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Five squares in arithmetic progression

over quadratic fields

Enrique González-Jiménez and Xavier Xarles

Abstract. We provide several criteria to show over which quadratic num-
ber fields Q(

√
D) there is a nonconstant arithmetic progression of five

squares. This is carried out by translating the problem to the determi-
nation of when some genus five curves CD defined over Q have rational
points, and then by using a Mordell–Weil sieve argument. Using an elliptic
curve Chabauty-like method, we prove that, up to equivalence, the only
nonconstant arithmetic progression of five squares over Q(

√
409) is 72, 132,

172, 409, 232. Furthermore, we provide an algorithm for constructing all
the nonconstant arithmetic progressions of five squares over all quadratic
fields. Finally, we state several problems and conjectures related to this
problem.

1. Introduction

A well-known result of Fermat, proved by Euler in 1780, states that there does
not exist an arithmetic progression of four squares over Q. Recently, the second
author showed that there do not exist six squares in arithmetic progression over a
quadratic field (see [29]). As a by-product of his proof, one reaches the conclusion
that five squares in arithmetic progression over quadratic fields exist, but are all
obtained from arithmetic progressions defined over Q. The aim of this paper is to
study over which quadratic fields there are such five-square sequences, in a manner
similar to how the first author and J. Steuding studied the four-square sequences
in [17].

However, there is a big difference between the four-square and the five-square
problems: if a field contains four squares in arithmetic progression, then it probably
contains infinitely many (inequivalent modulo squares), but a number field contains
only a finite number of five squares in arithmetic progression. The reason for this
is that the moduli space parametrizing these objects is a curve of genus 5 (see
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Section 3), and can therefore only contain a finite number of points over a fixed
number field by Faltings’ Theorem.

On the other hand, one can easily prove (Remark 8.2, Section 8), that there are
infinitely many arithmetic progressions such that their first five terms are squares
over a quadratic field. The conclusion is that there are infinitely many quadratic
fields with five squares in arithmetic progression.

In this paper, we will attempt to persuade the reader that, even though there are
infinitely many such fields, they are few. For example, we will show that there are
only two number fields Q(

√
D), for D a square-free integer, with D < 1013 having

five squares in arithmetic progression: those with D = 409 and D = 4688329 (see
Corollary 8.1). In order to obtain this result, we will develop a method, related to
the Mordell–Weil sieve, to prove that certain curves have no rational points.

The outline of the paper is as follows: in Section 2, we provide another proof
of a result in [29], essential for our paper. This result states that any arithmetic
progression such that its first five terms are squares over a quadratic field is defined
over Q. Using this result, we will show in Section 3 that a number field Q(

√
D)

contains five different squares in arithmetic progression if and only if some curveCD

defined over Q has Q-rational points. Next, we study a little bit of the geometry
of these curves CD. In the following sections, we provide several criteria to show
when CD(Q) is empty: in Section 4, when it has no points at R or at Qp; in
Section 5, when it has an elliptic quotient of rank 0; and in Section 6, when it
does not pass some kind of Mordell–Weil sieve. Section 7 is devoted to computing
all the rational points for C409. This is carried out by modifying the elliptic
curve Chabauty method, developed by Bruin in [5] and [4]. The result obtained is
that there are only 16 rational points, all coming from the arithmetic progression
72, 132, 172, 409, 232. Finally, in the last section, we give some tables related to the
computations, some values of D where we do have rational points in CD, and we
state several problems and conjectures.

Acknowledgements. We would like to thank Gonzalo Tornaria for aiding us with
some computations concerning the Corollary 8.1. The authors thank the referees
for helpful comments and suggestions.

2. The 5 squares condition

Recall that n+1 elements of a progression a0, . . . , an in a field K are in arithmetic
progression if there are a and r ∈ K such that ai = a+i·r for any i = 0, . . . , n. This
is equivalent, of course, to having ai− ai−1 = r for any i = 1, . . . , n. Observe that,
in order to study squares in arithmetic progression, we can and will identify the
arithmetic progressions {ai} and {a′i} such that there is an α ∈ K∗ with a′i = α2 ai
for any i. Hence, if a0 �= 0, we can divide all ai by a0, and the corresponding
common difference is then q = a1/a0 − 1.

Let K/Q be a quadratic extension. The aim of this section is to show that
any nonconstant arithmetic progression whose first five terms are squares over K
is defined over Q modulo the previous identification. Another proof of this result
can be found in [29].
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First, let us consider the case of four squares in arithmetic progression over K.

Proposition 2.1. Let K/Q be a quadratic extension, and let xi ∈ K for i =
0, . . . , 3 be four elements, not all zero, such that x2i − x2i−1 = x2j − x2j−1 ∈ K for all

i, j = 1, 2, 3. Then x0 �= 0; and if q := (x1/x0)
2 − 1, then q = 0 or

(3q + 2)2

q2
∈ Q.

Proof. Observe that the conditions on x0, x1, x2, x3 are equivalent to the equations

x20 − 2x21 + x22 = 0 , x21 − 2x22 + x23 = 0,

which determine a curve C in P3. Observe also that q is invariant after multiplying
all the xi by a constant, so we can work with the corresponding point [x0 : x1 :
x2 : x3] ∈ P3. Using the previous equations, one shows easily that x0 cannot be
zero.

Before continuing, we explain the strategy of the proof. Since there are no
four squares in arithmetic progression over Q, the genus one curve C satisfies
C(Q) = {[1 : ±1 : ±1 : ±1]}. Suppose we have a nonconstant map ψ : C → E′

defined over Q, where E′ is an elliptic curve defined over Q, such that ψ(P ) = 0
for all P ∈ C(Q). Denote by σ the only automorphism of order two of K, so
Gal(K/Q) = {σ, id}. Then, for any point P ∈ C(K), ψ(P )⊕ ψ(σ(P )) must be 0,
so ψ(σ(P )) = σ(ψ(P )) = �ψ(P ). We will choose such an elliptic curve E′ such
that the Weierstrass equation satisfies that the x-coordinate of ψ(P ) is equal to
(3q+2)2/q2. Since the x-coordinate is invariant by the �-involution, we will obtain
the result.

Multiplying the equations x2i = x20 + iq, for i = 1, 2, 3 we obtain

(x1x2x3)
2 = (x20 + q)(x20 + 2q)(x20 + 3q).

So, replacing q by (x− 2)x20/6, and x1x2x3/x
2
0 by y/6, we get the elliptic curve E

given by the equation
y2 = x3 + 5x2 + 4x,

with a map given by f(x0, x1, x2, x3) = (2x23/x
2
0, 6x1x2x3/x

3
0). This map is in fact

an unramified degree four covering, corresponding to one of the descendants in the
standard 2-descent. It sends the 8 trivial points to the points (2,±6), which are
torsion and of order 4. We need a map that sends some trivial point to the zero,
so we just take τ(P ) := P ⊕ (2,−6). The map τ : E → E (not a morphism of
elliptic curves) has the equations

τ(x, y) =
(2(x2 + 14x+ 6y + 4)

(x− 2)2
,−6(6xy + x3 + 16x2 + 32x+ 12y + 8)

(x− 2)3

)
.

The trivial points then go to the 0 point and the point (0, 0).
Now consider the standard 2-isogeny μ : E → E′, where E′ has the equation

y2 = x3 − 10x2 + 9x, given by

μ(x, y) =
( y2
x2
,
y(4− x2)

x2

)
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(see for instance [24], Example III.4.5.). The composition μ ◦ τ ◦ f is exactly the
map ψ we want. By applying the formulae above we obtain that the x-coordinate
of μ(τ(f(x0, x1, x2, x3))) is exactly equal to (3q + 2)2/q2. �

We apply this proposition to obtain the result on five squares in arithmetic
progression.

Corollary 2.2. Let K/Q be a quadratic extension, and let xi ∈ K for i = 0, . . . , 4
be five elements, not all zero, such that x2i − x2i−1 = x2j − x2j−1 ∈ K for all i, j =

1, 2, 3, 4. Then x0 �= 0; and if q := (x1/x0)
2 − 1, then q ∈ Q. In particular,

x2i /x
2
0 = 1 + iq ∈ Q, i = 1, . . . , 4.

Proof. Suppose q �= 0. By Proposition 2.1, we have that tq := (3q + 2)2/q2 ∈ Q
and that the same is true for q′ := (x2/x1)

2 − 1. As q′ = q/(q + 1), the condition
for q′ is equivalent to t′q := (5q + 2)2/q2 ∈ Q. However, t′q − tq = 16 + 8/q, so
q ∈ Q. �

3. A diophantine problem over Q

Let D be a square-free integer. We will say that the sets S1 and S2 of Q(
√
D) are

square equivalent if there exists α ∈ Q(
√
D), α �= 0, such that S2 = α2S1. Notice

that the previous equivalence is natural when the sets are formed by squares. Then,
Corollary 2.2 shows that any arithmetic progression of 5 squares over Q(

√
D) is

square equivalent to an arithmetic progression defined over Q.

Lemma 3.1. Let D be a square-free integer. Then an arithmetic progression of
five squares over Q(

√
D) is square equivalent to one of the form x2i = diX

2
i , where

di = 1 or D, Xi ∈ Z, and the greatest common divisor of x20, . . . , x
2
4 is square-

free. We say that the 5-term arithmetic progression is of type I = {i : di = D} ⊂
{0, . . . , 4}.
Proof. Let z0, . . . , z4 ∈ Q(

√
D) be such that z20 , . . . , z

2
4 form an arithmetic pro-

gression. By Corollary 2.2, it is square equivalent to y2i = 1 + i r/s, i = 0, . . . , 4
for some r, s ∈ Z. In particular, it is square equivalent to s2y2i = s2 + isr with
s2, sr ∈ Z. Now let d be the greatest integer such that d2 divides the greatest
common divisor of s2y20 , . . . , s

2y24 . Then the arithmetic progression z2i is square
equivalent to x2i = (s/d)2y2i , where the greatest common divisor of x20, . . . , x

2
4 is

square-free and since x2i ∈ Z and xi ∈ Q(
√
D) we have that x2i = diX

2
i where

di = 1 or D and Xi ∈ Z. �

Notice that 72, 132, 172, 409, 232 is an arithmetic progression of length 5 over
Q(

√
409) of type {3}, since d3 = 409.
We define another equivalence relation on the set of 5-term arithmetic progres-

sions over Q(
√
D) as follows: we say that two arithmetic progressions x20, . . . , x

2
4

and y20 , . . . , y
2
4 over Q(

√
D) are equivalent if there exists r ∈ Q and α = r2 or

α = D r2 such that y2i = αx2i or y24−i = x2i for i = 0, . . . , 4.
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Lemma 3.2. Up to equivalence, a nonconstant arithmetic progression of five
squares over a quadratic field is of type {3}.
Proof. Notice that up to the equivalence defined above, there are only a few types of
nonconstant arithmetic progressions of 5 squares over quadratic fields: namely {i}
for i = 2, 3, 4 and {i, j} for i = 0, 1 and j = 1, . . . , 4 with i < j.

Now, assume that we have a 5-term arithmetic progression x2n = a + nq, n =
0, . . . , 4, over Q(

√
D) of type {i, j}. Then, by Lemma 3.1, x2i = DX2

i , x
2
j = DX2

j

and x2k = X2
k if k �= i, j, where Xn ∈ Z, n = 0, . . . , 4. Let p > 3 be a prime

dividing D. Since (j− i)q = x2j −x2i = D(X2
j −X2

i ), we have p|q, and therefore p|a.
Thus p divides x2n for all n = 0, . . . , 4.

Let us see that, in fact, p2|x2n for all n = 0, . . . , 4, to obtain a contradiction
(recall that the xn are not in Z, so this is not automatic). Observe that for any
k ∈ {0, . . . , 4} with k �= i, j, we have that x2k = X2

k with Xk ∈ Z. Hence p
divides Xk and so p2 divides x2k. But now, considering k, l ∈ {0, . . . , 4} such that
k, l �= i, j and l > k, we obtain that (l−k)r = x2l −x2k, and hence p2|q, and therefore

p2|a. We have proved that the type {i, j} is not possible over Q(
√
D) for |D| > 6

and |D| = 5. The cases D = −6,−3,−2,−1, 2 and 3 are not possible since there
are no nonconstant arithmetic progressions of four squares over Q(

√
D) (cf. [17]).

The remaining case D = 6 is not possible, although by a different argument, since
there are infinitely many nonconstant arithmetic progressions of four squares over
Q(

√
6) (cf. [17]). We are going to prove that the types {i, j} for i = 0, 1 and

j = 1, . . . , 4 with i < j are not possible over Q(
√
6). Define the following three

conics in P2(Q):

C1,i : 6X2
i − 12X2

i+1 +X2
i+2 = 0,

C2,i : 6X2
i − 2X2

i+1 + 6X2
i+2 = 0,

C3,i : X2
i − 2X2

i+1 + 6X2
i+2 = 0.

Then it is straightforward to prove, using Hilbert symbols, that Cj,i(Q) = ∅ for
j = 1, 2, 3. Now, consider a 5-term arithmetic progression x20, x

2
1, x

2
2, x

2
3, x

2
4. Then

x0, x1, x2, x3, x4 are solutions of the system of equations

x20 − 2x21 + x22 = 0, x21 − 2x22 + x23 = 0, x22 − 2x23 + x24 = 0.

In particular, if this 5-term arithmetic progression is over Q(
√
6) of type, say, {0, 1}

then x20 = 6X2
0 , x

2
1 = 6X2

1 and x2k = X2
k for k = 2, 3, 4 and X0, X1, X2, X3, X4 ∈ Q.

Then the first equation of the previous system becomes 6X2
0 − 12X2

1 + X2
2 = 0.

That is, [X0 : X1 : X2] ∈ C1,0(Q). But since C1,0(Q) = ∅ we conclude that there is
no nonconstant 5-term arithmetic progression over Q(

√
6) of type {0, 1}. For the

remaining types we follow the same argument but replacing the conic C1,0 by the
conics indicated in the following table:

{0, 1} {0, 2} {0, 3} {0, 4} {1, 2} {1, 3} {1, 4}
C1,0 C2,0 C3,1 C3,2 C1,1 C2,1 C3,2

The type {4} (or equivalently {0}) is not possible since there are no nonconstant
arithmetic progressions of four squares over the rationals.
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To finish, let us see that the type {2} is not possible. In this case we have that
[x0 : x1 : x3 : x4] ∈ P3(Q) is a point on the intersection of the two quadric surfaces

C{2} :

{
X2

1 + 2X2
4 − 3X2

3 = 0

X2
3 + 2X2

0 − 3X2
1 = 0.

in P3. Note that the eight points [1 : ±1 : ±1 : ±1] belong to C{2}. In the
generic case the intersection of two quadric surfaces in P3 gives an elliptic curve
and, indeed, this will turn out to be true in our case. A Weierstrass model for
this curve is given by E : y2 = x(x + 1)(x + 9) (this is denoted by 48a3 in
Cremona’s tables [11], [12]). Using a computer algebra package like MAGMA or
SAGE ([3] and [25] respectively), we check that E(Q) ∼= Z/2Z ⊕ Z/4Z. Therefore
C{2} = {[1 : ±1 : ±1 : ±1]}, which implies x2n = x20 for n = 0, 1, 3, 4. Deriving from
this that Dx22 = x20 is then straightforward, but this is impossible. �

Let D be a square-free integer. We will denote by CD the curve over Q that
classifies the arithmetic progressions of type {3}. As a consequence of the previous
result, we get the following geometric characterization.

Corollary 3.3. Let D be a square-free integer. The, up to equivalence, noncon-
stant arithmetic progressions of 5 squares over Q(

√
D) are in bijection with the

set CD(Q).

The curve CD has remarkable properties that we are going to show in the
sequel. First of all, the curve CD is a nonsingular curve over Q of genus 5 that can
be given by the following equations in P4:

(3.1) CD :

⎧⎪⎨⎪⎩
F012 := X2

0 − 2X2
1 +X2

2 = 0,

F123 := X2
1 − 2X2

2 +DX2
3 = 0,

F234 := X2
2 − 2DX2

3 +X2
4 = 0,

where we use the convention that for distinct i, j, k ∈ {0, . . . , 4}, Fijk denotes the
curve that classifies the arithmetic progressions {an}n (modulo equivalence) such
that ai = diX

2
i , aj = djX

2
j , ak = dkX

2
k , where di = 1 if i �= 3 and d3 = D.

Observe that we could also describe the curve CD by choosing three equa-
tions Fijk with the only condition that each of the numbers 1, . . . , 4 appears as the
subindex of some Fijk .

We have 5 quotients of genus 1 that are the intersection of the two quadric
surfaces in P3 given by Fijk = 0 and Fijl = 0, where the i, j, k, l ∈ {0, . . . , 4}
are distinct. Note that these quotients are obtained by removing the variable Xn,

where n �= i, j, k, l. We denote by F
(n)
D this genus 1 curve.

These genus 1 curves do not always have rational points (except for F (3) :=F
(3)
D ).

Weierstrass models of the Jacobians of these genus 1 curves can be computed by

finding them in the case D = 1 (using that F
(i)
1 always has some easily found ra-

tional point), and then twisting by D. Using the labeling of Cremona’s tables ([11]
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and [12]), one can check that Jac(F
(0)
D ) (resp. Jac(F

(1)
D ), Jac(F

(2)
D ), Jac(F

(4)
D )) is

the D-twist of 24a1 (resp. 192a2, 48a3, 24a1) and Jac(F (3)) is 192a2. We denote

by E(0) (resp. E(1), E(2)) the elliptic curve 24a1 (resp. 192a2, 48a3) and by E
(i)
D

the D-twist of E(i), for i = 0, 1, 2. Observe also that E(2) = E
(0)
−1 , so E

(2)
D = E

(0)
−D.

Note that, in particular, we have shown the following result about the decom-
position of the Jacobian of CD in the Q-isogeny class.

Lemma 3.4. Let D be a square-free integer. Then

Jac(CD)
Q∼ (

E
(0)
D

)2 × E
(2)
D × E

(1)
D × E(1) .

4. Local solvability for the curve CD

The aim of this section is to describe under which conditions with respect to D
the curve CD has points in R and Qp for all prime numbers p.

Proposition 4.1. Let D be a square-free integer. Then CD has points in R and
in Qp for all primes p if and only if D > 0, D ≡ ±1 (mod5) and for all primes p
dividing D, p ≡ 1 (mod24).

This result is deduced from the following lemmas.

Lemma 4.2. Let D be a square-free integer. The curve CD has points in K, for
K = R, Q2, Q3 and Q5 if and only if D is a square in K. Explicitly, D > 0,
D ≡ 1 (mod8), D ≡ 1 (mod 3) and D ≡ ±1 (mod5), respectively.

Proof. First, suppose that D is a square over a field K. Then the curve CD

contains the sixteen points [1 : ±1 : ±1 : ±1/
√
D : ±1]. This shows one of the

implications. In order to show the other implication we will consider the different
fields separately. Suppose that CD(K) �= ∅.

If K = R, the equation F234 = 0 implies that 2DX2
3 = X2

2 + X2
4 , which has

solutions in K only if D > 0.
Consider now the case K = Q2. On one hand, the conic given by the equation

F123 = X2
1 − 2X2

2 +DX2
3 has points in Q2 if and only if (2,−D)2 = 1, where ( , )2

denotes the Hilbert symbol. This last condition is equivalent to D ≡ ±1 (mod8)
or D ≡ ±2 (mod16). On the other hand, making the same argument for the
equation F234 = X2

2 − 2DX2
3 + X2

4 we get the condition (−1, 2D)2 = 1, which
implies D ≡ 1 (mod4) or D ≡ 2 (mod8). So we get D odd and D ≡ 1 (mod8),
or D even and D ≡ 2 (mod 16). This last case is equivalent, modulo squares, to
the case D = 2 and it is easy to show that C2(Q2) = ∅.

If K = Q3, considering the reduction modulo 3 of the conic given by the
equation F023 = 0, we obtain that D �≡ −1 (mod3). Similarly, we have D �≡ 0
(mod 3) using F123 = 0.

Finally if K = Q5, one can show by an exhaustive search that there is no
point in CD(F5) if D ≡ ±2 (mod5). The case D ≡ 0 (mod 5) is handled by using
F123 = 0 modulo 5. �
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In the following we will study the remaining primes p > 5 in two separate cases,
depending on whether p divides D or not. The first observation is that the case
that p does not divide D corresponds to the good reduction case.

Lemma 4.3. Let p > 3 be a prime not dividing D. Then the model of CD given
by the equations F012, F123 and F234 has good reduction at p.

Proof. We use the Jacobian criterion. The Jacobian matrix of the system of equa-
tions defining CD is

A :=
(
∂Fi(i+1)(i+2)(Xi, Xi+1, Xi+2)/∂Xj

)
0≤i≤2,0≤j≤4

.

For any j1 < j2, denote by Aj1,j2 the square matrix obtained from A by deleting
the columns j1 and j2. Their determinants are

|Aj1,j2 | = kj1,j2 ·
∏

i�=j1,j2

Xi ,

where

k0,1 = 23D, k0,2 = −24D, k0,3 = 233, k0,4 = 25D, k1,2 = 23D,

k1,3 = −24, k1,4 = 233D, k2,3 = 23, k2,4 = −24D, k3,4 = 23.

Now, suppose we have a singular point of CD(Fp). Then, at this point, the
matrix Amust have rank less than 3, so all these determinants must be 0. However,
if p > 3 and p does not divide D, then all products of the three homogeneous
coordinates must be zero, so the point must have three coordinates equal to 0,
which is impossible if p > 3. �

Lemma 4.4. Let p >5 be a prime such that p does not divide D. Then CD(Qp) �=∅.
Proof. First, by Hensel’s lemma, and since CD has good reduction at p, we have
that any point modulo p lifts to some point in Qp. So we only need to show
that CD(Fp) �= ∅. Now, because of the Weil bounds, we know that �CD(Fp) >
p+ 1− 10

√
p. So, if p > 97, then CD(Fp) �= ∅ and we are done. For the primes p

satisfying 5 < p < 97, an exhaustive search proves the result. �

We suspect that there should be some reason, besides the Weil bound, that for
all primes p > 5 not dividing D, the curve CD has points modulo p, that should
be related to the special form it has or to the moduli problem it classifies.

Lemma 4.5. Let p > 3 be a prime dividing D. Then CD(Qp) �= ∅ if and only if
p ≡ 1 (mod24).

Proof. We will show that a necessary and sufficient condition for CD(Qp) �= ∅ is
that 2, 3 and −1 are squares in Fp. This happens exactly when p ≡ 1 (mod 24).
Note that this condition is sufficient since [

√
3 :

√
2 : 1 : 0 :

√−1] belongs to CD.
Suppose that we have a point in CD(Qp) given by a solution of the equa-

tions Fijk in projective coordinates [x0 : x1 : x2 : x3 : x4], with xi ∈ Zp, and such
that not all xi are divisible by p. The first observation is that only one of the xi
may be divisible by p; since if two of them, say xi and xj , are divisible by p, we
can use the equations Fijk in order to show that xk is also divisible, for any k.
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Now, reducing F123 modulo p, we obtain that 2 must be a square modulo p.
Reducing F234 modulo p we obtain that −1 must be a square modulo p. And
finally, reducing F034 = X2

0 − 4DX2
3 + 3X2

4 modulo p we obtain that 3 must be a
square modulo p. Hence the conditions are necessary. �

5. The rank condition

Let us begin by recalling the well-known 2-descent on elliptic curves, as explained
for example in Proposition 1.4 of Chapter X in [24]. Consider an elliptic curve E
over a number field K given by an equation of the form

y2 = x(x− e1)(x − e2) , with e1, e2 ∈ K.

Let S be the set of places of K including all archimedean places, all places divid-
ing 2, and all places at which E has bad reduction. Let K(S, 2) be the set of all
elements b in K∗/K∗2 such that ordv(b) is even for all v /∈ S. Given any (b1, b2) ∈
K(S, 2)×K(S, 2), define the curve Hb1,b2 as the intersection of two quadrics in P3

given by the equations

Hb1,b2 :

{
b1z

2
1 − b2z

2
2 = e1z

2
0 ,

b1z
2
1 − b1b2z

2
3 = e2z

2
0 .

Then the curves Hb1,b2 do not depend on the representatives, up to isomorphism,
and they have genus one with Jacobian E. Moreover, we have a natural degree
four map φb1,b2 : Hb1,b2 → E given by

φb1,b2(z0, z1, z2, z3) := (b1(z1/z0)
2, b1b2z1z2z3/z

3
0).

Moreover, the 2-Selmer group S(2)(E/K) of E may be identified with the subset

S(2)(E/K) =
{
(b1, b2) ∈ K(S, 2)×K(S, 2) |Hb1,b2(Kv) �= ∅ ∀v place in K

}
.

The group E(K)/2E(K) may be described, via the natural injective map ψ :
E(K)/2E(K) → S(2)(E/K) defined by

ψ(0) = (1, 1) and ψ((x, y)) =

⎧⎪⎨⎪⎩
(x, x− e1) if x �= 0, e1

(e2/e1,−e1) if (x, y) = (0, 0)

(e1, (e1 − e2)/e1) if (x, y) = (e1, 0)

as the subgroup consisting of (b1, b2) ∈ K(S, 2)×K(S, 2) such that Hb1,b2(K) �= ∅.
The following lemma is elementary by using the description above, and it is

left to the reader.

Lemma 5.1. Let H be a genus 1 curve over a number field K given by an equation
of the form

H :

{
b1z

2
1 − b2z

2
2 = e1z

2
0

b1z
2
1 − b1b2z

2
3 = e2z

2
0

for some b1, b2, e1, e2 ∈ K. Let D ∈ K∗ and consider the curves H
(1)
D , H

(2)
D

and H
(3)
D given by replacing z21 by Dz21 , z

2
2 by Dz22 and z23 by Dz23 respectively in
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the equations above. Then H
(1)
D , H

(2)
D and H

(3)
D are homogeneous spaces for the

elliptic curve ED, the twist by D of E, given by the Weierstrass equation y2 =
x(x −De1)(x−De2).

Moreover, if SD denotes the set of places of K including all archimedean places,
all places dividing 2D, and all places at which E has bad reduction, the curves

H
(1)
D , H

(2)
D and H

(3)
D correspond respectively to the elements (Db1, b2), (b1, Db2)

and (Db1, Db2) in K(SD, 2)×K(SD, 2).

Proposition 5.2. Let D > 0 be a square-free integer. A necessary condition for
the existence of 5 nontrivial squares in arithmetic progression over Q(

√
D) is that

the elliptic curves E
(0)
D and E

(2)
D given by the equations Dy2 = x(x+1)(x+4) and

Dy2 = x(x+1)(x+9) have rank 2 or more over Q, and that the elliptic curve E
(1)
D

given by the equation Dy2 = x(x + 2)(x+ 6) has positive rank.

Proof. Assume we have 5 nontrivial squares in arithmetic progression over Q(
√
D).

By using the results from Section 3, we can assume that such squares have the
form x20, x

2
1, x

2
2, Dx

2
3 and x24, with xi ∈ Z. The condition of being in arithmetic

progression is equivalent to x20 = a, x21 = a + q, x22 = a + 2q, Dx23 = a + 3q and
x24 = a + 4q for some a, q ∈ Z. From these equations we easily obtain that the
homogeneous spaces{

2(DX3)
2 − 3DX2

2 = −DX2
0

2(DX3)
2 − 6DX2

1 = −4DX2
0

and

{
2DX2

4 − 3(DX3)
2 = −DX2

1

2DX2
4 − 6DX2

2 = −4DX2
1

attached to E
(0)
D have rational points, which give (2, 3D) and (2D, 3) ∈ S(2)(E

(0)
D /Q)

by using Lemma 5.1. Since we are supposing both curves have points in Q, they

correspond to two points P1 and P2 in E
(0)
D (Q). In order to show these have infinite

orders, we only need to show that the symbols (2, 3D) and (2D, 3) are not in

ψ(E
(0)
D [2]) =

{
(1, 1), (4, 4D) = (1, D), (−D,−1), (−D,−D)

}
which is clear since D > 0. In order to show that P1 and P2 are independent
modulo torsion, it is sufficient to show that (2, 3D)(2D, 3) = (D,D) is not in

ψ(E
(0)
D [2]), which is again clear. So E

(0)
D (Q) has rank > 1.

The other conditions are used in a similar fashion. We have{
3DX2

4 − 4(DX3)
2 = −DX2

0

3DX2
4 − 12DX2

1 = −9DX2
0

and

{
3DX2

0 − 4DX2
1 = −DX2

4

3DX2
0 − 12D2X2

3 = −9DX2
4

which give (3D, 1) and (3D, 4D) = (3D,D) ∈ S(2)(E
(2)
D /Q), again giving two

independent points in E
(2)
D (Q).

Finally, we have

6DX2
4 − 2(2DX3)

2 = −2DX2
0 , 6DX

2
4 − 12DX2

1 = −6DX2
0

which gives (6D, 2) ∈ S(2)(E
(1)
D /Q), giving a non-torsion point in E

(1)
D (Q). �
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Remark 5.3. Suppose that D satisfies the conditions in Proposition 4.1, so that

CD(Qp) �= ∅ for all p. Then the root number of E
(0)
D and E

(2)
D is 1 independent

of D in both cases, and the root number of E
(1)
D is always −1. This is because the

root number of the twist by D of an elliptic curve E of conductor N , if N and
D ≡ 1 (mod 4) are coprime, is equal to the Kronecker symbol (D/ − N) times
the root number of E (see, for example, Section 4.3 of [23], which is deduced from
the corollary to Proposition 10 in [21]). In our case, assuming D satisfies the

conditions in Proposition 4.1, we obtain that the root number of E
(i)
D is equal to

the root number of E(i), since (D/−N) = 1 for N = 24, 48, 192.

Assuming the parity conjecture, this implies that the rank of E
(0)
D and E

(2)
D

is always even, and the rank of E
(1)
D is always odd. So the last condition in the

proposition is (conjecturally) empty.

5.1. Ternary quadratic forms

It has been shown in Proposition 5.2 that a necessary condition for the existence of
a nonconstant arithmetic progression of five squares over a quadratic field Q(

√
D)

is that the elliptic curves E
(0)
D and E

(2)
D have ranks ≥ 2. In this part, we describe

some explicit results concerning the ranks of these curves, thereby obtaining an
explicitly computable condition.

Remark 5.4. The elliptic curve E
(0)
D (resp. E

(2)
D ) parametrizes nonconstant arith-

metic progressions of four squares over Q(
√
D) (resp. Q(

√−D)) (cf. [17]). There-
fore, a necessary condition for the existence of a nonconstant arithmetic progression
of five squares over Q(

√
D) is the existence of a nonconstant arithmetic progression

of four squares over Q(
√
D) and over Q(

√−D).

UsingWaldspurger’s results and Shimura’s correspondence à la Tunnell, Yoshida

(see [30]) obtained several results on the ranks of E
(0)
D and E

(2)
D . In particular, we

apply his results for the D ≡ 1 (mod24) case to our problem.

Proposition 5.5. Let D be a square-free integer. If Q(x, y, z) ∈ Z[x, y, z] is a
ternary quadratic form, denote by r(D,Q(x, y, z)) the number of integer represen-
tations of D by Q. If

r(D, x2 + 12y2 + 15z2 + 12yz) �= r(D, 3x2 + 4y2 + 13z2 + 4yz)

or r(D, x2 + 3y2 + 144z2) �= r(D, 3x2 + 9y2 + 16z2),

then there are no nonconstant arithmetic progressions of five squares over Q(
√
D).

Proof. First, by Proposition 4.1 we have that D ≡ 1 (mod 24). Now, Yoshida
constructs two cusp forms of weight 3/2 denoted by Φ3,−3 and Φ1,1, such that
if we denote by aD(Φ3,−3) (resp. aD(Φ1,1)) the D-th coefficient of the Fourier
q-expansion of Φ3,−3 (resp. Φ1,1), we have

aD(Φ3,−3) = 0 if and only if L(E
(0)
D , 1) = 0,

aD(Φ1,1) = 0 if and only if L(E
(2)
D , 1) = 0.
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Then by the definition of these cusp forms we have

aD(Φ3,−3) = r(D, x2 + 12y2 + 15z2 + 12yz)− r(D, 3x2 + 4y2 + 13z2 + 4yz) ,

aD(Φ1,1) = r(D, x2 + 3y2 + 144z2)− r(D, 3x2 + 9y2 + 16z2) ,

which concludes the proof. �

Remark 5.6. For D = 2521, the conditions in Propositions 4.1, 5.2 and 5.5 are
fulfilled, and in fact all of the relevant genus 1 curves have rational points. But we
will show in Corollary 8.1 that C2521(Q) = ∅.

6. The Mordell–Weil sieve

In this section we develop a method to test when CD has no rational points based
on the Mordell–Weil sieve (see [22], [15], [20], [27], [7]).

The idea is the following: suppose we have a curve C defined over a number
field K together with a map φ : C → A to an abelian variety A defined over K.
We want to show that C(K) = ∅, and we know that φ(C(K)) ⊂ H ⊂ A(K),
where H is a certain subset of A(K). Let ℘ be a prime of K and consider the
reduction at ℘ of all the objects φ℘ : C℘ → A℘, together with the reduction maps
red℘ : A(K) → A(k℘), where k℘ is the residue field at ℘. Now, we have that
red℘(C(K)) ⊂ φ℘(C(k℘)) ∩ red℘(H), so

φ(C(K)) ⊂ H(℘) := red−1
℘

(
φ℘(C(k℘)) ∩ red℘(H)

)
.

After considering enough primes, it can occur that⋂
some primes ℘

H(℘) = ∅,

yielding that C(K) = ∅.
In our case, we consider the curve CD together with a map φ : CD → E(1),

where E(1) is the curve given by the Weierstrass equation y2 = x(x + 2)(x + 6).
The curve E(1) has Mordell–Weil group E(1)(Q) generated by the 2-torsion points
and P := (6, 24).

Lemma 6.1. Let D be a square-free integer, and consider the curve CD, together
with the map φ : CD → E(1) defined by

φ([x0 : x1 : x2 : x3 : x4]) :=
(6x20
x24

,
24x0x1x2

x34

)
.

Let P := (6, 24) ∈ E(1)(Q). Then

φ(CD(Q)) ⊂ H := {kP | k odd}.
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Proof. This lemma is an easy application of the 2-descent method. The map φ is
the composition of two maps. First, the forgetful map from CD to the genus one
curve in P3 given by the equations{

F014 := 3X2
0 − 4X2

1 +X2
4 = 0,

F024 := X2
0 − 2X2

2 +X2
4 = 0,

given by sending [x0 : x1 : x2 : x3 : x4] to [x0 : x1 : x2 : x4]. Multiplying F014 by 2
and F024 by 6 we obtain the equations{

6X2
0 − 2(2X1)

2 = −2X2
4 ,

6X2
0 − 12X2

2 = −6X2
4

of a 2-descendent. The second map is the corresponding 4-degree map φ6,2 from
these curves to E(1) given by the equations above, and determines that the ele-
ment (6, 2) is contained in S(2)(E(1)/Q), so φ(CD(Q)) is contained in the subset
of elements (x, y) of E(1)(Q) with ψ((x, y)) := (x, x + 2) = (6, 2) in Q∗/(Q∗)2.
However, P := (6, 24) ∈ E(1)(Q) is a generator of E(1)(Q)/E(1)(Q)[2], and has
ψ(6, 24) = (6, 2), hence any such point (x, y) is an odd multiple of P . �

For any prime q, we will denote by H
(q)
D ⊂ H the subset corresponding to

H
(q)
D := red−1

q

(
φq(CD(Fq)) ∩ redq(H)

)
.

First, consider the reduction modulo a prime q dividing D, so a prime of bad
reduction. Suppose we have a point [x0 : x1 : x2 : x3 : x4] of CD, so x20, x

2
1, x

2
2,

Dx23 and x24 are coprime integers in arithmetic progression. By reducing modulo q
one gets that x20, x

2
1, x

2
2, 0 and x24 are in arithmetic progression modulo q, so, after

dividing by x24, we may suppose that the arithmetic progression is −3,−2,−1, 0, 1.

Proposition 6.2. Let q > 3 be a prime number dividing D. Then

H
(q)
D =

{
kP | k odd and x(kP ) ≡ −18 (mod q)

}
,

and H
(q)
D is independent of D.

Proof. This is an easy application of the ideas above. Since the only points in the
reduction of CD are the ones having x20 = −3, x21 = −2, x22 = −1 and x24 = 1,
the set φq(CD(Fq)) contains at most the two points having x-coordinate equal to
6(−3) = −18. �

Corollary 6.3. Suppose that q > 3 is a prime number such that redq(H) contains
a point Q with x(Q) ≡ −18 (mod q). Then infinitely many pairs of square-free
integers D and primitive tuples [x0 : x1 : x2 : x3 : x4] ∈ CD(Q) exist, such that
either q divides D or x3 ≡ 0 (mod q) .

Proof. Let Oq be the order of P modulo q, and let k be such that x(kP ) ≡
−18 (mod q). Then x(k′P ) ≡ −18 (mod q) for all k′ ≡ k (modOq). So, if k is odd
or Oq is odd, H(q) has infinitely many elements. For any point Q ∈ H(q), we have
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that x(Q) = 6z2, for certain z ∈ Q, such that z2 ≡ −3 (mod q). Write z = a/b with
a and b ∈ Z and coprime. Then, if we denote by r := (a2 − b2)/4, then r ∈ Z and
xi := a2+ ir are squares for i = 0, 1, 2 and 4, and a2+3r ≡ 0 (mod q). Define D as
the square-free part of a2 + 3r, and we obtain the result by defining x3 such that
a2 + 3r = Dx23. �

Observe, however, that we do not obtain that Cq(Q) �= ∅ for the primes sat-
isfying the hypothesis of the previous corollary. For example, the prime q = 457
satisfies the conditions of the corollary, but we will show that C457(Q) = ∅.

Now we will consider primes q > 3 that do not divide D, and are hence good
reduction primes. We will obtain conditions depending on D being a square or not
modulo q.

Proposition 6.4. Let q > 3 be a prime number that does not divide D. Then H
(q)
D

⊂ E(1)(Q) depends only on the Legendre symbol (D/q). If we denote by H(q),(D/q)

the subgroup corresponding to any (D/q), and by Oq the order of P ∈ E(1)(Q)

modulo q, we have that there are subsets M
(q)
1 and M

(q)
−1 of Z/OqZ such that

H(q),(D/q) =
{
kP | k odd and ∃m ∈M

(q)
(D/q) such that k ≡ m (modOq)

}
.

Moreover, 1 ∈M
(q)
1 for any q > 3, and if k ∈M

(q)
(D/q), then −k ∈M

(q)
(D/q).

Proof. First we show that H
(q)
D only depends on (D/q). Suppose that D ≡ D′a2

(mod q), for some a �= 0 ∈ Fq. Then the morphism given by θ([x0 : x1 : x2 : x3 :
x4]) = [x0 : x1 : x2 : x3a

2 : x4] determines an isomorphism between CD′ and CD

defined over Fq, clearly commuting with φ, which does not depend on x3.

In order to defineM
(q)
(D/q), one computes φq(CD(Fq)) and then intersects it with

the subset {kP | k odd } of E(1)(Fq). Then

M
(q)
(D/q) :=

{
k ∈ Z/OqZ | kP ∈ φq(CD(Fq))

}
.

Hence k belongs toM
(q)
(D/q) if there is someQ := [x0 : x1 : x2 : x3 : x4] ∈ CD(Fq)

such that φ(Q) = kP . But then φ([−x0 : x1 : x2 : x3 : x4]) = −kP .
Finally, if (D/q) = 1, we can suppose D ≡ 1 (mod q). But then Q0 := [1 : 1 :

1 : 1 : 1] ∈ CD(Fq), and φ(Q0) = P . �

The following table shows some examples of M
(q)
±1 for 5 < q < 30 prime.

q Oq M
(q)
1 M

(q)
−1

7 6 {±1} {3}
11 8 {±1} {±3}
13 6 {±1} {3}
17 6 {±1, 3} { }
19 8 {±1} {±3}
23 3 {1, 2, 3} { }
29 16 {±1} {±3,±5,±7}
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We are going to use the previous result to obtain conditions on D.

Corollary 6.5. If CD(Q) �= ∅ then D satisfies the following conditions:

(i) D is a square modulo 17, 23, 41, 191, 281, 2027, and 836477.

(ii) (D/7) = (D/13), (D/11) = (D/19) = (D/241), (D/47) = (D/73),
(D/149) = (D/673), (D/43) = (D/1723), (D/175673) = (D/2953),
(D/97) = (D/5689) = (D/95737), (D/577) = (D/2281),
(D/83) = (D/4391) = (D/27449), (D/67) = (D/136319),
(D/2111) = (D/2521).

(iii) If (D/29)=1 then (D/11)=1. If (D/149)=1 then (D/31)=1. If (D/7019)
= 1 then (D/8123) = 1. If (D/617) = 1 then (D/37) = 1, and in this case
(D/7) = 1.

(iv) If (D/83) = −1 then (D/11) = −1. If (D/2347) = −1 then (D/47) = −1.
If (D/10369) = −1 then (D/47) = −1.

Proof. We have computed the sets M
(q)
1 and M

(q)
−1 for q < 106 and Oq ≤ 200. The

algorithm to obtain the conditions for the statement is as follows: fix an integer
k ≤ 200 and compute the primes q such that Oq = k and 5 < q < 106. For

these primes compute M
(q)
1 and M

(q)
−1 . If M

(q)
−1 is empty, then (D/q) = 1 and we

obtain (i). If these sets are equal for different primes, then we obtain (ii). Now,
for any integer m > 1 such that mk ≤ 200, compute the primes p < 106 such that

Op = mk. Compute M
(p)
1 and M

(p)
−1 . Now check if M

(p)
1 (resp. M

(p)
−1 ) mod k is

equal to some of the sets M
(q)
1 (resp. M

(q)
−1 ) computed above. If this occurs, then

we obtain the rest of the conditions.
For example, looking at the previous table we see that M

(17)
−1 = {}, therefore

(D/17) = 1. Now, O7 = O13, M
(7)
1 = M

(13)
1 and M

(7)
−1 = M

(13)
−1 so we have

(D/7) = (D/13). Finally, O29 = 2O11 and M
(29)
1 mod O11 is equal to M

(11)
1 and

then we obtain that if (D/29) = 1 then (D/11) = 1. �

7. Computing all the points for D = 409

We want to find all the rational points of the curve CD when we know there are
some. We will concentrate at the end on the case D = 409, which is the first num-
ber that passes all of the tests (see Corollary 8.1), but in most of the section we can
suppose thatD is any prime integer fulfilling the conditions in Proposition 4.1. Ob-
serve first that we do have the 16 rational points [±7,±13,±17, 1,±23] ∈ C409(Q).
Our aim is to show that there are no others.

In recent years, some new techniques have been developed for computing all
the rational points of a curve of genus greater than one over Q. These techniques
work only under some special hypotheses. For example, Chabauty’s method (see
[8], [9], [14], [26], [27], [19]) can be used when the Jacobian of the curve has rank
less than the genus of the curve, or even when there is a quotient abelian variety of
the Jacobian with rank less than its dimension. In our case, however, the Jacobian
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of the curve CD is isogenous to a product of elliptic curves, each with rank at
least one (in fact, the Jacobian of CD must have rank ≥ 8 by Proposition 5.2).
So we cannot apply this method. Other methods, like the Dem’janenko–Manin’s
method [13], [18], cannot be applied either. We will instead apply the covering
collections technique, as developed by Coombes and Grant [10], Wetherell [28]
and others, and specifically a modification of what is now called the elliptic curve
Chabauty method developed by Flynn andWetherell in [16] and by Bruin in [5], [4].

The idea is as follows: suppose we have a curve C over a number field K and
an unramified map χ : C ′ → C of degree greater than one, and defined over K.
We consider the distinct unramified coverings χ(s) : C′(s) → C formed by twists of
the given one, and we obtain that

C(K) =
⋃
s

χ(s)(C′(s)(K)),

the union being disjoint. In fact, only a finite number of twists do have rational
points, and the finite (larger) set of twists with points locally everywhere can be
explicitly described. Now one hopes to be able to compute the rational points of
all the curves C′(s), and therefore also of the curve C.

We will consider degree 2 coverings of CD. To construct such coverings, we will
use the description given by Bruin and Flynn in [6] of the 2-coverings of curves
which are 2-coverings of the projective line. In our case, CD is not of such form,
but a quotient of CD is of this form. Therefore we will use a 2-covering for such
a quotient. Specifically, we will use one of the five genus 1 quotients, particularly
the quotient

F
(4)
D : DX2

3 = t4 − 8t3 + 2t2 + 8t+ 1 ,

along with the forgetful map φ(4) : CD −→ F
(4)
D given by t = (X0 −X1)/(X2 −X1).

Observe first that the curve CD has Q-defined automorphisms τi of order 2
defined by τi(xj) = xj if j �= i, τi(xi) = −xi. These, together with their com-
positions, generate a subgroup Υ of the automorphisms isomorphic to (Z/2Z)4.
For every Q-defined point of CD, composing with these automorphisms gives 16
different points. Given Q ∈ CD(Q), we denote by TQ the set of these 16 different
points. Observe that φ(4)(TQ) is formed by 8 distinct points.

Lemma 7.1. The involutions τ0, τ1, τ2 and τ3 give rise to the following involutions

on F
(4)
D :

τ0(t,X3)=
(1− t

1 + t
,

2X3

(1 + t)2

)
, τ1(t,X3)=

(−1

t
,
X3

t2

)
, τ2(t,X3)=

( t+ 1

t− 1
,

2X3

(t− 1)2

)
,

and τ3(t,X3) = (t,−X3). Moreover, if F
(4)
D (Q) �= ∅ and ψ : F

(4)
D → E

(0)
D is an

isomorphism, then the involutions of E
(0)
D given by εi := ψτiτ3ψ

−1 for i = 0, 1, 2,
are independent of ψ. Specifically, εi = εRi for R0 = (0, 0), R1 = (−D, 0) and

R2 = (−4D, 0), where εQ denotes the translation by Q ∈ E
(0)
D .
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Proof. Checking the formulae for the involutions on F
(4)
D is a straightforward com-

putation.
First, we show that the involutions εi are independent of the fixed isomor-

phism ψ. In order to show this, recall that, in any elliptic curve, any involu-
tion ε that has no fixed points must be of the form εR(S) = S + R, for a fixed

2-torsion point R. Since τiτ3 has no fixed points in F
(4)
D , the corresponding involu-

tion εi in E
(0)
D must be equal to some εRi , hence, determined by the corresponding

2-torsion point Ri, which is equal to εi(0). Now, replacing the isomorphism ψ

from F
(4)
D to E

(0)
D is equivalent to conjugating εi by a translation εQ of E

(0)
D with

respect to a point Q in E
(0)
D , so, in principle we obtain a new involution ε−QεiεQ,

again without fixed points. But ε−QεiεQ(0) = ε−Q(εi(Q)) = ε−Q(Q+Ri) = Ri, so
ε−QεiεQ = εi.

Second, since εi is independent of the chosen isomorphism ψ, and also does
not depend on the field K, we can work out with a field K ′ := K(

√
D) where

we have F
(4)
D

∼= F
(4)
1 , so the proof is reduced to the case D = 1. In this case, a

simple computation by choosing some point in F
(4)
1 (Q) shows that εi = εRi where

R0 = (0, 0), R1 = (−1, 0) and R2 = (−4, 0) in E
(0)
1 , which gives the result when

we translate these points to the curve E
(0)
D . �

Now, we want to construct some degree two unramified coverings of F
(4)
D . All

these coverings are, in this case, defined over Q, but we are interested in special
equations not defined overQ. The idea is simple: first, write the polynomial q(t) :=
t4−8t3+2t2+8t+1 as the product of two degree 2 polynomials (over some quadratic
extensionK). In the rest of this section, we will denoteK := Q(

√
2). Then we have

the factorization q(t) = q1(t)q2(t) over K where q1(t) := t2 − (4+ 2
√
2)t− 3− 2

√
2

and q2(t) := q1(t), where z denotes the Galois conjugate of z ∈ K over Q. We
could have chosen other factorizations over other quadratic fields, but this one is
especially suitable for our purposes as we will show in the sequel. Then, for any
δ ∈ K, the curves F ′

δ defined in A3 by the equations

F ′
δ :

{
δy21 = q1(t)= t2 − (4 + 2

√
2)t− 3− 2

√
2

(D/δ)y22 = q2(t)= t2 − (4− 2
√
2)t− 3 + 2

√
2

along with the map νδ that gives X3 = y1y2 are all the twists of an unramified

degree two covering of F
(4)
D . Observe that, for any δ and δ′, such that δδ′ is a square

in K, we have an isomorphism between F ′
δ and F ′

δ′ . So we only need to consider
the δ’s modulo squares. This also means that we can suppose that δ ∈ Z[

√
2].

However, only very few of them are necessary in order to cover all the rational

points of F
(4)
D . A method to show this type of result is explained in [6], but we

will follow a different approach.

Lemma 7.2. Let D > 3 be a prime number such that F
(4)
D (Q) �= ∅. Let α ∈ Z[

√
2]

be such that να(F
′
α(K)) ∩ F (4)

D (Q) �= ∅. Then

F
(4)
D (Q) ⊂ να(F

′
α(K)) ∪ να(F ′

α(K)) ∪ ν−α(F
′
−α(K)) ∪ ν−α(F

′
−α(K)).
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Moreover, for any Q ∈ CD(Q), either

φ(4)(TQ) ∩ να(F ′
α(K)) �= ∅ or φ(4)(TQ) ∩ ν−α(F

′
−α(K))) �= ∅.

Proof. Observe that, for any point P ∈ F
(4)
D , an easy calculation shows that

q1(t(τ0(P ))) =
2

(1 + t(P ))2
q1(t(P )) and q1(t(τ1(P ))) = − (1 +

√
2)2

(t(P ))2
q2(t(P )),

where t(R) denotes the t-coordinate of the point R. This implies that, if P is in

να(F
′
α(K)) ∩ F (4)

D (Q), then τ0(P ) and τ3(P ) also are, and τ1(P ) and τ2(P ) are in

ν−α(F
′
−α(K)) ∩ F (4)

D (Q). This last fact shows the last assertion of the lemma.

Now, using a fixed point P ∈ F
(4)
D (Q), we choose α ∈ Z[

√
2] such that P ∈

να(F
′
α(K)), and an isomorphism ψP of F

(4)
D with Jacobian E := E

(0)
D , by send-

ing P to 0 (this isomorphism is determined, modulo signs, by this fact). Via
this isomorphism, one can identify the degree two unramified covering να with
a degree two isogeny ν̃ : E′ → E. Recall that E has the Weierstrass equation
y2 = x3 + 5Dx2 + 4D2x, and that the degree two isogenies are determined by a
nontrivial 2-torsion point.

By Lemma 7.1, we have ψP (τ0τ3(P )) = ε(0) = (0, 0). But τ0τ3(P ) also belongs
to να(F

′
α(K)), and hence (0, 0) must be in ν̃(E′(Q)), thereby determining the

isogeny as the one corresponding to (0, 0).
Now we use the standard descent via a 2-isogeny. One obtains that the quo-

tient E(Q)/ν̃(E′(Q)) is mapped injectively to the subgroup of Q∗/(Q∗)2 generated
by −1 and the prime divisors of 4D2. Since D is prime, the only possibilities
are −1, 2 and D, which become only −1 and D over K∗/(K∗)2. Hence, we need
only four twists of ν̃ over K in order to cover all the points of E(Q). Note that the
twist corresponding to 1 is identified with να. To find the twist corresponding to −1
one can argue in the following way: when replacing the field K with K(

√−1), −1
becomes equal to 1 modulo squares and not to D or −D, and the same applies to α
and −α. Hence −1 is identified with ν−α. A similar argument, but postulating
that αα is equal to D modulo squares in K, shows that D corresponds to να. �

In order to obtain some coverings of CD from these coverings of F
(4)
D we

write CD in a different form, the one given by the following equations in A3:

(7.1) CD :
{
DX2

3 = q(t), X2
4 = p(t)

}
,

where p(t) = t4 − 12t3 +2t2 +12t+1. Then, Lemma 7.2 implies that any rational
point of CD, modulo the automorphisms in Υ, comes from a point in K of one of
the curves C′

δ, with δ = α or δ = −α, given by the following equations in A4:

C′
δ :

{
δy21 = q1(t), (D/δ)y

2
2 = q2(t), X

2
4 = p(t)

}
(and, moreover, with t ∈ Q) by the natural map μδ. Observe, before continuing,
that any rational point in CD comes from a point in the affine part in the previous
form, which is singular at infinity, since D is not a square in Q.
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Now we consider the hyperelliptic quotient Hδ of the curve C′
δ, which can be

described by the equation

Hδ : δW 2 = q1(t)p(t),

where the quotient map η is determined by saying that W = y1X4.
The proof of the following lemma is a simple computation.

Lemma 7.3. Let Eδ be the elliptic curve defined by the equation

Eδ : δy2 = x3 + 5
√
2x2 − x.

Then, the equation

ϕ : Hδ → Eδ , ϕ(t,W ) =
(−2(−3 + 2

√
2)q1(t)

(t−√
2 + 1)2

,
3(−4 + 3

√
2)W

(t−√
2 + 1)3

)
determines a nonconstant morphism from the genus 2 curve Hδ to Eδ.

Remark 7.4. The group of automorphism of the genus 2 curve Hδ is generated
by a non-hyperelliptic involution τ and by the hyperelliptic involution ω. Then,
we have that the elliptic curve Eδ is Hδ/〈τ〉. The other elliptic quotient E′

δ is
obtained by τω; that is, E′

δ = Hδ/〈τω〉. It is easy to compute that E′
δ : δy2 =

x3 + 9
√
2x2 − 81x. Therefore, Jac(Hδ) is Q(

√
2)-isogenous to Eδ ×E′

δ. Moreover,
E1 and E′

1 are Q(
√
2)-isomorphic respectively to 384f2 and 384c2 in Cremona’s

tables, so Eδ and E′
δ are δ-twists of them.

Remark 7.5. The fact that Hδ has an elliptic quotient defined over K is the
main reason we consider these specific 2-coverings of CD. If we carry out the

same arguments with other 2-coverings, coming from 2-coverings of F
(4)
D or from

2-coverings of other genus 1 quotients F
(i)
D , we will not obtain such a quotient

defined over a quadratic extension of Q.

In the following proposition we will determine a finite subset of Eδ(K) contain-
ing the image of the points Q in Cδ(K) such that μδ(Q) ∈ CD(Q).

Proposition 7.6. Let D > 3 be a prime number such that CD(Q) �= ∅. Consider
P ∈ CD(Q). Then τ ∈ Υ exists such that τ(P ) = μδ(Q) for δ = α or δ = −α, with
Q ∈ C′

δ(K). Let R := ϕ(η(Q)) ∈ Eδ(K) be the corresponding point in Eδ. Then

R ∈
{
(x, y) ∈ Eδ(K)

∣∣ π(x, y) := 2(−4 + 2
√
2− x(1 −√

2))

(6− 4
√
2− x)

∈ Q
}
.

Proof. Part of the lemma is a summary of what we have proved in lemmas above.
Only the last assertion needs a proof. Suppose we have a point Q ∈ C′

δ(K) such
that μδ(Q) ∈ CD(Q). Then the t-coordinate of Q is in Q, since μδ leaves the
t-coordinate unchanged. This implies that the x-coordinate of R := ϕ(η(Q)), that

is −2(−3+2
√
2)q1(t)

(−1+
√
2−t)2

, must come from a rational number t. This again implies that

the sum of the t-coordinates of the two preimages of R is a rational number, but
this sum can be expressed in the x-coordinate of R as π(x, y). �
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The following diagram illustrates all the curves and morphisms involved in our
problem:

C′
δ

μδ η

CD

φ(4)

Hδ

ϕ

F
(4)
D F ′

δ

νδ
Eδ

π
P1

Hence, to find all the points in CD(Q), it is enough to find all the points (x, y)
in Eδ(K) such that π(x, y) ∈ Q for δ = α or δ = −α. But this is what the
so-called elliptic curve Chabauty method does, if the rank of the group of points
Eδ(K) is less than or equal to 1. And this seems to be the case in the cases we are
considering.

Example 7.7. Let us consider the case D = 409. The 16 points [±7,±13,±17, 1,

±23] give the 8 points in F
(4)
409 with t ∈ {−3/2,−5, 2/3, 1/5}. Take α := 21 + 4

√
2,

which satisfies the hypothesis of Lemma 7.2. Then the 8 points in C409 with
t = −3/2 and t = −5 come from the 16 points in C′

α given by [t, y1, y2, X4] =
[−3/2,±1/2,±1/2,±23/4] and [−5,±√

2,±√
2,±46] respectively, which in turn

give the 4 points in Hα given by [t,W ] = [−3/2,±23/8] and [−5,±46
√
2]. Finally,

these 4 points give the following 2 points Eα:(−2

49
(−663 + 458

√
2),± 69

343
(−232 + 163

√
2)
)
.

The other points with t = 2/3 and t = 1/5 give rise to points in E−α(K), as shown
in Lemma 7.2. We will show that these points in Eα(K) are the only points R
with π(R) ∈ Q, and that there are no such points in E−α(K).

7.1. The elliptic curve Chabauty method

In order to apply the elliptic curve Chabauty technique [5], [4], we first need to fix
a rational prime p such that p is inert over K and Eδ has good reduction over p.
The smallest such prime satisfying our conditions is p = 5, since by Proposition 4.1
we have D ≡ ±1 (mod 5). Denote by Ẽδ the reduction modulo 5 of Eδ, which is an
elliptic curve over F25 := F5(

√
2). Then the elliptic curve Chabauty method will

allow us to bound, for each point R̃ in Ẽδ(F25), the number of points R in Eδ(K)

reducing to the point R̃, and such that π(R) ∈ Q, if the rank of the group of points
Eδ(K) is less than or equal to 1. In the next lemma we will show that, in fact, we

only need to consider four (or two) points in Ẽδ(F25), instead of all 32 points.

Lemma 7.8. Let D be a square-free integer such that D ≡ ±1 (mod5), and let δ ∈
Z[
√
2] and Q ∈ C′

δ(K) be such that μδ(Q) ∈ CD(Q). Let R := ϕ(η(Q)) ∈ Eδ(K)
be the corresponding point in Eδ. Then π(R) ≡ −1 (mod5) or π(R) ≡ ∞ (mod 5).
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Moreover, if the rank of the group of points Eδ(K) is equal to 1, the torsion
subgroup has order 2, and the reduction of the generator has order 4, then only one
of the two cases can occur.

Proof. We repeat the whole construction of the coverings, but modulo 5. First,
observe that, since D ≡ ±1 (mod5), the only F5-rational points of C̃D are the ones
with coordinates [±1 : ±1 : ±1 : 1 : ±1]. So the t-coordinates of these points
are t = 0, 1, 4 and ∞. Substituting these values in q1(t) modulo 5, we always
obtain squares in F25. This implies that the twists of the curves involved are all
isomorphic modulo 5 to the curves with δ = 1.

Consider the curve H̃1 over F25. A simple computation shows that the only
points in H̃1 whose t-coordinates are F5-rational are the points with t = 0, t = 1
and the two points at infinity. Now, the images under ϕ in Ẽ1 of these points are
equal to the points with x-coordinate equal to −ξ = −1 +

√
2 in the first two

cases, and equal to ξ = 1 +
√
2 for the points at infinity. In the first case we have

π(−1+
√
2) ≡ −1 (mod5), and in the second case we have π(1+

√
2) ≡ ∞ (mod 5).

Now, the curve Ẽ1, given by the equation y2 = x3 + 4x, has 32 rational points
over F25, and Ẽ1(F25) ∼= Z/4Z⊕Z/8Z as abelian group, with generators points P4

and P8 with x-coordinates equal to ξ = 1 +
√
2 and

√
2ξ = 2 +

√
2 respectively.

We then obtain that{
R ∈ Ẽ1(F25) |π(R) = ∞}

=
{
P4,−P4

}
and {

R ∈ Ẽ1(F25) |π(R) = −1
}
=

{
2P8 + P4,−2P8 − P4

}
.

Now, if the rank of the group of points Eδ(K) is less than or equal to 1, the torsion
subgroup has order 2, and the reduction of the generator has order 4, then the
reduction of Eδ(K) is a subgroup of Ẽ1(F25) isomorphic to Z/4Z⊕Z/2Z. However,
the subgroup generated by P4 and 2P8 + P4 is isomorphic to Z/4Z ⊕ Z/4Z, and
therefore the reduction cannot contain both points. �

In order to use the elliptic curve Chabauty method, it is advisable to transform
the equation that gives Eδ into a Weierstrass equation, by employing the standard
transformation sending (x, y) to (δx, δy). We obtain the equation

y2 = x3 + 5
√
2δx2 − δ2x.

Abusing notations, we will denote this elliptic curve by Eδ. Moreover, the map π
becomes the map f : Eδ → P1, given by

f(x) :=
(2
√
2− 2)x+ δ(4

√
2− 8)

δ(−4
√
2 + 6)− x

.

Let us explain first the idea of the elliptic curve Chabauty method. For a
given D, we fix a δ = α or δ = −α, and we want to compute the set

Ωδ :=
{
Q ∈ Eδ(K) | f(Q) ∈ Q and f(Q) ≡ −1,∞ (mod5)

}
.

As we have already remarked, we need first to compute the rank of the groupEδ(K),
which should be less than or equal to one. We will also need to know explicitly the
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the torsion subgroup of this group, and some non-torsion point if the rank is 1,
which is not an �-multiple of a K-rational point for some primes � to be determined
(in our cases, they will occur only � = 2). In the cases where we already know some
points in Eδ(K), those coming from the known points in CD(Q), we will show that
those points are non-torsion points.

We have two cases to consider. The first such case is when we do not know
any point R ∈ Eδ(K) such that f(R) ∈ Q. In such a case we show that Ωδ = ∅ by

proving that the reduction of the group Eδ(K) does not contain any point Q̃ such

that f̃(Q̃) ∈ F5. We do this for the two cases in the following lemma.

Lemma 7.9. Take D = 409 and α = 21 + 4
√
2. Then the elliptic curves Eα and

E−α have rank 1 over K and torsion subgroup isomorphic to Z/2Z (generated by
the point (0, 0)). The points P = ((−30

√
2 − 43)/2, (759

√
2 + 1104)/4) in Eα(K)

and the point P ′ ∈ E−α(K) with x-coordinate equal to

29769295809708
√
2 + 42339835565318

4185701809
,

generate the free part of the corresponding Mordell–Weil group.
Moreover, if R ∈ Ω−α then f(R) ≡ ∞ (mod 5) and if R ∈ Ωα then f(R) ≡

−1 (mod5).

Proof. The first part of the previous statement was obtained by using the MAGMA

function DescentInformation. For our elliptic curves Eα and E−α, this function
has unconditionally computed that the rank of both elliptic curves is 1, and it has
returned the generators of these Mordell–Weil groups.

The last assertions are shown by proving that the subgroup generated by the
reduction modulo 5 of the point P ′ and the point (0, 0) does not contain any point

with image by f̃ equal to −1, and that the subgroup generated by the reduction
modulo 5 of the point P and the point (0, 0) does not contain any point with image

by f̃ equal to ∞. These last two cases are in fact instances of the previous lemma,
since the reductions of the points P and P ′ have order 4. �

Now, in order to show that Ω−α is, in fact, empty, we need to use information
from some other primes. This is what we do in the following lemma.

Lemma 7.10. Take D = 409 and α = 21 + 4
√
2. Then Ω−α = ∅.

Proof. By using reduction modulo 5, we obtain that any point R in Ω−α must be
of the form R = (4n + 1)P ′ + (0, 0) for some n ∈ Z, since it must reduce to the

point P̃ ′ + T , and the order of P̃ ′ is 4.
Now we reduce modulo 13. One shows easily that the order of P ′ modulo 13 is

equal to 24, and that the points R ∈ E−α(K) such that f(R) ∈ P1(Q) reduce to the
points 6P ′ or 12P ′+(0, 0). Hence the points R must be of the form R = (24n+6)P ′

or (24n+ 12)P ′ + (0, 0). Comparing with the result obtained from the reduction
modulo 5, we obtain the result that there is no such point. �
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The second case is where we already know some points R ∈ Ωδ. Then our
objective will be to show there are no more, by showing that the set

Ωδ,R :=
{
Q ∈ Eδ(K) | Q ∈ Ωδ and Q ≡ R (mod 5)

}
only contains the point R. This is done by translating the problem of computing
the number of points in Ωδ,R into a problem of computing the number of p-adic
zeros of some formal power series, and using Strassmann’s theorem to do so.

Proposition 7.11. Take α = 21 + 4
√
2, and consider the point

R =
(−2

49
(−663 + 458

√
2)α,

69

343
(−232 + 163

√
2)α2

)
.

Then

Ωα =
{
Q ∈ Eα(K) | f(Q) ∈ Q and f(Q) ≡ −1 (mod5)

}
=

{
R,−R}.

Proof. First observe that the order of the reduction of P modulo 5 is 4. Also, any
point R′ in Ωα reduces modulo 5 to one of the points ±R, so it is of the form
±R + 4nP . We are going to prove there is only one point in Ωα reducing to R,
and we deduce the other case by using the −1-involution.

Observe that any point in Eα(K) that reduces to 0 modulo 5 is of the form
4nP for some n ∈ Z. We are going to compute the z-coordinate of such points,
where z = −x/y if P = (x, y), as a formal power series in n. Denote by z0 the
z-coordinate of 4P . The idea is to use the formal logarithm logE and the formal
exponential expE of the formal group law associated to Eα. These are formal
power series in z, one inverse to the other insofar as the composition is concerned,
and such that

logE
(
z-coord(G+G′)

)
= logE

(
z-coord(G)

)
+ logE

(
z-coord(G′)

)
for any G and G′ reducing to 0 modulo 5, and where the power series are evaluated
in the completion of K at 5. Thus, we obtain that

z-coord(n(4P )) = expE(n logE(z0)),

which is a power series in n.
Now, we are going to compute f(R + 4nP ) as a power series in n. To do so,

we use that, by the addition formulae,

x-coord(R+G) =
w(z)(1 + y0w(z))

2 − (a2w(z) + z + x0w(z))(z − x0w(z))
2

w(z)(z − x0w(z))2

where R = (x0, y0), a2 = 5
√
2α, z is the z-coordinate of a point G reducing to 0

modulo 5, and w(z) = −1/y evaluated as a power series in z. This function is
a power series in z, starting as x-coord(R + G) = x0 + 2y0z + (3x20 + 2a2x0 +
a4)z

2 + O(z3), where a4 = −α2 = y2/x − (x2 + 5
√
2αx). Hence we obtain that

f(R+4nP ) = f(x-coord(R+n(4P )) can be expressed as a power series Θ(n) in n
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with coefficients in K. We express this power series as Θ(n) = Θ1(n) +
√
2Θ2(n),

with Θi(n) now being a power series in Q. Then f(R+ 4nP ) ∈ Q for some n ∈ Z
if and only if Θ2(n) = 0 for that n. Observe also that, since f(R) ∈ Q, we will
obtain that Θ2(0) = 0, so Θ2(n) = j1n + j2n

2 + j3n
3 + · · · . To conclude, we will

use Strassmann’s theorem: if the 5-adic valuation of j1 is strictly smaller than the
5-adic valuation of ji for any i > 1, then this power series has only one zero at Z5,
and this zero is n = 0. In fact, one can easily show that this power series satisfies
that the 5-adic valuation of ji is always greater or equal to i, so, if we show that
j1 �≡ 0 (mod 52) we have concluded.

In order to do all this explicitly, we will work modulo some power of 5. In
fact, working modulo 52 will be sufficient. We have that z0 = z-coord(4P ) ≡
−10

√
2 + 5 (mod52), and that z-coord(n(4P )) ≡ (15

√
2 + 5)n (mod 52). Finally,

we obtain that Θ(n) ≡ 19 + (15
√
2 + 20)n (mod52), hence Θ2(n) ≡ 15n (mod52),

so j1 ≡ 15 (mod52) which completes the proof. �

An alternative way of proving this result is to use the built-in MAGMA function
Chabauty. The answer is that there are only 2 points R′ in Eα(K) such that
f(R′) ∈ Q, both having f(R′) = 13/2. Since we already have two points ±R, both
giving f(R) = 13/2, we are done.

8. Explicit computations and conjectures

We have followed two different approaches to compute for which square-free inte-
gers D there are nonconstant arithmetic progressions of five squares over Q(

√
D).

On the one hand, for each D we have checked if D passes all the sieves from the
previous sections, obtaining the following result.

Corollary 8.1. Let D < 1013 be a square-free integer such that CD(Q) �= ∅, then
D = 409 or D = 4688329.

Proof. First, for each D we have checked all the local conditions (Proposition 4.1)
and the conditions coming from the Mordell–Weil sieve (Corollary 6.5). Only 1048
values of D have passed these sieves. To discard all the values except D = 409
and D = 4688329, we first apply a test derived from Proposition 6.2. We test if,
for any prime q dividing such D, there is an odd multiple kP of the point P :=
(6, 24) ∈ E(1)(Q) reducing to a point with x-coordinate equal to −18 modulo q. To
explicitly verify this condition, we first compute if there is a point Q in E(1)(Fq)
with x-coordinate equal to −18, the order Oq of P in E(1)(Fq) and the discrete
logarithm log(Q,P ), i.e., the number k such that Q = kP , if it exists. In case
there is no such Q, or there is no such logarithm, or both k and Oq are even,
then D does not pass the test. In the case that D passes this first test, we combine

this information with the information from the computation of the M
(q)
D for the

first 100 primes to discard some other cases.
After this last test there are 34 values of D that survive, and we then employ

a test based on the ternary forms criterion given by Proposition 5.5, by using a
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short program in SAGE implemented by Gonzalo Tornaria. We check that for these
values r(D, 3x2 + 9y2 + 16z2) �= r(D, x2 + 3y2 + 144z2). Hence for those values

of D, L(E
(2)
D , 1) �= 0, so the analytic rank of E

(2)
D is zero, hence their rank is also 0.

Only D = 409 and D = 4688329 survive all these tests, but for these values
there are points in CD(Q). �

On the other hand, remember that if we take t = (X0 −X1)/(X2 −X1) then
an affine model of CD is defined by:

CD :
{
DX2

3 = t4 − 8t3 + 2t2 + 8t+ 1, X2
4 = t4 − 12t3 + 2t2 + 12t+ 1

}
.

Therefore the curve F (3) that consists of removing the variableX3 from CD has the
equation F (3) : X2

4 = t4− 12t3+2t2+12t+1, and a Weierstrass equation is given
by E(1) : y2 = x(x + 2)(x + 6). Then we have an isomorphism ψ : E(1) −→ F (3)

defined by

ψ(P ) =
( 6− x

6 + 3x− y
,
−72− 108x− 18x2 + x3 + 48y

(6 + 3x− y)2

)
,

if P = (x, y) �= (−2, 0), (−3,−3), (6, 24) and ψ(6, 24) = (2/3, 23/9), ψ(−2, 0) = ∞1

and ψ(−3,−3) = ∞2, where ∞1 and ∞2 denote the two branches at infinity at
the desingularization of F (3) at the unique singular point [0 : 1 : 0] ∈ P2. This
construction allows us to construct all the nonconstant arithmetic progressions of
five squares over all quadratic fields. Let P = (2,−8) be a generator of the free
part of E(1)(Q), and let n be a positive integer. Let (tn, zn) = ψ([n]P ). Now,
consider the square-free factorization of the number

t4n − 8t3n + 2t2n + 8tn + 1 = Dnw
2
n,

where Dn ∈ Z is square-free, wn ∈ Q. Then the sequence

(−t2n − 2tn + 1)2, (t2n + 1)2, (t2n − 2tn − 1)2, Dn w
2
n, z

2
n

defines a nonconstant arithmetic progression of 5 squares over Q(
√
Dn), and we

have points Qn := [−t2n − 2tn + 1 : t2n + 1 : t2n − 2tn − 1 : wn : zn] ∈ CDn(Q).

Remark 8.2. Observe that the pairs (Dn, Qn) constructed in this way are different
for different n. On the other hand, we cannot be sure that all the fields Q(

√
Dn)

are different. However, we do have an infinite number of integers D such that
CD(Q) �= ∅. This is because for any integer D, the curve CD, being of genus 5
(greater than 1), always has a finite number of rational points. Since we have an
infinite number of pairs (Dn, Qn) with Qn ∈ CDn(Q), we have an infinite number
of different Dn.

Remark 8.3. If we replace [n]P by Q ∈ {[n1]T1 + [n2]T2 + [m]P0 |n1, n2 ∈
{0, 1}, m ∈ {n,−n − 1}}, where T1 = (−2, 0) and T2 = (−6, 0) is a basis of
E(1)(Q)tors, we obtain the same arithmetic progression (up to equivalence). Note
that if n = 0, then we obtain D0 = 1 and the previous sequence is the constant
arithmetic progression.
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In Tables 1 and 2 we summarize the computations that we have carried out
using the previous algorithm. We have normalized the elements of the arithmetic
progressions to be integers and to have no squares in common. We have separated
the results into two tables. Table 1 gives n and the factorization of Dn appears.
In Table 2, for each value of n, the corresponding factorization of X0 appear. For
all the values of n computed, we have obtained that the fourth element of the
arithmetic progression is

√
Dn (in our earlier notation, wn = 1). That is, if we

denote by r = (Dn −X2
0 )/3, then the sequence {X2

k = X2
0 + k r | k ∈ {0, . . . , 4}}

defines an arithmetic progression over Q(
√
Dn).

n Dn
1 409

2 4688329

3 457 · 548240447113

4 199554894091303668073201

5 4343602906873 · 53313950039984189254513

6 2593 · 9697 · 4100179090153 · 293318691741678881166926936593

7 330823513952828243573122480536077533156064000139119724642295861921

8 24697 · 303049 · 921429638596379458921 · 291824110407387399760153 · 3462757049033071137768291886369

Table 1. Factorization of Dn

n X0
1 7

2 47 · 89

3 31 · 113 · 577

4 7 · 176201 · 515087

5 2111 · 133967 · 1134755801

6 119183 · 12622601 · 2189366343649

7 210 · 3 · 17 · 73 · 103787 · 112261 · 963877 · 20581582583

8 238 · 32 · 5 · 7 · 23 · 102179447 · 1017098920090613939

Table 2. Factorization of X0

One can see that the size of the Dn we encounter grows very quickly, but we
do not know if the Dn constructed in this way always satisfy Dn < Dn+1. We
guess that this condition holds. Even more, the previous table and Corollary 8.1
suggest that, in fact, there is no square-free integer D such that CD(Q) �= ∅ and
Dn < D < Dn+1.

If we only use the results in Section 4 (Proposition 4.1) and Section 6 (Corol-
lary 6.5), we obtain the result that the number of square-free integers D that pass
both tests have positive (but small) density. This is possibly true if we also use the
condition of the rank, for example Proposition 5.5, since the number of twists with
positive rank of a fixed elliptic curve should also have positive density. However,
we suspect that the number of square-free integers D such that CD has rational
points should have zero density.

Data. All the MAGMA and SAGE sources are available on the first author’s webpage.
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