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Time-periodic solutions of completely resonant
Klein-Gordon equations on S*

Massimiliano Berti, Beatrice Langella, and Diego Silimbani

Abstract. We prove existence and multiplicity of Cantor families of small-amplitude time-periodic
solutions of completely resonant Klein—Gordon equations on the sphere S3 with quadratic, cubic,
and quintic nonlinearity, regarded as toy models in general relativity. The solutions are obtained by a
variational Lyapunov—Schmidt decomposition, which reduces the problem to the search of mountain
pass critical points of a restricted Euler-Lagrange action functional. Compactness properties of
its gradient are obtained by Strichartz-type estimates for the solutions of the linear Klein—-Gordon
equation on S3.

1. Introduction

Motivated by the stability problem of anti—de Sitter space-time (AdS), the goal of this
paper is to prove existence and multiplicity of Cantor families of time-periodic solutions
of nonlinear Klein—Gordon equations of the form

p—1 if pisodd, p > 3,
<—at,+Ass—ﬂ>¢={'¢' ¢ ifpisodd p (L1)

¢F if p is even,

where ¢: R x S3 — C and Ag;s is the Laplace-Beltrami operator on the three-dimensional
sphere S3. For p = 3, time-periodic solutions of (1.1) have very recently been constructed
by Chatzikaleas and Smulevici [22]. A mathematical point of interest of Theorems 1.2 and
1.4 below is that, jointly with [21,22], they are the only existence results of time-periodic
solutions for completely resonant Hamiltonian PDEs on a manifold of dimension higher
than 1. Their proof is based on a novel combination of variational methods and Strichartz-
type estimates for free solutions of the Klein—-Gordon equation on S3, which we find of
theoretical interest in itself and not available anywhere else in the literature. The Strichartz
estimates, which are sharper than the Sobolev embeddings, allow one to gain compactness
of the gradient of the action functional and smoothness of the critical points.

Let us first briefly outline the physical framework connecting (1.1) with the stability
problem of AdS space-time. AdS is the maximally symmetric solution to the vacuum
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Einstein equations Ric(g) = —Ag with negative cosmological constant A. Unlike de
Sitter or Minkowski space-time, its stability properties are nowadays still poorly under-
stood. In particular, the stability of AdS depends on the conformal boundary conditions.
While, for instance, it is expected that under dissipative boundary conditions AdS is
stable, see [31], it has been conjectured, by Dafermos—Holzegel [25] and by Anderson
[2], that AdS is unstable under fully reflective boundary conditions. The latter insta-
bility conjecture is supported by the numerical investigations of Bizon—Rostworowski
[16] for the spherically symmetric Einstein-massless-scalar field equations, suggesting
that AdS is unstable, against the formation of black holes under arbitrarily small pertur-
bations. Such a phenomenon has been rigorously proven in the works [35, 36] for the
Einstein-massless-Vlasov system with spherical symmetry: they prove the existence of
a one-parameter family of initial data lying arbitrarily close to AdS whose time evolu-
tion gives rise to a black-hole region. Notwithstanding, the work [16] also suggests the
existence of small initial data leading to stable solutions in the Einstein-massless-scalar
field equation, confirmed later by Maliborski—Rostworowski [34], who constructed formal
time-periodic solutions, supported by numerical evidence. The same existence conjecture
of time-periodic solutions — called geons — has also been extended to the vacuum Einstein
equations in [26,27].

The nonlinear wave equation (1.1) with p = 3 has been introduced in [15, 16, 34]
as a toy model of spherically symmetric Einstein-massless-scalar field equations close
to the AdS solution. Chatzikaleas [20] constructed formal power series expansions of
small-amplitude time-periodic solutions of (1.1) in the spherically symmetric case, which
reduces to the one-dimensional wave equation with singular nonlinearity

3

—0s U + Oyt = ————,
o h sin?(x)

u(t,0) =u(t,7) =0, xe(0,mn).

The absence of secular terms in the power series expansions is obtained using the method
of Maliborski—Rostworowski [34], developed for the Einstein—Klein—-Gordon equation.
However, the presence of small divisors prevents the convergence of such power series.
This difficulty looks analogous to the convergence problem of “Linstedt series” of quasi-
periodic solutions in celestial mechanics, devised since Poincaré [37], and successfully
overcome during the last century by the celebrated KAM theory. The first rigorous exis-
tence result of time-periodic solutions of (1.1) for p = 3 with strongly Diophantine fre-
quencies w is given in the very recent paper [22]. Such work constructs solutions of the
following form:

* spherically symmetric functions, namely ¢ (¢, x) = u(t, cos(x)), x € (0, w); see Defi-
nition 1.1 below;
«  plane waves in Hopf coordinates, namely ¢ (1,1, &1, £2) = u(t, n)e181¢142€2 see Def-

inition 1.3, up to restricting to values of the momenta pt; =, € {1,...,5}, or 1 = Uz
large enough.
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The results in [22] rely on an abstract theorem by Bambusi—Paleari [3], which uses a Lya-
punov—Schmidt approach and whose main assumption is the existence of a nondegenerate
zero of the “resonant system”. For a physics-oriented perspective of the status of resonant
system approximations of nonlinear dynamics of AdS space-times we refer to [28].

The goal of this paper is to prove existence and multiplicity of periodic solutions of
(1.1), for more general values of the nonlinearity degree p and of the momenta jtq, (5.
More precisely, for

e p=2and p =5, we find real-valued spherically symmetric solutions; see Theorem
1.2;

* p =3, we find complex plane waves in Hopf coordinates for any value of the momenta
U1, U2 € Z; see Theorem 1.4.

These generalizations require new methods, since the verification of the existence of a
nondegenerate zero of the associated resonant system seems unapproachable, if even true.
In this work we combine variational methods of mountain pass type, inspired by the works
of Berti and Bolle [5-7] for one-dimensional semilinear wave equations, with Strichartz-
type estimates for the linear Klein-Gordon equation on S3.

We now rigorously present our results.

1.1. Main results

Small amplitude time-periodic solutions of (1.1) bifurcate from suitable solutions of the
linear Klein—Gordon equation

—attU+AS3U—'U =0 (12)

Since the eigenvalues of —Ags + 1 are {j%,j € Ny}, where N, := {1,2,3,...}, all the
solutions of (1.2) are 2mw-periodic in time, i.e. have frequency w = 1. For this reason
(1.1) is called a completely resonant equation and a major difficulty of the problem is to
determine from which free solutions v of (1.2) periodic solutions of the nonlinear Klein—
Gordon equation (1.1) branch off.

We look for time-periodic solutions of (1.1) with strongly Diophantine frequency
o ~ 1 belonging to the Cantor set

Qy={wel3.2]:lwl—j| =% VleN,, jeN, L#]} (1.3)

For y € (0, yo) and y, small enough, the set 2, is uncountable, with zero measure, and
accumulates to w = 1, as proved in [3].

We look for time-periodic solutions of (1.1) taking values in Sobolev spaces H*(S3,
do) of scalar functions ¢: S> — C with s > %, where

HY(S®, do) = {¢ € L3(S®,do) : (~Ags + 1)2¢ € L2(S?,do)}, seR, (14

and do denotes the standard Lebesgue measure on the sphere. Each H*(S3,do) is a
Hilbert space endowed with the complex scalar product {¢1, $2) gs(s3,40) = {((—Ag3 +
D1, ¢2)12(s3,do)-
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For any s > % the spaces H*(S3, do’) continuously embed into L>°(S3) and form an
algebra with respect to the product of functions. We also recall the continuous embedding
of the Sobolev spaces

6
H*(S? do) — L?(S°,do), p<p*(s3):= 3 (1.5)

—2s’
with compact embedding for p < p*(s, 3). In particular, H*(S3, do) < L°(S3,do) for
any s > 1, with compact embedding if s > 1, and HS(S3,do) — L*(S3, do) for any
s > %, with compact embedding if s > %.

Our first existence result concerns spherically symmetric solutions, according to the

following definition.

Definition 1.1 (Spherically symmetric functions). Consider on S* coordinates

(x,0,9) € (0,7) x (0,7) x (0,2m),

(x,0,¢) — (cos(x), sin(x) cos(), sin(x) sin(0) cos(¢), sin(x) sin(H) sin(p)). (1.6)

We say that ¢: S® — C is spherically symmetric if
d(x.0,0) =u(x)® 1, VY(x,0,¢) € (0,7)x(0,m)x(0,2m), u: (0,7) - C,

where 1¢, is the function identically equal to 1 for any (8, ¢). By (1.6), u has to be of
the form u(x) = U(cos(x)), for some U: (—1,1) — C. We say that ¢: R x S> — C is
spherically symmetric if ¢ (¢, -) is spherically symmetric for any ¢ € R.

Our first result is the following:

Theorem 1.2 (Spherically symmetric solutions). Let p =2 or p = 5. Fix y € (0, yp) and
d € (0, %). Foranyn e N, r > %, and s > %, there exist gg = eo(n,r,s,d,y) > 0 and
C :=C(n,r,s,d) > 0 such that for any € belonging to

-1 ifp=2,
E:={ee€(0,80) 0 €Qy}, w}=1+ce ¢:= iFp (1.7
1 ifp=5,

with Q,, defined in (1.3), there exist n different real-valued, nonzero, T¢-periodic solutions

{1, %), ... ¢ (. x))

of equation (1.1) with frequency wg := ZT—Z even in time and with spherical symmetry. They
are of the following form:

(i) There exist n different 27 -periodic, even in time, nonzero solutions { vgl) (t,x),...,
vé")(t, X)} of the linear equation (1.2), spherically symmetric, with size

1 1_ 2 ifp=2,
Cled < [vPllgrqonmss3doy < Ce? %, q = , (1.8)
4 ifp=>5,
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such that, as € — 0,

g — v® (@ M r 0. 1.0, 15 83 o))

k
= o(|lv&® (e, Ml (0. 1.0, 2 (5%.d0)))- (1.9)
(i) Each ¢§k) has minimal period Ty ; := m% where {my}; _, is an increasing se-
quence of positive integers. Correspondingly, the functions {vél), e vén)} have
minimal periods Ty = fn—i

We point out that Theorem 1.2 also holds in the case p = 3. This is actually the result
in [22]. In this case the vb(/ ) are close to the “one-mode” functions
sin((J + 1)x)

sin(x) (1.10)

S%Q(j), ) = kjcos((j + Dt)ej(x), e;j(x):=
for suitable k; € R \ {0}. Note that the e; are the spherically symmetric functions e; (x) =
Uj(cos(x)), where U;: R — R are Chebyshev polynomials of the second kind. The func-
tions ) in (1.10) are actually solutions of the “zeroth-order bifurcation equation”, also
called the “resonant system” in [22],

(—Ags + v — Ty @3 =0, (1.11)

where Iy is the L2-projector on the infinite-dimensional linear space V formed by the
solutions of (1.2) (see definitions (3.7), (3.11) below). The name “resonant system” refers
to the fact that (1.11) is restricted on the space V' of solutions of equation (1.2), which are
the superposition of harmonics with the same frequency in space and in time.

On the other hand, for p = 5 the functions v,gj ) in (1.8) are not close to “one modes”
as in (1.10). Actually, the véj ) are close to functions of the form & l_)(j ), where l_)(j ) are
nonzero solutions of the equation

(—Ags + v — Ty (v°) = 0, (1.12)

which does not possess one-mode solutions. We actually prove the existence of nontrivial
solutions of (1.12), exploiting that it is the Euler—Lagrange equation of the action func-
tional

%||v||iz@,,m(§3,dg» - é /TS vo(t,2)dtdo(z), T =T, :=R/QxZ), (1.13)
which, thanks to the time-space Strichartz-type estimates proved in Section 4, admits
mountain pass critical points of class C°°. Strichartz estimates are required to imply
compactness properties of the action functional, which are not a consequence of Sobolev
embeddings (1.5) on S3; see Remark 4.6.

The case p = 2 is degenerate, since Iy (v?) = 0 (see Lemma 4.4), and the vgj ) are
close to functions of the form &2 v, where v/ are nonzero solutions of the equation

(—Ags + Do + Ty (vET' @0?) =0, &£;:= -y + Ags — 1. (1.14)
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It turns out that equation (1.14) admits mountain pass critical points as well. Further com-
ments are postponed until after Theorem 1.4.

In the case p = 3 we have new existence results of periodic Hopf plane wave solutions
of (1.1) for any value of the momenta (i1, it2), which we now define (the use of these
coordinates was first suggested in [28]):

Definition 1.3 (Hopf plane waves). Consider on S* Hopf coordinates

(m,&1,&) € (O, %) x T x T,
(1. €1, &) — (sin(n) cos(&y), sin(n) sin(&;), cos(n) cos(£2), cos(n) sin(£,)).

Given (1, 2) € Z2, we say that ¢: S® — C is a Hopf plane wave with momentum
(1, p2) if

d(n. &1, 6) = u(n)eé1eh282 v(n £ &) e (O, %) xTxT, u: (0, %) —R. (1.15)

We say that ¢: R x S® — C is a Hopf plane wave with momentum (j11, j12) if ¢(z,-) is a
Hopf plane wave with momentum (i1, i2) for any € R.

The following result extends [22], which holds for ;t; = u, either equal to {1,2,3, 4,5}
or large enough:

Theorem 1.4 (Hopf plane waves). Let p = 3. Fix y € (0, yo) and d € (0, %). For any
neN,r> % s > % and any (L1, U2) € 72, there exist o := go(n,1,s,d, Y, w1, 2) >0
and C .= C(n,r,s,d, i1, U2) > 0 such that for any € belonging to the set

€ :={ee€(0,80): 0 €Qy}, wl=1+s, (1.16)
there exist n different nonzero, Tg-periodic Hopf wave solutions (see (1.15)),

{ «gl)""’ én)} ZZ{ Sﬂil,uz""’ gﬂ)«l,Mz}

of equation (1.1), with frequency w, := ZT—’Z even in time. They are of the following form:

(i) There exist n different 25 -periodic nonzero Hopf wave solutions {vé},)“,uz, cees
vg’&l’m of the linear equation (1.2), with size

1 1 1_
Cez < &) a0, H5(8%,d0y) < CE274, (1.17)

k j k .
such that ¢§,,31,M = véf&l,m + o(v,ﬁ,,ﬂl,uz) as in (1.9).

. ) . . T . . .
(i1) Each ¢g i, u, has minimal period Ty , == m—i, where {mk}zz1 is an increasing

27

L k - .
sequence of positive integers, and each vé’ ,31, wy has minimal period Ty, = e

It is proved in [22] that for any p1, i, there exist one-mode Hopf plane wave solutions
of the resonant system (1.11), of the form

ez, ) = K; cos(a)}‘“’MZ)t)e](.“"’“)(n)ei’“&ei‘“&, kj € R\ {0}, (1.18)
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where ej(“ 1442) are eigenfunctions of —Ags + 1 with eigenvalues a)](.“ BH2) = 0 4 | +
|i2] + 1. However, the proof that they are nondegenerate is obtained only for py = o
and either 1 € {0, ..., 5} or uy large enough, with explicit computations performed with
Mathematica code. The proof of the more general Theorem 1.4 is obtained exploiting
variational methods.

We make the following comments, common to both Theorems 1.2 and 1.4:

*  (Regularity and multiplicity) If r > g and s > % the solutions {d)éj )} of (1.1) proved
in Theorems 1.2 and 1.4 are classical. Actually, the smoother we require the solutions
to be in time and in space (i.e. the larger r, s are), the smaller g¢(r, s, n) has to be.
Analogously, the larger the number of solutions 7, the smaller g (7, s, n) has to be.

e (Minimal periods) The solutions ¢ék) of (1.1) whose existence is stated in Theorems
1.2, 1.4 are geometrically distinct, having different minimal time periods m% as stated
in each item (ii).

* (Increasing norms) The functions vg ) turn out to have increasing norms in k =
1,...,n, although, for simplicity, we have stated estimates (1.8) and (1.17) uniformly
in k. We point out that the factor £~¢ in the upper bounds in (1.8), (1.17) (where d is
arbitrarily small) is actually present only for r > 1 ¢ >3 and not in the low norm
case r + s = 1. In such a case we have ||v8 & o,7.1, Hs(§3 do)) =< £7. See more
comments in Section 1.2.

* (Critical exponent) The restrictions on the exponents p < 5 and p # 4 are not techni-
cal. In the critical case p = 5, the functional

Gpi1(v) = ﬁ . vP (e, 2) dt do(2)

associated to the nonlinearity is finite for any v in the space L?(T,, H'(S3, do))
(which appears in (1.13)) only by Sobolev embedding H!(S3, do) — LS(S3, do).
However, it follows to have compact gradient by the Strichartz estimates in Proposition
4.5 (see Remark 4.6). For the supercritical exponents p > 7, the functional §,41(v)
is not expected to be well defined for any v in L?(T,, H'(S3,do)). If p = 4, then
G5(v) = 0, as well as for all even values of p. Then the leading term in the action
functional of the corresponding resonant system turns out to have degree 8, which is
supercritical.

As already mentioned, Theorems 1.2 and 1.4 are inspired by the variational approach
of [4-7], developed for one-dimensional semilinear completely resonant wave equations
—04:uU + Oxxu = uP + ---, with Dirichlet boundary conditions. Major difficulties with
respect to these works arise because of the three-dimensional manifold S3. This becomes
evident for instance in the search of spherically symmetric solutions of (1.1), which
reduces to solving the wave equation

u?

—0peU + Oyt = ————,
a = sin? 1 (x)

x €(0,7), u,0) =u(t,7) =0, (1.19)
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which has a singular nonlinearity at x = 0, . Before explaining the main difficulties and
ideas of our proof, we present a few related results.

Related literature. The first existence results of 2w-periodic solutions for completely
resonant wave equations d;;u — dxxu = |u|P~2u, p > 2, have been proved by Rabinowitz
starting with [40], via global variational methods. These techniques, as well as those in
[18, 19], enable one to find periodic orbits with rational frequency, the reason being that
other periods give rise to a small denominator problem.

Independently of these global results, the local bifurcation theory of periodic and
quasi-periodic solutions was initiated for nonresonant one-dimensional Klein—Gordon
equations by Wayne [41], Kuksin [32], Craig—Wayne [24], Poschel [38], Chierchia—You
[23], with KAM methods. For semilinear Klein—Gordon equations on T4 with convo-
lution potentials, the first result is due to Bourgain [17], later extended by [9, 10] for
multiplicative potentials. Bifurcation for periodic and quasi-periodic solutions of nonres-
onant Klein—Gordon equations was obtained in [12, 14] for Lie groups and homogeneous
manifolds, in [11] for Zoll manifolds, and in [30] for the sphere S These results do not
cover the completely resonant case (1.1), where all the linear frequencies of oscillations
are integers.

The first existence results of Cantor families of small-amplitude time-periodic solu-
tions of one-dimensional completely resonant wave equations —d;;u + 0xxu =u?, p =3,
was proved in [33] under periodic boundary conditions and in [3] for Dirichlet boundary
conditions, for frequencies belonging to the zero measure set (1.3). The latter result was
then generalized in [5, 6] to arbitrary exponents p, using variational methods. Existence
of periodic solutions for a set of frequencies w ~ 1 of density 1 was proved in [7, 8] via
Nash—Moser implicit function techniques, and in [29] via trees resummation arguments.
Existence of time-quasi-periodic solutions with two frequencies of completely resonant
nonlinear wave equations on the circle were obtained in [39] and [13].

For completely resonant wave equations, or even more general Hamiltonian PDEs in
dimension higher than 1, not much is known about time-periodic solutions besides the
aforementioned paper [22] and the present work.

1.2. Ideas of proof

In order to look for bifurcation of small-amplitude time-periodic solutions of (1.1) with
frequency w ~ 1, a natural approach is to implement a Lyapunov—Schmidt decomposition
in the spirit of [5—7] for one-dimensional semilinear wave equations. Major difficulties
arise due to the higher dimension of the space domain, here the sphere S3, as we now
explain. After a time rescaling, we look for 2 -periodic in time real solutions u(t, z) of
—?0,,u + Agsu —u = u”. By splitting

u=v+w, v:i=I0Iyu, w:=I0Nypu, Oy =1-Iy,

where V is the kernel of the operator —d;; + Ags — 1 (namely the space of solutions of
the free Klein—Gordon equation (1.2)) and ITy the corresponding orthogonal projector, it
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amounts to the system

(0* = 1)(=Ags + D)v = Hy((v + w)?), (Bif. eq)
(—02ds + Ags — Dw = (v + w)?). (Range eq)
For any w € 2, the operator £,, := —2d;; + Ags — 1 is invertible on the range W := V+

and, for any fixed v € V small enough (in some suitable norm), one may first solve the
range equation, obtaining w = w(v) = o(v), by a contraction argument. Here, in order to
control the nonlinearity (v + w)?, it is natural to close the contraction in Sobolev spaces

HIH: = H"(T,, H*(S?,do)), r>

N W

, 8>

)

N =

which are an algebra with respect to the product of functions, and where £, |y is
bounded. This requires taking v small enough in H] H} as well, which amounts, for func-
tions in the kernel V', to requiring that

[vllpres < 1, ViE = L2(T H' (S do) NV, r+s>2. (1.20)

On the other hand, one needs then to solve the bifurcation equation (Bif. eq) with w =
w(v). As observed in [5,6], this turns out to be the Euler-Lagrange equation of the reduced
action functional

(@* 1)

1
= 2 +1
o) = C2 ol — e [ wrwe)Hdide. a2

A serious problem which arises is thus the following:

Problem: The natural space to find mountain pass critical points for the functional
@ in (1.21) is (a small ball in) the space 'V,l’z (modeled with an H'-norm), associ-
ated to its quadratic part. This is clearly in contradiction with solving (Range eq)
on the much smaller domain {”U”v,zj < 1} in (1.20). How do we fill this regu-

larity gap?

We remark that the previous difficulty does not disappear when restricting to search
solutions which depend on only one space variable, as spherically symmetric functions
or Hopf waves. This is evident for instance in the spherically symmetric case, where the
reduced equation (1.19) has a singular nonlinearity. If p = 3, this issue is overcome (cf.
[22]) noting that the functional ® in (1.21) possesses nondegenerate critical points of the
explicit form v = S (v 4 ---), where v is a one-mode function as in (1.10), which belong
to {”U”vtr’-z{—s & 1} forany r + s > 2.

'Here, ifa € R, by a+ we mean a number greater than a.
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We now describe our strategy. For simplicity, we focus on the case p = 5 and we
restrict on spherically symmetric functions. The seminal idea is to note that, neglecting
w(v), the functional ®(v) in (1.21) is a perturbation of the “resonant system” functional

e
Do (v) = 5”””%2 —Gp+1(v),
1 (1.22)
Gp+1(v) = 7T Jras v? ldtdo, e:=w?>—1>0.
X

The Strichartz estimate (4.10) implies that &g is well defined on V/, and its gradient

Vi Y6 is a bounded map from V; , to V!, for any s > 3, thus compact on V! .. Thus
®( possesses a mountain pass critical point v € 'V,l’z (see [1]), which by homogeneity has
the form v = 8%1_), where v solves the rescaled equation v = (—Ags + 1) 'y v>. Such
a v is not a one-mode function, but it is C * by the following bootstrap argument. By the
Strichartz estimate (4.10), one has

loll 75 = ITve’ll _gen = sup / vPhdrdo| < Cs|lul? 5,
t,z t,z heV€+8 T xS Vl,z
t,z
IIhllv%Msl

t,z

Then, to further increase the regularity of v, we observe that the Strichartz estimate (4.11)
implies

<Cs ”QHSVI}M"
Z

lollyass = NIy lyy = sup / vShdi do
t,z t,z TX§3

heVys
Al ,—s <1
vit

Iterating this procedure with increasing values of §’, one deduces that v is in C*°.

In order to adapt the previous arguments to deal with the whole functional ® in (1.21),
we split the bifurcation equation into low and high frequencies. For any N € N (to be
determined later large enough) the bifurcation equation is equivalent to the system

8(—AS3 + vy = HVsN ((vy +v2 + w)”), (1.23)
8(—AS3 + v, = HV>N ((Ul + vy + w)”), (1.24)

where

v(t,z) = Z vjcos(wjt)ej(z), v =v1+ vz, vy = My_yv, vz == Txpv,
JjeN
wj = j + 1 are the frequencies associated to the eigenfunctions e; defined in (1.10), and
IT<n, resp. I1s y, is the projector on the time-space Fourier frequencies smaller than N,
resp. > N.
Then we solve both the high-frequency bifurcation equation (1.24) and the range equa-
tion (Range eq) arguing by contraction:
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* In Section 5 we solve first the high-frequency bifurcation equation (1.24) for v, in a
small ball of V27, for any v, ”V} < Re# and [|wl]| 1y 3+ S £3 N>F. Here we use
, . H

the Strichartz-type estimates (4.10)—(4.11). £

1, 3

¢ InSection 6 we solve the range equation (Range eq) for w in a small ball of H +sz .
We exploit algebra properties since v, € 'V,zj C H? H}?" and v; belongs to a finite-
dimensional space.

* In Section 7 we solve the finite-dimensional bifurcation equation (1.23), which has
a variational structure, applying mountain pass arguments and finding a critical point
vy satisfying ||v; ”V},z < Ret. Finally, in Section 8 we prove multiplicity of critical
points, distinguished by their minimal period. In Section 9 we prove their higher reg-
ularity, where ||v; ”Vf,z is estimated by ||vy ”V},ZNS_I for any s > 1.

In all these points, we use smallness conditions of the form Yy IN te < 1, for ¢ > 0. Then
for technical simplicity we take N = s_% , with 8 arbitrarily large.

In the case p = 3 we follow an analogous variational procedure. Remark that in this
case the “resonant system” functional (1.22) possesses one-mode Hopf plane wave solu-
tions for any value of the momenta (j1, t2) € Z X Z, but in general their nondegeneracy is
not known, except for the particular values considered in [22]. This is because for ;1 # 2
an explicit formula for the product between the eigenfunctions {ej(-“ LH 2)} 7 in (1.18) is not
available. Then we split our equation (1.1) into the range equation (Range eq) and the
high and low bifurcation equations (1.24), (1.23). We solve the low-frequency bifurcation
equation (1.23) using duality arguments, the Holder inequality, and the Sobolev embed-
ding (1.5), without Strichartz-type estimates.

In the degenerate case p = 2, one has Iy (v?) = 0 and the leading nonlinear term
in the bifurcation equations (1.23)—(1.24) turns out to be the cubic term [Ty (v€,1v?).
The Strichartz-type estimates (4.22)—(4.23) are used to solve the high-frequency equation
(1.24), avoiding the need to prove whether £!|y is bounded on L4(T,, L(S3, do))
spaces.

Notation. We denote by N = {0, 1, 2, ...} the set of integer numbers and N, :=
{1,2,...}. Given a € R, we denote (a) := max{l, |a|}. Given a, b real-valued functions,
a < b means that there exists C > 0 such that a < Cb. If C depends on parameters

1, ..., 0, WeWIite d Sgy,..0, . Ifa Sband b < a, we writea < b.

.....

2. Functional setting

We describe the Laplace—Beltrami operator in spherical and Hopf coordinates, we describe
its spectrum and eigenfunctions, and we define the Sobolev space of spherically symmetric
functions and Hopf plane waves.
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2.1. Functions with spherical symmetry

According to Definition 1.1, in spherical coordinates the metric tensor is represented with
respect to the basis of the tangent space {% %, %} as

1 0 0
g(x.0,0) =0 sin®(x) 0
0 0 sin?(x) sin(9)

Hence the volume form is do = sin?(x) sin(6) dx df d¢, and the Laplace—Beltrami oper-
ator reads

cos(x) 1 5 cos(6) . 1 52
sin(x) sin?(x) o sin?(x) sin(6) g sin?(x) sin?(9) ¢

Ags = 32 42 (2.1

For convenience, we introduce the normalized measures

1

do = —
“ 272

2 1 1
do, dx:=—dx, d0:=-d60, do:=—dop,
T 2 2

chosen in such a way that the measure of the sphere S3 is 1. We denote L?(S3, do) =
LP(S3).

The Laplace—Beltrami operator (2.1) leaves invariant the subspace of spherically sym-
metric functions (cf. Definition 1.1), acting as

cos(x)

Agi(u ® lgg) = (AGU) ® lgp. A =07 + 2sin(x) *

As a consequence, the subspaces of spherically symmetric functions in H*(S3, do) coin-
cide with

H = {u e L*([0, ], sin®*(x) dx) : (— s+ ﬂ)%u e L?([0, ], sin®(x) d‘x)}, 2.2)

X

equipped with inner product

(ur,uz)ge = ((—=Ags + D 1, u2) 120, 2].5in (x) dx)

in the sense that v € K2 if and only if u ® 1g, € H*(S3, do), with
lullsey = lu ® logllas(ssaoy Yu € Hy. (2.3)

We now exhibit a basis of eigenfunctions and eigenvalues for the operator Ag;; see [22]:
Lemma 2.1 (Spectral decomposition of Ag;). The set of functions {en}nen defined by
sin((n + 1)x)

en(x) = ——= Vn eN, 2.4)
sin(x)

is an orthonormal basis for J2 of eigenfunctions of —Ags + 1, with eigenvalues
wp,:=n—+1 VneN.

2
w,,
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As a consequence, the Sobolev spaces J; in (2.2) are spectrally characterized as

Ky = {u(x) = > jen Ujej(x) ||u||2£ =Y jeN |uj|za)]2s < oo}, (2.5)
where u; = (u, e;) g0 are the Fourier coefficients with respect to the basis {e;}, with
scalar product (u, v) g = ) ;en Uj v_ja)fs.

The eigenfunctions {e, },eN satisfy the following product rule: for any integer n > m,

en(¥)em(x) = ) enmiak (). (2.6)

k=0

We shall use property (2.6) to prove the Strichartz-type Propositions 4.5 and 4.12. It can
also be used to prove that the spaces H3 with s > % enjoy the algebra property.

2.2. Hopf symmetry

According to Definition 1.3, in Hopf coordinates the metric tensor is represented with
respect to the basis of the tangent space {%, %, 3%2} as

1 0 0

gn.61.6) = [0 sin*(n) 0
0 0 cos?(n)

Hence the volume form is do = % sin(2n) dn d &, d &, and the Laplace—Beltrami operator

reads
cos(2n) 1 5

. + 3z,
sin2n) " sin2(n) ' cos2(n) ¢

We introduce the normalized measure

Ags = 92 42 2.7)

1 1 1
do = sdo. dni=dy. db=o—db dh=o—dbh Q8)

so that the measure of the sphere S3 is 1.
Representing a function ¢ in Hopf coordinates (see Definition 1.3) and expanding in
Fourier series with respect to the variables &;, &, we have

PE1E2) = D uyu(eFieats,

H1,U2€Z

In these coordinates, the Laplace—Beltrami operator (2.7) reads

As3p(n.£1,62) = Z MBI N By ga (1)
H1:H2€Z

with 5 5
cos(2n) Iz Iz

A =02 +2 a0y — L _ 2

H-ta nt sin2n) 7 sin?(y)  cos2(n)

(2.9)
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As a consequence, the space of Hopf plane waves is left invariant by Ags and recalling
(2.7), (2.8), the subspaces of Hopf plane waves in H*(S3, &o) coincide with

Hy = {u € L*((0.%).sin@n) dn) : (—Apuy pup + 1)2u € L((0,%),sin(2n)dn)} (2.10)
for any s € R, equipped with inner product
(i, u2)ge5 = (= Dpypo + D ur.u2)12(0, %) sin2n) dn)

in the sense that u (1) € J¢5 if and only if u(n)e'*11¢'#282 € H*(S3, do) (cf. (1.4)), with

) lle5 = llu()e &1 e#282 | yosa s, Q2.11)

We now exhibit a basis of eigenfunctions and eigenvalues of —A,, ,.,; see [22, Section
3.2].

Lemma 2.2 (Spectral decomposition of A, ,i,). There exists an L*-orthonormal basis

(m,uz))z

of eigenfunctions {eﬁm’m)}jeN of =Au,.u, + 1, with eigenvalues (a)j , Where

@) = 2f + 1+ || + |pal. j €N.

The e](-”“ 142) e the real functions

gl Il
€;M1’M2) (n) — N](|M1\,\M2|)(1 _ COS(27]))/TI (1 + COS(2T]))ITZ PJ(WI\,\MZD (COS(277)), (212)
where {PJ.(IM1 \,Wzl)}jeN are the Jacobi polynomials and Nj(m1 b2 o re suitable normal-
ization constants.

By Lemma 2.2, the Sobolev spaces J, in (2.10) are spectrally characterized as

K= {u() =Y enuiel " ()« |ull? o= Yjen Uy (@) < oo}, (2.13)

where u; = (u, el 2)) g0 are the Fourier coefficients of u with respect to the basis

j
{ej(.“"M)}jeN equipped with scalar product (u, v) g = > _ien ujoj(a);“"M))zs.

2.3. Sobolev spaces in time-space

Since equation (1.1) is time reversible, we look for functions which are even in time. For
this reason, we consider the Sobolev spaces of time-periodic even real functions

HI 3] = {u(t.2) = Yy jen te,j cos(£r)e; (2) :

12177 305 = 2 pen () X ey @7 ue 1 < oo}, (2.14)
taking values in

s H; defined in (2.5)  for spherically symmetric functions,

2= ) (2.15)
J¢, defined in (2.13)  for Hopf plane waves.



Time-periodic solutions of completely resonant Klein—-Gordon equations on S3 15
In (2.14) the {e; };en are respectively the eigenfunctions of —Ag; — 1 and —Ay, 4, + 1,

namely

ej asin (2.4) for spherically symmetric functions,
ej =
/ asin Lemma 2.2 for Hopf plane waves,

(1,0m2)
€

corresponding to the eigenvalues {a)]? }ieN, where

j+1 for spherically symmetric functions,
w; = . (2.16)
2j + 14 |u1] 4+ |n2| for Hopf plane waves,
and uy ; are the time-space Fourier coefficients of u,
/ cos(r){u(t, ), ej) g0 dt for spherically symmetric
— T functions,
Ugj =
/ cos(£t)(u(t,-), e](-m’M)(n)):%i? dt for Hopf plane waves,
T
where 1
dt == —dt. (2.17)
i

For any r > % and for any s € R the space H; J¢; is embedded continuously into L*>°(T;,
H?), with
lullLoo(T,,5) = Crllullaz e, (2.18)

for some C, > 0. Moreover, since the spaces J; for s > % are an algebra, also the spaces

H 35 are an algebra for any r > 1 and s > 2: there exists a constant Cy, > 0 such that
luruallmrses < Csrllurllarges vzl az es- (2.19)

3
Lemma 2.3. There exists C > 0 such that for any ™, u® u® u® e L°(T,, J,}),

%
f/ uDy@y®y® sin2n) dn dt
T Jo

4
<C[T11®) 5. (2.20)
1131 Loo(Ty, 96,

For any u™ u® u® e L°(T,, J{’,}), and any u® e L(T,, J{’,‘,’),

%
// uDu@y®y® sin2n) dn a1
T Jo

3
< (T Oiwcr,ap )0 e,y e
=1



M. Berti, B. Langella, and D. Silimbani 16

Proof. Let v = u(l)eiméﬁiuz&, U® — u(z)e*iMIEI*iH&EZ’ U® = u(3)eiu1§”1+iu2$27
U® = yWe-imbi—inaba Recalling the definition of do, &1, d&, in (2.8), one has

z 4 4
A/OZI]:[Iu”)(z,n)sin(zn)dndl =/T/S3II:[IU”)(z,z)da(z)dz.

Then applying at any time ¢ the generalized Holder inequality with p; = py = p3 = ps =
4 for functions on S3, and the Sobolev embedding H i (S3,d0) — L*(S3, do) we get

z 4
/ / Hu(l)(t,n) sin(2n) dn d't
TJ0

4
SAFHWWMW&MW

=1

4
< O,
NAEW(MMMWﬁL

Then (2.20) follows because

1w, = POl
H

z

Hi(S?
(8% ;

by (2.11). The bound (2.21) follows by similarly applying the generalized Holder inequal-
ity with p; = p, = p3 = 6, and p4 = 2 for functions on S3, using the embedding
H(S3,do) — L%(S3,do) and (2.11). n

3. Variational Lyapunov—-Schmidt decomposition

We look for time-periodic solutions of (1.1) with time frequency w close to 1, via a

Lyapunov—Schmidt decomposition. More specifically, we look for a 27”—time—periodic

real-valued spherically symmetric solution u(z, x) of (1.1) which solves
—2;u(t, x) + ( gs — Du(t, x) = u? (¢, x),

(3.1)
(t,x) e T x(0,7), dyu(t,0) = dxu(t,27) =0.

We consider the cases p = 2, 5 only, because the case p = 3 is covered in [22].
If p = 3 we look for a 2F’T-time-periodic Hopf plane wave solution ¢ (¢, n, &1, &) =
u(t, n)etf1ei282 of (1.1), with u(z, n) real. The function u(z, n) solves

~@?dru(t.n) + (Ao — Dult.n) = u(t.n),
T 4 (3.2)
(t,m) e T x (0, 5)’ dpu(t,0) = 8,,u(t, E) =0,
with Ay, ., defined in (2.9). Both equations in (3.1) and (3.2) are of the form

Lo =u?, Lo = —02d; — A, (3.3)
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where A denotes the unbounded, self-adjoint, positive operator

A%, +1 for spherically symmetric functions,
A :={ 52 P Y (3.4)

—Ay, u, + 1 for Hopf waves.

Equation (3.3) admits a variational formulation. It is the formal Euler-Lagrange equation
of the action functional

W(u) = %/T(efwu(t),u(t))%? dt —Gp11(u), 3.5
with

o3 / / uPT1(t, x)sin®(x) dx dt  in spherically sym. case,
P
Gpp1(u) = (3.6)

o / [ u?T(t, n)sin(2n) dndt  for Hopf plane waves.
D

We shall exploit the variational structure of (3.3) in Section 7, after a suitable finite-
dimensional reduction. We perform a Lyapunov—Schmidt decomposition of equation (3.3).
We define
V.= ker(—att — A)
= {u(t,2) = X yen te.j cos(Cr)e; (2) s ug; = 0 VL # w;}

= {v(t,z) =) jeNVj cos(a)jt)ej(z)}, (3.7)
W :=Rg(=0:; — A)
= {u(t,z) =D juen Ue,j cos(lr)ej(z) tug; =0VL = a)j}. (3.8)

Note that W = V- in any HI 5.
We decompose the space V' into low and high frequencies: given N € N, we define
Vi=Vey = {v(t,z) = ZOSszN vj cos(w;t)e; (z)}, (3.9)
Vo= Vo = {v(t.2) = 3, oy vy cos(@;1)e; (2)}. (3.10)
We denote by Iy, [y, Ily_y, = Iy, [ly>y = Ily,, the orthogonal projectors on V,

W, Vi, V, respectively, so that any u can be decomposed as

u=v+4+w, v:=Iypu= Z Uy, ,j cos(wjt)e; € V, w = Tyu e W,
jeN (3.1D)
u=vi+v+w, vy =Ipuel, v=INhuel, w=IyuecW

We then observe that a function u satisfies (3.3) if and only if it is a solution of the system
(w? — 1) Avy — Ty, (v + vy + w)? =0, (3.12)

(w? — 1)Avy — Ty, (v + v2 + w)? =0, (3.13)

Low — My (vy + vy +w)? =0. (3.14)
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We shall solve equation (3.13) for v, by a contraction argument in Section 5. Then in Sec-
tion 6 we shall solve the range equation (3.14), arguing again by a contraction argument
and using the following lemma.

Lemma 3.1. Assume w € Q, with Q, defined in (1.3). Then the linear operator £,
defined in (3.3) is invertible on W, with

2
-1
Lo | 8wnm?se5:wnH! 205) < " Vr,s € R.

Furthermore, if = 1, one has || £} | swnar s wnmET 905 < 1.
Proof. Let w(t,z) = 3y ; y2q; We,j cos(£2)ej(2). Then
e lw(,z) = Z Lcos(ﬁt)e(z) (3.15)
@ T 022 — »? e :
Z;éwj J

Then it is sufficient to observe that, if w € Q,, then

VE#£ o), 0202 -] > % (3.16)

because for any £ and j such that £ # w; and £ # 0, one has

(@l + w)) (0l — w))| > |w£||’l’TI > %

Finally, if @ = 1, the estimate immediately follows observing that [¢* — 7| > 1, for any
L 75 wj . L

4. Properties of functions in V

In this section we prove some properties of functions in the kernel V' which will be used to
solve system (3.12)—~(3.14). Given s € R, we shall denote V;, :==V N H 03¢5, equipped
with norm

2 . 2.2
oIy, = D Iy e, (4.1)
jeN

1
Furthermore, we denote V75 = ("o Vi, and || - Lo (1, E) == (fp Il ||Z~ dt)r.
Lemma 4.1. Letr,1',s,s" € Rsuchthatr +s =1’ + s'. Then foranyv € V,
vl a7 7 = ||U||H;/;g§’ = ”U”LZ(TI,]gZ’ﬂ)v (4.2)

2 2 2 2
||U||H;>3gzs = [lv (0, )”Jgg = ||U||Loo(qr,,3eg) = ||U||'vts’z- (4.3)
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Proof. In order to prove (4.2) it is sufficient to observe that

= Z |vj|2a)]2ra)fs = Z |vj|2a)?(r+s).
H{#;  jeN jeN

2

Z vj cos(wjt)e;(z)

jeN

||U||§-1tr(;eg =

The identities (4.3) follow because, for any t € T,

2

@ e = | Y vjcos(@ine; ()| =D [v;[?|cos(w;1)*w;?,
JjeN H:  jeN
with || - || gs defined according to (2.15) and since |cos(:)| < 1. |

By (4.3) and the algebra property of the spaces #;, for any v @ ¢ Vi ands > %

0@y, S5 [0l 192y,
For any s < s’ the following smoothing properties hold (cf. (3.9), (3.10)): forany v € V,

Myivllyy, < N*lvllv,, ITyvllvy, < N~ _S)Ilvllvtsfz- (4.4)

Since Ae;(z) = a)jzej (z) for any j (see Lemmas 2.1 and 2.2) and recalling (4.1) it holds
that

1A ollps2 < llvllvg, Yo e V.. 45)

We shall also use that by Lemma 4.1 and the Sobolev embedding (1.5), for any v € V; |
one has

ollg, S Iolo,e P < 5—5- 46)

with L7 == LP(T;, L?((0, ), sin*(x) dx)).

Lemma 4.2. For any u € L*(T,, %) it holds that [Tyulys, < |IM”H?J€§' The same
holds if Iy is replaced by Iy, or Ily,.

Proof. By Lemma 4.1 we have ||HVu||2tS!Z = ||HVM”12L1,°J€§ < ”u”iI?Jf’zX |
Lemma 4.3. Let s > % r > % and q € N. Then there exists a positive constant C =

C(s,r,q) such that for any j < q and any v WD e Vi wU+D o y@ ¢ H[ ¥3,
||HV(v(1)~--v(j)u(j+1) "'”(q))”V,{z
J q
< c(]‘[ ||v<“||v,s,z)( I ||u<”||H,r,%g). @47
I=1 I=j+1
The same statement holds if Iy is replaced by Iy, or Ily,.

Proof. Estimate (4.7) follows from Lemma 4.2, since ||u ||H;)J€§ S llullsoges, (2.19), and
(2.18). (]
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Lemma 4.4. For any q € N odd and any vV, ..., v'@ € V one has
b
/ / v (1, x) - v@ (2, x) sin?(x) dx dt = 0. (4.8)
T Jo

In particular, if n is even then Ty (v - v®) = 0 for any vV, ... v® e V.

Proof. In the integral in (4.8), performing the change of variables (¢, x) +> (¢/, x"), with
t=t'+m x:=m—x', onehas vO( + m,7 —x) = —vD(z, x) and, thus, since ¢ is
odd,

I :=/T/07r v(l)(lvx)...v(cn(,’x) sin?(x) dx dt
- /T /Oﬂ v 47 =) 0@ + 7,7 — x')sin? (o — x') dx' dt’
= /11‘ /Oﬂ(_l)qv(l)(t/,x/)---v(q)(t’,x/) sinz(x’) dx' dt' = —1I.
namely 7 = 0. i

4.1. Strichartz-type estimates for p = 5

The aim of this section is to prove a set of Strichartz-type estimates for solutions of (1.2)
in the case of spherical symmetry. We shall use the following duality property: for any
s €R,
b4
”v”Vf,x = sup f / v(t, x)h(t, x) sin?(x) dx dt. 4.9
T Jo

hevys
s <
hllyg <t

Proposition 4.5 (Generalized Strichartz-type estimates). The following estimates hold:
(1) For any § > 0 there exists a constant Cs > 0 such that, for any v(l), R v® ¢

5

$+5

6
vt,x 4

6
<G [] IIU(")Ilvtg+a- (4.10)

b4
f/ v (2, x) - v©(t, x) sin?(x) dx dt
T Jo

n=1
(2) For any 8 > 0 there exists a constant Cs > 0 such that, for any vV, ... v® e
'thjs and v® € Vi

// v (1, x) - 0O (1, x) sin?(x) dx dt
T Jo

5
< c,s(]_[ ||v(”)||v,1;s)IIv(‘”IIV,,;g- @.11)

n=1
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Remark 4.6. From (4.10) the functional $(v) := ¢ [ [o© v®sin®(x) dx dt is well
defined on 'th, . with compact gradient.

Remark 4.7. By (4.10) with v = ... = v(® =: v, using (4.3) and (2.3), any solustioan
v of the Cauchy problem d;;v 4+ (—Ag3s + 1)v =0, 9,v(0,-) =0, v(0,-) = vy € J€f+ ,
satisfies the Strichartz estimate ||v||z6(T,xs3,4¢ 20) <5 [Vl 54 = ||vo||x%+5.

t,x

Proposition 4.5 enables us to deduce the following:

Lemma 4.8. For any § > 0 there exists Cs > 0 such that for any v @ 3 @ G ¢
V,ljc'z‘s

s

5
1M 0D @v@v @0y < €5 TT 0y

n=1
Proof. By (4.9) we have
x 5
||HVZ(v(l)v(z)v(3)v(4)v(5))||st = sup / / HVz( l_[ v(n))h sin®(x) dx dt
o hev,  JT Jo a1
121l.5,—26 <1
t,x

5
S [T :
Soosup [Tyl
il 23 <1

5
< 1_[ (n)
s [T 1@ lypas,

n=1

n=1

where in the second passage we have used Proposition 4.5 (2). ]

The rest of this section is devoted to the proof of Proposition 4.5. We use the following
definition.

Definition 4.9. Given j1, ja, j3, ja, js5, j6 € N, we define jmin;» - - -, jming € N by the
property that {jla ey _]6} = {jminl 900y jmins}a and
min{jl, ce 7j6} = jmin = jminl =< jminz =< jmin3 == jmin6 = max{jl, ... 7j6}-

Furthermore, we denote by §(a = b) := §, for any a, b € N, the Kronecker delta.
The following lemma is a direct computation, recalling (2.17):

Lemma 4.10 (Integral in time). Given & = (wj,, 0j,, Wjs, W}, , Wjs, wj;) € N and & €
{£1)°,

6
/Hcos(a)jkt)d‘t=2_5 Z 80 -d=0).
T

k=1 Ge{£1}6



M. Berti, B. Langella, and D. Silimbani 22

The next lemma exploits properties of the eigenfunctions {en}nen of —Ag; + 1,
defined in (2.4).

Lemma 4.11 (Integral in space). For any ji, j2, j3, ja, j5. j6¢ € N, the integral

I :=/0 ejl(x)---ej6(x)sin2(x)d‘x 4.12)

satisfies
J6 E wjmina)jminz wjmin3 ° (4'13)

.....

Proof. With no loss of generality, we suppose that j; < j, <--- < jg. By the product rule
(2.6),
J1 J3
€j1€js = Z Cja—ji1+2ks  €j3€js = Zejs—j3+217
k=0 =0
and
J1 min{jz, ja—j1+2k}
€j1€jsCjr = Z Z €| j2—(ja—j1+2k)|+2h>
k=0 h=0
J3 min{je,js—j3+21}
€j3€js€js = Z Z €l js—(js—Jjz+2D)|4+2m-
1=0 m=0

Since by Lemma 2.1 the {¢; };en are orthonormal on L2 ([0, ], sin?(x) dx), one has

J1 min{jz,ja—j1+2k} jz min{je,js—j3+21}

- Z Z Z Z 8(1j2 — (ja— j1 +2k)| + 2h
k=0 h=0 1=0 m=0
= lje = (js = Ja + 2D)| + 2m). (4.14)

Now, for each fixed value of ji,..., je, k, h, and [, there is at most one value of m
such that 8(|j» — (j4 — j1 + 2k)| + 2h = | js — (js — jz + 2[)| + 2m) # 0. Moreover,
the sum over k runs over j; + 1 = wj, elements, the sum over s runs over < j> + 1 = wj,
elements, and the sum over / runs over < jz + 1 = wj, elements. This proves that the
integral (4.14) satisfies I}, .. . < wj, wj,wj,. Also, the lower bound I}, . ; > 0 directly
follows because (4.14) is the sum of nonnegative integers. [

.....

‘We now prove Proposition 4.5.
Proof of Proposition 4.5 (1). We show that forany v € V and N € N, the function vy =

Iy, v, satisfies

b4
/ / v§ (¢, x) sin® (x) dx dt <s |on|l® 5.5 (4.15)
T Jo Ve

t,x



Time-periodic solutions of completely resonant Klein—-Gordon equations on S3 23

Then (4 10) follows since, using the generalized Holder 1nequahty with p; = -+ =
Peé = 3, Fatou’s lemma, and the fact that vg\,) — ™ in ’\76 and, up to subsequence,

N)(t,x) — v(”)(t,x) a.e.,

(”)(t x)sin?(x) dx dt

6
< TTI®ie,
n=1

6 6
(.15)
< %nggof]‘[ 1087 leg, %5 Jim [T 101,00 % 1‘[ [0 s 416
n=1 n=1
We now prove (4.15). By Lemma 4.10 and recalling (4.12), one has

I:=/ /ﬂ vlﬁv(t,x)sinz(x)dxdt

/ / Z l_[ vj, cos(wj, t)ej, (x) sin?(x) dx dt

]6EN k=1
Jk<NVk
-5
=2 Z Z 8(o1wj, + -+ + o6wj, = 0)vj, - v Ly, s (4.17)
.,06€{E1} j1,..0sj6 EN
Jk<NVk
(4.13)
N Z Z Vjy =« Vjg | Wj, W), Wiz (4.18)

O15e.,06€{£1}  j1<-<je<N
010j; ++06wjc =0

by the symmetry of (4417) with respect to ]1, e Je. Since wj; < --- < wjs, one has
< < w® < 3
wj, < a)j - ° wj, < wiw?, and wj; < a)]4a)]5a)] , thus
11 1 1 5 s
< i 3m3m3 )3 m6 6
W), W) W); S W W; O8O 0L (4.19)

Moreover, recalling w; = j + 1, the sum in (4.18) is restricted to
Jjo = 05 ' (010), + -+ 0s5wjs) — 1 = f(01.....06. j1.....js) = f(G.]),

where we set 6 ;= (01,...,06) and J := (ji,..., J5). By (4.18), (4.19), and the Cauchy—
Schwarz inequality, one has

1 1 5
Is Z |vj1"'vj4|wj31"'w]i Z |U}5| |vf(0>1)| j?(&f)

J1<N,...,ja<N J5=<N st

O1,5e,06€{£1} f@. =N
1 5 % 5 %
1 ES) 22

< Z lvj, |} “Ivj4|w,-i( Z |vjs Pt ) ( Z |”f(6,i)|2“’;(a,f))
J1<N,...,ja<N Js<N J5:f(@,))<N

01,...,06€{E1}

4
1
low 1?5 (Z |v-|w-3) <s llowll® s
'Vt?x ! / vt?x+§

J=N

A
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where in the last passage we have used the Cauchy—Schwarz inequality to bound
1 1
Z |vj|a)j% < ( Z |vj|2wjz(§+8))2 ( Z wj—(1+28))2 <s ||vN||v%+5
J=<N J<N j<N tx
This proves (4.15). [ ]

Proof of Proposition 4.5 (2). We are going to show that, foranyn = 1,...,6 and N € N,
the functions v%) = M<yv™ satisfy

5
6
Ss [T 1o lyrss o s @20

n=1

‘// vj(\})(t,x)u'vj(\?)(t,x)sinz(x)d‘xdt
T Jo

This implies (4.11). Indeed, v%’) — ™ in V!¢ and, by (4.6), in L?  and a.e. for any
n =1,...,6. Then passing to the limit one obtains (4.11).
We now prove (4.20). By Lemma 4.10 and recalling (4.12), one has

g
:‘// vl(\})(t,x)...v](\?)(t,x)sinz(x)dxdt
T Jo
@ (6)
=< Z Z 11) : |Ijl, -J6

01,....,06€{£1} Jj1=N,...,j6<N
o1wj; +~"+Uja)j6 =0

(4.13)

1 5
< > Yoo Pl oD g, w0, @.21)
01,...,06€{£1} j1<<js<N
Je=f@,))=N
by the symmetry of (4.21) in ji, ..., js. Since wj, = o5 ' (010), + -+ + 050j5) < Swj;
and b b 145 £ 444
=5 Wi Djs P @ Swjlezwhwﬁt’
by (4.21) and using Cauchy—Schwarz, we have
1 5)1,.(6) 3 3, 148, =6
Ivss ) ) e B 1 g P RS Ao
01,5...,06€{E£1} j1<<js<N
Je=f(3, f)<N
m @ 3 5)) 143 (©)
s el wiler Y o) e lerl
J1=N,...ja<N Jj5<N s.t.
O 5eeey oge{£1} f(& j)ﬁN
1 8 —( +8) 4 8, G+8, 5 6
s oy et ool 1R 3 103 [l

J1=N,...,ja<N

(1) (4) 5) (6)
< v v v _
~6 ||UN ”vtl’*-xﬁ s ” N ||17t1’x+8 || N ”'th’*'xtS || N ”'vtj

proving (4.20). ]
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4.2. Strichartz-type estimates for p = 2
The following result will play a central role in studying (1.1) in the case p = 2:

Proposition 4.12 (Generalized Strichartz-type estimates). For any § > 0 there exists Cg >
0 such that the following hold:

1
(1) Forany v, @ ¢ "Vf,:s,
. 4
/ / vWy@ =1y @) sin?(x) dx dt| < Csy~! l—[ V™) 1,5 (4.22)
T JO n=1 rvl?x
2
(2) Forany v, ... .v® eV n V,f:s,foranyl =1,...,4
2
[ [ v(l)v(z)ia_)l(v(”v(“)) sin?(x) dx dt
T Jo
4
= Gy [T gas 0@l (4.23)
1x ’

n=1

n#l
Furthermore, if o = 1, estimates (4.22) and (4.23) hold with the factor y_l on the right-
hand side replaced by 1.

Note that, due to Lemma 4.4, one has v®v® e W, thus é(i;l (v(3) v(4)) is well defined.
The rest of this section is devoted to the proof of Proposition 4.12.

Lemma 4.13 (Integral in space). For any ji, j2, j3, ja € N, the integral

satisfies 0 < Ij, . i, < wj..

Proof. With no loss of generality, we suppose that j; < j» < j3 < js. By the product rule
(2.6) one has
J1J3
€j1€2€j3€js = Z Z Cja—j1+2kCjs—j3+2h- (4.24)
k=0h=0
Thus, since by Lemma 2.1 the {¢;};en are orthonormal on L?([0, ], sin?(x) dx), one
has
J1J3
Tjis = D Y 802 — j1 + 2k = ja— jz + 2h). (4.25)
k=0h=0
Now for each fixed ji, j2, j3, ja, k there is at most one value of /& such that j, — j; + 2k =
Jja — j3 = 2h. Moreover, the sum over k runs over j; + 1 = w; elements. This proves
I jrjsjs < wj,. The lower bound I, ;,,;, = 0 directly follows because (4.25) is the sum

of nonnegative integers. ]
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Proof of Proposition 4.12(1). For any v € V and N € Ny we have vy = Ily_,v. We
are going to show that

/f vN(t x)sin?(x) dx dt < 5||vN||V (4.26)

3 X

Then estimate (4.22) follows. Indeed, by (4.26), one has, arguing as for (4.16),
Iolls, <o 10l y- “27)

tx
Furthermore, for any w € 2, using the Cauchy—Schwarz inequality and Lemma 3.1,
we get

VW@ 10Dy @) sin?(x) dx dr| < v @ Iz, ||é€;1(v(3)v(4))||L%

4
2y TT I ™ls,
n=1

4

4.27) .

= Gy l_[ IIv(”)IIV%M,
— X

proving (4.22). If @ = 1 the thesis follows since, by Lemma 3.1, || £} ||$(J€0 ) = <1
We now prove (4.26). Arguing as for (4.18), we have

In ::// v?v(t,x)sinz(x)d‘xd‘t
T Jo

s X > V) Vjal Ly (4.28)

01,...,00€{E1} J1Z+<ja<N
o10j; ++0o4wj, =0

11
By Lemma 4.13 and estimating I, . j, < wj, < ®? o, and defining

J3
Jja =03 (010} + -+ 0305) = 1 = g(01,...,04, j1,..., j3) = g(G, ),
we have, using the Cauchy—Schwarz inequality and (4.28),

1 1
INS Z |vj1||Uj2| Z |vjs||vg(a,/)|a)23 ;( )

J1,J2<N J3=N
O1,....04€{£1} g(@.H=N
2+s ( +6) 2+8 ( +4)
S X o > Ioalo > Il
J1=N J2=N J3=N
2
. Z Ve 120 7
g@, )l %g(o,))
J3=<N s.t.
g(G.))=N

2 2
S5 Iow 2 s w2

t,x t,x

which gives (4.26). [ ]
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Proof of Proposition 4.12 (2). Defining Uz(\];) =1Il< ~v® N e N, first we prove that one
has

vg})vl\,)i (vj(s)vl(é)) sin?(x) dx dt

<5;||v<‘>|| 30212 0Pz 0@y, (4.29)
t,x

t,x t,x

with the factor y ! in (4.29) replaced by 1 if @ = 1. Once that (4.29) has been proved, (2)
1
follows by the following claim: for any vV, v@ (3 y® ¢ 'V,z,;rg it holds that

L7,
oM <z) vWy@ - # 1@PyP) 5 2l 0®Pu@), as N - o0, (4.30)
so that v(l)vj(&)é@;l (”1(\?)”1(3)) converges to vDv@ L1 (v y®)in L. Claim (4.30) fol-
lows because

1 2
loy vl —v @l
1 2 2
< ||v( Y=o O o g, + 10 =0 s 0D

(4 (1) (1)”

2 2) 1
<5 I NnvN [ 2+5+||v“— I 1+s||v()|| 1o =0

t,x

as N — oco. Similarly, £ 1v](\?)v(“) — £, ®v®) in L? | using Lemma 3.1 also.
Moreover, (4.23) for a general index [ follows by self-adjointness of &£ wl
The first step in the proof of (4.29) is the following:

Lemma 4.14. We have

vj(\})vN)éﬁ (vl(\?)vg,‘)) sin?(x) dx dt| <

{y—lg ifo # 1,
g

fo=1 4.31)
g= Yo o0l Ouinggi s h @i
0,07,01,02€{£1} j1,j2,/3<N
with o ) ) )
h(o,]) = —0'0y01wj, —0'02010wj, —0 ' wj, — 1, 4.32)

= (0.0".01,02), ] = (j1. j2. J3)
Proof. By (2.6) and Lemma 3.1, we compute

/T/ WDy @ 21, @)
0

_ (1) 2 (3) (4) (0,0")
- Z Z Vji Vi, Vjs Y, AJ1 J2,J3,J4’ (4.33)
o,0'€{x1}j1=N,....,ja<N
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(0,0") ’ _
where 4™ " ., 0,0" € {—1, 1}, are equal to
min{;1,j2} min{;3,/j4}

Z Z /T cos((wj, + owj,)t) cos((wj, + o’'w;j,)t)

h=0 k=0 4(6!)2(60]'3 + O/wj4)2 -

> dat
O jl+2k)
T
-2
: / €| jy—j3|+2k€| jo— jy|+2h SIN” (X) dx.
0

Using w € 2, and (3.16), we have the lower bound

|4

2 2 2
|lw?(wj; + 0'w;)? = (@j—jsl+20)°] = 5

(4.34)

\8}

Moreover,

1
/Tcos(alt) cos(apt) dt = 3 Z 8(o101 + 0202),

o1==%1
0'2=:|:1
thus A](f’jz)h s # 0 only if 01 (wj, + ow;,) + 02(wj; + 0'w;,) = 0, which gives j, =
h(o, j) with 6, j and h(G, ) as in (4.32). Furthermore, by orthogonality of {e;}; as in
Lemma 2.1, by (4.24) and by Lemma 4.13, one has

min{j1,j2} min{j3,ja}

z 2

1 2 — . . . .
/ €| ja—ja|+2k€| jo—ji|+2h SIN”(X) dx| = L}y j5 js, js

= Omin{j1, j2,j3,j4}- (4.35)

Note that, if @ = 1, the factor y~! in (4.34) can be replaced by 1. Thus, combining (4.33)
(4.34), and (4.35), one gets (4.31).

|
The sum ¢ in (4.31), using its symmetry in the indexes ji, j2, j3, is bounded by
(1) 2 (3) 4
RS Z Z lvj, v [ 104G 7| @i (4.36)
Ge{x1}* 1<j2=j3=N
h(G,))<N

Since wh(&,j) < 4(1)1'3,

)i <w%w%w% < é % %"'8 -8

1 @), Pz ~§ @y @), By Dp 5y (4.37)

Then, using the Cauchy—Schwarz inequality, (4.36), and (4.37), one has

D.@, L+ ¢ 3 +8, (4
> wPeiel 3 Rkl b

-8
wj, Va1 Ph. 5
Ge{£1}*j1=N,j2<N J3<N st
h(G,/)<N
(1 ?) 3)
<s ””N)”vﬁ:”‘”” [ an( [ 3+5||vN)||w,

from which (4.29) follows.
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5. Solution of the v, equation

In this section we solve equation (3.13) for the high-frequency components v, in the
kernel. We argue separately for the cases p = 5, p = 3, and for the degenerate case p = 2.
Given p; € (0,1), p2 € (0,1), p3 € (0, 1), we define

Dy ={v1 €N lvillyy, < 1}, (5.1
and for some § > 0,
i):,/zz = {vz eln vz;rzs : ||U2||v§j25 = ,02}, 5.2)
148,348
JDZZ = {w e H "2 nw: ”w”H%”,}e%” < ,03}. 5.3)

z

In the sequel, § will always denote a positive small constant.

5.1. Case p =5
Forany R > 0,6 > 0, and y € (0, yp), let

p1i= ¥R, poi= caN'ORSeH,  pyi= ey INSTIORSE N = 7B, (5.4)
wheree = w2 —1>0 according to (1.7), cz,¢c3 > 0,and B > 1.

Proposition 5.1 (Solution of the v, equation for p = 5). For any § € (0, %), R >0,
and y € (0, yp), let p1, p2, p3, N be as in (5.20). There exist cy := c3(8) > 0, Bs > 1,
£:=10(8)>0,e5. >0, and Cy5,Cy 5 > 0such that, for any B > Bs and any € > 0 such
that

eNty ™! <es g (5.5)

there exists a C' function vs: Dy, x !Dx — N V,z’jz‘s, (v1, w) = va(vy, W), where
Dy, and @[?3/ are defined as in (5.1) and (5.3), satisfying v2(0,0) = 0, and
|lva(vy, w)”vtz;rzs =< p2, 5.6)

180, V201, W) gyt y2tasy < Cy 5N R*, (5.7)

< CsN2T58 R4, (5.8)

0w V2 (v, w 1 3
a1l s 3

such that v, (vy, w) solves
e(=A% + Dz (v, w) — Ty, ((v1 + v2 (v, w) + w)°) = 0. (5.9

In the rest of this section we prove Proposition 5.1. For any (v, w) € D,, X 1)[2/, we
look for a solution of (5.9) as a fixed point of the map

vy > Toyw(V2) i= e AT Ty, (1 + va + w)°, (5.10)

where, according to (3.4), we set 4 := —A§3 + 1. The next lemma is based on the
Strichartz estimates of Section 4.
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Lemma 5.2 (Contraction). Let ¢ > % + 58. There exist Cs > 0 and €5 g > 0 such that,
if (5.5) holds, the map Ty, v maps {O;/zz into itself, with

[ T0y,w(v2) — %l,w(v/z)llvtzrzs <CsRINT'HE |y, — v;”v};” Vua,vh € D)2, (5.11)

As a consequence, for any (v, w) € Dy, X JD:;‘; there exists a unique v,(v1, W) € @,‘,;2
solving (5.9) and such that v,(0,0) = 0.

Proof. We write Ty, (v2) = e "A7 Iy, 325 44 iis Cirinjs V] 0P W73. We estimate
the terms where w does not appear using the Strichartz-type estimate in Lemma 4.8, and
the terms with w using algebra property (2.19). If j3 = 0, by (4.5), (4.4), and Lemma 4.8,
for any jj, j» one has
1A Ty, 0] 03 gaeas S5 (N2 vt llgg )1 (N7 02 [lg2sas)

<5 (N? o)/t (N~ pa) 2, (5.12)
for any | vy ”vtlx < p1 and ||va||y2+28 < p2. Recalling the definitions of py, p2, N in (5.4),
one then gets N ™' p, < N2¥p; and thus for any j; + j» = 5,

JA™ Ly, 0! 032) s S5 N1, (5.13)
On the other hand, if j3 # 0, by estimates (4.5), (4.4), and Lemma 4.3 one has
|47 Ty, (0] v ) 2

_3.45 1.5 ; _1_g X .
s NN 2 gl )7H(N T2 ||v2||vg;25)12||w||2%+5%%+5
1 X

s NTIH (N2 )7t (o N 202l (5.14)

for any ||v1||Vt1’x < p1, ||v2||vtz;2,s < pa2, and ”w”H,%HJG%H < p3. Assuming (5.5) with

.= % + 58 and €5, g small enough, one has p3 < N%J”spl and N_%_‘gpz < N%”pl,
and recalling j; > 1, one gets

A7 Ty, of v w7 2 S5 N2 790t ps <5 N1}, (5.15)
Thus, combining (5.13) and (5.15), there exists a constant Cs > 0 such that we have

- 54
1108 s G4

1 1
||7§;1,w(U2)“'vt2;25 < Cse o CsN'9 R < ¢, N1 R c4 = 02,
provided c > Cs. Thus 7, ,, maps {O;/j into itself. We now prove that it is a contraction.

For any h, € "V,Z,jzs N V,, we have

Bvy Torw (V2)[h2] = 567 A7 Ty, ((v1 + v2 + w)*hy)

=51 D Cpn AT Iy (0] v why). (5.16)
Jitiz2t+j3=4
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If j3 = 0, we argue as in (5.12) to get

|47 Ty, (0 03" h2) 220

<s (NP o)/ (N1 p2) 2N Ml llyosas S5 N7 pHhallyases,  (5.17)
whereas if j3 # 0 we argue as in (5.14) to get
- o - lyg s 1l g i,
A IHVZ(U{1Ué2w13h2)||v§;28 <s N 2(p1 N2¥8) 1 (p, N~ 278) 72 pf2 2|2 425
_1
Ss N 2+38pr3||h2||vt2;28

S5 N7 phha|yasas. (5.18)

Thus, by (5.16), (5.17), and (5.18), and since p; = 8% R, we deduce

186, Toyw (v2) 1]l garas < Ce™' N7 eR? s |ya

= C3R4N_1+88||h2||vtz;rzs, (5.19)

from which (5.11) follows. Thus 7y, 4, is a contraction on !DX;. [ ]

Lemma 5.3 (Differentiability of vy). The function v,(v1, w) is differentiable in vy, w,
and it satisfies estimates (5.7), (5.8).

Proof. By (5.19), the operator 1 — 0y, Ty, 1w (v2) is invertible on v{z;zs’ with operator
norm bounded by 2. Furthermore, arguing as for (5.12) and (5.14), one obtains

8
180, Toy,w (V) [ ]ll 2425 s N'0 R4||h1||vtl’x,

— 1
1w Ton (v2) sy S5 6™ N=F0pdhsl1es 3

t x

1458 pa
s N2T2R ||h3||H%+8]€%+8'

t x

Then dy, v2(v1, w) = (1 — 0y, Ty w0 (1)2))_18,,1 To,,w (v2) satisfies (5.7) and, in addition,
8w Uz(vl’ w) = (]1 - 8vz ‘7;)1,w (UZ))_law ‘7;)1,11) (1)2) satisfies (58) u

52. Casep=3

Forany R > 0,8 > 0, and y € (0, y), let
pri= 3R, poi= caR3N* e pyi= cyy IN3TORIE . N =P, (5.20)

where we recall that e = w? — 1 > 0, according to (1.16), 8 > 1, and ¢, c3 > 0.
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Proposition 5.4 (Solution of the v, equation for p = 3). Forany § € (0, %), R > 0, and
y €(0,v0), let p1, p2, p3, N asin (5.20). There exist c :==c2(8) >0, s > 1, :=C(§) > 1,
€s.gr > 0,and Cy5,Cy 5 > 0 such that, for any B > Bs and any & such that

eN%y™! < es R, (5.21)

there exists a C! function vy: Dp, X {Op - WnN 'V2+28 (v1, w) — va(vy, w), where
D,, and [OZ are defined as in (5.1) and (5.3), sansfymg v2(0,0) = 0 and

[[v2(v1, w)”y};zb’ = p2, (5.22)
100, v2 (V1. W)l gy, vy, v2128) = Crs RN, (5.23)
192 v2(v1, W) < Co s REN"3F%, (5.24)

sownm2 g}t v
such that v, (vq, w) solves

eAvy (v1, w) — My, ((v1 + v2(v1.w) + w)*) =0, (5.25)
where A = —Ay,, .1, + 1 according to (3.4).

We now prove Proposition 5.4. We define the map
V2 > Topw(v2) i= e PAT Iy, (01 4 v + w)?) (5.26)

and show that it is a contraction.

Lemma 5.5 (Contraction for p = 3). Let { > % + 56. There exist s g > 0 and Cs > 0

such that, if (5.21) holds, then Ty, ., defined as in (5.26) maps Q‘D;/zz into itself, with

[ Toy,w(v2) — 7;)1,w(v/2)”vt2j7'23 = CSRZN_I [va — v/2||'vt2;*7-25 Vs, U; € 0(0;/22 (5.27)

As a consequence, for any (V1,w) € Dy, X éDZZ there exists a unique solution v(vy,w) €
DY? satisfying (5.25) and v,(0,0) = 0.

Proof. We start expanding T, w(v2) = 67" 3 4oy i3 €y p s AT Ty, (v]' vl w?).
By (4.4) and Lemma 4.3, one has

1 : _345 .
| A HV;(U{IUéZwB)“V?;’Z‘; < N >+ ||HV2(U{1véZw13)”v%+8
. 2

S5 NTEHNEH o)/ (V7270 ) 2

for any vy € Dp,, v2 € !D,Yj, w e i);";. By (5.20) and the smallness assumption (5.21), if

> % + 568 one has N_%_Jpz < N%Mpl and p3 < N%”pl. Then recalling j; + j» +
j3 = 3, there exists Cs > 0 such that

||Jv],w(v2)||v2+2s < Cse~ 1N48 C582N48R3 <c2 82N48R3 = P2,
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provided c, > Cs. Thus 7y,, ,, maps éD,YZZ into itself. We now prove that it is a contraction.
One has

3u, Torw (V2)[h2] = 347 Ty, ((v1 + v2 + w)?hy)  Yha € VI 0 1.

Applying Lemma 4.3, (4.4), using (5.20) and the smallness condition (5.21), one obtains
|47 Ty, (v 03 w7 o) 228
57
< NN o) NN T o) p N TR s o
tn
SS N_1+28p%||h2”'v2+28 53 N_1+288R2,
tn
using that j; + j» + j3 = 2. Thus
180, Torw W2)h2]lly2s S5 N7 R 22,
t,x t,n
which is (5.27). [ ]

Differentiability of the function v,(vy, w) with estimates (5.23) and (5.24) follows
similarly.

53. Case p =2

Forany § > 0, R > 0, and y € (0, yy), let

1 —1p3 1 -2 3a7b
pl = RSZ’ p2 = Czy R g2, 103 = C3)/ 8\/ER N B
(5.28)

b:=3+65, N:i=g 8,
where & > 0 is defined by (1.7), namely w? = 1 —¢, ¢, c3 > 0, and B > 1. Since equations
(3.12)—(3.14) for p = 2 are degenerate, in the sense that Iy, (v; + v2)? = 0, we perform
the translation

w =L, (v1 +v2)* + . (5.29)

We then rewrite (3.13), (3.14) in terms of vy, v, @, and since Iy (v; + v2)? = 0 by
Lemma 4.4, we obtain

—eAvy = Ty, (2(v1 4+ v2) (£, (V1 + v2)* + D) + (£, (v1 + v2)> + T)?), (5.30)
Lo = My (21 + v2)(L5" (1 +v2)*> + B) + (£, (v1 + v2)> + T)?). (5.31)
Proposition 5.6 (Solution of the v, equation for p = 2). For any § € (0, %), R >0,
and y € (0, yp), let p1, p2, p3, N be as in (5.28). There exist c; = c3(8) > 0, Bs > 1,

b:=b(8) >0, €5, > 0, and Cy 5, C2 s > 0 such that, for any B > Bs and any & > 0 such
that w € Q2 and

Ny <er Ni= 8_%, (5.32)
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there exists a C function v,: Dy, JDZZ - VN Vijz‘s, (v1, W) > v2(vy, W), where
Dy, and ;’D[Ig are defined as in (5.1) and (5.3), satisfying v(0,0) = 0 and

lv2(v1, @) [lgy212 < p2, (5.33)
||8U1U2(U1, w)HB(Vlﬂ'V,l’X,V,Z’;z‘g) = CI,SV_IRZ, (5.34)
~ _1 —
[0 v2(v1, W)l 146, 348 < Crse 2 NIT2R, (5.35)

BWNH, 2 VR
such that v, (vy, W) solves equation (5.30).

We now prove Proposition 5.6. For any (v, W) € D,, x :DZZ we look for a solution
of (5.30) as a fixed point of the map which to v, associates

Tor,is (2) = —e P AT Ly, (2(v1 + v2)(£5" (V1 + v2)? + )
+ (£, (v1 + v2)® + 1)?) (5.36)

with 4 = —Ag; + 1 as in (3.4). We shall use the following technical lemma:

Lemma 5.7. Let p; and p; be as in (5.28). There exists €g ¢, > 0 such that, ifN_l_zs y_l

< €R,c,, then for any s € [0,2 + 28], any vi € D,, and v, € JD,ZZ, one has

lorllvy, < N™ODpy oy [lyy, < NTOHp,,

Proof. The estimate on ||vy [|ys  follows from (4.4). Forany s € [0,2 4 28] and v, € JDZ;,
by (4.4) and (5.28) one has

lvallvg, < N7272 g a0
< N—2—28+SIO2 — N—2—28+SC2y—1 R2p1 < NmaX{O,S—l)pl,
since —2 — 28 + 5 < max{0,s — 1} —1 —28 and N~1728y=1 < (c,R?)~! = €Rc, N
The next lemma is based on the Strichartz-type estimates of Proposition 4.12:

Lemma 5.8 (Contraction). There exist bs € (0, 1), €5 g > 0, and Cs > 0 such that, if
(5.32) holds with b > bg, then for any vy € D,, and W € K0)id Ty, & defined in (5.36)

03
maps ID,ZZ into itself, with
1T0,,5 (v2) — Ty (v3) 228
_ _4
< Csy 'R2N 73 |jvp — Vyllyasas Vua,vj € D2 (5.37)
WX

As a consequence, for any (v1, W) € Dy, X J)ZI; there exists a unique v (v1, W) solving
(5.30), satisfying v2(0,0) = 0.
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Proof. We expand Ty, 5 (v2) in (5.36) as Ty, g (v2) = 71 + T2 + T3 + T4 + T5, with

= =2 AT Iy, (v + v2) £, (v1 + v2)?),
= —28_1A_1HV2((U1 + vp)W),

= — AT Iy, (£, (v1 + v2)?)?).

—e AT Oy, @2,

= —28_1A_1HV2 (@éﬁ;l(m + v2)?),

BN e B
i

and we estimate each term separately. First, 77 is estimated using Proposition 4.12 (2),
which gives

IA

1Tillyzas < 267 Ty, (01 + 02)25" 01 + 2)D) ly2s

= 2¢71 sup
haeVonV; 2
Ih2ll,,—25 <1

/ / (v1 + vz)hzé‘i;l(vl + 1)2)2 sinz(x) dx dt
T Jo

Se ety Hon+ vl Ss ey T ol zias 02l 20097 (5:38)
'V3 'vt?x Vt?x

t,x

Then 77 is estimated using (4.4), and Lemma 4.3: one has

— ~ — -3 ~
Tallyai = & 1M1+ 0Bl S5 6 N30Ty 01+ )3

t,x

<. o—lp—2+8 ~
So e N (ol g+ el 3o 1By 3o (5.39)

t,x t,x t

Next, 73 and J5 are estimated using (2.19), (4.4), (4.3), (2.18), and Lemma 3.1, which
gives

||73||v[2;28 Ss & My, (25" (01 + v2)%)?) ”V?’i

<5 & NI (20 (01 4 12)2)?)|
H

145 3+6
t X
2 _3
sV 2g7IN 2+8(||Ul|| 2425 + ||va| 2+28)4, (5.40)
vz,x 'Vt,x
and
1N 3 ~
1Tsllyaizs S5 e™ N2y (L5 01+ 02Dz
’ t,x
<o y—lo—lpa =348~ 2
Ssy e N2 ”w”Ht%”ng%”(”vl”'V?,iz‘s+”vZHViIZ‘S)' (5.41)

Finally, 74 is estimated using algebra property (2.19):

— ~ 1 Ar—248 1 ~
1Tallyzgos <o e Iy @ s S5 T NT2NDI 4y asye (54D)

t X
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Then, by Lemma 5.7, recalling the definitions of py, p2, p3 as in (5.28) and combining
(5.38), (5.39), (5.40), (5.42), (5.41), there exists a positive constant Cg such that
1T0,,5 (02212 < Cs(r ™' VER? + 3y 2eNTIH25HDRY 4 =2y 390 R
t,x
+ C§V—4R6N—%+5+2b82 + C3}/_38\/ER5N%+58+b)
<2Csy 'WeR? <y lea/eRP = py,

provided (5.32) holds for some b € (0, 1) and €g s small enough and c, > 2Cs. We
now prove that 7, g is a contraction. We actually prove that d,,, 7, .5 € B(V> N "Vtz,jc'zs

VZ12%). Indeed, one has dy, Ty, 5[h2] = Dilha] + Dalhs] + Dslha] + Dalh,], with

)

Di[hy] = =267 A7 Iy, (ha £, (v1 + v2)%).

Dslhy] = =2 A7 Ty, (hy ),

D3[hs] == —4e A7 Ty, ((v1 + v2) £, (V1 + v2)h2)),

Dylhs] = —4e7 AT Ly, (£, (v1 + v2)* + D)L, (01 + v2)h2)).

We proceed by estimating all terms separately. By Proposition 4.12 (2), by Lemma 5.7,
and using the definitions of the parameters py, p2, p3, one has

||D1[h2]||vt2128 Ss e Ty, (ha g (1 + UZ)Z)HV?‘i

1

—-1_-—1 2
N ||h2”vt%x+25”vl + v2”v%+28

t,x

—1,.—1p—% 2
Ssy e N 3||h2||vlz’;28||vl+U2||v%+25

e
<5y e PN ||h2||vg;zs Ss V_leN_%llhz||V§;26- (5.43)
The estimate of D3[h,] is the same, and gives
| Dlalllyasos S5 v~ REN 75 a2 (5.44)
The estimate of D5 [h] is analogous to the estimate of 75, and yields
|Dalhallyzyos < €™ N7 lhall s Iy

t,x t

s 8_1N_2||h2||vt2;28;03 s CzV_2R3«/§N_2+b||h2||1;t2;28- (5.45)

3
348
J(’x

We finally estimate D4[h,] using algebra property (2.19) and Lemma 3.1. One gets
| Da[h2] ”V?}Z‘g

<5 N3+6-1 1Ty, (25" (1 + v2)? + D) L5 (01 + v2)h2)) ||V%+5

fox
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3
<. N—3H8 1) p—1 2 -1
<s N7 2% “‘:Cw (Ul + UZ) ”H,%MJG%M ”cfw ((Ul + U2)h2)||H%+SJ€%+8

t X

348 1)~ -1
A L I S (RS R I

X

3
< N—3H+8,-2,-1 2 ~
=6 y e (lvr + v2||.vl2;26 + ”w”H%MJf

X%M)”Ul + V2lly2yas A2l p2yas.
Then using Lemma 5.7 and the definitions of parameters p;, p2, p3 as in (5.28) one has
| D4lho] ||v§;rz&

<s N—%+8y—28—1(8R2N2(1+28) + 03y_2R3e%Nb)R«/EN1+28 ||h2||vt2;28

<s y—zR3N3(1+28)—%+3 \/5||h2||vi;28- (5.46)
Thus, combining (5.43), (5.45), (5.44), (5.46) and assuming (5.32), one gets

190s Tor, U2l lyzas S5 ¥~ REN T3 o e,
which implies (5.37) and that 7, 5 is a contraction. Finally, since
Too =& A7 My, (2022, (v3) + (£, (v3))%)

vanishes at v, = 0, we also have v,(0,0) = 0. |

Finally, with analogous arguments to those in the proof of Lemma 5.8, one obtains
differentiability of v, (vq, W) with respect to vy and w with estimates (5.34), (5.35).

6. Solution of the range equation

1 3
In this section we solve the range equation (3.14) in the algebra spaces H/? 9 H7 +6,
where v, = v,(vy, w) is the solution of (3.13); namely we find w such that

Low — My (v1 + va(vy, w) + w)? = 0. 6.1)

6.1. Cases p=5and p =3

Proposition 6.1 (Solution of the range equation for p = 5). Forany§ € (0, é), y € (0,y0),
and R > 0, let p1, p2, p3, N be as in (5.4). There exist Bs > 0, c3 = c3(8) > 0, { :=
£(8) > 0, €s,g > 0, and Cs > 0 such that, for any B > Bs and any € > 0 such that w € Q,

1 3
and (5.5) holds, there exists a C function w: Dy, = W N H,ZJ“s HE +8, vy > w(vy),
satisfying w(0) = 0,

il g+s 340 = P3: (6.2)
t X

lldo, w(v1)]l < Csy INSTI09 R4 (6.3)

lis 3.5
B8inv) L H2 527

t,x»

which solves equation (6.1).
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We are going to prove that the map
Tor:w > £ Ty (01 + v2(v1, w) + w)°) (6.4)
is a contraction, with v, (v, w) as in Proposition 5.1.

Lemma 6.2 (Contraction). Assume the smallness condition (5.5) holds with { > % + 96.
The map T, in (6.4) maps O‘DZZ into itself, and there exists Cs > 0 such that

(g lrad /
[T, (w) — Ty, (w )”Ht%Mfo%M
—1 A7 5+138 p8 w
<Csy 'N:2 R®|w — w,||Ht%+8'}€x%+5 Yw,w' € D, . (6.5)
As a consequence, for any v € D,, there exists a unique w(vy) € ZDZ solving (6.1), and
such that w(0) = 0.

Proof. For brevity, we denote v, (v, w) = v,. By (6.4), Lemma 3.1, algebra property
(2.19), (4.4), and Lemma 4.1, we have

—1 j
[N COU NS IR D DI | A C R P D SR
! * J1tj2+j3=5 ! *
-1 1+28 j
syt ), (N ||v1||v,gx>fl||v2||’2+28||w||“%+8
J1ti2+Jj3=5 H, x
<s )/_1 Z (]\/'1+28'O )11 J2 13 (6.6)

Jitj2+Jj3=5

Then by the smallness assumption (5.5), we have p; < N1+28p1 and p3 < N 1+28[)1, thus
by (6.6) there exists a constant Cs > 0 such that

5 _ 5
ITor I 145 345 < Csy ' N1 RS < 3y I NSO RS = s,
H? 3?2
t X

pr0v1ded c3 > C3 This proves that 7;,, maps i)W into itself. We now prove (6.5). Let
hs € H? +85‘€ z then arguing as to obtain (6.6), and using estimate (5.8), we obtain

10T, I, 3o 300

X

S1€5 Tw ((v1 + va + w)*(hs + dyva[h3))| h¥ i
< ]/—1 Z ||Hw(vl U2 w13 (h3 + 3wv2[h3]))|| %+5”%+8
J1t+j2t+j3=4 H, £3
— 1
SsyTh Y (VTR e (L NEFIRY sl yy g
Ji+i2+j3=4 { X
— 9
syt N2+138R8g||h3||H%+3%;+3, (6.7)

2
Jitiatjz=4 b
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where we have used p, < N'12p; and p3 < N'+28p,. Estimate (6.7) then gives (6.5).
Then the map 75, is a contraction, and since v,(0, 0) = 0 by Proposition 5.1, we have
w(0) = 0. L]

Lemma 6.3 (Differentiability of w(vy)). The function w(vy) is differentiable in vy and
(6.3) holds.

Proof. Due to (6.7) and the smallness condition (5.5), one has that [1 — 9y, 7y, (w)] ! is a

bounded operator onto H}? 2+ H 3+8 , with norm bounded by 2. For brevity let us denote
v2(vy, w(v1)) = v and w(vy) = w. Then for any /; € V1, by Lemma 3.1, (2.19), (5.4),
smallness condition (5.5), and estimate (5.8), one has

”avl 7;)1 (w)[h1]|lH%+6%§+a

t

= 52, w (1 + va + w)*(hy + Do valml s 300

X

<y Z ||HW(U{1U£2wJ'3(h1“raulvz[h]]))”H%Mﬂ%H
J1+Jj2+j3=4 ‘ X

<s V_l Z (N1+28p])jl pézp? (N1+28 + NIOS R4)||]’l] ”le
J1tj2+j3=4
S5 v TINTOeR I gy
This gives (6.3). [

If p = 3, the proof of the existence of a solution w of (6.1) follows arguing as in the
case p = 5.

Proposition 6.4 (Solution of the range equation for p = 3). Forany§ € (0, %), y €(0,y0),
and R > 0, let p1, pa2, p3, N be as in (5.20). There exist Bs > 0, c3 == c3(8) > 0, { ==
£(8) > 0, er,5 > 0, and Cs > 0 such that, for any B > Bs and any & > 0 such that w € Q,,

3
and (5.21) holds, there exists a C' function w: D,, — W N H, 348 Hy +8, vy = w(vy),
satisfying w(0) = 0,

— S p2
w 1 3.5 < P3, dy, w(vg 1 3 < Cse 1N3+6 R~
[ ||Ht2+5‘7€112+8 1Y | dv, w( )||3(V10th,ner2+5«7€n2+5) Y

which solves (6.1).
6.2. Case p =2
Here we solve equation (5.31) with v, = v, (vy, W), which reads

Lo = Ty (201 + v2(v1, B)) (L5 (01 + v2(v1, B))? + T))
+ T (£ (01 + v2 (1, D)% + @), (6.8)

where v, (vq, W) is the function in Proposition 5.6.
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Proposition 6.5 (Solution of the range equation for p = 2). Forany§ < (0, %), y €(0,y0),
and R > 0, assume that p1, p2, p3, N are as in (5.28) and satisfy the assumptions of
Proposition 5.6. There exist c3 = c3(8) >0, Bs >0, b:=b(§) >0, €5 >0, and Cs >0
such that, for any B > Bg and any & > 0 such that w € Q, and (5.32) holds, there exists a
C! function W: D,y — W N H2+ J€2+8 v1 > W(v1), where Dy, is defined as in (5.1),

satisfying w(0) = 0, and

1B, 1os, 300 = P

o - )
”dvlw(vl)||£(V]ﬂV}X,Ht%+8=7€X%+8) < C(g]/ 2N3(1+2 )81{27 (69)

which solves equation (6.8).
We show that the map
D > Ty, (D) = L5 Tw (2(v1 + v2(v1, ©)) (L5 (V1 + v2(v1, T)) + D))
+ &5 T (£, (01 + v2(v1, ) + @)°) (6.10)
is a contraction.

Lemma 6.6 (Contraction). The function Ty, defined in (6.10) maps JD:,;V into itself, with

(ad ~ load ~/
[, (W) — Ty, (0 )||Ht%+8‘7€x%+5
-2 1468 p3 (= _ =~ W
< Csy *VeN' TR — ”H%“Je%“ Vi@, % € DY 6.11)

t X

for some Cs > 0. As a consequence, for any vi € Dy, there exists a unique W(v1) solving
(6.8) and such that w(0) = 0.

Proof. We denote vy := vy(vy, W). By (2.19), Lemmas 3.1, 4.1, and 5.7, (5.28), and the
smallness condition (5.32), one has

€21 (w @O + 225 @1+ 02 s 300 S5 77200+ w2l
<s y_ze\/§N3(1+28)R3,
€, TTw (2(v1 + vz)@)llH%M%gH <s V IN2 5,04
<s V_3N4+8882R4,
3 T (G 04 T2 577 0 o
58 )/_382R4N4(1+28).

Therefore, there exists a constant Cs > 0 such that

-~ - 1
170 @ 3,345 = Cov 2eJeN3 T2 RS < ps,
t X
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where the last inequality holds taking c; = c3(8) > Cs in the definition of p3 (see (5.28)).
We now show that 73, is a contraction. We have that 95 75, (0)[h3] = Fi[hs] + Fzlhs] +
F3 [h3], with

Filhs] = £ Tlw 20502 [h3](£," (v1 + v2)* + D)),
Falhs) = 25 w [2(v1 + v2) (225" ((v1 + v2)dgv2[hs]) + h3)].
Falhs] = 2L, w [(£," (v1 + v2)* + @) (2£," (v + v2)dgva[h3]) + h3)].

By Lemma 3.1, algebra property (2.19), Lemmas 5.7 and 4.1, estimate (5.35), (5.28), and
the smallness condition (5.32), one gets

Filh tas 3.5 Ss v H0gvalh s(y v + va? + |0 1.5 3
IE I 50 5 v MBaliallypgas o+ 2l + 0 s 50

<.y 23 N1H68 R3)1p
=6 € 31 3.5
Y | ||Ht2+33€x2+3

Similarly F, and F3 satisfy the estimates
Folh | 3 < —2N1+68R38% h | .
| F2[ 3]”1'1;2”3&2” sV I 3||Ht2+8J€X2+5
F3lhslll 1.5 3.5 <s Y ONZESERYIns| 10, 2.,
| F3[ 3]||Ht2+836‘x2+8 sV [ 3||Ht2+SJ€X2+5

Combining the estimates on Fj, F>, F3 and assuming that condition (5.32) holds for
suitable parameters b and €g s, one gets

e ) 1468 p3
1950, @Il y1s, 30 53 7 VEN TSRS s
which gives (6.11). Thus 7y, is a contraction. [ ]

The proof of (6.9) follows by similar arguments, using Lemma 3.1, algebra property
(2.19), Lemma 5.7, estimate (5.34), (5.28), and the smallness condition (5.32).

7. Solution of the bifurcation equation

In this section we solve
(a)2 — D Av; — Iy, (v1 + va(vy) + w(vy))? =0,
v2(v1, w(vy)) if p=23,p=5, (7.1
va(vy) = _ .
va(vy, w(vy)) if p=2,
where

o if p =5, va(v1, w(vy)) is the solution of (3.13), whose existence has been proved in
Proposition 5.1 (resp. in Proposition 5.4 if p = 3), and w(vy) is the solution of (6.1),
whose existence has been proved in Proposition 6.1 (resp. in Proposition 6.4 if p = 3);



M. Berti, B. Langella, and D. Silimbani 42

o if p = 2, va(v1, W(vy)) is the solution of (5.30) as in Proposition 5.6, W(vy) is the
solution of (5.31), as in Proposition 6.5, and (cf. (5.29))

w(vy) == £, (vg + v2(v1))* + T(vy). (7.2)

Throughout this section, we suppose that p1, p2, p3, N, and ¢ satisfy the hypotheses of
Sections 5 and 6.

7.1. Restricted Euler-Lagrange functional

We start by observing that (7.1) has a variational structure.

Lemma 7.1. Equation (7.1) is the Euler—Lagrange equation of the restricted action func-
tional
V:Dp = R, vy = ¥(v1) = Y(v1 + v2(v1) + w(vy)), (7.3)

where W is the action functional defined in (3.5). In particular, u = vy + vo(v1) + w(vy)

solves equation (7.1) if and only if vy is a critical point of V.

Proof. We prove the result for p = 5 for definiteness. In view of (3.15)—(39), the fact
that —3;,v1 = Avy, and v, = v, (v1) € vtz,;zs, resp. w = w(vy) € HEMJ&?M, solves

equation (5.9), resp. (6.1), one has

w?—1
2

1 4
+ 5/ / wlly (v1 + vo + w)° sin?(x) dx dt
T Jo

Y(vy) =

1 T .
||U1||§;t12 + E/T/o vo(v1) Iy, (v + vo + w)° sin®(x) dx dt
1 b1
— —/ f (v1 + vo + w)8sin®(x) dx dt,
6 Jr Jo

and by (2.19) the functions v Iy, (v1 + va + w)°, wily (v1 + v2 + w)°, and (v; +
vy + w)8 are in Hf+8 el L2, C L!. Thus W is well posed and differentiable

1 3
since by Propositions 5.1 and 6.1 also dy,, v2[h1] and d,,, w[h;] are in H o Hi ¥ for any
hy € V;. Differentiating equations (5.9) and (6.1), we get

dW(vy)[h] = (Lovi hi)p2 + %/ / dvs[h])£Leva sin?(x) dx dt
| ) T Jo
+ —/ / Vo & (dvalhy]) sin®(x) dx dt
2 Jr Jo
1 b1
+ —/ / dw[h]£,w sin®(x) dx dt
2 Jr Jo

+ %/T/On Wy (dwlhy]) sin(x) dx dt
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T
—// (v1 + v + w)>(hy + dva[h] + dw[h]) sin®(x) dx dt
T Jo
=(£wv1,h1)L% —/[ HVl(vl+V2+w)5hlsin2(x)dxdt,
-~ T Jo

so that d\il(vl)[hl] = 0 if and only if vy solves (7.1). |

By Lemma 7.1, the following result ensures the existence of one solution of equations
(3.1)—(3.2).

Theorem 7.2 (Existence of one critical point). Let § € (0, 1—(1)0). Then the following hold:

Case p =5, p = 3: There exist Ry > 1, €g. g > 0, { :={(8) > 1, and Bs > 1 such that,
if R > Ry, (5.5) holds, B > Bs, p1, p2, p3, N are as in (5.4) if p = 5 and in (5.20) if
p =3 andw > 1, w € Q, then the functional V defined in (7.3) admits a critical point

vgl) € D,, with norm

ifp=>5,
ifp=3.
Case p =2: There exist Ro > 1, €5, g > 0, b :=b(8) > 1, and B5 > 1 such that, if R > Ry,
(5.32) holds, B > Bs, p1, p2, p3, N areasin (5.28), and v < 1, w € Q,, then the functional
U defined in (7.3) admits a critical point vil) € D,, with norm ||v§1) ”V}x = &2 ase — 0.

(7.4)

D= =

6)) _ )¢
loiP lly, = {

In order to prove Theorem 7.2 we first provide a suitable decomposition of the func-
tional W, using Lemma 7.1. We argue separately for the cases p = 5, p = 3 and for the
degenerate case p = 2.

Lemma 7.3 (‘if for p =5, p = 3). The functional 7 defined in (7.3) has the form

. e

V1) = il = Gpa1(v1) + Rpsa (1) Vvi € Dy, (1.5)
where Gy 11 is defined in (3.6), Rp+1(0) = 0, and

dRp+1(vi)[v1]

_/ /ﬂ((vl + v2(v1) + w(v1))® —v7)sin(x) dx dt if p =5,
_ T Jo

= x (7.6)
_/T /02 ((v1 + v2(v1) + w(v1))® —v})sin@y) dndt  if p = 3.
If p = 5 the functions v,(v1) and w(vy) satisfy
[v2(0D)llyzi25 <5 N1 R [vally
P At o T a0

X
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whereas if p = 3,

48 p2
2@z S5 N* RZorly,

- (1.8)
”w(vl)”H%”J(%H <5 ey N3O R2
t

lollyy, -
n

Here, estimates (7.7), (7.8) follow by Propositions 5.1, 6.1, 5.4, 6.4.
The case p = 2 is different since Lemma 4.4 implies that fT fon vf’ sin?2(x)dx dt =0
identically vanishes. We perform a different decomposition.

Lemma 7.4 (\i/ in the case p = 2). For any vy € Dy, one has
P(vy) = —£||U1 ||21 — G4 (v1) + Ra(v1), (7.9)
§4(v1) = / / 2:61 Uh 51n2(x) dx dt, (7.10)
with R4(0) = 0 and
d R4(v1)[v1] = / / viI(ET — £, vEsin?(x) dx dt
- /1; /0 Quiva(v)w(vy) + w(vy)?vy) sin?(x) dx dt

—2// vf(w(vl)—:C;lvf)sinz(x)dxdl. (7.11)
T Jo

We prove Theorem 7.2 as an application of the following abstract result, which is a
particular case of [6, Theorem 2.3]:

Theorem 7.5 (Abstract mountain pass theorem). Let E be a finite-dimensional Hilbert
space equipped with scalar product {-,-) and norm || - ||> = (-,-). Let I: By, C E — R be
a C! functional defined on the ball B,, == {v € E : |v|| < p1} for some p1 > 0, of the
form

I@) = S0P =5 + R().

where § € C'(E,R) is a nonzero homogeneous functional of degree p + 1, p > 1, and
R € CY(B,,,R) satisfies R(0) = 0. Define

TR 1) B 70)
@)= s e O = e
n(g) = mt(8) ifmT(§) >0,
T emm®) irmm ) <o,

and suppose & > 0 (resp. ¢ < 0) if m*(§) > 0 (resp. m~(§) < 0).
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Then there exists a positive constant C, depending on p only, such that, if

|d R()[v]]

a(R) = o7+

veBy, \{0}

<Cm(®). (mg))”‘1 <Cpi. (7.12)

the functional I has a critical point v € B, on a critical level

_ le| (p+1)/(p=1) (R)
. P2 1m(§)((p+ lg)m(g)) p+1)/(p—1 (1 +(9<:1(J§)))~

(R) /(p-1)
=+ 0CE) Grme) 13

for some y € E with ||y|| = 1 and §(y) = m™(§) + O(a(R)) (resp., §(y) = m™(§) +
O(a(R)))-

We shall apply Theorem 7.5 to W in (7.3) with E = (V1, (-, -)thz).

Moreover,

7.2. Cases p=5Sand p =3

We first consider the case p = 5. Since the functional ¢ in (3.6) is positive, we have
m(§6) = m+(‘§6).

Lemma 7.6 (Estimate of m(8s)). There exists C > 0, independent of N, such that
5
= <m(8) < C. 7.14
18 = m(%e) < (7.14)

Proof. By Proposition 4.5 (1) with § = %, one has 9 (v1) < |lv1]l which gives m(§g) <

6
vtl,x ’
C for some C > 0. We now estimate m (&) from below. We observe that, letting v, (¢, x)
= cos(t)eg(x) = cos(t), then v; € Vy, and by (4.1) we have ||V, ||2,V1 = 1. One has

5

1 T
Ge(V1) = g/quOS6(t) dt/(; sin?(x) dx = L

since fT cos®(t) dt = %, and estimate (7.14) is proved. |
We now prove properties of the functional R defined in Lemma 7.3.
Lemma 7.7 (Estimate of a(Rg)). There exists Cs > 0 such that o(Rg) < C3N7%+95 R*.

Proof. We set v, := v,(v1) and w := w(vy). By (7.6), one has
2 . .
[dRs(wD)[v]l S ) / / v/ VP2 sin? (x) dx dt
T Jo

Jitj2=5
J2=1

LD

Jit+j2+j3=5
Jj3=1

/T/(; v vl w s sin?(x) dx dt
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Using (4.10) for the first term one has, for any ji, j, with j; 4+ j» = 5and j, > 1,

“va sin?(x) dx dt| s i |'F

J2
DLl

,x tx

4.4
§ +1
<8 N~ G+ )j2||v ”Jl ||V2||V2+25

(7.7)
<s N~ ( +3)12(N105R4)]2”v1”6

<5 NTOFPRY o5, (7.15)

since N~6+9 R4 < 1, due to the smallness condition in (5.5). The second term is esti-
mated using Lemma 4.3 and, recalling j; 4+ j» 4+ j3 = 5, j3 > 1, one obtains

HV1 (vjl ”w“)vl sin?(x) dx dt

<5 1 TTn 0 w20 [y [villys

J1 J2 J3
| t%”IIVzII ,%”” IIH%H
X X

<s vl e loallyy
P

@4 .
) +1
<5 NAGH )||v1||’1 ||V2||]2+25 lwi”?

lys 3+
;S
(7.7),(5.5)

<s N4G +8)+5+108R4

8||U1||,V1 , (7.16)

which is <sN~61% R4||v; ||V1 , using the smallness condition (5.5) again. Estimates

(7.15) and (7.16) imply |d Re(v1)[v1]| <s N6 R*||v1 ||, , which gives the thesis. m

'vls

Proof of Theorem 7.2 for p = 5. We now verify that the two conditions in (7.12) are sat-
isfied. Let C be the positive constant defined in Theorem 7.5: by (7.14) and Lemma 7.7,

a(Re) CSN‘€+98 R*

m (56) =

<C, (7.17)

71_9§ > 48C5 R*

provided N & . Furthermore, by (7.14), one has

(m(; )>i = 8%(4—58)% < Cpi "= CRet,
6

provided R > (48) #C~!. Then Theorem 7 5 ensures the existence of a critical point v( )

V1. Finally, (7.14), (7.17), and N := ¢ # imply ‘;‘n(fqg = 0(1) as &€ — 0. Then equation

(7.13) of Theorem 7.5 implies ||vi1) ”thx =< etfase — 0. |
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We now consider the case p = 3. Since §4 defined in (3.6) is positive, we have
m(§4) = m+(‘§4).

Lemma 7.8 (Estimate of m(8,)). There exist CT > 0and C;]
such that

1.1, > O, independent of N,

C. . <m(§y) <CT. (7.18)

M1,42

Proof. By (2.20) and by Lemma 4.1, for any v; € V; one has

1 LI
s =5 [ [ otsinenandt < orl,
T Jo b

which gives the upper bound in (7.18). The lower bound follows since there exists ¥,

such that §4(v1) > 0. For example, ¥, (z, n) := cos(wot)eo(n), with eg = e((,“1 H2) 48 in

(2.12). [ ]
We now estimate the functional R4 defined in Lemma 7.3:
Lemma 7.9 (Estimate of o (R4)). There exists Cs > 0 such that a(Rs) < CsN~1 728 R2,

Proof. We set v, = v,(v1) and w = w(vq). By (7.6), one has

dsoonll s 2 | [ / vl v sin(2y) dn di

J1+j2=3
J2=1

// v11+1 ]2w'j3sin(2r])d17dt,

11+]2+13 3
Jj3=1

and we estimate the two terms separately. Using Lemmas 2.3 and 4.1, (4.4), (7.8), and
(5.21), and recalling j; + j» = 3, j» > 1, for the first term one has

“+1 ’2 sin(2n) dn dt

—2428)j2 p2j 4
<s NCi+20)ip ]2”1)1”‘7},;7
_s
<s N 4+25R2||v1||§,t1n. (7.19)

For the second term, using Lemma 4.3, (4.4), (7.8), (5.21) and recalling j; + j» + j3 =3
and j3 > 1, one obtains

3 .
My, (vf' vj w”)oy sin(@n) dy dt| <5 ey~ REN* oI5,

_5
Ss NTIER w3, (7.20)

Combining estimates (7.19) and (7.20), one then gets Lemma 7.9. [
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Proof of Theorem 7.2 for p = 3. By (7.18) and Lemma 7.9, one has

a(Ry) - CgN_%+28R2

mE) — Cuw

527

with C the constant whose existence is stated in Theorem 7.2, provided (5.21) holds with
€R.s small enough. By (7.18) one observes that

€20 CRez,

1
I 2 1 B i
(m(;€4)) e (Cpy )72 =Cp

provided R > (C | M)_f C~". Then the existence of a critical point v{" € V!, such that
||U§1)||'v,1" = g2 as & — 0 follows. .
7.3. Case p =2

In the next lemma we show that ;é4 in (7.10) also assumes negative values. Thus m(;é4) =
—m~(84).

Lemma 7.10 (Estimate of m(§4)). There exists C > 0, independent of N, such that

5
s m(gs) < C. (7.21)

Proof. By Proposition 4.12 (1) with § = % for any v; € V} one has

—€4(v1) < ‘// zéﬁl V] 2 sin%(x) dx dt §C||v1||‘{)t1 ,

for some C > 0, which gives the second inequality in (7.21). We now prove the first
inequality in (7.21). Let v1(¢, x) := cos(t)eg(x) = cos(t), with e¢g = 1 by (2.4). Then
U1 € V7 and ||vg ||thx = 1. We now compute §4(v). Recalling (3.15), one has

/2
// 02 L7 10?7 sin?(x) dx dt
T

/ / — cos(2t) + )( cos(2t) — ) sin®(x) dx dt = 1

thus

Ga(v1)

m(gs) =— in
vieVi\o} [|vr |3,
t,x

. 5
= —6(0) > oo -

We now estimate a(jh) where e7v24 is defined in (7.11). We use the following auxiliary
lemmas.
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Lemma 7.11. There exists Cs > 0 such that

lv2(vn)llyae2s S5 ¥~ R?[vnllyy (7.22)

@D 3as 300 = Coy™ N2 JeR|orly (7.23)
t X

IBEOI 345,305 = Coy RNEE2D oo, - (7.24)
{ X *

Proof. By the chain rule we have

dy,v2(v1)[h1] = (B, v2)(v1, W(v1))[A1] + (B v2)(V1, W(V1))[Dw, W (V1) [A1]],

hence (7.22) follows by (5.34), (5.35), (6.9), and (5.32) and recalling that v,(0) = 0.

Concerning w(vy), we have w(0) = 0 since v2(0,0) = 0 and w(0) = 0. For any
hy € V1, by algebra property (2.19), by Lemmas 3.1 and 5.7, (7.22), (6.9), (5.28), and
(5.32) one has

||dvlw(v1)[hl]||H%+a]€%+g

t X

< 125" (@1 + 92O+ dowala DN s 30+ 1oy BT 4o 3

t
S5y N o (NI 4y TR Bl + y NP OTEeR? [y |
S5 yTINPATEIR ey |l
which implies (7.23), since w(0) = 0.
We now prove (7.24). First we observe that, by (6.8), w(vy) satisfies
T(1) = £, Tw (1 + v2)w + w?) = L5 T (01 + v2 + w)* = (v + v2)2).
Then by algebra property (2.19) and Lemma 3.1 we have

”@(UI)HHI%MJ{%M

X

-1 1+28 j J J
S5y Yo N oy )M a0 @Iy o
J1t2+j3=2 * HE s
J3=1

Now (7.24) follows by (7.22) and (7.23). [
Lemma 7.12. Assume o € Q,. Foranyw € W 0 H[ ' 33, r,s € R, one has
125" = L7 wlay ey < 27 sllwll e geg- (7.25)

Proof. By (3.15) we have

o 1 1
£ -2 )= Y wg,,-( T 2)cos(ez)e,-(x), (7.26)
Uy L0 ® @j Wj
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and

1 1

231 - 0?) _ 16 _ 20tle
w202 — a)jz 02— a)j2

= < - . (127)
‘ (w202 — a)]?)(fz - a)}?) €)%

using (3.16) and [£2 — a)12| > |€ 4+ w;| > |£|. Combining (7.26) and (7.27), one deduces
(7.25). (]

We now exhibit an upper bound for a(ﬁ;;).

Lemma 7.13 (Estimate of a(ﬁ4) ). There exists Cs > 0 such that
a(Rq) < Csy2N"3 8 R2.

Proof. For brevity, we denote v, := v, (v1), w := w(vy), W := w(vy). By (7.11) and (7.2),
we have d R4(v1)[v1] = A(v1) + B(v1) + C(vy1) + D(vy), where

A(vy) = _2/11“ /(;n My, (v + v2)W)vy sin®(x) dx dt,

B(vy) = _Z/T/o vféﬁ;l(Zvlvz + v2) sin?(x) dx dt

=B1(v1)

b4
—2// vlvzé(ia_)l(vl—}—vz)zsinz(x)dxd‘t,
T Jo

‘=B>(v1)

T
C(vy) = —f / w?vy sin?(x) dx dt,
T Jo
D(vy) = Z/T/(; v%(éﬁl_l —:ﬁ;l)vf sin?(x) dx dt.

Estimate of A(v1). By the Cauchy—Schwarz inequality, Lemmas 4.3 and 7.11, (4.4), and
(5.32), we estimate

Al = 2[[Tly; ((v1 4 v2)@) [lpo [v1flpe,
1.5 _1l_g5 ~
S5 (N2 v lgr + N2 ||V2||V[2’;28)||w||Ht%+sJ€§+s loallyy

_ 7
<s v 2RNTefui 3, (7.28)
Estimate of B(vy). We claim that

_ _3_
Bon)| <5 y 2NT2OR i) (7.29)
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By Proposition 4.12, (4.4), (7.22), and (5.32),

-1 2 -3 -3-5
[Brwo)l <5 v villyy N7 lvallyzras (lonllvy, + N72 70 lv2lly212s)

_ _3_
Ss Y ENTETOR? ug
t,x

Similarly, one gets | B2 (v1)] <s y_zN_%_8R2||v1 ||‘{Jl .
t,x

Estimate of C(v1). Recalling (7.2) and using (2.19), Lemmas 3.1 and 7.11, (5.28), and
(5.32) results in

ICDI S5 y N o5, 5 y2VERN T oy, (730)
Estimate of D(vy). Using (4.27), Lemma 7.12, and (2.19), one has

2 —1 —1 2 2 —1 2
ID@IE 1l 165" = 270 g, 5o Ionl2 3 er ™ 10F i e

t,x

-1 —
Soer 2 s I0d, g S5 ey Il gl g
t

1,x t,x t,x

<5 ey INPGEIRGED |y 1t <oy TN o1, L (73D

t,x t,x
Combining estimates (7.28), (7.29), (7.30), and (7.31), one gets a(ﬁ‘;) <s y_3N_%_3 R?.
n

Proof of Theorem 7.2 for p = 2. We verify conditions (7.12). Let C be the positive con-
stant defined in Theorem 7.5: by Lemmas 7.10 and 7.13, one has

a(Rs) - Csy 2N—373R2 —c
m(s) 1 T

provided Csy 2N —3-0R2 < %, which is satisfied due to (5.32). Furthermore,

1 1 ]
() = (5 2 i,
m(&s) S

which is satisfied provided R > Ro := C~'(%). Finally, [v{" |l = &3 by (7.13)

of Theorem 7.5 and from the fact that m(§4) is uniformly bounded in N, as stated in
Lemma 7.10. ]

8. Multiplicity of solutions

In this section we prove multiplicity of solutions.
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Theorem 8.1 (Multiplicity of solutions with different minimal periods). For any p =
2,3, 5, there exists a sequence of integers {ng }xeN withng := 1 and ng 4, > ng forany k
such that the following holds. For any § € (0, ﬁ) and k« € Ny, there exist Rg, > 0 and
€k,.5,R > O such that, if R, &, N are as in the assumptions of Theorem 7.2 and R > Ry,,
and if (5.5) holds with €s g ‘= €k, 5,r in the case p = 5 (respectively (5.21) and (5.32)

in the cases p = 3 and p = 2), there exist 2w -periodic distinct solutions u(l), e, (e
of the form
3.1) ifp=5p=2,
u® =0 + 20" +we?) o P 8.1)
(G2) ifp=3
with minimal period
2 2
ne{ il “.,’TL k=1,... ki
n; — 1 ng_

The following estimates hold:

k 1 4 lfpzs’
||v§ )”V} =g, qi= :
* 2 fp=2p=3

and « «
108 v, < p1s 1020 llyze2 < 2,
N fp=3p=5,
- ng_1N2(1+28)8R2 ifp =2,

with p1, p2, p3 defined in (5.4) if p = 5, respectively in (5.20) if p = 3 and in (5.28) if
p=2

3
346

(k)
w(v 1
” ( 1 )” t2+5 z

The remaining part of this section is devoted to proving Theorem 8.1. Since the depen-
dence of the spaces Vj, V, on the parameter N plays a significant role, in this section we
denote them respectively by V<n, V> y. We regard equations (3.1), (3.2) on the space of
2T”-time-periodic functions

Xo = {u(t,2) = Y pen X_jen Ue.j cos(nlr)e;(2)}.

We define the restrictions to X, of the kernel and range subspaces V, W, V<n, Vopn
defined in (3.7), (3.8), (3.9), (3.10):

Vn =VnNn Xn7 Wn =Wwn Xnv VSN,n = VSN N Xn’ V>N,11 = V>N N Xn'

We note that for any n € N, the space X, is left invariant by both the spatial operator A
defined in (3.4) and £, defined in (3.3).
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Lemma 8.2 (Kernel on 2Z = -periodic functions). A function v € V, if and only if

Z vg cos(nlt)eqp—1(x) ifp=5p=2,
LeNy

v= Z vy cos(nﬁt)eg‘;l;”“z)(n) if p =3, (8.2)
LeNy t=pn

nl— is even

where = || + |p2| + 1.

Proof. If p =2 or p = 5, the thesis follows by (2.16) and by (3.7). If p = 3, itis sufficient
to observe that, by (2.16), w; = 2j + X, thus £ =25 + Q for some j € N, if and only if
¢ — p is an even positive number. Thus one has v € V' if and only if

v(t,n) = Z vg cos(Lt)ee—pu (n),
LeN>p 2
£—p is even

and (8.2) follows restricting to the indexes £ such that £ = n¢’ for some £’ € N,. [ ]

Remark 8.3. In the case p = 3, if j1 is odd, then V;, = {0} for any n even, and V;, # {0}
if and only if n belongs to

Z1m2) N if p is even
. odd integers if Q is odd.

Lemma 8.4. For any s < s’ and any v € Vy, one has ”v”Vf,z < ||v||vts/zns_s,.

Proof. One has

/
oIy, = > lelP@0)* =0 Y v P02 <0 ) v 0> = n?C" “nvnv,,. =

£eN LeN LeN

We look for 2% perlodlc solutions of (3.12)—(3.14). The Lyapunov—Schmidt decom-
position defined in Sectlons 5 and 6 preserves the spaces of 2% == -periodic functions:

Lemma 8.5. Given n € Ny, let 8, p1, p2, p3, & N > n and R be as in the assumptions
of Propositions 5.1, 6.1 if p = 5, resp. Propositions 5.4, 6.4 if p = 3, and Propositions
5.6 and 6.5 if p = 2. For any vi € Vann N Dy, let v2(v1) and w(vy) be the solutions to
(3.13) and (3.14); then v, (v1) € Vs and w(vy) € Wy,

Proof. The functions v, and w are respectively obtained as the fixed point of the con-
tractions 7y, y(v,) and Ty, defined in (5.10) and (6.4) in the case p = 5 (the cases
p = 3, p = 2 are analogous). Then the lemma follows by observing that, for any v; €
Venn N Dy, and w € Wy N SDX; , the operator 7, ,, maps Vs y , into itself, and that for
any v1 € V<yn N Dp,, the operator 75, maps W, into itself. [ ]
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2
dn

In order to fin -periodic solutions of (7.1), we look for critical points of

Uy = Yy_y.no,, -

We recall that U has expansion (7.5) in the cases p =5, p = 3 and (7.9) in the case p = 2.
Proposition 8.6 (Critical point with minimal period). Foranyn € Ny if p =2 o0r p =5,
resp.n € ZWl2) if p = 3 define

Oln(eﬂ) = a(“RleN,nﬂfOpl)» mn(ﬁ) = m(g|V5N,nm$p1)’ (8.3)
where
g ﬁvpﬂ definedin (3.6) ifp=5 p=3,
G4 defined in (7.10)  if p =2,
R Rp+1asin(1.5) ifp=5 p=3,
"\ Raasin(79)  ifp=2,

and m(-) and o(-) are defined in Theorem 7.5. Suppose that there exist B € (0, 1) and
mg > O such that for any m > my,

§(v1) §(v1) _Jptl fp=3p=5
sup 7 = sup 7 = ) (8.4)
v1eVanm\(0} 1Vl 7 wrevayavioy lonlly 4 ifp=2.
Then there exist positive constants C and Cy = C1(B) such that, if
le] \a2
0(R) = Cima(®), ()" = Cpr. (8.5)
my (%)
the functional U has a critical point vgn) with minimal period T, € {1%’ cees 27”}, satisfy-

ing
(@) N
10y, = e72.

(@)
1

Furthermore, vy’ is also a critical point of 7

Proof. By Theorem 7.5 and (8.5), U, admits a critical point vgn) € V<nn which is pro-

portional to a point y® satisfying
@y =1, §0®) =ma@) +r®. r® = O(eu(R)). (8.6)

We note that, since r® = O (ay(R)), provided ;:((‘?;; < C with C = C(B) small enough,

one has (1 — B)mn(€) > |r®|, which by (8.6) gives

G(®) = ma(§) +r® = ma(9) = [r®| > Bma(9).
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Combining the latter inequality with hypothesis (8.4), one gets

g(y™ g
—(())} q) > Bmy(§) > sup (vql) ,
1y vieVanm\(0} 01150

thus for any m > mg one has that y® belongs to V<nyn CV but y® does not belong to

V<N mn, namely y® has minimal period > 2—’; Since vin) and y® are proportional, the

mo
(n

same holds for v, ) It remains to prove that vgn) is also a critical point for the functional U,

To fix ideas, we prove the result for p = 5. The cases p = 3, p = 2 follow analogously.
By Lemma 7.1, a point v; € D, is critical for W if and only if

b1
f/ (Avi + Ty (v1 4 v2(v1) + w(v1))®)hsin®(x) dxdt =0 Vhe Vey. (8.7)
T Jo

in) is critical for \iln, one already has that (8.7) holds for i1 € V< 5, thus it remains

Since v
to prove it for i € Voy N V;-N .- Then we observe that, by Lemma 8.5, vz(vgn)) € VoNn
and w(vgn)) € W,, since vin) € V<N Thus Avgn) + My_y (vgn) + vz(vin)) + w(vgn)))5
belongs to V<y n, namely it is orthogonal to any 2 € V< N V<J-N .» Which gives the thesis.

(]

Theorem 8.1 follows from an iterative application of Lemma 8.5 and Proposition 8.6.
In the next sections we verify the assumptions (8.4), arguing separately for the cases p =5,
p=3p=2
8.1. Cases p=5Sand p =3
We start with p = 5 and we prove lower and upper bounds for m, () defined in (8.3).

Lemma 8.7 (Estimate of m,(9s)). For any § > 0 there exists Cs > 0 and for anyn € N,
there exists k, > 0 such that

Kn < Mp(g) < Csn~ 1793, (8.8)

Proof. We take v, = cos(nt)e,—1(x), then ||Un||'vtlx = n. One has

1 g
Go(vy) = 3 /T cos® (nr) d‘t/o eﬁ_l(x) sin?(x) dx =: ay > 0,

and the lower bound in (8.8) follows setting «, = i_g The upper bound follows because
for any v € V},, by Proposition 4.5 and Lemma 8.4 we have

Gs(v) <5 ||v||j} A 1

IPRNTRS

t,x

5
6
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Proof of Theorem 8.1 for p = 5. By Lemma 8.7 with § = i there exist C > 0, k, > 0

12°
such that
9s(w) _ _C

u 3 <
veVun\{0} ”v”'thn (mn)z

1
< ~kn = Zmn(g6)

provided m > mg(n) := %(%)2 This proves that for any n,m € N there exists mp = mg(n) €
N such that, if m > my(n) and N > n, one has

Is(v) _ 1 Gs(v1)

vevamio 1015, = 2 vievmmaor 01l

namely (8.4) is satisfied. We then define ng := 1, ng4q := mo(ng)ng + 1 and we apply
Proposition 8.6 with n = ny for any k = 1, ..., k4. In particular, assumptions (8.5)
hold for any ng, observing that oy, (Re) < a(Rs) <s N6 R4 by Lemma 7.7 and
My, (86) > Ky by Lemma 8.7, and assuming that R > Ry, = maxg(k, €)' and N <
infy (R4kcy, )1/ 6=99) which is ensured by (5.5). Thus by Proposition 8.6 the functional ¥

admits a critical point v(k) = vgnk ) with minimal period T, {mo ETOTYR 2n } Finally,

by Lemma 8.5, u® = (k) +v (v(k)) + w(v(k)) has the same minimal perlod Ty, ™
Remark 8.8. With careful estimates on m () one can obtain ng; = 3ng + 1 for any k.
For p = 3, defining m,(§,) as in (8.3), we prove the following:

Lemma 8.9 (Estimate of m,(64)). There exists C > 0 and for any n € ZW1:#2) there
exists Ky = Kkn(lL1, U2) > 0 such that

Kn = mn(g4) = Cn_l- (89)

Proof. We take vy (¢, ) = cos(nut)e @-nu (n). Then ||vn||ft)1 =n*u* and
£8)E e D . i

1 P
a(va) = 5 /T cos*(aput) dt / (eff;l,/“)(n)) sin(2n) dn == ag > 0.

Then the lower bound in (8.9) follows with k, (1, 2) = nf‘;}

observe that, by Lemmas 2.3 and 4.1, for any n € ZW1-#2) and v € V, there exists C > 0
such that

1 B , C C__
= [ [T vtemsinendnar < Tl y < Gatl,

t.n

by Lemma 8.4. [ ]

Proof of Theorem 8.1 for p = 3. By Lemma 8.9 there exist C > 0 and k, = rk, (11, 42)
such that g
a(v) _ <

1
sup = — -
veVaa\{0} IV ||V[1n = dom - 2

n(g4)

l\)l'—‘
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provided m > my(n) = L%J + 1. Then for any n,m € N there exists mp = mp(n) € N
such that, if m > mg and N > n, one has

G4(v)
sup n
veva\0} V1l

1 sup G4(v1)
2 vievena\o} V1 ”4'V},7 ’

IA

namely for any n there exists mg(n) € N, such that (8.4) is satisfied for any m > mg(n). We
then define ng := 1, ng4; = mo(ng—1)nx + 1 and Theorem 8.1 follows by Proposition
8.6, withn = ng forany k = 1,..., k. n

8.2. Case p =2

Lemma 8.10 (Estimate of mn(§4)). For any § > 0 there exist Cs,x > 0 and n > 0 such
that foranyn > nand N > n,

Gav1) _ _GCs
veVana\(0) lurll}, T 02T
t,x

£ = mn(§4) =

- (8.10)

Proof. Let v, = cos(nt)ey—1(x). We compute 94(6n). By (7.10), (2.6), using (3.15) and
Lemma 2.1, one has

. 1 1 n—1 1 1 n—1 1 n—1 2
)= -([—S —— 4+ — -
4(0n) 8(4nzzn+2k+1 TP e e Z(2k+1)2)
k=0 k=0 k=0
1
= g(S1(0) + S2(n) + S3(n)).
One has
1 In(n)
—2<-1

Si(m) + S2(n) + S3(n) < — +
8n

n
if n > n large enough. Thus we conclude that

Gaw) __ G 1

1 sl — ~ .
w0 il ~ Iallyy o

mn(é4) = -

This proves the lower bound in (8.10). To prove the upper bound we observe that by
Proposition 4.12 and Lemma 8.4, for any v € V, \ {0},

o o 1 T
—€4(v)§|§4(v)|=5’/1r/(; 2 &7 02 sin? (x) dx dit

<< (vl <o 27484
Sl o Son 2 ol

Then the second estimate in (8.10) follows since

G4 (v) G4(v)
n ) = su — 7 )
v\ 0l vevors 190

This completes the proof. ]
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Proof of Theorem 8.1 for p = 2. By Lemma 8.10 with § = % there exists n € N such that
for any n > n there exist C > 0 and x, > 0 such that

5 c 1 1 .
4(41)) = 37 = Skn = _mn(§4)s
vevam\o} IVllp: 7 (am)z 2 2

provided m > mg(n), with my(n) such that

C 1
=3 = 5ka
nimg(n)2 2

Then for any n > n andm € N there exists my = mg(n) € N such that, if m > myg and N > n,

one has
A0 5a(v) |

1
- sup ;
veVy \{0} ”v”%‘;}" 2 veVona\{0} ||U”1;t177

IA

namely for any n > n there exists mg(n) € N, such that (8.4) is satisfied with = % for
any m > mo(n). We then define ng := 1, n; :=mo(n) +n + 1, ng4; := mo(ng—1)ng + 1,
and Theorem 8.1 follows by Proposition 8.6 withn = ng forany k = 1, ..., k. ]

9. Strong solutions

In this section we prove higher regularity of the solutions found in Theorem 8.1.

Theorem 9.1 (Regularity). Let R, &, N as in the assumptions of Theorem 8.1 and for any
ks € Ny let {u(k)}]]z*:1 be the functions in (8.1). Then for any r > %, s > %, there exist
€rskaR > 0,85 >0, Ay > 0andB, s > 0 such that we have the following:

Cases p = 3,5: Ify_lsNg”S < €r.5,ks,R> €ach solution u® in (8.1) belongs to H] #;
and

k o — k 1
198y < Clrmskn TN w2 @) lyyss < Corrp, 87T N, oD
k 1 2 ’

lw @) g e < Corors iy ™ 671 N,
for some positive constants C; g r s k.. | = 1,2, 3.

Case p = 2: Ify 2eN%s < €r.5,k.,R> €ach solution u® in (8.1) belongs to H[ 3 and
k 1 -1 k 1.2
108 pres < Crrrsi @2 N7 020 s < Comopsieae? N¥,
(k) B
lw@y ) ez e < C3,R sk N7
for some positive constants C; g rs k.. | =1,2,3.

Theorem 9.1 immediately implies Theorems 1.2 and 1.4. Let us prove Theorem 1.2.
Theorem 1.4 follows in analogous way.
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Proof of Theorem 1.2. We prove it for p = 5; the case p = 2 follows similarly. Let 7,
r, s, and d be as in the assumptions of Theorem 1.2. For any k = 1, ..., kx = n define

,gk)(t, x) = u® (w1, x), v,gk) = vik) + vz(vgk)), forany k = 1,...,n. Then, recalling
that N := s_% (see (5.4)), it is sufficient to choose B := B(r,s,d) > 1 such that

1 max{r+s—1,Ars}

1 < 1
g4 Nmax{rbs—Lbns} . o3 Prsa < gid 9.2)

’

and the upper bound in (1.8), (1.9) follows from (9.1). As a consequence of (9.2), (9.1),
and (7.4), one has g% < ||v£k) a7 ges < g3 Nmax{rts—Lhns} < gg—d proving (1.8) and (1.9).
[

Theorem 9.1 is a consequence of the iterative application of the following two lemmas.

1

3
5 and s > 5. Assume that vy € Dy,

Lemma 9.2 (Regularity bootstrap for v;). Let r >
vy = va(v1, w(vy)), and w = w(vy) satisfy

lvillvg, <A1 lvallvg, < p2. (9.3)

lwll gy ges < max{p1, pa}. 9.4)

Then v belongs to Vi +* and
8_1 max{ﬁls 152}17 lfp =3 p = 5,
||V2||ij2 5r,s -1 - . . 9.5)
’ e max{pr. p2}|wllayges  if p =2

Proof. For the cases p = 5, 3, since v, solves (5.9), resp. (5.25), (4.5), Lemma 4.3, (9.3),
we get

o A 94
||V2||'Vt5;2 Ssor g ! Z pflpéz ”w”;-;trgg; Ssor e! max{py, p2}7,

Jit+Jj2+j3=p

which gives (9.5). If p = 2 then v, = e ' A7 Ty, ((2(v1 + v2) + w)w) (cf. (5.30)) and
estimate (9.5) follows similarly. [ ]

Lemma 9.3 (Regularity bootstrap for w). Let A > % n > % There exists K ;, p > 0,
depending only on p and on the algebra constant C ;, in (2.19), such that, if vi € Dp,
and v, (vy) defined in (7.1) satisfy

1

y maxt o1y, 920 lyzent? ™ < Ki o, ©9.6)

then
(1) if p =5, resp. p = 3, then the solution w(vy) of (6.1) found in Proposition 6.1
(resp. Proposition 6.4) belongs to H tA JE and

1

lw@D g < K3k v~ maxtllon i [va@llynd?s )
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(2) if p = 2 then the function w(vy) = W(v1) + £, (v1 + va(v1))?, where W (vy) is
the solution of (6.8), found in Proposition 6.5 belongs to H,’l HE and

1

w(v = _
lw( 1)||H;‘J€ff = 2KA,/L,2y

Proof. For brevity we denote v, := v,(v;) and w := w(vy). Let p = 3, 5.

max{[[vr pais [v2(00) lpaend®. (98)

Step 1: The sequence (Wy)ren defined by Wo := 0 and Wy = £, Ty ((v1 + v2 +
1 3
Wi )?) has limit limg_, o0 Wy = w in H/? o 7 +8. In fact, arguing as in Lemma 6.2, the
map @ — £ Ty ((v1 + v2 + W)?) is a contraction on SOZ. Hence it admits a unique
1 3
fixed point W = limg_, o, Wy in H} + H} + satisfying the equation @ = £, Ty ((v1 +
v, + w)P), which is (6.1). It implies that w = @ = limg_, o, Wy
Step 2: For any k € N each Wy, satisfies (9.7). We proceed by induction. Clearly wy = 0

satisfies (9.7). Now assume that wy_; satisfies (9.7). By Lemma 3.1 and (2.19), there
exists Cy ,,p > 0 such that

€, T (v1 + v2 + W)P | g e
=77 Copp max{ o llpaie, 102l asies w1 gz g0} 9.9)
Then take K, , == CA,M,p_l in (9.6). By (9.9), the fact that wg—, satisfies (9.7),
k[l g2 g1

= V_lck,u,p max{||v; ||th;“’ ||V2||vtl;u, | wx—1 ”H}Je;‘}p

1

-1 -1 — y4
<y Cap My 192l K7 pr ™ maxtlon i, 192 i}

©6

< 7T K max{llvn s V2l
Step 3: Proof of (9.7). By Step 2, the bounded sequence {wy }xen converges up to subse-
quences to a weak limit w € H tA L satisfying

1

1Dl g < Koy pv ™" max{llon L. (vl )}?
t Itz .p Viz Viz

1 3
Since H t)“ JtL' is compactly embedded into H,? o H7 ¥ for § > 0 small enough, and using
Step 1, we deduce that w = w. This proves that w satisfies (9.7).

We now consider the case p = 2.
Step 1: The sequence (Wi )reN defined by Wy := 0 and
W1 = T (V1. va, Wg) = £ Ty (2(v1 + v2)(L51 (v1 + v2)? + Ug))
+ 25 M (25, (v1 4 v2)? + k)%, (9.10)
T - ~ . 1+ 3+8 . . -~
has limit limg_,oo Wy = W in H? ~Hy¢ . Arguing as in Lemma 6.6, the map w —

T (v1,vo, W) is a contraction on i)u;, thus it admits a unique fixed point in J)l?; which
solves (6.8) and therefore it coincides with w.
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Step 2: For any k € N the function Wy satisfies

~ 1 -2 -2 3
10kl e < 5 K27 72 max{os g [v2(00) g} 9.11)

We proceed by induction. Clearly wq satisfies (9.11). Then suppose Wy, satisfies (9.11).

Let Cj ,,» be the algebra constant in (2.19) and take K ,, » = # By Lemma 3.1,
S s hoit2

(2.19), and (9.3),
125" @1+ 2% e < 877 Capa max vl vl ©12)

For any k € N we define w, := éﬁ;l(vl + v2)? + Wy. By (9.10), Lemma 3.1, (2.19), and
(4.4) one has

1Bkt g e

—1
<2y Cx,u,zllwk ”H}g{;j (4 max{[|vy “’Vf;r"’ ||V2||.Vt)t;u} + ||’£k||H;1J{;j) (9.13)

By (9.12), the inductive assumption, assumption (9.6), and K ,, » = S we have

1
32Cl,u,
-1 2
||wk||HtAgg;; <8y CA,M,z max{||vl||1;tl;-u» ||V2||rvtk;ru}

1 -2 -2 3
+ ZKA,M,z)/ max{]|v ”'v,*’j“* ||V2||V£;u}

IA

16y ™! Co a2 max{[[v1 [gasn 102 [y} 9.14)
1
= S max{|v1 e vzl e ©9.15)
Then, by (9.13), (9.14), (9.15), one gets

2

~ |- 3
et lgpsep < 3 Kioy ™ max{orllyzens [oall el

proving the claim.

By Steps 1 and 2 we conclude, as in the cases p = 3, 5, that @ satisfies (9.11). Finally,

(9.12), (9.11) for @ and assumption (9.6) and K ,,» = Tiz imply (9.8). ]
sl

We start by proving Theorem 9.1 in the cases p = 5, p = 3. Given § € (0, ﬁ),
ro = % + 6, and s¢ := % + 8, define for all / > 0 the quantities

3 3
00 =S¢ = 3 + 4, O1+1 =07 + 57 8, (9.16)
108 if p = 5,
0o = . ap = o, (917)
45 if p =3,
1
a1 = pmax{o; — Lar}, a1 =a41— 5 =9, (9.18)

2
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54118 ifp =5,
by == b = pmax{o; + 1,« , 9.19)
0 {3+78 ity =3, 1+1 = pmax{o; 141} (
¢ = max{b; — max{o; — L,a;}, (p — 1) max{o; + 1,a741}}. (9.20)

Lemma 9.4 (Iterative regularity bootstrap). Let p = 3,5 and vil) € D,, as in Theorem
7.2. For any | > 0 and § € (0, 100) there exists €g 51 > 0 such that, if e, R, N are as
in Theorem 7.2 and 0 < y_lsNél < €Rrs.1, then for any A; > ro and p; > so such that
A + p = o7 + 2, the function u = v( ) + vz(v(l)) + w(vg )) belongs to H/ M g0t and

1 1
oMl jorv2 < RePTNTTL Jlry0Y) | oee Spas £7 T N,
i b (9.21)
lw @) 1721 N b
H, IJCM NR 6,0 7/ .

Proof. By (4.4), v1 € Dy, and (5.4), (5.20), we have the first estimate in (9.21) for any /.
We denote vq = vil), vy = vz(vgl)), w = w(vil)). The proof of the second and third

inequalities in (9.21) proceeds by induction.

Initialization. 1f [ = 0, by (9.16), Theorem 7.2, (4.4), the definitions of p1, pz, p3 in (5.4),
(5.20), (9.17), (9.19), for N large enough we have

_1 1
Iorllyen < N7 oy = NI Re7 T, [[vallym < pa = c2(8)RPe7T N,
z z
’ ’ (9.22)
_ D
||w||H{0;g;’0 < p3 <y 'RPer-TNbo,

Claim 1: ||V2||,v00+2 <Rs €7 TN, We apply Lemma 9.2 with s ~ g, r ~> rg, p1 ~
N9lpy, 5y ~"py. By (9.22), taking y~'eN% <ps 1 with £, defined in (9.20), one
deduces (9.3), (9.4). Thus the claim follows by (9.5), recalling that o; > p(oo9 — 1) by
9.18).

Claim 2: For any Ao + o = 09 + 2, with Ao > ro and [Lg > So, the function w satisfies
(9.21) forl = 0. We apply Lemma 9.3. Assumption (9.6) is satisfied since, by (4.4), (5.4),
(5.20), and Claim 1, one has

-1 -1 —1 (=D max{oo+ Lo} TV 1
v max{{[villyoota, [Vallyoo+2 )0 SRy TIeNTITIIEOTRAL Sp oy Te N0,

hence

-1 p—1 .
max{||v L v < inf K ,
V {” 1||’Vt‘7’g+2 || 2||'Vz(z)+2} —= AoE[ro,(TQ-i—Z] Ao,uo,p
1E[s0,00+2]

provided y~1eN % is small enough. Thus by (9.7), (4.4), v, € D,,, and Claim 1 one gets

9.19) T

7TNYP <rs Y e TN,

-1 1 1
”w”H,AOJ(fO <R Y~ max{grI NOot LEP

which is the second estimate in (9.21) for [ = 0.



Time-periodic solutions of completely resonant Klein—-Gordon equations on S3 63

Induction. We now assume that (9.21) holds for / — 1 and we prove it for /.

e . _ :
Claim I1: ||V2||,vol+2 <R, €P- T N¥+1. Assuming y LeNé <Rz, 1, choosing A;_; =
t,z

roand p;—; = 01;1 + 2 — A;_1 = oy, by the induction hypothesis and using (4.4), (9.16),
(9.18) we have

1
< —1
[v1llyzs < Re?

1
No=U o vallynr Spsg e7 TN,
t,z
’ 2
< —1 557 Arbi ©-23)
||w||H;oJ€§l SRSV EPTINTL

We apply Lemma 9.2 with s = 07, p; = Ren T N~ and pr R4 7T N4 Then by
(9.23) assumptions (9.3) and (9.4) are satisfied, taking y_lsNgl <r.s,; 1, with {; given
by (9.20). Thus (9.5) and (9.18) imply the claim.

Claim 12: For any A + u; = o7 + 2 with A; > ro and ;> sg, the function w satisfies
(9.21). We apply Lemma 9.3 with A = A; and & = y;. Indeed, since y~leN% <Rrs.11by
(9.20), and using (5.4), (5.20), and Claim /1, assumption (9.6) of Lemma 9.3 is satisfied,
and thus by (9.7), ”w”Hf/ s <RSI y—lgﬁ Nbi+1_ This concludes the inductive step.

The proof of Theorem 9.1 for p = 2 follows with similar arguments: given § € (0, ﬁ),
ro > % + 8, define for any [ > 0 the quantities

3 3
O'()I:S()ZZE—FS, 0141 ::014—5—8,

g =0, ag:=0, byg:=2+56,
1

Qi1 =by +max{o; — La;} + 1, aj+1 =041 — 2 -4,

bi+1 = 2max{o; + 1,041},

¢ = 2max{b; — max{o; — 1,a;}, max{o; + 1,;41}}-

Then one proves the following:

Lemma 9.5 (Iterative regularity bootstrap). Let p = 2 and vil) € Dy, as in Theorem
7.2. For any | > 0 and § € (0, T%o) there exists €g 51 > 0 such that, if e, R, N are as
in Theorem 7.2 and 0 < y_zsNgl < €R,s,1, then for any A; > ro and u; > so such that

A1+ wp = o7 + 2, the function u = vgl) + vz(vgl)) + w(vgl)) belongs to H,Al JE and
1 1
11 lyere < REENTHL v (oi ) oz Sraa 2N,
(1)

-1 b
[0y o Srsa v~ N,
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