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L -space surgeries on links

Yajing Liu

Abstract. An L-space link is a link in S3 on which all large surgeries are L-spaces. In this
paper, we initiate a general study of the definitions, properties, and examples of L-space
links. In particular, we find many hyperbolic L-space links, including some chain links and
two-bridge links; from them, we obtain many hyperbolic L-spaces by integral surgeries,
including the Weeks manifold. We give bounds on the ranks of the link Floer homology
of L-space links and on the coefficients in the multi-variable Alexander polynomials. We
also describe the Floer homology of surgeries on any L-space link using the link surgery
formula of Manolescu and Ozsvath. As applications, we compute the graded Heegaard
Floer homology of surgeries on 2-component L-space links in terms of only the Alexander
polynomial and the surgery framing, and give a fast algorithm to classify L-space surgeries
among them.
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1. Introduction

1.1. Background on L-spaces. Heegaard Floer homology is a package of in-
variants for 3-manifolds and links introduced by Ozsvath and Szabé in [31].
It has many applications to topological questions. See [29, 34, 24, 27, 36, 40, 25].
An L-space is a rational homology sphere with the simplest Heegaard Floer ho-
mology. In this paper, for simplicity, we work in the field ' = Z /27, and then we
use the following definition:

Definition 1.1 (Z/27Z-L-space). A 3-manifold M is called an L-space, if it is a
rational homology sphere and dimp(HF(M)) = |H(M)|.

Examples of L-spaces include all 3-manifolds with elliptic geometry and
double branched covers over quasi-alternating links. L-spaces are of interests
in 3-manifold topology. An L-space does not admit any co-oriented C? taut
foliations; see Theorem 1.4 from [29]. Examples of closed hyperbolic manifolds
admitting no taut foliations are very interesting and first found in [38] and [4]
by considering their fundamental groups. In fact, any hyperbolic Z/27Z- L-space
also provides an example of hyperbolic manifold admitting no co-oriented taut
foliations. This is because in the proof of Theorem 1.4 of [29], it is pointed out
that any Z/ pZ-L-space does not admit a co-oriented taut foliation for all prime
numbers p. There is also a conjecture of Boyer, Gordon, and Watson from [2]
relating L-spaces with left-orderability of the fundamental group.

In [32], L-space knots were introduced by Oszvath and Szabd, in order to study
the Berge conjecture on lens space surgeries on knots in S3. For further results
towards the Berge conjecture, see [10, 11].

Definition 1.2 (L-space knot). A knot K C S? is called an L-space knot, if there
is a positive integer n, such that the n-surgery on K is an L-space.

Since every 3-manifold is a surgery on a link in S3, one can study L-spaces by
surgeries on links. In this paper, we focus on a class of links called L-space links,
whose large surgeries are all L-spaces. These links are natural generalizations of
L-space knots. The terminology of L-space links was introduced by Gorsky and
Némethi in [9] to study algebraic links. Actually, Ozsvath, Stipsicz and Szabé have
shown that all plumbing trees are L-space links in [37]. The surgeries on algebraic
links and plumbing trees are all graph manifolds. In this paper, we give many
examples of hyperbolic L-space links, including some families of two-bridge links
and chain links. In turn, these hyperbolic L-space links provide many examples of
hyperbolic L-spaces, including the famous Weeks manifold; see Section 3. All of
these hyperbolic L-spaces are derived from elliptic L-spaces, by using the surgery
exact triangle of Floer homology.
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It turns out that L-space links are rich in geometry and simple in algebra. All
the generalized Floer complexes are chain homotopy equivalent to F[[U]] and the
link Floer homology are controlled by their Alexander polynomials; see Sections 4
and 5. Moreover, there are L-space links of all kinds of geometry with arbitrarily
many components, including non-prime links, torus links, satellite links, and
hyperbolic links; see Example 1.13. There are also non-fibered prime L-space
links, contrasting L-space knots.

Here, all the links are oriented links in 3, and all Floer complexes are of the
completed version, meaning over the completion F[[U]].

1.2. L-spaceknots. Examples and properties of L-space knots have been exten-
sively studied in the literature. We list some of them here.

Example 1.3. Examples of L-space knots include lens space knots such as Berge
knots (up to mirror), algebraic knots (which are torus knots and their cables), and
(=2, 3, g) pretzel knots with ¢ > 1 odd (which are hyperbolic). See [32, 12, 15, 1].

Fact 1.4. In [36], it is shown that a positive rational L-space surgery implies a
positive integer L-space surgery; a positive integer L-space surgery implies that
all large surgeries are L-spaces.

Fact 1.5 ([32]). If K is an alternating L-space knot, then K isa T (2,2n+ 1) torus
knot.

Fact 1.6 ([24]). An L-space knot is a fibered knot.

Fact 1.7 ([32]). Let K be an L-space knot. The knot Floer homology iFT((K ) is
determined by the Alexander polynomial of K, and rank(HFK(K, s)) < 1, for all
s €.

These properties provide strong constraints on L-space knots. However, it
turns out that none of the above properties extends to L-space links immediately.

1.3. L-spacelinks. In[9], Gorsky and Némethi define L-space links in terms of
large surgeries.

Definition 1.8 (L-space link). An /-component link L C S? is called an L-space
link, if all of its positive large surgeries are L-spaces, that is, there exist integers
D1, ..., pi, such that S,?l 77777 n, (L) is an L-space for all ny, ..., n; withn; > p;, for
all 1 <i < [. Note that whether L is an L-space link does not depend on the
orientation of L. A link L is called a non-L-space link, if neither L nor its mirror
is an L-space link.
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The large surgeries on the link L are governed by the generalized Floer com-
plexes A (L)’s with s € H(L), which were introduced by Manolescu and Ozsvath
in [20]. Here, H(L) is defined below. Also, see Definition 2.1 for the generalized
Floer complexes.

Definition 1.9 (H(L)). For an oriented link L with / components, we define H(L)
to be the affine lattice over Z/,

l
k(Li, L —Ly)
H(L) = H(L);, H(L);=72Z+ ——.
(L) 6291 (L) W(L); = Z+ ==
Based on the knowledge of (5 (L), we have the following necessary condition
on L-space links.

Lemma 1.10. If L is an L-space link, then all sublinks of L are L-space links.

We also describe L-space links in three other equivalent ways, which are easy
to use. To this end, we study the relation between L-space surgeries and large
surgeries on links. Using the L-space surgery induction lemma (Lemma 2.5) and
the generalized Floer complexes, we prove the following result.

Proposition 1.11. The following conditions are equivalent:
(i) L is an L-space link;

(ii) there exists a surgery framing A(p1, ..., p;), such that for all sublink L' C L,
det(A(p1,....p1)|r) > 0 and Sl3\|y (L") is an L-space (notice that at this
time A is positive definite);

(iii) H. (25 (L)) = F[[U]], for all s € H(L);
(iv) H«(As(L)) =T, forall s € H(L).

Using grid diagrams as in [21], one can compute 25 combinatorially and
check condition (iii) or (iv). On the other hand, for special class of links, it is
more convenient to use condition (ii). For instance, it follows immediately that an
algebraically split link is an L-space link if and only if it admits a positive surgery
A such that the surgeries restricted to sublinks are all L-spaces. Note that if we
work with Z coefficients, conditions (i) and (ii) are also equivalent.

In contrast to Fact 1.4, a single L-space surgery (with positive surgery co-
efficients) on L fails to imply that all the large surgeries on L are L-spaces.
See Example 2.4. It leads us to define weak L-space links.
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Definition 1.12 (weak L-space link). A link L is called a weak L-space link,
if there exists an L-space surgery on L.

There are generalizations of L-space links, called generalized (£---+) L-space
links, by considering the corresponding types of generalized large surgeries.
There are also parallel theories of 2 for generalized large surgeries and the
link surgery formula. See Section 2. An L-space link is literally a generalized
(+ - --+)L-space link. Note that there are generalized (+—) L-space links that are
non-L-space links.

Example 1.13. We have the following examples of L-space links and generalized
L-space links.

(A) Split disjoint unions of L-space knots are L-space links.

(B) Two-bridge links b(rq — 1, —q) with r, g being positive odd integers are all
L-space links, which include 7'(2,2n) torus links. See Theorem 3.8. Note
that except for 7'(2, 2n), they are all hyperbolic links.

(C) A 2-component L-space link: L7n1 in the Thistlethwaite link table. See
Example 3.17.

(D) Some 3-component L-space links: Borromean rings, L6a5, L6nl, L7a7 and
a link in Example 3.3. See Example 3.17.

(E) A hyperbolic 4-chain L-space link. See Example 3.12.

(F) A hyperbolic 5-chain generalized (+ + 4 4+ —)L-space link. See Exam-
ple 3.13.

(G) Two families of hyperbolic L-space chain links. See Example 3.14 and Ex-
ample 3.15.

(H) A sequence of plumbing graphs that are generalized L-space links. See
Example 3.16.

(I) All plumbing trees of unknots are L-space links. This was proved by Ozsvith
and Szabd in [28]. See Example 3.10.

(J) All algebraic links are L-space links. This was proved by Gorsky and
Némethi in [9].

(K) See Table 3.2 for the list of which links with crossing number < 7 are L-space
links.
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In contrast to Fact 1.5, there are alternating hyperbolic L-space links, for ex-
ample, all two-bridge links b(rg — 1, —¢) with r,¢ > 1 being positive odd inte-
gers. Surgeries on these hyperbolic L-space links can give examples of hyperbolic
L-spaces which are neither surgery nor double branched cover over any knot. See
Example 3.1. In fact, surgeries on these L-space two-bridge links are always dou-
ble branched covers over some links. It is not clear to us whether those links are
quasi-alternating or not.

In relation to Example 1.13 (B), we make the following conjecture:

Conjecture 1.14. The set of all L-space two-bridge links is
{b(rq — 1,—q):r, q are positive odd integers}.

Using the algorithm from [18] for computing QAls(L) for two-bridge links,
we verify that Conjecture 1.14 is true for all two-bridge links b(p, ¢) with p < 100.

Compared with Fact 1.7, we study the Alexander polynomials of L-space links
using A (L).

Theorem 1.15. Suppose L is an l-component L-space link with | > 2, and has
the multi-variable Alexander polynomial as follows

i i
ALGo,..ox) = Y iy, Xy e x)

Then,
rankp(HFL™(L,s)) < 2'7', foralls € H(L), (1.1)
5 <272 foralliy,... .. (1.2)

.....

In particular, for a 2-component L-space link, the multi-variable Alexander
polynomial has non-zero coefficients £1. Moreover, fixing iy, the signs of non-
zero a;, xS are alternating; similarly fixing i», the signs of non-zero ax;,’s are
alternating.

Remark 1.16. Inequality (1.1) is sharp for / = 2. For example, for the Whitehead
link Wh, HFL™ (Wh, 0, 1) equals to IF & F. Inequality (1.1) can also be deduced
from a spectral sequence of Gorsky and Némethi from [9].

Inequality (1.2) is sharp for / = 3. The mirror of L7a7 is an L-space link with
Alexander polynomial

uvw —uv —uw +2u —2vw +v+w-—1

Apra7(u, v, w) = —
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In contrast to knots, the Alexander polynomial condition does not give strong
constraints for alternating links. In [32], it is shown that if K is an alternating
knot with Alexander polynomial satisfying the condition in Fact 1.7, then K is a
T(2,2n + 1) torus knot; see Proposition 4.2 and Theorem 4.3. On the other hand,
we find infinitely many hyperbolic alternating links with multi-variable Alexander
polynomial satisfying inequality (1.2), including L-space links and non-L-space
links. See Section 4.2.

Theorem 1.15 also implies that a Floer homologically thin L-space 2-compo-
nent link L has fibered link exterior.

In contrast to Fact 1.6, there are non-fibered L-space links. For example, the
split disjoint union of two L-space knots is a non-fibered L-space link, since the
complement is not irreducible any more. In fact, there are also many non-fibered
L-space links among hyperbolic two-bridge links. See Example 3.9.

Actually, there are additional constraints on the Alexander polynomials of an
L-space link; see Theorem 5.11 and Theorem 5.13 below for the precise statements.
As a consequence, either of these theorems implies that L7x12 is not an L-space
link, while Theorem 1.15 fails to do so.

1.4. Surgeries on L-space links. Despite many algorithms on computing var-
ious versions of Heegaard Floer homology, explicit computations of plus/minus
versions for 3-manifold invariants have only been done on a few cases, such as
surgeries on knots and some mapping tori of surfaces, by exploiting surgery exact
triangles. In [13], Hom pointed out that the result from [32] further implies that
the whole package of Heegaard Floer homology of surgeries on an L-space knot
K is determined by the Alexander polynomial of K and the surgery coefficients.

In this paper, we study the computation of Heegaard Floer invariants for
integral surgeries on an L-space link L, including the completed Heegaard Floer
homology HF ", absolute gradings, and the cobordism maps, using the link surgery
formula of Manolescu—Ozsvath from [20]. The Manolescu—Ozsvith surgery
complex is an object in the category of chain complexes of F[[U]]-modules, while
it can also be considered as an object in the homotopy category of chain complexes
of F[[U]]-modules. In [18], any representative in this chain homotopy equivalence
class is called a perturbed surgery complex. Some algebraic rigidity results are
established in [18], which imply that (5 (L) is chain homotopic to F[[U]] by a
F[[U]]-linear chain map preserving the Z-grading.
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Thus, for an L-space link L, the perturbed surgery complex turns out to be
largely simplified. When L has 1 or 2 components, all the information needed
in the perturbed surgery complex is completely determined by the Alexander
polynomial and the surgery framing matrix.

Theorem 1.17. For a 2-component L-space link L= fl U fz, all Heegaard
Floer homology HF (S 13\ (L)) together with the absolute gradings on them are
determined by the following set of data:

o the multi-variable Alexander polynomial A (x, y),
o the Alexander polynomials Ap,(t) and Ap,(t),

o the framing matrix A.

Remark 1.18. For L-space links with more components, besides the Alexander
polynomials more information is needed to determine whether the higher diagonal
maps vanish or not.

Furthermore, we explicitly describe HF of surgeries on an L-space link L =
L; U L, by a series of formulas in terms of the Alexander polynomials and
the surgery framing matrix. These formulas give a fast algorithm computing
HF of these surgeries. We also give a fast algorithm for classifying L-space
surgeries. As an application, we study the classification of L-space surgeries
on two-bridge links, and compute some examples explicitly: (1, 1)-surgery on a
family of L-space links with linking number zero, L,, = b(4n? + 4n,—2n — 1).

Instead of classifying L-space links with more than 2 components, we contend
to show the prevalence of surgeries on L-space links among 3-manifolds:

Question 1.19. Is every 3-manifold a surgery on a (generalized) L-space link?

If Question 1.19 had a positive answer, one could hope to compute Heegaard
Floer homology by L-space links. As a matter of fact, every 3-manifold M can be
realized by a surgery on an algebraically split link after connect sum with several
lens spaces; see Corollary 2.5 from [26]. It is also interesting to ask whether this
algebraically split link can be chosen to be a generalized L-space link.

Regarding L-space surgeries, there is a more basic question:

Question 1.20. Is every L-space a surgery on a (generalized) L-space link?
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1.5. Organization and conventions. This paper is organized as follows. In
Section 2, we discuss the properties of L-space links and generalized L-space
links. In Section 3, we present examples of L-space links and contrast them
with L-space knots. Section 4 consists of the proof of Theorem 1.15 and related
discussions on fiberedness of L-space links. In Section 5, we prove Theorem 1.17.
In Section 6, we give the algorithm for computing HF of surgeries on 2-component
L-space links and compute some examples.

Since L-space links are sensitive to mirrors and the generalized Floer com-
plexes are defined for oriented links, we describe our conventions about oriented
two-bridge links b(p, g) and oriented torus links 7'(2, 2n) in Section 3. In addi-
tion, the Floer complex CF~(S?) is absolutely Z-graded, and the top grading is 0.
This convention is needed to compute the d-invariants from link surgery formula
using minus version Floer complexes.

Acknowledgements. I deeply appreciate Ciprian Manolescu for providing won-
derful insights and for his continuing encouragements as my advisor. Some of
the ideas in this paper have originated from Matthew Hedden, in particular, The-
orem 1.15. Especially I wish to thank the referee for his careful reading and nu-
merous suggestions and corrections. I am also grateful to Jiajun Wang for guiding
me to L-space surgeries, to Yi Ni for helpful conversations on fiberedness, to Tye
Lidman for inspiring comments on chain links, to Thomas Mark and Bulent Tosun
for inspiring comments on the Weeks manifold. I am informed that some results
in this paper such as Theorem 1.15 have been obtained by Nakul Dawra indepen-
dently.

2. L-space links

In this section, we study the large L-space surgeries on a link L. Then, we
introduce various notions of L-space links.

2.1. L-space links. Let us recall the definition of generalized Floer complexes
of alink L in $3 in [20] Section 4, which govern the large surgeries on L. For
simplicity, we only consider generic admissible multi-pointed Heegaard diagrams
with each component L; having only two basepoints w;, z;. Here, we allow free
basepoints.
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Definition 2.1 (generalized Floer complexes). Let L be a link in 3 and choose a
Heegaard diagram H. For s € H(L), the generalized Floer complex A~ (3, s) is
the free module over R = F[[Uy, ..., U;]] generated by T, NTg € Symé T1(:),
and equipped with the differential:

_ IANC El,(9)
ox= > #Mp)/R)-U, T U
YET(@)NT(B) pems (x,y) rops | @) ) (2.1)
n@)=1 U T Uy,
where Ei(¢) is defined by
E¢(¢) = max{s — 4;(x), 0} — max{s — 4;(¥). 0} + nz,(¢) 22

= max{4;(x) — 5,0} — max{4;(y) — 5, 0} + 1y, (#).

Here, M(¢) denotes the moduli space of the pseudo-holomorphic disks in the
homotopy class ¢, and A; (x) denotes the ith Alexander grading of the intersection
point x. The stable quasi-isomorphism type of 2~ (), s) is an invariant of L. For
simplicity, we also write A (L, s), 205 (L), or 2(, when the context is clear.

Notation 2.2. Let L be an [-component link in S3. In order to simplify the
notation, we denote the (p1, ..., p;)-surgery on L by Sgl ..... p, (L) and the surgery
framing matrix by A(p1, ..., p1), where p1, ..., p; are surgery coefficients on the
link; i.e. A(p1,..., p1) is the matrix with p1, ..., p; on the diagonal and linking
numbers off the diagonal.

Proof of Lemma 1.10. First, let us recall Theorem 10.1 in [20].

Theorem 2.3. Let A be a surgery framing on the link L. For A sufficiently large,
there exist quasi-isomorphisms of relative Z--graded complexes

CF™ (S3(L),s) — 25 (L)
Jor all s.

Thus, L is an L-space link if and only if 2 (L) has the homology F[[U]]
for all s € H(L). When the ith component of s, say s;, equals to oo, there is a
destabilization map between 2~ (L, s) and A~ (L — L;, ¥ TLi(s)), which is a quasi-
isomorphism. See Example 7.2 in [20]. Roughly, this is because the generalized
Floer complexes of L — L; can be computed from the Heegaard diagram of L
by deleting the basepoint z;, which is the same as putting s; = +o0 in A~ (L, s).
Thus, 27 (L — L;,s’) has homology F[[U]] for all s’ € H(L — L;). So L — L; is
an L-space link for L; C L. An induction will show that all sublinks are L-space
links. O
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In contrast to knots, a weak L-space link L might be a non-L-space link.

Example 2.4. Let L = L;U L, be the link consisting of a Figure-8 knot L; and an
unknot L, as in Figure 2.1. Then by blowing down the unknot, the Figure-8 knot
is then unknotted, and thus the surgery S,il (L) is the lens space L(n —4, 1), when
n # 4. However, the Figure-8 knot is not an L-space knot. Thus, by Lemma 1.10,
L is a weak L-space link but not an L-space link. Similarly, the mirror of L is not
a L-space link neither.

Figure 2.1. An example of weak L-space link.

2.2. L-space induction and generalized large surgeries. In this subsection,
we study how to characterize L-space links, by exploiting surgery exact triangles.

Lemma 2.5 (L-space surgery induction). Let L = Ly U---U L, be a link with n
components, and L' = L — L. Let A be the framing matrix of L for the surgery

3 o 3
Spi....pn (L), and denote by A’ the restriction of A on L'. Suppose S;, ., (L)
and S 132 ..... . (L) are both L-spaces. Then,
Case I. if det(A) - det(A') > 0, then for all k > 0, Slfl kPP (L) is an
L-space;
Casek II. if det(A) - det(A) < O, then for all k > 0, S;—k,pz """ » (L) is an

L-space.
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Proof. Let Ay be the framing matrix of the surgery Ss
det(Ay) = det(A) + k det(A').

For the case det(A) - det(A’) > 0, consider the following exact triangle of
surgeries:

1+k,p2,..s0n (L) Notice that

HE(Sp, ps.....on (L)) HE(Sp, 103000 (1)

\ /

HE(S3,,...p, (L)).

.....

Thus, from that det(A;) = det(A) + det(A’), it follows that Sgl 1prpn (D)
is also an L-space. Iterating this argument for all k > 0, we can obtain that

Ssl KPP (L) is an L-space for all k > 0. The case where det(A)-det(A") < 0
is similar. u

Lemma 2.6 (positive L-space surgery criterion). An [-component link L is an
L-space link if and only if there exists a surgery framing A(p1, ..., p1), such that
for all sublink L' C L, det(A(p1, ..., p1)|r’) > 0and S13\|L/ (L") is an L-space.

In particular, if the surgery framing A(p1, ..., p;) satisfies the above condi-
tion, then for any surgery framing A’ = A(ny,...,n;) with n; > p; for all i,
the surgery S3,(L) is an L-space.

Proof. If L is an L-space link, then every sublink L’ is an L-space link, by
Lemma 1.10. Thus, there is a large (pi, ..., p;)-surgery on L such that for all
L' C L,det(A(p1,...,p;1)) > 0and S13\|L/ (L') is an L-space.

Conversely, let A(p1,..., p;) be the surgery framing satisfying the condition
in the proposition. Let A’ = A(p1,..., pi +1,..., p1). By the L-space surgery
induction lemma, we have that for all L’ C L, 513\’|L/ (L") is an L-space and
det(A’|z) = det(A|r/) + edet(A|r—z;), where e = 1if L; C L' ande = 0
if L; € L’. Thus, by induction, we can show that for any surgery framing
A" = A(ny,...,n;) with n; > p;, the surgery S13\”|L/ (L) is an L-space for
all sublinks L’ C L. In particular, S 13\,/(L) is an L-space, and this finishes the
proof. O

Definition 2.7. A link is called algebraically split, if all the pairwise linking
numbers are 0.

Corollary 2.8. Let L = L1 U---U L; be an algebraically split link. Then L is an
L-space link if and only if there exist p; > 0,i = 1,...,1, such that SI3\|L/ (L) is
an L-space for all L' C L, where A = A(p1, ..., pi).
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Proof of Proposition 1.11. Lemma 2.6 implies that condition (i) and (ii) are equiv-
alent. By Theorem 10.1 from [20], it follows L is an L-space link if and only if
20 (L) has homology F[[U]] for all s € IF[[U]]. Thus, condition (i) is equivalent
to (iii) as well as (iv). O

2.3. Generalized L-space links. We can enlarge our scope to generalized large
surgeries on a link L. Let us use £ signs to denote the type of the generalized
large surgeries.

Definition 2.9 (generalized L-space links). A 2-component link L. = L; U L,
is called a generalized (£+)L-space link, if there exist integers p;, p», such that
for all positive integers k1,k, > 0, S p31 Sk patho (L) is an L-space. Similarly, we
define an /-component generalized (£ --- +) L-space link.

Example 2.10. The split disjoint union of the left-handed trefoil and the right-
handed trefoil is a generalized (4—)L-space link. However, it is not an L-space
link, and neither is its mirror.

Let us look at some examples of 2-component generalized L-space links.

Proposition 2.11. Suppose L is a 2-component link L = L, U L, with Ly, L,

both being the unknots, and S 1?1 .p, (L) is an L-space. Then,

(1) if prp2 > Ik, p1 > 0, po > 0, then Sj (L) are L-spaces for all

kl,kz € N;

1+k1,p2+k2

() if pip2 > K>, p1 < 0, py < 0, then Ss
kl,kz e NN;

k1. pa—ks (L) are L-spaces for all

3) if p1 >0, pp <0, then Sj (L) are L-spaces for all k1, k, € IN;

1+k1,p2—k2

@) if prpa < K>, p1 > 0,p> > 0, then the surgeries S;1+k1 —1—k2(L)’
Sil—kl,pz—i-kz(L) with ki > 0,k, > 0 and S;i,l"z(L) with 0 < p < p1,

0 < p5 < p are all L-spaces;

(5) if pip2 <IK%, p1 <0, ps <O, then the surgeries Sp31 —ky o (L), S,fl Pty (L)
with k1 > 0,ky > 0 and Slfi=P’z(L) with 0 > p} > p1,0 > p, > p; are all
L-spaces.

The above cases are shown in Figure 2.2.
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P2

3) (D

@) pip2 = IK?

\ ]

pipa2 = 1k? i
(5)

2 (€)

Figure 2.2. We illustrate the cases of the (p;, p2)-surgeries in Proposition 2.11 on the
(p1, p2) plane, where the case (3’) is similar to case (3).

Proof. Cases (1), (2), and (3) are proved by induction using the long exact se-
quences for the surgery triple (S, ,(L), S;, (L), S7(L2)).

Case (4). By Lemma 2.5, we have that S (L), S3, (L) are both L-space
spaces. From case (3), it follows that Slfl ke 1—key (D)5 Sil_kl,PZ 1k, (L) are all
L-spaces for all non-negative integers k1, k». Second, we can do induction to prove

that Sp3, (L) With 0 < pi < p1,0 < p; < p; are all L-spaces.
1222

Case (5) is similar to case (4). O

Proposition 2.11 implies that if L is a 2-component link with unknotted compo-
nents, then L is a weak L-space link if and only if L is a generalized L-space link.
The following proposition gives another example of generalized L-space links.

Proposition 2.12. Let L be an algebraically split link. If there exists a surgery
framing A(p1,..., p;) on L, such that for any sublink L' C L, 513\|L/ (L") is an
L-space, then L is a generalized L-space link of “e; ---€; ”-type, where €; is the
sign of pi.
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3. Examples of L-space links and generalized L-space links

In this section, we use the lemmas and propositions in Section 2 to show some
examples of L-space links and generalized L-space links.

Example 3.1 (Two hyperbolic links: the Whitehead link and the Borromean
rings). The Whitehead link and the Borromean rings are two well-known hyper-
bolic links. In fact, they are both L-space links.

The (1, 1)-surgery on the Whitehead link is the Poincaré sphere. See Example 8
on p.263in[39]. The (1, 1, 1)-surgery on the Borromean rings is also the Poincaré
sphere. See Exercise 4 on p. 269 in [39]. By Corollary 2.8, they are both L-space
links.

Remark 3.2. There are no alternating hyperbolic L-space knots. See Theorem 4.3
below cited from [32]. However, Example 3.1 shows that there are L-space
alternating hyperbolic links. In fact, there are many, see Theorem 3.8.

Moreover, these hyperbolic links provide many examples of hyperbolic
L-spaces which are neither surgery over knots nor double branched cover over
knots. For example, surgeries on the Whitehead link S, ,, (Wh) with n > 0 are
all L-spaces but not surgeries nor double branched cover on a knot. The reason is
that the first homology of these surgeries is neither cyclic nor of odd order.

o

Figure 3.1. The Borromean ring. The (1, 1, 1)-surgery on the Borromean link is the Poincaré
sphere.



520 Y. Liu

Example 3.3 (An L-space link providing the Weeks manifold). Consider the link
L = L, UL,U Lj in Figure 3.2, where L; U L, is the Whitehead link (using
the convention in [39]) and L3 is the meridian of L,. The (1,2, 1)-surgery is the
Poincaré sphere, and it satisfies the positive L-space surgery criterion. Thus, it is
an L-space link.

By Lemma 2.6, we have that for any n; > 1,n, > 2,n3 > 1, the (n1,n2,n3)-
surgery on L is an L-space. Thus, the (5, 3, 2)-surgery is an L-space, which is
the (5, 5/2)-surgery on the Whitehead link. This surgery is the Weeks manifold;
see [4]. The Weeks manifold has the smallest hyperbolic volume among closed
hyperbolic 3-manifolds; see [7]. Thus, we confirm that the Weeks manifold does
not admit a taut foliation.

The fact that the Weeks manifold is an L-space was already known by experts
such as [14] and [5].

Lo Ly

Lj

.

-

Figure 3.2. An L-space link giving the Weeks manifold.

Example 3.4 (T'(2, 2n) torus links). The oriented torus links 7'(2, 2n) are L-space
links as Corollary 3.6 below shows. We need to distinguish them from their
mirrors, so see Figure 3.3 for the precise definitions of 7'(2, 2n).
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n+1 n—1 -1

T(2,2n)

Figure 3.3. The (n + 1,n — 1)-surgery on T'(2,2n). Consider the surgery on the upper-left
link L, which is a plumbing of unknots. By blowing down the horizontal unknots H;’s,
we get the surgery on the lower-left link 7'(2, 2n). While blowing down the black unknots
V;’s, we can get the surgery on the lower-right link, which is S3.

Lemma 3.5. For the torus links T (2, 2n), we have the following identifications of
surgeries

Sp i1 (T(2.20) = S3, 83,1, 1(T(2.2n))
=L@2n+1,2), Sy ,41(T(2.2n))
= L(n,1).
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Proof. First, forthe (n+1,n—1)-surgeryon 7' (2, 2n), we consider a surgery on the
upper-left link L in Figure 3.4, where L is a plumbing of unknots. After two dif-
ferent blowing-down procedures, we get the identification of S> n+1.0—1(T(2,2n))
with §3.

Second, for the (n 4+ 1,n + 1)-surgery on T(2,2n), we similarly consider a
different surgery on L, which is drawn in Figure 3.4. After two different processes
of doing Rolfsen twists, we can obtain the identification of S3 nt+1n+1(L(2,2n))
with L(2n 4 1,2). See Figure 3.4. As is similar to the (n + 1, n + 1)-surgery, the
(n,n 4+ 1)-surgery is L(n, 1). |

T(2,2n) L L
1 Hy H,
" -
a1 =10 ]
n+1 X n+1 | - |

. V> —1 Vi _

: I
X EEEE— :<——|n blue unknots
? . Vi 11T
A | R

L | Hpl |
Rolfsen twists on the black unknotsl
on Rolfsen twists L —1
on the blue unknots -1

_\ _.1..
--— +1

+1—1

+1 =00

+l+l 2

Figure 3.4. The (n + 1,n + 1)-surgery on the 7'(2, 2n) torus link. Consider the surgery on
upper-middle link L, which is a plumbing of unknots. After blowing down the horizontal
(blue) unknots H;’s, we get the (n + 1,n + 1)-surgery on the upper-left link 7'(2,2n).
While after doing Rolfsen twists on the black unknots V;’s, we can get a rational surgery
on the lower-middle link M, which is a lens space by blowing-down the blue unknots using
Rolfsen twists again.
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Corollary 3.6. The following surgeries on the torus link T (2, 2n) are all L-spaces:

e S3

n+1+ky,n+1+ks (T'(2,2n)), for all ky > 0, ky >0,

o S;f+1—k1,n—1(T(2’ 2n)), for all ky > 0,
. Sil_kl’n_sz(T(Z, 2n)), forall ky > 0, ky > 0,

o 7 (T(2,2n)) with q # n.

Proof. We combine Proposition 2.11 and Lemma 3.5.

From the equality S,?+1’n+1(T(2, 2n)) = L(@2n + 1,2), it follows that
Sr?+1+k1,n+1+k2(T(2’ 2n)) are all L-spaces for k1, ky > 0.

From S7,, ,_(T(2,2n)) = S, it follows that Sn3+1—k1,n—1(T(2’ 2n)) are all
L-spaces by Lemma 2.5. Thus, (—1, n — 1)-surgery is an L-space, and so is any
Sil_kl’n_sz(T(Z, 2n)) with k1, k, > 0.

From S}, ,_{(T(2,2n)) = S3, it follows that (n,n — 1)-surgery is an L-space
and thus all (n, g)-surgeries with ¢ < n — 1 are L-spaces.

From S,?,n+1(T(2,2n)) = L(n,1), it follows that all (n,q)-surgery with
q > n + 1 are L-spaces.

O

Example 3.7 (algebraic links). Gorsky and Némethi showed in [9] that every
algebraic link is an L-space link. For example, torus links are algebraic links.
In [9], they also classify all the L-space surgeries on the T(pr, gr) torus links,
with p,q > 2,r > 1. We also describe all possible L-space surgeries on the
T (2,2n) torus links; see Proposition 6.3.

The following theorem provides an infinite set of two-bridge links, which

are hyperbolic L-space links. Before proving this theorem, let us clarify some
conventions for two-bridge links. First, the notation b(p, g) denotes an oriented
two-bridge link of slope <. For any continued fraction of £:

q 1
_:[a17a21'-'1am]: El
p

a +
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a 4-plat projection of b(p, g) can be obtained in the following ways.

c

n full twists

\

:

Figure 3.5. The two-bridge link b(6n + 2, —3).

Casek 1. If m is odd, then the 4-plat is obtained by closing the 4-braid

— 9% 742 Am
B =0, 0, 0,

in the way shown in Figure 3.6(a).
Case II. If m is even, then the 4-plat is obtained by closing the 4-braid

— ~91 .—a2 —am
B=o,'00 "0

in the way shown in Figure 3.6(b).

Here, we follow [3] Chapter 12B. We prescribe an orientation on b(p, ¢) shown in
Figure 3.6. Note that this orientation convention is different from [3].

Theorem 3.8. For all positive odd integers r, q, the two-bridge link b(rqg — 1, —q)
is an L-space link.
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Proof. Letr =2n + 1 and ¢ = 2k + 1. Let us do induction on k.

First, for k = 1, we need to show the family of two-bridge links b(6n + 2, —3)
drawn in Figure 3.5 are all L-space links. We claim that for any integer n > 1,
the (n 4+ 2,n + 2)-surgery on the two-bridge link b(6n + 2, —3) is an L-space.
Consider the 3-component link L = L; U L, U L3 drawn in Figure 3.7. We see
that Ly U L, is the T'(2, 2n) torus link with the linking number n. Now consider
the (n + 1,n + 1, 1)-surgery on L, Sr?+l,n+1,1(L)‘ By blowing down the (+1)-
framed component L3, we get the (n, n)-surgery on the T'(2,2n + 2) torus link,
S,in (T (2,2n+2)), which is an L-space by Corollary 3.6. While the (n +1,n+ 1)-
surgery on the 7(2, 2n) torus link L; U L, S,fﬂ’nﬂ (L1UL>),is also an L-space.
In addition, since

n—+1 n 1
det( n n—+1 —1)=—1—2n,

1 -1 1

n+1 n
=2 1
det( " n+1) n+1,

from Lemma 2.5 it follows that the surgeries S7. ;.4 o(L). Sy, vy _1(L)
are both L-spaces. By blowing down the (—1)-framed component L3 on the
(n+1,n41,—1)-surgeryon L, we get the (n +2, n+2)-surgery on the two-bridge
link b(6n + 2, —3). See Figure 3.8.

(Y L) (1)

U =

Figure 3.6. The 4-plat presentations of two-bridge links. For any continued fraction
lai,..., am] = q/p, there is a 4-plat projection of the two-bridge link b(p,q). When
m is odd, we use (a) to close the 4-braid B in the box; when m is even, we use (b) to close
the 4-braid B.
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T(2,2n42)
Lo

S
o

— n full twists —

0
|

n+1 n+1 n

\

blow down
_

i
e

+1

C

Figure 3.7. A 3-component link used to study the surgeries on b(6n + 2, —3). The left link
L is used to study the surgeries on b(6n +2, —3). After blowing down the (—1)-framed L3,
we can get the two-bridge link b(6n + 2, —3). While if we consider the (n + 1,n + 1, 1)-
surgery on L, after blowing down the (4 1)-framed component L3, we get the (n, n)-surgery
on T'(2,2n + 2), which is an L-space.

b(6n +2.3) :=

Ly L>

:
o
KO

- n full twists —

0
|

n+1 n—+1 n+2 n+2

\

blow down

-

)

-1

C
C

Figure 3.8. The (n 4+ 2,n + 2)-surgery on the two-bridge link »(6n + 2,—3). Consider
the (n + 1,n + 1, —1)-surgery on the left 3-component link L. After blowing down the
(—1)-framed component L3, we get the (n + 2,n + 2)-surgery on the two-bridge link
b(6n +2,-3).
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Since det ("+2 n-l ) > 0and n + 2 > 0, it follows from Lemma 2.5 that the
two-bridge links b(6n + 2, —3) are all L-space links.

Fixing n, for k > 1, consider rational surgeries on the 3-component link L in
Figure 3.7, with a rational coefficient on L3. Then we have an exact triangle for

. 3
the triple S;\; ,,41,0(L) Sn+1n+1 _1/x(L), and Sn+1n+1 —1/(k+1)

HE(S2, 1 410(L)) HE(S?,, 0 (L)
S3
AES?, iy, (L)
We claim that S3 . (L) is an L-space for all positive integers k. We
n+1,n+1,—m

have shown that S, .| o(L) is an L-space in the first step, and by the induction

hypothesis, we can assume S3+1 1 (L) is an L-space. Moreover, we have

(] s D= TS, (D) TS 10D
since
n+1 n 1
|1L11(Sj+1 1 1(L))| =det| n n4+1 -1
k —k -1
=—1—2n—2k —4kn.
Hence, from the above exact triangle it follows that S 3+1 e, (L) is an
—%FT
L-space.

Now by doing Rolfsen twists on L3, we geta (n + 1 +k,n + 1 4 k)-surgery on
the two-bridge link b(pg — 1, —q) = b(4kn + 2k + 2n, —2k — 1). See Figure 3.9.
Since the linking number of b(4kn+2k+2n, —2k—1) is +=(n—k), the determinant
4 t<n+1+k +(n—k)

+(n—k) n+1+k
L-space link for all positive odd integers r, q. O

) is positive. Thus, by Lemma 2.6, we get b(rqg — 1, —q) is an
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L:mg\ b(rq—1,—q) =
e
Y

-

L n full twists —

n—+l1 n+1 n+l+k n+l+k

Rolfsen twists

e~

k full twists —

éﬂ

N

Figure 3.9. The (n + 1 + k,n + 1 + k)-surgery on the two-bridge link b(rqg — 1,—¢q)
with r = 2n + 1,9 = 2k + 1. Consider the (n + 1,n + l,—%)-surgery on the left
3-component link L. After doing the Rolfsen twists on the (—1)-framed component L3,
we getthe (n + 1 + k,n + 1 4 k)-surgery on the two-bridge link b(rg — 1, —q).

Example 3.9 (non-fibered hyperbolic L-space links). The two-bridge links
b(10n + 4,—5) with n € IN are L-space links, by Theorem 3.8. At least for
2 < n < 6, they are not fibered links, i.e., there does not exist any Seifert surface
F such that the link complement fibers over circle with fiber F. The fiberedness
of links is detected by the knot Floer homology. See Corollary 1.2 in [24]: an
oriented link L in S is fibered if and only if the knot Floer homology ﬁFT(( f)
has a single copy of Z at the top Alexander grading. Thus, for a homologically
thin link L, the link L is fibered if and only if its single-variable Alexander poly-
nomial has leading coefficient 1. Note that two-bridge links are alternating and
thus homologically thin; see Theorem 1.3 in [33]. We compute the multi-variable
polynomials Ay (x, y) using the algorithm in [18] , and plug both (¢, ¢) and (¢, ")
for (x, y) so as to get the single-variable Alexander polynomials with both possi-
ble orientations. It turns out that b(10n 44, —5) is not fibered with any orientation,
when 2 < n < 6. See Table 3.1. In fact, the fibered two-bridge knots and links are
also classified by using continued fractions due to Gabai. See [6]. One should be
able to generalize this to all n > 2 using number theoretic arguments.
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Example 3.10 (plumbing trees). Any plumbing tree L of unknots is an L-space
link. In fact, any sufficiently negative surgery on L is a negative definite graph
without bad vertices, and thus is an L-space, by [28] Lemma 2.6. Since the
plumbing tree is amphichiral, the sufficiently positive surgeries are also L-spaces.
Note that if M is an L-space, then sois —M..

Example 3.11 (L7a7 in the Thistlethwaite Link Table). The link L drawn in
Figure 3.10 is an L-space link. It is actually the mirror of L7a7 drawn in the
Thistlethwaite Link Table. Consider the (n, n, 1)-surgery on L. It is an L-space
when n > 0. This is because after blowing down the (41)-framed knot L3, we
get the L-space Whitehead link 5(8, —3). Then, it follows from Lemma 2.6 that
L is an L-space link.

Example 3.12. The plumbing of unknots L in Figure 3.11 is a hyperbolic
L-space link. In fact, consider the (3,1, 3, 1)-surgery on L, which is S3. By
Lemma 2.6, L is an L-space link. In fact, this link is derived by resolving the
Whitehead link. Thus, all the surgeries on the Whitehead link are surgeries on
this link.

Example 3.13. The plumbing shown in Figure 3.12 is a generalized (++++—)L-
space link. The (1,1, 1,1, 1)-surgery is the Poincaré sphere. See [39], p.309.
In fact, every proper sublink is an L-space link, since the surgeries on them are
lens spaces. Thus, by Lemma 2.5, the (p;, 1, 1, 1, 1)-surgery is an L-space for all
p1 > 1, since det(A(1,1,1,1,1)) = —1 and det(A(1,1,1,1,1)|p—z,) = —L
Next, from that S} || (L — L) = L(p1,1) and det(A(p1,1,1,1,1)) =
det(A(p1.1,1,1,1)|L-1,) = —p1, it follows that (p1, p». 1,1, 1)-surgery on L is
an L-space for all p; > 1, p, > 1. Similarly, we can get the (p1, p2, p3, 1, 1)-
surgery is an L-space for all p; > 1,p, > 1, p3 > 1. This is because we
have S3 (L — L3) = L(p1,1), and det(A(p1, p2,1,1,1)) = —pipa,
det(A(p1. p2,1.1,1)|L—1;) = —p1. Now, we can get that the (p1, p2, p3. pa, 1)-
surgery on L is an L-space, for all py > 3,p> > 3,p3 > 2,ps < 1, since
det(A(p1, p2, p3, 1, 1)) = p2—p1p2—p2p3 < 0,det(A(p1, p2, p3, 1, D|L-L,) =
1—p1—p3—p1p2-+p1 p2p3 > 0. Finally, we can obtain that the (p1, p2, p3, P4, ps)-
surgery on L is an L-space for all p; > 0, p» > 0, p3 > 0, pa < 0, p5 > 1, due
to

det(A(p1, p2, P3, pa, 1)) = p1pap3ps + lower terms < 0,

det(A(p1. p2. p3, Pa, 1)|L—Ls) = p1p2p3ps + lower terms < 0.
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;@ " fg

Ll§ ™
g ==

Figure 3.10. The 3-component link L7a7. The 3-component link L drawn above on the
left is the mirror of L7a7 drawn in the Thistlethwaite Link Table on Knot Atlas. Consider
the (n,n, 1)-surgery on L. After blowing down the 1-framed component L3, we get the
(n — 1,n — 1)-surgery on the Whitehead link Wh.

Ly A
AT

I
4|L2 +1

Figure 3.11. A plumbing graph L-space link. Consider the link L = L; U---U L4 in the
figure which is a plumbing of unknots. By blowing down L5, L4, we see that the surgery
shown is §3.
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+1
Ls

L \J L4
/ +1
+1
N

Lo L3

+1 +1

Figure 3.12. A generalized (+ + + + —)L-space link. The link L = L; U--- U L5 in the
figure is a plumbing of unknots. The surgery shown is the Poincaré sphere.

Example 3.14 (a family of L-space chain links). A n-chain link consists of n
unknotted circles, linked together in a closed chain. Hyperbolic structures on
n-chain link complements have been studied, for example, by Neumann and
Reid [23]. They show that when / > 5 they are hyperbolic links.

The family of /-component chain links in Figure 3.14 are all L-space links.
In fact, the (1,2, ...,2,] — 2)-surgery satisfies the positive L-space surgery crite-
rion. First, if we blow down L1, L, ..., L;_, successively, then we get the (1, 1)-
surgery on the Whitehead link, the Poincaré manifold. Moreover, every proper
sublink is a union of linear plumbings of unknots, and their surgeries are all con-
nected sum of lens spaces. Thus, we only need to check the positive determinant
condition.

Since a handle slide does not change the determinants of the surgery fram-
ing matrices, blowing down a +1 framed unknot does not change the determi-
nants of the surgery framing matrices. Thus, after successively blowing down
Ly,...,L;—, from L, we see that det(A(1,2,...,2,/ — 1)) = 1. For the proper
sublinks, we only need to consider a linear plumbing L’ C L. Since the determi-
nant of the surgery framing matrix does not depend on the orientations, we can
always orient L’ such that all the linking numbers of adjacent components are —1.
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Let M(k, n) denote the following k x k matrix

mem=| 7 ,

IS

Figure 3.13. A linear plubming.

-1

Figure 3.14. A family of hyperbolic L-space chain links. The surgery labelled above satisfies
the positive L-space surgery criterion.
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There are four cases for computing det(A|z/):

e if Ly ¢ L'L; ¢ L', then Al = M(k,2) with k being the number of
components in L’;

e if Ly ¢ L' LyeL then Al = M(k,l —1);

e if Ly € L',L; ¢ L’, then after successively blowing down Ly, L,,...,
we can see det(A|r/) = 1;

e if Ly € L', L; € L', then after successively blowing down L1, L, ... inside
L', we can see det(A|r/) equals to det(M(k,n)) withk <1 —2,n > 1.

It is not hard to see det(M(k,2)) = k + 1 by induction, and thus det(M (k, n)) =
nk — k + 1. Therefore, all determinants are positive.

Example 3.15 (another sequence of L-space chain links). Similarly, the family of
[-component chain links in Figure 3.16 are also all L-space links for / > 3. In fact,
when ny, n, are large enough, the (1, 2, ..., 2, n,, nq)-surgery satisfies the positive
L-space surgery criterion. This is because after blowing down Ly, ..., L;_», we
have an (ny — [ + 2,n, — 1) framed 7'(2, 4) torus link. Thus, when ny,n, are
both large, this surgery is an L-space, since 7'(2,4) is an L-space link. As is
similar in Example 3.14, we only need to show when n;,n, are large enough,
det(A(1,2,...,2,n2,n1)|r) is positive for any sublink L’. For any sublink L', we
can blow down the circles on the side of L, and then obtain a linear plumbing as
in Figure 3.15. The surgery matrix is a k x k matrix in the form of

n—c -1
—1 nyp —1
-1 2

where ¢ is the number of times for blowing down +1-framed unknots. The
determinant of the above matrix is a polynomial of n{, n,, and the leading term
is det(M(k — 2,2))n1ny = (k — 1)nyn,. Thus, for ny,n, large enough, all the
determinants are positive.

Note that the link in Example 3.13 is the same as the link here for / = 5.
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Figure 3.16. Another family of hyperbolic L-space chain links. The surgery labelled above
satisfies the positive L-space surgery criterion, when n1, n5 are large enough.

Example 3.16. The link L™ =vVv,UV,UH,U---U H, shown in Figure 3.17 is
a generalized L-space link of “++—-.-—" type, for any n > 1. One can do similar
induction as in Example 3.13 to show the following claim.

Claim. Forany0 < k <nandallintegers p1 > 0, p» > 0,¢q1 < 0,...,qr <0,
the (p1. p2.q1, ... qk, —1,....—1)-surgeryon L™ is an L-space. Notice that the
determinant of framing matrix

det(A((p1. P2 g1 Gk =1, . ..=1))) = (=1)"* p1 pag1 -+ - qi + lower terms.

The claim will follow from two induction on » and on k.

Notice that surgeries on L are mostly graph manifolds.
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Vi Va

| Hn |

Figure 3.17. Another sequence of generalized L-space link. Consider the link L used in
the proof of Lemma 3.5. It is in fact a generalized L-space link.

Example 3.17 (Thistlethwaite link table with crossing number < 7). We examine
the links in the Thistlethwaite Link Table with crossing number < 7 and list the
results in Table 3.2.

Using the conditions of Alexander polynomials in Theorem 1.15, we conclude
that L6al, L7al, L7a2, L7a4, and L7a5 are all non-L-space links.

The link L6a2 is the two-bridge link (10, 7). Conjecture 1.14 has been verified
for all two-bridge links b(p,q) with p < 100 using the algorithm from [18].
So L6a? is a non-L-space link.

The link L6a5 is the mirror of the left link in Figure 3.7 with n = 1, on which
the (2,2, 1)-surgery is an L-space. Then, it quickly follows from the positive
L-space surgery criterion that the mirror of L6a5 is an L-space link.

For the link L6n1, after blowing down a +1-framed component from it (all
three components are symmetric), we get the unlink. So the (10, 10, 1)-surgery
on L6n1 satisfies the positive surgery criterion, and thus showing that L6n1 is an
L-space link.

The mirror of L7a3 consists of two components L; and L,, where L; is the
right-handed trefoil and L is the unknot. Consider the (n, 1)-surgery on the mirror
of L7a3 with n large. After blowing down the unknot, we have a large surgery on
the right-handed torus knot 7'(2,5). This is an L-space, since the right-handed
torus knot 7'(2, 5) is an L-space knot. Then it follows from the positive surgery
criterion that the mirror of L7a3 is an L-space link.

The link L7a6 is the two-bridge link b(14, —9), and it is not L-space link by
direct computation.



Table 3.2. Thistlethwaite Link Table with crossing number < 7. Here, by “Yes” in the column “L-space link”, it means either the link or
its mirror is an L-space link; by “Yes” in the column “Alexander polynomial”, it means the conditions on the multi-variable Alexander
polynomial in Theorem 1.15 are satisfied.

Links L-space link Alexander polynomial Comments

L2al Yes Yes The Hopf link

L4al Yes Yes The T(2,4) torus link

L5al Yes Yes Mirror of the L-space Whitehead link
Lé6al No No

L6a2 No Yes

L6a3 Yes Yes The T(2,6) torus link

L6a4 Yes Yes The Borromean link

L6a5 Yes Yes The mirror is an L-space link
Loénl Yes Yes

L7al No No

L7a2 No No

L7a3 Yes Yes The mirror is an L-space link
L7a4 No No

L7a5 No No

L7a6 No Yes The two-bridge link b(14,—9)
L7a7 Yes Yes The mirror is an L-space link
L7nl Yes Yes

L7n2 No Yes Generalized (+—)L-space link

SYUI[ Uo sor1a3Ins aoeds-7

LES
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The link L7n1 has two components L, and L,, where L is the right-handed
trefoil knot and L, is the unknot. Consider the (10, 1)-surgery on this link. After
blowing down the unknot, the trefoil is unknotted and we obtain a lens space
surgery. Since the right-handed trefoil is an L-space knot, from the positive
surgery criterion it follows that L7#n1 is an L-space link.

The link L7n2 is not an L-space link; see Proposition 5.14 for the proof. Its
mirror is not an L-space link neither, since the left-handed trefoil is not an L-space
knot. However, L7n2 is a generalized (4-—)L-space link. The link L7r2 consists
of two components L; and L,, with L being the right-handed trefoil and L, being
the unknot. Consider the (n, —1)-surgery on L7n2 with n large. After blowing
down the unknot, we get the unknot, thus getting a lens space surgery. Then, since
the right-handed trefoil is an L-space knot, (n, —k)-surgery is an L-space for all
k > 0 and large n by Lemma 2.5.

4. Floer homology and Alexander polynomials of L-space links

In this section, we study the link Floer homology and the multi-variable Alexan-
der polynomials of L-space links with / > 2 components. The Alexander poly-
nomial of L is determined by the Euler characteristics of the link Floer homology
HFL™ (L, s), due to equation (2) in [33]

Ap(xi.....x)= Y y(HFL™(L.si.....sp)-x} oex), (4.1)
(S] ..... S[)E]H(L)

where f = g denotes that f and g differ by multiplication by units. Here, we

use CFL™ (L) rather than C/F\L(L) as in [32]. Note that CFL™ (L, s1, 52) is a finite

dimensional IF-vector space, and thus y(CFL™ (L, s1,52)) = y(HFL™ (L, 51, 52)).
Now we are ready to prove Theorem 1.15 from the introduction.

4.1. Proof of Theorem 1.15
Proof. Fixing {s;};, we denote the following successive quotient complexes by
) ={x e CF (S | Ai(x) = s;, 1 <i <k,
Aj(x) <sj k+1<j<I}
CP ={x e CF (S| Ai(x) =s;, 1 <i <k,

Agy1(x) < spy1— 1,
Aj(x) <sj.k+2<j<I}.
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Then,

cV =25, ¢ =25

- s> S1—1,82,...,87°
cV = CFL™(L,s),
and

W _ W0
Ck+1 _Ck /Ck :

Consider the short exact sequence of chain complexes
0— P ) — P —o

where the map ¢ is the inclusion map. It induces another short exact sequence of
homologies

0 —> coker(tx) — H*(Cl(l)) — ker(tx) — 0.

Since H*(Cél)) = H, (Cél)) = F[[U]], the map t.: F[[U]] — F[[U]] is either O or
amultiplication of U¥ for some integer k > 0. Thus, H, (Cl(l)) is either F[[U]]/ U*
or F[[U]] @ F[[U]].

In addition, since U; acts on the chain complex Cl(l) as 0, it also acts as
0 on homology. Thus, H*(Cl(l)) is either 0 or F[[U]]/U, according to either
k = 0 or k = 1. Note here F[[U]] denotes F[[U;, Ua,...,U]]/(Uy — Us, ...,
Uy — U)) as an F[[U;, U,, ..., U]]-module and the U -action denotes any action
of U;. Furthermore, )((H*(Cl(l))) is either O or 1. In fact, if H*(Cl(l)) = 0,
then the grading of 1 € F[[U]] = H*(Cél)) equals to the grading of 1 €
F[[U]] = H*(Cé2)); while if H*(Cl(l)) = F[[U]]/ U, then the grading of 1 €
H*(Cél)) equals to the grading of 1 € H*(Céz)) plus 2, and the grading of
1 € F[[U]]/JU = H*(Cl(l)) equals to the grading of 1 € H*(Cl(l)). Moreover,
the complex 27 . isjust CF™(S?) and the absolute gradings of elements in
H*(Qlloo .....
gradings of elements in the homologies of
we have

.....

51.52,...,5, are all even integers. Thus,

x(H(CP)) =0o0r1.

Notice that C,El) and C,Ez) are defined similarly, just with different s values. Thus,
we can similarly show that

X(H(CP)) =0o0r1.
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Since y(H(CY ) = (Ho(C)) = x(HA(CP)) and |y (H(CP))| < 1 for

any fixed s, it is not hard to see that
X (HA(CPO)N <2572, forallk =2,...,1,

X(H(CP)| <2572, forallk =2,...,1.

Hence, we prove inequality (1.2) by letting k = /.

Since C,g_)l = C,El)/C@), we have

rankF(C,g_)l) < rankF(CIEI)) + rankF(C,?)).

From rank]pH*(Cl(l)) < 1, it follows that ranky HFL™(L,s) < 2!=1 Thus,
inequality (1.1) holds.

Let us look at the signs of the multi-variable Alexander polynomial when
! = 2. Suppose y(CFL™ (L, s1, 52)) and y(CFL™ (L, 51 +k, s») are the consecutive
non-zero Euler characteristics among the horizontal Alexander gradings, that is,

e |y(CFL™(L,s1,52))| =1,
o [x(CFL™(L,s1 + k,s2))| =1,
e y(CFL™(L,s; +1i,s2))=0,foralli =1,2,...,k—1.
Then, we have
X(H*(Q[s_l +k,52/9’ls_1 +k752_1)) - X(H* (Q’ls_l—l,SZ/Q’lS_l—l,Sz—l))

k
=Y X(CFL™(L,s1+1,52)) (+)

i=0

= y(CFL™ (L, s1,52)) + x(CFL™ (L, s1 + k, 52)).

Since y(H«(2A5, 5, /25, 5,—1)) = 0 or 1, for all (s1,s2) € H(L), the top
row of equation (x) is 0 or =1. Whereas by the assumption, the bottom row of

equation (x) is 0 or 2. Thus, we have

¥(CFL™(L, 51, 52)) + x(CFL™(L,s; — k., 52)) = 0. u

Corollary 4.1. A homologically thin L-space 2-component prime link L =1L1UL»
has fibered link exterior.
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Proof. The homologically thin condition means that the homology PTF\L(L, S) is
supported in a single Maslov grading, and thus is determined by its Euler char-
acteristic. Thus, the link Floer homology is determined by the multi-variable
Alexander polynomial. However, here we need to consider the hat version link
Floer homology for the discussions of fiberedness. Let the symmetrized Alexan-
der polynomial be

Ap(x.y) = ajj-x' -y,
i,j

We choose
xo = max{ila;; # 0}, yo = max{jlax,,; # 0}.
Since
S0 AL ) 1 = £ (),
(s1,52)€H(L)

we have that (xo + 1, yo + 1) is an extreme point of the polytope for HFL(L), and
X(I—ﬁ(L, Xo + % Yo + %)) = #1. Furthermore, since L is homological thin, we

have that rankH/\FL(L, X0+ 1.y0 4+ 1) = 1, and thereby the link exterior of L is
fibered. u

4.2. Examples. Let us use Theorem 1.15 to detect L-space links among two-
bridge links. Notice that in the knot case the Alexander polynomial gives a strong
obstruction for an alternating knot to be an L-space knot. In [32], it is shown that
alternating L-space knots are only (2,2n + 1) torus knots.

Proposition 4.2 (Ozsvath and Szabd, [32], Proposition 4.1). If K is an alternating
knot with the property that all the coefficients a; of its Alexander polynomial Ak
have |a;| < 1, then K is the (2,2n + 1) torus knot.

Theorem 4.3 (Ozsvith and Szabé, [32], Theorem 1.5). If K C S3 is an alternating
knot with the property that there is some integral surgery along K is an L-space,
then K is a (2,2n + 1) torus knot for some integer n.

In contrast to the knot case, by computer experiments, we find many hyper-
bolic two-bridge non-L-space links whose Alexander polynomials satisfy the con-
straints in Theorem 1.15. We list some interesting phenomena in the two-bridge
links b(p, q) below, where 0 < p < 100. We conjecture that for any n > 0, the
two-bridge link b(6n + 4, —3) is a non-L-space link with Alexander polynomial
satisfying Theorem 1.15.
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Links (A) Hyperbolic link L-space link:
b(2n,—1) Yes | Torus link 7(2,2n) Yes
bon +2,-3) | Yes Hyperbolic link Yes

b(6n +4,-3) | Yes Hyperbolic link No, when 61 + 2 < 100

b(10n £2,5) | No Hyperbolic link No

(A) denotes the Alexander polynomial condidion.

4.3. HFL™ of L-space links. Let L be an L-space link. In general, CFL™ (L, s)
is an iterated quotient complex of 24 .

For every subcomplex C; C C, the quotient complex C/C; is quasi-isomor-
phic to the mapping cone of the inclusion map i: C; — C. Thus, it leads to an
iterated mapping cone construction of CFL™ (L, s) by using 2. This provides a
spectral sequence converging to HFL™ (L, s) considered as [F-vector spaces, which
is stated in [8]. This spectral sequence also implies inequality (1.1).

5. Surgeries on L-space links

Using the knot surgery formula from [35], the graded Heegaard Floer homology of
surgeries on L-space knots are determined by the Alexander polynomial and the
surgery coefficient. Using Manolescu—Ozsvith link surgery formula from [20]
and algebraic rigidity results from [18], we prove Theorem 1.17 and give some
explicit formulas in this section.

The generalized Floer complexes 2 ’s are F[[Uy, ..., U;]]-modules, and all
the U; actions are homotopic to the U; action. In fact, when L is an L-space
link, 2 (L) is chain homotopic to F[[U;]] preserving the Z-grading. This is done
by restricting our scalars to F[[U;]] and applying the algebraic rigidity results
Proposition 5.5 and Corollary 5.6 in [18]. There is an absolute Z-grading on 2 .
However, the U; action decreases it by 2, and thus it is not a chain complex of
FF[[U;]]-modules. So the complexes here are considered as Z/2Z-graded chain
complexes of IF[[U;]]-modules, together with a Z-grading compatible with the
7./27-grading where U, lowers the Z-grading by 2.
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Proposition 5.1 (Proposition 5.5, [18]). Let A, By« be Z-graded complexes of
F-modules with U -action dropping grading by 2 and commuting with the differen-
tial. Suppose A, B are both free F[[U]]-modules, and H«(A) = H«(B) = F[[U]],
precisely, Hop(A) = Hyp(B) = F forall k < 0 and H;(A) = H;(B) = 0
otherwise, where U - Hyi (A) = Hyx—2(A), U - Hop (B) = Hop—»(B).

Then, if F,G: A — B are both quasi-isomorphisms of F[[U]]-modules, then
F, G are chain homotopic as maps of F[[U]]-modules. Moreover, if H, K are both
chain homotopies as homomorphisms of F[[U]]-modules between any two chain
maps f,g:A— B,ie. HO+0H = Ko+ 0K = f—g, then H— K = 0T + T9,
for some F[[U]]-module homomorphism T: Ax — Byy.

Using these chain homotopy equivalences, we replace 25 (L) by F[[U;]] in the
Manolescu—Ozsvath link surgery complex and replace the maps up to homotopies.
In [18], we call this new complex the perturbed surgery formula. Thus, we only

need to determine the map CDé‘_i in the perturbed surgery formula, where are
either 0 or multiplications of U¥. For the definition of those ® maps, one can
see [20], Section 7, or [18], Section 4.

Combining this with conjugation symmetry, we determine the maps <I>§t Li by
the coefficients in the multi-variable Alexander polynomials of the sublinks in L
and the linking numbers. We also show that in the perturbed surgery complex,
<I>§,t LivELe — o forall s e H(L). For higher diagonal maps, more information is
needed. For 2-component case, we write down explicit formulas.

5.1. Conjugation symmetry of inclusion maps

Definition 5.2 (pﬁ(s)). Fors € H(L) and M C L, we define

— —

M) = (Y (1), p (1)
by the following formulas:

+o00 if L; C M has the induced orientation from L;
—
piM (s) = {—oo if L; C M has the opposite orientation from L;
N if L,’ §Z M.

Definition 5.3 (nM (L)). Suppose T is an oriented / -component L-space link
and M C L is a sublink which might not have the induced orientation. Choose a
Heegaard diagram K of L. The inclusion map IM: A= (H,s) — A~ (3, pM (s))
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is a chain map shifting the Z-grading by a definite amount, which is explicitly
expressed in equation (57) in [20]. Thus, the map induced on homologies

(1) Ho @™ (3,5) — Ho@~ (3 p™ (5))

is a multiplication of a monomial U*: F[[U]] — F[[U]] or O rather than a mul-
tiplication of a polynomial. In fact, this map is not 0. Consider the short exact
sequence

0—A"- —A —A /A~ —0
pM(s) pM(s)

and the induced exact triangle on homology. The homology A /QI_M) is a
torsion U; module, which is argued similarly as in the proof of Theorem 1.15.
The integer k does not depend on the choice of 3, and thus we define it to be

nM (L). When the context is clear, we simply denote it by nM .

Remark 5.4. When L is a L-space knot K, these an(K)’s are just the same as
Vi’s and H,’s defined for knots in [25].

Lemma 5.5 (conjugation symmetry of n;” (L)). Suppose L is an oriented n-
component L-space link. Then
— — N

nsM = n:é"’, foralls e H(L), M C L.
Proof. Choose an admissible basic Heegaard diagram 3 = (X, &, 8, W, zH) for
9
L . In order to distinguish the basepoints in different Heegaard diagrams, we put
a superscript H on w and z. Then, H' = (—%, B, o, wH',zH") is also a Heegaard
H _ ,H ,H H'

. —>
diagram for L , where w =w

There is an F[[U;, . . ., Uy]]-linear isomorphism of chain complexes

hg: A (H,s) — A~ (H', —s),

x+—>x, forallxeT NT.

Actually, for any x,y € T N T, and a class ¢ € m(X,y), the moduli space of
holomorphic disks M (¢, H) is identical to M (¢, H'). See Theorem 2.4 in [30].
Moreover, it is not hard to see that the Alexander gradings are of opposite signs

A, H) = —Ax, H).
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Thus, we just need to show Ag is a chain map, i.e.

/ EX (9) EX (9)
0% (hs(x)) = Y D #M@)/R)-U, Uy Ty
yeToNTg ¢pema(x,y),u(d)=1
= hs(33° (%)
H H
=X > #m@)/R) - U1 Dy

YETaNTp ¢pems(x,y),u(p)=1
In fact, by equation (2.2), for all ¢ € m(x,y), | <i <n,
B (¢) = max(=si — A7 (%), 0) — max(=s; — A7 (¥).0) + 150 ()
= max(—s; + A7*(x),0) — max(—s; + 47 (y),0) + My 3¢ (¢)
= E;/ (¢)-
Moreover, by direct computation, we have the following commuting diagram

A~ (K, 8) — 5 %A~ (H, —s)

7 @0 | =37 o

A (3. p¥ (5)) — A (I —p¥ (s)).

pM(s)

Thus, it follows that

M_ M 7
ng =n_g", forallse H(L),M C L. d

5.2. Perturbed link surgery formula for 2-component L-space links. We
review the link surgery formula of Manolescu—Ozsvéth for a 2-component link L.
See [20] and Section 4 in [18]. We need some notations. Denote the set of
orientations on a link N by Q(N). We define some projection maps by

pELI (51, 52) = (£00, 52),
pEL2(s1,52) = (51, £00),

pERIIEL2 (g 55) = (F00, +00).



546 Y. Liu

Choose an admissible basic Heegaard diagram H and denote 2~ (7, s) by 205"
Then, the Manolescu—Ozsvath surgery complex (C~(H, A), D™(A)) is as fol-
lows:

(€0 A), D=(A) 1= [ 2, —0 T2,

(s1,52)€M(L) (s1,52)€MH(L)
DY (A)l - DAL(A) lD‘” (A) 6.1)
~
Hmn +o00 1008) l_[ +00,400°
(s1,82)€MH(L) (s1,52)€M(L)

where for all §1, 85, 1, &2 € {0, 1},

516
Dsllsi (A) = l_[ ( q)p+€1L1U+52L2(S1 S2)> (52)
(s1,52)€H(L) A—I)EQ((g]LlU(gsz)

The Manolescu—Ozsvith surgery complex is in the category of complexes
of F[[U;]]-modules, Ch. Inspired by the idea of homotopy category K of
FF[[U;]]-modules, we can replace the complexes on the vertices of the hypercube by
its chain homotopy type and replace the maps on the edges by its homotopy type.
Then, the Manolescu—Ozsvith surgery complex becomes a perturbed surgery for-
mula.

Lemma 5.6. Ler L = Z)l U Z)z be an L-space link. Then the Heegaard Floer
homologies on all the surgeries HF(S3 (L)) and their absolute gradings are
determined by {ng""" (L)}semw) and {ng">(L)}senw)-

Proof. Werestrict our scalars to IF[[U;]] from now on. Consider the chain complex
FF[[U:]], which is freely generated by a single element over IF[[U;]] with O differ-
ential. Since L is an L-space link, i.e. H« (25 (L)) = F[[U]], for all s € H(L),
205 (L) is in fact chain homotopic to IF[[U,]] by Corollary 5.6 in [18] as a Z-graded
F[[U;]]-module with U; lowering grading by 2.

Thus, we can replace every 2(; by 2~ls_ which is isomorphic to F[[U;]] with
0 differentials and replace the maps correspondingly so as to get a new complex
(C~(H, A), D=(A)). We call it the perturbed surgery complex, and it is chain
homotopic to the original one.
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More concretely, we first replace the edge maps in the squares in equation (5.1)
+L; by
+1;

L —uls L F([Uy]) — FUADL

®;

Next, we replace the diagonal maps @31 Y*%2 by

as:l:Ll UtL, =0
s .
The reason we replace the diagonal maps by 0 is that, in the link surgery complex,

the F[[U;]]-linear diagonal maps always shift the Z-gradings by an odd number.
Finally, we get the new perturbed surgery complex C(A) as follows:

9(A)
(€@ A). D=(A) =[] %5, _ONW —— [ [,
(s1,52)€H(L) (s1,82)€H(L)
~
DOl(A)l Dl le(A) (5.3)
~

Hms_l,+oo plo 0(A) 1_[9(+oo +o00’

(s1,52)€H(L) Dot yemr)

where
~8.68
Dsllsi (A) = l_[ ( Z p+51L1U+82L2(S1 52)) (54)

(s1,52)€H(L) ]\769(81 L{U8>L>)

for 81 s 82, £1,&2 € {O, 1}

The perturbed complex C(A) is chain homotopy equivalent to the original
surgery complex as IF[[U;]]-modules. Moreover, this chain homotopy equivalence
is preserving the Z-grading on it. For more details, see Section 5.6 in [18].

Hence, we have H,(C(A)) = HF (S3 (L)) as an F[[U;]]-module. By Link
Surgery Theorem in [20], we have U; actions on the homology of HF(S3 (L))
are all the same, i.e.

HF (53 (L)) = H.(C(A)) ®pqu,y Fl[Ur. Ua]l/ (Uy — Un).

All the inputs of C(A) are {n3"" (L)}serry and {nF"2(L)}sen(r). Thus, the
proof is done by Lemma 5.5. To compute the absolute grading for HF ™, we
only need to shift the absolute Z-grading by C‘Z(s)_# which can be computed

from A. U
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5.3. Redefining knot Floer homology. We redefine the knot Floer homology by
using slightly generalized Heegaard diagrams with extra basepoints. The reason
we consider these diagrams is that they are used in the proof of Theorem 1.17.
In [19], there are many generalized versions of knot Floer complex and homology
discussed. Since the version in this subsection is not presented in [19], we define
it here.

(1) HEEGAARD D1aAGRAM. We choose a Heegaard diagram
H=(CE,a B, {wi,...,wx},{z1}).

(2) ALEXANDER GRADING. Forany x € T, N Tpg,

AU - UM*x) = AX) — ny.

(3) ALEXANDER FILTRATION. The complex CF~(S3) is freely generated by
x € Ty N Tg over F[[Uy, Us, ..., U]] and the differentials are counting
holomorphic disks. For for all x € Ty, N Tg, we have A(dx) < A(x). This is
because for a pseudo-holomorphic disk in ¢ € 72(x,y), nz,(¢) > 0 and

nwl (d)) .

AX) = A(Y) + 12, ($) — 1y (¢) = A(U] @)

U y) + 1z (@).

Thus, the Alexander grading induces a filtration on CF~(S3). We define the
subcomplex
A7 (K) := {x € CF(S?)|A(x) < 5}.

(4) FILTERED MINUS KNOT FLOER HOMoLOGY. We define the chain com-
plex

CFK™(K,s) = A5 /A,
and
HFK™ (K, s) = H«(CFK™ (K, s)).

(5) TorarL minuUs kNOT FLOER HOMOLOGY. We define the chain complex
g CFK™ (K) to be freely generated by Ty, N Ty, and for all x € Ty, N Ty

nw; (@) nw; (@)
x=>)_ > #M(p)/R)- U UMy
YETaNTg  ¢pema(X,y)
w(@)=1,nz, (¢)=0

The homology HFK™ (K) is defined to be the homology of g CFK™ (K).
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Remark 5.7. Considered only as IF-vector spaces,

HFK™(K) = @D HFK™ (K. ).
SEZ

However, considered as F[[Uy, ..., Ut]]-modules, HFK™ (K, s) is the associated
graded of a filtration on HFK™ (K). Note that HFK™ (K, s)’s are always torsion
modules.

Proposition 5.8. Suppose K C S3 is a knot. For a multi-pointed Heegaard
diagram H = (2, a, B,{wy, ..., wr}, {z1}) for K, we have the following:

(1) the knot Floer homology HFK™ (K, s) is an F[[U]]-module (where F[[U]] :=
F[[Uy,...,Ull/(Ua,...,Uy))), and does not depend on H considered as an
F[[U]]-module;

(2) we have the identity

1
SEXZ: ¥(HFK™ (K, s)) - 1* = —Ak(0). (5.5)

Proof. This is actually a direct corollary of Theorem 4.10 in [20]. There are six
types of Heegaard moves according to [20],

(i) 3-manifold isotopy;

(ii) «-curve isotopy and B-curve isotopy;
(iii) a-handleslide and S-handleslide;
(iv) index one/two stabilizations;

(v) free index zero/three stabilizations;
(vi) free index zero/three link stabilizations.

By Proposition 4.13 in [20], we only need to check how the knot Floer homol-
ogy changes under these Heegaard moves and their inverses.

The Heegaard moves of types (i) to (iv) are chain homotopy equivalences pre-
serving the Alexander filtration, and thus do not change the knot Floer homology.

A Heegaard move of type (v) changes the chain complex CF (H) into
CF ™~ (H’), which is the mapping cone

Uk4+1-Uj, _
CF (H)[[Uk+1]] ———— CF (3)[[Uk+1]]-
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Notice that Uy does not change the Alexander grading. Thus, if iy # 1, then
CFK™ (H’, s) is the mapping cone

Uk4+1-Uj,
CFK™ (H, 9)[[Uk+1]] ——— CFK™ (3, 9)[[Uk+1]]-

If i = 1, then CFK™ (H’, 5) is the mapping cone

_ Uk _
CFK™ (3, 9)[[Ug+1]] ——> CFK™ (3, $)[[Ug+1]]
In both cases, we have that the homology of the mapping cone is
HFK™ (H, s) @ F[[Uy, ..., Uk+1]l/(Ua, . .., Uk +1),

where R = F[[Uy,..., U]].
The Heegaard move of type (vi) changes the complex CFK™ (I, s) by

CFK™ (K, s) ® H«(S!) =~ CFK™ (H, s) & CFK™ (%, s).

However, if H; and H, are equivalent Heegaard diagrams both with a sin-
gle pair of basepoints on K, then total number of copies of HFK™ (H, s)’s in
HFK™ (H,, s) is one. |

5.4. Reduction of Heegaard diagrams. Let 3 be Heegaard diagram for a link
L. Then there are several Heegaard diagrams r 7 () of the sublinks of L reduced
from H. See Definition 4.17 in [20].

Lemma5.9. Let L = LU L bealinkand X = (2, a, B, {wi, wa), {z1, 22})
%

be a Heegaard diagram for L . Denote A~ (3, (s1,52)) by 2y, o, for all (s1,s2) €

H(L). Then

- _ _ 1k
H*(Ql+oo,sz/2l+oo,sz—l) = HFK (LZ’ 52— E)
In particular, y(H«(7 o 5, /A5 o0 5,—1)) IS determined by the Alexander polyno-
mial Ap,(t).
Proof. By Proposition 5.8, we can use 27, o /7 o to compute the knot
Floer homology of L,. The only issue is on the Alexander grading. From
equation (36) in [20], there is an identification

A3, pH (5) > A (r (30, ¥ (9)).
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—
Note that the definition of ¥ (s) involves the linking numbers. Thus, we have
the following commuting diagram

Qlloo,sz—l (L) — le_z—l—% (LZ)
2 [
2 2
o

+00,52 (L) T) Q’F;_% (LZ)’

L L . .
where Liooz .., and ("2 | are both the inclusions of subcomplex. Thus, we
w2 s2—1=%

have
D/ L A Ik (L2)
_—I—oo,sz( ) o 23 — CFK™ (Lz,sz _ l_k)
Ql+oo,sz—1(L) msz—l—%(l’z) 2
Thus, the lemma follows. 0

5.5. Proof of Theorem 1.17.

Proof. Consider the following factorization of inclusion maps of subcomplexes

+Ly I+L2+l
+Ls. o— $1.52 —_ $1.52 —
151,52'2[51,52 Q[S1 s2+1 ? 2[S1,+c>o

It induces a factorization of the maps on homology

L +L L
(1;1'7522)* = (IS1,s;+1)* °© (‘:1 )

As is discussed in the proof of Theorem 1.15, we see (L;ﬁ,Lszz)* is a multiplication

kth2
of U"s1-52, where
+Ly _ +Lr +L>
ksl,sz = N5, nS1,52+1'

Moreover, k = 0 if and only if H. (A, o, 4,/ ,) = 0,and k = 1 if and

51,82
only if Hi(A, 5,41/, 5,) = I with an even grading. Then, we have

_ _ L
A(HL QA7 o1/ ) =nfte —nlt2

51,52 S1,82+1°

Whereas,

X(H (AL 4k sot1 /25 4ks0))
k
= X(He(A, o 41/2A5, ) + D x(HFL™(L. sy +1i,55 + 1)), forall k > 0.
i=1

(5.6)
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Let k — oco. We have )((H*(Ql;,sz/gl,;sz_l)) = x(He(AY o0 50 /N 00.5,—1))
determined by Ay, (), by Lemma 5.9. Thus, all the n;ﬁLSZZ are determined by the

Alexander polynomials. Similar results hold for L;. The theorem follows from
Lemma 5.6 and Theorem 5.10. |

In fact, when the linking number is not 0, the Alexander polynomials of L; and
L, are determined by the Alexander polynomial of L = L; U L, and the linking
number:

Theorem 5.10 (Murasugi, Proposition 4.1 in [22]). Let Ap(x,y) and Ap,(t) be
the Alexander polynomial of a link L = L1 U L, and L respectively in S3. Then

1k

AL(t71) = ALl(t)’

1—1¢
where 1K is the linking number of L.

5.6. Formulas for n:: Li (L)’s. Using the Alexander polynomials of L, L1, L»,
+L; s
we can get formulas for ng ™" (L)’s.
First of all, we fix the overall signs of these Alexander polynomials to get
normalization of equations (5.5) and (4.1):

SEZZ X(HFK™ (K, 5)) - 1° = [i—lAK(Z), 5.7)

11
> x(HFL™(L.s1.2)) - xy' x5 = x}x7 AL(x1.x2).  (5.8)
(s1,52)€H(L)

For an L-space knot K, to get equation (5.7), we require that —=Ag(r)
has finitely many non-zero positive powers and all the non-zero coefficients of
-+ Ak (1) are 1, which is equivalent to Ag (1) = 1.

Theorem 5.11. Suppose L = Ly U L, is an L-space link. Let Ap, (), Ap,(1),
and Ap(x1, x2) be the symmetrized Alexander polynomials, such that Ay, (1) =
Ar,(1) = 1. Let

! _ Ly Lk
Z_—IALI([)—Zak -1,
keZ

4 Ly k
mALz(t)_Zak e
kez

_ L i J
Ap(x1,x3) = E a;’j - Xy X;.
i,j
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Suppose (iy, jo) satisfies that al%,jo #0, aiL,jO =O0foralli > iy, and al%,j =0
forall j > jo. Then,

1 1
X(HFL_ (Loio+ 5. jo+ —)) =1 afl, y=al, =1

2 2 io+3—% Jotz—%
(HFL‘(L:'Jrl '+l>>——1<:>a]“1 B IN—
X et loty)) io+3=% T Tors-% T

Proof. Notice that (25, ,, /2, ,—;) can only be 0 or 1 for all (s1,s52) € H(L).

51,52
By equation (5.6), we have two possible cases:

(a) y(HFL™(L, s1,s2)) = 1 if and only if
X(le_l,sz/le_l,sz_l) =1 and X(Ql;_l,sz/ﬂs_l_l’sz_l) = 0;
(b) y(HFL™ (L, s1,s2)) = —1 if and only if

X(ﬂ;,sz/ﬂ;,sz_l) =0 and X(Ql;_l’sz/ﬂ;_ljsz_l) = 1.
In addition, we have

X(Q[;)+%"/-O+1/Ql_ ):X(Q[:Loo,jmt%/m_ é)

. 1 . 1 .
5" lotz.Jo—> +00,j0—>%

A (1§ 2)).

So y(HFL™(L, s1,52)) = 1 if and only if a/_L2+ 1
JoT 73

y(HFL™ (L, 51, s2)) = 1if and only if aiLlJrl x = 1. Similar argument applies to
0T2772
the case (b). O

_ i = 1. Symmetrically, we have
2

Definition 5.12 (Normalization of Alexander polynomials for L-space links).
Suppose L = L; U L, is an L-space link. Let the symmetrized Alexander
polynomial of L be

— Lo i, .
Ap(x1,x2) = E a;’; - X1 Xy,
i,J

where x; corresponds to the component L; for i = 1,2. Let the symmetrized
Alexander polynomials of Ly, L, be Ar,(¢), Ar,(¢) in the forms of

4 _ L1 Lk 4 _ Ly .k
—[_1AL1(t)—Zak -1, —t_lALz(l)—Zak .
keZ kez
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Let (ig, jo) be such that

Ik —1
2

j0=max{jeZ+ ‘ailjj;éO}
and

k—1
i0=max{ieZ+T ‘aiL,jO;aéO}.

Then, these Alexander polynomials are called normalized if

(1) the leading coefficient of Az, (7) is 1 for bothi = 1, 2, which is equivalent to

Ap, (1) =1,
@) ifa? | =1 thenaf ; =1;whileifa;? | =0 thenaf ; =—I.
After normalization, we have
X(HFL™(L, 51,52)) = afl_%’sz_%
and
y(HFK™(L;,s)) = aki fori = 1,2.
Therefore,

o0

_ — L L
XHAS, /205 1) = a - Zaﬂ_%“’sz_% =0orl.
i=1

Hence, we have

o0 (e.¢]
n;ﬁzz - Z (a:zz-l—j—%s B aSLl +i—%,s2+j—%)' (59)
j=1 i=1
Similarly, we have
o0 o0
i = Z (asLl1+i—% . as1+i—%,s2+j—%)' (5.10)

i=1 j=1

Theorem 5.13. Suppose L = L; U L, is an L-space link. Under the normal-
ization in Definition 5.12, we have that the formulas in equation (5.9) and equa-
tion (5.10) are non-negative for all (s, s2) € H(L).

In fact, both of Theorem 5.11 and Theorem 5.13 give additional constraints for
the Alexander polynomials of an L-space 2-component link.
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Proposition 5.14. The link L7n2 is not an L-space link.

Proof. We give two proofs based on Theorem 5.11 and Theorem 5.13 respectively.
Suppose L = L7n2 is an L-space link with components L; and L,, where L;
is the unknot and L, is the right-handed trefoil. Then, we get the normalized
Alexander polynomials of L; and Lj:

t
:ALl(l‘)=1+l‘_l+l‘_2+"',

t
:ALz(l‘) =l+t_1 +l_2+"'

Since Ap(x,y) = % and Ik = 0, by Theorem 5.11, we have alL‘ = ale.

o i L L
This is a contradiction to ;! = 0anda;? = 1.

Another proof is as follows. If we used the normalization in Definition 5.12 for
L7n2, then we get n+L10,0 = —1 by equation (5.10). This is a contradiction to
Theorem 5.13. O

6. Applications

Classitying L-space surgeries on an L-space link L is usually challenging. One
difficulty is the lack of criterion for hyperbolic L-spaces. In [9], Gorsky and
Némethi studied L-space surgeries on the torus links 7'(pr, gr) with p,qg > 1
and r > 1 using Lisca-Stipsicz characterization of Seifert L-spaces. Let us look
at the case where p = 1 and r = 2, i.e. the torus links L = T'(2,2n). We assume
n > 2, since the T'(2, 2) torus link is the Hopf link and its surgeries are lens spaces.

When both of p and ¢ are not equal to n, the (p, g)-surgery on 7'(2,2n) is a
Seifert manifold with three singular fibers over the base S2. Using the notational
convention in [17], we can write S,/ (T(2,2n)) = =M (0; 31, 555, 7=)- In [17],
Lisca and Stipsicz give a characterization of L-space Seifert manifolds.

Theorem 6.1 (Theorem 1.1, [17]). Suppose M is an oriented rational homology
sphere which is Seifert fibered over S?. Then, M is an L-space if and only if either
M or —M carries no positive, transverse contact structures.
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Theorem 6.2 ([16]). An oriented Seifert rational homology sphere M = M (ey;
Fly.., Fg)withl > ry > ry > -+ > r > 0 admits no positive, transverse contact
structure if and only if

e ¢o(M) >0, or

o ¢9(M) = —1 and there are no relatively prime integers m > a such that

mry; <a <m(l—rp)
and

mr; <1, i=3,...,k.

While the (n, g)-surgery on T'(2, 2n) is usually a graph manifold. The (n, ¢)-
surgeries are discussed in Corollary 3.6. Direct computation gives the following
result.

Proposition 6.3 (classification of L-space surgeries on 7'(2, 2n) with n > 2). For
all g # n, the (n,q)-surgery on T (2,2n) is an L-space.
When p #n,q #nand p > q, Sg’q (T'(2,2n)) is an L-space with if and only

if one of the following conditions holds:

M n+2<pn+1=<gq;

(2) 2n < p,n —2 > q, and there are no relatively prime integers m > a > 0

such that

m

p—n

n—q-—1
m—
n—q

< 1;

<a<m(1—%) and

B)yn+2 < p <2n,4q < n—2, and there are no relatively prime integers
m > a > 0 such that

n—q-—1
n—gq

) and ﬂ<1;

<a<m(l—
n

p—n

@4 p=n+1l,g<n+1,andq # n;

S p=n—-1l,g<n-—1;

(6) p <n-—2,q < p, and there are no relatively prime integers m > a > 0 such
that

and < 1.

1
m(l——)<a<m
n—p n—gq

n

See Figure 6.1 for the example of 7(2, 20). Compare this result with Theorem 7
in [9].
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40 sesessesessessssasssasncsasnasassasannes

20 -

—20FF

6

—40 -

| . . . | ; . . I . . . I . . . I
—40 —20 0 20 40

Figure 6.1. The L-space surgeries on 7'(2,20). We draw the L-space surgeries of 7'(2, 20)
on the x-y plane within the range [—40, 40] x [—40, 40]. Every dot (p, ¢q) represents an
L-space surgery (p,q). The blue points are Seifert L-space surgeries determined by the
characterization of Lisca-Stipsicz, while the red points are determined by induction. The
six labelled regions correspond to the six conditions (1) to (6) in Proposition 6.3. The drawn
hyperbola indicates the positions of the surgeries with by = 1.

Nevertheless, the links 7'(2,2n) are the simplest two-bridge links. In order
to generally study L-space surgeries on L, we give an algorithm computing
ﬁF(Si (L)) using the Alexander polynomials.

Another example is the Whitehead link. By the results in Section 6 in [18] or
the method introduced in this section, we can obtain the following proposition.
In order to distinguish it with its mirror, we call it the L-space Whitehead link.

Proposition 6.4. The (p1, p2)-surgery on the L-space Whitehead link is an
L-space if and only if py > 0, p» > 0.
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6.1. Truncated perturbed surgery complex. The link surgery formula is an
infinitely generated IF[[U;, U,]]-module. A truncation procedure is introduced in
Section 8.3 in [20] to reduce it to finitely generated F[[U;, U,]]-module. It is called
horizontal truncation in [20], and we just call it truncation here. A truncation for
the A-surgery on a 2-component link L is described by four finite subsets of H(L),

SO(A), SOL(A), STO(A), STH(A).

The way of doing truncation is not unique. Later, we will describe an explicit way
which depends on L and A.
Define

68182(/\) = le_+81L1U+82L2(s)v 81,82 € {0, 1}.
ses¥162

Then, the truncated perturbed complex C(A) for an L-space link is defined as
follows:

~— - 700 Doy =19
(CT(3H,A), D(A)) :=C™(A) C(A)
ng(ml lﬁ(gg,m) 6.1)
601 A 611 A),
(A) W (A)
where D f }f; (A) are the restrictions of D 5 ;ﬁg (A) on the truncated complexes. See
~85168>

equation (5.2) and (5.4) for the definitions of D,|¢;(A). They are determined by
the set of integers ny".

The surgery complex naturally splits as a direct sum corresponding to Spin®
structures. For the A-surgery on L, there is an identification

Spin®(SA (L)) = H(L)/H(L, A),
where H(L,A) is the lattice spanned by A. For u € H(L)/H(L, A), choose
s = (s1,52) € u. Denote

—~3816 3(—
C2(A ) = @ @ le+iA1+jA2'

i€z JEZ
s+HiA+jAre85182

Then, the summand C(A, u) is as follows:

~— - 700 DygAw) =0
(C (%’A,u)ﬂD (Avu)) =C (A’u) —— C (Aau)
58(1)(A,u)l lﬁ% (A,uw) (6.2)
5(1)(1)(A,u)

COY(A,u) C'(A,u).
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By putting U; = 0, we can get the chain complex of F-vector spaces C (A, ),
whose homology is isomorphic to HF(S3 (L), u).

Lemma 6.5. Suppose A, B, C, D are finite dimensional F-vector spaces and the
following diagram commutes

hy
—

=
A <—nx
O« —w
S}

—_—
ha
We form a chain complex (Rx, dx) supported on degrees 0, 1, 2,

do d
RRA—B&®C —D
with dy = hy + vq and dy = hy @ v,. Then, we have the following conclusions.
(1) We have
dim H.«(R) = 2dim(Ker h; N Kerv;) — 2dim(Im v, + Im 45)
—dim A 4+ dim B + dim C + dim D;
(2) dim H.«(R) = 1 if and only if one of the following is true:
a. x=dimA —dim B —dimC +dim D = 1and
dim(Ker(%1) N Ker(vy)) + dim Coker(v, + hy) = 1;
b. y=dimA —dimB —dimC + dim D = —1 and
dim(Ker(4;) N Ker(vy)) 4+ dim Coker(v, + /) = 0.
Proof. Part (1) is a straightforward computation. Notice that
Hy = Coker(hy @& v,) and H, = Ker(hy + v1).

For Part (2), there are only three cases when H.(R) = IF happens:
(1) Ho(R) =F, Hi(R) = H2(R) = 0;
(2) Hi(R) =F, Hy(R) = H2(R) = 0;
(3) H2(R) =T, Ho(R) = H1(R) = 0.

In cases (1) and (3), we have that y = 1 and dim Hy + dim H, = 1; in case (2),
we have that y = —1 and dim Hy + dim H; = 0. It is not hard to check the
converse. O
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If Ker(v;), Ker(h1) are both known, then computing dim(Ker(v;) N Ker(%;))
is equivalent to computing dim(Ker(v;) + Ker(%1)), which can be done by Gauss
Elimination.

While computing Coker (v, + /) is the dual question for computing Ker(v3) N
Ker(h3). While the dual maps v} and /3 can be obtained by reversing the arrows,
since we are working over I

We can directly apply the above lemma for each truncated perturbed complex
C (A, u) for each Spin® structure. Thus, we only need to describe the truncated
regions S°°(A), S°1(A), S1°(A), ST (A) and the kernels of the maps D **(A, u)
and their dual.

Proposition 6.6. Suppose L is an L-space link. Fix a surgery framing A and a
Spin® structure u. Then, HF(A,u) = T if and only if in the truncated complex
C (A, u), one of the following is true:

(A) #S%%A,u) —#SOU(A,u) —#S'10A, u) + #S'(A,u) = 1 and

dim(Ker(DJ3) N Ker(D23)) + dim Coker(D? + D) = 1;

(B) #S%(A,u) —#SV (A, u) —#S1O(A, u) + #S'1 (A, u) = —1 and

dim(Ker(DJ}) N Ker(D}9)) + dim Coker(D 2% + D) = 0.

6.2. Truncations. We explicitly describe the truncated regions S%°(A),
SOL(A), ST°(A), S'I(A) here. Let us briefly recall the procedure to form these
truncated regions for a general two-component link L in Section 8.3 in [20].

(1) Choose a number b € IN, such that the inclusion maps Isillgé

isomorphisms whenever +s; > b.

S are quasi-

(2) Determine a parallelogram Q in the plane, with vertices Py, P,, P3, P4 coun-
terclockwise labelled, satisfying the following condition: the point P; has the
coordinate (x;, y;) such that

X1 > b, Xy < —b, X3 < —b, X4 > b, (6 3)
y1>b, y2 > b, y3 < —b, V4 < —b. '

We also require that every edge is either parallel to the vector A; with length
greater than || A 1| or parallel to A, with length greater than ||A,||.

(3) Decide which is the case among the six cases of the surgeries described in
Figure 22 in [20]. Then, we can decide the corresponding truncated regions
according to Section 8.3 in [20].
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The way of doing truncation is not unique. One explicit way to choose the
parallelogram Q to be centered at the origin as follows. See Figure 6.2.

x=-b

Figure 6.2. The truncation. The vectors A; and A5 are determined by the surgery framing
matrix. The edges of the parallelogram Q are parallel to A and A5, and they indicate the
border lines of various acyclic subcomplexes or quotient complexes. Thus, the parallelo-
gram Q roughly indicates the support of the truncated complex.

Let
oAt + joAs —ioAr + joA
{Pl,Pz,P3,P4}={ZO 142_]0 2 Zho 12+Jo 2.
ioA1 — joA2 —i0A1—j0A2}
2 ’ 2 )

with i, jo being positive integers, such that equations (6.3) hold.
Fix A andu € H(L)/H(L, A). Suppose

S=91A1+92A2€u, P1 =a1A1+a2A2.

We denote
Ay = [=01 —|a1]], A2 = [-01 + |a1]],
By = [0, —|az|], Bz = [—0+ |az]].

Then, the truncated regions in the six cases are as follows.
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Case I.

Case II.

Case III.

Case IV.

Y. Liu

We have
S®A,u)=unQ,
SPA W =unQN(Q+A),
SP(Au) =un 0N (Q+Az),
SUTA, W) =un0nN(0+ A1+ Ay).
In other words, for 8,6, € {0, 1},
SO (A u) = {s+iA1+jAs | Ai+81 <i < Az, B+ < j < Ba).
We have
SA,u)=unQ,
SN u) =un{QU(Q+ A},
SU(Aw) =un{QU(Q + A2},
SH(A W) =un{QU(Q+A)U(Q+A2)U(Q+ AL+ A}
In other words, for 8y, 6, € {0, 1},
SU2 (A u) = {s+iA1+jAs | A1—81 <i < A2, B1—8, < j < By).
We have
SOAu)=unQ,
SOA W) =un{0N(Q+A))}
SUHA W) =un{QU(Q + A},
SUA W) =un{[QU(Q + A)IN(QU(Q + Azl + A}
In other words, for 8y, 6, € {0, 1},

SO (A u) = {s+iA1+jAr | Aj+8 <i < A2, By < j < Bata).
We have

S%A W) =unoQ,

SPA W) =un{QU(Q + A1},

SO A W) =un{0N(Q + A},

ST A W) =un{{QN(Q + A)]U(Q N(Q + A + A}
In other words, for 8y, 6, € {0, 1},

SUE (A w) = {s+iA+jAs | A] <i < Ap+81, B1+8 < j < Bo).
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Case VI.

L-space surgeries on links 563

This case is similar to case I, but the regions S'0(A, 1), SO1(A,u)
have two more points at the corners. We have
S%Au)=unQ,
SPAW=@mNnQONQ@+A)UT",
SUMA W =N QON(Q+A))uT,
SU(A W) =unQN(Q+ A1+ A),

where 710 = {S + A A1 + BlAz}, 710 = {S + A1A1 + BzAz}.
In other words, for 8,6, € {0, 1},

SO (A u) = {s +iAy + jAr | Ay + 81 <i < Ay,
Bi 48, <j < ByuTH®,

where 790 = 71! = @,

This is similar to case V. We have
SOAW=uNO0N(Q—A;—Ay),
SOAW=unNnON(Q—-A))UTY,

STA, Wy =unNnQN(Q—Ay))UuT",
SUA,uy=uno,
where TIO =S+ AlAl + B2A2, TO1 =S+ BlAz + AlAl.
In other words, for 8y, 6, € {0, 1},
SURA W) = {s+iA1+ jAr [ A +1-8 <i < A,
Bi+1-8<j<BjuTh®

where 790 = 711 = g.

Remark 6.7. In all of the above cases,

#S00(A, 1) — #SON (A, u) —#S1O(A, u) + #S (A, u) = 1.

6.3. Kernel of D **(A,u). In fact, all the mapping cones of D ¥*(A, u) split as
a direct sum of mapping cones in a common form. They look like the mapping
cones in computing + 1-surgery on knots. Since this type of mapping cones looks
like zigzags, we just call them “zigzags.” We denote the set of integers in [a, b] by
[a; b], where we allow a = b.
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Definition 6.8 (zigzag). A zigzag mapping cone C is a mapping cone of IF-vector

spaces:
B 425 P s

aj<s<az b1 <t<by

where
Ay =T, foralla; <s <a,,

B; =T, forallb; <t <by,
f=fi. fiids— B,

g=Pss. g:As— Borr.

The code of the zigzag C is a set of data {[a1; a2], [b1; b2], S1, S2}, where

S1={seZ]| fs #0}, (6.4)
Sz ={s € Z|gs #0}. (6.5)
We define Ker(C) (resp. Coker(C)) to be Ker(f + g) (resp. Coker(f + g)).

Definition 6.9. For any element x in P, <,,, I-€;, we can represent it uniquely
by x = ) . es. We call I the support of x, and denote it by Supp(x). Similarly,
for X = {x1,...,x,}, we denote {Supp(x1), ..., Supp(x,)} by Supp(X).

Proposition 6.10. For a zigzag C with the code {[ay,as], [b1,b2], S1, S22}, we
represent S1 N Sy by a minimal disjoint unions

S1NS,; = ]_[ [ai;ﬂi]’

i€[1;K]

with B; < aj41+2, foralli. Then, Ker(C) has a basis with the following support
{{s} s €lar,a2]\(S1U S2)} Ufle; — 1.8 + 1] |aj —1 € $2,B; + 1 € S1}.
Proof. Straightforward. O

Definition 6.11. Let L. = L; U L, be an L-space link. For all s; € H{(L), s» €
H, (L), we define

vit2(L) = min{s; € Ha(L) | nf52 # 0}, 6.6)
vt E1(L) = min{s; € Hy(L) | nf5L 5 0} 6.7)
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It is easy to see that in Section 6.3 we can let

b = max{max{v;2(L)},, . max{v 1 (L)}s,)}.

The truncated perturbed complex C (A) is determined by these u; L2 (L)’s and
v;L '(L)’s, and thereby so are the zigzag mapping cones corresponding to

D X5 (A u)s.
For example, suppose
A = r1 Ik
k  p>
and choose s = (s1, 52) € u. Before truncation, we have
A S4L )
cone(Dfg(A.u)) = [ ] cone ( [[@A o a, + <I>s+l.2Al+jA2)).
i€z jez.

After truncation, cone(D °!go(A, u)) splits into direct sums of zigzags in
form of

A+L &L =
cone ( [T@5 an + q)s+i21\1+jA2)) NC (A).
JEZ

Let us figure out the codes of these zigzags. Suppose the code of the above

zigrzag is
{la1; a2, [b1; b2, S1, S2}.

Then, it is not hard to get the following formulas for the code,
[ar:az] ={j € ZIs +iA1 + jAz € SP(A w)},
[b1:b2] = {j € ZIs +iA1 + jAz € SO (A W)},
Si={j€Zlss+i-k+j pp=vi2 (L)}

_ . . L
Sp={j €Zls+i-k+j-p2 =< —vaIZ_l..pl_jllk(L)}.

6.4. Examples: L-space surgeries on two-bridge links. From Proposition 2.11,
we see that if a two-bridge link has an L-space surgery, then it is a generalized
L-space link. By taking mirrors, we can reduce these links to two types: L-space
links and generalized (+—) L-space links. We have discussed two-bridge L-space
links in Section 3. By the method in this section, it is convenient to make
computer programs for computing HF of their surgeries and give characterizations
of L-space surgeries. For example, regarding the surgeries on the Whitehead link,
we can do truncations as in Proposition 6.9 in [18] and then use the method of
zig-zags in Section 6.3 to recover the results in Proposition 6.9 [18] for the hat
version. Thus, we can obtain Proposition 6.4. However, to find a general formula
of HF is not easy.
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In fact, finding L-space homology spheres is more interesting. Let us try some
examples here, by looking at the (1, 1)-surgeries on a sequence of two-bridge links
L, = b(4n? + 4n,—2n — 1) for all positive integers n. This sequence of L-space
links have linking numbers 0. Note that L, is the Whitehead link.

Proposition 6.12. For all n > 2, the (1, 1)-surgery on b(4n? + 4n,—2n — 1) is
not an L-space.

With the help of a computer program, we get the Alexander polynomials of L,:

— n———|/+2|

PTRRREES B |

Ap,(x.y) = Z Yo ()Xt
j== nt=—n—§+|,/+%|

After normalizing Az, (x, y) by Definition 5.12, we can get formulas for ny Sl ) by
equations (5.10) and (5.9). We list the numbers

{;Lszz(Ln)} —4<s51<4,—4<s5p<4 forn =1,2,3,4
as follows:
0000O0O0GO0TO0O0
00 00O0O0GO0TO0O0
0000O0O0GO0TO0O0
0000O0O0GO0TO0O0
(2L} 0 0001 000 0 p:
111111111
222222222
333333333
4 4 4 4 4 4 4 4 4
0000O0O0GO0TO0O0
00 00O0O0GO0TO0O0
0000O0O0GO0TO0O0
0000T1UO0UO0TO0O0
(2L 30001 1 100 0 ¢:
111121111
222222222
333333333
4 4 4 4 4 4 4 4 4
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0000O0O0OOO
00000O0OO0O
000O0T1O0O0O0O
000T1T1T1000

2Ly {00 1121100 ¢;
11 122211°1
222232222
333333333
4 4 4 4 4 4 4 4 4
00000O0OO0O
000O0T1U0O0O00O0
0007111000
001121100

(nff2@Le)y: 3011 222110
112232211
222333222
333343333
4 4 4 4 4 4 4 4 4

In particular, we get the following formulas for all s, € Z,

n—|si], |[s1] <n,
+L2(L,,) {O 51> n
b 1 —_— .

Since L, is a two-bridge link, we have the symmetry v+L1 = v; L2 when

S1 = §52.
Thus, we can let b(L,) = n. Then, as described in Section 6.3, the truncation
regions are determined by the parallelogram Q, with vertices P; = (n,n),
= (—n,n), P3 = (—n,—n), P4 = (n,—n). The surgery framing is in Case
I, so we have the truncated regions

§hE — (G yeZP | —n+8 <i<n,—n+8 <j<n)
Now we can see

OFLi =0, forall —n+1<s;<n—1.—n+1<s;<n—1i=1.2.

So A, 5, € C % with —n < 51 < n,—n < s, < n are all in the kernel of 5(1,8
and DYl. So when n > 2, we have that Ker(D3}) N Ker(DL9) has rank at least
n?+ (n—1)2 > 1. Thus, by Proposition 6.6, the (1, 1)-surgeries on L, withn > 2
are never L-spaces. Similar arguments apply to (£1, £1)-surgeries on these links.
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Proposition 6.13. On the two-bridge L-space links L, = b(4n? + 4n,—2n — 1)
with n > 2, there are no L-space homology sphere surgeries.

In fact, direct computations using the zigzags give that ﬁT?(Sf’,l(Ln)) has
dimension (2n — 1)2.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

References

K. L. Baker and M. H. Moore, Montesinos knots, Hopf plumbings, and L-space
surgeries, Preprint 2014. arXiv:1404.7585 [math.GT]

S. Boyer, C. McA. Gordon, and L. Watson, On L-spaces and left-orderable funda-
mental groups. Math. Ann. 356 (2013), no. 4, 1213-1245. MR 3072799
Zbl 1279.57008

G. Burde and H. Zieschang, Knots. De Gruyter Studies in Mathematics, 5. Walter de
Gruyter & Co., Berlin, 1985. MR 0808776 Zbl 0568.57001

D. Calegari and N+M. Dunfield, Laminations and groups of homeomorphisms of the
circle. Invent. Math. 152 (2003), no. 1, 149-204. MR 1965363 Zbl 1025.57018

N. Dunfield, L-spaces and left-orderability of 3-manifold groups. Low dimensional
topology (blog), 2011. http://Idtopology.wordpress.com/2011/07/26/1-spaces-and-lef
t-orderability-of-3-manifold-groups/

D. Gabai, Detecting fibred links in S3. Comment. Math. Helv. 61 (1986), no. 4,
519-555. MR 0870705 Zbl 0621.57003

D. Gabai, Ro. Meyerhoff, and P.Milley, Minimum volume cusped hyperbolic
three-manifolds. J. Amer. Math. Soc. 22 (2009), no. 4, 1157-1215. MR 2525782
Zb11204.57013

E. Gorsky and A.Némethi, Lattice and Heegaard—Floer homologies of alge-
braic links. Int. Math. Res. Not. IMRN 2015, no. 23, 12737-12780. MR 3431635
7Zbl 1342.57005

E. Gorsky and A. Némethi, Links of plane curve singularities are L-space links.
Algebr. Geom. Topol. 16 (2016), no. 4, 1905-1912. MR 3546454 Zbl 1364.14022

J. E. Greene, The lens space realization problem. Ann. of Math. (2) 177 (2013), no. 2,
449-511. MR 3010805 Zbl 1276.57009

M. Hedden, Floer homology and the Berge conjecture on knots admitting lens
space surgeries. Trans. Amer. Math. Soc. 363 (2011), no. 2, 949-968. MR 2728591
7Zbl11229.57006

M. Hedden, On knot Floer homology and cabling. II. Int. Math. Res. Not.
IMRN 2009, no. 12, 2248-2274. MR 2511910 Zbl 1172.57008

J. Hom, A note on cabling and L-space surgeries. Algebr. Geom. Topol. 11 (2011),
no. 1, 219-223. MR 1221.57019 Zbl 2764041


http://arxiv.org/abs/1404.7585
http://www.ams.org/mathscinet-getitem?mr=3072799
http://zbmath.org/?q=an:1279.57008
http://www.ams.org/mathscinet-getitem?mr=0808776
http://zbmath.org/?q=an:0568.57001
http://www.ams.org/mathscinet-getitem?mr=1965363
http://zbmath.org/?q=an:1025.57018
http://ldtopology.wordpress.com/2011/07/26/l-spaces-and-left-orderability-of-3-manifold-groups/
http://ldtopology.wordpress.com/2011/07/26/l-spaces-and-left-orderability-of-3-manifold-groups/
http://www.ams.org/mathscinet-getitem?mr=0870705
http://zbmath.org/?q=an:0621.57003
http://www.ams.org/mathscinet-getitem?mr=2525782
http://zbmath.org/?q=an:1204.57013
http://www.ams.org/mathscinet-getitem?mr=3431635
http://zbmath.org/?q=an:1342.57005
http://www.ams.org/mathscinet-getitem?mr=3546454
http://zbmath.org/?q=an:1364.14022
http://www.ams.org/mathscinet-getitem?mr=3010805
http://zbmath.org/?q=an:1276.57009
http://www.ams.org/mathscinet-getitem?mr=2728591
http://zbmath.org/?q=an:1229.57006
http://www.ams.org/mathscinet-getitem?mr=2511910
http://zbmath.org/?q=an:1172.57008
http://www.ams.org/mathscinet-getitem?mr=1221.57019
http://zbmath.org/?q=an:2764041

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

L-space surgeries on links 569

P. Kronheimer, T. Mrowka, P. Ozsvith, and Z. Szab6, Monopoles and lens space
surgeries. Ann. of Math. (2) 165 (2007), no. 2, 457-546. MR 2299739
7Zb11204.57038

T. Lidman and A. Moore, Pretzel knots with L-space surgeries. Michigan Math. J. 65
(2016), no. 1, 105-130. MR 3466818 Zbl 1338.57009

P. Lisca and G. Mati¢, Transverse contact structures on Seifert 3-manifolds. Algebr.
Geom. Topol. 4 (2004), 1125-1144. MR 2113899 Zbl 2113899

P. Lisca and A. L Stipsicz, Ozsviath—-Szab6 invariants and tight contact 3-mani-
folds. IIL. J. Symplectic Geom. 5 (2007), no. 4, 357-384. MR 2413308 Zbl 1149.57037

Y. Liu, Heegaard Floer homology of surgeries on two-bridge links.
Preprint 2014. arXiv:1402.5727 [math.GT]

C. Manolescu, An introduction to knot Floer homology. In S. Gukov, M. Khovanov
and J. Walcher (eds.), Physics and mathematics of link homology. Papers from the
summer school held as part of the Séminaire de Mathématiques Supérieures at the
Centre de Recherches Mathématiques, Université de Montreal, Montreal, QC, June
24-July 5, 2013. American Mathematical Society, Providence, R.I., and Centre de
Recherches Mathématiques, Montreal, QC, 2016, 99-135. MR 3591644

C. Manolescu and P. Ozsvith, Heegaard Floer homology and integer surgeries on
links. Preprint 2010. arXiv:1011.1317 [math.GT]

C. Manolescu, P. Ozsvith, and S. Sarkar, A combinatorial description of knot Floer
homology. Ann. of Math. (2) 169 (2009), no. 2, 633—-660. MR 2480614
Zbl 1179.57022

K. Murasugi, On periodic knots. Comment. Math. Helv. 46 (1971), 162—174.
Zbl 0206.25603 MR 0292060

W. D. Neumann and A. W. Reid, Arithmetic of hyperbolic manifolds. in B. Apanasov,
W. D. Neumann, A. W. Reid, and L. Siebenmann (eds.), Topology ’90. Papers from
the Research Semester in Low-dimensional Topology held at Ohio State University,
Columbus, Ohio, February—June 1990. Ohio State University Mathematical Research
Institute Publications, 1. Walter de Gruyter & Co., Berlin, 1992, 273-310. MR 1184416
Zb11209.57011

Yi Ni, Knot Floer homology detects fibred knots. Invent. Math. 170 (2007), no. 3,
577-608. MR 2357503 Zbl 1138.57031

Yi Ni and Z. Wu, Cosmetic surgeries on knots in S 3. J. Reine Angew. Math. 706
(2015), 1-17. MR 3393360 Zbl 1328.57010

T Ohtsuki, A polynomial invariant of rational homology 3-spheres. Invent. Math. 123
(1996), no. 2, 241-257. MR 1374199 Zbl 0855.57016

P. Ozsvéith and Z. Szab6, Knot Floer homology and the four-ball genus. Geom.
Topol. 7 (2003), 615-639. MR 2026543 Zbl 1037.57027

P. Ozsvéth and Z. Szabd, On the Floer homology of plumbed three-manifolds. Geom.
Topol. 7 (2003), 185-224. MR 1988284 Zbl 1130.57302


http://www.ams.org/mathscinet-getitem?mr=2299739
http://zbmath.org/?q=an:1204.57038
http://www.ams.org/mathscinet-getitem?mr=3466818
http://zbmath.org/?q=an:1338.57009
http://www.ams.org/mathscinet-getitem?mr=2113899
http://zbmath.org/?q=an:2113899
http://www.ams.org/mathscinet-getitem?mr=2413308
http://zbmath.org/?q=an:1149.57037
http://arxiv.org/abs/1402.5727
http://www.ams.org/mathscinet-getitem?mr=3591644
http://arxiv.org/abs/1011.1317
http://www.ams.org/mathscinet-getitem?mr=2480614
http://zbmath.org/?q=an:1179.57022
http://zbmath.org/?q=an:0206.25603
http://www.ams.org/mathscinet-getitem?mr=0292060
http://www.ams.org/mathscinet-getitem?mr=1184416
http://zbmath.org/?q=an:1209.57011
http://www.ams.org/mathscinet-getitem?mr=2357503
http://zbmath.org/?q=an:1138.57031
http://www.ams.org/mathscinet-getitem?mr=3393360
http://zbmath.org/?q=an:1328.57010
http://www.ams.org/mathscinet-getitem?mr=1374199
http://zbmath.org/?q=an:0855.57016
http://www.ams.org/mathscinet-getitem?mr=2026543
http://zbmath.org/?q=an:1037.57027
http://www.ams.org/mathscinet-getitem?mr=1988284
http://zbmath.org/?q=an:1130.57302

570

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

[40]

Y. Liu

P. Ozsvéth and Z. Szab6, Holomorphic disks and genus bounds. Geom. Topol. 8
(2004), 311-334. MR 2023281 Zbl 1056.57020

P. Ozsviéth and Z. Szabd, Holomorphic disks and three-manifold invariants: proper-
ties and applications. Ann. of Math. (2) 159 (2004), no. 3, 1159-1245. MR 2113020
Zbl 1081.57013

P. Ozsvéth and Z. Szab6, Holomorphic disks and topological invariants for closed
three-manifolds. Ann. of Math. (2) 159 (2004), no. 3, 1027-1158. MR 2113019
Zbl 1073.57009

P. Ozsvith and Z. Szabd, On knot Floer homology and lens space surgeries. Topol-
ogy 44 (2005), no. 6, 1281-1300. MR 2168576 Zbl 1077.57012

P. Ozsvith and Z. Szabd, Holomorphic disks, link invariants and the multi-variable
Alexander polynomial. Algebr. Geom. Topol. 8 (2008), no. 2, 615-692. MR 2443092
7Zbl 1144.57011

P. Ozsvéth and Z. Szabd, Link Floer homology and the Thurston norm. J. Amer. Math.
Soc. 21 (2008), no. 3, 671-709. MR 2393424 Zbl 1235.53090

P. Ozsvith and Z. Szabd, Knot Floer homology and integer surgeries. Algebr. Geom.
Topol. 8 (2008), no. 1, 101-153. MR 2377279 Zbl 1181.57018

P. Ozsvéth and Z. Szabd, Knot Floer homology and rational surgeries. Algebr. Geom.
Topol. 11 (2011), no. 1, 1-68. MR 2764036 Zbl 1226.57044

P. Ozsvith, A. L. Stipsicz, and Z. Szabd, A spectral sequence on lattice homology.
Quantum Topol. 5§ (2014), no. 4, 487-521. MR 3317341 Zbl 1316.57023

R. Roberts, J. Shareshian, and M. Stein, Infinitely many hyperbolic 3-manifolds
which contain no Reebless foliation. J. Amer. Math. Soc. 16 (2003), no. 3, 639-679.
MR 1969207 Zbl 1012.57022

D. Rolfsen, Knots and links. AMS Chelsea Publishing, 346.H. American Mathemat-
ical Society, Providence, R.I., 2003.

Z. Wu, Cosmetic surgery in L-space homology spheres. Geom. Topol. 15 (2011), no. 2,
1157-1168. MR 2831258 Zbl 1226.57016

Received December 12, 2014

Yajing Liu, Mathematics Department, UCLA, Box 951555, Los Angeles, CA 90095-1555,

USA

e-mail: yajing.leo @ gmail.com


http://www.ams.org/mathscinet-getitem?mr=2023281
http://zbmath.org/?q=an:1056.57020
http://www.ams.org/mathscinet-getitem?mr=2113020
http://zbmath.org/?q=an:1081.57013
http://www.ams.org/mathscinet-getitem?mr=2113019
http://zbmath.org/?q=an:1073.57009
http://www.ams.org/mathscinet-getitem?mr=2168576
http://zbmath.org/?q=an:1077.57012
http://www.ams.org/mathscinet-getitem?mr=2443092
http://zbmath.org/?q=an:1144.57011
http://www.ams.org/mathscinet-getitem?mr=2393424
http://zbmath.org/?q=an:1235.53090
http://www.ams.org/mathscinet-getitem?mr=2377279
http://zbmath.org/?q=an:1181.57018
http://www.ams.org/mathscinet-getitem?mr=2764036
http://zbmath.org/?q=an:1226.57044
http://www.ams.org/mathscinet-getitem?mr=3317341
http://zbmath.org/?q=an:1316.57023
http://www.ams.org/mathscinet-getitem?mr=1969207
http://zbmath.org/?q=an:1012.57022
http://www.ams.org/mathscinet-getitem?mr=2831258
http://zbmath.org/?q=an:1226.57016
mailto:yajing.leo@gmail.com

	Introduction
	Acknowledgements
	L@let@token --space links
	Examples of L@let@token --space links and generalized L@let@token --space links
	Floer homology and Alexander polynomials of L@let@token --space links
	Surgeries on L@let@token --space links
	Applications
	References

