Notions of Dirichlet problem for functions of least gradient in metric measure spaces
Riikka Korte
Aalto University, FinlandPanu Lahti
University of Cincinnati, USA and University of Jyväskylä, FinlandXining Li
Sun Yat-Sen University, Guangzhou, ChinaNageswari Shanmugalingam
University of Cincinnati, USA
Abstract
We study two notions of Dirichlet problem associated with BV energy minimizers (also called functions of least gradient) in bounded domains in metric measure spaces whose measure is doubling and supports a (1, 1)-Poincaré inequality. Since one of the two notions is not amenable to the direct method of the calculus of variations, we construct, based on an approach of Juutinen and Mazón-Rossi–De León, solutions by considering the Dirichlet problem for -harmonic functions, , and letting . Tools developed and used in this paper include the inner perimeter measure of a domain.
Cite this article
Riikka Korte, Panu Lahti, Xining Li, Nageswari Shanmugalingam, Notions of Dirichlet problem for functions of least gradient in metric measure spaces. Rev. Mat. Iberoam. 35 (2019), no. 6, pp. 1603–1648
DOI 10.4171/RMI/1095