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Holder Inequalities and Sharp Embeddings
“in Function Spaces of B, and" F;é Type
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Abstract. Besides assertions on sharp embeddings of By, and F;, we give necessary and
sufficient conditions on the parameters s,p,q,p1,q1,p2,q2 for the Holder type inequalities
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1. Introduction and motivation

1.1 Introduction. The classical Holder inequality for the Lebesgue spaces on IR" is
given by . . ' ' ’
LyL,, CL, (1.1.1)

where

11 1 :
-<1 (1.1.2)
r

1< < oo, 1<r;<o0,  —4—=
. . o . Ty T2

Of cou.rse (1.1.1) is a short version of the pointwise multiplication inequality
1£g1Le (BRI < ellf|Lr, (BRI - lig|Lry (R (1.1.3)

where in that special case ¢ = 1.may be chosen. With exception of Subsection 1.2, all
spaces in this paper are defined on JR". This justifies to omit R™ in the sequel. One
of the i_nain aims of the paper is to study the appropriate counterparts of (1.1.1) .and
(1.1.2) for the ;sp.ace;s By, and F;,. That means for a given smoothness s we are looking
for’

B_;lql B;z‘fn C B;q ' ‘ (1.1.4)

'}:mn Fi;,wz c F;q - -+ (1.1.5)
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interpreted similarly as in (1.1.3). Recall that the spaces Bp, and F}, cover some well-
known spaces, such as the (fractional) Sobolev spaces, the classical Besov spaces, the
Hoélder-Zygmund spaces and the (inhomogeneous) Hardy spaces. These spaces have
been studied systematically in (24, 26]. Our interest in inequalities of type (1.1.4) and
(1.1.5) comes from some recent work on eigenvalue distributions of degenerate elliptic
differential operators, where (1.1.1), (1.1.4) and (1.1.5) play a decisive role. We refer to
(5] In Subsection 1.2 we outline roughly this motivation for (1.1.4) and (1.1.5).
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If we plot s against 1/p (see Figure 1), then the distinguished strip

1
D: 0<p< oo, n(——l) <s< 2 (1.1.6)
p + p
plays a crucial role. The lines of slope n indicate embeddings with constant differential
dimension s — n/p. One of the main results of this paper reads as follows:

Let s,p1, p2 and p be given as indicated in Figure 1 and let 0 < ¢; < 00, 0 < g2 £ o0
and 0 < ¢ € co. Then . . : ’

(i) (1.1.4) holds if and only if 0 < g1 < 1,0 < gy <73 and ¢ > max{q,qz)
(ii) (1.1.5) holds if and only if ¢ > max(q1,q2) .

In other words, the classical Holder inequality (1.1.1) which corresponds to the bottom
line s = 0 of the strip D in the way indicated in Figure 1 is shifted along the lines of
slope n to the level of smoothness s. This situation justifies to denote (1.1.4) and (1.1.5)
under the just sketched values of the involved parameters as Hélder inequalities. As a
special case of (1.1.5) we have

H}, B, C H

under the conditions indicated in Figure 1, where H » = F, , are the (fractional) Sobolev-
Hardy spaces. In accordance with the limiting cases in (1.1.1), (1.1.2) we pay some
attention to related limiting cases with respect to the strip D, that means

and s=n(%—l>+ ' (1.1.%)

n
§= —
p1
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including especially the bottom line s = 0. These two limiting cases are connected with
Lo and L;, respectively. Inevitable linked with Holder inequalities of type (1.1.4) and
(1.1.5) are sharp embeddings with constant smoothness s of type °

By, C Fpy C By,

and with constant differential dimension s — n/p. These embeddings correspond to the
horizontal lines and the lines of slope n in Figure 1, respectively. We give final answers
in these cases. In connection with the above sketched limiting cases (1.1.7) where Lo
and L, make their natural appearance we complement the just mentioned two sharp
embeddings by sharp assertions under which the spaces B,  and F, are embeddedin Lo
(which is known) and in L'°¢, respectively. Of course, the latter can be rephrased as the
search for sharp conditions such that B,  and F} consist solely of regular distributions.
Some of the incorporated sharp embeddings are known, especially the “if’-parts. But

we seal several gaps, mostly related to the “only if”-parts.

The plan of the paper is the following. As mentioned above we provide in Subsec-
tion 1.2 motivations for inequalities of type (1.1.4) and (1.1.5).. Section 2 contains the
necessary definitions and some preparations about paramultiplication. In Section 3 we
present the results about sharp embeddings: with constant smoothness, with constant
differential dimension, in Lo, and in L!°°. Section 4 deals with Hélder inequalities. In
Subsection 4.1 we describe the necessary conditions for s and 1/p such that we have
(1.1.4) and (1.1.5) (see Figures 32 and 3b). The cases of our interest correspond to the
heavy lines. In Subsection 4.2 we formulate the Hélder inequalities, whereas Subsection
4.3 deals with the indicated limiting cases. Finally Subsection 4.4 contains further re-
sults connected with the shaded areas in Figure 3 covering the region of necessity for
the inequalities (1.1.4) and (1.1.5) treated in Subsection 4.1. It comes out that this is
also the region of sufficiency with some peculiarities on the border lines. Proofs are
presented in Section 5.

We wish to thank Dr. Jon Johnsen (Copenhagen); His critica.]_ remarks helped us
to improve the final version of this paper. '

1.2 Motivation. Let Q be a bounded smooth domain in IR". Let A be the Laplacian

and let
Au(z) = a(z)(id - A)a(z)u(z) in Q

u(z) =0 : on 0N

be a degenerate elliptic differential operator with non-smooth coefficients related to the
Dirichlet problem. Assume that

Bu(z) = b(z) (zd =AY b(z) u(z) with b(z) = g_l(i) € L. (9),

where 2 < n < r < oo, makes sense as the inverse of A. In accordance with well-
known classical assertions we obtained in [5] sharp assertions for the distribution of the
eigenvalues Ax of A of type A\y = k2/" based on two ingredients:

(i) Sharp assertions for the entropy numbers of the compact embeddings

: n n
id:  Bp,, () — B, (R), s1 — o > s0 — p—o, " 81 > S
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(and similarly with F32 (Q)).
(ii) Sharp embeddings of type (1.1.1), (1.1.4) and (1.1.5).

To describe the flavour of this approach we start with Ly(f2), multiplication by b(z)
brings us to Ly,(§2), where we used (1.1.1). Then we apply (id — A)~!. We arrive
at H}(Q). The embedding of H2(Q) into L,(f) is compact since the slope of the
corresponding line is steeper than n. Finally a second multiplication by b(z) brings us
back to Ly(2). : ' . :

2
H, 1 1,1
P
1_1_1
w2 r
1 1
a 14
Figure 2

The compact embedding is the point. where the entropy numbers come in, whereas
for the.multiplications by b(z) one needs inequalities of type (1:1.1) in the outlined case
as sharp as possible. The interplay between the two ingredients is clear. Necessary
explanations and details, especially about the role played by the entropy numbers, may
be found in [5]. It is not necessary-to begin with Ly(Q) as the-basic space. One can
start with other suitable spaces in Figure 2. Then the triangle in Figure 2 is shifted,
say in the distinguished strip D in Figure 1. Instead of the classical inequality (1.1.1)
oné has to work with the Holder inequalities (1.1.4) and (1.1.5). " ' ‘

2. Definitions and preparations

2.1 Definitions. In.general all functions, spaces, etc. are defined on the Euclidean
n-space IR". So we omit IR" in notations. Further we shall use IV to denote the set of
natural humbers, Ny to denote IV U {0}, and a4 instead of max(a,0). o

Let S be the Schwartz space of all complex-valued rapidly decreasing infinitely
differentiable functions. By S’ we denote its topological dual, the space of tempered
distributions. If ¢ € S, then

Fe(z) = (é%ﬂ/e“?f‘p(é)dg (z &.R™)
. R~

denotes the Fourier transform fap of p. As usual, F 14 means the inverse Fourier
transform of ¢. Both, F and F~! are extended to S’ in the standard way.
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Let 3 € S be a non-negative function with
#(z) 1 if |z <1

z) =

0 if |z| > 3/2.

We-define ’ '

volz) = ¥(z)

¢1(2) = ¥(/2) — ¥(z) o
' : (z €R"; k= 2,3,...).
: er(z) = p2(27F2)
For M € INg it follows

M o ) ' -
Yoei@) =92 Mz)  and Y p(z)=1 (z € R")
j=0 j=0 . '

suppy; C {I: 2”'§|x|§3~2j_1} G=1,...,n)
and the implication

3 .. : .

§~21_1 <zl = cpk(z)—ﬁk, (j € IN; k€ INo).

L, are the usual Lebesgue spaces on IR". »
Defintion 2.1.1. Let —co < s < 0o and 0 < ¢ < co.

. (i) f0< p< oo, weput,

. 1/q
F, = {fes: IfiFl= (Z 2’”|f"[<p,~ff](-)|‘f) || < o0
i=0 -

(usual modification if ¢ = 00)..

(ii) If 0 < p < oo; we put

R R : . 1/q
B, = fes: ||f|B = (Z 9339 Hf-ll‘piff](')leNq) ‘o
. j=0 A e

(usual modification if ¢ = oo)

109

.(2.1.1)

(2.12)

(2.1.3)

(2.1.4)

Remark 2.1.1. These types of spaces are studied systematically in [24, 26]. We

always assume that the reader is familiar with it. Recall some special cases:

,, 2=1Ly (1 <p<oo) — Lebesgue spaces
Fj,=W] . (1<p<oo, s€Z) — Sobolev spaces
CFj,=H,  (1<p< 0, $§€ R) — fractional Sobolev spaces
Fp ,=hy . (0<p <oo) - inhomogeneoue Hardy spaces
By, . (1<p<oo,1<g<00,5>0) — classical Besov spaces

B’ =C* (s > 0) — Holder-Zygmund spaces.
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2.2 Pointwise multiplication. Let 3 be the function defined in (2.1.1) and let {<p,-}]?";0
be the corresponding system (cf. (2.1.2)). For brevity we put

fiz) = F7 i (OF £(8)) (z)
fila) = F7 [$@TOFIE)] (5) (€ No). (22.1)
It is easily checked that lim;_. f' =g f for any f € S'. Moreovér, f7 is an entire
analytic function of exponential type. Hence, the product f7 - g/ makes sense for any j
and any f,g € S'. We define
fg = }E& g (2.2.2)

whenever this limit exists. Note that

! 1
frg = lim (Z fj) (Z gk>
=0 k=0

oo ) oo oo  k+1
B SYEPID TP o S
j=2 k=2 k=0 j=k-1

=S+ 1)+ X" (f9)  (put gy =0).

The advantage of such a decomposition is based on the inclusions

supp F (f*~2 1) € {¢:3-2¢ < gl <1124} (2.2.3)
k41 '
suppf( Z fr g,~> C {5: €} < 9. 2F1 } (2.2.4)
j=k-1

Remark 2.2.1. Recall the Fatou property of the underlying spaces. Let ‘A, denote
either By, or Fj . If {f? ¢’}; is a Cauchy sequence in S’ with limit A and if

sup||f’ ¢’|4) |l = A < o0,
y .

then it follows h € A}  and lR|Ap ]l < c A, where ¢ is independent of f and g (cf. [7)]).
Remark 2.2.2. The operator

L
Oy: g — ) fi72g,
=2

is called paramultiplication operator. Estimates for this operator are the heart of several
contributions to the problem of pointwise multiplication (see, e.g., [14, 20, 21, 24, 30
- 32]). Further they are of importance in microlocal analysis and in the theory of
Calderon-Zygmund singular integral operators (see, e.g., [3, 16, 30 - 32]).

The essence of the needed estimates are formulated in the following proposition,
where we make use of the abbreviation heo = Leo. ’
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Proposition 2.2.1. Let 0 < p; < 00,0 < pp < 00, ;7 = pL; + pL, and 0 < q < co.
(i) Let 0 < p < 00. Then

00 1/q
H (Z |77 [eeF Y (£19)] (-)|") |
k=0 . .

- Ve (2.2.5)
< cllflhyl (Z |gk<-)|") |z,
k=0
where c is independent of f and g (usual modification if ¢ = o0).
(ii) Let 0 < p < oo. Then .
m
177 [oe 7" (10 O]
i (2.2.6)

Se_max ,—Zg | fettl Lo Wl l9k+1451 Ll

ifp>1and
|77 [er 7" .90 O

oo . 1/p
< ¢ max ( Z 2ln(l_p)||fk+dLm"p ||9k+l+j|Lpz||p)

-1<)<1
s i=—2

if p < 1, where c is independent of f, g and k € INo (put f, =g, =0ifr <0).
(iii) Let 0 < p < o0 and s > n(% —1)4. Then

sup 2k
k

F e 2 0] O] |5

< ¢ max
<j<1

—-15;<

sup gke/2 ka+,'I_A|Lp=

sup 2k/2 | £y )Lm

where ¢ is independent off and g.
Remark 2.2.3. In the scalar case of (i), given by

|7~ [oe X 0] L] < el _mix NoweslLoll

-1<5<1

also p = oo is admissible. Part (iii) is taken from [30: Theorem 3.7], cornplemented by
the use of the Holder inequality with respect to % = ,—,1; + pL,' Proofs of statements (i)
and (ii) will be given in Subsection 5.5. C '
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3. Sharp embeddings

3.1 Embeddings with constant smoothness. Here the sign C stands for continuous
embedding. Recall that all spaces are defined on IR".

Theorem 3.1.1. The follou)ing statements are true.

(i) Let s€e R,0<p<o00,0<qg<00,0<u<00and0<v<oo. Then
| B;uAC F;, C By, (3.1.1)
if and only if
0 < u < min(p, q). - a.'n#i ﬁla.x(p, q5 <v < oo . (312)
(ii) Let 0 < u < 00 and 0 < v < 0o0. Then
B}, C L1 C B}, : (3.1.3)

if and only tf 0 < u <1 and v = o0

(iii) Let 0 < u < 00. Then
F,cL T (3.1.4)

if and only 1f 0 < u < 2. Furthermore
Li¢ Fo. . | (3.1.5)
(iv) Let 0 < u < 00 and 0 < v < co. Then '
Bfu.CLwCBY,, - (3.1.6)

ifand only if 0<u<1andv =00

Remark 3.1.1. Let C be the space of all complex-valued bounded and uniformly
continuous functions on IR" normed in the usual way. In'(3.1.6) onec can replace Lo, by

C.

Remark 3.1.2. By (3.1.1) we know FP,OCI,.C ‘BY - The assertion (3.1.5) shows
that the second inequality in (3.1.3) can not be improved by replacing B oo DY Flo

Remark 3.1.3. The “if”-parts of Theorem 3.1.1 are known (see [24 Proposmon
2.3.2/2, p.47, Proposition 2.5.7, p.89 and Theorem 2.5.8/1, p.92]).- In other words, we
have to complement these known assertions by the “only if”-parts and the proof of

(3.1.5).

3.2 Embeddings with constant differential dimension. Recall that-s — n/p is
called the differential dimension both of By, and F; .- It is a characteristic number
which plays a crucial role in the theory of these spaces (see, for instance, Figure 1 and
the accompanying remarks).
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- Theorem 3.2.1. The following statements are true.

(i) Let0<p0<p<p1Soo,sem,so—plo=s—§=sl—ﬁ,0<qSoo,0<
u< o0 and 0 < v< oo Then

B, C F;, C By, (3.2.1)
if and only if
‘ 0O<u<p<v<oo (3.2.2)
(ii) Let0<p<p) <o00,s € R,
o n n
§—— =8 —— 3.23
| » fl o (3.2.3)
and 0 < ¢ < 0o. Then - :
: : Fyo C Fpl,. (3.24)
_ (iii)‘. Let0 < p <1land0< g < 0o. Then
Bp{1/P=1) C I - (325)

if and only 3f 0 < ¢ < 1.

Remark 3.2.1. The “if”-part of statement (i) is due to Jawerth and Franke (see
(7, 10], [24: p. 131] and [25: p. 191]). Furthermore, statement (ii) is mentioned here
for the sake of completeness (see [24: Theorem 2.7.1, p. ‘129]). Of course, by the
monotonicity of the F, -spaces, oo in (3.2.4) can be replaced by any positive number.
As mentioned in the Introduction, embeddings in L, and L., deserve special attention.
The Loo-counterpart of (3.2.5) will be described in the next subsection.

3.3 Embeddings in Lo, and in L‘l°°. The space C hvas been defined in Remark 3.1.1.

Theorem 3.3.1. The following statements are true.

(i) Lets€ R, 0< p< oo and 0 < g < co. Then the following three assertions are
equivalent .

(a) F},C Lo
(b) Fp,CcC
(c) e:ith.ers>2 or s=2 and 0<p<1l

(n) Let s € R, 0 < ps < o0 and 0 < q < 0o. Then the following three assertions
are equivalent :

(a) By, C Lo
(b) B;,q cC :
(c) eithers> 2 or s=7 and 0 <¢<l (3.3.1)

Remark 3.3.1. This theorem is known. We incorporate it both for sake of com-
pleteness and because it will be of great service later on in this paper. A proof of
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statement (i) may be found in [7]. As far as statement (ii) is concerned we refer to [24:
Theorem 1, p. 133] (see also [24: Item 2.8.3, p. 146] and [25: Item 2.8.3, p. 211)).

Remark 3.3.2. Let Ap, be either By  or FJ,. Then A, is called a multiplication
algebra if A3, A}, C A;, where the multiplication of two distributions is given by
(2.2.2). Part (i) of the theorem can be complemented by statement

(d) F;, -is a multiplication algebra.

A corresponding assertion for By,

is only “almost” true. More precisely : B}, is a
multiplication algebra if and only if

n

(d) either s > 2 with 0 <p< oo or s=7 with 0<p<oo and 0<g¢<1

This assertion differs from (3.3.1) by the case s = 0, p = co. We refer to [7] and [23]
(see also [24: Item 2.8.3], with the indicated correction as far as the case s = 0, p = 0o
is concerned, and [20: p. 56]). The case BY, will be established in Remark 4.3.5 in the
indicated way: It is not a multiplication algebra. Although the study of multiplication
algebras fits quite well in the framework of our paper we shall not stress this point in the
sequel. We are mostly interested in multiplication with essentially unbounded function.

Of course, L'’ stands for the collection of all complex-valued functions which are
locally integrable in R". It is mterpreted here as the set of all regular distributions on
Rn

Theorem 3.3.2. Tke following statements are true.

(i) Let s€e R,0 < p< o0 and 0 < q < 0o. Then the following two assertions (i)
and (12) are equwalent :

(ll) pq »Lloc

(i;) either 0<p<1, szn(l;—l), 0<g< oo (332)
or 1<p<oo, s>0, 0<g<oo _
or 1<p<oo, s=0, 0<g<2 o " (3.3.3)

(ii) Let s€ R, 0 < p < 00 and 0 < ¢ < 0o. Then the following two assertions (i)
and (ii2) are equivalent: . :

(i) Bj, C L
(iiz) either 0 < p < oo, s>n(-;;—1)+, 0<g< oo

or 0<p<l, s=n(§—1), 0<¢g<1
or 1<p<oo, s=0, 0<g¢<min(p,?2). ) (3.3.4)

Remark 3.3.3. If s > n(;j — 1)+, then it is well-known that B;, and F;, consist of
regular distributions. In other words, the interesting part of Theorem 3.3.2 is the final
classification what happens in the limiting case s = n(;; - 1)+.

We compare the above Theorem 3.3.2 with the sharp embeddings described in Sub-
sections 3.1 and 3.2. The case p oo plays a special role. Wlthout going in deta.lls we
mention

BY,, C F2, =bmo (3.3.5)
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(see [24: pp. 37, 50 and 93] for definitions and explanations; as far as the spaces Fgo,q
are concerned we refer also to [8, 14]).

Corollary 3.3.1. The following conclusions are true.

(i) Letse€ R,0<p<ooand0 < q < oo. Let Ap, be either By, or Fj,. Then
the following two assertions (i) and (i2) are equivalent : :

(l]) A" C Lloc
(i2) A;, C L; with p = max(1,p). , (3.3.6)

(ii) Let s€ R and 0 < ¢ < 0o. Then the followmg two assertions (n]) and (iiz)
are equivalent :

(ii,) B, C Llee .
(iiz) B, C bmo. . ‘ (3.3.7)

Proof. Part (ii) is covered by (3.3.5) and the above Theorem 3.3.2, especially
(3.3.4). The F-case of part (i) related to (3.3.2) follows from (3.2.4), (3.2.3) and (3.1.3):

F"“/’"" cB,CcLi (p<l)
The F-case related to (3.3. 3) is clear since Fg, = Lp (1 < p < o) and
FO =h C L. (3.3.8)

The B-case of part (i) follows immediately from the above Theorem 3.3.2, (3.2.5), (3.1.1)
and (3.3.8). 1

. Remark 3.3.4. Let again Aj, be either By, or FJ, and let
A, CLi . . (3.39)

Let ¢ be a C°°-function with ¥(z) = 0 near the origin and ¥(y) = 1 if,' say, |y| 2 1. Let

f—F [zp(e) mff(ﬁ)]() G=1,...,m)

be the inhomogeneous Riesz transforms. Recall that the (inhomogeneous) Hardy spaces
h, = Fl » can also be characterized as the collection of all f € L, with r; f € L, if
j =1,...,n (see [24: pp. 93/94]). Since rjAs, C A3, we can improve (3.3.9) by
A, C h1 In other words, if p = 1, then (3.3.6) can be strengthened by Af , C h1. Now
(8.3.7) looks a little bit more natural since bmo = hj.

Remark 3.3.5. For better reference we formulate one consequence of Theorems
3.1.1, 3.2.1 and 3.3.2, Remark 2.1. 1 (ﬁ.rst item) and (3.3.8) once again. Let s > 0,0 <
p<ooa.nd0<q<oo If1> 1 —;— 2 > 0, then

By, CL, = 0<g<r-

A corresponding assertion for F, holds without restrictions on g.
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4. Holder inequalities

4.1 Necessary conditions for s and p. Let s € R 0 <p1 £00,0<p;<00,0<
p<oo 0<q €£00,0< ¢q2 <ooa.nd0<q<oo Weaskunderwhlchcondltlons

B;lql B;:qz c B;q ) (4'4'1)
F;lql F;zqz C F;q (4'4'2)

hold, where in case of (4.1.2) we assume, in addition, p; # oo, p2 # - and p # oo.

Theorem 4.1.1. If either (4. 1. 1) or (4.1.2) hold under the indicated general con-
ditions for the parameters, then

1 1 1 1 1
max(—,— )< <241 (4.1.3)
) P11 P2 P pn P2 .
' 1 1
| 2s>n (—-+———l) (4.1:4)
j 41 P2 ) +
1 1 1
sZn(—-—+———). (4.1.5)
pp p2 p .
Remark 4.1.1. Of course, {(4.1.5) can be rewritten as
s—2§3—1+s—l. (4.1.6)
p . P p2

Recall that s — % is the differential dimension both of B;, and F},. In other words,
the differential dimension of the target spaces.in (4.1.1).or (4.1.2) has to be less than
or equal to the sum of the differential dimension of the spaces on the left-hand sides of
(4.1.1) and (4.1.2). In the Figures 3a and 3b we summarized the above restrictions in

1 41 RN
dependence og whether o1 + 23 <lor o1 + > > 1.

|
- n ! s=n{c-1)
s=1; =}
?, ’
/
— L- K
} 7 A )
— 1 . ’
==+ = L U
T r r r S bemmmaaaan ;_1__
- . LI
s=1=1 I AW, -n(;L+—-L)
R ARy 1
\pfl —__ Il II Y
'ﬂ . s
JVAN— FF AL I
s .----.,'_.,'--;. — A :I' :
s o2y A A A B - :=',l(-'—+'—-—l)
A AN AT —_— A B | ’y ' Pt P2
Y s=n (L4 L1y A ) B ] AN '
LA N T ] _ 4 T - T 'I 'I 'I ’/| 1 'l \ []
FlAN . A A I SN
) A A ) / \
ol ) S S v / |
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If one compares Figures 1, 3a and 3b, then we are mainly interested in those cases,
where we have equality in (4.1.5) and (4.1.6). This corresponds to the heavy lines in
Figures 3a and 3b and in that case (4.1.6) is identical with 1 = ﬁ + rl—z in Figure
1. The limiting cases (1.1.7) correspond to the points 4 and B in Figures 3a and 3b,
respectively. However in the final Subsection 4.4 we sketch briefly what happens inside
of the shaded regions.

4.2 The main results. Recall that all the spaces are defined on IR". Furthermore,
the Holder inequalities we are looking for are characterized by the situation sketched in
Figure' 1 and indicated by the heavy lines in Figures 3a and 3b. There is a significant
difference between B-spaces and F-spaces acting as pointwise multiplier spaces which
can be clearly seen by the theorem below and which will be prepared by the following
proposition. '

Proposition 4.2.1. Let s € R,0 < p; < 00,0 < p < 00,0 <p<o00,0<q <
00,0< g2 Lo0and 0 < g<oo. Let
11 s 1 1

—_=—==>0 and —_at — = -, (442.1)
T » n : P2 Ty D ’

| —

Let independently

A,’,zq2 be either qu? F,;’zq2 and A;q be either B;q or F;q.
If

s s s
BPHIl Aquz C AP?’

(4.2.2)

then

@ <r. (4.2.3)

Remark 4.2.1. If one replaces the pointwise multiplier space B, , by Fy . , then
the restriction of type (4.2.3) simply does not occur (see the Theorem 4.2.1 below). As
far as r; is concerned we refer to Figure 1. If r, and r a.re deﬁned in a similar way,
then the second part of (4.2.1) can be reformulated as ! = rl + —2 which coincides
with Figures 1, 3a and 3b. However it is not assumed that the involved spaces are

characterized by the points within D, where D is given by (1.1.6).

Theorem 4.2.1. Let s > 0,0 < p; < 00,0 < p2 < 0,0 < p<00,0< ¢q <
00,0< g <oco0oand 0<q<oo. Let

(i) Then there holds e co
BhwCB, . (@29)

PlQl P292

if and only if

O0<q &1y, 0<gq<ry, 0 > q 2 'max(q1, q2)- (42.6)
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(ii) Then there holds :
: B o Fpgy C Fpy S (42.7)

if and only if . ‘
00 2 ¢ > max(q;,q2). . (4.2.8)

Remark 4.2.2. Both (4.2.5) and (4.2.7) are the Holder inequalities in the distin-
guished strip D in (1.1.6) we are looking for. The situation described in Figure 1 is
the same as in (4.2.4). Compared with Figures 3a and 3b condition (4.2.4) corresponds
to the heavy lines where the endpoints A and B are excluded. Furthermore, (4.2.4)
is connected with embeddings with constant differential dimensions, see Theorem 3.2.1

and the broken lines in the Figures 3a and 3b ending at %, rl—’, and %

Remark 4.2.3. One can try to ‘mix B-spaces and F-spaces in (4.2.5) and (4.2.7).
We do not go into detail. By the above proposition it is quite clear what can be expected.

4.3 Two limiting cases. We discuss two limiting cases connected with the point A in
Figures 3a and 3b and point B in Figure 3a. First we assume s = pll. In agreement with
(4.2.1) we have r; = co and p; = p. However it comes out that (4.2.3) is no longer the
natural condition. In contrast to Proposition 4.2.1 we have now to handle the B-spaces
and the F-spaces separately. :

Proposition 4.3.1. The following statements are true.

(i) Let 0 < p; €00,0<p<00,0< ¢ <00,0< g2 <00 and0<q<oo. Let

s = —. (4.3.1)
D
If
- By, Bpg, CBpys - (4.3.2) -
then o
@ <1 (4.3.3)

(i1) Let 0 < p, <00,0<p<o0,0<q £00,0<g;<00and0<q<oo. Lets
be given by (4.3.1). If :
F F: CF?

P11 7 PQ2 Pq

(4.3.4)

then
<l (4.3.5)

Proof. If (4.3.2) holds, then it follows by the same arguments as in [7: pp. 38/39)

that By . C Loo. Similarly, if (4.3.4) holds, then we have necessarily F} ; C Leo. Now

(4.3.3), respectively (4.3.5) follow immediately from Theorem 3.3.1. B

Theorem 4.3.1. Let 0 < p, <oo,0<p<oo,0<q1 < 00,0 < ¢q2 € 00 and
0<g¢g<oo. Let .

§ = — and 0<
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(i) Then there holds
B, .. B, C By,

) Piq1 P92
if and only sf

0<g1<1,0<q<r and .OOZquaX(ql,(h):
(i1) Then there holds ‘
’ F;lq\ F;q: C F};’q
if and only if .
' 0<p <1 and 00 > q > max{q1,q2)-

Remark 4.3.1. This theorem is connected with the points A in the Figures 3a
and 3b. The formulation is chosen in such a way that it can-be compared immediately
with Theorem 4.2.1. Instead of (4.2.6) with the expected 0 < ¢; < oo we have now
0 < ¢; <1, and (4.2.8) must now be complemented by 0 < p; < 1.

The second limiting case is connected with the point B in Figure 3a, that means

i = 11,1 <
w1ths—0andp—m+m§1.

Theorem 4.3.2. Let 0< g1 <00,0< g2 <00 and 0 < ¢ < 00. Let

' i 1 1 1 .
1<p<oo, 1<pp<o0, -=—+—<1
P P P2
Let independently
0 - o 0
Aa be esther By, or F, .
0 . 0 0
Apzqz be either quz or szq:
qu be esther ng or F}())q
(we assume AS . =B, if pp = 00). Then there holds
0 0 0
Aqul Apzqz - qu : (4.3‘6)
if and only if ' . _ '
Ag“" C Ly, Agw: C Ly,, L, C qu‘ (4.3.7)

Remark 4.3.2. We compare the above assertion with the classical Holder inequal-
ity Ly, Ly, C Lp. Then Theorem 4.3.1 states that, within the scales By, and Fy, with
s = 0, the classical Holder inequality is not improvable. ‘

As a consequence of Theorems 4.3.2 and 3.1.1 and F§, = L, (1 < p < 00) we
obtain the following corollary. C

Corollary 4.3.1. Let 0 < q; <00,0< g2 S o0 and 0 < g < co. Let
1< p) < oo, 1 < p2 < o0,

(i) Then there holds
BY... Bpe C By

P P292
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if and only 3f g1 < min(py,2), g2 < min(p2,2) and ¢ > max(p,2).
(ii) Then there holds
0
qul FPN: C F}?q . (.4.3.8)
if and only if ¢1 <2, g2 <2 and ¢ > 2.

Remark 4.3.3. Incase 1 < p; < 00,1 < p; < 0o and ;—, = Ll + pl? = 1 Theorem
4.3.2 yields : there do not exist ¢, g2 and ¢ such that (4.3.8) holds. This follows from
(3.1.5). :

Remark 4.3.4. Of special interest is also the situation in case p1 = oo. Let
1<p<o0,0<¢q £o0and 0< q< oo. By (4.3.7) and Theorem 3.1.1 we have

By Bp, CBY, .. (439
1fandonly1f0<q1<la.ndp—q_2(thatmea.nsB 2=Lg)a.nd
: ' ’ 0 0 0 ’ :
B FqCqu.

oo

if and only if 0 < ¢1 'S 1, 1 < p < co and ¢ = .2 (that means F), =.Lp). Hence,
with the obvious exception of L, the space Lo is not contained in the set of pointwise
multipliers of these spaces, whlch was proved earlier in [8]. Inclusxon (4. 3 9) 1rnproves
also some results of Bourdaud [4].

Not as a consequence of Theorem 4.3.2 but as a consequence of the proof of this
theorem one obtains the following corollary. Here by, denotes the: closure of S in B,
equipped with the same quasi-norm as B;,.

Corollary 4.3.2. Let 0 < ¢ < 00,0<¢; <00 and 0 < g <oo. Then there holds
oy ey € e

ocoq Tooq2
if and only if booq, C L, bgoq, C Lo and Lo, € b° y

Remark 4.3.5. Because of 2, ¢ #.Loo one consequence of Corollary 4.3.2 is the
fact that b3, is not a multlphcatlon algebra (cf. Remark 3.3.2). But this implies that
also,B° can not be an algebra with respect to pointwise multiplication.

4.4 Further results. We complement our previous considerations by collecting some
further results, mostly connected with the shaded areas in the Figures 3a and 3b. We
refer also to Subsectlons 3.3 and 4.3, where we characterized the conditions under which
B;, or Fj, are multiplication a.lgebras

Theorem441 Let0<p1<oo0<p2<000<q1<000<q2<ooand
0 <.qg<oo. Let (s, —) be a point in the interior of the shaded areas sn Figures 3a and
3b that means :

1 1 1 1 1 .
max (—','—) << — 4= e (440
P1 P2 P N P2
1 1
2s > n (—- - 1) (4.4.2)
D1 P2 +

s>n (l+l—‘l) S (4.4.3)
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Then there holds

B;lql B;?Q? C B;q (4'4'4)
if and only if
¢ > max(q;,q2) (4.4.5)
and
Pl(n F;zqz C F;q (4'4'6)
if and only if
g 2 max(qs,2). (4.4.7)

In case of the B-spaces p) = 0o and p; = 0o are admitted in (4.4.4).

Remark 4.4.1. We used the same notations as in Theorem 4.2.1 and it is immedi-
ately clear that the above assertion complements that theorem, where we are now not
restricted to the strip D. The necessity of (4.4.5) and respectively (4.4.7) is proved in

(7).

Remark 4.4.2. The above theorem has a lot of forerunners. Without going into
detail we refer to (1, 2,7, 9,12 - 15, 17, 20 - 24, 29 - 34].

Remark 4.4.3. Again let us cast a look on the Figures 3a and 3b. The results
given so far answer the question of the existence of inequalities of type (4.4.4) and (4.4.6)
in the interior of the shaded area (yes) and partly also on the boundary. Whereas on
the vertical lines the answer is again yes in any case, except maybe the points A and
B itself (these claims can be proved by suitable modifications of the proof of the above
theorem glven in Subsection 5.7 (cf. Remark 5.7.1)) the answer on the horizontal line
2s.= n( +5 L l) may be yes or no. A partly positive answer for the existence of
(4.4.6) on thls lme is glven by (7]. A negative answer for the existence of (4.4.4) one
obtains in case q—l + —; < 1 by replacing the simple counterexample ‘used in proof of
(4.1.4) by a more sophisticated one (cf. [11] or [18: Lemma 4.3.1/3]).

5. Proofs

5.1 Proofs of the assertions in Subsection 3.1.

Proof of Theorem 3.1.1.- Step 1. Proofs of the “if”-parts of statements (1), (1)
and (iv) may be found in [24: Proposition 2.3.2/2, p. 46 and Proposition 2.5.7, p. 89].
The “if”-part of statement (iii) is an immediate consequence of the identity F? 2 = hy
(cf. [24: Theorem 1, p. 92]). So in what follows we restrict ourselves to the “only
if”-parts and to the proof of (3.1.5).

Step 2 (Proof of (3.1.1)). First note that it will be sufficient to prove (3.1.1) in case
of a fixed s. By well-known lifting properties (cf. [24: Theorem 2.3.8, p. 58]) it can be
extended to arbitrary s afterwards.

Substep 2.1. Let ¢ € S such that

suppﬁ/)C{E:{:’SO,gSI{IS2}. C(5.11)
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For given complex numbers a; and e = (1,0,...,0) we put
f(z) =) ajettite® y(z),
j=3

Then

FFE) = 3 a; (F)E — Aje).
j=3
Choosing A; =27 — 2 (j = 3,4,...) we arrive at '
F i Ffl(z) = aj et y(a)
where we have used (2.1.3), (2.1.4) and (5.1.1). Consequently we have

1/u

1/q o
IA1Fpell = e | 3 lasl? and  ||fIBll = ¢ [ D laj*,
i=s : =3
The monotonicity of the l;-norms giveé
u<qg<uv. (5.1.2)
Substep 2.2. We wish to prove the counterpart of (5.1.2) with p instead of ¢q. For
this purpose we use local means (cf. [26: Subsections 1.8.4 and 2.5.3)). Let ko, k° € S

such that . :
Fko(0) # 0, fko(O) #0

supp ko C {y: |y| <1}, suppk®C {y: |y| <1}.

Define
N

n 2
k(y) = ANE(y) = (z %) - K(y)

with N € IN. We introduce the local means by

Kt f)(z) = / o) fz +ty)dy  (t>0) (5.13)

and similarly ko(t, f). Recall, for N large enough we have

0 . 1/u
NF1Bgull = llko(1, FY()ILH| + <Z 2'"’"||k(2_'",f)(’)|5p||") : (5.1.4)
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Let ¢ € S be non-trivial with a compact support near the origin. Let I be an integer.
Then we have

K2 AM)e) = [ A" @A) +2)dy
= 2% / K (y) (AN p)(z +2'y) dy

=277 /A”’k"(y)sb(I +2'y)dy.

In other words, we have

k2, ANp)(z)| < en 272N (1€ Z, N € V) (5.1.5)
and similarly ) , . ,
ko (2, ANp)(z)| < ecn27N (1€ IN,, N € IN). (5.1.6)
Now we put : - I
f =) e (ANe) (2 (2 - 7)) ‘ (5.1.7)
j=0
with a; € € and, say, 2/ = ¢ (4,0,...,0) where cA> 0 is a suitable positive number.

We insert f into (5.1.3) and calculate
k@, NOILAP = 3 laste |k (2™, (a¥o) @i - 2))|L,” (5.18)
j=0

where we used the construction of the local means and the fact that the supports of
the terms of f have a sufficiently large distance from each other. For the term with
J =m € IN we have

[e(2m @ e)em - —2mem)) |, | = 27

k(1,A¢)’L,‘|p ‘ .(5.1.9)

where we may assume that the last factor on the right-hand side is positive. Of course
we have an obvious counterpart of (5.1.8) with ko(1, f) instead of k(2~™, f) and of
(5.1.9) for the term j = m = 0. Hence, by (5.1.4) we have
oo
I£1Bpull® > ¢ Y 2meeje=mn/p g, e  (5.1.10)
m=0 .
for some ¢ > 0. To prove the converse estimate we apply (5.1.5)‘with l =j — m to the
corresponding term in (5.1.8), and (5.1.6) with [ = j to the ko-counterpart of (5.1.8).
For sake of convinience we put a; = 0 for —j € N. Then (5.1.5) and (5.1.8) yield

@™, NOIL||" < e 3 [27mPa P 22N li=mip

j
< ¢ sup |2—J"/Paj |Po-eli-mip
j

<& 3 (i oy omotmie) "

J
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for 0 < a < 2N and appropriate ¢ > 0 and ¢’ > 0. We choose N and afterwards «
sufﬁaently large such that

gmsu ”k(z—m f) lL || <CZ 2]5!4 |2 ]"/Pa |"2 B|J m|u (5]11)
j

with 8 = a—|s| > 0. Now we insert (5.1.11) and its ko-counterpart into (5.1.4), change
the order of summation and arrive at the converse of (5.1.10). Hence we have

ad .
If1Bl" = D 2™t 27 P g . (5.112)

m=0

On the other hand, by the localization property of Fy, (cf. [26: Subsection 2.4.7]) we
have

I fIF3IIP ~ Z |a; P ||(AN<p)(2’ —2929)|Fy, (5.1.13)

To estimate the last factors we use the counterpart of (5.1.4) for the F -space (see
again [26: Subsection 2.4.6]). By (5.1.5), (5.1.6) and the same technique as above we
have

@t —2ieg| = 2o

We insert this result into (5.1.13) and arrive at

o0
IA1E; A LR Al AL L © (5.1.14)

m=0

Now (3.1.1), (5.1.12) and (5.1. 14) yleld u < p< < v. Together with (5.1. 2) thls proves
(3.1.2).

. Step 3 (Proof of (3.1.6)). Taking the characteristic function xq of the cube @ =
{z: |zl <1 (I=1,...,n)} it is well-known that
XQ€BY, <= g=o (5.1.15)°

(cf. [23: pp. 142 - 145]). There the one-dimensional case is treated only but the general
result can be deduced by using some tensorproduct arguments. From the equivalence
(5.1.15) it follows v = oo. The remaining implication

BY.CLe = u<l

can be derived from the existence of essentially unbounded functions in BS , (u > 1)
(cf. [23: pp. 134/135]). This proves (3.1.6).

Step 4 (Proof of (3.1.3)). The proof of (3.1.3) (“only if”-part) can be reduced to
(3.1.6) by using duality arguments. Suppose

B, CLC B?,v for some 1<u<oo andfor v < oo.
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Then this would imply (cf. [24: Subsection 2.11.2, p.178])

u

1 1 1 1 )
Bgov'CLoocBgou/ (—+—,=_+_I=1)
u v. v

This contradicts (3.1.6). Hence, (3.1.3) is proved.

Step 5 (Proof of (3.1.4)). The proof of Ff’,q ¢ L, (g > 1) we postpone to the proof
of the stronger implication FY  C L{*¢ == ¢ < 2 (cf. Subsection 5.3).

Step 6 (Proof of (3.1.5)). To prove (3.1.5) we apply again duality arguments. Let
f{’,w be the closure of S in Ff"oo. Assuming L, C Flo,c,° we concludé Ly C f{’,m using
the density of S in L,. This yields

(flo0) = Foop € Lo B (5.1.16)

(cf. [14]). But this is false since F2 ,1 contains essentla.lly unbounded functlons This
can be derived from the embeddmg

Bif CFS,  (0<p<oo) (5.1.17)

(cf. again [14] and Theorem 3.3.1) B

Remark 5.1.1. To avoid the technical difficulties occurring in Substep 2.2 one
can use the following elegant argumentation. Let n > 2. If s is large enough, then the
trace on JR"~! (& z, = 0) makes sense. Suppose (3.1.1). Then it follows

B;;l/p(mn—l) C B;;l/p(mn—l) C B;:l/p(mn—l)

(cf. [24: Theorem 2.7.2, p. 132]). This proves u <p<uv, unfortunately in case n > 2
only.

5.2 Proofs of the assertions in Subsection 3.2.

Proof of Theorem 3.2.1. Step 1. The proof of (3.2.5) (“only if”-paft) will be
postponed to the proof of the stronger implication B"(l/p h C L = g < 1lgivenin

Subsection 5.3. The “if”-part of (3.2.5) follows from B"(l/p ]) C BY, ¢ (see [24: Theorem
2.7.1]) and (3.1.3). Furthermore, as pointed out in Remark 3:2.1, both statement (u)
and the “if”-part of statement (i) are known.

Step 2 (Proof of the * only if”-part of (3.2.1)).” Let f be given by (5.1.7). We put
b; = 2i(s=n/P)g;. Since s — S =s0— g =351 — 5 wefind by (5.1.12) and (5.1.14)

(e o] oo . oo

1B al" =~ D Mbsl* IAIBRLI ~ bl IIfI AL

=0 3=0 =0

Then (3.2.1) impliesu < pandp<v B -
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5.3 Proofs of the assertions in Subsection 3.3.

Proof of Theorem 3.3.2. Step 1. The implications (i) = (3;) and (i12) = (i41)
are known and follow directly from the sharper embeddings B,, C L; and Fy, C Ls with
p = max(1,p) (see Theorems 3.1.1 and 3.2.1, Remark 2.1.1 a.nd the proof of Corolla.ry
3.3.1).

Step 2. Let p <1 and s = n(1/p—1). We shall prove the implication
B C e g<. (5.3.1)
Let ¢ be a non-vanishing C*function with support near to the origin and Fp(0) =
Let - .
f= Z 222z —27) (2 € R, |2 <) (5.3.2)

J=0

where we assumed that the functions ¢(27z — z7) have disjoints supports. Then (5.3.2)
is an atomic representation of f with

1/g

o0
|| £ 1B "=V < e (Z M) <o (5.3.3)

i=0

(see [8] or [26: Subsection 1.9.2]). On the other hand we have

Z,\ 29" . _zJ)‘Ll _ch (c # 0). (5.3.4)

If 1 < ¢ < oo, then we find numbers A; with (5.3.3) such that (5.3.4) diverges. Hence f
does not belong to L;. This proves (5.3.1).

Step 3. Let 1 < p < o0o. We shall prove that F;,’q C LY° implies ¢ < 2. Assume
g > 2. For technical reasons we switch temporarily to the one-dimensional periodic
case. Let T! be the 1-torus. Let {ax}x & l2. Immediately it follows:

- (Sl) ghet!acun;gylseri;séz‘iéﬁk e belongs to F9 (T") if and only if {ax}x € Iy (cf.
: Subsections 3.5.1 and 6.4.2]).

(i) f & Ly(T!), hence f isnot a fegula.r distribution on the 1-torus (cf. [6: Subsec-
tions 15.3.1 and 15.3.2}).

This yields the result in the one-dimensional periodic case. The same argumentation
works in the general non-periodic case if we start with '

g(z) = f(z1) - x(z) (2 =(21,-..,2a))-

Here x denotes a compactly supported C*°-function in IR" which is identically 1 in the
cube [—7, 7|™. One can prove this claim by using the characterization of F, -spaces via
local means with kernels having a product structure (cf. [26: Subsection 1.8.4]).
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Step 4. Let 1 < p < oco. The same machinery as in the preceding step can be
applied to prove that ng C L' implies ¢ < 2.
Step 5. Let 1 < p < co. It remains to check the implication
By, CLY = 0<gq<p. (5.3.5)
We shall prove the existence of a singular distribution in By, (1 <p < ¢ < o).

Substep 5.1 (Preparations). Let f be a smooth function, non-trivial, supported
around the origin, |f(z)| <1 and [ f(z)dz = 0. Let 0 > 1. Define

j
Ko =0 and ki =y 17" (log(I+1))°  (j € N).
, =1
Since o > 1, there exists a real number « with k; — & if j — co. Further we put
R; = {z=(z,,...,z,,): Kji.1<z1 <K, 0<z1<1 (1=2,...,n)}
for j € IN. Next we subdivide R; by '

N, = 25D [21']‘—1 (log(; +1)) _0]

where | | denotes the integer part into cubes of side-length 277 and centered at z7:".
Substep 5.2. The announced singular distribution is given by

oo N;
g =3 (logli + 1)" f(2*! (z — 7).

=1 r=1

To. see this, first note that 2/7/? f(2j+l(:z: - a:j")) 1s an atom. More exactly, it is an
(Qj,r,0,p)-atom (cf. [26: p. 62]) where Q;, is an appropriate cube with volume =~ 277
and located around z/". Using the characterization of Besov spaces via atoms, due to
Frazier and Jawerth (cf. [26: Theorem 1.9.2, p.63]), we obtain

o N; q/p
. ”nggq”q <e Z 2-j("/P)q (log(J + 1))aq Z 1

=1 r=1
— ‘ ' 1-1

<c Z ]'—G/P (log(j + 1))”‘1( -1/p)
=1

< o0
since ¢ > p. Hence, ‘
g € BY, if 1<p<g<oo. , (5.3.6)

By construction g has compact support. Furthermore

/Iy(z)ld:z = Z / |g(:c)|'d17 ~ Z(log(j + 1'))',le| _ Zj—l = oo.

i:l R,“
Hencé,
g ¢ L (5.3.7)
The formulas (5.3.6) and (5.3.7) prove that g has the required properties, which gives
(5.3.5). m : ' .
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5.4 Proofs of the assertions in Subsection 4.1.

Proof of Theorem 4.1.1. Step ! (Proof of (4.1.3)). The right-hand side of this

inequality was proved in [20: p. 51]. We prove the left-hand side and assume that
(4.1.1) holds. Then we have

f1Bogll < cllfIB,q : (5.4.1)
for all f € B, , with compact support, say, in the unit cube. Assume that f is non-
trivial and smooth and [zf f(z)dz = 0 for |8| < L. If L is sufficiently large, then
2/(n/P=3) f(2) 1) are atoms in BS , (see [26: Subsection 1.9.2]). Then || f(27-)|Bg, |l =

1433
2i(s=n/P)  Similarly, for B3, . Then'(5.4.1) yields l < ~. By (3.1.1) the assumption
that (4.1.2) holds yields a corresponding assertion of type (4 1.1). Hence we have agaJn
1 < 1.
pn —p

Step 2 (Proof of 4.1.4)). The necessity of s > 0 is proved in [7]. So it remains
to check 2s > > + > —n. Let ¢; be the functions defined in (2.1.2). Consider the
sequences

Hj(z) = 277" Flpi(z)

‘ (7 € V). (5.4.2)
G:‘(x) =277 Flp;(z)
Obviously, »
1,185,016 By | = 2o teniansi =), (5.4.3)
Let us assume 2s <o + £ — n. Then we can choose al + as < n such that
25—(011+012)+2n——n————0 (5.4.4)
. p2

Next we consider the sequence (G - H;)p), where ¢ is taken from S. We find
(G- H))e) = [ Gy(@) Ha)ote) d

= g7ilmtaa) ghin / / o1(T) @1 (€ — 7) dr Fip(27€) de.
We choose ¢ such that Fp > 0 { € R and Fp(€) =1 (€] £1). Then it follows
(G - Hy)p)| 2 e/ (i)

for some appropriate positive constant c. From the continuous embedding B,, C S’
(cf. [24: Theorem 2.3.2, p. 48]) and (5.4.3), (5.4.4) we obtain a contradiction to
(4.1.1). Since (5.4.3) remains true if we replace the B-spaces by F-spaces the same
argumentation works also in this case.

Step 8 (Proof of (4.1.5)). Again we can make use of the sequences defined in (5.4.2).
Now it will be sufficient to take a; = az = 0. Observe that"

IGs - HylBjoll 2 2% | 7 037 (F 705 - F7'0) | @) Lo |

> 9Js g2in g=in/p H]:—l [‘Pl(‘pl £ 1) ](I)lL H

Comparing (5.4.5) with (5.4.3) the necessity of (4.1.5) in case (4.1.1) follows. As in the
preceding step the same proof can be taken over to the case of F-spaces. B

(5.4.5)
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Remark 5.4.1. Let A, ., denote either B, ,, or le and similar Az,,, and Az,

Without any changes the above proof can be taken over to the more general problem
whether

A;l N P:q: c Aa (5'4’6)
holds or not. Then as above from'(5.4.6) the necessity of (4.1.3) - (4.1.5) will follow.

Remark 5.4.2. Thereisa difference between (4.1.4) and (4.1.5). Whereas (4.1.5)
is necessary to keep the product in' B}, (4.1.4) saves the membership of the product
to S'.

5.5 Proofs of the assertiqn§ in Subsection 4.2,

Proof of Proposition 4.2.1. For sake of simplicity we always assume n = 1.
Otherwise one has to modify the following in an obvious way.

Step 1 (Preparations). We construct a smooth counterpart of Rademacher functions.
To this end, let go be a C*-function supported near 1 and identical 1 in a certain
neighbourhood of 1. Then we put g1(z) = go(z) — go(z — 1). Consequently [ g;(z)dz =
0. Next we define g2(z) = 01(z) — o1(z - 2) This function g, has now two vanishing
moments

[etzdz =0
/zgz(:zj dz = /zgl(x) d:zV: - /(z - 25 'gl(z‘— 2)dz = 0.

Iteration of this construction yields a famxly of functions gx having the following prop-
erties:
supp gx C [0,2% + 1]

IFor(®l <crlelt (<) (551)
[For(®)l <crlél™®  (El21) (5.5.2)

for arbitrary K and suitable consta.nts ck and ¢k k. Both k a.ud K are at our disposal.

Step 2. We fix some k a.nd denote the corresponding function g simply by p. In
what follows we investigate linear combinations of some scaled versions of this function.
Let o'(z) = o(2'z) (I € IN). Recall that {s}s denotes the decomposition of unity
defined in (2.1.2) and t the function from (2.1.1). Let ® € § be a function with

. ‘ .
supp® C [—-4,—5] U [%,4] and ®(z) =1 on suppey;.
From (5.5.1) and (5.5.2) one derives .

l2() (Fe)@ =) |Wg|| < em 22l (5.5.3)

lv() (Fo)™")IWP|| < em272 (5.5.4)
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for any m > 0 and ¢m does not depend on j € INg and | € INy. Here a > 0 is at our
disposal. 'The Fourier multiplier theorem (see [24: Subsection 1.5.2]) and (5.5.3) yield
in case 3 > 0
|77 [es Fe' O[] = 274019 | 71 [oa(6) @6) Fot20)] ()|
L e |a()(F@ Wy [F L] (559)
< ¢'9-3/p g-ali-il

where m has to be suffiently large. In case ] = 0 one has to a.pply (5.5.4) instead of
(5.5.3) and obtains

||f l[<.¢>of'9’]( !Lpll < c27ol, . (5.5.6)

Both (5 5.5) a.nd (5 5.6) lead to
29° | £~ [p; Fo'] ()ILy|| < c2ie=1/P 2=2li=d (5.5.7)

which may be assumed to be an equivalence if j = {. We introduce

L

M@ =S adz-z) C o (558)

=0

where the points z; are chosen such that o'(- — z;) have disjoint supports (that is not
important in this step but it will be used later on). Next we wish to calculate || A\Y|Bj,||.
We have

1771 5 FAL] L™
> |a_|min(l,p) ”f_l [‘Pj ]_-gj] (')ILP”min(l.P)

_ Z |a |m|n(l,p) ”]_-—l [SOJ ]_-gl] ( )ILP”mm(l:P)
. i#)

if L > j. Using (5.5.7) this leads to

ojs min(1,p) ”]_-—1 [tp,‘ }-/\L] (‘)le”min(l,P)

> g |aj|min(l :p) 9J(s—1/p) min(1,p)

ey Jagin(1P)gis=1/p) nAinfl,p> g-a li—1| min(1,p)
%5
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where ¢, and c; are positive constants independent of j and I. This implies

5|

L '\ (1/4) min(1,p,)
> c (Z 9i(s=1/p)q |a’.’|9)

j=0
[= o]
70'2 (Z Z |al|mm(l.p) 9l(s~1/p) min(1,p)
I#J

RY

o/ min(1,p)\ (1/g) min(x,p,é)'
« 9—ali—3| min(1,5) )

Choosing a large we may assume that the second term on the right-hand side can be
estimated from above by, say, :

(1/q) min(1,p,q)

Z Qj(a—l/p)q|aj|q
j

Then we obtain
L 1/q
sl 2 e (2] s

Jj=0

for an appropriate positive constant c. The reverse inequality to (5.5.9) can be derived
in a similar way, again based on (5.5.7). Hence we have

L 1/q
INF1BR ]| & | 3 2P0 a0 (5.5.10)

=0
and the correspondlng constants do not depend on L and the sequences {a;}; and {z;};.

Step 3. Let 1=0,...,L a.nd] > L. Then we can choose points t* (r =1,. c2"")
such that supp ¢’(- — t') C {t: ¢'(t) = 1} and the supports of g7(- — t") a.nd (-
t"‘) (r # m) have a mutual distance of at least ¢'277 for some positive numbers ¢ and

. We put ’ ) g

v c2i-t -
W)=Y -t
r=1
Such functions are studied in (28] (for partial results see a.lso [27]) By the theorem in
[28: p. 183] it follows -

”“" qu" ~ ”l“lIBpun” ~ 272=l/p3_
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Step 4. Of course, the results of Step 3 remains unchanged replacing o' by o!(- —z').
We put

L .
w(z) =) bipl(z—1') (5.5.11)
=0

Then all the ingredients have mutually disjoint supports. Moreover, from (28] we know
that

: L ‘ 1/p2
Bl = W85 = 27 (3 ) (5:512)

=0

Step 5. We multiply AL from (5.5.8) by p/ from (5.5.11). By construction
w(z)AE(z) = Z bragpl(z — ')
=0

By (5.5.12) it follows

L 1/p
l? AV IFS | = 1lw? AR By || ~ 27 <Z |2_'/’bzazl”> . (5513)
’ =0

Step 6. Assume (4.2.2) holds. Then by (5.5.13), (5.5.12) and (5.5.10) (with p;
instead of p and ¢, instead of gq)

L 1/p
(Z 277 by a:l”)
=0
L ' p: , 1/q
<c <Z I2—I/p: b,lp:) <z 21(5—1/?1)91 Ial|q|>
1=0 =0

(5.5.14)

with ¢ independent of L and ay, b;. Let B = 2-U/P2 p, and oy = 2= g (see (4.2.1)).
Applying (4.2.1) then (5.5.14) yields

: L: . All/xv L 1/p2 'L ' 1/;;,
(z lﬂza:l") < c<z W) (z |a,|«x) |
=0 =0 i1=0

Let B = a; = 1. Then Ll./" < ¢ LY/Pa¥1/9 apd hence pL, + rlT =

<Ly ql_, from
which (4.2.3) follows. @ o

1 1
P — P2

To prove Theorem 4.2.1 we need Proposition 2.2.1. Therefore we start to prove
Proposition 2.2.1 first. ' ’
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Proof of Proposition 2.2.1. Step I (Proof of statement (i)). We shall use (2.2.3),
(2.1.1),-(2.1.3) together with a Fourier multiplier assertion (cf. [24: Theorem 1.6.3,
p-31]). This gives

oo 1)9
c (Zlf"'zgkl") lLP L

k=2

j S el of) e

Applying H”older’s inequality and || supy |f*(z)||Lp, || < cllflhp, |l (cf. [24: p.37]) we
arrive at (2.2.5).

Step 2 (Proof of statement (i1)). We shall apply the identity
-1 1 - had ! -1
FHar (X 6a)]@= 3 ¥ 7 e er gerws)| (@) (5515)
I==2 j==1
Here we have used (2.2.4), (2.1.1) and (2.1.3). First, let p > 1. By the Michlin-

Hoérmander-Fourier multiplier theorem, the triangle inequality and Hoélder’s inequality
we get

|77 [er 7Y (19)] O

IA

- [‘Pkf(fk+l . g'k+l+j)](‘)|5p

1=-2 j=-1

IA

o0 .
c_max l_z:z | fe+tlLpy IHIgk+1451 Lps -

This proves (2.2.6).
Let p < 1. Let [ > —2. Proposition 1.5.1 and Remark 1.5.2/3 in [24: p. 25/28] give

H}-—l [‘Pkf(fk+l'9k+l)](‘) |L,,” < 202D I feg - grsa| Lyl

Again we use (5.5.15). Hence

7 o u0) ol

o . e
P
< —1[ . ] ML H
S e _max ,_X_:z “f Ok F(frat - gra145)| ()| Lp |
< ¢ max 2C/p=D2 | £ | L, 1P | gkt 51 g 1P

-1<5a £

This completes the proof of Proposition 2.2.1. B
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Proof of Theorem 4.2.1. Necessity part. After application of Proposition 4.2.1
it remains to prove ¢ > max(q;,¢2). But this is stated in a more general context in- (7).

Sufficiency part. Step 1 (Proof of 4.2.5). Therefore we use the preparations made
in Subsection 2.2.

Substep 1.1 (Estimate of 3_', 3°"). Our assumptions in (4.2.4) and (4.2.6) imply
the embeddings By, , C L., and B} ., C L, (cf. Remark 3.3.5). Hence, we may use
Proposition 2.2.1/(i) to obtain

A

|2 77 [0 7Y (1,9 OILs| < ¢ @7 llgsILpsll) 11l (5.516)

Taking the g-th power and summing up the desired estimates of E and 3" follow,

where we used h,, = L,, D Bj,g, and hy, = Le; D By,

Substep 1.2 (Estimate of 3°"'). Let = P_l p:‘ We assume 0 < ¢ < min(1,t) = u.
Using Proposition 2.2.1/,(ii) we derive o . ¢

I o

0o 00 q/u
¢ _max 2%kse Z A [ ATRr ) A
S1sish Ty =2 -

¢ .max 2I(n(1/u—l)—23)q
‘ISfSI't’ ' i

2 7 0, 7Y (19| OlLs|| < ¢ @ IILN) lolheall.  (5.517)

IA

IA

N A
y z 22k+0sa | 6, L, |9 llgk+t451Lp,1I°-
k=0

<

n,(%—.l)=n(;%-i—%—l):n(l;}-‘%—‘l)' (5.5.19)

(cf. (4.24)) and s > 0 we have 2s > n (1 — 1) and hence the right-hand side can be
estimated from above by c||f|B; .. [17]lg|B;,4, 117 In addition we have the embedding
B! C Bj,. This follows from Theorem 3.2.1 and (4.2.4) (see also (5.5.19)). This proves
(4.2.5) in case 0 < ¢ < min(1,t). If ¢ > min(1,t), one has to modify the above estimate
by using the triangle inequality in Iq/u. Estimates (5.5.16) - (5.5.18) together with
(2.2.2) prove (4.2.5). .

Step 2 (Proof of (4.2.7)). Substep 2.1 (Estlmate of ', 3="). Because of F.
L. = hy, and F; . C L,, = h,, without restrictions on g, 2 (cf. Theorem 3. 2 1/(11)

P2q2

and Remark 2.1.1/first item) we may apply Proposition 2.2.1/(i) to obtain

1> ¢s0ms,

Because of

gq” ”flh'"l ” < C ”gl pgq;" "fl i1 ” . (5520)
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Here we have used in addition ¢ > ¢;. Similar one derives

DR B

n

Substep 2.2 (Estimate of 3."'). Again we put } = P‘—l + ;‘2—. As in Substep 1.2 we

know that 2s > n (3 — 1) (cf. (4.2.4) and (5.5.19)). This ensures the applicability of
Proposition 2.2.1/(iii) and we arrive at

”E (f,g)IF“

The embedding F22 C F3, (cf. Theorem 3.2.1/(ii) and (4.2.4)) complements the esti-
mate of 3."'. Now (4.2.7) follows from (5.5.20) - (5.5.22). ®

P:q:" "fl i1 ” (5.5.21)

< cllfIFp, g 1 lglFp g, |- - (65.22)

5.6 Proofs of the assertions in Subsection 4.3.

Proof of Theorem 4.3.1. Concerning the sufficiency part one can follow the same
. arguments as in proof of Theorem 4.2.1, where one has to use now Theorem 3.3.1. The
necessity part is covered by Prop051t10n 4.3.1 and (7], where the last reference is used
to prove ¢ > max(q;,q2) B

Proof of Theorem 4.3. 2 We have to prove the “only if”-part only (cf Rema.rk
4.3.2).

Step 1 Let f € Aqu and assume to have (4.3.6). Then the operator Ty : g — f-g
is bounded from AJ . into A} . Using Fourier multiplier assertions (cf. [24: Theorem
2.3.7; p. 57]) one derives that T si yields a uniformly bounded family of those opera.tors
where f7 is given by (2.2. 1)

Let g € Lp,. -Then g* € Ly, and ||g*|L,,|| < c|lg|Lp,|| with ¢ independent of ¢
and k. Note that the Fourier image of g* ei2*71 is concentrated near |£| = 2* if c is
large enough (cf. (2.2.1) and (2.1.3)). Let k£ > j. Then the same is true in case of

: -
f7 g*e*? =1, Hence

I y"ILpI|—I|f’ il “ILpII

R || fF gk e = Al |
, . _ (5.6.1)
< cll 145,41 lg® € =1 147 0,

v
< cllf145, ¢, 1 llg* €<% =t | Ly 1.

Consequently we have || f? ¢*|L,|| < <(f)|lg|Ly,|l for all g € Ly,. Let j be fixed.
Then for k — oo we get ||f7 g|Lpll < c(f)llg|Lp,|| using the Fatou lemma. By stan-
dard arguments we conclude that f7 € L,, and moreover, by (5.6.1) we conclude that
Wf7|Lp |l < e(f) < cliflAD, 4, |l Let 1 < p1 < co. Then using again Fatou’s lemma'we
obtain f € L,,. The case py = oo can be covered by a Lebesgue point argument. If
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p1 =1, then || f7 |L,|| in the above inequality can be replaced by. || f7 |h,|| (cf. Remark
3.3.4). Then again by Fatou’s lemma we obtain that f € hy C L,. Hence

Agm Ly,. : (5.6.2)
Step 2. It remains to check
R - LyC Ay A ‘ (5.6.3)

We may assume ¢ < 0o. In case ¢ = oo nothing more is to prove with the exception of
A° = F° The latter case will be considered in Substep 2.5. Further, observe that
Step 1 1mp11es g2 < 0o.

Substep 2.1. -Let A} = = BJ = and A5, = BJ . By duality (cf. [24: Theorem

P292
2.11.2, p. 178)) (4.3.6) leads to AS . BS., C Bg;;; (we put ¢' = 00 if ¢ < 1). As in Step
1 this yields ' '

Bg/q; C LP" (56.4)

Using either Bg,q, C Ly if and only if qi < min(})’v,‘Z), P ;é 1or Bgoq, C Leo if an'd‘only
if ¢ <1, (5.6.4) gives L, C B), (cf. Theoremis 3.1.1 and 3.3.2) which is (5.6.3) in our
case here. ' o R

Substep 2.2. Let Ap:qz = F;’W’ and A}, = F) and assume p > 1 and p; > 1. To use
the duality argument is a little bit more complicated than in Substep 2.1. Temporarily
we restrict us to 1 < g2 < o0 and 1 < ¢ < oo. Under. these conditions the duality
a.rgument works (cf. again [24: Theorem 2.11.2, p.178]) and we arrive at A3 F}?,q. C

- By Step 1 this implies F)., C Ly which gives (5.6.3) by using again duality. If

q2 < 1.and/or ¢ < 1, then (4. 3 6) yields A3 . B, C FJ, (cf. Theorem 3.1.1). By
duality we find Fp , (F3.)' C Bg'ﬂ'z' Step 1 gives (Fg)' C Ly. Using the monotonicity
of the F-spaces with respect to g, (5.6.3) follows.

Substep 2.5. Let’ Amq2 = F,?zqz and qu = Flo’-q. The proof runs the same way as

in Step 1 and Substep 2.2 if one takes into account (F7,) = Fg, ., (1 < ¢ < o) and
(F?,) = BL s, (0 <g<1)(cf. [8, 14] and [24: p.180]). Furthermore -

”gk ic2t Ill co.g’ " ~ ”g |B oo"z ”g"ILoo"

where the latter one follows from B , C Fo .y C BYooo-

-Substep 2.4. Let A}, = F)  and A = F{ with ¢ < co. Then necessarily we

have A} . = B3 . We use that (4.3.6) implies

Bgog, B min(1,42) C Frg- (5.6.5)

Now we can argue as m Substep 2.3.

Substep 2.5. It remains (5.6.5) with q = oo. Restrlctmg to completions of S in the
involved spaces we may replace F? oo DY f, o (see the end of Subsection 5.1). Then we
can use the arguments in (5:1.16) and (5.1. 17) which disprove this possibility. W
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Proof of Corollary 4.3.1. Theorem 3.1.1 and Corollary 3.3.1 imply

ng CL, <= ¢ <min(p2)

(1 <p< o).
FpoCL, < g<2 ( )

In view of these equivalences the corollary is a reformulation of Theorem 4.3.2. B

Proof of Corollary 4.3.2. Our method in proving Theorem 4.3.2 depends on the
duality procedure. If we switch from BJ_ to 49, the closure of S in Bj ., then the
restriction p; < co becomes superflous (cf. [24: Remark 2.11.2/2, p. 180}). The result
is formulated as a consequence of (5.6.2) and (5.6.3). &

5.7 Proofs of the assertions in Subsection 4.4.

Proof of Theorem 4.4.1. Step ! (Proof of (4.4.4)/sufficiency part). Substep 1.1
(Estimate of Z (f,9) and 32"(f,9)). Thanks to Proposition 2.2.1 we know

2 [so,fz (f,g)]()iL H < ¢ (@ lgslLpl) Iflhnll  (571)

where 1 = # + rl_, Theorems 3.1.1 and 3.2.1 tell us that we can apply (5.7.1) with

P
1
1 (1 —s) <L.r (5.7.2)
+

in the same way as in proof of Theorem 4.2.1 given in Subsection 5.5. Similar we obtain

o . " * . ) .
|27 77 [P (0] O] < € @ UKL Nolhnll  (5:73)
and now % = pl—l lz holds. As above we derive the resfrictions
1 11 .
- (l - s) <—< —. (5.7.4)
n p2 + r pP2. .

for 1/r;. Relations (5.7.2) and (5.7.4) yield that (5.7.1) and (5.7.3) are appl:cable
51multa.neously if

(1 /n o 1 1 1
max|[—-(——-s) +=—) << —+—. (5.7.5)
#FIAnR\p /4 D PP p2 .
But this is ensured by (4.4.1) and (4.4.3). o
Substep 1.2 (Estimate of 3-"'(f,¢)). Let 1 = ';,—l + - We put min(1,t) = u. Since
2s > n(2 - 1) (cf. (4.4.2)) we derive as in (5. 5 i8) o
"
IS=" (. 9)18% || < cl71B;, ol llgBy,eall
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Because of Bf; C By, (cf. Theorem 3.2.1 and (4.4.3); see also (5.5.19)) this proves the
desired estlmate in case of Z'"(f,g).' This completes the proof of (4.4.4).

Step 2 (Proof of (4.4.6)/sufficiency part). The proof is similar to that given in Step
1 (cf. also the proof of Theorem 4.2.1/(ii) in Subsection 5.5). Proposition 2.2.1/(i) and
q > max(qs,qz) yield

13" 1R <
1" oiEs <

if (5.7.5) holds, which is gua.ranteed by (4.4.1) and (4 4.3). To estimate 3" we may
apply (5.5.22) once again. B

FooqaMIflhei S cllglEy, o, HIFIES o, 1

plql ” ”glhTz” < c”fl o " “gl P292 ”

Remark 5.7.1. The proof shows that (4.4.4) and (4.4.6) remain valid not only in
the interior of the shaded area in Figures 3a and 3b, they are true also on the vertical
- lines of the boundary, may be with exception of the endpoints (note that (4.4.1) is used
only to establish (5.7.5)). With the help of Theorems 3.1.1 and 3.2.1 one has to check
under which conditions < in (5.7.2), (5.7.4) and (5 7.5) can be replaced by < (cf. [11]
and (18] for a more detailed explanation).
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