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Global wellposedness of the equivariant
Chern–Simons–Schrödinger equation

Baoping Liu and Paul Smith

Abstract. In this article we consider the initial value problem for the m-
equivariant Chern–Simons–Schrödinger model in two spatial dimensions
with coupling parameter g ∈ R. This is a covariant NLS type problem that
is L2-critical. We prove that at the critical regularity, for any equivariance
index m ∈ Z, the initial value problem in the defocusing case (g < 1)
is globally wellposed and the solution scatters. The problem is focusing
when g ≥ 1, and in this case we prove that for equivariance indices m ∈ Z,
m ≥ 0, there exist constants c = cm,g such that, at the critical regularity,
the initial value problem is globally wellposed and the solution scatters
when the initial data φ0 ∈ L2 is m-equivariant and satisfies ‖φ0‖2L2 < cm,g .
We also show that

√
cm,g is equal to the minimum L2 norm of a nontrivial

m-equivariant standing wave solution. In the self-dual g = 1 case, we have
the exact numerical values cm,1 = 8π(m+ 1).

1. Introduction

The two-dimensional Chern–Simons–Schrödinger system is a nonrelativistic quan-
tum model describing the dynamics of a large number of particles in the plane
interacting both directly and via a self-generated field. The variables we use to
describe the dynamics are the scalar field φ, describing the particle system, and the
potential A, which can be viewed as a real-valued 1-form on R2+1. The associated
covariant differentiation operators are defined in terms of the potential A as

(1.1) Dα := ∂α + iAα, α = 0, 1, 2.

With this notation, the action integral for the system is

(1.2) L(A, φ) =
1

2

∫
R2+1

[
Im(φ̄Dtφ) + |Dxφ|2 − g

2
|φ|4

]
dxdt+

1

2

∫
R2+1

A ∧ dA ,
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where g ∈ R is a coupling constant. The Lagrangian is invariant with respect to
the transformations

(1.3) φ �→ e−iθφ A �→ A+ dθ

for compactly supported real-valued functions θ(t, x).
Computing the Euler–Lagrange equations results in a covariant NLS equation

for φ, coupled with equations giving the field F = dA in terms of φ:

(1.4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Dtφ = iD�D�φ+ ig|φ|2φ
F01 = −Im(φ̄D2φ)

F02 = Im(φ̄D1φ)

F12 = −1

2
|φ|2

For indices, we use α = 0 for the time variable t and α = 1, 2 for the spatial
variables x1, x2. When we wish to exclude the time variable in a certain expression,
we switch from Greek indices to Roman ones. Repeated indices are assumed to be
summed, Greek ones over {0, 1, 2}, and Roman ones over {1, 2}.

The system (1.4) is a basic model of Chern–Simons dynamics [22], [12], [13], [21].
For further physical motivation for studying (1.4), see [24], [10], [23], [33], and [42].

The Chern–Simons–Schrödinger system (1.4) inherits from (1.2) the gauge in-
variance (1.3). It is also Galilean-invariant and has conserved charge

(1.5) chg(φ) :=

∫
R2

|φ|2 dx

and energy

(1.6) E(φ) :=
1

2

∫
R2

[
|Dxφ|2 − g

2
|φ|4

]
dx

As the scaling symmetry

φ(t, x) → λφ(λ2t, λx), φ0(x) → λφ0(λx); λ > 0,

preserves the charge of the initial data φ0, L
2
x is the critical space for the main

evolution equation of (1.4).
In order for (1.4) to be a well-posed system, the gauge freedom (1.3) has to be

eliminated. This is achieved by imposing an additional constraint equation. In the
Coulomb gauge, local wellposedness in H2 is established in [3]. Also given are con-
ditions ensuring finite-time blowup. With a regularization argument, [3] demon-
strates global existence (but not uniqueness) in H1 for small L2 data. A full
local wellposedness theory for H1 data is proved in [18]. Local wellposedness for
data small in Hs, s > 0, is established in [32] using the heat gauge. We refer
the reader to Section 2 of [32] for a comparison of the Coulomb and heat gauges.
At the critical scaling of L2, local existence implies global existence for small data;



Equivariant Chern–Simons–Schrödinger equation 753

it is an open problem to determine whether the Chern–Simons–Schrödinger sys-
tem is wellposed at the critical regularity in any gauge given small but otherwise
arbitrary L2 initial data.

The purpose of this article is to establish the global wellposedness of (1.4) for
large L2 data in a symmetry-reduced setting, and with respect to the Coulomb
gauge. We provide a brief introduction to these assumptions here and will formalize
them in due course. The Coulomb gauge condition is the requirement that∇·Ax=0.
Under this gauge choice, we assume that the wavefunction φ is equivariant, i.e.,
in polar coordinates (r, θ) it admits the representation φ(t, r, θ) = eimθu(t, r) for
some m ∈ Z and some radial function u ∈ L∞

t L
2
x. The integer m we refer to as

the degree of equivariance; it is a topological quantity that is invariant under the
flow. The case m = 0 corresponds to the radial case. The natural defocusing range
for this problem is g < 1, as H1 solutions in this range necessarily have positive
energy. Positivity of the energy for such g is not immediate from its definition (1.6)
but will be shown to be a consequence of the Bogomol’nyi identity (7.1).

It is convenient to rewrite (1.4) as

(1.7)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i∂t +Δ)φ = −2iAj∂jφ− i∂jAjφ+A0φ+A2
xφ− g|φ|2φ,

∂tA1 − ∂1A0 = −Im(φ̄D2φ),

∂tA2 − ∂2A0 = Im(φ̄D1φ),

∂1A2 − ∂2A1 = −1

2
|φ|2.

We study (1.7) in the Coulomb gauge, which is the requirement that

(1.8) ∂1A1 + ∂2A2 = 0.

Coupling (1.8) with the curvature constraints leads to

A0 = Δ−1
[
∂1Im(φ̄D2φ)− ∂2Im(φ̄D1φ)

]
,

A1 =
1

2
Δ−1∂2|φ|2,

A2 = −1

2
Δ−1∂1|φ|2.

We may rewrite A0 as

(1.9) A0 = Im(Q12(φ̄, φ)) + ∂1(A2|φ|2)− ∂2(A1|φ|2),
where the null form Q12 is defined by

Q12(f, g) = ∂1f ∂2g − ∂2f ∂1g.

The equivariance ansatz suggests using polar coordinates. In fact, we will take
advantage of both Cartesian coordinates and polar coordinates. Motivated by the
transformations

∂r =
x1
|x| ∂1 +

x2
|x| ∂2, ∂θ = −x2∂1 + x1∂2,
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and

∂1 = (cos θ)∂r − 1

r
(sin θ)∂θ , ∂2 = (sin θ)∂r +

1

r
(cos θ)∂θ,

we introduce

(1.10) Ar =
x1
|x|A1 +

x2
|x|A2, Aθ = −x2A1 + x1A2,

which are easily seen to satisfy

(1.11) A1 = Ar cos θ − 1

r
Aθ sin θ and A2 = Ar sin θ +

1

r
Aθ cos θ.

Using these transformations, we may eliminate A1, A2, ∂1, ∂2 in (1.7) in favor of
Ar, Aθ, ∂r, ∂θ. In particular,

Aj∂j = Ar∂r +
1

r2
Aθ∂θ, ∂jAj = ∂rAr +

1

r
Ar +

1

r2
∂θAθ, A2

1+A
2
2 = A2

r +
1

r2
A2

θ.

The main evolution equation of (1.7) therefore admits the representation

(i∂t +Δ)φ = −2i
(
Ar∂r +

1

r2
Aθ∂θ

)
φ− i

(
∂rAr +

1

r
Ar +

1

r2
∂θAθ

)
φ

+A0φ+A2
rφ+

1

r2
A2

θφ− g|φ|2φ,
(1.12)

which in more compact form reads

(1.13) Dtφ = i
(
D2

r +
1

r
Dr +

1

r2
D2

θ

)
φ+ ig|φ|2φ.

We also rewrite the F = dA curvature relations in terms of the variables t, r, θ,
with

(1.14) F0r = ∂tAr − ∂rA0, F0θ = ∂tAθ − ∂θA0, Frθ = ∂rAθ − ∂θAr.

For instance, we have

x1(∂tA1 − ∂1A0) + x2(∂tA2 − ∂2A0) = −x1 Im(φ̄D2φ) + x2 Im(φ̄D1φ),

which reduces to

r∂tAr − r∂rA0 = Im(φ̄(x2D1 − x1D2)φ),

so that

(1.15) r [∂tAr − ∂rA0] = −Im(φ̄∂θφ) + Aθ|φ|2 = −Im(φ̄Dθφ).

Similarly, we obtain

∂tAθ − ∂θA0 = r Im(φ̄Drφ) and ∂1A2 − ∂2A1 =
1

r
∂rAθ − 1

r
∂θAr,
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which implies

(1.16) ∂rAθ − ∂θAr = −1

2
|φ|2r.

Therefore we may write (1.7) equivalently as

(1.17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i∂t +Δ)φ = −2i
(
Ar∂r +

1

r2
Aθ∂θ

)
φ− i

(
∂rAr +

1

r
Ar +

1

r2
∂θAθ

)
φ,

+A0φ+A2
rφ+

1

r2
A2

θφ− g|φ|2φ,

∂tAr − ∂rA0 = −1

r
Im(φ̄Dθφ),

∂tAθ − ∂θA0 = r Im(φ̄Drφ),

∂rAθ − ∂θAr = −1

2
|φ|2r.

In polar coordinates, the energy (1.6) takes the form

(1.18) E(φ) =
1

2

∫ 2π

0

∫ ∞

0

(
|Drφ|2 + 1

r2
|Dθφ|2 − g

2
|φ|4

)
r dr dθ.

Our next simplification is to restrict to equivariant φ. Our formulation of the
equivariant ansatz implicitly assumes that we have chosen the Coulomb gauge
condition (1.8), which in Aθ, Ar variables takes the form

(1.19)
(1
r
+ ∂r

)
Ar +

1

r2
∂θAθ = 0

In particular, we assume that (A, φ) is of the form

(1.20)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φ(t, x) = eimθu(t, r),

A1(t, x) = −x2
r
v(t, r),

A2(t, x) =
x1
r
v(t, r),

A0(t, x) = w(t, r).

The only assumption that we make on m is that m ∈ Z, and so in particular we
include the radial case m = 0. This ansatz implies that Ar = 0 and that Aθ is a
radial function, and so (1.19) is satisfied. Equivariant solutions, of the form (1.20),
are also known as vortex solutions, and appear in related contexts (see, for instance,
[37], [8], [9], [25], [6], and [5]). We also make the natural assumption that A0 decays
to zero at spatial infinity (see the proof of Lemma 2.2 and the references therein
for further discussion of this point).

Next we rewrite the system (1.17) assuming the equivariant ansatz (1.20).
Thanks to the ansatz, ∂θφ = imφ holds identically, and so we make this sub-
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stitution where convenient. We obtain

(1.21)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i∂t +Δ)φ =
2m

r2
Aθφ+A0φ+

1

r2
A2

θφ− g|φ|2φ,

∂rA0 =
1

r
(m+Aθ)|φ|2,

∂tAθ = r Im(φ̄∂rφ),

∂rAθ = −1

2
|φ|2r,

Ar = 0.

Definition 1.1 (Equivariant Sobolev spaces). Let m ∈ Z. For each s ≥ 0, we
define the function space Hs

m to be the Sobolev space of all functions f ∈ Hs
x that

admit the decomposition f(x) = f(r, θ) = eimθu(r). We also will use the notation
L2
m = H0

m.

Our first main theorem is the following.

Theorem 1.2. Let g < 1 and m ∈ Z. Then (1.21) is globally wellposed in L2
m,

and, furthermore, solutions scatter both forward and backward in time.

For our second main theorem, we use the notation Z+ to denote {0, 1, 2, . . .}.
In this theorem for the coupling constant we take g = 1, the so-called “critical
coupling” or “self-dual” coupling value.

Theorem 1.3. Let g = 1 and m ∈ Z+. Let φ0 ∈ L2
m with chg(φ0) < 8π(m+ 1).

Then (1.21) is globally wellposed in L2
m and scatters both forward and backward in

time.

We have a similar statement for the case g > 1, though in this case we have
not identified the numerical values of threshold constants. We do show, however,
that the threshold constant is related to soliton solutions.

Theorem 1.4. Let g > 1 and m ∈ Z+. Then there exists a constant cm,g > 0
such that if φ0 ∈ L2

m with chg(φ0) < cm,g, then (1.21) is globally wellposed in L2
m

and scatters forward and backward in time. Moreover, the minimum charge of a
nontrivial standing wave solution in the class L∞

t L
2
m is equal to cm,g.

The L4
t,x norm plays the role of the scattering norm. Our notions of blowup and

scattering are made precise in the remarks preceding Theorem 2.8, which estab-
lishes the Cauchy theory for (1.21) that is attainable using standard perturbative
techniques. For small data, the sign of g−1 plays no role, and indeed Theorem 2.8
applies to this case. In fact, all results of §§2–6 hold for any g ∈ R. It is only
starting in §7 (in particular, Corollary 7.5) where the value of g plays a role. The
system (1.21) admits solitons when g ≥ 1 and m ∈ Z is nonnegative, and so in this
sense −∞ < g < 1 is the natural defocusing parameter range.

The challenge is to prove Theorems 1.2–1.4 for large data. The first step is
to reduce to special localized solutions. Bourgain’s induction-on-energy method
for the energy-critical NLS revealed the important role played by solutions simulta-
neously localized in frequency and space, see [4]. Kenig and Merle ([26], [27]) sub-
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sequently streamlined the arguments reducing one’s consideration to such solu-
tions by means of a concentration-compactness argument. Minimal-mass blowup
solutions of the mass-critical NLS are studied in [41]. We adopt a concentration-
compactness argument, modeled closely after that of Killip, Tao, and Visan [28]
for the radial 2-d cubic NLS. Inspiration also comes from the work of Gustafson
and Koo [17] on radial 2-d Schrödinger maps into the unit sphere, which, among
other things, extends the arguments of [28] so as to handle a nonlocal term.

Definition 1.5. A solution φ with lifespan I is said to be almost periodic modulo
scaling if there exist a frequency scale function N : I → R+ and a compactness
modulus function C : R+ → R+ such that∫

|x|≥C(η)/N(t)

|φ(t, x)|2dx ≤ η and

∫
|ξ|≥C(η)N(t)

|φ̂(t, ξ)|2dξ ≤ η

for all t ∈ I and η > 0.

Here we have used f̂(ξ) to denote the Fourier transform of f in the spatial

variable x ∈ R2 only. We sometimes use the notation F(f) instead of f̂ .

Remark 1.6. Solutions of (1.7) are invariant under the symmetry group G intro-
duced in Definition 1.6 of [28], which includes the scaling, rotation, translation,
and Galilean symmetries (the action of G on φ is as specified in [28] and can easily
be extended to act on A as well). The equivariance ansatz (1.20) breaks the trans-
lation and Galilean symmetries, leaving us with scaling and rotational symmetry.
This subgroup is denoted by Grad in Definition 1.6 of [28], as its preserves spherical
symmetry; in fact, it preserves m-equivariance for any index m ∈ Z. Because rota-
tional symmetry corresponds to the action of a compact symmetry group, it may
be neglected for our purposes. In fact, it plays no role in Definition 1.14 of [28],
which defines almost periodicity modulo G and modulo Grad.

Lemma 1.7. Suppose that the statement of Theorem 1.2 (or 1.3, 1.4) is not true.
Then there exists a critical element, i.e., a maximal-lifespan solution φ that is
almost periodic modulo scaling and that blows up both forward and backward in
time. Furthermore, this critical element can be taken to be m-equivariant. We can
also ensure that the lifespan I and the frequency-scale function N : I → R+ match
one of the following scenarios:

1) (Self-similar solution) We have I = (0,+∞) and

N(t) = t−1/2 for all t ∈ I.

2) (Global solutions) We have I = R and fall into one of the following two
scenarios:

(a) (Rapid cascade)

lim inf
t→−∞ N(t) = lim inf

t→+∞ N(t) = 0 and sup
t∈I

N(t) <∞.

(b) (Soliton-like solution)

N(t) = 1 for all t ∈ I.
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Our strategy for proving Theorems 1.2–1.4 is to show that the scenarios de-
scribed in Lemma 1.7 cannot occur, in the spirit of [28], [31], and [17]. The first
step of the program is to establish that the solutions described by Lemma 1.7
are special in that they enjoy extra regularity and in particular are in Hs for
each s > 0. The energy (1.6) is at the level of H1, and its conservation can be
exploited in both scenarios. To rule out the global profile, we also use a localized
virial identity. This identity can also be adapted to handle the self-similar profile,
as described in Section 9 of [28], though we opt instead to rule out the self-similar
profile using energy conservation.

The rest of this article is laid out as follows. In the next section, §2, we develop
the basic Cauchy theory for (1.21). In §3 we go through the concentration compact-
ness argument behind Lemma 1.7. Next, in §4, we introduce the Littlewood–Paley
theory that we will require and we establish how frequency localizations of the
nonlinearity Λ(φ), defined in (2.13), depend upon frequency localizations of input
functions φ. §5 establishes extra regularity for critical elements, a key technical
step in the large data theory. In §6, we establish virial and Morawetz identities.
These play an important role in §7, which concludes the proof of Theorem 1.2
in the g < 1 case by ruling out the blowup scenarios of Lemma 1.7. In §8, we
consider the focusing problem, proving Theorems 1.3 and 1.4 along with some
auxiliary results.

2. The equivariant Cauchy theory

Throughout this section we assume that φ is m-equivariant. A trivial consequence
of this that we will repeatedly use is that |φ|2 is radial. We assume that all
spatial Lp spaces are based on the 2-dimensional Lebesgue measure.

Define the operators [∂r]
−1, [r−n∂̄r]

−1, and [r∂r ]
−1 by

[∂r]
−1 = −

∫ ∞

r

f(s) ds, [r−n∂̄r]
−1f(r) =

∫ r

0

f(s) sn ds,

[r∂r ]
−1f(r) = −

∫ ∞

r

1

s
f(s) ds.

Then straightforward arguments imply

‖[r∂r]−1f‖Lp �p ‖f‖Lp, 1 ≤ p <∞,(2.1)

‖r−n−1[r−n∂̄r]
−1f‖Lp �p ‖f‖Lp, 1 < p ≤ ∞,(2.2)

‖[∂r]−1f‖L2 � ‖f‖L1.(2.3)

Lemma 2.1 (Bounds on Aθ terms). We have

‖Aθ‖L∞
x

� ‖φ‖2L2
x
,(2.4) ∥∥1

rAθ

∥∥
L∞

x
� ‖φ‖2L4

x
,(2.5) ∥∥Aθ

r2

∥∥
Lp

x
� ‖φ‖2

L2p
x
, 1 < p ≤ ∞.(2.6)
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Proof. We start with

(2.7) Aθ = −1

2

∫ r

0

|φ|2s ds,

which we obtain by integrating the Frθ spatial curvature condition in (1.21) (Frθ is
given in (1.14) and simplifies under (1.20)). To justify the boundary condition, note
that (1.10) implies that Aθ(r = 0) = 0 so long as A1, A2 ∈ L∞

loc. Moreover, in the
Coulomb gauge, A1 and A2 exhibit 1/|x| decay at infinity and so from (1.11) we
expect an L∞ bound for Aθ but not decay. The right hand side of (2.7) is bounded
in absolute value by a constant times ‖φ‖2L2

x
, which proves (2.4).

For the second inequality, we get using (2.7) and Cauchy–Schwarz that

|Aθ| � r
(∫ ∞

0

|φ|4 s ds
)1/2

.

Therefore, ∣∣∣1
r
Aθ

∣∣∣ � (∫ ∞

0

|φ|4 s ds
)1/2

.

Finally, to prove (2.6), we use (2.2) with n = 1, first writing

|Aθ|
r2

=
1

2
· 1

r2

∫ r

0

|φ|2s ds = 1

2
r−2[r−1∂̄r]

−1|φ|2.

Therefore, ∥∥Aθ

r2
∥∥
Lp

x
�

∥∥r−2[r−1∂̄r]
−1|φ|2∥∥

Lp
x
� ‖|φ|2‖Lp

x
= ‖φ‖2

L2p
x
. �

Lemma 2.2 (Bounds on A0). Write A0 = A
(1)
0 +A

(2)
0 , where

(2.8) A
(1)
0 := −

∫ ∞

r

Aθ

s
|φ|2 ds and A

(2)
0 := −

∫ ∞

r

m

s
|φ|2 ds.

Then

‖A(1)
0 ‖L1

tL
∞
x

� ‖φ‖4L4
t,x

‖A(1)
0 ‖L2

t,x
� ‖φ‖2L∞

t L2
x
‖φ‖2L4

t,x
, 1 ≤ p <∞,

(2.9)

and

(2.10) ‖A(2)
0 ‖L2

x
� |m|‖φ‖2L4

x
.

Proof. The behavior of A0 is independent of the coordinate system. In particular,
it is natural to assume that it decays to zero at infinity as shown in [3], where
certain Lp bounds are also established under the assumption of sufficient regularity.
This motivates integrating the Fr0 curvature condition in (1.21) from infinity, which
is justified below.
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To establish the first inequality of (2.9), rewrite A
(1)
0 (r) as

A
(1)
0 (r) = −

∫ ∞

r

Aθ

s2
|φ|2s ds.

Then, bounding Aθ(s)/s
2 in L2 using (2.6) and putting each φ in L4, we obtain

|A(1)
0 (r)| ≤ ∥∥Aθ

s2
∥∥
L2

x
‖φ‖2L4 � ‖φ‖4L4

x
.

The bound is independent of r, and integrating in time yields

‖A(1)
0 ‖L1

tL
∞
x

� ‖φ‖4L4
t,x
.

The second inequality of (2.9) follows from (2.4) and (2.1) with p = 2.
To establish (2.10), we use (2.1) with f = m|φ|2 and p = 2. �

Lemma 2.3 (Quadratic bounds). We have∥∥∥ 1

r2
A2

θ

∥∥∥
L1

tL
∞
x

� ‖φ‖4L4
t,x
,(2.11) ∥∥∥ 1

r2
A2

θ

∥∥∥
L2

t,x

� ‖φ‖2L∞
t L2

x
‖φ‖2L4

t,x
.(2.12)

Proof. The first bound follows from (2.5) and Cauchy–Schwarz. The second is a
consequence of (2.4) and (2.6) with p = 2. �

Let

(2.13) Λ(φ) = 2m
Aθ

r2
φ+A0φ+

1

r2
A2

θφ− g|φ|2φ

denote the nonlinearity of the evolution equation of (1.21).

Remark 2.4. The bounds established in the preceding lemmas are very flexible

and allow us to control all pieces of the nonlinearity Λ(φ) in L
4/3
t,x and some pieces

of it in L1
tL

2
x.

Lemma 2.5 (Strichartz estimates). Let (i∂t + Δ) = f on a time interval I with
t0 ∈ I and u(t0) = u0. Call a pair (q, r) of exponents admissible if 2 ≤ q, r ≤ ∞,
1/q + 1/r = 1/2 and (q, r) �= (2,∞). Let (q, r) and (q̃, r̃) be admissible pairs of
exponents. Then

‖u‖L∞
t L2

x(I×R2) + ‖u‖Lq
tL

r
x(I×R2) � ‖u0‖L2

x(R
2) + ‖f‖

Lq̃′
t Lr̃′

x (I×R2)
,

where the prime indicates the dual exponent, i.e., 1/q′ := 1− 1/q.

These estimates are established in [43] and [14]. The only admissible pair
that we use in this section is (q, r) = (4, 4). In the usual way, one may intersect
Strichartz spaces. Their dual is then a sum-type space; we use this property in §5.
In that section we also use the endpoint estimate, proved in [39] and [40]:



Equivariant Chern–Simons–Schrödinger equation 761

Lemma 2.6 (Endpoint Strichartz esimate). Let (i∂t+Δ)u = f on a time interval I
with t0 ∈ I and u(t0) = u0, and suppose that m ∈ Z and u, f ∈ L2

m(R2). Let (q, r)
be an admissible pair of exponents. Then

‖u‖L2
tL

∞
x (I×R2) � ‖u0‖L2

x(R
2) + ‖f‖

Lq′
t Lr′

x (I×R2)
.

Though the endpoint estimate was established for radial functions, the proof
may be adapted to equivariant functions in a straightforward way by noting prop-
erties of Bessel functions (see, for instance, Remark 5.5 for related comments).

Lemma 2.7 (Control of the nonlinearity). We have

(2.14) ‖Λ(φ)‖L4/3 � ‖φ‖3L4

and

(2.15) ‖Λ(φ)− Λ(φ̃)‖L4/3 � ‖φ− φ̃‖L4(‖φ‖2L4 + ‖φ̃‖2L4)

Proof. The proof is an easy consequence of Strichartz estimates, charge conserva-
tion, and the previous lemmas. In particular, we have∥∥ 2

r2
mAθφ

∥∥
L

4/3
t,x

� |m| ∥∥ 1

r2
Aθ

∥∥
L2

t,x
‖φ‖L4

t,x
� |m|‖φ‖3L4

t,x
,

‖A0φ‖L4/3
t,x

� ‖A0‖L2
t,x
‖φ‖L4

t,x
� (|m|+ ‖φ‖2L∞

t L2
x
)‖φ‖3L4

t,x
,∥∥ 1

r2
A2

θφ
∥∥
L

4/3
t,x

�
∥∥ 1

r2
A2

θ

∥∥
L2

t,x
‖φ‖L4

t,x
� ‖φ‖2L∞

t L2
x
‖φ‖3L4

t,x
,∥∥g|φ|2φ∥∥

L
4/3
t,x

≤ |g| ‖φ‖3L4
t,x
,

which establishes (2.14).
The second inequality is easy to show for the nonlinear term g|φ|2φ by using

the observation

(2.16)
∣∣|φ|2φ− |φ̃|2φ̃ ∣∣ � (|φ|2 + |φ̃|2)|φ− φ̃|.

To see that others are similar, note that bounds (2.4)–(2.6) for Aθ = Aθ(φ) are

linear in |φ|2. This is also true of the bound for A
(2)
0 in Lemma 2.2. Applying

further decompositions similar to (2.16) allows one to handle the higher-order

terms 1
r2A

2
θ and A

(1)
0 . �

In our analysis, the L4
t,x norm plays the role of a scattering norm. We define

S(φ) = SI(φ) ∈ [0,∞] of a function φ : I × R2 → C by

(2.17) SI(φ) := ‖φ‖4L4
t,x(I×R2).

If t0 ∈ I, we also split S(φ) = S≤t0(φ) + S≥t0(φ) where

S≥t0(φ) := ‖φ‖4L4
t,x((I∩(−∞,t0])×R2) and S≥t0(φ) := ‖φ‖4L4

t,x((I∩[t0,∞))×R2).

If φ : I × R2 → C is a solution of (1.21) on an open time interval I, then we say
that φ blows up forward in time if S≥t(φ) = ∞ for all t ∈ I. Similarly, we say
that φ blows up backward in time if S≤t(φ) = ∞ for all t ∈ I.
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Let φ+ ∈ L2. We say that a solution φ : I × R2 → C scatters forward in time
to φ+ if and only if sup I = +∞ and limt→∞ ‖φ(t)− eitΔφ+‖L2 = 0. Similarly, we
say that a solution φ : I × R2 → C scatters backward in time to φ− ∈ L2 if and
only if inf I = −∞ and limt→−∞ ‖φ(t)− eitΔφ−‖L2 = 0.

Theorem 2.8 (Cauchy theory). Let m ∈ Z, φ0 ∈ L2
m(R2), and t0 ∈ R. There

exists a unique maximal lifespan solution φ : I ×R2 → C, φ ∈ L∞
I L

2
m, with t0 ∈ I,

the maximal time interval, φ(t0) = φ0, and with the following additional properties:

(1) (Local existence) I is open.

(2) (Scattering) If φ does not blow up forward in time, then sup I = +∞ and φ
scatters forward in time to eitΔφ+ for some φ+ ∈ L2

m. If φ does not blow up
backward in time, then inf I = −∞ and φ scatters backward in time.

(3) (Small data scattering) There exists ε > 0 such that if ‖φ0‖L2 ≤ ε, then
‖φ‖L4

t,x
� ‖φ0‖L2

x
. In particular, I = R and the solution scatters both forward

and backward in time.

(4) (Uniformly continuous dependence) For every A > 0 and ε > 0 there is a
δ > 0 such that if φ is an m-equivariant solution satisfying ‖φ‖L4

t,x(J×R2) ≤
A with t0 ∈ J and if φ0 = φ(t0), φ̃0 = φ̃(t0) with φ0, φ̃0 ∈ L2

m satisfying
‖φ0 − φ̃0‖L2

x
≤ δ, then there exists an m-equivariant solution φ̃ such that

‖φ− φ̃‖L4
t,x(J×R2) ≤ ε and ‖φ(t)− φ̃(t)‖L2 ≤ ε for all t ∈ J .

(5) (Stability) For every A > 0 and ε > 0 there exists δ > 0 such that if
‖φ‖L4

t,x(J×R2) ≤ A, φ is m-equivariant and approximates (1.21) in that

‖(i∂t +Δ)φ− Λ(φ)‖
L

4/3
t,x (J×R2)

≤ δ, t0 ∈ J , and φ̃0 ∈ L2
m satisfies

‖ei(t−t0)Δ(φ(t0)− φ̃0)‖L4
t,x(J×R2) ≤ δ,

then there exists an m-equivariant solution φ̃ with φ̃(t0) = φ̃0 and ‖φ −
φ̃‖L4

t,x(J×R2) ≤ ε .

Proof. The local existence statement follows from (2.14) and a standard iteration
argument. The scattering claim (2) follows from (2.14) and from linearizing near
the asymptotic states. The remaining claims follow from (2.15) by standard argu-
ments. �

3. Concentration compactness

The purpose of this section is to outline the proof of Lemma 1.7, which proceeds
along the lines of the concentration compactness arguments in [26], [41], [28],
and [2]. It is worth mentioning that the first part, the existence of critical element,
is robust whenever we have a satisfying Cauchy theory like Theorem 2.8, while
the second part, the classification of the critical elements, uses only the properties
of almost periodic solutions and the scaling symmetry, and hence the argument is
essentially independent of the equation.
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3.1. Existence of critical element

We start with the symmetry group Gmax generated by the scaling transformation
gλ : L

2
m(R2) → L2

m(R2) (as discussed in Remark 1.6, we will ignore the phase
rotation)

gλf(r) = λ−1f(λ−1r).

The effect of gλ is translated to the action g0λ on A0 and gθλ on Aθ, where

g0λA0(r) = λ−2A0(λ
−1r) and gθλAθ(r) = Aθ(λ

−1r),

and also extends to space-time functions by

Tgλf(r, t) = λ−1f(λ−1r, λ−2t).

Let us first state the linear profile decomposition.

Proposition 3.1 (Linear profile decomposition). Let ψn, n = 1, 2, . . . , be a
bounded sequence in L2

m. Then, after passing to a subsequence if necessary, there
exists a sequence of functions φj ∈ L2

m, group elements gjn ∈ Gmax, and times
tjn ∈ R such that we have the decomposition

(3.1) ψn =

J∑
j=1

gjn e
itjnΔ φj + wJ

n

for all J = 1, 2, . . .. Moreover, wJ
n ∈ L2

m is such that its linear evolution has
asymptotically vanishing scattering size

(3.2) lim
J→∞

lim sup
n→∞

‖eitΔwJ
n‖L4

t,x
= 0.

Moreover for any j �= j′,

(3.3)
λjn

λj
′

n

+
λj

′
n

λjn
+

|tjn(λjn)2 − tj
′

n (λ
j′
n )

2|
λjnλ

j′
n

→ ∞.

Furthermore, for any J ≥ 1, we have the mass decoupling property

(3.4) lim
n→∞

[
M(ψn)−

J∑
j=1

M(ψj)−M(wJ
n)
]
= 0.

We omit the proof here since it is the same as that in Theorem 7.3 of [41],
where the statement is proved for radial case. Earlier versions of linear profile
decomposition can be found in [34] and [1].

We now identify the critical threshold for global wellposedness and scattering.
For any m ≥ 0, define A(m) by

A(m) := sup{SI(φ) : M(φ) ≤ m, where φ is a solution of (1.21)

with maximal life span I }.
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Remark 3.2. We see that A : [0,∞) → [0,∞] is a monotone nondecreasing func-
tion ofm, that it is bounded for smallm by part (3) and left continuous by part (4)
of Theorem 2.8, and thus that there exists a critical 0 < m0 ≤ ∞ such that A(m)
is finite if m < m0 and A(m) = ∞ if m ≥ m0. Part (2) of Theorem 2.8 also implies
that we have global wellposedness and scattering when m < m0.

Proposition 3.3. Assume m0 < ∞, let ψn : In × R2 → C, n ∈ N be a sequence
of m-equivariant solutions to (1.21), and tn ∈ In a sequence of times such that
limn→∞M(ψn) = m0 and

(3.5) lim
n→∞S≥tn(ψn) = lim

n→∞S≤tn(ψn) = ∞.

Then there are group elements gn ∈ Gmax such that gnψn(tn) has a subsequence
that converges in L2

m(R2).

Proof. The proof is similar to Proposition 2.1 of [41].
We first translate ψn and In in time, taking tn = 0. Then we apply Proposi-

tion 3.1 to ψn(0) (after passing to subsequence), to get a linear profile decomposi-
tion

ψn(0) =

J∑
j=1

gjn e
itjnΔ φj + wJ

n .

Next, by passing to a further subsequence and using a diagonalization argument,
we get for each j a sequence tjn converging to tj ∈ [−∞,∞]. If tj is finite, then

we can redefine φ̃j = eit
jΔφj and replace the profile gjne

itjnΔφj by gjnφ̃
j , with the

difference being pushed into the error term wJ
n . By abuse of notation, we write φ̃j

as φj and hence we will further assume tjn = 0 for finite tj .

From the mass decoupling property (3.4) we get∑
j≥1

M(φj) ≤ lim
n→∞M(ψn) = m0,

which implies supj M(φj) ≤ m0.

Now let us assume

(3.6) sup
j
M(φj) ≤ m0 − ε

for some ε > 0. We will show that this leads to contradiction.

We define the nonlinear profile vj : R × R2 → C associated to each φj in the
following way:

• If tjn is identically zero, we define vj to be the maximal-lifespan solution
of (1.21) with initial data φj .

• If tj = limn→ tjn = ±∞, we define vj to be the maximal-lifespan solution
of (1.21) that scatters forward (backward) in time to eitΔφj .
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From the fact M(φj) ≤ m0 − ε, we see that vj are global solutions and we have

S(vj) ≤ BM(vj),

where B is a constant depending only on m0 and ε. (This is because A(m) is
increasing and finite on [0,m0 − ε], and when m is small, A(m)/m is bounded
because of part (3) of Theorem 2.8.)

Next we will define the approximate solution

(3.7) ψJ
n(t) :=

J∑
j=1

Tgj
n
vj(·+ tjn)(t) + eitΔ wJ

n .

From (3.2) and the orthogonal condition (3.3), we get

(3.8) lim
J→∞

lim
n→∞S(ψJ

n(t)) = lim
J→∞

J∑
j=1

S(vj) ≤ lim
J→∞

l∑
j=1

BM(vj) ≤ Bm0.

Now we prove the following facts:

1) Asymptotic agreement with initial data: for any J = 1, 2, . . .

(3.9) lim
n→∞M(ψJ

n − ψn) = 0.

By comparing (3.7) with (3.1) and using the triangle inequality, we see that (3.9)
follows from

lim
n→∞M(Tgj

n
vj(·+ tjn)(0)− gjn e

itjnΔ φj) = lim
n→∞M(gjnv

j(tjn)− gjn e
itjnΔ φj) = 0,

where we used the construction of vj .

2) Asymptotic solvability of the equation: we have

lim
J→∞

lim sup
n→∞

∥∥(i∂t +Δ)ψJ
n − Λ(ψJ

n)
∥∥
L

4/3
t,x

→ 0.

Here Λ(φ) is defined to be the nonlinearity of equation (1.21) with A0 and Aθ as
in (2.7) and (2.8), respectively.

By direct computation, we get

(i∂t +Δ)ψJ
n =

J∑
j=1

Λ(Tgj
n
vj(·+ tjn)(t)).

So we need to prove

(3.10) lim
J→∞

lim sup
n→∞

‖Λ(ψJ
n − eitΔwJ

n)− Λ(ψJ
n)‖L4/3

t,x
→ 0,

and

(3.11) lim
J→∞

lim sup
n→∞

∥∥∥ J∑
j=1

Λ(Tgj
n
vj(·+ tjn)(t))−Λ

( J∑
j=1

Tgj
n
vj(·+ tjn)(t)

)∥∥∥
L

4/3
t,x

→ 0.
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Now (3.10) follows from (2.15) together with (3.2), (3.8). It is worth mentioning
that even though we have nonlocal nonlinearity, we still get (3.11) from asymptoti-
cally orthogonal condition (3.3) and the Riemann–Lebesgue characterization of Lp

spaces (Similar cases appear in (4.2)–(4.5) of [2]).

Now we use the stability result, part (5) of Theorem 2.8, on ψJ
n with n, J

large enough to conclude that ψn(t) exists globally and S(ψn(t)) ≤ 3Bm0, which
contradicts (3.5).

We know (3.6) is false. Therefore we have that

sup
j
M(φj) = m0.

So we have exactly one nonzero profile profile, which we call φ1 after relabeling,
so that we get

ψn(0) = g1n e
it1nΔ φ1 + w1

n,

with limn→M(w1
n) → 0 because of (3.4).

Now, if tn → +∞ (similar proof when the limit is −∞), we notice that the
Strichartz estimate implies that S(eitΔφ1) <∞, which further implies

lim
n→∞S≥0(e

itΔ g1n e
itnΔ φ1) = 0.

This together with (3.2) implies

lim
n→∞S≥0(e

itΔ ψn(0)) = 0.

Taking n large enough, we can invoke the stability argument (part (5) of The-
orem 2.8) with 0 as the approximate solution to conclude that S≥0(ψ) is finite,
which contradicts (3.5).

So we are left with the case where limn→∞ t1n is finite, which we further assume
to be 0, hence we get (g1n)

−1ψn(0) converging to φ1 in L2(R2). �

Proposition 3.4. Assume the critical mass m0 is finite. Then there exists a
maximal-lifespan m-equivariant solution φ : Imax×R2 → C to equation (1.21) with
mass exactly m0. which blows up both forward and backward in time. In addition,
the orbit {φ(t), t ∈ Imax} is pre-compact in L2

m(R2) modulo scaling.

Proof. If m0 is finite, we can find a sequence of solutions ψn : In × R
2 → C such

that M(ψn) → m0−, SIn(ψn) → ∞. By taking tn ∈ In such that S≥tn(ψn) =
S≤tn(ψn) = 1

2SIn(ψn), we can further assume tn = 0 by time translation invari-
ance. Now we use Proposition 3.3 to conclude that by passing to a subsequence,
we have elements of gn ∈ Grad such that gnψn(0) converges to φ0 in L2

m(R2).
Moreover, the proof of Proposition 3.3 implies that M(φ0) = m0.

Let φ(t) : Imax × R2 → C be maximal-lifespan solution to (1.21) with initial
data φ0. By the stability argument we have

S≥0(φ) = S≤0(φ) = ∞.
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Now given any sequence of times t′n ∈ Imax, we get S≥t′n(φ) = S≤t′n(φ) = ∞, hence
we can apply Proposition 3.3 to φ(t′n) to conclude that there exists a subsequence
that converges in L2

m(R2) modulo scaling. �

Remark 3.5. By a standard argument using the Arzelà–Ascoli theorem, the pre-
compactness of the orbit {φ(t), t ∈ Imax} in L2 implies that the solution is almost
periodic modulo scaling as in Definition 1.5. The proof can be found in Lemma 1.17
of [41].

3.2. Classification of the critical element

Now we want to further identify the different types of behavior for almost periodic
solutions. The argument was invented in [28]. It is a standard argument by now
and has been adapted to many different problems [31], [29], [30], [36], and [35].
Thus we will collect the main results from [28], omitting the details.

We start with the following definition:

Definition 3.6 (Normalized solution). Let φ : I × R2 → C be an m-equivariant
solution to (1.21), which is almost periodic modulo scaling with frequency scale
function N(t). We say φ is normalized if the life span contains 0 and N(0) = 1.

Now we define the normalization of φ at time t0 ∈ I by

φ[t0] := TgN(t0)
(φ(t0)).

The function φ[t0] is m-equivariant, almost period modulo scaling and has lifespan

Iφ[t0] = {s ∈ R : t0 + s/N(t0)
2 ∈ I},

with frequency scale function

Nφ[t0](s) := N(t0 + s/N(t0)
2)/N(t0)

and the same compactness modulus function as φ.

Now we list the main properties of N(t); see Lemma 3.5 and Corollary 3.6
of [28] for the proofs.

Proposition 3.7 (Compactness of almost periodic solutions). Let φ(n) be a se-
quence of m-equivariant normalized maximal-lifespan solutions to (1.21) which are
almost periodic modulo scaling with frequency functions N (n)(t) and a uniform
compact modulus function C : R+ → R+. Assume we also have uniform mass
bound

0 < M(φ(n)) <∞.

Then, after passing to a subsequence, there exists a nonzero maximal life-span m-
equivariant solution φ to (1.21) with 0 ∈ I that is almost periodic modulo scaling,
such that φ(n) converges locally uniformly to φ.
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Proposition 3.8 (Local constancy of N). Let φ be a nonzero maximal lifespan
solution to (1.21) with interval I that is almost periodic modulo scaling with fre-
quency scale function N : I → R+. Then there exists a small number δ, depending
on φ, such that for every t0 ∈ I, we have

[t0 − δN(t0)
−2, t0 + δN(t0)

−2] ⊂ I

and
N(t) ∼φ N(t0) whenever |t− t0| ≤ δ N(t0)

−2.

Now we are ready to classify the solutions. Given φ, the critical element found
in Proposition 3.4 with maximal lifespan I and frequency scale function Nφ(t), we
will try to extract a new solution which falls into the classification in Lemma 1.7.

For any T ≥ 0, we define the quantities

osc(T ) : = inf
t0∈I

supt∈I,|t−t0|≤T/N(t0)2 N(t)

inft∈I,|t−t0|≤T/N(t0)2 N(t)
,

a(t0) : =
inft∈I,t≤t0 N(t) + inft∈I,t≥t0 N(t)

N(t0)
.

Notice that osc(T ) measures the least possible oscillation one can find in N(t) on
intervals of normalized duration T , and it is nondecreasing in T .

Now we discuss the cases:

1) When limT→∞ osc(T ) <∞, we will construct a soliton-like solution. In fact,
by the local constancy of N(t), we can find a sequence of times tn ∈ I, Tn → ∞,

[tn − Tn/N(tn)
2, tn + Tn/N(tn)

2] ⊂ I.

So we can define the normalized solution φ[tn] with lifespan Iφ[tn] and frequency
scale function Nφ[tn](s) as in Definition 3.6. Notice that [−Tn, Tn] ⊂ Iφ[tn] and
Nφ[tn](s) ∼φ 1 on [−Tn, Tn], and hence we can use Proposition 3.7 to find a
subsequence that converges locally uniformly to a maximal lifespan solution with
mass m0 and has frequency function N(t) which is bounded, with 0 < infN(t) ≤
supN(t) < ∞. Hence by modifying the compact modulus function C(η), we can
take N(t) ≡ 1.

2) When limT→∞ osc(T ) = ∞ and inft0∈I a(t0) = 0, we construct a rapid
cascade solution. By the condition on a(t), we find t−n < tn < t+n , t

±
n ∈ I, such that

(3.12)
N(t−n )
N(tn)

→ 0 and
N(t+n )

N(tn)
→ 0.

We choose t′n such that t−n < tn < t+n and

N(t′n) ∼ sup
t−1
n <t<t+n

N(t).

Then we can construct a normalized solution φ[t
′
n] whose lifespan contains [s−n , s

+
n ]

with
s±n := N(t′n)

2(t±n − t′n),
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and we can check Nφ[t′n](s±n ) → 0 from (3.12) and the definitions of t′n, s±n . Now

using Proposition 3.7, we find that φ[t
′
n] has a subsequence that converges to a

solution, which can be checked to be rapid cascade.

3) When limT→∞ osc(T ) = ∞ and inft0∈I a(t0) > 0, we construct a self-similar
solution. Since the argument is a bit involved, we refer the interested reader to
Case III in Section 4 of [28].

Proof of Lemma 1.7. Suppose that the statement of Theorem 1.2 (or 1.3, 1.4) is
not true. From Remark 3.2, we know that m0 is finite. Proposition 3.4 guarantees
that there exists an m-equivariant critical element φ(t) with mass m0 that blows
up forward and backward in time that has pre-compact orbit modulo scaling in
L2
m(R2). From Remark 3.5, we know that φ(t) is almost periodic modulo scaling

in the sense of Definition 1.5. Lastly, from the discussion above, we know we can
construct from φ(t) a new m-equivariant critical element with mass m0 which falls
into one of the three scenarios, i.e., self-similar, soliton-like, or rapid cascade. �

4. Frequency localization

The purpose of this section is to relate Littlewood–Paley frequency-localizations
of terms of Λ(φ), defined in (2.13), to frequency localizations of φ. This is done in
a way that respects the Lp estimates established in §2.

We introduce Littlewood–Paley multipliers in the usual way. In particular, let
ψ : R+ → [0, 1], ψ ∈ C∞, equal one on [0, 1] and zero on [2,∞). For each λ > 0,
define

F(P≤λf)(ξ) := ψ(|ξ|λ−1)f̂(ξ), F(P>λf)(ξ) :=
(
1− ψ(|ξ|λ−1)

)
f̂(ξ),

P̂λf(ξ) :=
(
ψ(|ξ|λ−1)− ψ(2|ξ|λ−1)

)
f̂(ξ).

We similarly define P≤λ and P≥λ. Also, for λ > μ > 0, set

Pμ<·≤λ := P≤λ − P≤μ.

The standard Lp Bernstein estimates hold for these multipliers, see e.g. Lemma 2.1
of [28].

We record for reference the useful relation

F(r∂rf) = F(x · ∇f) = F(xj∂jf) = i∂ξj (iξj f̂)

= −2f̂ − ξ · ∇ξf̂ = −2f̂ − ρ∂ρf̂ = −ρ−1∂ρ(ρ
2f̂),

(4.1)

which is valid when the dimension of the underlying space is 2. Here and through-
out we set ρ := |ξ|. We also set

(4.2) f(r) := −1

2
|φ|2

for short and note the following equalities, which follow from (2.7):

(4.3)
1

r
∂rAθ =

(1
r
+ ∂r

)(1
r
Aθ

)
= (2 + r∂r)

( 1

r2
Aθ

)
= f(r).
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Lemma 4.1 (Fourier transforms of Aθ and r−2Aθ). Let f be given by (4.2). Then

(4.4) Âθ = ρ−1∂ρf̂

and

(4.5) F(r−2Aθ) = −[ρ∂ρ]
−1f̂ .

Proof. We invoke (1.10) to get

Âθ(ξ) = −i∂ξ2Â1 + i∂ξ1Â2,

where we interpret the derivatives in the sense of distributions. Upon expansion
we write

Âθ(ξ) = −1

2
∂ξ2

( ξ2
|ξ|2F(|φ|2)

)
− 1

2
∂ξ1

( ξ1
|ξ|2F(|φ|2)

)
.

This simplifies to

Âθ(ξ) = −1

2

ξj
|ξ|2 ∂ξjF(|φ|2),

so that

Âθ(ρ) = − 1

2ρ
∂ρF(|φ|2),

which establishes (4.4); alternatively, one may multiply (4.3) by r2 and use (4.1).
To show (4.5), let

F (r) :=
Aθ

r2
=

1

r2

∫ r

0

f(s)s ds,

where the equality follows from (2.7). This function is differentiable a.e. and sat-
isfies

(2 + r∂r)F (r) = f(r),

as noted in (4.3). Taking Fourier transforms and using (4.1), we obtain

f̂ = 2F̂ +∇ξ · ξ F̂ = −ρ ∂ρF̂ .

Because φ ∈ L4
t,x, it follows that φ ∈ L4

x for a.e. t and hence f ∈ L2
x for a.e. t.

Therefore, writing F̂ = −[ρ∂ρ]
−1f̂ , we may invoke (2.1) for a.e. t with p = 2

and so conclude that the Fourier transform of Aθ/r
2 has the desired localization

properties. �

Lemma 4.2 (Fourier transform of A
(1)
0 ). Let G(r) = r−2Aθ|φ|2. Then

Â
(1)
0 = ρ−1∂ρĜ.

Proof. Note that

r∂rA
(1)
0 = Aθ|φ|2
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a.e., so that in particular

(4.6)
1

r
∂rA

(1)
0 =

Aθ

r2
|φ|2.

From this we also obtain

(4.7) ∂2rA
(1)
0 = −Aθ

r2
|φ|2 + 1

r
∂r(Aθ|φ|2),

which is valid in the sense of distributions. Combining (4.6) and (4.7) and using

the fact that A
(1)
0 is radial, we conclude

A
(1)
0 = Δ−1

[1
r
∂r(r

2G)
]
= Δ−1(2 + r∂r)G(r).

Invoking (4.1) (with the roles of r and ρ reversed), we get

Â
(1)
0 = − 1

ρ2
(− ρ ∂ρĜ

)
=

1

ρ
∂ρĜ. �

Lemma 4.3. The following holds:

PN

(
[r∂r ]

−1|P<Nφ|2
)
= 0.

Proof. The term A
(2)
0 is nonzero only in the nonradial equivariant case. In partic-

ular, we have

r∂rA
(2)
0 = m|φ|2

a.e. from the representation given in Lemma 2.2, and

(4.8) ΔA
(2)
0 = m

1

r
∂r|φ|2

in the sense of distributions. The Cartesian coordinate representation

(4.9) ΔA
(2)
0 = Im(Q12(φ̄, φ)),

however, is more convenient for our purposes here. In particular, we see immedi-
ately that

(4.10) PN Im(Q12(P<N φ̄, P<Nφ)) = 0,

so that any contribution to PNA
(2)
0 must come from input φ-frequencies of at least

frequency N . �

Remark 4.4. Together (4.9) and (4.10) suggest splitting each φ input in the
right-hand side of (4.9) into a sum of Littlewood–Paley frequency localizations.
As Q12(·, ·) is linear in each argument separately, there are some cross terms to
handle, e.g., terms of the form Im(Q12(PJφ, PKφ)) with ranges J and K not equal.
Whereas the Cartesian representation is well-suited for revealing the frequency
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localization, it is the radial representation (4.8) that is used in Lemma 2.2 in
proving the L2 estimate of that lemma, which does not hold for arbitrary (non-
equivariant) L2 data. Therefore, in order to take advantage of this frequency
decomposition, we need to ensure that we can apply the L2 estimate to terms of
the form Im(Q12(PJφ, PKφ)). Note that if φ is m-equivariant, then so are PJφ
and PKφ, so that both inputs of Im(Q12(·, ·)) are m-equivariant. In particular, if
both φ and ψ are m-equivariant, then

Im(Q12(φ̄, ψ)) = m
1

r
∂rRe(φ̄ψ),

and so we may use (2.1) as in the proof of (2.10) of Lemma 2.2.

5. Extra regularity

Let us first state two lemmas that characterize some important properties of critical
elements.

Lemma 5.1. Let φ be an m-equivariant almost periodic solution to (1.21) on its
maximal-lifespan I. Then for all t ∈ I,
(5.1)

φ(t) = lim
T↗sup I

i

∫ T

t

ei(t−t′)ΔΛ(φ(t′)) dt′ = − lim
T↘inf I

i

∫ t

T

ei(t−t′)ΔΛ(φ(t′)) dt′

as a weak limit in L2
x.

Lemma 5.2. Let φ be an m-equivariant almost periodic solution to (1.21) on its
maximal-lifespan I, with frequency scale function N : I → R+. If J is a subinterval
of I, then

(5.2)

∫
J

N(t)2 dt �φ

∫
J

∫
R2

|φ(t, x)|4 dx dt �φ 1 +

∫
J

N(t)2 dt.

The proofs of Lemmas 5.1 and 5.2 are similar to arguments in Section 6 of [41]
and Lemma 3.9 of [28]. In particular, we need only adapt these arguments to our
particular nonlinearity, and hence we omit the details.

5.1. The self-similar case

Our goal in this section is to show that self-similar minimal blowup solutions enjoy
extra regularity.

Theorem 5.3. Let φ be a self-similar critical m-equivariant solution of (1.21),
almost periodic modulo scaling, with lifespan I = (0,+∞) and frequency scale
function N(t) = t−1/2 for t ∈ I. Then, for each s ≥ 0, φ ∈ L∞

t H
s
m(R× R

2).
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We adopt the basic setup used in [28] and introduce the quantities

M(A) = sup
T

‖P>AT−1/2φ(T )‖L2
x(R

2),

S(A) = sup
T

‖P>AT−1/2φ(t, x)‖L4
t,x([T,2T ]×R2),

N (A) = sup
T

‖P>AT−1/2Λ(φ)(t, x)‖
L

4/3
t,x ([T,2T ]×R2)+L1

t [T,2T ]L2
x(R

2)
,

Ñ (A) = sup
T

‖P>AT−1/2Λ(φ)(t, x)‖
L

4/3
t,x ([T,2T ]×R2)

.

For our definition of Littlewood–Paley multipliers, see §4. The nonlinearity Λ(φ)

is defined in (2.13). Whereas Ñ (A) is used in [28, 17] to prove extra regularity for
self-similar solutions, we use the slightly weakened norm N (A). This is especially
helpful when Aθ has high-frequency inputs, as shown in Lemma 5.6.

To prove Theorem 5.3, we will show that

(5.3) M(A) = sup
T

‖P>AT−1/2φ(T )‖L2
x
<φ,A A−s

for any s > 0.

5.1.1. Bounds. Mass conservation gives

M(A) �φ 1,

and Strichartz estimates imply

(5.4) S(A) �φ M(A) +N (A).

The spacetime bound (5.2) establishes

S(A) �φ 1,

and this spacetime bound together with Lemma 2.7 implies

N (A) � Ñ (A) � ‖Λ(φ)‖L4/3([T,2T ]×R2) �φ 1.

Combining the information above, we have

(5.5) M(A) + S(A) +N (A) �φ 1.

The Strichartz estimate together with the above inequalities implies

‖φ‖L2
tL

∞
x ([T,2T ]×R2) �φ 1.

In the following lemma we collect some estimates that we will later employ.

Lemma 5.4. Suppose 1/p = 1/p1 + 1/p2 + 1/p3 and 1/p2 + 1/p3 > 0. Then the
following nonlocal Hölder estimate holds:

(5.6)
∥∥∥q1 ∫ ∞

r

q2 q3
dρ

ρ

∥∥∥
p
� ‖q1‖p1 ‖q2‖p2 ‖q3‖p3 .
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Additionally,

(5.7)
∥∥∥Aθ

r2
φ
∥∥∥
p
� ‖φ‖p1‖φ‖p2‖φ‖p3

for 1/p = 1/p1 + 1/p2 + 1/p3 with 1 < pi <∞.

The Strichartz estimate for equivariant functions f ,

(5.8) ‖PNe
itΔf‖Lq � N1−4/q‖f‖L2

x
, q ≥ 10

3
,

is also true, from which easily follows the inhomogeneous estimate

(5.9) ‖PNu‖Lq � N1−4/q(‖f‖L2
x
+ ‖(i∂t +Δ)u‖L4/3+L1

tL
2
x
), q ≥ 10

3
.

The nonlocal Hölder estimate follows from elementary inequalities, see Section 3
of [17]. Shao [38] proved (5.8) for the range q > 10/3, and the endpoint q = 10/3
was established by Guo and Wang in [16].

Remark 5.5. There is enough slack in our argument for nonendpoint estimates
to suffice. However, when the endpoint estimate is used, the exponents are par-
ticularly simple, and so we use this estimate for convenience. Note that both [38]
and [16] prove results for radial functions. There they use the fact that the Fourier
transform of a radial function may be expressed in terms of a Hankel transform
with kernel Jk, a Bessel function of the first kind. When the underlying space
is two-dimensional, k = 0. In the m-equivariant 2-d setting, the Bessel function
required is Jm, which enjoys the same asymptotics at infinity as does J0, but is
better behaved near the origin. These properties are sufficient for extending the
proofs of [38] and [16] to this setting.

We now come to the first main estimate.

Lemma 5.6. Given A large enough, we have

N (A) �φ S( A
10 )M(

√
A ) +A−1/10

[M( A
10 ) +N ( A

10 )
]
.

Proof. We proceed as in [28]. It suffices to prove∥∥∥P>AT−1/2N (φ)(t, x)
∥∥∥
L

4/3
t,x +L1

tL
2
x[T,2T ]

� S( A
10 )M(

√
A ) +A− 1

10

[M( A
10 ) +N ( A

10 )
]

uniformly in T . To do this, we decompose φ into high, intermediate and low
frequency pieces, i.e.,

φ = φhi + φmed + φlow,

where

φhi = φ> 1
10AT−1/2 , φmed = φ√AT−1/2≤·≤ 1

10AT−1/2 , φlow = φ≤√
AT−1/2 .

Because of the frequency localization lemmas of §4, we see that having nontriv-
ial P>AT−1/2N (φ)(t, x) implies that the nonlinearity must have at least one high
frequency input φhi.
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As in [28], we split into cases according to whether we have one intermediate
input or all low inputs remaining.

It is convenient at this stage to split up the nonlinearity into “cubic” and
“quintic” terms, as follows:

(5.10) Λ3 := 2m
Aθ

r2
φ+A

(2)
0 φ− g|φ|2φ, Λ5,1 :=

A2
θ

r2
φ, Λ5,2 := A

(1)
0 φ,

so that Λ(φ) = Λ3 + Λ5,1 + Λ5,2.

Case 1. If we have at least one intermediate input φmed in the nonlinearity,
then we use the Hölder estimate (5.6). In particular, we use L4 on φhi and L

∞
t L

2
x

on φmed, and so obtain the bound

‖Λ3(φhi, φmed, φ)‖L4/3[T,2T ] � S( A
10 )M(

√
A ).

For the quintic term Λ5,1, use L
∞ on an Aθ that does not involve φhi and then

apply Hölder to Aθ

r2 φ in the same way that we do for the cubic terms:

‖Λ5,1‖L4/3[T,2T ] �φ S( A
10 )M(

√
A ).

We can control the quintic term Λ5,2 in L4/3 using L∞ on Aθ and Hölder on the
other terms provided that Aθ does not have a high frequency input. If Aθ does
have a high frequency input, then we estimate Λ5,2 in L1

tL
2
x:

‖Λ5,2‖L1
tL

2
x
�

∥∥∥ ∫ ∞

r

Aθ

s2
|φ|2s ds

∥∥∥
L1

tL
∞
x

‖φ‖L∞
t L2

x[T,2T ]

�
∥∥Aθ

s2
|φ|2∥∥

L1
t,x[T,2T ]

‖φ‖L∞
t L2

x
� S( A

10 )M(
√
A ).

Here we used the Hölder estimate (5.7), putting the high frequency terms in L4,
the medium frequency ones in L∞L2, and the rest in L4 and L2L∞.

Altogether, we conclude ‖Λ5,2‖L4/3+L1L2 �φ S( A
10 )M(

√
A ).

Case 2. For the case where one input is at high frequency and the rest are at
low frequency, we adopt the idea of using the Strichartz estimates (5.8), (5.9), as
found in Section 3.3 of [17].

For Λ3, we use, as in Case 1, L10/3 on φhi and L
5 on one of φlow:

‖Λ3(φ)‖L4/3[T,2T ] � ‖φhi‖L10/3[T,2T ]‖φlow‖L5[T,2T ]‖φ‖L4[T,2T ].

Using Bernstein and the inhomogeneous Strichartz estimate (5.9), we get

‖P<Mφ‖L5
[T,2T ]×R2

�M1/5
(‖P<Mφ(T )‖L2 + ‖P<MN (φ)‖L1L2+L4/3[T,2T ]

)
,

‖P>Nφ‖L10/3

[T,2T ]×R2
� N−1/5

(‖P>Nφ(T )‖L2 + ‖P>NN (φ)‖L1L2+L4/3[T,2T ]

)
.

Taking N = 1
10AT

−1/2 and M =
√
AT−1/2, we obtain

‖Λ3(φ)‖L4/3

[T,2T ]×R2

� A−1/10 [M( 1
10A) +N ( A

10 )].
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The quintic pieces of Λ5,1 and Λ5,2 with Aθ not involving φhi we handle as in
Case 1. In particular, we use L∞ on Aθ, then apply Hölder to obtain ‖φhi‖L10/3

and ‖φlow‖L5 , and then apply Hölder once more to get the A−1/10 decay factor.
The quintic term Λ5,2 with Aθ involving φhi we bound in L1L2 as in Case 1:

‖Λ5,2‖L1
tL

2
x
� ‖φhi‖L10/3‖φ‖L5‖φ‖2L4‖φ‖L∞L2 � A−1/10

[M( 1
10A) +N ( A

10 )
]
. �

Lemma 5.7. We have

lim
A→∞

M(A) = lim
A→∞

S(A) = lim
A→∞

N (A) = 0.

Proof. The vanishing of the first limit follows from the definition of almost peri-
odicity. The vanishing of the third limit follows from Lemma 5.6 and (5.5), and
the vanishing of the second one follows from (5.4). �

Given the nonlinear estimate in Lemma 5.6, the following ε-regularity result
follows using exactly the same arguments employed in Proposition 5.5 and Corol-
lary 5.6 of [28].

Lemma 5.8. For all A > 0,

S(A) � η S( A
20 ) +A−1/40, and M(A) + S(A) +N (A) � A−1/40.

Finally, adapting the induction argument, we conclude higher regularity.

Theorem 5.9. For all A > 0 and s > 0,

M(A) � A−s.

5.2. The global critical case

The Fourier transform of an m-equivariant function f(r, θ) = eimθu(r) is given in
terms of a Hankel transform of its radial part u. We use polar coordinates (ρ, α)
on the Fourier side, obtaining

F(f)(ρ, α) = 2π(−i)meimα

∫ ∞

0

u(r)Jm(rρ) r dr.

The Fourier transform is an involution on equivariant functions, and so one may
also obtain from this an inversion formula. Next, we split the Bessel function Jm
into two Hankel functions, corresponding to projections onto outgoing and incom-
ing waves. In particular, we have

Jm(|x||ξ|) = 1

2
H(1)

m (|x||ξ|) + 1

2
H(2)

m (|x||ξ|),

where H
(1)
m is the orderm Hankel function of the first kind and H

(2)
m is the orderm

Hankel function of the second kind.
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Definition 5.10. Let P+ denote the projection onto outgoing m-equivariant
waves:

[P+f ](x) :=
1

4π2
eimθ

∫
R+×R+

H(1)
m (|x||ξ|)Jm(|ξ||y|)f(|y|) dξ dy

=
1

2
f(x) +

i

2π2

∫
R2

∣∣∣y
x

∣∣∣m f(x)

|x|2 − |y|2 dy.

Here the second inequality follows from Section 6.521.2 of [15] and analytic con-
tinuation.

In a similar way, we can define the projection [P−f ](x) onto incoming waves

by replacing H
(1)
m with H

(2)
m . In particular, P−f is the complex conjugate of P+f .

We also use the notation P±
λ for the composition P±Pλ.

As the equivariance class m is clear from context, we omit it from the notation
for P±.

Lemma 5.11 (Kernel estimate: incoming/outgoing wave).

(1) The operator P+ + P− acts as the identity on m-equivariant functions be-
longing to L2(R2).

(2) For |x| > λ−1 and t � λ−2,

∣∣[P±
λ e

∓itΔ](x, y)
∣∣ � {

(|x||y||t|)−1/2, |y| − |x| ∼ λt,

λ2

〈λ|x|〉1/2〈λ|y|〉1/2 〈λ2t+ λ|x| − λ|y|〉−n, otherwise,

for all n ≥ 0.

(3) For |x| � λ−1, t � λ−2.

∣∣[P±
λ e

∓itΔ](x, y)
∣∣ � λ2

〈λ|x|〉1/2〈λ|y|〉1/2 〈λ|x| − λ|y|〉−n

for all n ≥ 0.

(4) For λ > 0 and any equivariant function f ∈ L2(R2),

‖P±P≥λf‖L2(|x|≥ 1
100λ ) � ‖f‖L2(R2).

This result is established in [28, 31]; see for instance Proposition 6.2 of [28]
and Lemma 4.1 of [31]. The spatial cutoff in (4) of Lemma 5.11 is only necessary
when m �= 0. The operators P± that act on radial functions are bounded on L2.
However, their counterparts for m �= 0 are no longer bounded on L2 because of the

worse singularity of H
(1)
m (and H

(2)
m ) at the origin.

It is worth comparing the above kernel estimate with the following kernel bound
on the linear propagator. We see that when x is far from the origin, we have better
decay after decomposing into incoming and outgoing waves.
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Lemma 5.12 (Kernel estimate: linear propagator). For any n ≥ 0, the kernel of
the linear propagator obeys the following estimates:

∣∣[Pλe
itΔ](x, y)

∣∣ � { |t|−1/2, |y − x| ∼ λt,

λ2

|λ2t|n〈λ|x−y|〉n , otherwise,
for t � λ−2,

and ∣∣[Pλe
itΔ](x, y)

∣∣ � λ2〈λ|x− y|〉−n for t � λ−2.

With the help of the decay provided by the incoming/outgoing wave decompo-
sitions, we can prove the following lemma.

Theorem 5.13. Let φ be a global critical m-equivariant solution of (1.21), almost
periodic modulo scaling, and with N(t) � 1 uniformly in t ∈ R. Then, for each
s ≥ 0, φ ∈ L∞

t H
s
m(R× R2).

It suffices to prove

M(λ) := ‖φ≥λ‖L∞
t L2

x(R×R2) � λ−s.

By mass conservation,
‖φ‖L∞

t L2
x(R×R2) �φ 1,

and so M(λ) � 1. From almost periodicity and from the boundedness of N(t), we
get

lim
λ→∞

‖φ≥λ‖L∞
t L2

x(R×R2) = 0,

which means that M(λ) → 0.
Theorem 5.13 follows from the following lemma.

Lemma 5.14 (Regularity). Let φ be as in Theorem 5.13 and let η > 0 be a small
number. Then

M(λ) � ηM(λ8 )

whenever λ is sufficiently large, depending upon φ and η.

We prove this lemma by showing that

(5.11) ‖φ≥λ(t0)‖L2
x(R

2) � ηM(λ8 )

for any time t0 and for all λ sufficiently large.
Let us explain the strategy here: we will follow the argument in Section 5

of [31], which is a slight modification of Section 7 of [28]. We first split the
estimate into bounding the L2 norm of φ≥λ(t0) in two different regions. Inside
the ball {|x| ≤ λ−1} we can use the kernel bound in Lemma 5.12, while outside
the ball we enjoy better decay by decomposing into incoming and outgoing waves
and using the kernel bound in Lemma 5.11. In each region, we split into three
cases: the short time estimate Proposition 5.15, the long time main term estimate
Proposition 5.16, and the long time tail estimate Proposition 5.17.
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The proof of Propositions 5.15, 5.16 and 5.17, with the help of kernel bounds,
involves only Hölder, Strichartz, and weighted Strichartz estimates. We have the
same bound as in Section 7 of [28] and so can carry out the same argument there
by taking advantage of the decay when outside the ball and by taking advantage
of the spatial support smallness when inside the ball.

Now we carry out the ideas in more detail. We can first assume t0 = 0 by time
translation. Let χλ(x) denote the characteristic function of [1/λ,∞).

For the portion of the frequency localized solution φ≥λ in the ball {|x| ≤ λ−1},
we get (see formula (5–7) in [31]) that

(1− χλ(x))φ≥λ(0) = lim
T→∞

i

∫ T

0

(1− χλ(x))e
−itΔP≥λΛ(φ)(t) dt

= i

∫ δ

0

(1− χλ(x))e
−itΔP≥λΛ(φ)(t) dt

+ lim
T→∞

∑
μ≥λ

i

∫ T

δ

∫
R2

(1− χλ(x))[Pμe
−itΔ](x, y)PμΛ(φ)(t)(y) dy dt,(5.12)

where for (5.12) we use the integral kernel of Pμe
−itΔ.

Next, for the portion of φ≥λ in the region {|x| ≥ λ−1}, we split into incoming
and outgoing waves propagating backward and forward in time (respectively):

χλ(x)φ≥λ(0) = lim
T→∞

i

∫ T

0

χλ(x)e
−itΔP≥λΛ(φ)(t) dt

= i

∫ δ

0

χλ(x)P
+e−itΔP≥λΛ(φ)(t)dt − i

∫ 0

−δ

χλ(x)P
−e−itΔP≥λΛ(φ)(t) dt

+ lim
T→∞

∑
μ≥λ

i

∫ T

δ

∫
R2

χλ(x)[P
+
μ e

−itΔ](x, y)PμΛ(φ)(t)(y) dy dt

− lim
T→∞

∑
μ≥λ

i

∫ −δ

−T

∫
R2

χλ(x)[P
−
μ e

−itΔ](x, y)PμΛ(φ)(t)(y) dy dt.

As explained in [31], this is to be interpreted as a weak L2 limit, and we have

fT → f weakly =⇒ ‖f‖ ≤ lim sup ‖fT‖.
The following short time estimate works for any spatial region.

Proposition 5.15 (Short-time estimate). Given any η > 0 we can find some
δ = δ(φ, η) > 0 such that∥∥∥ ∫ δ

0

e−itΔ P≥λ Λ(φ)(t) dt
∥∥∥
L2

≤ ηM(λ8 )

provided λ is large enough depending on φ and η.
Similar estimates hold on the time interval [−δ, 0] and for incoming/outgoing

waves under premultiplication by χλP
±.
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The proof is similar to that of Lemma 7.3 of [28], the main difference being
that we must use the nonlocal Hölder estimate (5.6) and the estimate (5.7). As in
the proof of extra regularity for the self-similar case, we also use the fact that a
high frequency output of Λ(φ) implies that there is a high frequency input term.
The details of how to perform the decomposition and apply (5.6) and (5.7) are
similar, and so we omit the proofs.

To work with the long-time estimate, we break the region of (t, y) integra-
tion into two pieces: |y| � μ|t| and |y| � μ|t|. In the former region, Pμe

−itΔ

and P±
μ e

−itΔ have a stationary point, hence it will give the main contribution.
And the later region will be treated as error.

Take χk to be the characteristic function for

{(t, y)|2kδ ≤ |t| ≤ 2k+1δ, |y| � μ|t|}.
Proposition 5.16 (Long-time estimate: main contribution). Let 0 < η < 1 and δ
be as in Proposition 5.15. Then∑

μ≥λ

∑
k≥0

∥∥∥ ∫ 2k+1δ

2kδ

∫
R2

[Pμe
−itΔ](x, y)χk(t, y)PμΛ(φ)(t)(y) dy dt

∥∥∥
L2

x

� ηM(λ8 )

for λ large enough depending on φ and η. A similar estimate holds under premul-
tiplication by χkP

± or on time interval [−2k+1δ,−2kδ].

Now we just need to estimate the tails coming from the region

{(t, y) : 2kδ ≤ |t| ≤ 2k+1δ, |y| � μ|t|}.
Since this is the non-stationary region, the kernels have rapid decay, as shown in
Lemma 5.11 and Lemma 5.12. In particular when μ ≥ λ, we have

|Pμe
−itΔ(x, y)| � μ2

(μ2|t|)50
for |x| ≤ λ−1, |y| � μ|t| and |t| ≥ δ � N−2

|P±
μ e

−itΔ(x, y)| � μ2

(μ2|t|)50〈μ|x| − μ|y|〉50
for |x| > λ−1, |y| � μ|t| and |t| ≥ δ � N−2

Let χ̃k denote the characteristic function of this region. Then we have the
following tail estimate which reads the same as the estimate for the main contri-
bution.

Proposition 5.17 (Long-time estimate: tails). Let 0 < η < 1 and δ be as in
Proposition 5.15. Then∑

μ≥λ

∑
k

∥∥∥ ∫ T

δ

∫
R2

[Pμe
−itΔ](x, y)χ̃k(t, y)PμΛ(φ)(t)(y) dy dt

∥∥∥
L2

x

� ηM(λ8 )

for λ large enough depending on φ and η. A similar estimate holds under premul-
tiplication χ̃kP

± and on time intervals [−2k+1δ,−2kδ].

As explained before, Propositions 5.15–5.17 together establish (5.11).
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6. Virial and Morawetz identities

We recall

F0r = −1

r
Im(φ̄Dθφ), F0θ = r Im(φ̄Drφ), and Frθ = −1

2
r|φ|2.

Because dF = d2A = 0, we have

(6.1) ∂tFrθ − ∂rF0θ + ∂θF0r = 0.

To rewrite this in terms of a natural stress-energy tensor, let

T00 =
1

2
r|φ|2, T0r = r Im(φ̄Drφ), and T0θ =

1

r
Im(φ̄Dθφ).

Then (6.1) may be rewritten as ∂αT0α = 0.

Lemma 6.1. We have

∂tT0r =− (2 + 2r∂r)|Drφ|2 + 1

2
rg∂r|φ|4

+
1

r
∂r|Dθφ|2 − 2

r
∂θRe(DθφDrφ)

+ r∂r

[ 1

r2

(1
2
∂2θ |φ|2 − |Dθφ|2

)]
+
(1
2
r∂3r +

1

2
∂2r − 1

2r
∂r

)
|φ|2.

(6.2)

Proof. We write

∂tT0r = r Im(DtφDrφ) + r Im(φ̄DtDrφ)

= r Im(DtφDrφ) + r Im(φ̄DrDtφ) + rF0r |φ|2
= r Im(DtφDrφ) + r Im(φ̄DrDtφ) + 2FθrF0r

and calculate each piece separately, using (1.13).
For the first term, we get

r Im(DtφDrφ) = −rRe(D2
rφDrφ)− |Drφ|2 − 1

r
Re(D2

θφDrφ) − rg|φ|2Re(φ̄Drφ)

= −(1 +
1

2
r∂r)|Drφ|2 − 1

4
gr∂r|φ|4 − 1

r
Re(D2

θφDrφ).

Now

Re(D2
θφDrφ) = ∂θRe(DθφDrφ) − Re(DθφDrDθφ)− Re(DθφiFθrφ)

= ∂θRe(DθφDrφ) − Fθr Im(φ̄Dθφ) − 1

2
∂r|Dθφ|2,

and so we can rewrite the first term as

r Im(DtφDrφ) =− (1 +
1

2
r∂r)|Drφ|2 − 1

4
gr∂r|φ|4

− 1

r
∂θRe(DθφDrφ)− FθrF0r +

1

2r
∂r|Dθφ|2.
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For the second term, we get

r Im(φ̄DrDtφ) = rRe(φ̄D3
rφ) + rRe(φ̄Dr(

1

r
Drφ))

+ rRe(φ̄Dr(
1

r2
D2

θφ)) + rgRe(φ̄Dr(|φ|2φ)).
Now

rRe(φ̄D3
rφ) =

1

2
r∂3r |φ|2 −

3

2
r∂r |Drφ|2,

rRe(φ̄Dr(
1

r
Drφ)) = −|Drφ|2 +

(1
2
∂2r − 1

2r
∂r

)
|φ|2,

rRe(φ̄Dr(
1

r2
D2

θφ)) = r∂r

[ 1

r2

(1
2
∂2θ |φ|2 − |Dθφ|2

)]
− 1

r
Re(DrφD

2
θφ),

rgRe(φ̄Dr(|φ|2φ)) = 3

4
rg∂r|φ|4.

Hence

r Im(φ̄DrDtφ) =−
(
1 +

3

2
r∂r

)
|Drφ|2 +

(1
2
r∂3r +

1

2
∂2r − 1

2r
∂r

)
|φ|2

+
1

2r
∂r|Dθφ|2 + r∂r

[ 1

r2

(1
2
∂2θ |φ|2 − |Dθφ|2

)]
− 1

r
∂θRe(DθφDrφ) − FθrF0r +

3

4
rg∂r|φ|4.

Combining the above pieces yields (6.2). �

Lemma 6.2 (Virial and Morawetz identities). A direct calculation relying upon
integration by parts verifies the virial identity

(6.3) ∂2t

∫∫
r2 T00 dr dθ = 4

∫∫ (
|Drφ|2 + 1

r2
|Dθφ|2 − g

2
|φ|4

)
r dr dθ,

and the Morawetz identity

(6.4) ∂2t

∫∫
r T00 dr dθ =

1

2

∫∫ ( 1

r2
|φ|2 − g|φ|4

)
dr dθ.

Proof. To prove (6.3), start with

∂2t

∫∫
r2 T00 dr dθ = −∂t

∫∫
r2
(
∂rT0r + ∂θT0θ

)
dr dθ = 2

∫∫
r ∂tT0r dr dθ.

Then invoke (6.2) to conclude∫∫
r∂tT0r dr dθ = 2

∫∫ (
|Drφ|2 + 1

r2
|Dθφ|2 − g

2
|φ|4

)
r dr dθ = 4E(φ).

To obtain (6.4), write

∂2t

∫∫
rT00 dr dθ =

∫∫
∂tT0r dr dθ

and then use (6.2). �
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Remark 6.3. Under the equivariant ansatz, the components of the stress-energy
tensor are radial, so that, in particular the integrands of (6.3) and (6.4) are inde-
pendent of θ. Under this ansatz, the identity (6.2) admits the simplification

∂tT0r =− (2 + 2r∂r)|Drφ|2 + 1

2
rg∂r |φ|4 + 1

r
∂r|Dθφ|2

− r∂r

( 1

r2
|Dθφ|2

)
+
(1
2
r∂3r +

1

2
∂2r − 1

2r
∂r

)
|φ|2.

(6.5)

7. Absence of critical elements

Proposition 7.1. Let m ∈ Z and let φ ∈ H1
m be a nontrivial solution of (1.21)

with g < 1. Then E(φ) > 0.

Proof. The main tool required is the so-called Bogomol’nyi identity, which states

(7.1) |Dxφ|2 = |D+φ|2 +∇× J − F12|φ|2,

where D± := D1 ± iD2 and J = (J1, J2) with Jk := Im(φ̄Dkφ). This identity can
be motivated by the factorization

DjDjφ = (D1 − iD2)(D1 + iD2)φ+ F12φ,

and both can be verified by direct calculation. Using (7.1) and Green’s theorem,
we obtain

(7.2) E(φ) :=
1

2

∫
R2

[
|Dxφ|2 − g

2
|φ|4

]
dx =

1

2

∫
R2

[
|D+φ|2 + 1

2
(1 − g)|φ|4

]
dx.

From this we conclude that if g < 1 and φ is not zero a.e., then E(φ) > 0. �

7.1. Ruling out the self-similar scenario

As a corollary of (5.3), used to prove Theorem 5.3, we obtain the following.

Corollary 7.2. Let g < 1. Critical equivariant self-similar solutions do not exist.

Proof. For any s ≥ 0,

sup
t∈(0,∞)

∫
|ξ|>At−1/2

|φ̂(ξ, t)|2 dξ ≤ CsA
−s, A > A0(s).

Therefore

(7.3) ‖φ(t, ·)‖Ḣs(R2) � t−s/2 = [N(t)]s.

Thanks to the following lemma, taking t→ ∞ in (7.3) implies that the conserved
energy E(φ) must be zero and hence the solution φ trivial. �
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Lemma 7.3. Let m ∈ Z and let φ ∈ L∞
t L

2
m be a solution of (1.21) with E(φ),

given by (1.6), finite. Then

(7.4) |E(φ)| � ‖φ‖Ḣ1 ,

where the constant depends upon g and the charge chg(φ).

Proof. First we note that

|Dxφ|2 � |∇φ|2 + |Axφ|2.
To control Axφ in L2, use |Aj | = 1

r |Aθ| � ‖φ‖2L4, where the last inequality follows
from (2.5). Therefore,

‖Dxφ‖2L2 � ‖∇φ‖2L2 + ‖φ‖2L4‖φ‖2L2 .

The lemma now follows from the Gagliardo–Nirenberg inequality

(7.5) ‖f‖4L4 � ‖∇f‖2L2‖f‖2L2. �

7.2. Ruling out global critical elements

Let χ : R+ → [0, 1] be a smooth cut-off function equal to one on [0, 1] and zero
on [2,∞). For any given R > 0, define χR(r) := χ(r/R). Set

IR(φ) :=

∫ ∞

0

T0rχRr dr.

Lemma 7.4 (Localized virial identity). Let m ∈ Z, φ ∈ L∞H1
m, and let e(φ)

denote the energy density

e(φ) :=
1

2

(
|Drφ|2 + 1

r2
|Dθφ|2 − g

2
|φ|4

)
.

Then

d

dt
IR(φ) = 4

∫
e(φ)r dr + 4

∫
e(φ)(χR − 1)r dr

− 2

∫ (
|Drφ|2 − g

4
|φ|4

)
(rχ′

R)r dr + Irem,

(7.6)

where

Irem = −1

2

∫ |φ|2
r2

(r3χ′′′
R )r dr − 5

2

∫ |φ|2
r2

(r2χ′′
R)r dr −

3

2

∫ |φ|2
r2

(rχ′
R)r dr.

Proof. By invoking (6.5) and integrating by parts, we obtain

d

dt
IR(φ) =

5∑
j=1

I5,
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where

I1 := 2

∫
|Drφ|2χR r dr − 2

∫
|Drφ|2(r χ′

R) r dr,

I2 := −
∫
g|φ|4χR r dr +

1

2

∫
g |φ|4(r χ′

R) r dr,

I3 := −
∫

1

r2
|Dθφ|2 (r χ′

R) r dr,

I4 := 2

∫
1

r2
|Dθφ|2 χR r dr +

∫
1

r2
|Dθφ|2 (r χ′

R) r dr,

and I5 := Irem defined above. Rearranging the terms in I1 through I4 yields the
result. �

Corollary 7.5. Let g < 1. Global equivariant critical elements do not exist.

Proof. We divide the proof into two cases:

Case 1. The solution is soliton-like with N(t) = 1 for all t ∈ R.
Invoking Theorem 5.13, we have that for each s ≥ 0 the estimate

(7.7) ‖φ(t, ·)‖Ḣs(R2) ≤ Cs

holds uniformly in time. Next, let η > 0 and take R = 2C(η)/N0 so that

(7.8)

∫
|x|>R/2

|φ(t, x)|2 dx < η

for all time. By interpolating, we can control the energy far from the origin:

(7.9)

∫ ∞

R

(
|Drφ|2 + 1

r2
|Dθφ|2 − g

2
|φ|4

)
r dr � η1/2.

This suffices for controlling the second term in the right-hand side of (7.6).
To control the third term, first note that the L4 norm of φ can be controlled

far from the origin by using (7.5), (7.8), and (7.7). Using L4 control in (7.9) then
permits us to control |Drφ|2 far from the origin as well. Finally,

rχ′
R = r[χ(r/R)]′ =

r

R
χ′(r/R),

which is nonzero only for R ≤ r ≤ 2R; it is also bounded by a constant in this
range uniformly in R. Combining these statements suffices for controlling the third
term in the right-hand side of (7.6).

To control the fourth term, i.e. Irem, we note that each integrand is bounded
by a constant times |φ|2 integrated against rdr in the range R ≤ r ≤ 2R. Hence
we may use (7.8).

Using these estimates, we conclude from (7.6) that

d

dt
IR(φ) ≥ 2

π
E(φ) − C η1/2.
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Therefore, by conservation of energy, we have for η sufficiently small that

(7.10)
d

dt
IR(φ) � 1.

On the other hand, by (7.6) and (7.4),

|IR(φ)| � R‖φ‖L2‖φ‖Ḣ1 � RC1

holds uniformly in time. This contradicts (7.10) for t sufficiently large.

Case 2. The solution has a rapid cascade so that there exists a sequence tn
such that N(tn) → 0.

Given η > 0 arbitrary, then, by almost periodicity, we can find C = C(η, φ)
such that ∫

|ξ|>CN(t)

|φ̂(ξ)|2 dξ ≤ η.

Interpolating with (7.7) for s = 2, we get∫
|ξ|>CN(t)

|ξ|2 |φ̂(ξ)|2 dξ � η1/2,

and from mass conservation and Plancherel’s theorem we have∫
|ξ|≤CN(t)

|ξ|2 |φ̂(ξ)|2 dξ � C2N(t)2.

Together these two facts imply

‖∇φ‖2L2 � η1/2 + C2N(t)2.

Hence along the sequence tn, we have ‖∇φ(tn)‖2L2 → 0. By Lemma 7.3, we also
obtain

|E(φ(tn)| � ‖∇φ(tn)‖2L2 → 0.

This forces a contradiction because of energy conservation and (7.2), which says
that when g < 1, E(φ) > 0 if φ �= 0. �

Remark 7.6. (1) The self-similar case can also be ruled out using the Virial
identity argument, due to the behavior of N(t) at ∞. This was demonstrated in
Section 9 of [28].

(2) Notice that in the arguments in section 7.1 and section 7.2, the only place
we used g < 1 is to get the positivity of energy as in Proposition 7.1. When g ≥ 1,
we can still ensure the positivity of energy by requiring the charge of data to be
below certain threshold. To be more precise, we use (7.2) and Lemma 8.1 for g = 1
and we use Lemma 8.5, 8.6, and 8.8 for g > 1 to find the charge threshold. Hence
we can carry over the arguments as above to rule out the critical elements for g ≥ 1.
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8. The focusing problem

In the focusing problem we shall restrict ourselves to m ≥ 0. This is the phys-
ically interesting case for (1.21) as written. In fact, the natural Chern–Simons–
Schrödinger system for m < 0 is not (1.21), but rather an analogous one with
the signs in the field constraints flipped. For further discussion of this point, see
Chapter II. C., E. of [11].

8.1. The case g = 1

Lemma 8.1. Let g = 1 and m ∈ Z+. Suppose that φ ∈ L∞
t H

1
m is a solution

of (1.21) with E(φ) = 0. Then φ is a soliton.

Proof. Straightforward calculations reveal

(8.1) D+ = eiθ
(
Dr +

i

r
Dθ

)
and

|Dθφ|2 = (m+Aθ)
2|φ|2.

By (7.2), E(φ) = 0 implies D+φ = 0 a.e. For m-equivariant φ, this implies

∂rφ =
1

r
(m+Aθ)φ.

Consequently,
1

2
∂r|φ|2 =

1

r
(m+Aθ)|φ|2 = ∂rA0,

so that A0 = 1
2 |φ|2. Therefore φ is an equivariant solution of the self-dual Chern–

Simons–Schrödinger system

(8.2)

⎧⎪⎨⎪⎩
(D1 + iD2)φ = 0,

A0 = 1
2 |φ|2,

∂1A2 − ∂2A1 = − 1
2 |φ|2.

Such solutions constitute static solutions to (1.21) (with g = 1). Conversely,
any H1 static solution of (1.21) with g = 1 has E(φ) = 0 (for a short proof,
see [19]). �

If m ∈ Z+, then explicit equivariant solutions are given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ(m)(t, x) =
√
8λ(m+ 1)

|λx|m
1 + |λx|2(m+1)

eimθ,

A
(m)
j (t, x) = 2(m+ 1)λ2

εjkxk|λx|2m
1 + |λx|2(m+1)

,

A
(m)
0 (t, x) = 4

[λ(m+ 1)|λx|m
1 + |λx|2(m+1)

]2
.
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where λ > 0 is a free scaling parameter and εjk is the anti symmetric tensor
with ε12 = 1. Such solutions are discussed, for instance, in [20] and [22]. For any
value λ > 0, we find

chg(φ(m)) = 8π(m+ 1).

Uniqueness of these explicit soliton solutions (up to a phase) is discussed in [20]
and a proof can be given by combining the arguments of [7] with the equivariance
ansatz.

From (7.2) and Lemma 8.1, we see that E(φ) > 0 if chg(φ) < 8π(m+1). Hence
we can conclude the proof of Theorem 1.3 using arguments from §7.

8.2. The case g > 1

Lemma 8.2. Let g > 1. Then there exists a constant cg > 0 such that any
nontrivial H1 solution φ of (1.21) with E(φ) ≤ 0 satisfies chg(φ) ≥ cg.

Proof. Using (1.6) we see that E(φ) ≤ 0 implies

2

g
‖Dxφ‖2L2

x
≤ ‖φ‖4L4

x
.

We can combine this with the covariant Gagliardo–Nirenberg inequality (e.g.,
see [3], (2.28), for a proof), which states that

(8.3) ‖φ‖4L4
x
� ‖Dxφ‖2L2

x
‖φ‖2L2

x
,

to conclude that E(φ) ≤ 0 implies

‖φ‖2L2
x
� 2

g
. �

Remark 8.3. The constants in Lemma 8.2 are universal (in that they are not
dependent upon the equivariance index m or even upon the satisfaction of the
equivariance ansatz) but not sharp. In Lemma 8.5 we show that, given an equiv-
ariance index m ∈ Z+, the sharp charge threshold for the class H1

m may be found
by minimizing over nontrivial energy zero solutions in that class.

As an interesting application of the Bogomol’nyi identity (7.1), we prove the
following inequality, which is similar to an inequality of Byeon, Huh, and Seok
(page 1607 of [5]).

Lemma 8.4. Let φ be an H1 solution of (1.7), g ∈ R. Then

(8.4) ‖φ‖4L4
x
≤ 4 ‖Drφ‖L2

x

∥∥ 1
rDθφ

∥∥
L2

x
.

Proof. Integrating (7.1) over R2 and using the observation (8.1), we conclude

(8.5)

∫
1

2
|φ|4 = 2

∫
Im

(
r−1DθφDrφ

)
.

Then (8.4) follows by Cauchy–Schwarz. �
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Applying Young’s inequality to (8.4) yields

(8.6) ‖φ‖4L4
x
≤ 2 ‖Drφ‖2L2

x
+ 2

∥∥1
rDθφ

∥∥2
L2

x
= 2 ‖Dxφ‖2L2

x
.

In particular, in the g = 1 case, zero-energy solutions of (1.21) are precisely those
that yield equality in (8.6). More generally, using (1.6) and (8.5), we observe that
E(φ) ≤ 0 implies that φ satisfies the following reverse Cauchy–Schwarz inequality:

(8.7)

∫ [
|∂rφ|2 + 1

r2
|Dθφ|2

]
dx ≤ 2g

∫
Im

(
r−1Dθφ∂rφ

)
dx.

In the following, we will find the sharp threshold cm,g claimed in Theorem 1.4.
First notice that for solutions φ ∈ H1

m of (1.21), E(φ) has the following expression:

(8.8) E(φ) =

∫
R2

[
|∂rφ|2 + 1

r2

(
m− 1

2

∫ r

0

|φ|2s ds
)2

|φ|2 − g

2
|φ|4

]
r dr.

This can be checked directly from the energy formula in polar coordinates (1.18),
the equivariant ansatz for φ (1.20), and by solving Ar, Aθ in terms of φ in (1.21).

Lemma 8.5. Let m ∈ Z+ and, for φ ∈ H1
m, then

inf
0�=φ∈H1

m:E(φ)≤0
chg(φ) = inf

0�=φ∈H1
m:E(φ)=0

chg(φ)

Proof. Let φn ∈ H1
m for n = 1, 2, 3, . . . be a minimizing sequence with chg(φn) → I,

where
I := inf

0�=φ∈H1
m:E(φ)≤0

chg(φ).

Then, for α ∈ R,

E(αφn) = α2

∫
R2

[
|∂rφn|2 + 1

r2

(
m− α2 1

2

∫ r

0

|φn|2s ds
)2

|φn|2 − α2 g

2
|φn|4

]
dx.

Because

lim
α→0

α−2E(αφn) =

∫
R2

[
|∂rφn|2 + m

r2
|φn|2

]
dx > 0,

there exists αn ∈ (0, 1] such that E(αnφn) = 0. Set ψn := αnφn. Then E(ψn) = 0
and chg(ψn) ≤ chg(φn). Passing to a convergent subsequence, we obtain

lim chg(ψn) ≤ lim chg(φn) = I. �

Lemma 8.6. The set of minimizers over E(φ) = 0 is nonempty. We denote cm,g

to be the minimal charge.

The proof form=0 is found in Section 5 of [5] and generalizes to the casem>0.
There is a lack of compactness due to the scaling symmetry which is removed by
renormalizing the Ḣ1 norm. Once this is done, one may pass to a weak limit in H1

m

that also converges strongly in Lq
m, q > 2.
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Remark 8.7. Here we can immediately conclude that E(φ) > 0 if and only
if chg(φ) < cm,g. Combining this with the arguments of Section 7 completes
the proof for global wellposedness and scattering, which is the first part of the
statement in Theorem 1.4.

In the next lemma we characterize energy-zero minimal charge solutions φ ∈
H1

m \ {0}.

Lemma 8.8. Let φ ∈ H1
m \ {0} with E(φ) = 0 and chg(φ) = cm,g. Then there

exists λ ∈ R such that γ(t, x) := eiλtφ(x) is a weak solution of (1.21).

Proof. We use Lagrange multipliers, which necessitates taking the first variation
of E(φ) (in the form of (8.8)). Varying the φ(r, θ) terms leads to

2

∫ [
Re(∂rφ∂rψ) +

1

r2
(m+Aθ)

2 Re(φ̄ ψ)− g|φ|2 Re(φ̄ ψ)
]
r dr,

which upon integration by parts becomes

−
∫

Re
(
ψ̄ (∂2r + r−1∂r + r−2Dθ + g|φ|2)φ) r dr.

The additional contribution from the variation of φ(s, ρ) is

(8.9) −
∫ (2m

r2
− 1

r2

∫ r

0

|φ|ss ds
)∫ r

0

Re(φ̄ ψ) s ds |φ|2 r dr.

Let

F (r) = −
∫ ∞

r

(m
r

− 1

2r

∫ r

0

|φ|2s ds
)
|φ|2 dr.

Then (8.9) may be rewritten as

−2

∫∫ r

0

Re(φ̄ ψ) s ds ∂rF (r) dr,

which upon integration by parts is seen to be

2

∫ ∞

0

F (r)Re(φ̄ ψ) dr.

With the observation that in fact we may take A0 = F (r), the proof is complete.
�

The above variation is discussed in Chapter II. B. of [11] and is similar to
the approach of [5]. Solutions ψ ∈ L∞H1

m of (1.21) of the form γ(t, x) = eiλtφ,
φ ∈ H1

m, we call standing wave solutions. We remark that we can follow the
approach in Appendix A of [5] to show that the standing wave is actually a classical
solution. In fact, it was shown in [5] that any critical point of an energy functional,
which is very similar to E(φ) in (8.8), is a classical solution.
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Remark 8.9. Notice that standing waves do not scatter, so in light of Remark 8.7,
we know their charges are no smaller than cm,g. In particular, we conclude that
the minimum charge of a nontrivial standing wave solution in the class L∞

t L
2
m is

equal to cm,g.

Remark 8.10. When g = 1, static solutions (standing wave solutions with λ = 0)
exist but λ �= 0 standing wave solutions do not. When g > 1 and m = 0, Byeon,
Huh, and Seok conjecture that there are no static solutions(see Remark 5.1 of [5]).

We conclude with two Pohozaev-type identities of independent interest.

Lemma 8.11 (Pohozaev identity). Let φ ∈ L∞
t H

1
m be a standing wave solution

of (1.21). Then

(8.10)

∫
(λ+A0)|φ|2 dx =

g

2

∫
|φ|4 dx.

Proof. For a standing wave with frequency λ we can write∫
(λ+A0)|φ|2 dx =

∫
Im(φ̄Dtφ) dx.

Next we replace Dtφ using the first equation of (1.4) and integrate by parts. �

Through integrating by parts (differently) in (8.10), we can recover the Po-
hozaev type identity established in the case m = 0 in Proposition 2.3 of [5].

Corollary 8.12. Let φ ∈ L∞
t H

1
m be a standing wave solution of (1.21). Then

(λ − 2mA0(0))

∫
|φ|2 dx+ 2

∫ ∞

0

1

r2
|Dθφ|2 dx =

g

2

∫
|φ|4 dx.

Proof. We have∫ ∞

0

A0|φ|2r dr =
∫ ∞

0

(
−
∫ ∞

r

m+Aθ

s
|φ|2(s) ds

)
|φ|2(r) r dr.

Now write

|φ|2r = −2∂r

(
m− 1

2

∫ r

0

|φ|2s ds
)
.

Integrating by parts yields∫ ∞

0

A0|φ|2r dr = −2mA0(0) + 2

∫ ∞

0

(m+Aθ)
2

r2
|φ|2r dr. �
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