppose L is an L-space link. Fix a surgery framing ƒ and a

Spinc structure u. Then, cHF.ƒ; u/ D F if and only if in the truncated complex
xCy.ƒ; u/, one of the following is true:

(A) #S00.ƒ; u/� #S01.ƒ; u/� #S10.ƒ; u/C #S11.ƒ; u/ D 1 and

dim.Ker. yD01
00/ \Ker. yD10

00//C dim Coker. yD10
01 C yD01

10/ D 1I

(B) #S00.ƒ; u/� #S01.ƒ; u/� #S10.ƒ; u/C #S11.ƒ; u/ D �1 and

dim.Ker. yD01
00/ \Ker. yD10

00//C dim Coker. yD10
01 C yD01

10/ D 0:

6.2. Truncations. We explicitly describe the truncated regions S00.ƒ/,

S01.ƒ/; S10.ƒ/; S11.ƒ/ here. Let us brie�y recall the procedure to form these

truncated regions for a general two-component link L in Section 8.3 in [20].

(1) Choose a number b 2 N, such that the inclusion maps I
˙Li
s1;s2

’s are quasi-

isomorphisms whenever˙si � b:
(2) Determine a parallelogramQ in the plane, with verticesP1; P2; P3; P4 coun-

terclockwise labelled, satisfying the following condition: the pointPi has the

coordinate .xi ; yi/ such that

´
x1 > b;

y1 > b;

´
x2 < �b;
y2 > b;

´
x3 < �b;
y3 < �b;

´
x4 > b;

y4 < �b:
(6.3)

We also require that every edge is either parallel to the vectorƒ1 with length

greater than kƒ1k or parallel to ƒ2 with length greater than kƒ2k.
(3) Decide which is the case among the six cases of the surgeries described in

Figure 22 in [20]. Then, we can decide the corresponding truncated regions

according to Section 8.3 in [20].



L-space surgeries on links 561

The way of doing truncation is not unique. One explicit way to choose the

parallelogram Q to be centered at the origin as follows. See Figure 6.2.

Figure 6.2. The truncation. The vectors ƒ1 andƒ2 are determined by the surgery framing

matrix. The edges of the parallelogramQ are parallel to ƒ1 and ƒ2, and they indicate the

border lines of various acyclic subcomplexes or quotient complexes. Thus, the parallelo-

gram Q roughly indicates the support of the truncated complex.

Let

¹P1; P2; P3; P4º D
° i0ƒ1 C j0ƒ2

2
;
�i0ƒ1 C j0ƒ2

2
;

i0ƒ1 � j0ƒ2

2
;
�i0ƒ1 � j0ƒ2

2

±
;

with i0; j0 being positive integers, such that equations (6.3) hold.

Fix ƒ and u 2 H.L/=H.L;ƒ/. Suppose

s D �1ƒ1 C �2ƒ2 2 u; P1 D a1ƒ1 C a2ƒ2:

We denote

A1 D d��1 � ja1je; A2 D b��1 C ja1jc;
B1 D d��2 � ja2je; B2 D b��2 C ja2jc:

Then, the truncated regions in the six cases are as follows.
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Case I. We have

S00.ƒ; u/ D u \Q;
S10.ƒ; u/ D u \Q \ .QCƒ1/;

S01.ƒ; u/ D u \Q \ .QCƒ2/;

S11.ƒ; u/ D u \Q \ .QCƒ1 Cƒ2/:

In other words, for ı1; ı2 2 ¹0; 1º;

S ı1ı2.ƒ; u/ D ¹sCiƒ1Cjƒ2 j A1Cı1 � i � A2; B1Cı2 � j � B2º:

Case II. We have

S00.ƒ; u/ D u \Q;
S10.ƒ; u/ D u \ ¹Q [ .QCƒ1/º;
S01.ƒ; u/ D u \ ¹Q [ .QCƒ2/º;
S11.ƒ; u/ D u \ ¹Q [ .QCƒ1/ [ .QCƒ2/ [ .QCƒ1 Cƒ2/º:

In other words, for ı1; ı2 2 ¹0; 1º;

S ı1ı2.ƒ; u/ D ¹sCiƒ1Cjƒ2 j A1�ı1 � i � A2; B1�ı2 � j � B2º:

Case III . We have

S00.ƒ; u/ D u \Q;
S10.ƒ; u/ D u \ ¹Q \ .QCƒ1/º;
S01.ƒ; u/ D u \ ¹Q [ .QCƒ2/º;
S11.ƒ; u/ D u \ ¹ŒQ [ .QCƒ2/� \ .ŒQ [ .QCƒ2/�Cƒ1/º:

In other words, for ı1; ı2 2 ¹0; 1º;

S ı1ı2.ƒ; u/ D ¹sCiƒ1Cjƒ2 j A1Cı1 � i � A2; B1 � j � B2Cı2º:

Case IV. We have

S00.ƒ; u/ D u \Q;
S10.ƒ; u/ D u \ ¹Q [ .QCƒ1/º;
S01.ƒ; u/ D u \ ¹Q \ .QCƒ2/º;
S11.ƒ; u/ D u \ ¹ŒQ \ .QCƒ2/� [ .ŒQ \ .QCƒ2/�Cƒ1/º:

In other words, for ı1; ı2 2 ¹0; 1º;

S ı1ı2.ƒ; u/ D ¹sCiƒ1Cjƒ2 j A1 � i � A2Cı1; B1Cı2 � j � B2º:
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Case V. This case is similar to case I, but the regions S10.ƒ; u/; S01.ƒ; u/

have two more points at the corners. We have

S00.ƒ; u/ D u \Q;
S10.ƒ; u/ D .u \Q \ .QCƒ1// [ T 10;

S01.ƒ; u/ D .u \Q \ .QCƒ2// [ T 01;

S11.ƒ; u/ D u \Q \ .QCƒ1 Cƒ2/;

where T 10 D ¹sC A2ƒ1 C B1ƒ2º; T 10 D ¹sC A1ƒ1 C B2ƒ2º:
In other words, for ı1; ı2 2 ¹0; 1º;

S ı1ı2.ƒ; u/ D ¹s C iƒ1 C jƒ2 j A1 C ı1 � i � A2;

B1 C ı2 � j � B2º [ T ı1ı2 ;

where T 00 D T 11 D ;:
Case VI. This is similar to case V. We have

S00.ƒ; u/ D u \Q \ .Q �ƒ1 �ƒ2/;

S10.ƒ; u/ D .u \Q \ .Q �ƒ1// [ T 10;

S01.ƒ; u/ D .u \Q \ .Q �ƒ2// [ T 01;

S11.ƒ; u/ D u \Q;

where T 10 D sC A1ƒ1 C B2ƒ2; T
01 D sC B1ƒ2 C A1ƒ1:

In other words, for ı1; ı2 2 ¹0; 1º;

S ı1ı2.ƒ; u/ D ¹s C iƒ1 C jƒ2 j A1 C 1 � ı1 � i � A2;

B1 C 1 � ı2 � j � B2º [ T ı1ı2 ;

where T 00 D T 11 D ;.

Remark 6.7. In all of the above cases,

#S00.ƒ; u/� #S01.ƒ; u/� #S10.ƒ; u/C #S11.ƒ; u/ D ˙1:

6.3. Kernel of xDy��
��

.ƒ;u/. In fact, all the mapping cones of xDy��
��.ƒ; u/ split as

a direct sum of mapping cones in a common form. They look like the mapping

cones in computingC1-surgery on knots. Since this type of mapping cones looks

like zigzags, we just call them “zigzags.” We denote the set of integers in Œa; b� by

ŒaI b�, where we allow a D b.
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De�nition 6.8 (zigzag). A zigzag mapping cone C is a mapping cone of F-vector

spaces: M

a1�s�a2

As

f Cg���!
M

b1�t�b2

Bt ;

where

As D F; for all a1 � s � a2;

Bt D F; for all b1 � t � b2;

f D
M

fs; fsWAs �! Bs;

g D
M

gs ; gs WAs �! BsC1:

The code of the zigzag C is a set of data ¹Œa1I a2�; Œb1I b2�; S1; S2º, where

S1 D ¹s 2 Z j fs ¤ 0º; (6.4)

S2 D ¹s 2 Z j gs ¤ 0º: (6.5)

We de�ne Ker.C / (resp. Coker.C /) to be Ker.f C g/ (resp. Coker.f C g/).

De�nition 6.9. For any element x in
L

a1�s�a2
F�es , we can represent it uniquely

by x D
P

s2� es:We call � the support of x, and denote it by Supp.x/. Similarly,

for X D ¹x1; : : : ; xnº, we denote ¹Supp.x1/; : : : ; Supp.xn/º by Supp.X/.

Proposition 6.10. For a zigzag C with the code ¹Œa1; a2�; Œb1; b2�; S1; S2º, we

represent S1 \ S2 by a minimal disjoint unions

S1 \ S2 D
a

i2Œ1IK�

Œ˛i Iˇi �;

with ˇi � ˛iC1C2, for all i . Then, Ker.C / has a basis with the following support

¹¹sº j s 2 Œa1; a2�n.S1 [ S2/º [ ¹Œ j̨ � 1; ǰ C 1� j j̨ � 1 2 S2; ǰ C 1 2 S1º:

Proof. Straightforward. �

De�nition 6.11. Let L D L1 [ L2 be an L-space link. For all s1 2 H1.L/; s2 2
H2.L/; we de�ne

�CL2
s1

.L/ D min¹s2 2 H2.L/ j nCL2
s1;s2
¤ 0º; (6.6)

�CL1
s2

.L/ D min¹s1 2 H1.L/ j nCL1
s1;s2
¤ 0º: (6.7)
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It is easy to see that in Section 6.3 we can let

b D max¹max¹�CL2
s1

.L/ºs1
;max¹�CL1

s2
.L/ºs2

º:

The truncated perturbed complex xCy.ƒ/ is determined by these �
CL2
s1

.L/’s and

�
CL1
s2

.L/’s, and thereby so are the zigzag mapping cones corresponding to
xDy��

��.ƒ; u/’s.
For example, suppose

ƒ D
�
p1 lk

lk p2

�

and choose s D .s1; s2/ 2 u: Before truncation, we have

cone. yD01
00.ƒ; u// D

Y

i2Z
cone

�Y

j 2Z
. ŷCL2

sCiƒ1Cjƒ2
C ŷ�L2

sCiƒ1Cjƒ2
/
�
:

After truncation, cone. xDy01
00.ƒ; u// splits into direct sums of zigzags in

form of

cone
�Y

j 2Z
. ŷCL2

sCiƒ1Cjƒ2
C ŷ�L2

sCiƒ1Cjƒ2
/
�
\ xCy.ƒ/:

Let us �gure out the codes of these zigzags. Suppose the code of the above

zigzag is

¹Œa1I a2�; Œb1I b2�; S1; S2º:
Then, it is not hard to get the following formulas for the code,

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

Œa1I a2� D ¹j 2 ZjsC iƒ1 C jƒ2 2 S00.ƒ; u/º;
Œb1I b2� D ¹j 2 ZjsC iƒ1 C jƒ2 2 S01.ƒ; u/º;
S1 D ¹j 2 Zjs2 C i � lkC j � p2 � �CL2

s1Ci �p1Cj �lk.L/º;
S2 D ¹j 2 Zjs2 C i � lkC j � p2 � ��CL2

�s1�i �p1�j �lk.L/º:

6.4. Examples: L-space surgeries on two-bridge links. From Proposition 2.11,

we see that if a two-bridge link has an L-space surgery, then it is a generalized

L-space link. By taking mirrors, we can reduce these links to two types: L-space

links and generalized .C�/L-space links. We have discussed two-bridge L-space

links in Section 3. By the method in this section, it is convenient to make

computer programs for computing cHF of their surgeries and give characterizations

of L-space surgeries. For example, regarding the surgeries on the Whitehead link,

we can do truncations as in Proposition 6.9 in [18] and then use the method of

zig-zags in Section 6.3 to recover the results in Proposition 6.9 [18] for the hat

version. Thus, we can obtain Proposition 6.4. However, to �nd a general formula

of cHF is not easy.
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In fact, �ndingL-space homology spheres is more interesting. Let us try some

examples here, by looking at the .1; 1/-surgeries on a sequence of two-bridge links

Ln D b.4n2 C 4n;�2n� 1/ for all positive integers n. This sequence of L-space

links have linking numbers 0. Note that L1 is the Whitehead link.

Proposition 6.12. For all n � 2, the .1; 1/-surgery on b.4n2 C 4n;�2n � 1/ is

not an L-space.

With the help of a computer program, we get the Alexander polynomials ofLn:

�Ln
.x; y/ D

n�1X

j D�n

n� 1
2

�
ˇ̌
j C 1

2

ˇ̌
X

iD�n� 1
2

C
ˇ̌
j C 1

2

ˇ̌.�1/
iCjxiC 1

2yj C 1
2 :

After normalizing �Ln
.x; y/ by De�nition 5.12, we can get formulas for n

CL1
s1;s2

by

equations (5.10) and (5.9). We list the numbers

¹nCL2
s1;s2

.Ln/º�4�s1�4;�4�s2�4 for n D 1; 2; 3; 4

as follows:

¹nCL2
s1;s2

.L1/ºW

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

I

¹nCL2
s1;s2

.L2/ºW

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 1 1 0 0 0

1 1 1 1 2 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

I
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¹nCL2
s1;s2

.L3/ºW

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 1 1 2 1 1 0 0

1 1 1 2 2 2 1 1 1

2 2 2 2 3 2 2 2 2

3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

I

¹nCL2
s1;s2

.L4/ºW

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 1 1 2 1 1 0 0

0 1 1 2 2 2 1 1 0

1 1 2 2 3 2 2 1 1

2 2 2 3 3 3 2 2 2

3 3 3 3 4 3 3 3 3

4 4 4 4 4 4 4 4 4

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

:

In particular, we get the following formulas for all s1 2 Z,

�CL2
s1

.Ln/ D
´
n � js1j; js1j � n;
0; js1j � n:

Since Ln is a two-bridge link, we have the symmetry �
CL1
s2

D �
CL2
s1

, when

s1 D s2.

Thus, we can let b.Ln/ D n: Then, as described in Section 6.3, the truncation

regions are determined by the parallelogram Q, with vertices P1 D .n; n/,

P2 D .�n; n/; P3 D .�n;�n/; P4 D .n;�n/: The surgery framing is in Case

I, so we have the truncated regions

S ı1ı2 D ¹.i; j / 2 Z
2 j �nC ı1 � i � n;�nC ı2 � j � nº:

Now we can see

ŷ˙Li
s1;s2
D 0; for all � nC 1 � s1 � n� 1;�nC 1 � s2 � n � 1; i D 1; 2:

So yAs1;s2
2 xCy00 with �n < s1 < n;�n < s2 < n are all in the kernel of yD10

00

and yD01
00: So when n � 2; we have that Ker. yD01

00/ \ Ker. yD10
00/ has rank at least

n2C .n� 1/2 > 1: Thus, by Proposition 6.6, the .1; 1/-surgeries on Ln with n � 2
are neverL-spaces. Similar arguments apply to .˙1;˙1/-surgeries on these links.
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Proposition 6.13. On the two-bridge L-space links Ln D b.4n2 C 4n;�2n� 1/
with n � 2, there are no L-space homology sphere surgeries.

In fact, direct computations using the zigzags give that cHF.S3
1;1.Ln// has

dimension .2n� 1/2:
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