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Stochastic flows for Lévy processes
with Hölder drifts

Zhen-Qing Chen, Renming Song and Xicheng Zhang

Abstract. In this paper, we study the following stochastic differential
equation (SDE) in R

d:

dXt = dZt + b(t,Xt) dt, X0 = x,

where Z is a Lévy process. We show that for a large class of Lévy pro-
cesses Z and Hölder continuous drifts b, the SDE above has a unique strong
solution for every starting point x ∈ R

d. Moreover, these strong solutions
form a C1-stochastic flow. As a consequence, we show that, when Z is an
α-stable-type Lévy process with α ∈ (0, 2) and b is a bounded β-Hölder
continuous function with β ∈ (1 − α/2, 1), the SDE above has a unique
strong solution. When α ∈ (0, 1), this in particular partially solves an open
problem from Priola. Moreover, we obtain a Bismut type derivative for-
mula for ∇Exf(Xt) when Z is a subordinate Brownian motion. To study
the SDE above, we first study the following nonlocal parabolic equation
with Hölder continuous b and f :

∂tu+ L u+ b · ∇u+ f = 0, u(1, ·) = 0,

where L is the generator of the Lévy process Z.

1. Introduction

Consider the following stochastic differential equation (SDE) in R
d:

dXt = dZt + b(t,Xt) dt, X0 = x,(1.1)

where b(t, x) : [0, 1]×R
d → R

d is a bounded Borel function and Z is a Lévy process
in R

d. When Z is a Brownian motion, one can use the Girsanov transform to show
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that SDE (1.1) has a unique weak solution for a large class of b(t, x), for example,
for bounded measurable Borel b(t, x). However, when Z is a discontinuous Lévy
process without Gaussian component, the problem becomes much harder for one
can not use the Girsanov transform to solve (1.1). When d = 1, Kurenok [14]
showed that (1.1) has a weak solution for a class of one-dimensional Lévy processes
and bounded time-dependent drift b, based on Krylov type estimates for Lévy
processes with time-dependent drift. When d = 1, Z is an isotropic α-stable process
in R

d with α ∈ (1, 2) and the drift b = b(x) is Lp-integrable for p > d/(α − 1),
Portenko [17] used a perturbation approach to construct a weak solution to the
SDE (1.1); it is extended to d � 2 in [16]. Recently, Chen and Wang [5], using
heat kernel estimates and the martingale problem approach, showed that (1.1) has
a unique weak solution when Z is an isotropic α-stable process with α > 1 and
b = b(x) is in some Kato class that includes Lp(Rd) with p > d/(α−1) and bounded
Borel functions. In this paper, we will concentrate on the existence and uniqueness
of strong solutions of (1.1) for non-Lipschitz continuous drift b. We refer the reader
to [10] for the definitions of and the relations between weak solution, uniqueness
of weak solution, strong solution, pathwise uniqueness. In non-technical terms, a
weak solution to (1.1) means that we can find a pair (X,Z) on some probability
space so that Z has the same distribution as the pre-given Lévy process and (1.1)
holds. A strong solution to (1.1) means that given a Lévy process Z, there is a
solution X to (1.1) on the same probability space on which Z is defined and is
adapted to the filtration generated by Z.

When d = 1, Z is a Brownian motion and b is a bounded Borel function on R,
Zvonkin [30] used a transformation (one-to-one map) to remove the drift from (1.1)
and show (1.1) has a unique strong solution for every starting point x. When b(t, x)
depends on x only, this transformation is just a scale function for X . Zvonkin’s
approach was extended to the multi-dimensional case by Veretennikov [24]. Since
then, many people have made contributions to the pathwise uniqueness problem
for SDEs driven by Brownian motion (see [12], [9], [8], [26] and references therein).
However, when Z is a pure jump Lévy process, strong existence and pathwise
uniqueness of SDE (1.1) become quite involved for drift b which is not Lipschitz
continuous. When d = 1, b(t, x) = b(x) and Z is a symmetric α-stable process
in R with α ∈ (0, 1), Tanaka, Tsuchiya and Watanabe [23] proved that path-

wise uniqueness fails for (1.1) even for bounded b ∈ Cβ
b (R). On the other hand,

when d = 1 and Z is a symmetric α-stable process in R with α ∈ [1, 2), it is
shown in [23] that pathwise uniqueness holds for (1.1) for any bounded continuous
b(t, x) = b(x). For d � 2, using Zvonkin’s transform, Priola [18] obtained path-
wise uniqueness for SDE (1.1) when Z is a non-degenerate symmetric (but pos-
sibly non-isotropic) α-stable process in R

d with α ∈ [1, 2) and time-independent

b(t, x) = b(x) ∈ Cβ
b (R

d) with β ∈ (1−α/2, 1). Note that in this case, the infinites-
imal generator corresponding to the solution X of (1.1) is L (α)+ b ·∇. Here L (α)

is the infinitesimal generator of the Lévy process Z, which is a nonlocal operator of
order α. When α > 1, L (α) is the dominant term, which is called the subcritical
case. When α ∈ (0, 1), the gradient ∇ is of higher order than the nonlocal opera-
tor L (α) so the corresponding SDE (1.1) is called supercritical. The critical case
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corresponds to α = 1. Priola’s result was extended to drifts b in some fractional
Sobolev spaces in the subcritical case in Zhang [28] and to more general Lévy pro-
cesses in the subcritical and critical cases in Priola [19]. However, when d � 2,
α ∈ (0, 1) and Z is a symmetric non-isotropic α-stable process in R

d, even for time-
independent Hölder continuous drift b = b(x), pathwise uniqueness for SDE (1.1)
was an open question until now; see Remark 5.5 in [19]. When Z is an isotropic
α-stable process, SDE (1.1) is connected with the following nonlocal PDE:

∂tu+Δα/2u+ b · ∇u+ f = 0,

where Δα/2 := −(−Δ)α/2 is the usual fractional Laplacian. In order to solve
SDE (1.1) driven by an isotropic stable process Z, one needs to understand the
above PDE better. In this direction, Silvestre [21] obtained the following a priori
interior estimate:

(1.2) ‖u‖L∞([0,1];Cα+β(B1)) � C
(‖u‖L∞([0,2]×B2) + ‖f‖L∞([0,2];Cβ(B2))

)
,

where, for any r > 0, Br stands for the open ball of radius r centered at the
origin, provided b ∈ L∞([0, 2];Cβ(B2)) and α + β > 1. This estimate, as pointed
out in Remark 5.5 of [19], can be combined with the argument of [18] to show
that the SDE (1.1) has a pathwise unique strong solution when Z is an isotropic

α-stable process with α ∈ (0, 1) and b ∈ Cβ
b (R

d) with β ∈ (1 − α/2, 1). However,
the approach of [21] to establish (1.2) strongly depends on realizing the fractional
Laplacian in R

d as the boundary trace of an elliptic operator in the upper half
space of Rd+1. Extending this approach to other nonlocal operators, such as α-
stable-type operators, would be very hard if not impossible.

The goal of this paper is to establish strong existence and pathwise uniqueness
for SDE (1.1) with, possibly time-dependent, Hölder continuous drift b for a large
class of Lévy processes that have no Gaussian component, including stable-type
Lévy processes. Our approach also uses Zvonkin’s transform. One of the main
contributions of this paper is a new approach of establishing estimates analogous
to (1.2) for a large class of Lévy processes and for time-dependent drift b(t, x); see
Theorem 2.3. Probabilistic consideration played a key role in our approach. With
this new approach, we not only extend the main result of [19] in the subcritical
case to more general Lévy processes and time-dependent drifts, but also establish
strong existence and pathwise uniqueness result in the supercritical case for a large
class of Lévy processes where the drift b can be time-dependent. We emphasize
that the Lévy process Z in this paper can be non-symmetric and may also have
drift. Throughout this paper, we assume the Lévy process Z has no Gaussian
component. If Z has a non-degenerate Gaussian component, then the Gaussian
part will play the dominant role and one can obtain results similar to the case of
Brownian motion. The case where Z has a degenerate Gaussian component will
be different and we will not deal with this case in the present paper.

One of the main results of this paper (see Corollary 1.4 (i) below) in partic-
ular partially solves an open problem raised in Remark 5.5 of [19], where Z is a
symmetric α-stable process with α ∈ (0, 1); see (i) and (iii) of Corollary 1.4 below.
Our approach is mainly probabilistic.
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In this paper, we use “:=” as a way of definition. For a, b ∈ R, a∧b := min{a, b},
a∨ b := max{a, b}, and a+ := a∨ 0. Let Lν,η be the infinitesimal generator of the
Lévy process Z, that is,

Lν,ηf(x) =

∫
Rd

(
f(x+ z)− f(x)− 1{|z|�1}z · ∇f(x)

)
ν(dz) + η · ∇f(x),

where ν is the Lévy measure of Z and η is a vector in R
d. For any η ∈ R

d and any
Lévy measure ν, i.e., a measure on R

d \ {0} with
∫
(1 ∧ |z|2)ν(dz) < ∞, we will

use {T ν,η
t ; t � 0} to denote the transition semigroup of the Lévy process Z with

infinitesimal generator Lν,η, i.e.,

T ν,η
t f(x) := Ef(x+ Zt).(1.3)

For any r ∈ (0, 1), the operator Lν,η can be rewritten as

Lν,ηf(x) =

∫
Rd

(
f(x+ z)− f(x)− 1{|z|�r}z · ∇f(x)

)
ν(dz) + ηr · ∇f(x)

with

ηr = η −
∫
r<|z|�1

z ν(dz).

Let N(dt, dz) be the Poisson random measure associated with Z, i.e.,

N((0, t]× Γ) :=
∑

0<s�t

1Γ(Zs − Zs−), t > 0, Γ ∈ B(Rd \ {0}).

Let Ñ(dt, dz) := N(dt, dz)−dtν(dz) be the compensated Poisson random measure.
By the Lévy–Itô decomposition, we can write for each r > 0,

Zt =

∫ t

0

∫
|z|<r

z Ñ(ds, dz) +

∫ t

0

∫
|z|�r

z N(ds, dz) + ηr t.

Before we present the main results, we give the main idea of this paper and a rough
description of Zvonkin’s transform. Consider the following backward parabolic
system:

(1.4) ∂tut + (Lν,η − λ)ut + bt · ∇ut + bt = 0, u1 = 0,

where λ � 0 is a parameter to be chosen later. Suppose one could prove that
the above system has a unique solution and further show that ‖∇ut‖∞ � c(1 ∨
λ)−θ‖b‖∞,β, where ‖ · ‖∞,β is the Hölder norm of order β, see the beginning of
Section 2 for a definition. Then one takes a fixed large λ so that ‖∇ut‖∞ � 1/2.
Define

Φt(x) = x+ ut(x).

Since ‖∇ut‖∞ � 1/2, x 	→ Φt(x) is a flow of diffeomorphisms for which we have
good control. Direct computations show that

∂tΦt +

∫
|z|<r

[Φs(x + z)− Φs(x) − z · ∇Φs(x)]ν(dz) + (bt + ηr) · ∇Φt = āt
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with

āt(x) = λut(x) + ηr −
∫
|z|�r

[
ut

(
x+ z

)− ut(x)
]
ν(dz).

So, if X is a solution of (1.1), then using Itô’s formula (see, e.g., [10]),

Yt := Φt(Xt) = Φ0(x) +

∫ t

0

∫
|z|<r

(Φs(Xs− + z)− Φs(Xs−))Ñ (ds, dz)

+

∫ t

0

∫
|z|�r

(Φs(Xs− + z)− Φs(Xs−))N(ds, dz) +

∫ t

0

ās(Xs) ds.

Since Xs = Φ−1
s (Ys), we get

Yt = Φ0(x) +

∫ t

0

∫
|z|<r

(Φs(Φ
−1
s (Ys−) + z)− Ys−)Ñ(ds, dz)

+

∫ t

0

∫
|z|�r

(Φs(Φ
−1
s (Ys−) + z)− Ys−)N(ds, dz) +

∫ t

0

ās(Φ
−1
s (Ys)) ds.

(1.5)

In the last equation, b no longer appears and the regularity of the coefficients
depends only on the regularity of Φ which is the same as that of the solution u
of (1.4). Suppose that we have solved (1.4) and established enough regularity
on the solution u. We can then show (1.5) has a strong solution Y . Clearly,
Xt = Φ−1

t (Yt) will be a strong solution of (1.1). Uniqueness of solutions for (1.1)
follows from the uniqueness for (1.5). We call the transform Yt = Φt(Xt), which
transforms (1.1) to (1.5), Zvonkin’s transform.

Now solving (1.1) reduces to studying (1.4). We seek minimal conditions on
the Lévy process and the drift b(t, x) to guarantee a sufficiently regular solution
of (1.4). We will assume that b is Hölder continuous of suitable order β ∈ (0, 1) and
that the semigroup of Z has some regularization effect which will be spelled out
precisely below. The regularization effect of the semigroup has to be strong enough
to compensate for the lack of regularity of b. The interplay of the regularization
effect of the semigroup and the Hölder continuity of b is the key to the argument
of this paper, which will be realized by freezing the coefficient b at point x0 ∈ R

d

along the characterizing equation

ẏt = −b(yt), y0 = x0,

and using the pointwise estimate (1.7) below (for more details, see the proof of
Lemma 2.6 (i) below).

We now describe the setup and the main results of this paper. Suppose that ν
can be decomposed as

ν = ν0 + ν1 + ν2,(1.6)

where ν1, ν2 are two Lévy measures, and ν0 is a finite signed measure supported
on the set {z ∈ R

d : |z| > 1} so that

ν0 + ν1 is still a Lévy measure.
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The reason for this seemingly opaque decomposition is that it not only allows
us to easily verify the condition of our main theorems, but also give us more
freedom to include a larger class of processes in our framework as our main as-
sumption will be only on ν1 through the transition semigroup {T ν,0

t ; t � 0}. In
many circumstances, we do not know if this assumption holds directly on T ν,0

or not. This is the case, for example, when Z is a truncated α-stable-like Lévy
process where ν(dz) = c(z)|z|−(d+α)1{|z|�1}dz with 0 < c1 � c(z) � c2 < ∞.

However we can take ν0(dz) = −c|z|−(d+α)1{|z|>1}dz, ν1 = c1|z|−(d+α)dz and

ν2(dz) = (c(z) − c1)|z|−(d+α)1{|z|�1}dz so that (1.6) holds. Since ν1 is the Lévy
measure for the rotationally symmetric α-stable process, which has nice scaling
property, one can easily verify that its transition semigroup {T ν,0

t ; t � 0} satisfies
the condition of our main theorems. See Example 4.2 below for another exam-
ple of such a decomposition where we treat general α-stable type Lévy measures
ν(dz) = κ(z) dz with c1|z|−d−α � κ(z) � c2|z|−d−α for |z| � 1. The idea behind
the decomposition of (1.6) is that the Lévy process Z(1) corresponding to ν0 + ν1
should share many properties with the Lévy process having Lévy measure ν1, as it
can be obtained from it by adding or removing jumps of size larger than 1, while
the original Lévy process Z has the same distribution as the sum of Z(1) and a
Lévy process Z(2) having Lévy measure ν2 that is independent of Z(1), so many
properties obtained for Z(1) can be transferred to Z. See the paragraph before
the statement of Lemma 2.6 below for further motivation behind the decomposi-
tion (1.6) and its utility.

We now make the following assumption about T ν1,0
t . There exist α ∈ (0, 2),

ᾱ, δ ∈ (0, 1] and K0 > 0 so that the following gradient estimates for the semigroup
{T ν1,0

t ; t � 0} hold:

(
Hα,ᾱ,δ

ν1,K0

)
If α ∈ (0, 1], then for any x ∈ R

d, β ∈ [0, ᾱ] and bounded Borel function f
satisfying

|f(x+ y)− f(x)| � Λ |y|β for all y ∈ R
d,

with some Λ > 0, it holds that

|∇T ν1,0
t f(x)| � K0Λ t(δβ−1)/α for all t ∈ (0, 1).(1.7)

(
Hα

ν1,K0

)
If α ∈ (1, 2), then for any bounded Borel function f , it holds that

‖∇T ν1,0
t f‖∞ � K0 ‖f‖∞ t−1/α for all t ∈ (0, 1).(1.8)

Remark 1.1. (i) Estimates (1.7) and (1.8) allow us to borrow the Hölder regularity
of the drift to compensate the time singularity.

(ii) Condition (1.8) in the subcritical case is the same as Hypothesis 1 of Pri-
ola [19] for Lévy process with Lévy measure ν = ν1. In the subcritical case, under
condition (1.8) for ν = ν1 and condition (1.9) below for some γ > α/2 (which
is Hypothesis 2 in [19]), Priola [19] derived Hölder estimate for solutions of (1.4)
which enabled him to show that SDE (1.1) has a unique strong solution.
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(iii) The pointwise estimate (1.7) is crucial for the well-posedness of SDEs with
Hölder drifts in the supercritical case. The reason for the complicated formulation
of

(
Hα,ᾱ,δ

ν1,K0

)
is that it allows us to cover a larger class of processes. The parame-

ters ᾱ and δ are mainly designed to treat the case when Z is a cylindrical stable
processes with possibly different stable indices for which previous approaches fail
to work; see Example 4.3 below. In many other cases, for example, in Examples 4.1
and 4.2 below, ᾱ and δ can all be chosen to be 1.

The first main result of this paper is the following.

Theorem 1.2. (i) (Supercritical and critical case) Suppose that
(
Hα,ᾱ,δ

ν1,K0

)
holds

for some α ∈ (0, 1], ᾱ, δ ∈ (0, 1] and K0 > 0. Assume that there is γ > 0 with
γ + (1− α)/δ < ᾱ such that

∫
|z|�1

|z|2γν(dz) < ∞,(1.9)

and there is some β ∈ (γ + (1− α)/δ, 1] so that

sup
t∈[0,1]

‖b(t, ·)‖∞ + sup
t∈[0,1]

sup
x �=y∈Rd

|b(t, x)− b(t, y)|
|x− y|β < ∞.(1.10)

Then for every x ∈ R
d, there is a unique strong solution {Xt(x); t ∈ [0, 1]} to the

SDE (1.1). Moreover, {Xt(x), t ∈ [0, 1], x ∈ R
d} forms a C1-stochastic diffeomor-

phism flow, and for each x ∈ R
d, t 	→ ∇Xt(x) is continuous, and

sup
x∈Rd

E

[
sup

t∈[0,1]

|∇Xt(x)|p
]
� Cp < ∞ for every p � 1,(1.11)

where Cp only depends on p, d, α, β, γ, ν,K0, ᾱ, δ and the Hölder norm of b.

(ii) (Subcritical case) Suppose that
(
Hα

ν1,K0

)
holds for some α ∈ (1, 2) and

K0 > 0, and there is some γ ∈ (0, 1) so that (1.9) holds. Assume that (1.10) holds
for some β ∈ ((γ + 1 − α)+, 1]. Then for every x ∈ R

d, there is a unique strong
solution {Xt(x); t ∈ [0, 1]} to SDE (1.1). Moreover, {Xt(x), t ∈ [0, 1], x ∈ R

d}
forms a C1-stochastic diffeomorphism flow, and for each x ∈ R

d, t 	→ ∇Xt(x) is
continuous, and (1.11) holds with constant Cp only depending on p, d, α, β, γ, ν,K0

and the Hölder norm of b.

Remark 1.3. (i) By a suitable localization argument (cf. [28]), for the local
uniqueness of SDE (1.1), the global condition (1.10) can be replaced with a lo-
cal condition. Moreover, although t 	→ Xt(x) is not continuous, since we are
considering an additive noise, the conclusion that t 	→ ∇Xt(x) is continuous is not
surprising.

(ii) For the subcritical case, we only assume (1.9) to hold for some γ ∈ (0, 1)
rather than for γ > α/2 as assumed in [19]. So even in the subcritical case,
Theorem 1.2 (ii) yields new result; see Remark 1.5.
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Various examples of Lévy processes satisfying the conditions
(
Hα,ᾱ,δ

ν1,K0

)
with α ∈

(0, 1],
(
Hα

ν1,K0

)
with α ∈ (1, 2), and (1.9) (and hence the conclusion of Theorem 1.2

holds for these Lévy processes) are given in Section 4. To illustrate the scope and
applicability of Theorem 1.2, here we only give the following corollary, which is a
direct consequence of these examples.

Corollary 1.4. (i) (Stable-type Lévy process) Let Z be a Lévy process in R
d whose

Lévy measure ν has a density κ(z). Assume that for some 0 < α1 � α2 < 2,

c1 |z|−d−α1 � κ(z) � c2 |z|−d−α2 for 0 < |z| � 1.

Assume that α2 < 2α1, and b(t, x) is bounded and β-Hölder continuous in x uni-
formly in t ∈ [0, 1], for some β ∈ (1+α2/2−α1, 1]. Then SDE (1.1) has a unique
strong solution for every x ∈ R

d and (1.11) holds.

(ii) (Subordinate Brownian motion) Let Z be a subordinate Brownian motion
in R

d with characteristic function Φ(z). Suppose that there are 0 < α1 � α2 < 2
such that

C1 |z|α1 � Φ(z) � C2 |z|α2 for |z| � 1.

Assume that α2 < 2α1, and b(t, x) is bounded and β-Hölder continuous in x uni-
formly in t ∈ [0, 1], for some β ∈ (1+α2/2−α1, 1]. Then SDE (1.1) has a unique
strong solution for every x ∈ R

d and (1.11) holds.

(iii) (Cylindrical stable process) Let Z = (Z1, . . . , Zk), where Zj, 1 � j � k,
are independent dj-dimensional rotationally symmetric αj-stable processes, respec-
tively, with αj ∈ (0, 2) and dj�1. Let α := min1�j�k αj and αmax := max1�j�k αj.
Suppose that

(1.12) either α > 1 or α ∈ (0, 1] and αmax < 2α2/(2− α),

and that b(t, x) is bounded and β-Hölder continuous in x uniformly in t ∈ [0, 1],
for some

(1.13) β ∈ (β0, 1] with β0 := αmax/2 + (αmax/α1{α�1} + 1{α>1})(1− α).

Then SDE (1.1) has a unique strong solution for every x ∈ R
d, where d :=

∑k
j=1 dj ,

and (1.11) holds.

Note that condition (1.12) implies that α < 2α2/(2 − α). The latter is equiv-
alent to α > 2/3. If in Corollary 1.4 (iii), αj = α for every 1 � j � k, then
conditions (1.12) and (1.13) become

α > 2/3 and β ∈ (1− α/2, 1], respectively.

An interesting open question is whether the constraint α > 2/3 can be dropped.1

1Note added in proof: this question has been answered affirmatively by Z.-Q. Chen, X. Zhang
and G. Zhao in a recent work [7].
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Remark 1.5. Corollary 1.4 (iii) in particular covers some cases of α-stable pro-
cesses with α ∈ (1, 2) for which the results from Priola [19] are not applicable.
Let ν be the Lévy measure of the cylindrical stable process Z in Corollary 1.4 (iii).
We will in fact show in Example 4.3 that, when α = min1�j�k αj ∈ (1, 2), condi-
tion

(
Hα

ν,K0

)
holds for some K0 > 0 but condition

(
Hα∗

ν,K0

)
fails for any α∗ > α.

So Hypothesis 1 of [19] holds with this α for the cylindrical stable process Z.
On the other hand, condition (1.9) holds if and only if 2γ > αmax. Hence in
the case α ∈ (1, 2), Hypothesis 2 of [19] fails when αj ’s are not identical (i.e.,
when αmax > α), and so the main results of [19] are not applicable to these Lévy
processes.

The second main result of this paper is the following derivative formula of
Ef(Xt(x)).

Theorem 1.6. Under the assumptions of Theorem 1.2, if Zt = WSt is a sub-
ordinate Brownian motion as described in Example 4.1 below, then we have the
following derivative formula:

∇Ef(Xt(x)) = E

[f(Xt(x))

St

∫ t

0

∇Xs(x) dWSs

]
, f ∈ C1

b (R
d).(1.14)

In particular, for any p > 1, there is a constant Cp > 0 such that for any f ∈
C1

b (R
d) and (t, x) ∈ (0, 1)× R

d,

|∇Ef(Xt(x))| � Cp t
−1/α (E|f(Xt(x))|p)1/p.(1.15)

This paper is organized as follows. In Section 2, we solve a nonlocal advection
equation which is slightly more general than (1.4) and obtain estimates on the
gradient of the solutions. In particular, we derive a priori uniform C1+γ estimate
on the solution of the nonlocal advection equation. This is crucial for applying
Zvonkin’s transform. Even when Z is a rotationally symmetric stable process, our
approach to the a priori estimate is simpler and more elementary than that of [21].
In Section 3, we shall prove our main results by using Zvonkin’s transform. In
Section 3, we give three examples to illustrate the main results of this paper, from
which Corollary 1.4 follows. In the Appendix, we prove a continuous dependence
result about the SDEs with jumps with respect to the coefficients and the initial
values.

2. Differentiability of solutions of nonlocal advection equa-
tions

In this paper we use the following conventions. The letter C with or without
subscripts will denote a positive constant, whose value is not important and may
change from one appearance to another. We write f(x) 
 g(x) to mean that there
exists a constant C0 > 0 such that f(x) � C0g(x); and f(x) � g(x) to mean that
there exist C1, C2 > 0 such that C1g(x) � f(x) � C2g(x).
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For a function u(t, x) defined on [0, 1]×R
d, sometimes we use ut(x) for u(t, x).

Denote by C∞
c (Rd) the space of smooth functions with compact support on R

d.
For β ∈ (0, 1] and a function f on R

d,

[f ]β := sup
x �=y

|f(x)− f(y)|
|x− y|β , ‖f‖β := ‖f‖∞ + [f ]β ,

and for a function f : [0, 1]× R
d → R,

[f ]∞,β := sup
s∈[0,1]

[fs]β , ‖f‖∞,β := sup
s∈[0,1]

‖fs‖β.

Recall the following characterization for a Hölder continuous function f . Let Pθf
be the Poisson integral of f defined by

Pθf(x) :=

∫
Rd

f(y) pθ(x − y) dy, θ > 0,

where pθ(x) is the density of a Cauchy process Zθ given by

pθ(x) := cd θ(θ
2 + |x|2)−(d+1)/2 � θ(θ + |x|)−d−1.

It is well known (cf. [22], Proposition 7 on p. 142) that ‖f‖β < ∞ if and only if f
is bounded and

‖∂θPθf‖∞ � C θβ−1 for every θ > 0

and

‖f‖β � ‖f‖∞ + sup
θ>0

‖θ1−β∂θPθf‖∞.(2.1)

The following commutator estimate result plays an important role in our proof
of the Hölder regularity of the gradient in the case of α ∈ (0, 1].

Lemma 2.1. For any β, γ ∈ (0, 1) with γ � β, there is a positive constant C =
C(β, γ, d) such that for any Borel functions f, g on R

d,

[∂θPθ(fg)− f∂θPθg]β−γ � C [f ]β ‖g‖∞ θγ−1, θ > 0,

provided that [f ]β and ‖g‖∞ are finite. In particular, if g ≡ 1, then

[∂θPθf ]β−γ � C [f ]β θ
γ−1, θ > 0.

Proof. It suffices to prove that

|∂θPθ(fg)(x)− f∂θPθg(x)− ∂θPθ (fg)(x
′) + f∂θPθg(x

′)|
� C [f ]β ‖g‖∞ θγ−1 |x− x′|β−γ .(2.2)

By definition, we have

∂θPθ(fg)(x)− f∂θPθg(x) =

∫
Rd

(f(y)− f(x)) g(y) ∂θpθ(x− y) dy.(2.3)
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Notice the following easy estimates:

|∂θpθ(x)| 
 (θ + |x|)−d−1, |∇∂θpθ(x)| 
 (θ + |x|)−d−2(2.4)

and ∫
Rd

|x|β(θ + |x|)−d−k dx 
 θβ−k, k ∈ N.(2.5)

If |x− x′| � θ/2, then (2.2) follows from

‖∂θPθ(fg)− f∂θPθg‖∞
(2.3)
� [f ]β ‖g‖∞

∫
Rd

|y|β |∂θpθ(y)|dy
(2.4)

 [f ]β ‖g‖∞

∫
Rd

|y|β(θ + |y|)−d−1dy

(2.5)

 [f ]β ‖g‖∞θβ−1 
 [f ]β ‖g‖∞ θγ−1|x− x′|β−γ .

Next, we assume

|x− x′| � θ/2.(2.6)

Notice that

∂θPθ(fg)(x) − f∂θPθg(x)− (∂θPθ(fg)(x
′)− f∂θPθg(x

′))

=

∫
Rd

(f(y)− f(x)) g(y) (∂θpθ(x− y)− ∂θpθ(x
′ − y)) dy

+

∫
Rd

(f(x′)− f(x)) g(y) ∂θpθ(x
′ − y) dy =: I1 + I2.

For I1, we have

|I1| � [f ]β ‖g‖∞
∫
Rd

|x− y|β|x− x′|
(∫ 1

0

|∇∂θpθ(x− y + r(x′ − x))|dr
)
dy

(2.4)

 [f ]β ‖g‖∞ |x− x′|

∫
Rd

|x− y|β
( ∫ 1

0

(θ + |x− y + r(x′ − x)|)−d−2dr
)
dy

(2.6)

 [f ]β ‖g‖∞ |x− x′|

∫
Rd

|x− y|β(θ + |x− y|)−d−2dy

(2.5)

 [f ]β ‖g‖∞ |x− x′|θβ−2

(2.6)

 [f ]β ‖g‖∞ |x− x′|β−γθγ−1.

For I2, we similarly have

|I2| 
 |x− x′|β [f ]β ‖g‖∞
∫
Rd

(θ + |y|)−d−1dy 
 [f ]β ‖g‖∞ |x− x′|β−γ θγ−1.

Combining the above estimates, we obtain (2.2). �
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We also need the following lemma for treating the case of α ∈ (1, 2).

Lemma 2.2. If
(
Hα

ν1,K0

)
holds for some α ∈ (1, 2) and K0 > 0, then for any

β, γ ∈ [0, 1], there is a constant K1 > 0 such that

‖∇T ν1,0
t f‖γ � K1 t

(β−1−γ)/α ‖f‖β for all t ∈ (0, 1).

Proof. Note that ‖∇T ν1,0
t f‖∞ � ‖∇f‖∞. By (1.8) and Proposition 1.2.6 of [15]

(with X1 = C0
b (R

d), Y1 = C1
b (R

d) and X2 = Y2 = L∞(Rd)), we get

‖∇T ν1,0
t f‖∞ 
 t(β−1)/α‖f‖β.

On the other hand, by
(
Hα

ν1,K0

)
we have

‖∇2T ν1,0
t f‖∞ = ‖∇T ν1,0

t/2 ∇T ν1,0
t/2 f‖∞ 
 (t/2)−1/α‖∇T ν1,0

t/2 f‖∞ 
 (t/2)(β−2)/α‖f‖β.
Hence,

[∇T ν1,0
t f ]γ � 2 ‖∇2T ν1,0

t f‖γ∞ ‖∇T ν1,0
t f‖1−γ

∞ 
 t(β−1−γ)/α ‖f‖β. �

For λ � 0, consider the following linear backward nonlocal parabolic system:

∂tut + (Lν,η − λ)ut + bt · ∇ut + ft = 0, u1 = 0,(2.7)

where Lν,η is the infinitesimal generator of the Lévy process Z, and b, f : [0, 1]×
R

d → R
d are bounded Borel functions.

The following theorem is the main result of this section and it is crucial in our
proof of Theorem 1.2 in the next section.

Theorem 2.3. (i) (Supercritical and critical case) Suppose α ∈ (0, 1] and
(
Hα,ᾱ,δ

ν1,K0

)
holds for some ᾱ, δ ∈ (0, 1] and K0 > 0 with 1− α < δᾱ. If

‖b‖∞,β < ∞, ‖f‖∞,β < ∞(2.8)

for some β ∈ ((1 − α)/δ, ᾱ], then for any γ ∈ (0, β − (1 − α)/δ), there exists a
continuous function u : [0, 1]×R

d → R
d such that for all t ∈ [0, 1] and ϕ ∈ C∞

c (Rd),

〈ut, ϕ〉 =
∫ 1

t

〈us, (L
∗
ν,η − λ)ϕ〉 ds+

∫ 1

t

〈bs · ∇us, ϕ〉ds+
∫ 1

t

〈fs, ϕ〉ds(2.9)

with

sup
t∈[0,1]

‖ut(·)‖∞ � sup
t∈[0,1]

‖ft(·)‖∞,(2.10)

and for some θ0 > 0 and all λ � 0,

‖∇u‖∞,γ � C(1 ∨ λ)−θ0‖f‖∞,β.(2.11)

Here C = C(d, α, β,K0, ᾱ, δ, ‖b‖∞,β, γ, |ν0|(Rd)), 〈u, ϕ〉 := ∫
uϕdx and L ∗

ν,η is the
adjoint operator of Lν,η.

(ii) (Subcritical case) Suppose α ∈ (1, 2) and
(
Hα

ν1,K0

)
holds for some K0 > 0.

If (2.8) holds for some β ∈ [0, 1], then for any γ ∈ (0, (β + α − 1) ∧ 1), there
exists a continuous function u : [0, 1] × R

d → R
d such that for all t ∈ [0, 1] and

ϕ ∈ C∞
c (Rd), (2.9)–(2.11) hold with C = C(d, α, β,K0, ‖b‖∞,β, γ, |ν0|(Rd)).
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Remark 2.4. At this stage one can not show the uniqueness of weak solutions
for (2.7) with regularities (2.10) and (2.11) since u may be not in the domain
of Lν,η. In Corollary 2.10 below, under an additional assumption (2.28), we
will show the existence of classical solutions, which automatically yields the well-
posedness in the class of classical solutions.

We will first prove several lemmas before we present the proof of the theorem
above.

Lemma 2.5. If b, f ∈ L∞([0, 1];C∞
b (Rd;Rd)), then there exists a unique solu-

tion ut(x) in the space C([0, 1];C∞
b (Rd;Rd)) to equation (2.7) with the following

probabilistic representation :

ut(x) =

∫ 1

t

eλ(t−s)
Efs(Xt,s(x)) ds,(2.12)

where Xt,s(x) = Xt,s is the unique solution to the following SDE :

Xt,s = x+

∫ s

t

br(Xt,r) dr + Zs − Zt, s � t.(2.13)

Moreover, we have the following a priori estimate :

sup
t∈[0,1]

‖ut‖∞ � sup
t∈[0,1]

‖ft‖∞.(2.14)

Proof. The existence and uniqueness of ut(x) and the representation (2.12) follow
from Theorem 4.4 in [27]. The estimate (2.14) immediately follows from (2.12). �

Recalling decomposition (1.6), we can write

Lν,η = Lν0,0 + Lν1,0 + Lν2,η,(2.15)

where Lν0,0 is given by

Lν0,0f(x) =

∫
|z|>1

(f(x+ z)− f(x)) ν0(dz).

Let Z(1) and Z(2) be two independent Lévy processes with generators Lν0+ν1,0

and Lν2,η. Clearly,

Zt
(d)
= Z

(1)
t + Z

(2)
t .(2.16)

The following is a key lemma on the gradient estimate for solutions u of (2.7)
in the supercritical case. One can relatively easily obtain such a gradient estimate
if the semigroup T ν,0

t has the property (1.7). But as we mentioned earlier, for
many interesting cases of Lévy processes, such as truncated stable processes and
general stable-type Lévy processes in Corollary 1.4 (i), we do not know if (1.7) holds
directly for them (that is, with ν = ν1) or not. Our idea is as follows. Decompose



1768 Z.-Q. Chen, R. Song and X. Zhang

the Lévy measure ν as in (1.6). Since Lν0+ν1,0 is a lower order perturbation
of Lν1,0 by a finite measure ν0 on {z ∈ R

d : |z| > 1}, under condition (1.7),

one can obtain the desired gradient estimate for Lévy process Z(1). Since Zt
(d)
=

Z
(1)
t + Z

(2)
t , intuitively, the solution Xt to the original SDE (1.1) should have the

same distribution as Yt +Z
(2)
t , where conditional on Z(2), Yt is a weak solution of

Yt = X0 + Z
(1)
t +

∫ t

0

b(t, Ys + Z(2)
s ) dt.

With this intuition in mind, using the probabilistic representation of u and by
conditioning on Z(2), we can reduce the solution u of (2.7) for Lν,η to a solution

of (2.7) for Lν0+ν1,η with b̃(t, z) := b(t, x + Z
(2)
t ) in place of b(t, x) and then get

the desired gradient estimate. See the proof of part (ii) of the following lemma.

Lemma 2.6. Suppose that
(
Hα,ᾱ,δ

ν1,K0

)
holds for some K0 > 0 and α ∈ (0, 1], ᾱ, δ ∈

(0, 1] with 1−α < δᾱ, and that b, f ∈ L∞([0, 1];C∞
b (Rd;Rd)). Let u be the solution

of (2.7). Then for any β1, β2 ∈ ((1−α)/δ, ᾱ], there is a constant C > 0 depending
only on K0, α, δ, β1, β2, [b]∞,β1 and |ν0|(Rd) such that for all λ � 0,

sup
t∈[0,1]

‖∇ut‖∞ � C (1 ∨ λ)(1−α−δβ2)/α [f ]∞,β2 .(2.17)

Proof. (i) We first assume that η = 0 and that ν2 = 0 in decomposition (1.6). Fix
x0 ∈ R

d and let yt satisfy the following ODE:

ẏt = bt(x0 + yt) with y0 = 0.

Define

ũt(x) := ut(x + x0 + yt), f̃t(x) := ft(x + x0 + yt)(2.18)

and

b̃t(x) := bt(x+ x0 + yt)− bt(x0 + yt).

Clearly, by (2.7) and (2.15), ũ satisfies

∂tũt + (Lν1,0 − λ)ũt + b̃t · ∇ũt + Lν0,0ũt + f̃t = 0, ũ1 = 0.

We have by the representation (2.12) (with b = 0 and fs replaced by gs = b̃s ·
∇ũs + Lν0,0ũs + f̃s there)

ũt(x) =

∫ 1

t

eλ(t−s) T ν1,0
s−t

(
b̃s · ∇ũs + Lν0,0ũs + f̃s

)
(x) ds.

Fix β1, β2 ∈ ((1− α)/δ, ᾱ]. Note that by the definition of b̃s,

|b̃s(y) · ∇ũs(y)| � ‖∇ũs(·)‖∞ [bs(·)]β1 |y|β1 for all y ∈ R
d,
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and that by Lν0,0f(x) =
∫
{|z|>1}(f(x+ z)− f(x))ν0(dz),

|∇T ν1,0
s−t (Lν0,0ũs)(x)| � ‖∇(Lν0,0ũs)‖∞ � 2 |ν0|(Rd) ‖∇ũs(·)‖∞.

We have by (1.7) that for t ∈ [0, 1],

|∇ũt(0)| �
∫ 1

t

eλ(t−s)
(
K0[bs(·)]β1(s− t)(δβ1−1)/α + 2|ν0|(Rd)

)‖∇ũs(·)‖∞ ds

+K0

∫ 1

t

eλ(t−s)(s− t)(δβ2−1)/α [f̃s(·)]β2 ds.

By (2.18) and the arbitrariness of x0, one in fact has

‖∇ut(·)‖∞ � C

∫ 1

t

(s− t)(δβ1−1)/α‖∇us(·)‖∞ds+ C [f ]∞,β2(1 ∨ λ)(1−α−δβ2)/α.

(2.19)

By Gronwall’s inequality, we obtain (2.17).

(ii) Next we consider the general case. Fix t0 ∈ [0, 1) and a càdlàg function
 : [0, 1] → R

d, and define

b
r(x) := br(x− t0 + r), f 

r (x) := fr(x− t0 + r).

Let Y 

t,s(x) := Y 


t,s be the solution to the following SDE:

Y 

t,s = x+

∫ s

t

b
r(Y


t,r) dr + Z(1)

s − Z
(1)
t , s � t.

Since Z(1) and Z(2) are independent, by (2.16) and the uniqueness in law of the
solution to SDE (2.13), we have

Xt0,·(x)
(d)
= Y Z(2)

t0,· (x) − Z
(2)
t0 + Z

(2)
· ,

and so by (2.12),

ut0(x) = E

( ∫ 1

t0

eλ(t0−s)
E
[
f 

s(Y



t0,s(x))

]
ds

∣∣∣

=Z(2)

)
.

Now we define

u

t(x) :=

∫ 1

t

eλ(t−s)
E
[
f 

s (Y



t,s(x))

]
ds.

Then by Lemma 2.5, u

t(x) is a solution to the following equation:

∂tu

 + (Lν0+ν1,0 − λ)u
 + b
 · ∇u
 + f 
 = 0, u


1 = 0.

In view of
[b
]∞,β1 = [b]∞,β1 , [f 
]∞,β2 = [f ]∞,β2 ,
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by what has been proved in (i), we have for any càdlàg function ,

‖∇u
‖∞ � C2 (1 ∨ λ)(1−α−δβ2)/α [f ]∞,β2 ,

which in turn gives (2.17) by noting that ∇ut0(x) = E
[∇u


t0(x)|
=Z(2)

]
and t0 is

arbitrary. �

Lemma 2.7. Suppose that
(
Hα,ᾱ,δ

ν1,K0

)
holds for some K0 > 0 and α ∈ (0, 1], ᾱ, δ ∈

(0, 1] with 1−α < δᾱ, and that b, f ∈ L∞([0, 1];C∞
b (Rd;Rd)). Let u be the solution

of (2.7). Then for any β ∈ ((1−α)/δ, ᾱ] and γ ∈ (0, β− (1−α)/δ), there exists a
constant C > 0 depending only on d, α, ᾱ, δ,K0, β, γ, [b]∞,β and |ν0|(Rd) such that
for all λ � 0,

[∇u]∞,γ � C (1 ∨ λ)(1−α−δ(β−γ))/α [f ]∞,β .(2.20)

Proof. Fix γ ∈ (0, β − (1− α)/δ). For θ > 0, define

wθ
t (x) := ∂θPθut(x)

and

gθt (x) := ∂θPθ(bt · ∇ut)(x) − bt(x) · ∇∂θPθut(x) + ∂θPθft(x),

then

∂tw
θ
t + (Lν,η − λ)wθ

t + bt · ∇wθ
t + gθt = 0, wθ

1 = 0.

Since β − γ > (1− α)/δ, by (2.17) with β1 = β and β2 = β − γ, we have

sup
t∈[0,1]

‖∇wθ
t (·)‖∞ � C(1 ∨ λ)(1−α−δ(β−γ))/α[gθ]∞,β−γ ,

and by Lemma 2.1,

[gθ]∞,β−γ 
 [b]∞,β sup
t∈[0,1]

‖∇ut‖∞ θγ−1 + [f ]∞,β θ
γ−1

(2.17)

 [f ]∞,β θ

γ−1.

Hence,

sup
t∈[0,1]

‖∂θPθ∇ut‖∞ � C(1 ∨ λ)(1−α−δ(β−γ))/α [f ]∞,β θ
γ−1 for every θ > 0,

which yields (2.20) by (2.1) and (2.17). �

Lemma 2.8. Suppose that
(
Hα

ν1,K0

)
holds for some α ∈ (1, 2) and K0 > 0, and

that b, f ∈ L∞([0, 1];C∞
b (Rd;Rd)). Let u be the solution of (2.7). Then for any

β ∈ [0, 1] and γ ∈ [0, (β+α− 1)∧ 1), there exists a constant C > 0 depending only
on d, α,K0, γ, β, ‖b‖∞,β and |ν0|(Rd) such that for all λ � 0,

‖∇u‖∞,γ � C (1 ∨ λ)(1−α−β+γ)/α ‖f‖∞,β.(2.21)
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Proof. As in the proof of Lemma 2.6, we first assume that η = 0 and that ν2 = 0
in decomposition (1.6). By the representation (2.12) (with b = 0 there), we have

ut(x) =

∫ 1

t

eλ(t−s) T ν1,0
s−t (bs · ∇us + Lν0,0us + fs) (x) ds.

Without loss of generality, we assume γ ∈ [β, (β + α− 1) ∧ 1). By Lemma 2.2, we
have

‖∇ut‖γ



∫ 1

t

eλ(t−s)(s−t)
β−1−γ

α (‖bs ·∇us‖β+‖fs‖β) ds+
∫ 1

t

eλ(t−s)‖∇T ν1,0
s−t Lν0,0us‖γ ds



∫ 1

t

eλ(t−s)(s− t)(β−1−γ)/α (‖bs‖β‖∇us‖β + ‖fs‖β) ds+
∫ 1

t

eλ(t−s)‖∇us‖γ ds



∫ 1

t

((s− t)(β−1−γ)/α + 1)‖∇us‖γ ds+ ‖f‖∞,β

∫ 1

t

eλ(t−s)(s− t)(β−1−γ)/α ds,

which yields (2.21) by Gronwall’s inequality. For the general case, we can follow
the same argument as in (ii) of Lemma 2.6 to derive (2.21). �

We also need the following simple lemma.

Lemma 2.9. Let U be a family of uniformly bounded continuous functions. If

lim
|y|→0

sup
f∈U

‖f(·+ y)− f(·)‖∞ = 0,

then
lim
t→0

sup
f∈U

‖T ν,0
t f − f‖∞ = 0.

Proof. Notice that for any ε > 0,

|T ν,0
t f(x)− f(x)| � 2 ‖f‖∞ P(|Zt| � ε) + E(|f(x + Zt)− f(x)| · 1|Zt|<ε).

The desired limit follows by the assumption and the uniform boundedness assump-
tion and the fact limt→0 P(|Zt| � ε) = 0. �

Now we are ready to give:

Proof of Theorem 2.3. Suppose that b and f satisfy (2.8). Let � be a non-negative
smooth function with compact support in R

d satisfying
∫
Rd �(x)dx = 1. For n ∈ N,

define �n(x) := nd�(nx) and

bnt := �n ∗ bt, fn
t := �n ∗ ft.(2.22)

Clearly, bn, fn ∈ L∞([0, 1];C∞
b (Rd,Rd)) and

‖bn‖∞,β � ‖b‖∞,β, ‖fn‖∞,β � ‖f‖∞,β.
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Let un
t be the solution to the following equation:

∂tu
n
t + (Lν,η − λ)un

t + bnt · ∇un
t + fn

t = 0, un
1 = 0.(2.23)

By (2.17), (2.20) and (2.21), there is a θ0 > 0 such that for all λ � 0,

sup
n

‖∇un‖∞,γ � C (1 ∨ λ)−θ0 ‖f‖∞,β,(2.24)

and by (2.14),

sup
t∈[0,1]

‖un
t ‖∞ � sup

t∈[0,1]

‖fn
t ‖∞ � sup

t∈[0,1]

‖ft‖∞.(2.25)

Moreover, by the representation (2.12) (with b = 0 there), we can write

un
t (x) =

∫ 1

t

eλ(t−s) T ν,0
s−t((η + bns ) · ∇un

s + fn
s )(x) ds.

Using this representation, (2.24), (2.25) and Lemma 2.9, one can easily show that

lim
|t−t′|→0

sup
n

‖un
t − un

t′‖∞ = 0.

Hence, by the Ascoli–Arzelà lemma, there is a subsequence (still denoted by un)
and a function u with

‖∇u‖∞,γ � C(1 ∨ λ)−θ0‖f‖∞,β, sup
t∈[0,1]

‖ut‖∞ � sup
t∈[0,1]

‖ft‖∞

such that

lim
n→∞ sup

t∈[0,1]

sup
|x|�R

|un
t (x) − ut(x)| = 0, for all R > 0.(2.26)

On the other hand, noticing the following interpolation inequality (cf. Theorem 3.2.1
in [11]):

‖∇φ‖∞ � C‖∇φ‖1/(1+γ)
γ ‖φ‖γ/(1+γ)

∞ ,

by (2.24) and (2.26), we further have

lim
n→∞ sup

t∈[0,1]

sup
|x|�R

|∇un
t (x)−∇ut(x)| = 0 for every R > 0.(2.27)

Thus by (2.23), (2.26) and (2.27), it is easy to see that u satisfies (2.9). �

Corollary 2.10. Under the assumption of Theorem 2.3, if we further assume that
for some γ0 ∈ (0, β−(1−α)/δ) in the case of α ∈ (0, 1] and γ0 ∈ (0, (β+α−1)∧1)
in the case of α ∈ (1, 2),

∫
|z|�1

|z|1+γ0 ν(dz) < ∞,(2.28)
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then the solution u of equation (2.7) satisfying (2.10) and (2.11) for some γ > γ0
is a classical solution; that is, Lν,ηus(x) and ∇us(x) exist pointwise and are con-
tinuous in x, and for all t ∈ [0, 1] and x ∈ R

d,

ut(x) =

∫ 1

t

(Lν,η − λ)us(x) ds+

∫ 1

t

bs(x) · ∇us(x) ds +

∫ 1

t

fs(x) ds.(2.29)

Proof. Since ‖∇u‖∞,γ < ∞ for some γ ∈ (γ0, β−(1−α)/δ) in the case of α ∈ (0, 1]
and γ ∈ (γ0, (β + α− 1) ∧ 1) in the case of α ∈ (1, 2), the function x 	→ ∇us(x) is
continuous. Now using (2.28), it is easy to check that

x 	→ Lν,ηus(x) is continuous.

Hence, by (2.9), equation (2.29) is satisfied for all t ∈ [0, 1] and x ∈ R
d. �

3. Stochastic flow and Bismut formula

Throughout this section, we assume that either
(
Hα,ᾱ,δ

ν1,K0

)
holds for some α ∈ (0, 1],

ᾱ, δ ∈ (0, 1] andK0 > 0 or
(
Hα

ν1,K0

)
holds for some α ∈ (1, 2) andK0 > 0. Suppose

also that (1.9) and (1.10) hold for some

γ ∈ (0, 1) with γ+(1−α)/δ < ᾱ and β ∈ (γ+(1−α)/δ, ᾱ] in the case of α ∈ (0, 1]

and
γ ∈ (0, 1) and β ∈ ((γ + 1− α)+, 1] in the case of α ∈ (1, 2).

Notice that (1.9) implies (2.28) with γ0 = γ. Hence, for λ � 0, by Corollary 2.10,
the following nonlocal equation has a classical solution u:

∂tut + (Lν,η − λ)ut + bt · ∇ut + bt = 0, u1(x) = 0.

Similarly, let bn be defined by (2.22) and let un be the solution to the following
equation:

∂tu
n
t + (Lν,η − λ)un

t + bnt · ∇un
t + bnt = 0, un

1 (x) = 0.(3.1)

Using the same argument leading to (2.26) and (2.27), we see that there is a
subsequence, still denoted by un, such that

lim
n→∞ sup

t∈[0,1]

sup
|x|�R

|∇jun
t (x)−∇jut(x)| = 0 for every R > 0 and j = 0, 1.(3.2)

For simplicity, we use the following convention:

u∞ := u, b∞ := b, N∞ := N ∪ {∞}.
By (2.11), one can choose λ sufficiently large, independent of n ∈ N∞, such that

‖∇un
t (·)‖∞+ sup

x �=x′

|∇un
t (x)−∇un

t (x
′)|

|x− x′|γ � 1

2
for every n∈N∞ and t∈ [0, 1].(3.3)
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From now on we will fix such a λ. Define

Φn
t (x) = x+ un

t (x), n ∈ N∞.(3.4)

Since for each t ∈ [0, 1],

1

2
|x− y| � |Φn

t (x)− Φn
t (y)| �

3

2
|x− y|,

x 	→ Φn
t (x) is a diffeomorphism with

1/2 � |∇Φn
t (x)| � 3/2 and |∇(Φn

t )
−1(x)| � 2,(3.5)

where (Φn
t )

−1 denotes the inverse function of x 	→ Φn
t (x).

Lemma 3.1. Under the assumptions above, there is a constant C = C(d, γ) > 0
such that for all t ∈ [0, 1] and n ∈ N∞,

‖∇Φn
t ‖γ + ‖∇(Φn

t )
−1‖γ � C.(3.6)

Moreover, for each t ∈ [0, 1], R > 0 and j = 0, 1, we have

lim
n→∞ sup

t∈[0,1]

sup
|x|�R

∣∣∇jΦn
t (x) −∇jΦ∞

t (x)
∣∣ = 0(3.7)

and

lim
n→∞ sup

t∈[0,1]

sup
|x|�R

∣∣∇j(Φn
t )

−1(x)−∇j(Φ∞
t )−1(x)

∣∣ = 0.(3.8)

Proof. (i) For notational simplicity, we drop the superscript “n”. Clearly,

sup
t∈[0,1]

‖∇Φt(·)‖γ < d+ 1.

In view of

(∇Φs)
−1(x)− (∇Φs)

−1(x′) = (∇Φs)
−1(x) (∇Φs(x

′)−∇Φs(x)) (∇Φs)
−1(x′),

we have by (3.3) and (3.5),

[(∇Φs)
−1]γ � ‖(∇Φs)

−1‖2∞[∇Φs]γ = ‖(∇Φs)
−1‖2∞[∇us]γ � 2 for all s ∈ [0, 1].

Hence by (3.5) again, for all s ∈ [0, 1],

‖∇Φ−1
s ‖γ = ‖(∇Φs)

−1(Φ−1
s )‖γ � ‖(∇Φs)

−1‖∞+‖∇Φ−1
s ‖γ∞[(∇Φs)

−1]γ � 2+2γ+1.

(ii) Properties (3.7) and (3.8) follow from the definitions of Φt and Φ−1
t , (3.2)

and (3.3). �

For any given n ∈ N∞, define

gns (y, z) := Φn
s

(
(Φn

s )
−1(y) + z

)− y.(3.9)
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Lemma 3.2. Under the assumption stated at the beginning of this section, for
γ1, γ2 � 0 with γ1 + γ2 = γ ∈ (0, 1), there is a positive constant C1 = C1(d, γ1, γ2)
such that for all n ∈ N∞, t ∈ [0, 1] and y, z ∈ R

d,

(3.10) ‖∇gn(·, z)‖∞,γ1 � C1(1 ∧ |z|γ2) and |gns (y, z)| � 3|z|/2.

Moreover, for each t ∈ [0, 1], y, z ∈ R
d and j = 0, 1, we have

(3.11) lim
n→∞∇j

yg
n
t (y, z) = ∇j

yg
∞
t (y, z).

Proof. For notational simplicity, we drop the superscript “n” in this proof. Since

∇ygs(y, z) = ∇Φs

(
Φ−1

s (y) + z
) · ∇Φ−1

s (y)− I,

where I denotes the identity d× d matrix, we have

‖∇gs(·, z)‖∞ � 2‖∇Φs‖γ(1 ∧ |z|γ)‖∇Φ−1
s ‖∞

(3.6)
� C(1 ∧ |z|γ)

and

[∇gs(·, z)]γ � [∇Φs(Φ
−1
s (·) + z)]γ‖∇Φ−1

s ‖∞ + ‖∇Φs‖∞[∇Φ−1
s ]γ

� [∇Φs]γ‖∇Φ−1
s ‖1+γ

∞ + ‖∇Φs‖∞[∇Φ−1
s ]γ

(3.6)
� C.

Thus, by definition, for γ1 + γ2 = γ, we have

[∇gs(·, z)]γ1 � (2‖∇gs(·, z)‖∞)γ2/γ [∇gs(·, z)]γ1/γ
γ � C(1 ∧ |z|γ2),

which in turn gives the first estimate in (3.10). The second inequality in (3.10)
follows from (3.5) and the definition of gn. Property (3.11) follows from (3.7), (3.8),
and the definition of gn. �

Taking γ1 = 0 in Lemma 3.2 yields that there is a C0 = C0(d, γ) > 0 so that

(3.12) ‖∇gn(·, z)‖∞ � C0(1 ∧ |z|γ) and |gns (y, z)| � 3|z|/2.

Choose r0 ∈ (0, 1) so that

(3.13) C0r
γ
0 + 3 r0/2 < 1.

Such a choice of r0 will be used below to establish the C1-stochastic diffeomorphic
property of the unique solution Y n of SDE (3.18) below. For any given n ∈ N∞,
define

ans (y) := λun
s

(
(Φn

s )
−1(y)

)
+ ηr0−

∫
|z|�r0

(
un
s

(
(Φn

s )
−1(y)+z

)−un
s ((Φ

n
s )

−1(y))
)
ν(dz).

(3.14)

We have:
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Lemma 3.3. Under the assumptions stated at the beginning of this section, there
is a positive constant C2 = C2 (d, λ, γ, r0, ν(|z| � r0)) such that for all n ∈ N∞,
t ∈ [0, 1] and y ∈ R

d,

‖∇an‖∞,γ � C2 and |ans (y)| � C2(1 + ‖b‖∞).(3.15)

Moreover, for each t ∈ [0, 1], y ∈ R
d and j = 0, 1, we have

lim
n→∞∇j

ya
n
t (y) = ∇j

ya
∞
t (y).(3.16)

Proof. For notational simplicity, we drop the superscript “n”. Since

∇(us(Φ
−1
s )) = (∇us)(Φ

−1
s ) · ∇Φ−1

s ,

we have by (3.6) that for all s ∈ [0, 1],

‖∇(us(Φ
−1
s ))‖γ � ‖∇us(Φ

−1
s )‖γ‖∇Φ−1

s ‖∞ + ‖∇us‖∞‖∇Φ−1
s ‖γ

� ‖∇us‖γ‖∇Φ−1
s ‖∞(1 + ‖Φ−1

s ‖γ∞) + ‖∇us‖∞‖∇Φ−1
s ‖γ � C,

where the constant C only depends on d and γ. Similarly, we have

‖∇(us(Φ
−1
s (·) + z))‖γ � C.

Hence,

∥∥∥∇
∫
|z|�r0

(
us

(
Φ−1

s (·) + z
)− us(Φ

−1
s (·))) ν(dz)∥∥∥

γ
� C · ν(|z| � r0).

Therefore ‖∇a‖∞,γ � C2 by (3.14). The second inequality in (3.15) follows from
the definition of as(y) and the fact that un is uniformly bounded due to (2.10).
Property (3.16) follows from (3.2), (3.3), (3.7), (3.8), and the definition of an. �

Now recalling the definitions of random measures N and Ñ associated with Z
in the introduction, we can present the following Zvonkin’s transformation by Itô’s
formula.

Lemma 3.4. Suppose that the assumptions stated at the beginning of this section
hold. Let Φn

t (x) be defined as in (3.4). For n ∈ N∞, Xn
t satisfies

Xn
t = x+

∫ t

0

bns (X
n
s ) ds+ Zt, t ∈ [0, 1](3.17)

if and only if Y n
t = Φn

t (X
n
t ) solves the following SDE for t ∈ [0, 1]:

Y n
t = Φn

0 (x) +

∫ t

0

ans (Y
n
s ) ds+

∫ t

0

∫
|z|<r0

gns (Y
n
s−, z)Ñ(ds, dz)

+

∫ t

0

∫
|z|�r0

gns (Y
n
s−, z)N(ds, dz),(3.18)

where an and gn are defined by (3.14) and (3.9).
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Proof. For n ∈ N, since x 	→ Φn
t (x) and x 	→ (Φn

t )
−1(x) are smooth, the assertion of

this lemma follows from Itô’s formula as calculated in the introduction (see (1.5)).
For n = ∞, since we only have ‖∇Φ∞‖∞,γ < ∞, one needs suitable mollifying
technique. This is standard and can be found in [18] and [28]. We omit the
details. �

Lemma 3.5. Suppose that the assumptions stated at the beginning of this section
hold. For n ∈ N∞, let Y n

t (x) be the solution of (3.18) with initial value Φn
0 (x).

We have

lim
n→∞E

[
sup

t∈[0,1]

|Y n
t (x)− Y ∞

t (x)| ∧ 1
]
= 0.(3.19)

Moreover, for any p > 1, we have

sup
n∈N∞

sup
x∈Rd

E

[
sup

t∈[0,1]

|∇Y n
t (x)|p

]
< ∞,(3.20)

and for each x ∈ R
d,

lim
n→∞E

[
sup

t∈[0,1]

|∇Y n
t (x)−∇Y ∞

t (x)|p
]
= 0.(3.21)

Proof. (3.19) follows from Lemmas 3.2, 3.3 and Proposition 5.1 below. In this
proof, we shall drop the superscript “∞”. Notice that

∇Y n
t = ∇Φn

0 (x) +

∫ t

0

∇ans (Y
n
s )∇Y n

s ds+

∫ t

0

∫
|z|<r0

∇yg
n
s (Y

n
s−, z)∇Y n

s−Ñ(ds, dz)

+

∫ t

0

∫
|z|�r0

∇yg
n
s (Y

n
s−, z)∇Y n

s−N(ds, dz).(3.22)

By the Burkholder–Davis–Gundy inequality (Theorem 2.11 in [13]), and (3.10)
and (3.15), we have for p � 2,

E

[
sup

s∈[0,t]

|∇Y n
s |p

]

 |∇Φn

0 (x)|p +
∫ t

0

E|∇ans (Y
n
s )∇Y n

s |p ds

+ E

[ ∫ t

0

∫
|z|<r0

|∇yg
n
s (Y

n
s , z)∇Y n

s |2 ν(dz) ds
]p/2

+ E

[ ∫ t

0

∫
|z|�r0

|∇yg
n
s (Y

n
s , z)∇Y n

s | ν(dz) ds
]p

+ E

[ ∫ t

0

∫
Rd

|∇yg
n
s (Y

n
s , z)∇Y n

s |p ν(dz) ds
]


 1 +
(
1 +

(∫
|z|<r0

|z|2γ ν(dz)
)p/2) ∫ t

0

E|∇Y n
s |p ds,

which gives (3.20) by Gronwall’s inequality.
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Next, set Un
t := ∇Y n

t − ∇Yt. By equations (3.22), (3.10), (3.15) and Theo-
rem 2.11 in [13], we have

E

[
sup

s∈[0,t]

|Un
s |p

]

 hn +

∫ t

0

E|Un
s |pds,

where

hn := |∇Φn
0 (x)−∇Φ0(x)|p +

∫ 1

0

(E|∇ans (Y
n
s )−∇as(Ys)|2p)1/2ds

+
(
E

[ ∫ 1

0

∫
|z|<r0

|∇yg
n
s (Y

n
s , z)−∇ygs(Ys, z)|2 ν(dz) ds

]p)1/2

+
(
E

[ ∫ 1

0

∫
|z�r0

|∇yg
n
s (Y

n
s , z)−∇ygs(Ys, z)| ν(dz) ds

]2p)1/2

+
(
E

[ ∫ 1

0

∫
Rd

|∇yg
n
s (Y

n
s , z)−∇ygs(Ys, z)|p ν(dz) ds

]2)1/2

.

By Gronwall’s inequality, (3.10), (3.11), (3.15), (3.16) and (3.19), it is easy to see
that

lim
n→0

E

[
sup

t∈[0,1]

|Un
t |p

]

 lim

n→0
hn = 0.

The proof is complete. �

We are now in a position to give a:

Proof of Theorem 1.2. Let a = a∞ and g = g∞ be defined by (3.14) and (3.9),
respectively. By Lemmas 3.2 and 3.3, we have

|as(y)− as(y
′)| � C1|y − y′|

and∫
|z|�r0

|gs(y, z)− gs(y
′, z)|2ν(dz) � C2

2 |y − y′|2
∫
|z|�r0

|z|2γν(dz)
(1.9)
� C|y − y′|2.

Hence, by Theorem IV.9.1 in [10], (3.18) has a unique strong solution. (1.11)
follows from Xt(x) = Φ−1

t (Yt(Φ0(x))) and (3.20). Moreover, let Yt(y) be the
solution of SDE (3.18) with starting point y. By (3.12) and the choice of r0
in (3.13), {Yt(y), t ∈ [0, 1], y ∈ R

d} defines a C1-stochastic diffeomorphism flow
(cf. [18], p. 442–445), so does {Xt(x), t ∈ [0, 1], x ∈ R

d}. Next we show that
t 	→ ∇Xt(x) is continuous. Let Xn

t (x) satisfy (3.17). Clearly, t 	→ ∇Xn
t (x) is

continuous for each n ∈ N. On the other hand, by Lemma 3.5 and (3.8), we also
have

lim
n→∞E

[
sup

t∈[0,1]

|∇Xn
t (x)−∇Xt(x)|p

]
= 0.(3.23)

From this, we immediately obtain the desired continuity. �
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Proof of Theorem 1.6. First of all, we show that the right-hand side of (1.14) is
no bigger than the right-hand side of (1.15). By Hölder’s inequality, it suffices to
show that for any p > 1,

I(t) := E

[ 1

Sp
t

∣∣∣∣
∫ t

0

∇Xs(x) dWSs

∣∣∣∣
p ]

� C t−p/α.

By [29, (2.11)], one has

I(t) 
 E

[ 1

Sp
t

(∫ t

0

|∇Xs(x)|2dSs

)p/2 ]
� E

[ 1

S
p/2
t

sup
s∈[0,1]

|∇Xs(x)|p
]

(1.11)

 (

E
[
S−p
t

])1/2 (4.3)

 t−p/α.

Let bn be defined as in (2.22) and Xn be the unique solution to SDE (3.17). For
f ∈ C1

b (R
d), by Theorem 1.1 in [29] or Theorem 1.1 in [25], we have

∇Ef(Xn
t (x)) = E

[f(Xn
t (x))

St

∫ t

0

∇Xn
s (x) dWSs

]
, n ∈ N.

Thus, in order to prove (1.14), it suffices to show the following two relations:

lim
n→∞∇Ef(Xn

t (x)) = lim
n→∞E

[
(∇f)(Xn

t (x))∇Xn
t (x)

]

= E

[
(∇f)(Xt(x))∇Xt(x)

]
= ∇Ef(Xt(x))(3.24)

and

lim
n→∞E

[f(Xn
t (x))

St

∫ t

0

∇Xn
s (x) dWSs

]
= E

[f(Xt(x))

St

∫ t

0

∇Xs(x) dWSs

]
.(3.25)

Notice that by (3.19) and (3.8),

lim
n→∞E [|Xn

t (x) −Xt(x)| ∧ 1] = 0.(3.26)

The relations (3.24) and (3.25) follow by (3.23), (3.26) and the dominated conver-
gence theorem. �

4. Examples

Now we give some examples for which the assumptions of Theorem 1.2 are satisfied.

Example 4.1 (Subordinate Brownian motions). Let Zt := WSt , where W is a
Brownian motion in R

d with infinitesimal generator Δ/2 and S is a subordinator
(i.e., an increasing real-valued Lévy process starting from 0), which is independent
of Wt. The process Z defined above is called a subordinate Brownian motion, for
some basic properties of subordinate Brownian motion one refers to, for example,
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Chapter 5 in [2]. Let φ(λ) be the Laplace exponent of S, i.e., Ee−λSt = e−tφ(λ). If
for some α ∈ (0, 2),

φ(λ) � Cλα/2, λ � 1,(4.1)

then (Hα,1,1
ν,K0

) holds for some K0 > 0. Indeed, using the independence of S and W ,

one can easily check that for any bounded Borel function f on R
d,

∇T ν,0
t f(x) = E

[
f(x+WSt)

WSt

St

]
.

Thus, if, for some β ∈ (0, 1), Λx := supy∈Rd |f(x+ y)− f(x)|/|y|β < ∞, then

|∇T ν,0
t f(x)| =

∣∣∣E[(f(x+WSt)− f(x)
)WSt

St

]∣∣∣
� Λx E

[ |WSt |1+β

St

]
� C Λx E

[
S
−(1−β)/2
t

]
� K0 Λx t

(β−1)/α,(4.2)

where the last step is due to the fact that, for any p ∈ (0, 1),

ES−p
t =

1

Γ(p)
E

∫ ∞

0

λp−1 e−λSt dλ =
1

Γ(p)

∫ ∞

0

λp−1 e−tφ(λ) dλ

(4.1)
� 1

Γ(p)

(
1

p
+

∫ ∞

1

λp−1 e−C tλα/2

dλ

)
� C t−2p/α, t ∈ (0, 1].(4.3)

The constant C can be chosen to be independent of p ∈ (0, 1) so that the con-
stant K0 in (4.2) is independent of β ∈ (0, 1). Moreover, it follows from (15) in [3]
that

ν(dz) � c0 φ(|z|−2)

|z|d dz.

Thus if there exists α̃ ∈ (0, 2) such that

φ(λ) � C λα̃/2 for λ � 1,(4.4)

then (1.9) is satisfied for any γ ∈ (α̃/2, 1]. This implies that we need to take
β ∈ (α̃/2 + 1− α, 1] in Theorem 1.2.

There are many examples of subordinate Brownian motions satisfying (4.1)
and (4.4). One important example is the symmetric relativistic α-stable process
in R

d. (For some basic information on symmetric relativistic α-stable processes,
see, for instance, Chapter 5 in [2] or [4].) In this case, φ(λ) = (λ +m2/α)α/2 −m
for some m > 0, (4.1) holds and (4.4) is satisfied with α̃ = α. This implies that in
this case we can take any β ∈ (1− α/2, 1] in Theorem 1.2.

Example 4.2 (Stable-type Lévy processes). Let Z be a Lévy process in R
d whose

Lévy measure ν(dz) = κ(z) dz. Assume that for some 0 < α1 � α2 < 2,

c1 |z|−d−α1 � κ(z) � c2 |z|−d−α2 for |z| � 1.(4.5)
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We say that a Lévy process satisfying the above condition is of stable-type. In this
case, we can make the following decomposition for ν:

ν = ν0 + ν1 + ν2

with ν0(dz) := −c1|z|−d−α11{|z|>1}dz and

ν1(dz) := c1|z|−d−α1dz, ν2(dz) := (κ(z)−c1|z|−d−α1)1{|z|�1}dz+κ(z)1{|z|>1}dz.

By Example 4.1, (Hα1,1,1
ν1,K0

) holds for some K0 > 0. Condition (1.9) holds for any
γ ∈ (α2/2, 1]. This implies that in this case we need to take β ∈ (α2/2+ 1−α1, 1]
in Theorem 1.2. One particular example is the case when α1 = α2 = α and the
relation in (4.5) is satisfied for all z ∈ R

d. The corresponding Lévy process is
called an α-stable-like Lévy process. Another particular example is the case when
κ(z) = 0 for |z| > 1 and α1 = α2 = α. The corresponding Lévy process is called a
truncated α-stable-like Lévy process. Observe that the relativistic α-stable process
satisfies condition (4.5) with α1 = α2 = α. The third particular example is the case
where κ(z) is comparable to the Lévy kernel of the relativistic α-stable process.
The corresponding Lévy process can be called relativistic α-stable-like.

Example 4.3 (Cylindrical stable processes). In this example we consider a cylin-
drical stable process Z = (Z1, . . . , Zk) in R

d, where Zj, 1 � j � k, are indepen-
dent dj-dimensional rotationally symmetric αj-stable processes with αj ∈ (0, 2)

and
∑k

j=1 dj = d. We can realize Z as follows:

Zt = WSt :=
(
W 1

S1
t
, . . . ,W k

Sk
t

)
,

where W j , 1 � j � k, are independent dj-dimensional standard Brownian motions
with infinitesimal generator Δ/2 in R

dj and Sj , 1 � j � k, are independent αj/2-
stable subordinators with αj ∈ (0, 2) for 1 � j � k, that are also independent of
Brownian motions {W 1, . . . ,W k}. Define

α := min
1�j�k

αj and αmax := max
1�j�k

αj .

We claim that if α ∈ (0, 1], then (Hα,α,δ
ν,K0

) holds with some K0 > 0 and δ :=
α/αmax; and if α ∈ (1, 2), then (Hα

ν,K0
) holds for some K0 > 0.

Indeed, for 1 � i � k, let ∇i = (∂xji+1 , . . . , ∂xji+di
), where ji := d0 + · · ·+ di−1

with d0 := 0. As in Example 4.1, we also have the following derivative formula for
any bounded Borel function f on R

d :

∇iT
ν,0
t f(x) = E

[
(Si

t)
−1W i

Si
t
f(x+WSt)

]
.

Suppose α ∈ (0, 1]. For β ∈ [0, α] and x ∈ R, if

Λx := sup
y∈Rd

|f(x+ y)− f(x)|
|y|β < ∞,
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then we have by (4.3) that for t ∈ (0, 1],

|∇iT
ν,0
t f(x)| = ∣∣E[(Si

t)
−1W i

Si
t

(
f(x+WSt)− f(x)

)]∣∣ � Λx E
[
(Si

t)
−1|W i

Si
t
| |WSt |β

]
� Λx

(
E
[
(Si

t)
−1|W i

Si
t
|1+β

]
+ E

[
(Si

t)
−1|W i

Si
t
|]∑

j �=i

E
[|W j

Sj
t

|β])

� C Λx

(
t(β−1)/αi + t−1/αi

∑
j �=i

tβ/αj E
[|W j

Sj
1

|β])

� K0 Λx

(
t(β−1)/α + tβ/αmax−1/α

)
(since β < α)

� K0 Λx t
(αβ/αmax−1)/α = K0Λx t

(δβ−1)/α;

that is, (Hα,α,δ
ν,K0

) holds. If α ∈ (1, 2), then we have by (4.3) that for t ∈ (0, 1],

|∇iT
ν,0
t f(x)| � ‖f‖∞ E[|W i

Si
t
|/(Si

t)]


 ‖f‖∞ E[(Si
t)

−1/2] 
 ‖f‖∞t−1/αi � K0 ‖f‖∞t−1/α.

Thus in this case, (Hα
ν,K0

) holds. The claim is now verified.
It is not difficult to see by using the property of the rotationally symmetric

αj-stable process W j
Sj

that the parameter α in the now verified property (Hα,α,δ
ν,K0

)

and (Hα
ν,K0

) is best possible. For example, it can be shown that when α ∈ (1, 2),

property (Hα∗
ν,K0

) fails for any α∗ > α.

Note that (1.9) holds for any γ > αmax/2. For Theorem 1.2 to be valid, the
following constraint needs to be satisfied:

1 � β > αmax/2 + αmax(1− α)/α if α � 1, and αmax < 2α if α > 1.

Clearly, when α > 1, the condition αmax < 2α is automatically satisfied. Conse-
quently, in this case for Theorem 1.2 to be applicable, we need αi’s to satisfy

(4.6) either α > 1 or α ∈ (0, 1] and αmax < 2α2/(2− α),

and take

β ∈ (β0, 1] with β0 := αmax/2 + (αmax/α1{α�1} + 1{α>1})(1− α).

Condition (4.6) implies that α > 2/3. An open question is whether con-
straint (4.6) can be dropped. It boils down to the question whether (Hα,1,1

ν,K0
)

holds for any cylindrical stable process.
This example can be extended in two directions. First, as in Example 4.1, we

can consider more general subordinators {S1, . . . , Sk}. Second, as in Example 4.2,
we can consider more general Lévy process, whose Lévy measure is bounded by
the Lévy measure of the cylindrical α-stable process WS (or, more generally, the
cylindrical subordinate Brownian motion) from below.

Proof of Corollary 1.4. It follows from Examples 4.1, 4.2 and 4.3. �
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5. Appendix

In this appendix, we prove the continuous dependence of solutions to SDEs with
jumps with respect to the initial values and coefficients, which is used in the proof
of Lemma 3.5.

Proposition 5.1. Fix r > 0. Let an, gn, n ∈ N∞ be two families of uniformly
Lipschitz continuous functions in the sense that for some C > 0, and all n ∈ N∞
and t ∈ [0, 1], x, y, z ∈ R

d,

|ant (x) − ant (y)| � C |x− y|, |gnt (x, z)− gnt (y, z)| � C |x− y|h(z),(5.1)

where
∫
|z|�r |h(z)|2ν(dz) < ∞. Suppose that for each t ∈ [0, 1] and x, z ∈ R

d,

lim
n→∞ ant (x) = a∞t (x), lim

n→∞ gnt (x, z) = g∞t (x, z)(5.2)

and

sup
n∈N∞

sup
t∈[0,1]

sup
x∈Rd

( |ant (x)|
1 + |x| + sup

0<|z|�r

|gnt (x, z)|
|z|

)
< ∞.(5.3)

For n ∈ N∞, let Y n
t be the solution to the following SDE :

Y n
t = ξn +

∫ t

0

ans (Y
n
s ) ds+

∫ t

0

∫
|z|�r

gns (Y
n
s−, z) Ñ(ds, dz)

+

∫ t

0

∫
|z|>r

gns (Y
n
s−, z)N(ds, dz).

If ξn converges to ξ∞ in probability as n → ∞, then

lim
n→∞E

(
sup

t∈[0,1]

|Y n
t − Y ∞

t | ∧ 1
)
= 0,(5.4)

which implies that Y n
t converges to Y ∞

t in probability.

We begin with the following lemma.

Lemma 5.2. There is a nonnegative smooth function f on R
d with the following

properties :

(5.5)
f(x) = |x|2 if |x| � 1, f(x) = 2 if |x| � 2,

and |∇f |+ |∇2f | � C11{|x|�2},

for some constant C1 > 0, and that for any constant C2 > 0, there exists a constant
C3 > 0 such that for all δ > 0, r ∈ [0, 1] and |y| � C2((|x| + δ) ∧ 1),

|y| |∇f(x+ ry)| � C3(f(x) + δ), |y|2 |∇2f(x+ ry)| � C3(f(x) + δ2).(5.6)
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Proof. Let φ be an increasing smooth function on (0,∞) with φ(r) = r for r � 1
and φ(r) = 2 for r � 4. Let f(x) := φ(|x|2). It is easy to check that f has the
desired properties. �

We also need the following key lemma.

Lemma 5.3. Let τ1 and τ2 be two stopping times with 0 � τ1 � τ2 � 1. In the
setup of Proposition 5.1, let Y n solve the following SDE on [τ1, τ2]:

Y n
t = Y n

τ1 +

∫ t

τ1

ans (Y
n
s ) ds+

∫ t

τ1

∫
|z|�r

gns (Y
n
s−, z) Ñ(ds, dz).

If Y n
τ1 converges to Y ∞

τ1 in probability, then

lim
n→∞E

[
sup

t∈[τ1,τ2]

|Y n
t − Y ∞

t | ∧ 1
]
= 0.

Proof. In this proof we will drop the superscript “∞” and write

Un
s := Y n

s − Ys, An
s := ans (Y

n
s )− as(Ys), Γn

s (z) := gns (Y
n
s−, z)− gs(Ys−, z).

Let f be as in Lemma 5.2. By Itô’s formula, we have

f(Un
t )

= f(Un
τ1) +

∫ t

τ1

〈An
s ,∇f(Un

s )〉ds+
∫ t

τ1

∫
|z|�r

[f(Un
s− + Γn

s (z))− f(Un
s−)]Ñ(ds, dz)

+

∫ t

τ1

∫
|z|�r

[f(Un
s− + Γn

s (z))− f(Un
s−)− Γn

s (z) · ∇f(Un
s−)] ν(dz) ds.

For R > 0, define a stopping time

τR := inf{t � τ1 : |Ys| > R} ∧ τ2.

For any T ∈ [0, 1], by the Burkholder–Davis–Gundy inequality ([13], Theorem 2.11),
we have

E

(
sup

t∈[τ1,T∧τR]

|f(Un
t )|2

)


 E|f(Un
τ1)|2 + E

∫ T∧τR

τ1

|〈An
s ,∇f(Un

s )〉|2 ds

+ E

∫ T∧τR

τ1

∫
|z|�r

|f(Un
s− + Γn

s (z))− f(Un
s−)|2 ν(dz) ds

+ E

∫ T∧τR

τ1

∣∣∣
∫
|z|�r

[f(Un
s− + Γn

s (z))− f(Un
s−)− Γn

s (z) · ∇f(Un
s−)]ν(dz)

∣∣∣2 ds
=: E|f(Un

τ1)|2 + In1 + In2 + In3 .
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For In1 , by (5.1) and (5.5), we have

In1 
 E

∫ T∧τR

τ1

|ans (Ys)− as(Ys)|2 ds+ E

∫ T∧τR

τ1

|f(Un
s )|2 ds.

For In2 and In3 , we note that by (5.1) and (5.3), we have

|Γn
s (z)| � C ((|Un

s−|+ |gns (Ys−, z)− gs(Ys−, z)|) ∧ 1), |z| � r,

Thus by (5.6), we have

In2 
 E

∫ T∧τR

τ1

∫
|z|�r

|Γn
s (z)|2

( ∫ 1

0

|∇f(Un
s− + rΓn

s (z))|2dr
)
ν(dz) ds


 E

∫ T∧τR

τ1

∫
|z|�r

|gns (Ys, z)− gs(Ys, z)|2 ν(dz) ds+ E

∫ T∧τR

τ1

|f(Un
s )|2ds

and

In3 
 E

∫ T∧τR

τ1

(∫
|z|�r

|Γn
s (z)|2

(∫ 1

0

∫ 1

0

|∇2f(Un
s− + rr′Γn

s (z))|drdr′
)
ν(dz)

)2

ds


 E

∫ T∧τR

τ1

(∫
|z|�r

|gns (Ys, z)− gs(Ys, z)|2ν(dz)
)2

ds+ E

∫ T∧τR

τ1

|f(Un
s )|2ds.

Combining the above calculations, we obtain

E

[
sup

t∈[τ1,T∧τR]

|f(Un
t )|2

]

 hn + E

∫ T∧τR

τ1

|f(Un
s )|2 ds,

where

hn := E
[|f(Un

τ1)|2
]
+ E

∫ T∧τR

τ1

|ans (Ys)− as(Ys)|2 ds

+ E

∫ T∧τR

τ1

∫
|z|�r

|gns (Ys, z)− gs(Ys, z)|2ν(dz) ds

+ E

∫ T∧τR

τ1

(∫
|z|�r

|gns (Ys, z)− gs(Ys, z)|2ν(dz)
)2

ds.

By Gronwall’s inequality, (5.2), (5.3) and the dominated convergence theorem, we
have for each R > 0,

lim
n→0

E

[
sup

t∈[τ1,τR]

|f(Un
t )|2

]
� lim

n→0
C hn = 0.

In particular,

lim
n→∞E

[
sup

t∈[τ1,τR]

|Y n
t − Y ∞

t |4 ∧ 1
]
= 0,

which together with limR→∞ P(τR < τ2) = 0 gives the desired limit. �
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Now we give:

Proof of Proposition 5.1. Let τ1 := 0 and for m ∈ N, define recursively

τm+1 := inf{t > τm : |Zs − Zs−| > r} ∧ 1.

Since Z only has finite many jumps greater than r before time 1, we have
limm→∞ τm = 1. Clearly, for t ∈ [τm, τm+1), Y

n
t satisfies

Y n
t = Y n

τm +

∫ t

τm

ans (Y
n
s ) ds+

∫ t

τm

∫
|z|�r

gns (Y
n
s−, z) Ñ(ds, dz),

where

(5.7) Y n
τm := Y n

τm− + gnτm(Y n
τm−, Zτm − Zτm−).

Since ξn → ξ∞ in probability as n → ∞, by Lemma 5.3 and induction, we have
for each m ∈ N,

lim
n→∞E

[
sup

t∈[τm,τm+1)

|Y n
t − Y ∞

t | ∧ 1
]
= 0.

Condition (5.1) and (5.7) with m + 1 in place of m there imply that the above
property extends to the right endpoint τm+1 of the random interval; that is,

lim
n→∞E

[
sup

t∈[τm,τm+1]

|Y n
t − Y ∞

t | ∧ 1
]
= 0.

This gives the desired result as for any m0 ∈ N,

E

[
sup

t∈[0,1]

|Y n
t − Y ∞

t | ∧ 1
]
�

m0∑
m=1

E

[
sup

t∈[τm,τm+1]

|Y n
t − Y ∞

t | ∧ 1
]
+ P(τm0+1 < 1),

and limm0→∞ P(τm0+1 < 1) = 0. �
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