Local grand variable exponent Lebesgue spaces
Humberto Rafeiro
United Arab Emirates University, Al Ain, United Arab EmiratesStefan Samko
University of Algarve, Faro, Portugal; Kh. Ibragimov Complex Institute of Russian Academy of Sciences, Grozny, Russia
Abstract
We introduce local grand variable exponent Lebesgue spaces, where the variable exponent Lebesgue space is “aggrandized” only at a given closed set of measure zero. It is shown that, for different aggrandizers with positive Matuszewska–Orlicz indices, the corresponding local grand variable exponent Lebesgue spaces coincide. We show that the maximal operator, singular operators, and maximal singular operators are bounded in such spaces. Lastly, an application to a Dirichlet problem for the Poisson equation, where may be chosen as the boundary of the domain, is provided within the framework of such local grand spaces.
Cite this article
Humberto Rafeiro, Stefan Samko, Local grand variable exponent Lebesgue spaces. Z. Anal. Anwend. 42 (2023), no. 1/2, pp. 1–15
DOI 10.4171/ZAA/1719