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Convexity at infinity

and Brownian motion
- on manifolds with
unbounded negative curvature

Alano Ancona

Harmonic functions on complete simply connected Riemannian
manifolds with negative sectional curvatures have been extensivelystud-
ied in the last two decades, and several basic questions in this field
([Dyn, p.19], [GW2, p.3], [GW1], [Yau]) are by now essentially solved,
at least if the sectional curvatures are also assumed to be bounded from
below : for such a manifold M, and with respect to its compactification
M = M U S(M) with the sphere at infinity So(M) (for definitions
see [EQ]), the Dirichlet problem, the behavior at infinity of positive
harmonic functions and, in probabilistic terms, the asymptotic behav-
ior of the Brownian motion on M are all well understood ([Pra], [Kif1],
[Cho], [And], [Sul], [AS], [Ancl], [Kif2], [Anc2]). In particular, the fol-
lowing property (Pps) holds: the Brownian path on M converges a.s.
to some exit point ¢ € Soo(M) ([Pra], [Sul]), and moreover, for each
¢ € Seo(M), the distribution of the exit point £ converges to the Dirac
measure §; when the starting point tends to ¢ ([Sul]). In analytic terms,
(Pum) means that the Dirichlet problem on M is solvable for each given
continuous boundary datum f € C(Soo(M);R) ([And]; see also [AS],
[Ancl]). By a theorem of Choi ([Cho]), (Par) may also be deduced from
the following convexity property (Cpr): each point ( € Soo(M) has a
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fundamental system of neighborhoods V' in M such that V N M is con-
vex ([And]). In fact, [Cho| shows that it is sufficient to check the weaker
property (C},): for each pair ({,(") of distinct points on S, (M), there
is a neighborhood V of ¢ in M such that ¢' is not in the closure (in
M ) of the convex hull of M NV (see the Appendix in Section 6 below).
Note however, that in contrast to (C),), property (Cp) guarantee that
the harmonic measure does not charge points (see Corollary 6.3).

In this paper, we consider the case of complete simply connected
Riemannian manifolds whose sectional curvatures are negative (say
bounded from above by —1) but not bounded from below, and we show
that property (Ppr) does not then hold in general (See [HM] for property
(Par) under a growth condition on the curvature).

Theorem A. There i3 a complete stmply connected Riemannian man-
ifold M of dimension 3, with sectional curvatures < —1, and a point

Co € Seo(M) such that
i) the Brownian motion B, on M has a.s. an infinite lifetime,

i) with probability 1, B, ezits from M at (.

Clearly, for such an M, there is no non-trivial bounded harmonic
function f which may be extended continuously on M = M U S (M)
(or even such that limp, ¢, f(m) exists). A variant of the method gives
also the following.

Theorem B. There ezists a complete simply connected Riemannian
manifold M of dimension 3, with sectional curvatures < —1 and such
that

i) the Brownian motion B, on M has a.s. an infinite lifetime,

ii) with probability 1, every point on the sphere at infinity Soo(M)
18 a cluster point of B, (when s — 00).

It will be clear that we may as well construct examples such that
the set of cluster points of the Brownian motion in M is a.s. a fixed
continuum K C So(M), the pair (Soo(M), K) being prescribed up to
topological equivalence. Also, both theorems extend to higher dimen-
sions. See final remarks in Section 5.C.

In our framework (no lower bound assumption on the curvature),
the basic tools available in the “bounded geometry” case collapse with
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the notable exception of Choi’s Theorem. For example, if dim (M) = 2,
(Cm) evidently holds (each geodesic in M divides M in two convex
regions) so that (Pp) is still true; for M rotationaly symmetric and
dim(M) > 3, (Cpm) holds and thus also (Pp) ([Cho]). Here, from
Choi’s results (see Corollary 6.3 below), we have the following purely
geometric consequence of Theorem A.

Corollary C. There ezists a complete simply connected Riemannian
manifold M of dimension 3, with sectional curvatures < —1, such that
for some point (g € Seo(M) and every neighborhood V of (o in M the
closed convez hull of VN M is M.

(Since a convex open subset of M is equal to the interior of its
closure -the usual proof of the similar well-known statement in RV
is easily adapted-, one may in fact remove the word “closed” in the
statement). Theorem B shows that we can also construct M with the
above property for all {; € Soo(M); we have stated Corollary C because,
for sake of simplicity, we shall first give a direct and nonprobabilistic
proof of this corollary.

AN EXAMPLE. It is interesting to observe that one may easily construct
examples (of dimension > 3) with the following property: there is a
point (; € Seo(M) such that the Brownian motion B, on M has a
(strictly) positive probability to converge to (p in M when s — § (S
being the lifetime of the Brownian particle). To see this, fix a complete
simply connected Riemannian manifold (N,g) of dimension 2 whose
sectional curvatures are < —1 and whose Brownian motion has a.s. a
finite lifetime; let M = N xR = {({,u) : € € N, u € R} equipped
with the metric

ds® = du® + e**g(d¢, d¢) .
Then:

i) M is complete and its sectional curvatures are < —1 (simple
computations; M is in fact a special case of the warped products in

[BO)),

ii) each region {u < a} is a horoball in M at {; = lim,—, oo (&o, u)
€ Seo(M), (o is independent of £, € N),

iii) from the standard description of the Brownian motion on M
in terms of a Brownian motion with a drift on R and an independent
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Brownian motion on N with a change of time, there is a strictly positive
probability that u,, the u-component of B,, satisfies |u,| < 1for s <1
and that the N-component explodes also before time s = 1 (so that

lim,_s B, = (o in M).

It follows that the distance of any fixed given point in M to the
closed convex hull Cy of V N M, with V neighborhood of {p in M is
bounded (independently of V') (see Corollary 6.3); thus Cy contains
some fixed point zp € M independent of V. However, as was pointed
out to me by W. S. Kendall, (Par) holds. We may for example observe
that the sectional curvatures of M are bounded (from below) near each
boundary point { € Seo(M) \ {Co}, so that by the constructions in
[And, Section 2], there is for each ¢ € Soo(M) \ {¢o} arbitrarily small
neighborhoods V' in M such that M \V (or M NV) is convex. Hence,
(C}y) holds but not (Cps) and the harmonic measure has a non-trivial
discrete part, though its support is the whole boundary. However, it
seems difficult to deduce from this construction an example proving
Theorem A (even if we drop there condition i) ).

PROBLEMS WHICH REMAIN OPEN. We should also point out that our
counter-examples leave open several related natural questions: does a
Cartan-Hadamard manifold with sectional curvatures < —1 always sup-
ports a non-trivial bounded (respectively, positive) harmonic function ?
Does the Martin boundary of such a manifold M always have dimen-
sion n —1 (n = dim(M))? ([Dyn, p.19]), or dimension > n — 17 We
do not know (even when the sectional curvatures are bounded from be-
low) if positive (respectively, bounded) harmonic functions may fail to
separate points in M'!

PLAN OF THIS PAPER. Our proof of Theorem A will follow from a
careful study of a class of metrics which is in some sense the simplest
for which property (C},) is not clear. We show that a nice “convexity”
property (connected to Choi’s criterion) is related to the integrability
along some rays of a positive function derived from the metric (Propo-
sition 2.1); on the other hand it is shown that the curvature assump-
tions imply that this function in general tends to zero along the rays
(Proposition 2.2), but in general not rapidly enough so as to ensure the
integrability (Section 4). Using also some technical gluing lemmas (Sec-
tion 3), we construct an example proving Corollary C. This then leads
to examples proving Theorem A or B. Though the material in Section
2 is not really necessary for the proof of these theorems, it should bring
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some light on the problem and its difficulties, and could be useful for
other questions. It would be interesting to know if Proposition 2.3 be-
low could be in some way extended to all Cartan-Hadamard manifold
of sectional curvatures < —1.

Acknowledgments. I would like to thank Wilfrid Kendall for at-
tracting my attention on the problems considered in this paper and for
stimulating conversations about the above “warped product example”

(see [Ken]).

1. A class of Riemannian metrics.

1.1. In the sequel, we consider the manifold M = R?® = {(z,y,t) :
z,y,t € R} equipped with a Riemannian metric v = (g, k) in the
form
ds,? = dt* + g(z,t)? dz* + h(z,t)? dy?,

g and h being two smooth positive functions on R? which are nonde-
creasing with respect to t and such that inf{g(z,t): to <t <t} >0
for all to,t; € R. It is easily checked that (M,) is then a complete
Riemannian manifold.

It is also easy to compute the sectional curvatures of M on using
the natural moving frame given by

1
e7 = ——(1,0,0), e (0,1,0) and e3=(0,0,1),

g(z,t) ~ h(z,t)
the corresponding Cartan forms being a; = g(z,t)dz, as = h(z,t)dy,
a3 = dt.
Since
gl ! ]
da'1=——t'alf\0(3, da2=———ta2/\a3+—zal/\a2,
g h gh
and das = 0, the connexion matrix = {w;;}1<i,j<s is
hl !
0 = Q9 & aq
hg g
h! h!
Q=] = 0 it 4
hg @2 B &
! hl
_9% a; ——tap 0
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(2 is skew symmetric and da = —Q A a); thus, the curvature matrix

K =QAQ+dQ is the skew 3 x 3 matrix K = {Kj;;} with

n [ )

/hr hll hll h h
Klz:(_h___‘t.£+_£..g_£)al/\a2+(—zt—z—gt)(12/\a3,

gh  g*h = g%h gh  g*h
n
K3 = ~ Tt o) A ag ,
g
and
) hll h" Ihl
1123 =——}—23a2/\a3+ (ﬁ—%)al/\ag .

In other words, the curvature tensor R is given by the formula

(R(u,v)u,v) = A(ujvy — v1u2)2 + B(ujvz — u3v1)2
+ C (ugvs — u3v2)2
+ 2D (uyvz — u2vy )(uzvs — uzvy),

where the u;,v; denote the coordinates of the vectors u and v with
respect to the moving frame, and where

Ao (géhi hes h;g;) g9
gh ~ g*h  g3h /)’ g

M, M, Mgl
= tu D= —(Rat _ Da9t)
¢ h’ (gh gzh)

3

Since |u Av|? = Y icj(uivi — u;jv;)?, it is then clear that 4 has all
its sectional curvatures < —a? | @ > 0, if and only if the following four

inequalities hold for all (z,t) € R?

(1) Lz,
n
(2) % >a®,
gthy | hes  hag 2
Ztt - >
(3) ( gh  ¢*h  g3h ) =%

@ (G- = (o) (S5 i - e —)
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Note that this set of inequalities expresses that the quadratic forms

oX,Y,Z)=(A-a*)X*+(B-a?)Y?
+(C-0*)2Z*+2DXZ

are nonnegative (for all (z,¢) € R?). In the sequel, we shall say that a
metric v(g, k) is of class v(—a?), (a > 0), if the above inequalities (1)
to (4) hold throughout RZ.

We note also for later use that for g > 0 nondecreasing with respect
to ¢, (1) implies that

g(z,t) > g(z,s) cosh(a(t — s)) + a~! gi(z, s) sinh(a(t — s))

fort > s,z €R.

1.2. Assuming now that g and h define a y(—a?) metric (a > 0),
it is easy to describe S (M), the sphere at infinity of M (See [EO]

—

for definitions and basic facts concerning the compactification M =
M |J Soo(M) with the sphere at infinity, and for the basic relations of
these objects with the geodesics in M). Clearly, the curves 7, ,) :
t — (z,y,t) (z,y € R fixed) are the unit-speed geodesics emanating
from a point on Soo(M); this point shall be denoted cops. Denoting
also ((;,4) the end point (for ¢ — +o00) of 7y on Se(M), we have
Seo(M) = {(z,y: 2,y € R}U{cop}, the mapping (z,y) — ((. ) being
a homeomorphism from R? on Soo(M)\{coas}. It is also easily seen that
a basis {V,}n>1 of neighborhoods of coas can be obtained by setting
Vn =E\Wn and Wn = {(IL‘,y,t) €EM: lzl S n, ly' S n, t 2 —Tl},
(here Wo = Wa U {(eg) * |2 <7, [y] $7,)).

1.3. Finally, let us write the expression of the Laplace-Beltrami oper-
ator A induced by the metric 4(g, h) with respect to the coordinates
z,y,t; on using the standard formula (or direct computations), we have

A=

+

o* 1 62 1 02 g
4 gt . D
+ ( g h

ND K g
WA 1) ot (- %) 5

ot \hg? g3/ 8z
In order to obtain our examples, we shall try below to construct

metrics of class y(—a?) (a > 0) with g independent of z and such that
the z-drift term k', /(hg?) is “large” compared to the t-drift term g}/g+
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hy/h, and thus force the Brownian motion on M to move away from
each geodesic 7(; 4); in the next section, we study the ratio k) /(h}g?)
in relation with the curvature assumptions and the Choi property C},.

2. Filling by convex hulls.

In this section, we assume that g and h define a y(—a?) metric
(a > 0), and that g = ¢(t) is a function of ¢ (i.e. g is independent of
z). Of course, g is convex and increasing. Recall that M denotes the
resulting manifold.

We denote by M(6y,a,b) the set {(z,y,t); t > 6y, a<z <b, y€
R} for given reals 6, a,b with a < b; let N(6p, a,b) denotes the projec-
tion of M(6p,a,b) on the (z,t)-plane, and let F(6y,b) be the “vertical”
half plane F(6o,b) = {(b,y,t): t > 6o, y € R}.

Proposition 2.1. Let ty, a, b be three reals such that

i) h(z,t) is nondecreasing in = (for each fized t) on M(6y,a,b’) for
some b' > b (*) and

ii) 6(t) dt = o0, where
6o
- ha(z,1)
= —=z 0 . a<r<bl.
6(t) = inf { R (2.0 2 (1) a<z< b}

Then, the closed convez hull C of F(6y,b) in M(6y,a,b) (with re-
spect to v(g,h)) is M(6o,a,bd).

We shall first establish the following lemma.

Lemma 2.2. Let o : u — (x(u),y(u),t(u)) be a unit speed geodesic in
M with o(0) =mo=(z0,Y0,%0), and o'(0)=es =h(z0o,yo,%0)1(0,1,0).
The map 7 : u — (z(u),t(u)) i3 even, induces a global diffeomorphism
of 10,00) onto 7(]0,00)), and the curve 7([0,+00)) admits at 7(0) a
tangent directed by the vector V(zo,t0) = (h%(o,%0),9(t0)2R}(z0,10))-
Also, the tangent to 7[0,400) at 7(u) i3 (as a line) a continuous func-
tion of u,xo,yo,to0-

(*) The proposition is in fact also valid if we allow b'=b.



CONVEXITY AT INFINITY AND BROWNIAN MOTION 197

PROOF. Since the metric v is invariant under the map (z,y,t) —
(z,—y,t), the points o(u) and o(—u) are symmetric with respect to the
plane y = yo so that 7(u) = 7(—u). Writing the Euler equations for
the functional

F =1 +g(t) " + h(z,t) 7,

we have the following three differential equations

t"=gg'a"” +hhiy”,
gzx”+2gg':c’t'=hh’,y'2,
h2 I=C

where C'is a positive constant. Let py = (¢,%0). Since t'(0) = z'(0) =
0 and y'(0) = (h(po))~?, it follows that ¢”"(0) = h(po)~! A}(po) and
z"(0) = g(to)"2h(po)~! hL(po); also hy(zo,t0) > 0 (¢t — h(zo,t) is
strictly convex and nondecreasing). Thus the third (and main) assertion
of the lemma follows from the Taylor formula.

The first Euler equation above shows that ¢ is a convex function
of u, so that t(u) is strictly increasing on [0,00) and t'(u) > 0 for
u > 0. Hence, 7 is regular for v > 0 and injective on [0,00[. If we
let W(u) = (2'(u)/u,t'(u)/u) = fol(z”(ue),t"(ue)) dé for u > 0 and
W(0) = g(to)~2 h(po)~! V(z0,%0), then W(u) supports the tangent to
7 at 7(u) and W (u) depends continuously on u € [0, 00|, zo, Yo, to by
the standard continuity theorems for solutions of differential equations.

REMARK. If mg € M(6p,a,b'), zo < ¥, then z(u) is increasing on
any interval J = [0, T[ such that o(J) C M(6y,a,b') (the second Euler
equation above shows that z'(u) > 0 when 0 < u < T').

PROOF OF PROPOSITION 2.1. C is invariant under translation in the
y-variable so that C' = {(z,y,t): (z,t) € ®}, ® being a closed subset
of N(6o,a,b).

We claim that the vector field —V (V is defined in the previous
lemma) is an inward vector field for ®, which means that

. -1 _
%gl&t dm—tV(m),®)=0
t—0

for each m € ®.

To see this, fix mg = (z9,y0,%0) € C and consider the (unit speed
and oriented) geodesic arc o, connecting p(e) = (zg,yo—¢,0) top'(e) =



198 A. ANCONA

(zo,y0 + €,%0) in M, and the projection 7. of o, on the (z,t)-plane.
Observe that the middle point g(€) of o, is in the plane y = yp, with
a tangent parallel to the y-axis; choose the parametrization of o, such
that o.(0) = ¢(¢), and let n. > 0 be the value of u for which 7.(u) =
Te(—u) = (z0,%0). By the remark after Lemma 2.2, it is clear that for
€ > 0 and small, one has 0. C M(6y,a,b) so that . C C and 7. C ¥;
also 7, is smooth at m; = (z¢,%¢) and admits a tangent there, directed
by —7¢(ne)-

It follows from the lemma above that when ¢ — 0, the limit position
of this tangent is the half-line emanating from m; and directed by
—V(m;). This proves the claim, since a limit of ®-inward vectors at
fixed m; € ® is again a ®-inward vector at m;.

V being smooth (Lipschitz would be enough) and inward for @, it
follows from a well-known theorem ([Bre]) that every curve v : [0, T[—
N(6q,a,b) with 4'(s) = =V (y(s)) for s € [0, T) and such that v(0) € @,
has all its image in ®. Thus, to finish the proof it suffices now to observe
that each maximal V-integral curve § : J — N(6p,a,b) in N(6y,a,b)
hits the line z = b. In fact, one has (letting ¢(u) to denote the t-
component of B(u))

b—a 2/ﬂdm2/J6(t(u))dt(u)=/ﬂ&(t)dt

(both coordinates being increasing functions on J), so that our assump-
tion on the function é(¢) implies that we must have sup{t(u) : v € J } <
+o00 and hence a hit with the line z = b at the end point of 3.

We shall see later that the assumptions of Proposition 2.1 may
really occur. In this connection, it is interesting to note the following
effect of the negative curvature for our class of metrics.

Proposition 2.3. For every choice of functions g(t) and h(z,t) defin-
ing a y(—a?) metric (o > 0) on M, and for every a > 0, we have
lim 6,(t) =0, where
t—+4o0
hl(z,t)
61(t) = su —E 2 |: —a<z<a}.
0= {7 ! Tese <o)

PROOF. The proof is based on the consideration of the level curves of h
in R2. Let = = ¢(t), t € I, be a maximal solution of hl(p(t),t)¢'(t) +
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hi(p(t),t) = 0 with hl(p(t),t) # 0 on I, say hl(p(t),t) < 0on I (i.e.
¢ is an increasing function). One immediately checks that

1
¢ = gy (R + 2h '+ b, o)
z
on I. Because (g, h) is of class 4(0) (see the end of Section 1.1), we
have (for all (z,t) € R?)

", 2 2 (b —2n hig'\ 2
hi u +28u(;)uv+(g h”-’rT)v >0.

for all u,v € R.
On using u = 1 and v = g ¢’ in this inequality, we derive from the
expression of ¢’

!

30"2_2%89’_9,9(80,)3 on I,

where h has been eliminated. To “solve” this differential inequality, we
first solve the differential equation

!
(E) \Illlz_z%_\pl_glg(\yl)?"
If we let U'(t) = A\(¢) g(t)~2, with A > 0, (E) is equivalent to
_ 93
N = —g—3/\ ,
so that 1 .
Vi 72 +C,

where C is some positive constant.
Whence the maximal solutions of (E)

* 1
w=+ | 2 VCao =1

t € (to,+00), with C = 1/g(t0)%.

For each t; € I, there exists a unique maximal E solution ¥ as
above with ¥(t;) = ¢(t1) = 21 and ¥'(¢;) = ¢'(t1), the corresponding
to and C being given by

__ 1 1
Cg(th)? T @'(t)?g(tr)?

(see Figure 1).

ds +C',

C

and Cg(t)? =1
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(zotto)

Figure 1

By the standard comparison theorem for first order differential equa-
tions, we see that when t9g <t <t and t € I,

©'(t) S T'(2).

In particular, (to,t1] C I and for all ¢ € [to, 1], ¥(¢) < ¢(t) < ¥(¢1).
We now make two observations. Firstly, we have the following
lower bound of

R A )
He(t1) = ¢ (1) 9(t)” = =5rm S

in terms of ¢(; from the above expression of C and C g(tp)% = 1, we get

1 1 p?
(1) 9(t0)2='c'7= i 1 = L — <.

O OV U R R v

Also, since

* g(to) ds

¢ V9(s)2 —g(t)? 9(s)’

T(00) — U(t) =
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and

g(s8) > g(to) cosh(a(s —to)) + a~* ¢'(to) sinh(a(s — ty))
2 g(to) cosh(a(s —to)),
for s > ty, we have, letting t; = max{tp + 1,0}, zp = ¢(tp) (and
assuming ty < ty),
Ci
g(to
for some absolute constant C); depending only on a.

Suppose now that there is a sequence of points (z;,t;) with ¢; —
00, |zj| < ¢ for some fixed ¢ > 0, and such that

Ri(z;,t5)
#i = 90 )]

(2) 21—z < ¥(00) — B(t) <

is bounded. Then, for the coresponding (E) curves through (z;,t;)
and with the above notations we have (we omit the index 7): i) ¢o is
bounded from above by (1), so that ¢, is bounded, and ii) zj also stays
bounded because of (2). Since, the level curve of h through (z;,t;)
must hit {(z,t) : t = tg,|z — 25| < |¥(c0) — ¥(ty)|} (¥ depends on
), it is seen that this line meets a compact subset of R? (independent
of 7), so that h(zj,t;) stays bounded. But this is in contradiction with
the exponential growth of h with respect to t in each strip {|z| < A}
(A > 0), and Proposition 2.3 is proved.

3. Two extension properties for ~-metrics.

In this section and the next, we let g(t) = e'. If a is a (strictly)
positive number, and if h(z,t) is a smooth non-negative function on
some region A of R?, we shall say that h is of class H(a) on A if the
following three inequalities hold on A:

kY, —ah >0,
n

h
h;+ gr; ‘ahZO»

and L2 o
0,21(;)‘ < (", — ah) (R, + ~5 —ah),
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and if h(z,t) is nondecreasing with respect to t. If A = R?, & <1 and
h > 0, this just means that g and k define a v(—a) metric on R3.

We shall need the following two elementary observations.

3.1. If h; and h; are of type H(a) on A C R? and if A\, u € Ry, then
h = Ahy + phz is of type H(a) on A. Observe that the H(a) condition
is equivalent to the non-negativity of a quadratic form on R? whose
coefficients depends linearly on h.

3.2. Let h be of type H(a) on a region A such that inf{t : (z,t) €
A} > —oo and let o' < a. If h admits a > 0 lower bound on A and
if h; is any smooth bounded real function on 4 with bounded first and
second order derivatives on A, then h; + Ch is of type H(a') on A
provided that the constant C' is chosen large enough.

In the following proposition, we denote by ap an absolute positive
constant whose value is fixed before the statement of Lemma 3.4.

Proposition 3.3. Let h(z,t) be a smooth (strictly) positive function
of type H(a) (for some a € (0,1)) on the region w(e) = {(z,t): to <
t<ti+elU{(z,t): |z|] <zo+e€, t1 <t < ty+e}, wheret; =
to+1, 2>t +2, € >0, 29 >ape ", and assume that h(z,t) = €
forto <t <t +e.

Then, we may find a smooth positive function hy on A = {(z,t):
to <t < oo} such that

i) by s of type H(a) on A,
i) hi(z,t) =€’ if t <ty, or if t 1s large enough, and

ii1) hy=h for |z| < zo—age™ and tp <t < ts.

The proof will show that we may also require hy(z,t) to be for |z|
large a function of ¢ only.

Before proving this proposition, we fix some notations. Let § =
fo * ¢ be a standard regularization of fo(z) = inf{z,1}, with ¢ > 0
smooth, even, and such that supp (¢) = [-1/2,1/2]; observe that 8 is
concave, §(z) = z for z < 1/2 and §(z) = 1 if and only if z > 3/2.
We then choose and fix a positive number a, sufficiently large so that
—0"6+6"% < a?, and let ®(z) = —log(6(z/a)) for z > 0. Clearly & is >
0, convex non-increasing and smooth on (0,+0o0), supp (®) = (0,3a/2]



CONVEXITY AT INFINITY AND BROWNIAN MOTION 203

and ®(z) = —log(z/a) on (0,a/2). We let ap = 3a/2 and observe the
following.

Lemma 3.4. Let f : R —» R be a smooth conver function with
supp () = [0,00), and let h(z,t) = g(t)f(t — ®(a)) (= 0 i & < 0).
Then h is smooth on R%, nondecreasing int, {h >0} = {(z,t): = >
0, t > ®(x)} and h(z,t) = g(t) f(t) for z > ag. Moreover h s of type
H(1) on R2.

PROOF. We have (with obvious notations and for z > 0)

ho2
AR
Wy~ b=t (2 + 1),
gl hll 2
h,t_ + % —h= et (fle—2t(62t _ @II) +f" P’ 6_2t).
g g
Clearly, h is of type H(1) if ®"(z) < 2! for t > ¥(z), 0 < = < aqo,
or equivalently if ®"(z) < exp(2®(z)) for 0 < z < ap. But with our
previous choices we have

®"(z)=a"? 9(-2)_2 (— 0"(3) 0(%) + 9'(%)2) and €2 =072,

a

so that the lemma follows from the choice of a.
REMARKS.

3.5. If to € R, z9 € R, and if we let k(z,t) = h(e**(z — z0),t — to),
h being the function in the previous lemma, we obtain a function k
of type H(1) on R? with {k > 0} = {(z,t) : t > to, T > zo, t >
to + ®(e'o(z — zp))}-

3.6. Let ¥ be the function : ¥(z) = ®(z) for 0 < z < a; and ¥(z) =
®(2a; —z) for a; < = < 2a;, where a; > 3a¢/2. Then, with f as above,
the function hy(z,t) = g(t)f(t — ¥(z)) (= 0if z ¢ (0,2a,)) is of type
H(1) and {h; >0} = {(z,t): 0 <z <2a, t>¥(z)}.

PROOF OF PROPOSITION 3.3. We break the construction into three
steps.
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a) We first construct h; on the region g < t < t3. After multiplying
h by a standard cut off function, we may assume that h is a smooth
> 0 function on R? whose derivatives of order < 2 are bounded, whose
support is contained in w'(e) = w(e) U {(z,t) : t < to}, and which is of
type H(a) and > 0 on w(2¢/3). Moreover h = €' if t < t; +¢/2.

Using the Remark 3.5 above, we construct a smooth and non-
negative function ko(z,t) of type H(1) on R? with {ko >0} = {(z,¢):
T >zo—age ", t—t; > P(e'(z —z9)+ao)}. f welet by =h+ Cko
where C is a large positive constant, then, by 3.2, k; is of type H(a)
on the set B = {(z,t): = >z9+¢/2, t > t1 +¢/2}.

On the other hand, for all positive value of C, h 4+ Ckq is of type
H(«) on w(e/2). Thus, we obtain a function k; on R? of type H(a) on
w(e/2) U B.

On applying the similar procedure to k; for the region B' = {z <
—z9 —€/2, t > t; + €/2}, we obtain a smooth positive function k; on
R? which is of type H(a) on the region {t; < t < t; + ¢/2} and which
agrees with h for |z| < 2o —age™,ty < t < tp and for t; < t < ;.
Note that for |z| > z¢ + ¢ and ¢ > #g, k2(z,t) is a function of ¢ only,
which is increasing and such that 82ks(t,z) > ko(t,z) .

b) On multiplying ks by a cut-off function we may assume that
k2 has its support contained in {t < t; +€/2}, is (strictly) positive of
type H(a) on {to < t < t; + ¢/4}, and that k; is for |z| > zo + € a
function of ¢ only. Let k(t) be a smooth positive function on R with
support [t2,00) and such that " > k, k' > k ; we choose k in the form
k(t) = €' ¥(t) with ¥ convex, smooth, and supp (¥) = [tz,00). Let
ks(t,z) = ka(t,z) + Ck(t). As before, if C is a large positive constant,
then k3 is of type H(a) on {ty < t < +oo} . Also, for t > t; + ¢,
k3 = Ce'U(t) is of type H(1) and is a function of ¢ only.

¢) To finish the proof, we observe that we can easily modify k3 for
t > t4 = to+2¢ into anew function h; of type H(a) on {t > t3} insucha
way that hy(t) = e! for large t: if we let § = /o, u(t) = Ce1=P1Y(t), u
is convex increasing on [th, 00) , and since v(t) = e~ is also convex
and such that limy_,o,t7'v(t) = 400, there exists a smooth convex
function w(t) on [t},00) such that w(t) = u(t) for t) < ¢t < ¢, + 1,
and w(t) = e 7P for ¢ large enough. So that hi(t) = ef'w(t) agrees
with k3 on [t},t5 + 1], with e’ for large ¢, and verifies 82h; > %h, for
t > ty; thus, hy is of type H(a). (We have used the following simple
fact: if v and v are two smooth convex functions on [0,c0) and if
lim;—, o t71v(¢) = 400, there is a smooth convex function ¢ on [0, +00]
such that ¢(t) = u(t) if 0 <t <1 and ¢(t) = v(t) for large t).
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We shall also use the following two variants of Proposition 3.3:

3.7. Replace in the statement w(e) by the region w'(e) = {(z,t) : to <
t<ti+eU{(z,t): z<zo+e, t; <t<ty+e}, wherezo €R,t; =
to+1, t2 > t; +2,and € > 0. If h and its derivatives of order < 2
are bounded (for large |z|), then the conclusions of Proposition 3.3 still
hold, iii) being replaced by

iii)) hy =hforz <zg—age " and tg <t < ts.

Moreover, if the given function h(t,z) is increasing with respect to z,
hi may also be chosen increasing with respect to z.

3.8. One may more generally replace the region w(e) by a region w'(e) =
{(z,t): to<t<ti+e}U{(z,t): ti <t<ty+e¢, z € B} where Bis
the union of a finite number of intervals. Then, assuming that h and its
derivatives of order < 2 are bounded, a simple adaptation of the proof
above (using 3.4 and 3.6) shows that the conclusions of Proposition 3.3
hold, iii) being replaced by

iii)’ hy = h for d(z, B¢) > 2ape™ ", ty <t < t,.

If B is the union of two intervals I =| — oo, —a] and J = —I where
a > 0, and if h is even, increasing with respect to ¢ € I , then we
may choose a function hj, even with respect to z, and decreasing with
respect to z € R

We shall need another “pasting” lemma which says that given ¢¢ €
R, @ € (0,1) and a function of type H(1) in the form h(z,t) = ' b(z),
z € J, where b is smooth convex and > 1 on the open interval J (with
IV lcc < +00), we may construct on the region {(z,t) : =z € J} a
function h; of type H(a) equal to e' when t < ¢ and equal to h for ¢
large enough. To state this lemma, we fix a smooth non-negative and
non-increasing function ¢ on R such that ¢(t) = 0 for t > 1 — 1/16,
@(t) =1 for t < 3/4; we also assume as we may that ¢(t) is convex for

t>7/8. Let U(t) = (1 —t).

Lemma 3.9. Let b be a smooth conver function on the open interval
J C R such that b > 1 and ||b'||cc < +00, and let to, €, a be real
numbers with ¢ > 0, 0 < a < 1. If h(t,z) = e'(p(e(t — to)) +
U(e(t — 1)) b(z)), for t € R, = € J, and h(t,z) = €' for all z and
t < to + 1/(16¢), then for ¢ small enough (depending only on a and
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e ||b']|c0), I is of type H(a) on the region {(z,t): z € J} U {(z,t):
t <to+1/(16¢)}.

PRroOOF. We have

h;lt _ (P, + b\P/ 9 LP” + b‘I’”
T—a—l—a+2s e +e P
n
>1-a-2¢](¢") o —*[(£)7
%2 o
and
g B, B, O UL 1 T
P T e T R

21-a—¢el(¢) |l

so that for € small enough both quantities are greater than (1 — a)/2.

Observe next that if ¢t > tg+e71/4, orif ¢t < tg+e71/16, the mixed
curvature term h~19;(h’ /g) vanishes. For to+¢71/16 <t < to+e71/4,
and with obvious notations, we have

v’y

h e

o) | < e | ¥

and the lemma follows.

4. Proof of Corollary C.

We first exhibit a simple way of producing on a region of the type
U(ti,tz;J) = {(z,y,t) : t1 <t <ty, ¢ € J} ay(—1) metric such that
the integral | :12 8k (t)dt is very large, where we have let

hz(z,t) -
—g(t)zh;(:c,t) 1 x € I\.}.

Here, J C R denotes an interval with a finite upper bound, K is a
compact subinterval, and g will simply be g(t) = €' as in the previous
section, so that h should be positive and of type H(1) on U(ty,t2;J).

§x(t) = inf {
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We fix a smooth positive and convex function 8 on J such that
B'(z) >0, B(z) =21 and

(4.1) 2ﬂ&f@+2m))Sﬂwm%n,

for all ¢ € J. For example, we may take 3(z) = a + €* with a > 1
sufficiently large depending on the upper bound of J.

Let ®(t) be any smooth increasing function of ¢ such that ®" +
29’ > 0 and ®(t) > 1 on (t1,t3). We then define

(4.2) h(z,t) = e* exp(®(t) B(z)), for zeJ,ti<t<t,y,
and may easily check the following lemma.

Lemma 4.1. The functions g and h define a y(—1) metric on the set
U(tl,tz; J)

PRrOOF. Clearly, h is positive, increasing with respect to the ¢ variable,

ACRIN

o~ 1= 2@ () 8(2) + A=) @' () + A=) ()7
= B(2) ("(1) + 22'(1)) + A=)’ &'()?,

hi(e,t) | _hz.(z,)

Wat) T RO R ‘I"(t)ﬂ(z)

(t)2 (Q(t) [3(:1:) + @(t)B (:1:))

and
]

®'(1)? B'(z)? (14 @(t) B(x)) .

h
lh ) (t)2
Thus, it suffices to check that
@'(t)" B'(z)* (1+8(t) B(=))* < B(z)* @'(1)* (2(1)" B'(z)* + B(t) B"(2)) ,
which is the same as

(1)° B'(2)® (1+28(t) B(z)) < B(t) ®'(t) B(z)® B" (<)
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or

26'(2)*(1+ 50305) < =) 8"(@).
which follows from (4.1) since ®(t) > 1.

Lemma 4.2. Let A be a positive number and K C J be a compact
interval. For each given ty, we may choose t > t; + 2 and a function

® as above such that
t2
i) Or(t)dt > A, and

t,

11) @(t)=1f07‘t1 <t<t1+1/2

Here

h’I(z,t) ) _
e Tk

PROOF. The inequality " + 2@’ > 0 means that ®'(¢) e?* is a nonde-
creasing function; thus, choosing

8k (t) = inf {

t
o(t)=1 +/ @(s)e ?* ds
t
with ¢ smooth, increasing on (t;,+00) and ¢(t) = 0 on (¢1,%; + 1/2)
guarantee property ii) above and the required differential inequality for

®. Also, ®(t) > 1.
On the other hand, we have, fort > t;, z € K,

Rt ¥0F@) a8
g(t)? hi(z,1) 1+ @'(t)B(x) ~ 1+2'(t)°
where ¢ is some positive constant (depending on 3 only). Now, assum-

ing that ¢(t) is a (large) constant g on the interval (¢, + 3/4,T), we
have the following lower bound (we let ¢} = t;+1 and assume T > t]+1)

T T —2t]
Sk (t) dt > E / 2t 1‘”’—6_2;-— dt.
t) t) + e "o

So that, if moreover (g is so large that ¢ge™2T > 1,

T
/ Sk (t)dt > §6_2t’1 (T—1t).
tl

!
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Finally, it is seen that if we choose t; = T so large that
% e (T —1))> A

and then construct ¢ such that ¢(t) = ¢ on (¢ + 3/4,T), with ¢
larger than €27, we obtain a number ¢, and a function ® with all the
required properties.

It is now easy to construct a function » on R? which produces an
example establishing Corollary C. Using propositions 3.3 (see Remark
3.7), 3.9 and the above lemmas, one constructs by induction a smooth
positive function A on R? and an increasing sequence {t;};j>o of reals
such that (recall that g(t) = e* for all t)

D) 9 >0, tj4 —t; > 1,

i) h is increasing with respect to each variable,
iii) h(z,t) =g(t) for t <ty or ty43 <t <tsg4r1),
iv) g and h define a y(—1/4) metric on R*, and

taj 42
v) / 6;(t)dt > 1, where
t

45 41

) h!(z,t) )
(1) = —_—x 7 . < L Lt <ty .
6J(t) inf {g(t)2h;(.’t,t) |$l = .7} 3 t4]+l <t< t4]+2

Now, for M = R? equipped with the corresponding v metric,
Proposition 2.1 shows that every neighborhood V' of the point con €
Soo(M) in the compactification M (see Section 1.3) is such that the
closed convex hull of VN M in M is M itself; on the other hand, the

sectional curvatures of M are all < —1/4.

5. The Brownian motion’s behavior.

A. Let g(t) = e' and h(z,t) define a y(—1/4) metric on R® (i.e. his
smooth, positive and of type H(1/4) on R?) and, as before, let M to
denote the corresponding Riemannian manifold. We assume once for
all that on each region {(z,t): t < a}, a € R, the partial derivatives
of h of order < 2 are bounded and that h(z,t) = €' for t < 0; thus,
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the sectional curvatures of v(4 1) are bounded on each region {t < a}.
Clearly, this is verified in the above construction in Section 4.

Let {Q, F, {Pz}zem, {Bs}szo} be the Brownian motion on M
which we see as a continuous Markov process on [0, +00] with value in
the Alexandroff compactification M U {¢(M)} of M, c¢(M) being the
cemetery point (this is possible because M is transient). Denote by S
the lifetime of B, (B, = ¢(M) if and only if s > §), by X(s), Y(s)
and T(s) the components in R® of B, for s < S. We start with the
following observations.

Lemma 5.1. We have

1) Almost surely, lirrg To(w) = 400,
s—
2) Almost surely, lixrg Y,(w) ezists and 3 finite,

3) If h i3 nondecreasing with respect to x, then lirré Xs(w) exists
s

in (—o0,+0o] almost surely.

PrOOF. The lemma follows from several application of the follow-
ing basic (and standard) fact: if u is a continuous > 0 supersolu-
tion on M (with respect to the Laplace-Beltrami operator Ajys), then
{u(Bs)}s>0 (with the usual convention that u(c(M)) = 0) is a non-
negative right-continuous supermartingale with respect to each proba-
bility measure P; , so that almost surely, s — u(B,) admits a left-hand
limit at every so € (0,+oo] ([DM, p.75 and p.79]). In particular, as
s — 5§ —0, u(B,) has a finite limit almost surely. This being true
for any Riemannian manifold, it is also seen that if v is a positive
continuous Ajps-superharmonic function on a region 2 C M such that
sup{s : B, € M\ 2} < S as. (Qis absorbing), then lim,_,s v(Bs)
exists and is finite a.s. Recall also from Section 1.3 that

2 1 9? 1 92

N
St oy )

+ (1 + 1) 5t e B

It is clear that u(z,y,t) = e~! is Ap-superharmonic on M; it follows,
by the above remark, that T(s) admits a limit in (—oo,+o0] a.s. On
the other hand, since the sectional curvatures of M are bounded in each
region {t < a} the Brownian motion is a.s. bounded before leaving any
such region, and the first assertion follows.
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We then prove the third assertion in the lemma. From the form of
Ay, and because h is nondecreasing in z, we see that u(z,t) is super-
harmonic on M (or a region of M) if u(z,t) is smooth nonincreasing in
z and in ¢ and is superharmonic with respect to to

lig 1 9 9

L=-é;§'+;(t?5;5+-§.

L is the Laplace-Beltrami operator on N, the (z,t)-plane equipped with
the hyperbolic metric dt? + et dz?. Thus, for each real zo, if we let

1, if r <z,

u(z,t) = 2 ‘ )
1 — — Arctg((z — zo)e"), otherwise
T

(u is the harmonic measure in N of the region {r < z}), it is easily
seen that u as a function on M is Aps-superharmonic. Since u(B;)
converges a.s. when s — S, and z¢ is chosen in a dense sequence
of reals, and since lim,_,s T(s) = +o0, it is clear that X, converge
a.s. in [—oo0,+00] when s — S. The value —oo is excluded by the
supermartingale inequality

u(z) > Eg( lign 0u(Bs)) > Py( lir%Xs < zg).

The second claim of the lemma may be proved similarly. Observe
that h(z,t) > e*/? when t > 0, since hY, > h/4, and h(z,t) = et for
t <0, so that h(z,t) > cosh(t/2) + 2sinh(¢/2) for ¢ > 0; thus, each
positive function u(y,t) which is nonincreasing in ¢, convex in y and
superharmonic on the (y, t)-plane with respect to

92 o2 0
L=—+et—+—
T 2 T a
is also A p-superharmonic on the absorbing region @ = {¢ > 0} C M.
It follows easily that for each real yq, the function

1, if y <yo (resp. y2yo),
u(z,y,t)= 2 1 ,
1-— —Arctg(§ ly —yo|e?), otherwise,
s
is superharmonic on 2. The claim follows then as above. (One could

also use the convexity in M of the sets C = {y < yo} and the corre-
sponding superharmonic functions given by Proposition 6.1).
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Lemma 5.2. Let t;, B and J be fized as in Section 4, and let K =
[a,b] C J; let n be some positive number and let T to denote the first
exit time of By out of U = {(z,y,t): a<z <b, tf =t; +2<t < t2}.
We may choose, in the statement of Lemma 4.2, ® and t; > t; + 10
such that, if h(z,t) = €' exp(®(t) B(z)) on U, then Pp(T, =tz or T, =
t{) <n for all m = (z,y,t) such thata <z < b and t = (t +t2)/2.

PRroOF. It will suffice to use once again a supermartingale argument.
We let o(m) = o(z,y,t) = exp(et — z) where € will be chosen small
(depending only on ¢;, 8 and K) so that o will be superharmonic on
U if the constant ¢ of the construction in Lemma 4.2 is taken large
enough (depending on t;). In fact, we have in U (with the notations of
4.2)

o 'AM(o) =+ (24 B(z) poe )+ 7 — 72 B(t) B'(2)
and

o ' AM(0) <+ 2etcieppe M 4 e T —cpe B ppe
where the c¢; are positive and depend only on # and K. We fix e > 0

and small enough so that ¢; € — c; e72%1 /2 < 0, and then may choose t,
and ¢q (in that order) so large that

1 n 1 n
exp(b — a) exp(*g e(ty — 7)) < R exp(—§ (t2 —17)) < 3

and Ap(s) < 0 on U. Then, from the supermatingale inequality
E..(0(B;)) < o(m), we have

1
P (Tr = t2) < exp(b—a) exp(——ie(tz —t) < g ,

if m = (z,y,t), t = (¢t{ +12)/2, and a < z < b. On the other hand, by
the superharmonicity of e™*, we also have

P(te = #) < exp(~5 (t2 = ) <

N3

We also need the following obvious lemma.
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Lemma 5.3. Assume that there is a sequence {t;} with lim;_, t; =
+o00 and such that h(t) = e' when t; <t <t;+1. Then S = +o0

almost surely.

PROOF. Let t; =t; + 1/2 and let 7; to denote the first exit time from
{tj <t <t;j+1}. Then, for m = (z,y,t;) € M, Py(7; 2 1) = c where
¢ is positive and independent of j,z, and y. The result then follows
from the Borel-Cantelli Lemma (we may assume ¢; + 1 < ¢j41).

With the above three lemmas, we may now derive Theorem A.

Proposition 5.4. The construction performed in Section 4 can be
achieved so that

i) S=+o00 a.s., and

i) lim X,(w)= 400 a.s.

PROOF. It suffices to achieve the construction above (with a function
h nondecreasing in z) in such a way that for a sequence of “boxes”
Ui = {(z,y,t) + |z| < J, taj41 < t < tgj42} ({t;} being a rapidly
increasing sequence of reals, tp > 0) we have Py, (| X, |=j)>1-277
when m = (z,y,t) with |z| < j, t = (t4j41 + t4j42)/2, 7; denoting the
exit time from Uj, and h(t) = €' for t4j43 < t < t4j4q. The t; may
be chosen by induction, using Lemma 5.2 , Proposition 3.3 (and 3.7)
above. By Lemma 5.1, the Markov property and the first Borel-Cantelli
Lemma, lim,_,s X, = +00 a.s. We may choose the gaps t4j+4 — t4jt3
as large as we wish, whence i) by Lemma 5.3.

B. Let us now indicate the changes that should be made in order to
construct an example proving Theorem B. We first notice that we may
adapt the above construction in such a way that the Brownian motion
converges a.s. to the end point (for s — +00) on S (M) of the geodesic
s — (0,0, s) ; however, the metric cannot be chosen among vy metrics.

First step. We construct a Riemannian manifold M in the following
way: start with a y(—1/4) metric related to ¢g(t) = €' and a function
h(z,t) such that

i) hisincreasing with z for £ < 0 and decreasing in z when z > 0,
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ii) there is an increasing sequence {¢;};>o of positive numbers,
with say tj1; > t; 4+ 10, such that

ds? = dt? + e?' dz? + *' dy?

(the standard hyperbolic metric) for ¢t < tg or tgj43 —1 <t < #4544 +1.

M is R® equipped with the metric d obtained from the metric
v(g, h) by rotating the regions {ts; < t < tgj44} by 7/2 around the
t—axis, while the others regions {t < to}, {tsjys < t < tgj;s} are
kept fixed. It is clear that M is a (smooth) Riemannian manifold with
sectional curvatures < —1/4 and for which the description of the sphere
at infinity in Paragraph 1.2 is still valid. Also, the Brownian motion
{Bs}s>0 on M satisfies the following properties (X,, Y5, T, denote the
coordinates of By, S is the lifetime of B,).

Lemma 5.5. Almost surely, lim,_,sTy(w) = +oo and both limits
lim, ,sY,(w) , lim,_,s X,(w) ezist and are finite.

PROOF. The first point follows of course exactly as in Lemma 5.1. To
prove the second claim, we first note that in IV, the (z,t) plane equipped
with the hyperbolic metric ds? = dt? + e*! dz?, the harmonic measure
of |z| = 7/(2a) in the region |z| < 7/(2a) is explicitly given by

2 cos(ax)
o(2,) =1 - = Arctg ()
va(2,1) x 8 sinh(ae™?)
Let uq(z,t) = 1 when |z| > 7/(2a). u, is convex with respect to to z
on [—7/(2a),7/(2a)], and is decreasing with respect to to t. It follows
in particular that the function f,(z,t) = u(x/2,t/2) is superharmonic
with respect to to

L—_af__i_ 't_ai+£
T2 a2 Tt

Recall that o 52 5
Ay =— +e 2 — 4 — .
NE T e T a
From the construction of the metric of M and similar observations
as in the proof of Lemma 5.1 (using in particular the monotonicity

properties of h and u, with respect to to z), it is then easily checked that
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the functions (z,y,t) — f.(z,t) are superharmonic on the region {t >

0} of M, and similarly for (z,y,t) — f.(y,t) . The second assertion of
the lemma follows from this and the supermartingale argument.

Now, by Lemma 5.2 and the extension lemmas of Section 3, for each
given t4; we may choose #4411, t4j42, t4j4+3 and the function h(z,t) on
{tsj <t < tsj43} in such a way that

ll) h=6t if t4JStSt4]+1,OI'1f t4j+3—1stst4j+3,
b) h(z,t) is an even function of z which is decreasing on Ry ,

c)on Uj = {(t,z): tsj41 <t <tyjy2, ¢ < —2ape ™} hisasin
Lemma 4.2 (with J = (—oo0, —aoe“ﬁ]),

d) if we start B, (the Brownian motion on (M,~(g,h))) from
(to,T0,Y0) , ty = (taj41+taj+2)/2, —j < xo < —2a9e™ "4, the probabil-
ity tohit {z = —j} or {z = —ag €74 } before {t = t4;41} or {t = t4j42}
is larger than 1 — 277 (ao was defined in Section 3).

Thus, we may construct h with the above properties. By Lemma
5.5, it follows that, for the Brownian motion B, on the corresponding
Riemannian manifold M, lim,_.s X, = lim,_.sY, = 0 a.s. Since we
may again choose the gaps t4;14 —t4;43 very large, we may also realise
S = +o0 as.

Second step. We now consider M = {(z,y,t) : z,y,t € R} equipped
with a metric for which there is a sequence of regions V; = {p; <t <
pj+1} (7 > 1) with {p;} rapidly increasing,

ds? = dt? + e?'dz? + €2 dy® on Vy;j ,

the metric on V5,4, being obtained by some translation z +— z+a;, y —
y + b; from a metric of the type considered in the first step. Again,
M has sectional curvatures < —1/4 and the description of Soo(M) in
Paragraph 1.2 holds. Choose and fix a dense sequence (a;,b;) in R?. By
the first step, it is clear (and easy to prove) that one may successively
choose the strips and the metric on these so that the Brownian motion
{B,} on M starting from mq = (0,0, 0) hits the set {|z;—aj|+|y; —b;| <
4e™ Pt = pj;1} with a probability > 1 — 277, it is also clear that the
lifetime of B, is +00 a.s. The desired construction is then obtained and
Theorem B is proved.
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C. FINAL REMARKS.

1) We first sketch a more accurate variant of the construction. Let
{a;};j>o0 be a sequence of real numbers and let M to denote the manifold
M = {(z,y,t) : z,y,t € R} equipped with a metric of the following
type, for some rapidly increasing sequence {6;};>o of positive numbers

ds? = dt? + e? dz? + €' dy?,
when t < 6,
ds? = dt* + e*' dz? + hyj(z — aa;,t)? dy?,
when 63; <t < 6541, and
ds? = dt? + hoj+1(y — a2j+1,t)2 dz? + e*' dy?,

when 6341 <t < 63;42. Here hj(z,t) is a smooth positive and even
function of type H(1/4) on R? such that hj(z,t) = ¢! when t < 8; +¢;
ort > 0;41—2;, ¢ being (much) smaller than 8;,; —68;. We also require
that D?h; is bounded on {t < 8j4+1}.

Then, M is complete, its sectional curvatures are < —1/4, and
again the Brownian motion B, = (X,,Y,,T,) on M is such that S =
+o00 as., limgoo Ty = oo a.s. (S being the lifetime of Brownian
motion). Moreover, for each given sequence {¢;};>o of positive re-
als, we may (using a variation of the methods above) choose by in-
duction the (¢;,6;41,h;) so that for each m = (z,y,0; + ¢;), with
lz] + |y < 6171, and if 7; denotes the first hitting time of B, with
{t=6;}or {t =041 + 211}, we have P, {Tr, = 0;} <¢;,

Pm{ |X7'2j - a2j| + sup (d(st [Xo,azj]) + |Y8 - YOl) > 5]'} < 2—-]',

8 T2j

Pm{|er,-+1 — azj41|
+ sup (d(Ys,[Yo,azj41]) +1Xs — Xo|) > €5} <277,

3<T25 41

and also

P {| X7 |+ [Yer| 2 €541} <277,

where mo = (0,0,0) and 7} is the first hitting time with {t = 6;4; +
£;11}. Choosing the ¢; sufficiently small, it is then seen that the set of
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cluster values (for s — +00) of b, = (X,,Y;) is a.s. equal to the set
of cluster values Cr of the polygonal ray I' = UJ-ZI[Aj,AJ-_H], where
Azj = ((12]',(12]‘_1), A2j+1 = (azj,azj.H). Since any continuum in R2
may be realized as a set Cr, this explains the remark after the statement
of Theorem B.

2) Fix an integer m > 1, let M be as in Section 5.A and let
M = {(z,y,2z1,-..,2m,t): z,y,t, z; € R} with metric

ds® = dt* + g(t)* dz® + h(z,t)? dy® + €* Z'd‘z‘;‘f .
J

Then, simple direct computations show that M is a C.H. manifold with
sectional curvatures < —1/4. Since

2 2 2 m 92
A 0 1 0 1 0 1 0

VTR TR0 RO g 2052
RN & R, O
+(m+1+7)§+h92%,

it is not difficult, using the argument in Section 5.A, to choose A
such that Brownian motion on M has infinite lifetime and satisfies
limy, o Xs = +00 (X; = r—component of Brownian motion); thus
Theorem A extends to all dimensions > 3. It is also clearly seen how
one may adapt the constructions above in Section 5.B and extend sim-
ilarly Theorem B.

6. Appendix.

The following statement is essentially in [Cho]. That the smooth-
ness assumptions in [Cho|] may be dropped is already observed in [And]
Theorem 1.4.

Proposition 6.1. Let M be a complete simply connected Riemannian
manifold whose sectional curvatures are < —1, and let C be a closed
convez subset of M, C # @. Set u(m) =1 —tanh(d(m,C)/2), m € M.

Then, u 13 a superharmonic function on M.
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PRrOOF. If C is smooth, Theorem 4.3 in [Cho] says that u is super-
harmonic on M \ C. To settle the general case, we argue as follows.
Let mg € M\ C, let m; = pc(myp) be the unique point in C with
d(mg,m1) = d(my,C), and let Cy = B(m;,1) N C. By Lemma 6.2
below, Cy is the limit of a decreasing sequence of smooth compact
convex sets C,. On the other hand, the projection map pc is con-
tinuous, so that for m in some neighborhood V of mg, d(m,C) =
d(m,Cy) = lim,_ o d(m,Cy). Thus, v = sup,5;u, on V, with
u, = 1—tanh(d(m,C,)/2), and each u, is superharmonic on V. Hence,
u is continuous on M, superharmonic and <1 on M \ C, and equal to
1 on C. It is then clear that u is superharmonic on M.

Lemma 6.2. Let M be a Cartan-Hadamard manifold and let K be a
compact convez set in M. Then K i3 the intersection of a decreasing
sequence {K,}n>1 of smooth compact convez subsets of M.

PROOF. Note that F': m — d(m, K) is convex ([BO]) and that there
is a smooth bounded function 2 on U = {m : d(m,K) < 2} such that
Hessm(h) > ¢I for m € U and some ¢ > 0 (e.g. h(m) = |d(m,mo)|?
with my € M). Approximating F' + ¢h by smooth functions, it is
seen that F' = lim,_,o Fy, uniformly on U’ = {m : d(m,K) < 1},
F, being smooth and convex on U’. For given ¢ € (0,1) and large
n, K(n,e) = {Fp < € + maxy F, } is a compact neighborhood of K
contained in {F < 2¢ }, and K(n,¢) is convex and smooth.

It follows from Proposition 6.1 (and the method of barriers) that
property (C},) in the introduction (for a complete, simply connected,
and negatively curved Riemannian manifold M) implies (Pas) ([Cho],
[And]). From the probabilistic point of view, we have also the following
simple corollary (by the usual supermatingale argument).

Corollary 6.3. Let M, C and u be as in Proposition 6.1. Then the

probability for the Brownian motion on M starting from mo € M to hit
C 13 at most u(my).
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