On congruence half-factorial Krull monoids with cyclic class group

  • Alain Plagne

    École Polytechnique, Palaiseau, France
  • Wolfgang Alexander Schmid

    Université Paris 8 et 13, Villetaneuse, France
On congruence half-factorial Krull monoids with cyclic class group cover

A subscription is required to access this article.

Abstract

We carry out a detailed investigation of congruence half-factorial Krull monoids of various orders with finite cyclic class group and related problems. Specifically, we determine precisely all relatively large values that can occur as a minimal distance of a Krull monoid with finite cyclic class group, as well as the exact distribution of prime divisors over the ideal classes in these cases. Our results apply to various classical objects, including maximal orders and certain semi-groups of modules. In addition, we present applications to quantitative problems in factorization theory. More specifically, we determine exponents in the asymptotic formulas for the number of algebraic integers whose sets of lengths have a large difference.

Cite this article

Alain Plagne, Wolfgang Alexander Schmid, On congruence half-factorial Krull monoids with cyclic class group. J. Comb. Algebra 3 (2019), no. 4, pp. 331–400

DOI 10.4171/JCA/34