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Regularization of Hyperfunctions

Ricardo Estrada

Abstract. We show that there are no continuous regularization procedures for the
extension of hyperfunctions. We also show that there is a continuous projection
operator from the space of hyperfunctions with support in a given compact set onto
the subspace of hyperfunctions with support on a given closed subset if and only if
the subset is a countable intersection of sets that are closed and open.
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1. Introduction

One of the key characteristics of Sato’s hyperfunctions [21, 22] is the fact that
they form a flabby sheaf [14, 19]. This means that if U is an open set and S is
a locally closed set in Rn with U ⊂ S, then any hyperfunction f defined on U
admits an extension f̃ , defined on S. Alternatively, the canonical projection

π : B (S) −→ B (U) , (1)

where B (X ) denotes the space of hyperfunctions defined on X , is surjective.
We say that f̃ is a regularization of f.

The regularization of generalized functions is a very important subject, not
only from the mathematical point of view, but also from the mathematical
physics perspective. Indeed, the problem of renormalization in quantum field
theory is nothing but a problem of regularization of generalized functions [2, 23].
Actually, the normalized coupling constants are not determined by the theory,
but must be fixed by experiment, and correspond exactly to undetermined con-
stants in regularized generalized functions.

There are several methods of regularization of generalized functions [9, 11]
such as principal values, analytic continuation, Hadamard finite parts, or meth-
ods based on distributional continuity. For hyperfunctions one uses function
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theoretical tools, such as the Mittag-Leffer theorem [14, 19]. Moreover, in some
cases there is a controversy as to which is the best method of regularization
[9, 12]. Whether any of the regularization methods can be established as “cor-
rect” is of physical interest, because it addresses the philosophical question of
whether the “infinities” in quantum field theory represent genuine physical am-
biguities, or merely arise from a poor formulation of the technical mathematical
problems that appear in the theory [23].

It was proved recently [7] that for distributions it is not possible to define a
continuous regularization procedure that can be applied to all distributions that
admit regularizations. Naturally, distributions are not a flabby sheaf and thus
not all distributions admit regularizations, but this result applies to the space of
extendable distributions as introduced by Orton [20]; extendable distributions
were characterized in [6], and they correspond to the distributions obtained by
da Silva’s construction [4].

In the present article we show that the corresponding result also holds for
hyperfunctions. In other words, there is no continuous extension operator

R : B(a, b] −→ B [a, b] , (2)

such that

πRg = g , g ∈ B(a, b] , (3)

where π : B [a, b] −→ B(a, b] is the restriction. The method of proof is very
different from that of [7], however, since the space of distributions concentrated
at one point is a (DF) space, an inductive limit of finite dimensional spaces, in
fact, while the space of hyperfunctions concentrated at a point is an (F) space.

A related question is the possibility of restriction of generalized functions to
a closed set. This is a fundamental question in the study of integral equations
in spaces of distributions [10, 20]; recently it was a key component in the study
of multiplicative regularizators [8], and it is expected to be play an important
role in the study of hypersingular integral equations [3, 15, 18]. In this article
we prove a necessary and sufficient condition for the existence of continuous
restriction operators for spaces of hyperfunctions on closed sets. Indeed, we
demonstrate that if H and K are compact sets, with H ⊆ K, then there exists
a continuous projection operator P : B (K) −→ B (H) , with Pf = f for
f ∈ B (H) , if and only if H =

⋂∞
n=1 Hn where Hn is open and closed in K. For

spaces of distributions [7] such a projection operator exists if and only if H is
open in K. It is interesting to see how these results show how some topological
conditions are related to the behavior of certain operators, a situation that is
also encountered with geometric conditions [5]. It would be interesting to study
the existence of restriction operators in the case when H and K are unbounded
in the spaces of asymptotic and tempered distributions studied by Schmidt [24].
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The plan of the article is as follows. Section 2 presents the basic ideas
about hyperfunctions needed in the rest of the paper. In Section 3 we prove the
nonexistence of regularization operators in spaces of hyperfunctions. Section 4
contains the study of restriction operators into spaces of hyperfunctions over a
closed set.

2. Notation and preliminaries

In this section we state some basic facts about hyperfunctions and about the
notation used in this article. For details see [14, 19, 26].

Let U be an open set in C. We denote by O (U) the space of analytic
functions defined on U. The topology of O (U) is that of uniform convergence
on compact subsets of U, i.e., the topology generated by the family of seminorms

‖f‖K = max {|f (z)| : z ∈ K} , (4)

for K a compact subset of U. Since we can find a sequence of compact subsets
of U, {Kn}

∞
n=1 with Kn ⊂ int(Kn+1),

⋃∞
n=1 Kn = U, it follows that O (U) is a

Fréchet space, actually a strict projective limit of Banach spaces.
A subset S of a topological space X is called locally closed if each x ∈ S

has a neighborhood in X, Vx, such that S ∩ Vx is closed in Vx. It can be shown
that S is locally closed in X if and only if there exist an open set U and a closed
set F such that S = U ∩ F.

If S is locally closed in X, we say that U is an open neighborhood of S if U
is open in X and S is closed in U. We denote the set of open neighborhoods
of S as N (S) .

If S is locally closed in C, then O (S) is the space of germs of analytic
functions defined on S. That is, a function f defined on S belongs to O (S) if
and only if there exists U ∈ N (S) and an analytic function f̃ ∈ O (U) such that
πUS
(
f̃
)
= f, where πUS is the restriction operator from U to S. The system of

topological vector spaces {O (U)}U∈N(S) with operators πU
V : O (U) −→ O (V )

for U ⊇ V is actually a directed system and thus we can give O (S) the inductive
limit topology. When K is compact, then O (K) is a strict limit of Banach
spaces. If S ⊆ R is open, then O (S) is the space of real analytic functions
on S, while if S ⊆ R is locally closed, then O (S) is the space of germs of real
analytic functions on S.

If S ⊆ C is locally closed, then the dual space O′ (S) is called the space of
analytic functionals on S. When K ⊆ R is compact, then O′ (K) is isomorphic
to the space B (K) of hyperfunctions defined on K, as we now explain.

If U is open in C and S is closed in U, then we define the space H1
S (U ;O) ,

the first cohomology group of U with support in S and with coefficients in the
sheaf O, as the quotient

H1
S (U ;O) = O (U \ S) /πU

U\S

(
O (U)

)
, (5)
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where πUU\S is the canonical restriction. If U ⊂ V , then the canonical homo-
morphism from H1

S (V ;O) to H1
S (U ;O) is an isomorphism as follows from the

Mittag-Leffler theorem. Thus we can define H1 [S;O] , as the inductive limit
of the spaces H1

S (U ;O) as U ↘ S. In this case, the space H1 [S;O] is actually
isomorphic to H1

S (U ;O) for any U ∈ N (S) .
If S ⊆ R is locally closed, then the space of hyperfunctions defined on S

is B (S) = H1 [S;O] . If U ∈ N (S) and F ∈ O (U \ S), then the jump of F
across S,

[F ] = F (x+ i0)− F (x− i0) , (6)

is a hyperfunction on S, and actually, all hyperfunctions over S have this form.
Observe that this is true for all neighborhoods U ∈ N (S) . In the case when
S = R or when S = K, a compact subset of R, then we can take U = C. Thus

B (R) = O (C \ R) /O (C) , (7)

and
B (K) = O (C \K) /O (C) . (8)

If f ∈ B (K) , then of all the possible representatives in the space O (C \K) ,
i.e., of all the analytic functions F ∈ O (C \K) with [F ] = f, there is exactly
one that satisfies

lim
z→∞

F (z) = 0 . (9)

This representative of f is called the Cauchy or analytic representation of f,
and is denoted as

F (z) = C {f (x) ; z} . (10)

The operator C is an isomorphism of B (K) onto the subspace O0 (C \K) of
O (C \K) formed by those analytic functions that satisfy (9). The operator C
can also be defined as an isomorphism of the space of analytic functionals O′ (K)
onto O0 (C \K) when K is a compact subset of C that perhaps is not contained
in R. It can be shown that the Cauchy representation is given as

C {f (ω) ; z} =
1

2πi

〈
f (ω) ,

1

ω − z

〉
. (11)

The power series expansion of the Cauchy representation at infinity takes the
form

C {f (x) ; z} = −
1

2πi

∞∑

n=0

µn (f)

zn+1
, |z| > ρ , (12)

where
µn (f) = 〈f (ω) , ω

n〉 , (13)

are the moments of f and where ρ = max {|z| : z ∈ K} .
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If K is a compact subset of R, then the topology of the space of hyperfunc-
tions B (K) is given in one of two equivalent ways. First, since B (K) = O′ (K)
one can give B (K) the topology of the dual space. Alternatively, one could
use (8) and consider the quotient topology. In any case, C is a homeomorphism
of the topological vector spaces B (K) and O0 (C \K) .

If S is a locally closed and bounded subset of R, then [13, 25] one defines the
topology of B (S) as the quotient topology of B

(
S
)
/B

(
S \ S

)
. In particular,

B(a, b] ∼= B [a, b] /B {a} , B(a, b) ∼= B [a, b] /B {a, b} . (14)

Notice that if S1 is open in S2, then the canonical projection of B (S2) onto
B (S1) is continuous; likewise, if K is compact, and K ⊂ S, then the canonical
inclusion from B (K) to B (S) is continuous. Observe however that if (a, b)
is an open interval in R and V is a region in C with V ∩ R = (a, b), then
B(a, b) ∼= O (V \ (a, b)) /O (V ) algebraically but not topologically, since O (V )
is not closed but actually dense in O (V \ (a, b)) .

3. Regularization

Let a, b ∈ R, a < b. Let π : B [a, b] −→ B(a, b] be the restriction operator. If
g ∈ B(a, b], then a regularization of g is a hyperfunction f ∈ B [a, b] such that
πf = g. Since the hyperfunctions form a flabby sheaf [14, 19], the operator π is
surjective; this means that any g ∈ B(a, b] admits regularizations. Nevertheless,
regularizations are not unique since if f0 is any regularization of g, then so is

f (x) = f0 (x) +
∞∑

n=0

cnδ
(n) (x− a) , (15)

whenever
∞∑

n=0

n!|cn|r
n <∞ , ∀r ≥ 0 . (16)

Our first result shows that f, that is, f0 and the constants cn, cannot be chosen
to depend continuously on g.

Theorem 1. There does not exist any continuous regularization operator

R : B(a, b] −→ B [a, b] , (17)

such that

πRg = g , g ∈ B(a, b] , (18)

where π : B [a, b] −→ B(a, b] is the canonical projection.
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Proof. Let us suppose that R exists and find a contradiction. We may suppose
without any loss of generality that a = 0. Observe that if f ∈ B [0, b], then

Rπf = f , for x 6= 0 , (19)

since π(Rπf) = πf. Therefore, the operator T defined as Tf = f − Rπf is a
continuous operator from B [0, b] to B {0} . Hence we can write

T {f (t) ;x} =
∞∑

n=0

Un (f) δ
(n) (x) , (20)

where the Un’s are continuous linear functionals on B [0, b] . Thus there are
analytic functions φn, each defined in a corresponding neighborhood of [0, b] ,
such that

Un (f) = 〈f (x) , φn (x)〉 . (21)

We will show that

φn (x) =
(−1)n xn

n!
∀n ∈ N . (22)

But since [0, b] is connected, it is enough to show that φn (x) and (−1)n xn/n!
have the same Taylor series at x = 0. But, if we observe that T

{
δ(n) (t) ;x

}
=

δ(n) (x) for all n ∈ N, it follows that Un

(
δ(k) (x)

)
= δkn and consequently,

φ(k)
n (0) = (−1)k

〈
δ(k) (x) , φn (x)

〉

= (−1)k Un

(
δ(k) (x)

)

= (−1)k δkn

=
dk

dxk

(
(−1)n xn

n!

)∣∣∣∣
x=0

.

We conclude that

T {f (t) ;x} =
∞∑

n=0

(−1)n µn (f)

n!
δ(n) (x) (23)

is precisely the Moment Expansion of f, since

µn (f) = 〈f (x) , x
n〉 =

∫ ∞

−∞

f (x)xndx , (24)

are the moments of f.

Our result now follows if we observe that the Moment Expansion of f ∈
B [0, b] does not converge in B [0, b] unless f ∈ B{0}. Indeed, if (23) converges,
then we may apply the Cauchy representation operator C to both sides of it.
We readily obtain that C{T (f); z} = C{f ; z} for |z| > b and consequently for
all z ∈ C \ [0, b]. But C{T (f); z} is analytic in C \ {0}, while C{f ; z} is analytic
exactly in C \ supp f. Hence supp f = {0} .
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The Theorem 1 applies to the regularization of hyperfunctions g defined in
the semiopen interval (a, b]. The situation at the endpoint x = b is irrelevant,
as is to be expected, and a corresponding result holds in the space B (a, b) .

Theorem 2. There does not exist any continuous regularization operator

R : B(a, b) −→ B[a, b) , (25)

such that

πRg = g , g ∈ B(a, b) , (26)

where π : B[a, b) −→ B(a, b) is the canonical projection.

Proof. Suppose R is a continuous extension operator from B(a, b) to B[a, b).
Let c ∈ (a, b) and let R1 = R ◦ i, where i : B(a, c] −→ B(a, b) is the canonical
injection. Since R1 (f) (x) = 0 for x > c whenever f ∈ B(a, c], it follows that
R1 (f) ∈ B[a, c]. Therefore, R1 is a continuous regularization operator from
B(a, c] to B[a, c]. This contradicts the Theorem 1.

Several remarks are in order.

Remark 1. The corresponding result for distributions was proved in [7]. The
proof is quite different, however. Indeed, that proof is based on the fact that the
space Aa of distributions with support in the one point set {a} is a (DF) space,
and hence if T : X −→ Aa is any continuous operator from a Fréchet space
X to Aa, then there exists N ∈ N such that the order of T (x) is less than or
equal to N for all x ∈ X . On the other hand, the space B {a} of hyperfunctions
concentrated on the one point set {a} is a Fréchet space, and thus the result on
the boundedness of the orders of all T (x) does not hold in the hyperfunction
case.

Remark 2. Let f be a hyperfunction with compact support. Let K = supp f.
Then the moment expansion

∞∑

n=0

(−1)n µn (f)

n!
δ(n) (x) (27)

cannot be considered as a hyperfunction, since as we demonstrated in the proof
of the Theorem 1 the series (27) converges as a hyperfunction if and only if
supp f = {0} . There are other useful interpretations of the moment expansion,
as explained in [11, Chapter 6]. For our present purposes, we may proceed
as follows. Let ρ = max {|x| : x ∈ K} , and consider the closed disc Dρ with
center at the origin and radius ρ, which contains K. Then using the Runge’s
theorem [19], there is an inclusion operator i : B (K) −→ O′

(
Dρ

)
. Moreover,
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the moment expansion of any analytic functional g ∈ O′
(
Dρ

)
converges in this

space to itself:

g (z) =
∞∑

n=0

(−1)n µn (g)

n!
δ(n) (z) , g ∈ O

′
(
Dρ

)
. (28)

Needless to say, the sum of a moment series in O′
(
Dρ

)
does not have support

concentrated on {0} , in general.
Since i is injective, it follows the moment expansion of f ∈ B (K) deter-

mines f uniquely, and it can thus be used in the hyperfunctional analysis of
equations [16, 17].

These results do not hold for hyperfunctions of non-compact support, since
there are non-zero functions whose moments all vanish [1]. On the other hand,
the space of hyperfunctions where the moment asymptotic expansion holds was
recently identified [24].

4. Restriction to closed sets

In [7] it was shown that if H and K are compact sets, with H ⊆ K, then there
exists a continuous projection operator P : E ′ [K] −→ E ′ [H] , with Pf = f for
f ∈ E ′ [H] , if and only if H is open in K; here E ′ [K] is the space of distributions
with support contained in the compact set K. It is an interesting fact that this
result does not hold for hyperfunction spaces; indeed, we shall show that there
is a continuous projection operator P : B (K) −→ B (H) , with Pf = f for
f ∈ B (H) , if and only if H =

⋂∞
n=1 Hn where Hn is open and closed in K.

We start with a result on countable intersection of closed-open sets.

Lemma 1. Let H and K be compact subsets of R with H ⊆ K. Then the

following are equivalent:

a) There exist a sequence of closed and open subsets Hn of K such that

H =
∞⋂

n=1

Hn . (29)

b) ∀a ∈ H, ∀ε > 0,
(a, a+ ε) * K \H , (30)

and

(a− ε, a) * K \H . (31)

Proof. Suppose that b) does not hold. Then there exists an a ∈ H and an ε > 0
such that (30) or (31) does not hold. To fix the ideas, suppose (30) does not
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hold, that is, (a− ε, a) ⊆ K \ H. Suppose now that {Hn}
∞
n=1 is a sequence of

closed and open subsets of K with H ⊆ Hn for all n ∈ N. Then
⋂∞

n=1 Hn cannot
be equal to H since Hn ∩ (a, a+ ε) is open in R while Hn ∩ [a, a+ ε] is closed
and non-empty and this can happen if and only if [a, a+ ε] ⊆ Hn.

Conversely, suppose b) holds. Write

R \H =
(
−∞, b̃

)
∪ (ã,∞) ∪

⋃

k∈F

(ak, bk) , (32)

as a disjoint union of open intervals; here F is a set with |F | ≤ ℵ0. Construct

sequences {ãn}
∞
n=1 ,

{
b̃n
}∞
n=1

,
{
akn
}∞
n=1

, and
{
bkn
}∞
n=1

of R\K such that ãn ↘ ã,

b̃n ↗ b̃, akn < bkn, while a
k
n ↘ ak, and bkn ↗ bk. Let {Fn}

∞
n=1 be a sequence of

finite sets with
⋃∞

n=1 Fn = F. Let

Un =
(
−∞, b̃n

)
∪ (ãn,∞) ∪

⋃

k∈Fn

(
akn, b

k
n

)
. (33)

Since Un is a finite union of open intervals whose endpoints do not belong
to K, then Un ∩K is both open and closed in K. We just need to take Hn =
K ∩ (R \ Un) in order to satisfy a).

We are now ready to prove the ensuing characterization.

Theorem 3. Let H and K be compact subsets of R with H ⊆ K. Then the

following statements are equivalent:

a) There exists a continuous operator

P : B (K) −→ B (H) , (34)

with

Pf = f , ∀f ∈ B (H) . (35)

b) There exist a sequence of closed and open subsets Hn of K such that

H =
∞⋂

n=1

Hn . (36)

Proof. Suppose a) holds but b) does not. Then using the lemma, there exists
an a ∈ H and an ε > 0 such that (a, a + ε] ⊂ K \ H, or [a − ε, a) ⊂ K \ H.
Suppose (a, a + ε] ⊂ K \ H. Without loss of generality, suppose a = 0. Let i1
be the injection of B [0, ε] into B (H) , i2 the injection of B (H) into O′ (Dρ)
where ρ = sup {|x| : x ∈ H} , and set

T = i2 ◦ P ◦ i1 . (37)
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Then using the fact that [0, ε] is connected, the same argument used in the
proof of the Theorem 1 yields the formula

T (f) =
∞∑

n=0

(−1)n µn (f)

n!
δ(n) (z) ; (38)

that is, T (f) is given by the moment expansion of f. But this implies that
the Cauchy representation of f and of T (f) , C {f (x) ; z} and C {T (f) (ω) ; z} ,
coincide for |z| > ρ and thus they have identical analytic continuations to
C \ H. This in turn implies that f = P (i1(f)). However, this is impossible if
supp f ⊂ [0, ε] \H.

On the other hand, if we assume that b) holds, then we can construct an
operator P as follows. Let πk : B (K) −→ B (Hn) be the projection operator;
its existence is derived from the fact that the hyperfunctions are a flabby sheaf.
Let ρ = supx∈K |x| and define

P0 : B (K) −→ O
′
(
Dρ

)
, (39)

as the modified moment series

P0 (f) =
∞∑

n=0

(−1)n µn (πn(f))

n!
δ(n) (z) . (40)

Then P0 is a continuous operator. The analytic functional P0 (f) corresponds to
a hyperfunction of the space B (Hn) for all n ∈ N, and thus of the space B (H) .
Hence there is a continuous operator P : B (K) −→ B (H) with i ◦ P = P0,
where i : B (H) −→ O′

(
Dρ

)
is the injection. Finally we observe that (35)

follows from the fact that if f ∈ B (H), then

P0 (f) =
∞∑

n=0

(−1)n µn (f)

n!
δ(n) (z) , (41)

is precisely the Moment Expansion of f.

Observe in particular that the theorem shows that if H and K are closed
intervals with H ⊆ K, then there does not exist a restriction operator from
B (K) to B (H) . The nonexistence of continuous restrictions onto a closed
interval is a very important result in the study of integral equations in spaces
of hyperfunctions over finite intervals, the so-called finite transforms. Indeed,
if T : B (R)→ B (R) is an operator, then we can define an associated operator
T1 : B[a, b] → B (a, b) by setting T1 = πT, where π : B (R) → B (a, b) is
the canonical projection. Unfortunately, operators of this kind are not well-
behaved, specifically, they are not of the Fredholm type. In the ideal situation
one would like to have an operator from B[a, b] to itself, but in general that
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is not possible because of the results of this section. The study of such finite
transforms in spaces of distributions by using multiplicative regularizators is
given in [8]; several particular equations, as those of the Cauchy type, of the
Carleman type, or with logarithmic kernels are considered in [10].
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