Counting lattice points in moduli spaces of quadratic differentials

  • Vincent Delecroix

    Laboratoire Bordelais de Recherche en Informatique, Université de Bordeaux, Talence, France
  • Élise Goujard

    Institut de Mathématiques de Bordeaux, Université de Bordeaux, Talence, France
  • Peter Zograf

    Euler International Mathematical Institute, St. Petersburg, Russia
  • Anton Zorich

    Center for Advanced Studies, Skoltech, Moscow, Russia, and Institut de Mathématiques de Jussieu–Paris Rive Gauche, Paris, France
Counting lattice points in moduli spaces of quadratic differentials cover
Download Chapter PDF

This book chapter is published open access.

Abstract

We show how to count lattice points represented by square-tiled surfaces in the moduli spaces of meromorphic quadratic differentials with simple poles on complex algebraic curves. We demonstrate the versatility of the lattice point count on three different examples, including evaluation of Masur–Veech volumes of the moduli spaces of quadratic differentials, computation of asymptotic frequencies of geodesic multicurves on hyperbolic surfaces, and asymptotic enumeration of meanders with a fixed number of minimal arcs.