Unconditional and quasi-greedy bases in with applications to Jacobi polynomials Fourier series
Fernando Albiac
Universidad Pública de Navarra, Pamplona, SpainJosé L. Ansorena
Universidad de la Rioja, Logroño, SpainÓscar Ciaurri
Universidad de la Rioja, Logroño, SpainJuan L. Varona
Universidad de la Rioja, Logroño, Spain
Abstract
We show that the decreasing rearrangement of the Fourier series with respect to the Jacobi polynomials for functions in does not converge unless . As a by-product of our work on quasi-greedy bases in , we show that no normalized unconditional basis in , , can be semi-normalized in for , thus extending a classical theorem of Kadets and Pełczyński from 1962.
Cite this article
Fernando Albiac, José L. Ansorena, Óscar Ciaurri, Juan L. Varona, Unconditional and quasi-greedy bases in with applications to Jacobi polynomials Fourier series. Rev. Mat. Iberoam. 35 (2019), no. 2, pp. 561–574
DOI 10.4171/RMI/1062