Singular Hochschild cohomology and algebraic string operations
Manuel Rivera
University of Miami, Coral Gables, USAZhengfang Wang
Peking University, Beijing, China
Abstract
Given a differential graded (dg) symmetric Frobenius algebra we construct an unbounded complex , called the Tate–Hochschild complex, which arises as a totalization of a double complex having Hochschild chains as negative columns and Hochschild cochains as non-negative columns. We prove that the complex computes the singular Hochschild cohomology of . We construct a cyclic (or Calabi–Yau) -infinity algebra structure, which extends the classical Hochschild cup and cap products, and an -infinity algebra structure extending the classical Gerstenhaber bracket, on . Moreover, we prove that the cohomology algebra is a Batalin–Vilkovisky (BV) algebra with BV operator extending Connes' boundary operator. Finally, we show that if two dg algebras are quasi-isomorphic then their singular Hochschild cohomologies are isomorphic and we use this invariance result to relate the Tate–Hochschild complex to string topology.
Cite this article
Manuel Rivera, Zhengfang Wang, Singular Hochschild cohomology and algebraic string operations. J. Noncommut. Geom. 13 (2019), no. 1, pp. 297–361
DOI 10.4171/JNCG/325