Atomic decompositions, two stars theorems, and distances for the Bourgain–Brezis–Mironescu space and other big spaces
Luigi D'Onofrio
Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli “Parthenope”, Centro Direzionale Isola C4, 80100 Napoli, ItalyLuigi Greco
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università degli Studi di Napoli “Federico II”, Via Claudio 21, 80125 Napoli, ItalyCarlo Sbordone
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli “Federico II”, Via Cintia, 80126 Napoli, ItalyRoberta Schiattarella
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli “Federico II”, Via Cintia, 80126 Napoli, ItalyKarl-Mikael Perfekt
Department of Mathematics and Statistics, University of Reading, Reading RG6 6AX, United Kingdom
Abstract
Given a Banach space with a supremum-type norm induced by a collection of operators, we prove that is a dual space and provide an atomic decomposition of its predual. We apply this result, and some results obtained previously by one of the authors, to the function space introduced recently by Bourgain, Brezis, and Mironescu. This yields an atomic decomposition of the predual , the biduality result that and , and a formula for the distance from an element to .
Cite this article
Luigi D'Onofrio, Luigi Greco, Carlo Sbordone, Roberta Schiattarella, Karl-Mikael Perfekt, Atomic decompositions, two stars theorems, and distances for the Bourgain–Brezis–Mironescu space and other big spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 37 (2020), no. 3, pp. 653–661
DOI 10.1016/J.ANIHPC.2020.01.004