Stability, well-posedness and regularity of the homogeneous Landau equation for hard potentials

  • Daniel Heydecker

    University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, CB30WA, United Kingdom
  • Nicolas Fournier

    Sorbonne Université, LPSM-UMR 8001, Case courrier 158, 75252 Paris Cedex 05, France
Stability, well-posedness and regularity of the homogeneous Landau equation for hard potentials cover

A subscription is required to access this article.

Abstract

We establish the well-posedness and some quantitative stability of the spatially homogeneous Landau equation for hard potentials, using some specific Monge-Kantorovich cost, assuming only that the initial condition is a probability measure with a finite moment of order p for some . As a consequence, we extend previous regularity results and show that all non-degenerate measure-valued solutions to the Landau equation, with a finite initial energy, immediately admit analytic densities with finite entropy. Along the way, we prove that the Landau equation instantaneously creates Gaussian moments. We also show existence of weak solutions under the only assumption of finite initial energy.

Cite this article

Daniel Heydecker, Nicolas Fournier, Stability, well-posedness and regularity of the homogeneous Landau equation for hard potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 38 (2021), no. 6, pp. 1961–1987

DOI 10.1016/J.ANIHPC.2021.02.004