REVISTA MATEMATICA IBEROAMERICANA
VoL. 14, N.° 1, 1998
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parabolic equations with

initial data in H,(R") spaces
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Abstract. We study local and global Cauchy problems for the Semi-
linear Parabolic Equations 0;U — AU = P(D)F(U) with initial data
in fractional Sobolev spaces Hj(R"). In most of the studies on this
subject, the initial data Uy(x) belongs to Lebesgue spaces LP(R™) or
to supercritical fractional Sobolev spaces H,(R") (s > n/p). Our pur-
pose is to study the intermediate cases (namely for 0 < s < n/p). We
give some mapping properties for functions with polynomial growth on
subcritical H(R") spaces and we show how to use them to solve the
local Cauchy problem for data with low regularity. We also give some
results about the global Cauchy problem for small initial data.

1. Introduction and results.

1.1. The evolution equation.

We study the Cauchy problem for the Semilinear Parabolic Equa-
tion
1) { o.U - AU = P(D)F(U), (t,r) € RT x R™,
U(0,z) = Up(x),
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where P(D) is a pseudodifferential operator of order d € [0,2] and
where F' is a nonlinear function which behaves like |z|* or z |z|*~1
(v > 1). The most classical examples of such evolution equations are
the semilinear heat equations

Opu — Au = au|u|* !,

the Burgers viscous equations
Oru — Au = a 0y (|u]®)
and the Navier-Stokes equation
ou—Au=PV(u®u),

where P denotes the projector on the divergence free vector field (see
[Ca] for instance).

We look for mild solutions of (1), i.e. for solutions of the integral
equation

(2) U(t,z) = ™ Uy + / t etNAP(D)F(U (7)) dr,

where e*® is the heat kernel. As usual the fractional Sobolev spaces
and their homogeneous versions are defined by

H:(R') = {f e S'(R"): A, f € L}

and . .
Hy ={feS'[R"): Af € LP},

where A, and A, are the operators with symbols A, (€) = (1 + |¢[?)%/2
and A,(¢) = |€|* (these spaces are sometimes also denoted LP»(R™),
see [Me]). In the sequel we will say that Hj(R") is supercritical if
s > n/p, i.e. if the embedding H;(R") — L*(R") is verified and, on
the contrary, we will say that Hj(R") is subcritical.

In the proofs of existence and uniqueness for (2), there always exists
a tight connection between the regularity of the Cauchy’s data Uy and
the properties of the nonlinear term P(D)F(U). Thus, for F(x) ~ |z|,
Giga [Gi] proved existence and uniqueness for Equation (2) as long as
Uy belongs to an LP(R™) for p large enough. When Uy belongs to su-
percritical H(R™) spaces, Taylor [Ta] proved existence and uniqueness
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for (2) under the assumptions F(0) = 0 and F' € C¥I+1(R). One of our
purpose is to study all the intermediate range of regularity, namely, to
solve (2) for initial data in Hj(R"™) with s in ]0,n/p[. About this prob-
lem, partial results have been found by Henry [He| who proved that, if
s < 2 —d and if F' maps bounded sets from H;(R") into bounded sets
in LP(R™), then (2) is well posed. Let us remark that, in the examples
considered by these authors, the action of F' on the functional space
of the initial data is well understood. This allows to obtain crucial
estimates on the nonlinear terms to solve (2): in the first two cases
F:LP — LP/* and F : H;(R") — H,;(R") is bounded and in the
third one, the hypothesis on F' implies some similar properties.

In this paper our goal is to improve Henry’s results for the local
Cauchy problem and Giga’s results for the global Cauchy problem (for
small initial data). We give the minimal regularity of Uy (see Remark 3
after Theorem 1.3 about this), measured on the scale of H;(R"™) spaces,
which ensures both existence and uniqueness for (2). So, for a fixed p
in |1, +o0o[, we are looking for the smallest exponent of regularity such
that, for all Uy in Hy (R™) with s greater than this smallest exponent,
existence and uniqueness occur. In such a framework one of the most
important difficulty arises from the fact that the action of the nonlinear
function F' on subcritical Hj(R™) spaces is badly understood. So, to
solve (2) in subcritical H;(R™) spaces, we will need to prove some map-
ping properties on those spaces for functions with polynomial growth:
this will be realized using harmonic analysis and paradifferential calcu-
lus techniques in Section 4.

As an example, let us consider the nonlinear heat equations

(3) U — AU =aU|U|* L, (t,z) € RT x R™.

When U (t, z) is a solution of (3) then, for each A > 0, the functions Uy
defined by Uy(t,z) = AC=)/(@=D{7 (A%, \z) are also solutions (here
d = 0) and, one can check that U and Uy, have the same norm in
L>®(R*, H3) if and only if

4 — o= — — :
(4) S=se= - T

Without further assumptions on the nonlinear term, this scaling ar-
gument suggests that, for all data in Hj(R"), there exists a unique
solution of (3) as long as s > s.. This also suggests that the "right
spaces” for the study of global existence are the spaces H,e(R"). For
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instance, we show (see Theorem 1.3) that, for all Uy(z) € H'(R?), one
can find a unique local solution of (3) as long as « € |1,5] and, fur-
thermore (see Theorem 1.5), this solution is global as long as ||Up|| g is
sufficiently small. This result improves Henry’s results because, using
his criterion, one can only prove existence and uniqueness in H'(RR?)
for a € 1, 3].

In fact, we will show that this scaling argument is true for Equa-
tion (2) even if P(D) and F do not possess the exact homogeneity of
Equation (3). For these reasons we will say that H,(R") is supercritical
(respectively critical) for (2) if s > s. (respectively if s = s.).

To avoid technical problems we will always assume that

n o n
5 >
) e
and that

(6) s>0.

Indeed, according to the Sobolev embedding theorem, if u € C([0, 77,
H}) with s as in (5) and as in (6) then u € C([0,T7, LP) with p > o
Hence, the term F'(u) in (2) is well defined in D'(]0, T[xR™). On the
contrary, if (5) or (6) is not satisfied, solutions in C'([0, T, H,) cannot be
defined in a simple way: for instance, if u € C([0,T'], Hy) with s <0,
then F'(u) has no sense a priori. For the study of such cases, when
(5) or (6) are not fulfilled, we refer to [Ri] where we show that (2)
can sometimes be solved using some smoothing properties of the heat
kernel.

1.2. Hypotheses on the nonlinear terms.
About the nonlinear terms P (D) and F(u) we will make the fol-
lowing assumptions.

H1) P(D) is a pseudodifferential operator of degree d € [0,2]
with constant coefficients (and so P(D) is bounded from H3T%(R")
to Hy(R") for all s € R and for all p € ]1, +00]).

About F' we will assume that

H2) there exists o > 1 such that,
i)s<n(a—-1)/(pa),
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ii) F : R — R verifies |F(z) — F(y)| < C |z — y|(|=|*7t + |y|*71)
or,
H3) there exists o > 1 such that,
n(a=-1)/(pe) <s <min{(n/p+1)(a—1)/a;n/p},

ii) F : R — R is [a] time differentiable, D?F(0) = 0 for j
0,...,[a] =1, DI¥IF(0) = 0 if @ ¢ N, and |DIMF(z) — DIMF(y)|
Clz -yl

IA

or,
H4)

i) n/p < s,
ii) F': R — R verifies F(0) = 0 and F € CEITY(R).

Note that those assumptions on the nonlinear term F' depend in a
crucial way of the smoothness of the initial data Up(x). Indeed, when
Uo(z) belongs to a supercritical H;(R™) space then, since we look for a
solution in C([0, 7, H,), we look for a bounded solution of (2). Hence,
in H4), we do not need any assumptions on the asymptotic behavior of
F'; we just need smoothness assumptions on F'. On the contrary, when
Uo(z) belongs to a subcritical H;(R") space, then Up(z) is possibily
unbounded in a neighbourhood of some point zy and then we need
assumptions on the behavior of F' at infinity to “control” F(Up(z))
near .

Note also that, from the assumptions on F', we can easily deduce
from H3.ii) the following properties for the intermediate derivatives of
F.

Lemma 1.1. If H3.ii) holds then there exists a constant C' such that,
(1) [D'F(z) = D’F(y)| < Cla —y| ([T + [y|*777h),
forallj=0,...,[a] — 1,

(8) |DF ()] < C'la]*77,

forallj=0,...,[a].
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1.3. Statement of main results.

To solve (2) the main idea is to counterbalance the loss of smooth-
ness coming from the nonlinear terms by the smoothing effects of the
heat kernel. In the framework of L?(R™) spaces, according to H2) and
Holder’s inequality, F' : LP — LP/® is continuous. If H4) holds there
is no loss of smoothness on the Hj(R") scale thanks to the following
Theorem (see [Me] or [Tal).

Theorem 1.1. Let p € |1,4+o00[. If H4) is fulfilled then, for all u €
Hy(R™), F(u) belongs to Hy(R™) and furthermore

1E ()l < C ([Jullze) [Julle -

On the other hand, in the case of subcritical H; (R") spaces, there is
no stability by composition with nonlinear functions. For instance, the
H;(R") spaces are algebras if and only if s > n/p. For s € [1+1/p,n/p|
and p € |1, +o0o[ one can also prove that the functional calculus is trivial
in H;(R") (see G. Bourdaud [Bo] for instance): if F' maps H;(R") into
itself for s in this range then f(z) =a=.

To measure the loss of smoothness on the Hj(R") scale coming
from the composition by F', we will prove the following Theorem in
Section 4.

Theorem 1.2. Let p € |1,400| and s such that
non n

max{O,———} <s < —.

p « p

Let s, defined by

n
(9) sa—s—(a—l)(z—j—s>.
If H2) or H3) is fulfilled then, for all uw € Hj(R™), F(u) belongs to
Hpe(R™) and furthermore, there exists a constant C independent of u
such that
1 ()| ze < Cllullzzs -



CAUCHY PROBLEM FOR SEMILINEAR PARABOLIC EQUATIONS 7

REMARKS.

1) Note that the condition s < n (a—1)/(p«a) in H2.i) is equivalent
to

(10) 56 < 0.

In the same way, the conditions n (a—1)/(pa) < s < (n/p+1)(a—1)/«
in H3.i) are equivalent to

(11) 0<sq<a—T1.

2) The hypothesis s > max{0,n/p — n/a} ensures that F(u) is
well defined as an element of D’.

3) The restriction s < (1+n/p)(a—1)/ain H3.i) (i.e. s4 < a—1)
comes from the lack of smoothness of F' at x = 0. However, if F'is C'*°
(F(x) = 2™ for instance), then in H3.i) we must only assume that

n(a—1) n
— <5< =
bo p

to obtain Theorem 1.3.

4) The value of s,, given by Theorem 1.2 is optimal. To see this we
have just to consider the example of u(z) = 9 (z) x=P and F(z) = |z|*
where 1 is a cut of function near 0.

5) In order to solve nonlinear Schrodinger equations, T. Colin [Co|
established a related result to Theorem 1.2 for the spaces Hj(R"™) N
L*(R™). Recently another proof of Theorem 1.2 has been found by
T. Runst and W. Sickel in [RS]. First, using paraproduct techniques,
they prove Theorem 1.2 in the special case of polynomial functions.
Then, using a Taylor expantion of F' and Poisson approximations of
u, they prove Theorem 1.2 in the general seeting of H3). Our proof
is in fact very different. First, we use different techniques (we only
use paradifferential calculus) and, second, we do not need to distingue
between the polynomial case and the general case.

Using the nonlinear estimates given by Theorem 1.2 and the fixed
point Theorem, in Section 2 we prove the following result about the
local Cauchy problem.
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Theorem 1.3. Let p €]1,+00[. Assume that (5) and (6) holds, and
that H2) or H3) or H4) is fulfilled.

a) For all initial data Uy in Hj(R™) with s > s. there exists a
unique mazimal solution U(t,x) of (2) in C([0,T,,[, Hy) with

_SC
7
2

T, > ClUll7" .,  wherev ="
4
and, if Ty, < +o00, then

Jim (U2, )]l = oo

b) Furthermore the following smoothing effects occur:

o U(t,x)—e!2U, € C([0, T [, H5®) for all0 < (a=1) v if s <n/p
and for all < 2 —d if s > n/p.

o If F is C*°(R) then,
U(t,z) € C*°([0, T, [xR™),

for all 6 > 0.

c) Let us assume that s < 2 —d. Let U € C([0,Ty[, H;) and
Ve C([0,Ty[, Hp) be the mazimal solutions for the respective initial
data Uy and Vy. Then,

U — V||C([0,T[,H;) <C(T)||Uy — VOH}i/; .

for all T < min{T1,T>}.

REMARKS.

1) Let us consider Equation (3) with Uy € Hy(R"). If s <2 —d
and if & < 1/(1 — sp/n) then Henry’s results [He| give existence and
uniqueness of a solution in C([0,7[, H,). Theorem 1.3 improves this
because one can consider larger values of « (see the example in Section
1.1) and because the condition s < 2 — d is not needed.

2) Because of (4) we see that LP(R™) is supercritical for (2) if and
only if p > p. where p. is defined as

n(a—1) .

12 .=
(12) p 5 d
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So, for Uy € LP(R™) with p > p. and p > «a (to make sure that (6)
and that (5) are fulfilled with s = 0), there exists a unique solution
of (2) in C([0,T[,LP): this had ever been proved in [Gi]. However,
when Uy € Hj (R") with Hj(R™) < LP for supercritical L?(R™) space,
Giga’s results give existence and uniqueness only in C([0,T[, LP) but
nothing is said about the H;(R") regularity of the solution. Theorem
1.3 answers precisely to this question.

3) If Uy € LP(R™) with p < p., phenomena of non-existence and
non-uniqueness may occur (see [Wel] and [HW]). Note also that non
uniqueness could also occur in the space H*(R™) for subcritical value
of s: see Tayachi [T] for the nonlinear heat equations and Dix [Di] for
the nonlinear Burgers equations. Theorem 1.3 shows that this could
occur only for subcritical Hy(R™) spaces since it is sufficient to assume
that Uy belongs to Hj(R") with s > s. to ensure both existence and
uniqueness. Thus, with no further assumptions than H2) or H3) on
the nonlinear terms, our results are optimal. However, for some more
specific nonlinear terms, one can sometimes prove that (2) is well posed
in some subcritical spaces: for instance for the nonlinear heat equa-
tions with the “good” sign and for the Burgers viscous equation with
nonlinear term in divergence form (see [EZ]).

4) We mentioned earlier that the restrictions (5) and (6) are only
technical. Indeed, when Up(z) € Hj(R") with 0 < s. < s <n/p—n/a,
using L9([0,T[, L?) estimates for the heat kernel we can always solve
(2). Also, when Up(z) € Hy(R") with s, < s < 0 we can sometimes
solve (2): this allows us to solve (2) with measures or distributions as
initial data: see [Ri].

In the critical case, we obtain existence of a solution but uniqueness
occurs (a priori) only in a subspace of C([0, T, Hy¢). However, in this
case, we prove global existence for small initial data. We also prove
some time decay estimates for those solutions in various L?(R™) norms.

For the study of the global Cauchy problem, we will assume that

H1’) P(D) is a pseudodifferential of order d < 2 with homogeneous
symbol P(¢),

and

H5) F(0) = 0 and there exists « > 1 such that,

|[F(z) = F(y)| < Clz —yl| (2|7 + [y|*7).
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First, let us recall a useful result about the Cauchy problem for small
initial data in LP¢ (R™) which has been proved by F. Weissler [We2] for
the nonlinear heat equations, by T. Kato [Ka] for the Navier-Stokes
equations and by Y. Giga [Gi] for the general problem (2).

Theorem 1.4. Assume that H1’) and that H5) are fulfilled. Assume
furthermore that p. > 1. Let v(q) defined as

(13) v(q) = g(i _ l) _

b 9

Then, there exists an absolute constant A such that, for all Uy € LP<(R™)
with ||Up||rre < A, there is a unique global solution U(t,x) of (2) such
that

(14) t — DU, )| € BC([0,400]) ,

for all q and v(q) such that

(15) Pe < g < +00 and  0<7y(g) <at,

and such that

(16) lim DU, ||z = 0,

t—0t

for all q and v(q) such that

(17) Pe < q< +00, a<q and 0<v(q)<at.

REMARKS.

1) Generally, the assumption p. > 1 is sharp. For the nonlinear
heat equations (3) with @ > 0 the blow-up for non-negative CZ(R™)
initial data has been proved when p. <1 (see [Fu] and [We2]).

2) Note that uniqueness in BC(R™, LP¢) occurs only on the sub-
space defined by (14)-(15) and (16)-(17): if V'(¢,z) is a solution of (2)
in BC(R*, LP<), we do not know if V satisfies (14)-(15) and (16)-(17)
or not.

3) Note that, from Theorem 1.4, the asymptotic decay of U (¢, z) in
LI(R™) norm is exactly the same as the asymptotic decay of e*® Uy(x)
as long as the decay rate v(q) satisfies v(q) < a™!.
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4) Note also that, since p. > 1, there always exists a gy such that
(17) holds: if a < p,. this is obvious since v(p.) = 0 and if p. < «
one can check that for ¢ € Ja, ap.[ then 0 < v(a) < v(¢) < v(ap.) =
(2-d)/(2a) < a.

First, we will prove a slight improvement of the Giga’s result,

Lemma 1.2. Assume that |Ug||pre < A and let us consider U(t,x) the
Giga’s solution of (2). Then,

(18) NU(t,-)||Le < ct@ |Uol| Lre for all q € [pe, +00].

REMARK. Note that, in the estimate (18), there is no any restrictions
on the size of the decay rate v(q).

Then, using the Lemma 1.2, we will consider the case of initial
data with arbitrarily high norm in subcritical LP(R™) spaces and small
norm in the critical space LP¢(R™).

Proposition 1.1. Let Uy € LP=(R™) N LP(R™) with p < p. and assume
that ||Upl|Lee < A. Let us consider U(t,z) the global solution of (2)
given by Theorem 1.4. Then,

(19) U(t,z) € BC(R", L) N BO(R*, L¥<),
(20) Ut )zr < G2 U
forallr > p andt > 0.

REMARK. One more time we see that U(t,z) decay in L"(R™) with the
same rate than e*® Uy () this, without any restriction on the decay rate.

For the Navier-Stokes equations, such a result has ever been proved in
[Ka] but only when n (1/p—1/r)/2 < 1/2 in (20).

Using Proposition 1.1, in Section 3.3 we will prove the following
result on the global Cauchy problem for initial data in H(R") spaces.

Theorem 1.5. Assume that H1’) and H5) hold. Assume that p. > 1
and that p €lp. o™, p.|. Then,
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a) There exists an absolute constant A’ such that, for all Uy €
Hpe(R™) with [|Uo||gse < A', there is a unique global solution U(t, )
of (2) in C([0,+oo[, Hy¢) which satisfies (14)-(15) and (16)-(17). Fur-
thermore U(t, ) satisfies the estimates (19) and (20).

b) Let Up € Hy(R") with s > sc. If |[Uollgse < A, then the
local solution of (2) given by Theorem 1.3 belongs to BC(R+,HI§) and
satisfies the estimates (19) and (20).

REMARKS.

1) For data with an arbitrarily norm in Hj¢(R") one can also prove
local existence and uniqueness in a subspace of C([0,7'], H,y¢) defined
by a local version of (14)-(15) and (16)-(17).

2) There is no restriction on the size of ||Up[|gs in Part b) of The-
orem 1.5: we just assume that ||[Upl|gse wny is small enough (the only
norm invariant by scaling).

3) For the Navier-Stokes equations, using Besov spaces of non-
positive order, one can also prove global existence under a weaker as-
sumption than the natural assumption ||Upl/gse < A (for instance see
[GM], [KM] or [Cal).

In Section 2 we will study the local Cauchy problem under the as-
sumptions of Theorem 1.3: we prove existence, uniqueness and continu-
ous dependance with respect to the initial data; we also prove smooth-
ing effects for the solution of (2). In Section 3 we study the global
Cauchy problem for small initial data in the critical space LP<(R™),
for initial data in the space LP(R™) N LP<(R™) for subcritical L?(R™)
spaces and then, for initial data in the Sobolev spaces H(R"): we will
prove Lemma 1.2, Proposition 1.1 and Theorem 1.5. Next, in Section
4, we will prove the nonlinear estimate of Theorem 1.2 which is the key
estimate to prove the Theorem 1.3.

2. The local Cauchy problem.

We first prove existence of a solution (Section 2.1) and then unique-
ness (Section 2.2). In Section 2.3 we study smoothing effects for (2) and,
in Section 2.4, we study continuous dependence of the solutions with
respect to the initial data.
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2.1. Existence.

First we assume that Theorem 1.2 holds and that Uy belongs to
subcritical Hy(R™) spaces. In the sequel C' will denote a non-negative
constant which may be changed from one line to another. We also forget
the time dependance of C' since in this section we are only dealing with
a local problem. To simplify the notations we define

L(u)(t,z) = /0 e=MAP(D)F (u(r)) dr.

We introduce the exponent p given by

1 1 s
(21) Fp 0’
and by (5), (6) and since s > s,
(22) p>a  and  p>p..
We define the spaces
(23) Y =C([0,T], Hp)
and
(24) X =C([0,T[,L?) .

Hence, by the Sobolev embedding Theorem, ¥ — X. Now, let us
consider the sequence of functions

(25) u® = et Uy(x), Wt =u® + L(u?).

First we are going to prove that {u’} converges strongly in X to a
limit U which verifies (2) (this proof follows closely Giga’s proof but
we detail it for the reader’s convenience) and second, using the new
estimates given by Theorem 1.2, we will show that U belongs also to Y.
Let us recall the (L — L?) and (H3t%— H3) estimates for the semigroup
e™® (see [Tr]).
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Lemma 2.1.

a) For all ¢ > p and 7 > 0, there exists C' such that
72 fllza < Cr72UP=HD || f|| 1,
b) For all > 0 and 7 € ]0,T], there exists C(T') such that

le™ ]

asvo <O | fla
c¢) For all® > 0 and T > 0, there exists C' such that

lem2 g0 < C T8 | fll g, -

By Part a) of Lemma 2.1
(26) lu’llx < [Usllzs < C[|Uolla; -

Let w and v in X then,

[1L(u)(#) = L(v)(#)l|Ls < /0 =2 P(D) (F(u)(7) = F(0)(7))]| ,, d.

Since we are working in the whole Euclidian space R™, the operators
e™ and P(D) are some Fourier multipliers and so,

e(t—T)AP(D) — P(D) e(t—T)A — eA(t—T)/2 P(D) eA(t—T)/2 )

Furthermore by H1), P(D) : HY(R") — LP(R") is bounded and so,
using Lemma 2.1,

le*=72 P(D) (F(w)(7) = F(0)(7) |5

(t =)= |22 (F(u) (1) = F(v)(7)) |15
(t =) NEu)(r) = F(0)(T)l|Lsva

(note that the first part of (22) is needed) where, by (4),

(27) g:ngga;l:l_(a—l)Q(s—sc)

<1.
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Using this last estimate and Holder’s inequality, we obtain

1L(u) () = L(v)(#)]| s

<c /0 (t = 1) lu(r) = o() s (a5 + [o(P)1%57) dr

and, since 3 < 1,
(28)  |IL(u) = L(v)llx < CT7 Jlu — ol x (lull 5 + oll57) -
Furthermore L(0) = 0 and from (26) and (28) we deduce that

[w?*Hlx < 1Uollmy + C Tl
(29) [u?*t —w | x < CTH Pl —w?=Y|x

(157 + w57

Then, a standard fixed point argument shows that, for

C —(a— —
(30) T < 5 Vol =",

15

the sequence {u’} converges strongly in X to a limit U which obviously

solves (2) since p > « by (22).

Now, we must prove that this solution belongs also to Y. Let

u €Y, then,

L) ()1, < / |2 P(D)F(w)(7) | dr -

As previously

=72 P(D)E(w)(7) gy < € (6 = 7) /2 [ A2 F (w) (7))

< O (t—7) W2 () (1) | g -

But now, using Theorem 1.2, we can bound the term ||F(u)(7)|| gz by

C ||u(7)||%. and furthermore, thanks to (27) and to (4), we obtain

=D EP(DYF () ()]l < C (¢ = 1)~ [lu(r); -
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This last inequality leads then to
t
[ () (8] < 0/0 (t = 7)77 fJu(r)||fg, dr < CT P |lul$

and so by (26),
(31) lw/*Hly < Uollmy +CT P [l .

As previously, if T satisfies (30), thanks to (31) we see that the ||u’]]y
remain bounded and so, we can always extract a subsequence {u’*}
which converges weakly-x to a limit U €Y. Now the uf* converge to
U and converge to U in D'(]0, T[xR") and so U agrees with U. Thus
we have proved the existence of a solution in C([0, T[, Hp).

The estimate for T}, comes from (30) which gives

C —2/(s—s¢
T = 5 U0l )

If T, < +o0, this explicit lower bound obviously allows us to show the
blow-up in H(R™) norm (one can also prove the blow up in LP(R")
when it holds in H;(R")).

If s > n/p, using Theorem 1.1 instead of Theorem 1.2, the same
proof gives existence under the hypothesis H4).

2.2 Uniqueness.

Let U(t,z) € Y and V(t,z) € Y be two solutions for the same
initial data Uy and let T < max {7}, (V), T;,(U)}. Then, since U and
V solve (2),

U= Vlx =[ILU) - LV)lx

and so, by (28),
|U-V|x <27 PCM*YU-V|x,

where

M = sup {[[U(#)]|z, [V @)z} -
[0,T7]
So, for T small enough,

1
U= Vix < 51U - Viix
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and so U = V on [0,7]. To conclude we just have to iterate this in
order to prove that T, (U) = T}, (V) and that U =V on [0,T,,(U)[.

2.3. Smoothing effects.

Let U be a solution of (2). Using Lemma 2.1 we easily see that
t
U(t.2) = 2Unlygo0 < € [ 6= 1) U,y dr
p 0 p

and so, forall# <1 — = (a—1)v,
[U(t,2) = 20| gvo < CT77UNIE

which gives the first part of Theorem 1.3.b). If s > n/p, the proof is
the same using Theorem 1.1 instead of Theorem 1.2.

Now let us assume that F € C®(R). For all t > 0, AU, is
C>(R") and so U(6/2,-) € Hit?(R"). Taking 0/2 as initial time,
we just have to repeat this argument to prove that U(6/2 + 6/4,-) €
HE+2(R™) - - finally, U € C([6,T[,C>) for each § > 0. Thus we have
proved the second part of Theorem 1.3.b).

2.4. Continuous dependence with respect to the data.

First we deal with continuity in X norm. Let U and V be two
solutions of (2) for the respective initial data Uy and Vj. Let

T < min {Tm(U0)7 Tm(VO)}
and

M = sup {[|[U@)|[as, [[V(O)|[as}-
te[0,T]

By (28),
U~ Vlx < U — Vollps + CT*P||U - V|| x 2 M .
Taking 7" < T such that 4C TP M*=1 < 1 then,

1T = Vlleqo,r sy < 2|00 — Vol
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and, if one can take 7" = T, this ends the proof. On the contrary,
solving (2) for the initial data U(T”) and V(T”), the uniqueness and

the uniform bound for U and V in X norm allow us to iterate this last
argument N times until N 77 > T and thus

(32) U =Vix <CT)|[Uo = Vollz < C(T) [|Uo = Vol -
Now let us assume that s, <0, i.e. that s <n(a—1)/(pa). Then,
[U@) =V O)lla;

< [|Uo = Vollm; + C/O (t = 1) PNFU(T) = E(V (D)o dr .

Since s, < 0 and a/p = 1/p— s, /n, we can use the Sobolev embedding
LP/* — Hje
which leads to
[U @) = V()
t
< [|Uo = Volluy + C/ (t = 1) PIIFU(r) = F(V(0)lLova d
0
< |[Uo = Vollmy + CT2NIU = VIx (U117 + VIS
and, according to (32) and to this last inequality, we obtain that
(33) U= Vl]ly <C(T)[|[Uo — Vol us -

To conclude we have to relax our assumption on s. Since U and V are
solutions of (2),

U =Vlly <||Us = Vollag + [[IL(U) = L(V) ]|y
First, let us recall the following interpolation inequality.

Lemma 2.2. Let p €|1,+00[, # € R and s € R. Then, for all f €
HyH(RY),
2
£ < C 1 lggee 1l s

For a proof see [Tr].
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By Lemma 2.2 we see that

ILU)(E) = L(V)(#)]|

< (IL@YED g + 1LV ggeo) V* ILW)E) = LON L

Now since s < 2 — d, one can choose 0 < (o — 1) (s — s¢)/2 such that

1
(34) se<s—0<Z

n
a p
Using the smoothing effects, the first term of the left-hand side of the
last inequality can be bounded by

C() (IUlly +IVIy)Y2 < c'(T) M,

and, using (33), since (s — 0) satisfies (34), we bound the second term
by

1/2 1/2 1/2
Vs = Vall 2o + U@ = VO < C@) [V = Vall -

< C(D)|Uo - Vally* -
Combining this two inequalities we obtain that
1/2
U= Vlly <C(T)[[Uo - Volly

and the proof of Part ¢) is completed.

3. The global Cauchy problem.

In this section we study the global Cauchy problem for small initial
data in LP<(R™). First in Section 3.1 we study the case of initial data
which belongs only to LP<(R™) and we prove Lemma 1.2. In Section 3.2
we study the global Cauchy problem for initial data in LP(R™)NLP<(R™)
when LP(R™) is subcritical for (2) and we prove the Proposition 1.1.
Then, in Section 3.3, we consider initial data in Hj(R") space and we
prove the Theorem 1.5.
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3.1. Initial data in LP<(R").

Let us consider Uy € LP<(R™). In [Gi] Giga proved that there
exists a non-negative absolute constant A such that, if ||Upl/rr. < A,
then there exists a unique global solution of (2) in BC(R", LP¢) which
satisfies

t — 7D ||U(t, )|z« € BC(RY),

for all ¢ and (q) such that

Pe < g < 400 and 0§7(q)<a‘1,

and which satisfies

lim DU, ||z = 0,
t—0T

for all ¢ and (q) such that

pe<qg<+4oo,a<q and 0<y(q)<a l.

First we are going to prove that, for p. < ¢ < +oo and 0 < v(q) < a™1,
(35) 1U (¢, )lze < Ct7 DUl oe
which is a little more precise than the estimate

Ut )za < Ct77D,

Second, we are going to relax the restriction y(¢q) < a1 in this estimate.
Indeed, when p. > na/2, the reader will check that the assumption
v(q) < a7t is fulfilled for all ¢ € [p.,+oo[ and so, the asymptotic
estimates (35) to. On the contrary, when p. < n«a/2, on must assume
that q € [pe, (1/pe — 2/(na))~1[ to be sure that v(q) < a~! holds. So,
when p. < n«/2, the asymptotic estimates are proved only for ¢ in the
range [pe, (1/pe — 2/(na))™![ and we want to show that they holds for
all exponent ¢ in [p., +oo].

To prove Lemma 1.2 let us come back to the proof of Theorem 1.4
given in [Gi]. In the critical case (when Uy € LP<(R"™)), to prove the
existence of a solution for (2), one introduce, for p. < ¢ < +o0, @ < ¢
and 0 < v(q) < a~1, the Banach spaces

Xq={f(t,z): t+— " V|f(t,2)]. € BC(RY)}
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and the space
Y ={f(t,z): t— ||f(t,z)||rc € BC(RM)}.

Then, if we consider {u/} the sequence of functions defined by (25), we
have the estimate (see [Gi])

(36) v x, < Cullu’llx, + C2 v |1%,

where,
1£(t,2)llx, = supt” D[ f(t,2)[|a -
>0

Then, when ||Upl|zr. < A, using (36) and (16)-(17), one can prove that
the {u/} converge in X, to U(¢, ) the unique solution of (2) such that
(16)-(17) is fulfilled (see [Gi] for a proof). Furthermore, to prove that
U (t, ) belongs also to BC([0, +o0[, LP<(R™)), one can easily check that
the nonlinear map L : X, — Y defined at the beginning of the Section
2.1 satisfies

(37) L)y < C|IUJI%,
as soon as p. < ¢ < +00, a < q and as soon as 0 < y(q) < a™ L.

Now let us come back to the proof of Lemma 1.2. By (36), it is
obvious that the sequence {u} stay in the ball B(0,2C1|[u"| x,) for the
X, topology as soon as

Cy (201 [|u’]|x,)™ < Ch [|lu’]|x, ,

which holds for

1 1/(a—1)
< |——— .
Now, by Lemma 2.1,
(38) lu’llx, < C U] L

and so, for

|Uol|pre < A= 1 ( 1 )1/(a—1)

C \20C0~ 10,
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there exists a global solution U(t,z) of (2) which belongs to the ball
B(Ov 2 Cl HuOHXq) C B(07 2 Cl C HUOHLPC) )

for the X, topology. Thus the proof of Lemma 1.2 is completed for the
exponents g such that p. < ¢ < 400, a < g and 0 < y(¢) < a™!. To
conclude in the special case of LP<(R™), we have just to use this last
result and the estimate (37). Thus, if p. > « the proof is over. On the
contrary, if p. < «, we have just to interpolate the estimates in LI(R™)
norm and in LP¢(R™) norm to end the proof.

Now we are going to prove that the asymptotic estimates
Ut )za < Ct77 D [[U]| e

holds also when v(q) > a~1. First, for Uy such that ||Upl|re. < A,
let us consider U (t,x) the Giga’s solution of (2) and let us consider ¢
an exponent such that go > p. and such that v(go) < a1 (such a qo
always exists since p. > 1: see the Remark 4 after Theorem 1.4). Next
let us consider the sequence {g;} defined by

(39) 5

1 1
i ( ) =d<at
qi di+1

and note that {¢;} is increasing and that there exists ¢; such that
n/(2q) < o™t
Let us define

1
I(gi, qiv1) = / (1 — s)~4/2n(a=1)/(ait1) =0 g
0

Then, by (39), for all i > 0,

I(gi, git1) < +00.

Now we pick tp > 0 and we consider V' the solution of

(40)

{ V(t,z) = e Vo + L(V)(t, ),
V(0,2) = Vo(z) = Ulto,z) .

First, by the previous result and since 0 < (go) < a1, it follows that

(41) Vo € LP<(R*")NL%*(R™) with 1Vollpao < Cty ™ |Uo||Lee -
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Lemma 3.1. Let T = T(ty) such that

(42) 20 o = D/20=pe/0) (g, q) Vol §t < 1
then,
(43) IV (®)]lLar <2CE° ||Vl Lao

forallt €]0,T7].

Indeed, since Vo(z) € L?(R™) with go > p., using the proof of
Theorem 1.3 we see that the sequence

00 =2V Tt z) = 00 + L(v?)(t, x),

converges strongly to V (¢, z) in C([0,T], L%). By Lemma 2.1, v" obvi-
ously satisfies (43) for all ¢ > 0. Now, if v/ satisfies (43), then

Ol < Ol
#0 [ (6= e e 3 (1) e
< C||Vollgao t°
027 O Vo 8o /0 (¢ — )t/ ) =i g
for all ¢t €]0,7T[, and so,

[ ()] Lo

2C[[Vollzeo (1 | oot e a—1 2—d)/2(1—pe/
— tn/2(1/qo—1/q1) (§+2 ¢ ||V0||qu Iqo,(h T( )/2(1-p q0)>7

for all ¢ €]0,T[. Hence, if T satisfies (42),
|03+ (t, ) ||pan < 2C || Vol|pao -
So, by induction, (43) holds for all j and thus the Lemma is proved.

Using the uniqueness result in the supercritical case and (40) we
see that

V(t,x) =U(t + to, x)
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and so, by Lemma 3.1,
[U(t +to)lLar <2Ct7°[|U(t0)]| 10

for each t € [0,T(to)[ where T'(to) satisfies (42). Now, we claim that
there exists an absolute constant A’ such that, when [|Up||pr. < A,
one can always take T'(tg) = to/2 in the previous inequality. Indeed by
Lemma 3.1 we have only to make sure that

to\ 2-D/20-pe/a0)
) Vol Iao, 1) < 1.

20 (3
2
which, combined with (41), leads to

9 Ca (t_0> (2—d)/2(1—pc/qo)—n(a—1)/2(1/pc.—1/q0)

2 U550 1(q1,q0) < 1

and, since

it is sufficient to make sure that
2% C* [|Uo|$7t 1 (g1, q0) < 1.
Thus, when Uy is small enough in LP<(R™), (42) holds for each ty > 0
and so
t
[v(%)]
2

and, since tq is arbitrary,

. < QCtaa tan/Z(l/Pc—l/qo) 1Uo|| Lo

U @)z <2022 Uy e

for all ¢ > 0. Now, since I(g;,¢;+1) < +oo and since we have prove the
required estimate for ¢; defined by (39), we have just to iterate this
proof to get the required estimate in L9 norm... Thus, for each ¢;, the
proof follows by induction. Now, if ¢ € |g;, ¢;+1[, we get the result by
interpolation. Thus we have proved that U(¢,z), the global solution of
(2), satisfies

Ut 2)]|Le < C =Dyl o
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for all ¢ € [pc, +o0[.

3.2. Initial data in LP<(R™) N LP(R™).

Let p < p.. We consider now an initial data Uy which belongs
to LP(R™) N LP<(R"™), we assume that [|Up||rre < A and we denote
by U(t,x) the Giga’s solution of (2) which belongs to BC(R™, LPe)
and satisfies the estimates (14)-(15) and (16)-(17). Using the slight
improvement about the decay of the L4(R™) norms (estimates (18) of
Lemma 1.2) that we previously proved, we are first going to show that
the Giga’s solution belongs to LP(R™) for all ¢ (step one), then we will
prove that U(t,z) belongs to BC(Rt, LP(R")) (step two) and next,
that U(t, x) satisfies the asymptotic estimates (20) (step three).

Step one. Here we consider Up(z) € LP(R™) N LP<(R™) and we want to
prove that,

(44) U@ ||r < C(T), for all T > 0 and t € [0,7].

First let us assume that
(45) max{l,&}§p<pc.
«
Then, since U(t, z) is a solution for (2), for all 7" > 0 and t € [0, T

U@ [z» < [[Uollzr + [|LU)(@)]] e

< ||Uol| e +/0 |e="AP(DYF(U)(7)| v dr
< ||Uo||Lp+/0 it — 7|~ Y2 |F(U)(7)]||ze dr

t
< ollzr + / £ — 7|2 U () dr

Now, by (45), pa > p. and so, using the estimates (18) of the Lemma
1.2, we obtain that

t
U@ e < [[Uol|ze +/ [t — 7|27 PNy |1 dr
0

< Uollze + C(T) [[Uol|Zre
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since d < 2 and

2o
Q
QI+

0<ylpa) <ylpea) = —— <

for all p./a < p < pe.

Thus, the estimate (44) is proved for all p which verify (45) and, if
p. < «, the proof is over.

Assume now that

(46) max{l,p—;}§p<&.
o o

First, if Up(z) € LP N LPe, then Up(x) belongs to LI(R™) for all ¢ €
[pe ™!, p.] and then, by the previous result, ||U(t)||r« < C(T,Up) for
all ¢ in the range [p.a~!,p.]. Second, since U(t,z) is a solution of (2)

U@ [z» < [[Uollzr + [|LU)(@)]] e

< |IUoll» + /0 |e*="AP(DYF(U)(7)|| e dT
< ||UollL» +/0 it — 7|~ Y| F(U)(7)|| v dT
< Uollz +/0 (7|~ 4/2 U (7|2 dr .

Next, we remark that d < 2 and that, by (46), p a belongs to the range
[pe ™!, pe[. Hence, by the previous result, we can use the bound

[U(t)||zoe < C(T, Vo),

which leads to
[U@)lLr < [|UollLe + C(T, Up)

and so, the estimate (44) holds for all p in the range [max {1, p./c?}, p.].
Next, for p € [p.a™""1, p.a™"[, the proof of (44) follows easily by
induction.

Step two. In step one, we have proved that U(t, z) the Giga’s solution of
(2) belongs to LP(R™) for all t > 0 when Uy belongs to LP(R™)N LP< (R™)
and when Uj is small enough in LP<(R™). Now, we are going to prove
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that U(t,z) belongs to BC(R*", LP). Let us consider 7" > 0 and ¢ in
[0,T]. First, since U (t, =) is a mild solution of (1),

U(t,z) = e"®Up(x) + LU)(t, z) .
So, by Lemma 2.1,
IU@)lze < [Uollzr + [LWU)(#)]|Lr

< [Wllee + [ 14 PDIPW) () dr
< [Whllr +C [ =)D PO ) 1o .

where ¢ is any exponent in [1, p[ which will be fixed latter and where
&(q) is defined by

(47) fw=5+5(:--),

Using Holder’s inequality we get

IU@)[z» < [[Uol[ L +C/0 (t =)D NU(T) || paa U ()| oty dT

Laq2(a—1) ’

where 1/¢; +1/q2 = 1 and furthermore, we choose ¢; such that gg; = p
to obtain

t
1U®)||zr <[|Uol|Lr+C ||U||Loo([o,T],Lp)/0 (=) DU (7| g AT -

Now if we choose ¢ such that ¢ ~ p with ¢ < p then, since gq¢; = p,
q1 ~ 1. Hence it follows that z = ¢g2 (& — 1) > p.. Next, for z =
qq2 (@ —1) > p., by Lemma 1.2, we can bound U (¢, ) in L9%(¢=1)(R")
norm by

U (¢, 2) | pasza—ny < Ot 7D U] Lo

and so,

t
IU®)l|z» <C U)o+ U o= (10,77, 2) 100l 72" /0 (t—r) "¢ @r=0@ gr,
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where
(18) 0@ =(-Drae@-1)=(2-d- ).

One can easily check that choosing ¢ =~ p then ¢, is large enough to
makes sure that 0 < £(¢) < 1 and that 0 < 6(¢) < 1 (since d < 2).
Furthermore £(q) + 6(¢) = 1 and so,

(49) 10|z (j0,71,20) < [10o]lLe + C [U |z (g0,71,20) 100l 22"

Now, if ||Upl|Lr. is small enough then
1
1= Ol > &

and then, by (49), and since ||U/|| e ((o,71,z7) < +o00 for all T' > 0,

1Uol| s
CIIUoH%pc1 -

Ul .01,y < T 2||Uol|r -

To conclude, we have just to remark that the right side of this estimate
do not depend of T'. Thus, we have proved that U(¢, z) the mild solution
of (1) belongs to BC(R™, LP(R™)).

Step three. Now we have to prove the L™ (R™) estimates (20) of Theorem
1.4. They hold obviously for the term e!2U, by Lemma 2.1, hence, we
just deal with the nonlinear term L(U). First let us suppose that

n/l 1 2—d
(50) =503 <%
Then,
IL@)®lle < /HWTmP D)F(U(r)) 1 dr

<C / (t — 1) =DD (DY (U (7)) | 1o dr

<0 [ 6= 77805 U IO

Laa2(a—1)
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where ¢ € [1,p[, 1/q1+1/g2 = 1 and £(q) is given by (47). Now, taking
qq1 = p with ¢ = p then ¢; ~ 1 and gg¢s (o« — 1) > p. and so, we using
the estimates of Lemma 1.2 we obtain

t
ILW)®)lr <C( sup [UE)]|») Vol / (t =) 720D =0 g
teRT 0

where 6(q) is given by (48). If (50) holds then one can choose ¢, ¢; and
g2 such that 6(q) <1, 6(r) + &(q) < 1 and £(¢) + 0(q) = 1, and so,

IL@O) O < Ot (tselﬁg IU(®)]lze) 1 UollZz" -

Then, since ||U(t)||zr < C ||Uo||zr (by step two),
IL@) Bl < Ot |VolIEe! 10ollze < Ot |[Up]lLe

which completes the proof.

Now, if (50) is not fulfilled, we build a sequence {r;} defined by

S ]

And, if p < r; < 79 < pe, since U(t,-) is bounded in LP N LP<, then
U(t,-) is also bounded in L" for all 7 in [p, p.] and for each ¢ > 0.
Now let tg > 0 and let W be the solution of

(51)

{ W(t,z) = e2Vy + L(W)(t, z),
W(O,JT) = W()(.T) = U(to,l‘) .

We have already proved that
(52) Wy € LP<(R*) N L™ (R*) with |[Wo|lpn < Cty°") [|Uol| e

and furthermore W(t,-) is bounded in L™ (R™) N LP<(R™). So we just
have to iterate the previous proof to estimate W (to,z) = U(2tg,x) in
L™ (R™) norm with respect to Wy(xz) = U(tg,z) in L™ (R™) norm to
obtain the required estimate and we can do this until r; < p..

Now let us denote by I the first index such that r; > p.. We have
proved that

—0(pe)
(53 { NU@)||ee < C (1+1) ,

UL < CE=00D),
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and, to conclude, we just have to use the same proof as in Section 3.1

with the estimate (53) instead of the estimates (41). This end the proof
of the Proposition.

3.3. Initial data in H;(]R”).

We give now the proof of Theorem 1.5. Let us consider an initial
data Up such that ||Up[|gse < A’. Then, by the Sobolev embedding
theorem, Uy belongs to LP<(R™) N LP(R™) and, if A’ is small enough,
then ||Upl|Lre < A. So, according to Theorem 1.4, there exists a unique
global solution U(t,x) of (2) and this solution satisfies (19) and (20).
Hence, to prove that U belongs to BC(R", Hy¢), we have only to check

that U remains bounded in the homogeneous space H;C (R™) thanks to
the following well know inequality

£l < C Il + 1 Flg,).  foralls>o0.
Now since U is a solution of (2),
10z < [10oll e + 1LYl 50
t
< Wolle + [ 102 PPy b
t
(54) < Wollage +C [ (6= 7)o 02 B ()|r dr
0
t
< Wall +C [ (€= 7)™ PO e dr
t
< Wollze +C [ (6= )20 U@ dr
0
where

(55) )‘(Q) = 5 + B

Se+d nsra 1
( ) q €pe,pa].
q p

and where, in the third inequality, we used the hypothesis of homogene-
ity on P(D).
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Since p > p./a, one can check that s. < 2 — d, and so taking
q ~ pa, one can always choose ¢ such that 0 < A(q) < 1. Then, for
this choice of ¢ we obtain

Uz < 0ol
t
+C(sup D |[U(8)]| ) / (t — 7)N@ 1@ gy
R+ 0
< [Wollze + O (sup @ U (1) 120)"

since A(q) + av(g) = 1. But, by Lemma 1.2, we know that ¢7||U(t)| L«
remains bounded for all £ > 0 and so U belongs to BC(R*, H). Thus
we have proved that U belongs to BC(R*, Hy¢).

Now, let Up € Hy(R") such that [[Ug||gze < A’. Then, according
to Part a) of Theorem 1.3 and to Part a) of Theorem 1.5, there exists a
unique solution of (2) in C([0,T'[, Hj) N BC(R", Hy¢) and so, to prove
Part b) of Theorem 1.5, we must show that blow up in Hj(R") norm
cannot, occur. But, like in Part b) of Theorem 1.3, one can easily show
that smoothing effects occur namely that

A
U () — "ol ysere < CNU @) e
this, as long as A(q) + 6 < 1, where A(q) is given by (55). Hence, if
blow up holds in H<?(R™) norm, it holds also in Hj*(R™) norm: this
contradicts Part a) of Theorem 1.5. Now, since s > s. is arbitrary, we
have just to iterate this proof to obtain the required result.
4. Composition on H;(R") spaces.
4.1. Introduction.
In this section we prove the nonlinear estimate
1E ()l e < C lullg,
that we used in a crucial way in the proof of Theorem 1.3 (our result

about local existence and uniqueness for Equation (2)). First we are
going to consider the case H2) (i.e. when s, < 0). Then, after recalling
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a few results about Littlewood-Paley analysis, we will prove Theorem
1.3 when H3) is fulfilled (0 < s, < @ —1).

4.2. The case s, < 0.

Here, we suppose that max{0,n/p — n/a} < s and that H2) is
fulfilled, i.e. that s, < 0 and that |F(z)] < C|z|*. Now consider
u(z) € Hy(R"). Then, by the Sobolev embedding Theorem (s > 0 and
p €]1,4+00]) we have

(56) HE(R™) s LA/P=s/m7 (R

Now, since s > n/p—mn/a we have (1/p—s/n)~! > « and, on the other
hand, we have |F(z)| < C|z|®. Thus, by (56)

G F@Ipem-com=— < Cllullga.m-1 < CllullFs -

Next, to conclude, we remark that

and then, since s, < 0 and (a/p — (sa)/n)~! > 1, we can use the
Sobolev embedding

a/p—(sa)/n)"?! i) Sa i)
(58) Lle/p=(sa)/m) " (RY) s HE (R),
which, with the estimate (57), gives
1 ()l s> < C lullg,

as we claim.

4.3. Littlewood-Paley analysis.

Let us first recall the Littlewood-Paley dyadic decomposition for a
tempered distribution. Let ¢_; be a non-negative radial test function
such that p_7(§) = 1 for [¢] < 3/4 and such that p_1(§) = 0 for |¢| > 1.
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Let ¢;j(z) = 2™ p_1(27z) and let us consider the partial sum operators
S; associated with the ¢; and defined by

(59) Si(f)(@) = wj * f(x).

Now define 9_1(z) = ¢_1(z) and ¥;(z) = ¢;(x) — ¢j_1(z) and, in the
same way as previously, consider the operators A; defined by

(60) Aj(N)(@) = 5;(f) (@) = Sja(f) (@) = ;% f ().

Thus,

(61) f= lim S;(f) = A(F)+D_A5()-

j—o0
More precisely one can prove the following result (see [Tr]).

Proposition 4.1. The convergence in (61) occurs in Hy(R™) for all p
in ]1,00[ and for all s in R. Furthermore, for all f in Hy(R"),

1l ~ 1A (Dlls + | (f‘/ps |Aj(f)|2>l/2‘

J=0

Lr

Now we give some classical Lemmas which will be of great use in
the sequel.

Lemma 4.1 (Bernstein’s inequalities). Let p € [1, c0].

a) If f has its spectrum in the ball B(0,r) then there exists a con-
stant C independent of f and r such that

WAsfllee <Cr8||fllLe forall s > 0.

b) If f has its spectrum in the ring C(0, Ar, Br) ={{: Ar < |{| <
Br} then there exists some constants Cy and Cy independent of f and
r such that

Crro|[fllee < [[Asflle < Cor® ||flle s forall s> 0.



34 F. RIBAUD

For a proof see [AG]. The second Lemma describes the behavior of
Sj(u) and Aj(u) in L*°(R™) norm when u belongs to H(R™) spaces.

Lemma 4.2. Let

(62) Sp=8—

SIS

Then,

a) For all s in R, [|Ag(u)||p~ < C27Fsn [ wll e -

b) If s < n/p then, ||Sk(u)| L~ < C27Fsn [ wll e -

The proof is left to the reader (hint: use Bernstein’s inequalities).
Lemma 4.3. Let {fi}32, be a sequence of functions in S'(R™) such

that A
supp (fx) C B(0,C 2%).

Then there exists a constant C such that

(S5 )], <l ()"

Lr

For a proof see [Me].

4.4. The paracomposition formula.
To prove Theorem 1.2 we use the paracomposition technique (see

[Me], [Ta], [AG], [Co], ...) which generalizes the paraproduct technique
introduced by J. M. Bony. We rewrite F'(u) as the serie

F(u) = F(So(u) + (F(S1(u)) — F(So(u))) + -
+ (F(Skt1(u) — F(Sk(u))) + -+

and since F is C1 at least

(63) F(u) = F(So(u) + Y Ax(u) my(u),
k=0
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where

(64) g (1) = /0 F/(Sk () + ¢ Ay () dt

To relocate the my(u) spectrums we introduce a second Littlewood-
Paley’s partition of unity

A(Azk) +Z¢( 2k+p) =1

and so,
(65) my(u) = my, 1 (u +ka,p
where

= 1 3 *mg(u),
" b1 (w) = F (01 (57 ) )+ maw)

myp(u) = .7-'_1<7,ﬁ (%)) *my(u) .
So, by (63) and (66),

(67) F(U) = F(So(u)) + i Ak( my, _1 Z Ak mk,p )

k,p=0

and we want to prove that each of those terms belongs to Hj(R")
where s, > 0 is given by (9).

For the term F(So(u)) we refer to [Co] (one uses bounds on the
maximal function of F(So(U)) to get the proof).

4.4.1. The series )~ ) Ay (u) my, —1(u) belongs to Hy«(R").
We begin with the following Lemma.

Lemma 4.4. Under H3),

|, —1(u)||pe < C 2 ksn(a=1) ||u||;’}gl , for all k € N.
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Lemma 4.4 follows from Lemma 4.2 since

lmk,—1(w) || Lo = [|FH@-1(E AT 277)) o mp(u) ||
< FH @1 (€ AT 27)) I I (w) [
< Cllma(u)]|z= -

Now |F'(z)| < Clz|*! and so

|mk(u)|§/0 C |Sk(u) +t Ag(uw)|*tdt

and the estimates of Lemma 4.2 for Si(u) and Ag(u) in L°°(R™) norm
lead to the proof.

To prove that the series belongs to Hy=(R™) by Proposition 4.1 it
is then sufficient to show that the function

o) = (3978, (3 vt a(w)[)
§=0 k=0

belongs to LP(R™). By construction the my _;(u) spectrums are in the
balls B(0, A 2¥) and the Ag(u) spectrums are in the rings C'(0,27 1A 2%,
2 A2k). Taking A = 50 (for instance) then the my, _1(u)Ag(u) spec-
trums are in some extended balls B(0, A’2%) and so, there exists an
integer N such that Aj(mg —1(u)Ag(u)) = 0 for j > k + N since the
spectrums of ¢; and Ag(u) mg, —1(u) are disjointed. So,

‘AJ<§:Ak(u)mk,_1(u)>‘2
:‘AJ< i Ak(u)mk,_l(u,))‘2
k=j+N

§C4_j5“( i 4ks"‘|Aj(Ak(u)mk,—l(u))|2)
k=j+N

by Cauchy-Schwartz inequality applied to the sequences

{2—ksa 1k2j+N} and {kaa Ak(“) mk,_l(u) 1k2j+N}
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(note that s, > 0 is needed). Then by definition of o(x) we get

c(i i_o: 2,(28% A () mi -1 (1)) i

and, Lemma 4.3 applied to the sequence {2F*>Ay(u)my _1(u)} leads
to

o < (S autm o)

v
Now, using Lemma 4.4

A (1) g 1 (0)[2 < [l —1 ()3 [ A ()2
< Cahen e g3V | Ay (u)

and so,

\(24’“8“8"(“ W agwP) "

=0

lo(@)llzr < C llullg;*

Le

But, s = s4 — sp(@ — 1) and so

(o mer) | < Clulg

k=0

lo@)llze < C'llullg;*

Thus the series belongs to Hye(R") and its norm is bounded
by C [lul,-

4.4.2. The series Y2 (3.2 Ax(u) my p(u)) belongs to Hi~(R").

For fixed p > 0 we define

ZAk w) Mg p(u) -

Taking the constant A large enough one can check that the
A (u) my ,(u) spectrums are in some rings {€ : C1 2PTF < |¢| < Cy 2P FFY,
So, there exists an integer K (which does not depend of p) such that
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those rings are K to K disjointed. So we can use the Littlewood-Paley
analysis on the K partial sums [7(x) defined by

(68) ILn(x)= > Ag(w)mgp(u)  withre{0,...,K 1}
k=r mod(K)

and, by Proposition 4.1, we know that for all  in {0,..., K — 1},

1/2
Il < || (30 4 ALy my)]?)

Lr

k=r mod(K)
Let us assume that the following Lemima holds.
Lemma 4.5. Under H3),
Imgp (w)||pee < C27@7DP =R 2t - for all k € N,
Then by Lemma 4.5,
][ rze < € 27O D) jly||gt
1/2
. k(sa—sn(a—1)) 2
0> Auwr)
k=r mod(K)
p(sa—(@=1)) ||, (|01 ks 2\ /2
<C?2 [l H( ST 4k |A(w) ) ‘Lp

k=r mod(K)

< O 2r(sa—(a=1)) ||u||%; i

Thus, for s, < a— 1, the K series {I} },en are uniformly convergent in
Hj~(R") and furthermore, for r € {0,..., K — 1},

Sz < €l |
p

which ends the proof of Theorem 1.2.

So, to conclude, we have just to prove Lemma 4.5. Let us define

(69) O#=a—-1=N+v, where N = [f] and v € [0, 1] .
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and

(70) Pi(x) = Sk(z) + t Ag(z).

By Lemma 4.1 applied with p = oo,

(71) I p (W)l < €27 F4P my ()| oo

where C?(R") denotes the Holder space of order 6 endowed with the
norm

(72) |hl|ce = ||bl|p~ + -+ || DAL~ , if €N,

and

DN — DN
(73)  [|hllge = [|h[lcx + sup D~ Me) v ")
|lz—y|<1 |$ - y|

. ifo¢gN

(for more details see [Tr] for instance).
So, by (71),

I () < O 209 (g ()| g+ -+ (D ()

| DN g (w) () — DN g () (y)|
) e e )

The bound of ||my(u)||L~ is easy to establish: we have just to argue as
in the proof of Lemma 4.4 to get

" e )= < 0270 ulz?

Next we must bound |D?my(u)||p~ for 5 € {1,...,N}. Let v be
a multi-index such that v = 1 + --- + 7, with total length |y| =
1l + -+ 4[| = j then,

1 J
g () = / S S DEE(PH) 07 PE() - 0 P () dt
O g=1m++v=7

where the second sum is taken on all the decompositions of v = v; +
++++ 4. By Lemma 4.1 and Lemma 4.2,

107 Pi(x) || Lo < C2M*||Pi(a) || 1o < C 2171 27R5n | g
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and so,
10" Pi() - - 07 Py ()|
< € @M oo lullg) - - - (2l 27Rn |l )
< ¢ 2F(ml++val) 9—kasn ul|%,. .
Furthermore by Lemma 1.1 and Lemma 4.2
|DTE(PE) ()|~ < O11Sk(w) + 1 Ag(w) |30
< 70T |y 2t
And so, for fixed g,

H/Ol 3 Dq“F(P,ﬁ(x))aVlP,g(a:)---WQP,g(a:)dtHLoo

Tt Y=Y

< ¢ 2 Fsn(a—1=0q) ||u||ff1;_q o (17114 +17q]) 9—kasn ||u||‘1]q;
< O k(e g7k [y (D)

Thus, for j € {1,...,N},

(76) | D9 ()| e < C27Fon D 2 uf i)

To conclude we must estimate
D] — DI
wp [P (@) = DNy (w)(y)]

lz—y|<1 |x_y|y

Let v be a multi-index of length N. Then,

Omy(z) = /0 > > DMF(Pi(x) 0" Pi(x)--- 0" Pl(x) dt

g=1mt+74=7

and so, 0"my(z) — 0"my(y) = I(z,y) + J(x,y) where

I(r.y) = / S S (DHR(PH) - DTIE(PLY))

g=lyi++vq=7

[0 Pi(x) at

Vi
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and,

Tew=[ > X DHEE)

g=lmi+-+vg=7
: (Ha%P,g(x) - Hawp,g(y)) dt .
Yi Yi

We deal first with the term I(x,y). For g € {1,..., N} and {v;}i=1,..4
a decomposition of v we must estimate

[ Y oreie) - 0 eiw)
Oyt trg=y
1o Py ar]}

First suppose that ¢ < N — 1. Then, by Lemmas 4.1 and 4.2

Il'="sup {
lz—y|<1

1
lz —y|”

q
(77) | TIopi@)| < o2 b julg, .
=1

Next we must bound

o [DTHE@RY() ~ DIMERY ()]

lz—y|<1 |z —y[”
But, by Lemma 1.1, for ¢ < N — 1,
[DIFLF (2) = DT (y)| < C'la =yl (Jo|*797% + [y|*777?)
and so
| DR (Pg) () — DITLF(P;) (y)]
< C|Pg(z) = Pr(y)| (1Pe(2)|* 772 + |PE(y)|*777%).
But, by definition of the C¥(R) norm,

wp [PH@) — Pl(w)

< C||Pllc
lz—y|<1 |$_y|y F

< C2% || Pillp=

< 22 ull,
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by Lemmas 4.1 and 4.2. Thus, for all z,y € R” with |z — y| < 1,

|Pi(w) = Pr(y)] < Clo —yl” 2" 275 |lul|

and so
wp [DTEP @) = DHE(RY()
lz—y|<1 |'T - y|y

< C 2P 27k u g || P 2207

and so, by Lemma 4.2, for all ¢ in {0,..., N — 1},

wp IDTEEE @)~ DE(ED ()
(78) lz—y|<1 |'T - y|y

< Czkl/ 2—ksn(a—q—1) “U’H?Izq_l )
Then, from (69), (77) and (78), we deduce that for all ¢in {0, ..., N—1},

(79) Ilg < Czk(a—l) 2—ksn(a—1) ||u||%]gl .

Now we deal with the terms I¥. By lemmas 4.1 and 4.2,
N

80 | TTopi)| | <o oo jujy, .

(80) E ACO) I [[l|

Now by H3)
[DYF'(2) = DVF'(y)| < C'la — y|”

and so

sup |[DNF'(Pi(z)) — DV F'(P{(y))| < C sup |Pi(x) — P{(y)]”
te[0,1] te[0,1]

<O sup |z —y|"[[VPF|I7~
€00,1]

< Clo—yl” (25275 Jlullmy)”
by Lemma 4.1 and Lemma 4.2. Combining these inequalities we get

O (O B 0]
|z—y|<1 |aj - y|y

< C @274 ullgy)”
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Then, by (80) and (81)
N k o—ks, N4v
I < C@ 275 fluflay)
which leads to
(82) I]iv S 02_k5n(a_1) 2k(a—1) HUH?I:]_ .
p

Now by (79) and (82),

(83) sup |I($,y)| < CZ_kS”(a_l) 2k(a—1) ||U’H%I:1 .
lz—y|<1 [T — y|¥ B

Now we deal with the term J. It can be rewritten as
N q 1
New) =3 X3 [ DMEE W) 9 (Bie) - PLw)
g=1m++y,=7j=1"0
: (Ha%P,g(a;)) (Ha%P,g(y)) dt.
i>j i<j

and we denote by J, ,, ; each term of the sum and we estimate them
for all fixed triplet (q,7i,j). As previously, by Lemma 1.1

(84) IDTHEF(Pi(y)) ||z < C 277y 3071
Now, let ¢ # 7, then by Lemmas 4.1 and 4.2,

|07 PL(@)I| < C 2% || Ph(a)]| 1 < C 21 2R [,
and so

| 1o Pia T o Pitw)|
(85) i>j i<j
< O 2Ky Ivil) 9=k(g=D)sn ||U||%y_sl .

Lo°

By definition of the C*(R) norm

O (PE@) = L))

i S
T—y

< ¢ 2k 1+v) | PL|| L

< ¢ 2k(il+v) g=ksn ||u||H; )
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And so,

(86) sup v (PIE ('T) — Plg(y))

lz—y|<1 |$_y|y

< ¢ 2k(il+v) g=ksn ||u||H; )

Then by (84), (85) and (86) we get

sup LI o igmtonntamam) |yt githnsb) gk
je—yl<1 |7 = Y[ Z 2
L ok(X s 17il) 9—k(g—1)sn q—1
2HEu; 1) 2 Jull;

< E(N+v) o—ks,(a—1) a—1
< O ol
and so, since N +v =a — 1,

(87) sup M < Czk(a—l) 2—ksn(a—1) HUH?-_[;l .
le—y|<1 [T —y[* N

Thus by (83) and (87)

(88) sup Dma(@) = D mi(y)
lz—y|<1 (.I - y)y

< 2—ksn(cx—1) 2k(cx—1) HUH?—Igl .

Now by (69), (71), (75), (76) and (88) we see that

[k, pl| L~
N
< C2—(k+p)9(z2—ksn(a—l) 9ik 4 9—ksu(a=1) 2k(a—1)> “u”%—l
=0 ’
N
< O 9-Pla—1) g—ks,(a—1) Hun%j(zzk(j—(a—n) n 1) _
§=0

And for j € {0,...,N}, j — a+ 1 <0 from which we deduce that

||mkap(u)||L°° S 02_ks"(a_1) 2—p(a—1) HUH?IEI :

which ends the proof of Lemma 4.5.
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