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Compact convergence, deformation of the L2-@-complex
and canonical K -homology classes

Francesco Bei

Abstract. Let .X; 
/ be a compact, irreducible Hermitian complex space of complex dimension m
and with dim.sing.X//D 0. Let .F; �/!X be a Hermitian holomorphic vector bundle overX , and
let us denote by ðF;m;abs the rolled-up operator of the maximal L2-@-complex of F -valued .m; �/-
forms. Let � WM ! X be a resolution of singularities, g a metric onM , E WD ��F and � WD ��� .
In this paper, under quite general assumptions on � , we prove the following equality of analytic K-
homology classes ŒðF;m;abs� D ��ŒðE;m�, with ðE;m the rolled-up operator of the L2-@-complex
of E-valued .m; �/-forms on M . Our proof is based on functional analytic techniques developed
in Kuwae and Shioya (2003) and provides an explicit homotopy between the even unbounded
Fredholm modules induced by ðF;m;abs and ðE;m.
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1. Introduction

Let .X; 
/ be a compact and irreducible Hermitian complex space of complex dimen-
sion m. The existence and geometric interpretation of analytic K-homology classes
induced by the Hodge–Dolbeault operator have been investigated in various papers, see,
e.g., [6, 7, 9, 12, 20]. Concerning the existence the main obstacle is due to the lack of a
satisfactory picture for the L2 theory of the Hodge–Dolbeault operator @C @

t
. To the

best of our knowledge, there are only few cases in which @C @
t

is known to have self-
adjoint extensions with an entirely discrete spectrum. The first is when m D 2 (with no
assumptions on sing.X/) and one considers ðrel, that is, the rolled-up operator of the
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minimalL2-@-complex of .0; �/-forms, see [3, Theorem 3.1]. The second case arises when
dim.sing.X// D 0 (with no assumptions on m) and one considers ðabs=rel, that is, the
rolled-up operator of either the minimal or the maximal L2-@-complex of .0; �/-forms,
see [22, Theorem 1.2] and [2, Theorem 5.2]. In all the previous cases it is known that
the operator ðabs=rel gives rise to an unbounded even Fredholm module and thus to a
class Œðabs=rel� 2 KK0.C.X/;C/, see [7, Propositions 3.6, 3.7 and 3.8]. Moreover, for the
class Œðrel�, the following interesting geometric interpretation is given in [7, Theorem 4.1]
and [20, Proposition 5.1]: given an arbitrarily fixed resolution of singularities � WM ! X

and a Hermitian metric g on M it holds

��ŒðM � D Œðrel� (1)

in KK0.C.X/;C/ with ðM the rolled-up operator of the L2-@-complex of .0; �/-forms
on .M; g/. In this paper, we have a twofold aim: we prove an equality similar to (1), but
for a different operator; and in the proof, we develop a completely different approach
compared with the one used in [7, 20]. More precisely, let .X; 
/ be a compact and
irreducible Hermitian complex space with dim.sing.X// D 0 endowed with a Hermitian
holomorphic vector bundle .F; �/! X . Let

ðE;m;abs W L
2�m;�.reg.X/; F; 
; �/! L2�m;�.reg.X/; F; 
; �/

be the rolled-up operator of the maximal L2-@-complex of F -valued .m; �/-forms.
Let � WM ! X be an arbitrarily fixed resolution ofX , let g be a Hermitian metric onM ,
and let E D ��F and � WD ��� . Our main result, Theorem 4.1, shows that under quite
general assumptions on � , we have the following equality in KK0.C.X/;C/:

��ŒðE;m� D ŒðF;m;abs� (2)

with ðE;m W L2�m;�.M; E; g; �/ ! L2�m;�.M; E; g; �/ the rolled-up operator of
the L2-@-complex of E-valued .m; �/-forms on M and ŒðE;m� the corresponding class
in KK0.C.M/;C/. Certainly, the reader familiar with the topic will notice immediately
that (2) can be proved quickly by adopting the same strategy used in [7, 20] and that goes
back to [12], which is based on the short exact sequence 0! KK0.C.sing.X//;C/!
KK0.C.X/; C/ ! KK0.C0.reg.X//; C/ ! 0 and, crucially, employs the fact that
dim.sing.X// D 0. Nevertheless, there are at least two reasons that we believe make
our paper interesting. First, our result holds in a more general framework than [7, 20]
since we allow the twist with a Hermitian holomorphic vector bundle. Second, our proof
is entirely different. Indeed, we prove the equality (2) in a direct way by constructing
an explicit homotopy between the unbounded even Fredholm modules induced by ðE;m
and ðF;m;rel. Our construction relies on functional analytic techniques, developed in [18],
to tackle spectral convergence problems. Let us now give more details by describing how
the paper is organised. Section 2 contains background material, such as the basic prop-
erties of Hermitian metrics and the corresponding L2-metrics, the functional analytic
framework that will be used in the rest of the paper, and the main definitions and properties
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of analytic K-homology. Section 3 contains the main technical results of this paper. In the
first part, we consider a compact complex manifoldM of complex dimensionm endowed
with a holomorphic Hermitian vector bundle .E;�/!M . We equipM with gt , t 2 Œ0; 1�,
a family of Hermitian metrics on M that degenerates to a positive semidefinite Hermitian
pseudometric h WD g0 as t ! 0 (we refer to Section 3 for a precise formulation). We then
consider the operators

@
g1;gs

E;m;q;max W L
2�m;q.M;E; g1; �/! L2�m;qC1.M;E; gs; �/

and
@
gs ;h

E;m;q;max W L
2�m;q.M;E; gs; �/! L2�m;qC1.A;EjA; hjA; �jA/

with A the open and dense subset of M , where h is positive definite. Under quite general

assumptions on the family gt we show that both @
g1;gs

E;m;q;max and @
gs ;h

E;m;q;max have a well-
defined and compact Green operator

G
@
g1;gs
E;m;q;max

W L2�m;qC1.M;E; gs; �/! L2�m;q.M;E; g1; �/

and
G
@
gs ;h

E;m;q;max
W L2�m;qC1.A;EjA; hjA; �jA/! L2�m;q.M;E; gs; �/

and that when s ! 0

G
@
g1;gs
E;m;q;max

! G
@
g1;h

E;m;q;max
and G

@
gs ;h

E;m;q;max
! G

@
h;h

E;m;q;max

both in the compact sense, see Definition 2.3. The above convergence results are then
used to prove that the resolvent of ðE;m can be continuously deformed with respect to the
operator norm to the resolvent of a self-adjoint operator unitarily equivalent to ðF;m;abs.
We point out that the results of this section hold without any assumption on sing.X/. The
constraint dim.sing.X//D 0 arises only in Section 4 as a sufficient condition to have well-
defined even unbounded Fredholm modules, see Remark 4.1. Finally, in the last section,
we use the above convergence and deformation results to give a direct proof of (2). We
conclude this introduction with a last comment that enlightens another possibly interest-
ing feature of our approach. The strategy adopted in this paper could potentially lead to a
better version of (2). More precisely, if one can prove that G@gs ;gsE;m;q

is compactly conver-
gent to G@h;hE;m;q;max

as s ! 0, then (2) would hold true without assumptions on sing.X/,
see Remark 4.1. Unfortunately, we do not have such a strong convergence result at our
disposal.

2. Background material

2.1. Hermitian metrics and L2-metrics

Let .M; J / be a complex manifold of complex dimensionm and let g and h be Hermitian
metrics on M . Let F 2 C1.M;End.TM// be the endomorphism of the tangent bundle
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such that h.�;�/ D g.F �;�/ and let FC 2 C
1.M; End.TM ˝ C// be the C-linear endo-

morphism induced by F on the complexified tangent bundle. Since F commutes with J ,
it follows that both T 1;0M and T 0;1M are preserved by FC . We denote the corresponding
restrictions with F 1;0C WD FCjT 1;0M and F 0;1C WD FCjT 0;1M . Let now g� and h� be Her-
mitian metrics induced by g and h on T �M , respectively. We have h�.�;�/D g�..F �1/t �;�/
with .F �1/t the transpose of F �1, that is, the endomorphism of T �M induced by F �1.
Let G 2 C1.M; End.T �M// be defined as G WD .F �1/t and let GC , G1;0C and G0;1C

be the C-linear endomorphisms induced by G and acting on T �M ˝ C, T 1;0;�M
and T 0;1;�M , respectively. Let us now denote by gC and hC Hermitian metrics on
TM ˝ C induced by g and h, respectively. Let h�C , h�

a;b
, g�C and g�

a;b
be Hermitian met-

rics on T �M ˝ C and ƒa;b.M/ induced by hC and gC , respectively. Clearly, h�
a;b
D

h�a;0 ˝ h
�
0;b

, g�
a;b
D g�a;0 ˝ g

�
0;b

and h�a;0.�;�/ D g�a;0.G
a;0
C �;�/, h

�
0;b
.�;�/ D g�

0;b
.G

0;b
C �;�/,

h�
a;b
.�;�/ D g�

a;b
.G

a;0
C ˝G

0;b
C �;�/, where G

0;b
C 2 C1.M; End.ƒ0;b.M/// and G

a;0
C 2

C1.M;End.ƒa;0.M/// are the endomorphisms induced in the natural way by G0;1C and
G
1;0
C , respectively. Now, we consider a holomorphic vector bundleE!M endowed with

a Hermitian metric �. Let us denote by g�
a;b;�

and h�
a;b;�

Hermitian metrics induced by
g�
a;b

, h�
a;b

and � onƒa;b.M/˝E, respectively. Let Sa;b 2 C1.M;End.ƒa;b.M/˝E//

given by Ga;0C ˝G
0;b
C ˝ Id. Then, we have

h�a;b;�.�;�/ D g
�
a;b;�.S

a;b
�;�/:

Let �p;qc .M;E/ be the space of smooth E-valued .p; q/-forms with compact support, let
L2�p;q.M;E;g;�/ be the Hilbert space ofE-valuedL2-.p;q/-forms overM with respect
to g and �, and with self-explanatory notation let us also consider L2�p;q.M;E; h;�/.
Given any �;  2 �a;bc .M;E/, we can describe the L2-product induced by h in terms of
the L2-product induced by g as follows:

h ; �iL2�a;b.M;E;h;�/ D

Z
M

h�a;b;�. ; �/ dvolh

D

Z
M

g�a;b;�.S
a;b ; �/

p
det.F / dvolg : (3)

Let us now point out some consequences of (3). If  2 �0;bc .M;E/, we have

h ; iL2�0;b.M;E;h;�/ D

Z
M

h�0;b;�. ;  / dvolh

D

Z
M

g�0;b;�.S
0;b ; /

p
det.F / dvolg

D

Z
M

g�0;b;�
�
.G

0;b
C ˝ Id/ ;  

�p
det.F / dvolg

�

Z
M

jG
0;b
C jg

�
0;b
g�0;b;�. ;  /

p
det.F / dvolg ;
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where jG0;bC jg
�
0;b
WM ! R is the function that assigns to each p 2 M the pointwise

operator norm of G0;bC;p W ƒ
0;b
p .M/! ƒ

0;b
p .M/ with respect to g�

0;b
, that is,

jG
0;b
C jg

�
0;b
.p/ D sup

0¤v2ƒ
0;b
p .M/

vuutg�
0;b
.G

0;b
C v;G

0;b
C v/

g�
0;b
.v; v/

:

In particular, if jG0;bC jg
�
0;b

p
det.F / 2 L1.M/, we obtain

h ; iL2�0;b.M;E;h;�/ �

Z
M

jG
0;b
C jg

�
0;b
g�0;b;�. ;  /

p
det.F / dvolg

�


jG0;bC jg

�
0;b

p
det.F /




L1.M/

Z
M

g�0;b;�. ;  / dvolg

D


jG0;bC jg

�
0;b

p
det.F /




L1.M/

h ; iL2�0;b.M;E;g;�/:

When  2 �m;bc .M/, we have

h ; iL2�m;b.M;E;h;�/ D

Z
M

h�m;b;�. ;  / dvolh (4)

D

Z
M

g�m;b;�.S
m;b ; /

p
det.F / dvolg

D

Z
M

g�m;b;�
��

det.G1;0C /˝G
0;b
C ˝ Id

�
 ; 

�p
det.F / dvolg

D

Z
M

g�m;b;�
�
.Id˝G0;bC ˝ Id/ ;  

�
dvolg

�

Z
M

jG
0;b
C jg

�
0;b
g�m;b;�. ;  / dvolg :

Thus, whenever jG0;bC jg
�
0;b
2 L1.M/, we have

h ; iL2�m;b.M;E;h;�/ �


jG0;bC jg

�
0;b




L1.M/

h ; iL2�m;b.M;E;g;�/;

whereas if there exists a positive constant c, such that g�
0;b
.G

0;b
C �;�/ � cg

�
0;b
.�;�/, then

g�m;b;�
�
.Id˝G0;bC ˝ Id/ ;  

�
� cg�m;b;�. ;  /

and therefore,
h ; iL2�m;b.M;E;h;�/ � ch ; iL2�m;b.M;E;g;�/: (5)

Let us denote by @E;p;q W �p;q.M; E/ ! �p;qC1.M; E/ the Dolbeault operator act-
ing on E-valued .p; q/-forms. When we look at @E;p;q W L2�p;q.M; E; g; �/ !
L2�p;qC1.M; E; h; �/ as an unbounded and densely defined operator with domain
�
p;q
c .M;E/, we denote by

@
g;h

p;q;max=min W L
2�p;q.M;E; g; �/! L2�p;qC1.M;E; h; �/;
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respectively its maximal and minimal extension.The former is the closed extension defined

in the distributional sense: ! 2 D.@
g;h

E;p;q;max/ if ! 2 L2�p;q.M; E; g; �/ and @E;p;q!,
applied in the distributional sense, lies in L2�p;qC1.M; E; h; �/. The latter is defined
as the graph closure of �p;qc .M; E/ in L2�p;q.M; E; g; �/, with respect to the graph

norm of @p;q W �
p;q
c .M; E/ ! L2�p;qC1.M; E; h; �/. With @

g;h;t

E;p;q W �
p;qC1
c .M/ !

�
p;q
c .M/ we denote the formal adjoint of @E;p;q with respect to Hermitian metrics g

on �p;qc .M;E/ and h on �p;qC1c .M;E/; with @
g;h;t

E;p;q;max=min W L
2�p;qC1.M;E; h; �/!

L2�p;q.M; E; g; �/ we denote the corresponding maximal and minimal extensions.
Note that

@
g;h;t

E;p;q;max D .@
g;h

E;p;q;min/
� and @

g;h;t

E;p;q;min D .@
g;h;t

E;p;q;max/
�: (6)

We conclude this section with the following.

Proposition 2.1. Let .M; J / be a complex manifold of complex dimension m and let
.E; �/!M be a Hermitian holomorphic vector bundle overM . Let g1, g2, h1 and h2 be
four Hermitian metrics onM such that h1 � c1g1 and h2 � c2g2, with c1 and c2 positive
constants. Finally, let us consider the operators

@
g1;g2

E;m;q;max W L
2�m;q.M;E; g1; �/! L2�m;qC1.M;E; g2; �/;

@
h1;h2

E;m;q;max W L
2�m;q.M;E; h1; �/! L2�m;qC1.M;E; h2; �/:

If ! 2D.@
h1;h2

E;m;q;max/, then ! 2D.@
g1;g2

E;m;q;max/ and @
h1;h2

E;m;q;max!D @
g1;g2

E;m;q;max!. Moreover,

the induced inclusion
D.@

h1;h2

E;m;q;max/ ,! D.@
g1;g2

E;m;q;max/

is continuous with respect to the corresponding graph norms.

Proof. Since we assumed h1 � c1g1 and h2 � c2g2, it follows from (4) that (5) holds true
for both g1, h1 and g2, h2. Thus, the identity Id W �m;qc .M; E/! �

m;q
c .M; E/ induces

continuous inclusions

L2�m;q.M;E; h1; �/ ,! L2�m;q.M;E; g1; �/

L2�m;q.M;E; h2; �/ ,! L2�m;q.M;E; g2; �/
(7)

for each q D 0; : : : ; m. Let now ! 2 D.@
h1;h2

E;m;q;max/ and let � D @
h1;h2

E;m;q;max!. This is
equivalent to saying that

.�1/mCqC1
Z
M

! ^ @E�;0;m�q�1� D

Z
� ^ �

for any � 2 �
0;m�q�1
c .M; E�/. Thanks to (7), the above equality implies that ! 2

D.@
g1;g2

E;m;q;max/ and that � D @
g1;g2

E;m;q;max!. Finally, again by (7), we can conclude that the

induced inclusion D.@
h1;h2

E;m;q;max/ ,! D.@
g1;g2

E;m;q;max/ is continuous with respect to the cor-
responding graph norms.
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2.2. Functional analytic prerequisites

We briefly recall some functional analytic tools that will be used later. All the material is
taken from [18]. We refer to it for an in-depth treatment. Let ¹Hnºn2N be a sequence of
infinite dimensional separable complex Hilbert spaces. Let H be another infinite dimen-
sional separable complex Hilbert space. Let us denote by h�;�iHn , k�kHn , h�;�iH and k�kH
the corresponding inner products and norms. Let C � H be a dense subset. Assume that
for every n 2 N, there exists a linear map ˆn W C ! Hn. We will say that Hn converges
to H as n!1 if and only if

lim
n!1
kˆnukHn D kukH (8)

for any u 2 C .

Assumption. In the following definitions and propositions, we will always assume that
the sequence ¹Hnºn2N converges to H .

Definition 2.1. Let u 2 H and let ¹unºn2N be a sequence such that un 2 Hn for
each n 2 N. We say that un strongly converges to u as n ! 1 if there exists a
net ¹vˇ ºˇ2B � C tending to u in H such that

lim
ˇ

lim sup
n!1

kˆnvˇ � unkHn D 0: (9)

Definition 2.2. Let u 2 H and let ¹unºn2N be a sequence such that un 2 Hn for
each n 2 N. We say that un weakly converges to u as n!1 if

lim
n!1
hun; wniHn D hu;wiH

for any w 2 H and any sequence ¹wnºn2N , wn 2 Hn, strongly convergent to w.

Proposition 2.2. Let ¹unºn2N be a sequence such that un 2 Hn for each n 2 N. Assume
that there exists a positive real number, c, such that kunkHn � c for every n 2 N. There
then exists a subsequence ¹umºm2N � ¹unºn2N , um 2 Hm, weakly convergent to some
element u 2 H .

Proof. See [18, Lemma 2.2].

Proposition 2.3. Let ¹unºn2N , un 2 Hn, be a sequence weakly convergent to some ele-
ment u 2 H . There then exists a positive real number, `, such that

sup
n2N
kunkHn � ` and kukH � lim inf

n!1
kunkHn :

Proof. See [18, Lemma 2.3].

We now have the following remark. Consider the case of a constant sequence of infin-
ite dimensional separable complex Hilbert spaces ¹Hnºn2N , that is, for each n 2 N,
Hn D H , C D H and ˆn W C ! Hn is nothing but the identity Id W H ! H . Then
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Definitions 2.1 and 2.2 coincide with ordinary notions of convergence in H and weak
convergence in H . Indeed, let ¹vnº � H be a sequence converging to some v 2 H . Then
by taking the constant net ¹vˇ ºˇ2B � H , vˇ WD v as a net in H converging to v, we have

lim
ˇ

lim sup
n!1

kˆnvˇ � vnkHn D lim sup
n!1

kv � vnkH D 0:

Therefore, vn ! v strongly in the sense of Definition 2.1. Conversely, let us assume that
for some net ¹vˇ ºˇ2B � H tending to v in H we have

lim
ˇ

lim sup
n!1

kˆnvˇ � vnkHn D 0:

Given any ˇ 2 B we have kv � vnkH � kv � vˇkH C kvˇ � vnkH . Therefore, for
every ˇ 2 B

lim sup
n!1

kv � vnkH � kv � vˇkH C lim sup
n!1

kvˇ � vnkH

and finally,

lim sup
n!1

kv � vnkH � lim
ˇ
kv � vˇkH C lim

ˇ
lim sup
n!1

kvˇ � vnkH D 0:

Therefore, vn! v inH and thus we showed that Definition 2.1 coincides with the ordin-
ary notion of convergence in H . This, in turn, implies immediately that Definition 2.2
coincides with the standard definition of weak convergence in H . We now have the
following.

Definition 2.3. A sequence of bounded operators Bn W Hn ! Hn compactly converges
to a bounded operator B W H ! H if Bn.un/ ! B.u/ strongly as n ! 1 for any
sequence ¹unºn2N , un 2 Hn, weakly convergent to u 2 H .

Given a Hilbert space H and a bounded operator T W H ! H , we denote by kT kop

the operator norm of T . We recall the following fact.

Proposition 2.4. Let H be a separable Hilbert space and let B and ¹Bnºn2N be
bounded operators acting on H . Assume that for each weakly convergent sequence
¹vnºn2N �H , vn*v as n!1 to some v 2H , we have kBnvn �BvkH ! 0 as n!1.
Then kBn � Bkop ! 0 as n!1 and B is compact.

Proof. See [18, Lemma 2.8].

Finally, we conclude this section by recalling some well-known facts about Green
operators. LetH1 andH2 be separable Hilbert spaces whose Hilbert products are denoted
by h ; iH1 and h ; iH2 . Let T WH1!H2 be an unbounded, densely defined and closed oper-
ator with domain D.T /. Assume that im.T / is closed. Let T � W H2 ! H1 be the adjoint
of T . Then im.T �/ is closed as well, and we have the following orthogonal decomposi-
tions: H1 D ker.T /˚ im.T �/ and H2 D ker.T �/˚ im.T /. The Green operator of T ,

GT W H2 ! H1
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is then the operator defined by the following assignments: if u2 ker.T �/, thenGT .u/D 0,
if u 2 im.T /, then GT .u/ D v, where v is the unique element in D.T / \ im.T �/ such
that T .v/D u. We have thatGT WH2!H1 is a bounded operator. Moreover, ifH1 DH2
and T is self-adjoint, then GT is also self-adjoint. If H1 D H2 and T is self-adjoint and
non-negative, that is, hT u; uiH1 � 0 for each u 2D.T /, then GT is self-adjoint and non-
negative as well. Finally, we recall the following property, which is straightforward to
check.

Proposition 2.5. Let T W H1 ! H2 be as above. The following two properties are then
equivalent:

(1) GT W H2 ! H1 is a compact operator;

(2) the inclusion D.T / \ im.T �/ ,! H1, where D.T / \ im.T �/ is endowed with
the graph norm of T , is a compact operator.

2.3. Analytic K -homology classes

We now recall the definition of KK0.C.X/;C/. We invite the interested reader to con-
sult [13] for a thorough exposition. Let Z be a second countable compact space and
let C.Z/ be the corresponding C �-algebra of continuous complex-valued functions. An
even Fredholm module overC.Z/ is a triplet .H;�;F / satisfying the following properties:

(1) H is a separable Hilbert space.

(2) � is a representation � W C.Z/! B.H/ of C.Z/ as bounded operators on H .

(3) F is an operator on H such that for all f 2 C.Z/:

.F 2 � Id/ ı �.f /; .F � F �/ ı �.f / and ŒF; �.f /� lie in K.H/;

where K.H/ � B.H/ is the space of compact operators.

(4) The Hilbert spaceH is equipped with a Z2-gradingH DHC˚H� in such a way
that for each f 2 C.Z/, the operator �.f / is even-graded, while the operator F
is odd-graded.

Let .H1; �1; F1/ and .H2; �2; F2/ be two even Fredholm modules over C.Z/. A unitary
equivalence between them is a grading-zero unitary isomorphism u W H1 ! H2, which
intertwines the representations �1 and �2 and the operators F1 and F2.

Given two even Fredholm modules .H; �; F0/ and .H; �; F1/ over C.Z/, an oper-
ator homotopy between them is a family of Fredholm modules .H; �; Ft / parameterised
by t 2 Œ0; 1� in such a way that the representation �, the Hilbert space H and its
grading structures remain constant but the operator Ft varies with t and the func-
tion Œ0; 1�! B.H/, t 7! Ft is operator norm continuous. In this case, we will say
that .H; �; F0/ and .H; �; F1/ are operator homotopic.

The notion of direct sum for even Fredholm modules is defined naturally: one takes the
direct sum of the Hilbert spaces, representations and operators F . The zero even Fredholm
module has zero Hilbert space, zero representation and zero operator.
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Now, we can recall Kasparov’s definition of K-homology. The K-homology group
KK0.C.Z/;C/ is the abelian group with one generator Œx� for each unitary equivalence
class of even Fredholm modules over C.Z/ and with the following relations:

• if x0 and x1 are operator homotopic even Fredholm modules, then Œx0� D Œx1�

in KK0.C.Z/;C/,

• if x0 and x1 are any two even Fredholm modules, then Œx0 C x1� D Œx0� C Œx1�

in KK0.C.Z/;C/.

Now, we go on by recalling the notion of even unbounded Fredholm module over the C �-
algebra C.Z/. This is a triplet .H; �;D/ such that:

(1) H is a separable Hilbert space endowed with a unitary �-representation � W

C.Z/!B.H/;D is an unbounded, densely defined and self-adjoint linear oper-
ator on H ;

(2) there is a dense �-subalgebra A � C.Z/, such that, for all a 2 A, the domain
of D is invariant by �.a/ and ŒD; �.a/� extends to a bounded operator on H ;

(3) �.a/.1CD2/�1 is a compact operator on H for any a 2 A;

(4) H is equipped with a grading � D ��, �2 D Id, such that � ı � D � ı � and
� ıD D �� ıD. In other words, � commutes with � and anti-commutes withD.

We now recall the following important result, see [1, Proposition 2.2].

Proposition 2.6. Let .H;�;D/ be an even unbounded Fredholm module overC.Z/. Then�
H;�;D ı .IdCD2/�

1
2
�

is an even Fredholm module over C.Z/.

In what follows, given an even unbounded Fredholm module as above, by the notation
ŒD�we will mean the class induced by the even Fredholm module .H; �;D ı .IdCD2/�

1
2/

in KK0.C.Z/;C/.

Proposition 2.7. Let .H; �;Dt / with t 2 Œ0; 1� be a family of even unbounded Fredholm
modules over C.Z/ with respect to a fixed dense �-subalgebra A � C.Z/. Assume that:

(1) for each a 2A the map Œ0; 1�! B.H/, t 7! ŒDt ; �.a/� is continuous with respect
to the strong operator topology;

(2) the map Œ0;1�!B.H/, t 7! .i CDt /
�1 is continuous with respect to the operator

norm.

Then the following equality:
ŒD0� D ŒD1�

holds in KK0.C.Z/;C/.

Proof. This follows by [1, Remark 2.5 (iv)] and [17, §6]. See also [14].
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We conclude this section with the following.

Lemma 2.1. Let H be a separable Hilbert space and let Dt , t 2 Œ0; 1�, be a family of
unbounded, densely defined and self-adjoint operators with closed range such that

(1) kGDt �GD0kop ! 0 as t ! 0;

(2) k�K;t ��K;0kop! 0 as t! 0, with �K;t WH ! ker.Dt / denoting the orthogonal
projection on ker.Dt / for each t 2 Œ0; 1�.

Then
lim
t!0



.Dt C i/
�1
� .D0 C i/

�1




op D 0:

Proof. First, we need to recall the following formulas: let D W H ! H be an arbitrar-
ily fixed unbounded, densely defined and self-adjoint operator with closed range. Let us
denote the resolvent of D, .D C i/�1 W H ! H , with RD . Then

RDjim.D/ D GD ı .GD C i/
�1
jim.D/:

Let us show the above claim. First, we point out that im.D/ is preserved by the action
of GD and RD . Let now ˇ 2 im.D/ be arbitrarily fixed and let ˛ WD GDˇ. Then
D˛ C i˛ D ˇ C i˛ and consequently

GD.ˇ/ D ˛ D RD.D˛ C i˛/ D RD.ˇ C i˛/ D RD.ˇ C iGDˇ/ D RD..IdC iGD/ˇ/;

that is, GDjim.D/ D RD ı .IdC iGD/jim.D/. Since GD WH !H is self-adjoint, we know
that IdC iGD W H ! H is invertible. Note that .IdC iGD/.im.D// D im.D/. There-
fore, .IdC iGD/jim.D/ W im.D/! im.D/ is invertible and thus ..IdC iGD/jim.D//�1 D
.IdC iGD/�1jim.D/. In this way, we can conclude that

RDjim.D/ D GD ı .IdC iGD/�1jim.D/:

Let �im;t W H ! im.Dt / be the orthogonal projection on im.Dt / for each t 2 Œ0; 1�.
Since RDt jker.Dt / D �i Id we have

.Dt C i/

�1
� .D0 C i/

�1




op

D


.Dt C i/

�1
ı .�K;t C �im;t / � .D0 C i/

�1
ı .�K;0 C �im;0/




op

�


.Dt C i/

�1
ı �im;t � .D0 C i/

�1
ı �im;0




op

C


.Dt C i/

�1
ı �K;t � .D0 C i/

�1
ı �K;0




op

�


GDt ı .IdC iGDt /

�1
ı �im;t �GD0 ı .IdC iGD0/

�1
ı �im;0




op C



�K;t � �K;0

op:

By assumption, we know that k�K;t � �K;0kop ! 0 as t ! 0. This clearly implies
that k�im;t � �im;0kop ! 0 as t ! 0, since �im;t D Id ��K;t . We also know that
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kGDt �GD0kop ! 0, as t ! 0 and this tells us that k.GDt � i/
�1 � .GD0 � i/

�1kop! 0

as t ! 0, see [23, Theorem VIII.18]. Obviously, this in turn implies that

k.IdC iGDt /
�1
� .IdC iGD0/

�1
kop ! 0

as t ! 0. We can thus conclude that both

lim
t!0



GDt ı .IdC iGDt /
�1
ı �im;t �GD0 ı .IdC iGD0/

�1
ı �im;0




op D 0

lim
t!0



�K;t � �K;0

op D 0

and therefore,
lim
t!0



.Dt C i/
�1
� .D0 C i/

�1




op D 0

as desired.

3. Deformation of the L2-@-complex

This section is divided into two subsections and contains the main technical results of this
paper.

3.1. Compact convergence of the Green operators

Let .M; J / be a compact complex manifold of complex dimension m endowed with a
Hermitian pseudometric h. We recall that a Hermitian pseudometric on M is a positive
semidefinite Hermitian product on M , strictly positive over an open and dense sub-
set A �M . Let .E; �/ ! M be a Hermitian holomorphic vector bundle over M . We
make the following assumptions:

• .A; gjA/ is parabolic with respect to some Riemannian metric g on M .

Note that, since M is compact and parabolicity is a stable property through quasi-
isometries, we can conclude that if .A; gjA/ is parabolic with respect to some Riemannian
metric g onM , then .A; gjA/ is parabolic with respect to any Riemannian metric g onM .
Moreover, since .A; gjA/ is parabolic, we know that M n A has zero Lebesgue measure,
see [25, Theorem 3.4 and Proposition 3.1].

• The L2-@ cohomology group

H
m;qC1

2;@max
.A;EjA; hjA; �jA/ WD ker.@

h;h

E;m;qC1;max/=im.@
h;h

E;m;q;max/

is finite dimensional.

Note that, sinceHm;qC1

2;@max
.A;EjA; hjA; �jA/ is finite dimensional, the image of the operator

@
h;h

E;m;q;max W L
2�m;q.A;EjA; hjA; �jA/! L2�m;qC1.A;EjA; hjA; �jA/

is closed. Let g be an arbitrarily fixed Hermitian metric on M . As a first step, we recall
the following result, see [2, Proposition 3.2].
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Proposition 3.1. In the above setting, the following three operators coincide:

@
g;g

E;p;q;max=min W L
2�p;q.A;EjA; hjA; �jA/! L2�p;qC1.A;EjA; hjA; �jA/;

@
g;g

E;p;q W L
2�p;q.M;E; g; �/! L2�p;qC1.M;E; g; �/; (10)

where (10) is the unique closed extension of @E;p;q W �p;q.M; E/ ! �p;qC1.M; E/

viewed as an unbounded and densely defined operator acting betweenL2�p;q.M;E;g;�/
and L2�p;qC1.M;E; g; �/.

Proposition 3.2. In the above setting, the operator

@
g;h

E;m;q;max W L
2�m;q.A;EjA; hjA; �jA/! L2�m;qC1.A;EjA; hjA; �jA/ (11)

has closed range and the corresponding Green operator

G
@
g;h

E;m;q;max
W L2�m;qC1.A;EjA; hjA; �jA/! L2�m;q.A;EjA; gjA; �jA/ (12)

is compact.

Proof. First we note that im.@
g;h

E;m;q;max/ is a closed subspace ofL2�m;qC1.A;EjA;hjA;�jA/.

Indeed, Proposition 2.1 tells us that im.@
h;h

E;m;q;max/ � im.@
g;h

E;m;q;max/, and by the fact

that Hm;qC1

2;@max
.M; h/ is finite dimensional we deduce that the quotient ker.@

h;h

E;m;q;max/=

im.@
g;h

E;m;q;max/ is finite dimensional too, which in turn implies that im.@
g;h

E;m;q;max/ is clo-
sed. Hence, G@g;hE;m;q;max

W L2�m;qC1.A; EjA; hjA; �/! L2�m;q.A; EjA; gjA; �jA/ exists.

Let us consider @
g;h;t

E;m;q;min W L
2�m;qC1.A; EjA; hjA; �jA/! L2�m;q.A; EjA; gjA; �jA/.

Since im.@
g;h

E;m;q;max/ � L
2�m;qC1.A; EjA; hjA; �jA/ is closed by (6), we know that

im.@
g;h;t

E;m;q;min/ � L2�m;q.A; EjA; gjA; �jA/ is closed too. Let us then define B WD

D.@
g;h

E;m;q;max/ \ im.@
g;h;t

E;m;q;min/. If we endow D.@
g;h

E;m;q;max/ with the corresponding

graph product, then B becomes a closed subspace of D.@
g;h

E;m;q;max/, and we have the
following orthogonal decomposition:

D.@
g;h

E;m;q;max/ D ker.@
g;h

E;m;q;max/˚ B:

According to Proposition 2.5, the compactness of (12) amounts to showing that B ,!

L2�m;q.A; EjA; gjA; �jA/ is a compact inclusion, with B endowed with the corres-
ponding graph norm as above. To this aim, let us now consider the operator defined
in (10). Classical elliptic theory on compact manifolds tells us that im.@

g;g

E;m;q/ �

L2�m;qC1.M;E; g; �/ is closed and the corresponding Green operator

G
@
g;g

E;m;q
W L2�m;qC1.M;E; g; �/! L2�m;q.M;E; g; �/ (13)
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is compact. As recalled above, the compactness of (13) is equivalent to saying that the
natural inclusion

D.@
g;g

E;m;q/ \ im
�
.@
g;g

E;m;q/
�
�
,! L2�m;q.M;E; g; �/ (14)

is a compact operator with D.@
g;g

E;m;q/ \ im
�
.@
g;g

E;m;q/
�
�

endowed with the correspond-

ing graph product. Let A WD D.@
g;g

E;m;q/\ im
�
.@
g;g

E;m;q/
�
�

and consider the corresponding

orthogonal decomposition of D.@
g;g

E;m;q/ with respect to the graph product

D.@
g;g

E;m;q/ D ker.@
g;g

E;m;q/˚ A:

Note that, thanks to Propositions 2.1 and 3.1, we know that D.@
g;h

E;m;q;max/ � D.@
g;g

E;m;q/

and @
g;g

E;m;q! D @
g;h

E;m;q;max! for any ! 2 D.@
g;h

E;m;q;max/. We want to show now that

B � A. Let us consider any ! 2 B and let �1 2 ker.@
g;g

E;m;q/, �2 2 A be such that

! D �1 C �2. It is clear that ker.@
g;h

E;m;q;max/ D ker.@
g;g

E;m;q/. Therefore, we get imme-

diately that �2 2 D.@
g;h

E;m;q;max/. Moreover, for any ' 2 ker.@
g;h

E;m;q;max/ D ker.@
g;g

E;m;q/

we have˝
'; �2

˛
L2�m;q.M;E;g;�/

C
˝
@
g;h

E;m;q;max'; @
g;h

E;m;q;max�2
˛
L2�m;qC1.A;E jA;h;�/

D h'; �2iL2�m;q.M;E;g;�/ D 0:

Hence, �2 2B and thus �1D 0 and �2D! since �2 �!D �12 ker.@
g;h

E;m;q;max/\BD¹0º.
Finally, let ¹!kºk2N � B be a bounded sequence with respect to the graph norm of (11).
Thanks to the inclusion B � A and the continuous inclusion L2�m;qC1.A;EjA; h; �/ ,!
L2�m;qC1.M;E; g; �/, we know that ¹!kºk2N � A and that it is bounded with respect
to the graph norm of @

g;g

E;m;q . Since (14) is a compact inclusion, there exists a subsequence
¹ kºk2N �¹!kºk2N and an element 2L2�m;q.M;E;g;�/DL2�m;q.A;EjA;gjA;�jA/
such that  k !  in L2�m;q.A; EjA; gjA; �jA/ as k ! 1. Summarising, given
a sequence ¹!kºk2N � B , which is bounded with respect to the graph norm of (11),
we have proved the existence of a subsequence ¹ kºk2N � ¹!kºk2N and an ele-
ment  2 L2�m;q.A;EjA; gjA; �jA/ such that  k !  in L2�m;q.A; EjA; gjA; �jA/ as
k !1. We can thus conclude that the Green operator

G
@
g;h

E;m;q;max
W L2�m;qC1.A;EjA; hjA; �jA/! L2�m;q.A;EjA; gjA; �jA/

is compact as desired.

Let us now consider M � Œ0; 1� and let p W M � Œ0; 1� ! M be the canonical
projection. Let gs 2 C1.M � Œ0; 1�; p�T �M ˝ p�T �M/ be a smooth section of
p�T �M ˝ p�T �M !M � Œ0; 1� such that:

(1) gs.JX; J Y / D gs.X; Y / for any X; Y 2 X.M/ and s 2 Œ0; 1�;

(2) gs is a Hermitian metric on M for any s 2 .0; 1�;
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(3) g0 D h;

(4) there exists a positive constant a such that g0 � ags for each s 2 Œ0; 1�.

Roughly, gs is a smooth family of J -invariant Riemannian metrics that degenerates
to h at s D 0. Note that .A; gsjA/ is parabolic for any s 2 .0; 1�. Examples of such
families of metrics are easy to build. For instance, if f .s/ is a smooth function on
Œ0; 1� such that f .0/ D 0, f .1/ D 1 and 0 < f .s/ � 1 for each s 2 .0; 1/, then gs WD
.1 � f .s//h C f .s/g satisfies the above requirements, see [5, Proposition 4.2]. Let
Fs 2 C

1.M � Œ0; 1�; p�End.TM// be a section of p�End.TM/!M � Œ0; 1� such that
g1.Fs �;�/ D gs.�;�/ for each s 2 Œ0; 1�. Clearly, F1 D Id and Fs is self-adjoint and posit-
ive definite on M with respect to g1 for each fixed s 2 .0; 1�. Following the notations of
Section 2.1, we have Gs WD .F �1s /t and the induced operators

G
a;0
s;C 2 C

1.A � Œ0; 1�; p�End.ƒa;0.A/// and G0;bs;C 2 C
1.A � Œ0; 1�; p�End.ƒ0;b.A///:

The first main goal of this subsection is to show that the family of Green operators®
G
@
g1;gs
E;m;q

¯
converges in the compact sense to G

@
g1;h

E;m;q;max
as s ! 0. To prove this, we need

some preliminary results.

Proposition 3.3. There exists a suitable constant � � 1 such that the identity map
Id W �m;qc .A;EjA/! �

m;q
c .A;EjA/ gives rise to a continuous inclusion

i W L2�m;q.A;EjA; gsjA; �jA/ ,! L2�m;q.A;EjA; g1jA; �jA/;

which satisfies the following inequality:

k!k2
L2�m;q.A;E jA;g1jA;�jA/

� �k!k2
L2�m;1.A;E jA;gs jA;�jA/

(15)

for any s 2 Œ0; 1�, q D 0; : : : ; m and ! 2 L2�m;q.A;EjA; gsjA; �jA/.

Proof. This follows arguing as in [5, Proposition 3.1 and Lemma 4.1].

We also have the following family of uniform continuous inclusions.

Proposition 3.4. There exists a suitable constant a > 0 such that the identity map
Id W �m;qc .A;EjA/! �

m;q
c .A;EjA/ gives rise to a continuous inclusion

i W L2�m;q.A;EjA; g0jA; �jA/ ,! L2�m;q.A;EjA; gsjA; �jA/;

which satisfies the following inequality:

k!k2
L2�m;q.A;E jA;gs jA;�jA/

� ak!k2
L2�m;q.A;E jA;g0jA;�jA/

(16)

for any s 2 Œ0; 1�, q D 0; : : : ; m and ! 2 L2�m;q.A;EjA; g0jA; �jA/.

Proof. This follows arguing as in [5, Proposition 3.2].
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We now recall the following convergence result.

Proposition 3.5. Let ¹snºn2N � Œ0; 1� be any sequence such that sn ! 0 as n!1.

Consider the Hilbert space L2�m;q.A; EjA; g0jA; �jA/ and the sequence of Hilbert
spaces

®
L2�m;q.A; EjA; gsn jA; �jA/

¯
n2N

. Let C WD L2�m;q.A; EjA; g0jA; �jA/

and for any n 2 N, let ˆm;qn W C ! L2�m;q.A; EjA; gsn jA; �jA/ be the identity map
Id W L2�m;q.A;EjA; g0jA; �jA/! L2�m;q.A;EjA; gsn jA; �jA/, which is well defined
thanks to Proposition 3.4. Then®

L2�m;q.A;EjA; gsn jA; �jA/
¯
n2N

converges to L2�m;q.A;EjA; g0jA; �jA/

in the sense of (8).

Proof. This follows by arguing as in [5, Proposition 3.3].

We have the following immediate consequence.

Corollary 3.1. Let ! 2L2�m;q.A;EjA; g0jA; �jA/ be arbitrarily fixed. Then the constant
sequence ¹!nºn2N , !n WD!,viewed as a sequence where !n2L2�m;q.A;EjA;gsn jA;�jA/
for any n 2 N, converges strongly in the sense of Definition 2.1 to ! as n!1.

In the remaining part of this section, we investigate the compact convergence of the
operatorsG

@
g1;gs
E;m;q

andG
@
gs ;h

E;m;q

, as s! 0. To this aim, we need to prove various preliminary
properties.

Lemma 3.1. Let � 2 �m;qC1c .A; EjA/ and let ¹snºn2N � .0; 1� be a sequence tending
to 0 as n!1. Then

@
g1;gsn ;t

E;m;q � * @
g1;h;t

E;m;q�

as n!1, that is,
®
@
g1;gsn ;t

E;m;q �
¯

converges weakly to @
g1;h;t

E;m;q� inL2�m;q.A;EjA;g1jA;�jA/
as n!1.

Proof. Let f W A � Œ0; 1�! R be the function that assigns to any .p; s/ 2 A � Œ0; 1� the
square of the pointwise norm of @

g1;gs ;t

E;m;q � in p with respect to g1 and �. By the facts
gs 2 C

1.A � Œ0; 1�; p�T �M ˝ p�T �M/ and � 2�m;1c .A/, we know that f is continu-
ous on A � Œ0; 1� and supp.f / � supp.�/ � Œ0; 1�. In particular, supp.f / is a compact
subset ofA� Œ0; 1�. Therefore, there exists a positive constant b 2R such that f .p; s/� b
for any p 2 A and s 2 Œ0; 1�. This latter inequality tells us that

@g1;gsn ;tE;m;q �



2
L2�m;q.A;E jA;g1jA;�jA/

D

Z
A

f .p; s/ dvolg1 � b volg1.A/

for any s 2 Œ0; 1�. Now, as we know that
®

@g1;gsn ;tE;m;q �




L2�m;q.A;E jA;g1jA;�jA/

¯
n2N

is a
bounded sequence, to conclude the proof it is enough to fix a dense subset Z of
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L2�m;q.A;EjA; g1jA; �jA/ and to show that

lim
n!1

˝
!; @

g1;gsn ;t

E;m;q �
˛
L2�m;q.A;E jA;g1jA;�jA/

D
˝
!; @

g1;h;t

E;m;q�
˛
L2�m;q.A;E jA;g1jA;�jA/

for any ! 2 Z. Let us fix Z WD �
m;q
c .A; EjA/ and let ! 2 �m;qc .A; EjA/. Thanks to

Proposition 3.5 and Corollary 3.1 we have

lim
n!1

˝
!; @

g1;gsn ;t

E;m;q �
˛
L2�m;q.A;E jA;g1jA;�jA/

D lim
n!1

˝
@E;m;q!; �

˛
L2�m;qC1.A;E jA;gsn jA;�jA/

D
˝
@E;m;q!; �

˛
L2�m;qC1.A;E jA;hjA;�jA/

D
˝
!; @

g1;h;t

E;m;q�
˛
L2�m;q.A;E jA;g1jA;�jA/

as desired.

The next lemma provides an extension of Proposition 3.1.

Lemma 3.2. For each s 2 .0; 1�, the following three operators coincide:

@
g1;gs

E;p;q;max=min W L
2�p;q.A;EjA; gjA; �jA/! L2�p;qC1.A;EjA; gsjA; �jA/I

@
g1;gs

E;p;q W L
2�p;q.M;E; g1; �/! L2�p;qC1.M;E; gs; �/; (17)

with (17) the unique closed extension of @E;p;q W �p;q.M;E/! �p;qC1.M;E/ viewed
as an unbounded and densely defined operator acting between L2�p;q.M; E; g1; �/
and L2�p;qC1.M;E; gs; �/.

Proof. This is an immediate consequence of Proposition 3.1 and the fact that g1 and gs
are quasi-isometric for each s 2 .0; 1�.

As in the proof of Proposition 3.2, we define Bg1;hm;q � L
2�m;q.A;Ej; g1j; �jA/ as

Bg1;hm;q WD
�
ker.@

g1;h

E;m;q;max/
�?
\D.@

g1;h

E;m;q;max/:

When s 2 .0; 1�, we consider the operator (17) and in analogy with the above construction,
we define Bg1;gsm;q � L

2�m;q.A;EjA; g1jA; �jA/ as

Bg1;gsm;q WD
�
ker.@

g1;gs

E;m;q/
�?
\D.@

g1;gs

E;m;q;/:

Lemma 3.3. For each s 2 .0; 1�, we have

ker.@
g1;g1

E;m;q/ D ker.@
g1;gs

E;m;q/ and Bg1;g1m;q D B
g1;gs
m;q for each s 2 .0; 1�:

If s D 0, we have

ker.@
g1;g1

E;m;q/ D ker.@
g1;h

E;m;q;max/ and Bg1;hm;q � B
g1;g1
m;q :
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Proof. When s 2 .0; 1�, the above equalities follow immediately by Lemma 3.2 and the
fact that g1 and gs are quasi-isometric for each s 2 .0; 1�. When s D 0, the above state-
ments follow by Propositions 2.1 and 3.4.

Corollary 3.2. For each s 2 .0; 1�, the Green operator

G
@
g1;gs
E;m;q

W L2�m;qC1.M;E; gs; �/! L2�m;q.M;E; g1; �/

exists and is compact.

Proof. This follows immediately by Lemmas 3.2 and 3.3.

Lemma 3.4. For each s 2 .0; 1�, let �g1;gsm;q be defined as

�g1;gsm;q WD inf
0¤�2B

g1;gs
m;q



@g1;gsE;m;q�



L2�m;qC1.A;E jA;gs jA;�jA/

�



L2�m;q.A;E jA;g1jA;�jA/

:

Similarly, let

�g1;hm;q WD inf
0¤�2B

g1;h
m;q



@g1;hE;m;q;max�



L2�m;qC1.A;E jA;hjA;�jA/

�



L2�m;q.A;E jA;g1jA;�jA/

:

Let � > 0 and a > 0 be the constants appearing in (15) and (16), respectively. Then,
we have

0 < �g1;g1m;q �
p
��g1;gsm;q �

p
a��g1;hm;q

for each s 2 .0; 1� and q D 0; : : : ; m.

Proof. The inequality 0 < �g1;g1m;q follows by the fact that the operator

@
g1;g1

E;m;q W L
2�m;q.A;EjA; g1jA; �jA/! L2�m;qC1.A;EjA; g1jA; �jA/

has closed range. Let us show now that �g1;g1m;q �
p
��

g1;gs
m;q for each s 2 .0; 1�. Thanks to

Lemma 3.3, we know that Bg1;gsm;q D B
g1;g1
m;q and @

g1;g1

E;m;q�D @
g1;gs

E;m;q� for each s 2 .0; 1� and
� 2 B

g1;gs
m;q . In this way, by Proposition 3.3, we obtain

p
��g1;gsm;q WD inf

0¤�2B
g1;gs
m;q

p
�


@g1;gsE;m;q�




L2�m;qC1.A;E jA;gs jA;�jA/

�



L2�m;q.A;E jA;g1jA;�jA/

D inf
0¤�2B

g1;g1
m;q

p
�


@g1;g1E;m;q�




L2�m;qC1.A;E jA;gs jA;�jA/

�



L2�m;q.A;E jA;g1jA;�jA/

� inf
0¤�2B

g1;g1
m;q



@g1;g1E;m;q�



L2�m;qC1.A;E jA;g1jA;�jA/

�



L2�m;q.A;E jA;g1jA;�jA/

D �g1;g1m;q :
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We now tackle the remaining inequality. By Lemma 3.3 we know that Bg1;hm;q � B
g1;gs
m;q

and @
g1;gs

E;m;q� D @
g1;h

E;m;q;max� for each s 2 .0; 1� and � 2 Bg1;hm;q . In this way, thanks to Pro-
position 3.4, we obtain

p
a�g1;hm;q WD inf

0¤�2B
g1;h
m;q

p
a


@g1;hE;m;q;max�




L2�m;qC1.A;E jA;hjA;�jA/

�



L2�m;q.A;E jA;g1jA;�jA/

� inf
0¤�2B

g1;h
m;q



@g1;gsE;m;q�



L2�m;qC1.A;E jA;gs jA;�jA/

�



L2�m;q.A;E jA;g1jA;�jA/

� inf
0¤�2B

g1;gs
m;q



@g1;gsE;m;q;�



L2�m;qC1.A;E jA;gs jA;�jA/

�



L2�m;q.A;E jA;g1jA;�jA/

D �g1;gsm;q

for each s 2 .0; 1�.

We now have the first main result of this section.

Theorem 3.1. Let ¹snºn2N � .0; 1� be any sequence such that sn! 0 as n!1 and let

G
@
g1;gsn
E;m;q

W L2�m;qC1.M;E; gsn ; �/! L2�m;q.M;E; g1; �/

be the Green operator of @
g1;gsn
E;m;q W L

2�m;q.M; E; gs1 ; �/ ! L2�m;qC1.M; E; gsn ; �/.
Then

G
@
g1;gsn
E;m;q

! G
@
g1;h

E;m;q;max
compactly as n!1:

Proof. Let ¹�snºn2N with �sn 2 L
2�m;qC1.A; EjA; gsn jA; �jA/ be a weakly conver-

gent sequence to some � 2 L2�m;qC1.A; EjA; hjA; �jA/, as n ! 1. Let �sn;1 be the
orthogonal projection of �sn on im.@

g1;gsn
E;m;q/ and let �sn;2 be the orthogonal projection

of �sn on
�
im.@

g1;gsn
E;m;q/

�?. Analogously, let �1 and �2 be the orthogonal projection of �

on im.@
g1;h

E;m;q;max/ and
�
im.@

g1;h

E;m;q;max/
�?, respectively. We have G

@
g1;gsn
E;m;q

�sn;2 D 0 D

G
@
g1;h

E;m;q;max
�2 for each n 2 N. Thus, to prove this proposition, we have to show that

G
@
g1;gsn
E;m;q

�sn;1 ! G
@
g1;h

E;m;q;max
�1 in L2�m;q.A;EjA; g1jA; �jA/ as n!1:

As a first step, we observe that there exists a constant c > 0 such that

k�sn;1kL2�m;qC1.A;E jA;gsn jA;�jA/ � k�snkL2�m;qC1.A;E jA;gsn jA;�jA/ � c

for each n 2 N, see Proposition 2.3. Now consider the sequence
®
G
@
g1;gsn
E;m;q

�sn
¯
n2N

.
By construction, we have G

@
g1;gsn
E;m;q

�sn 2 B
g1;gsn
m;q and so by Lemma 3.3, we obtain

G
@
g1;gsn
E;m;q

�sn 2 B
g1;g1
m;q and

@
g1;g1

E;m;q.G@
g1;gsn
E;m;q

�sn/ D @
g1;gsn
E;m;q.G@

g1;gsn
E;m;q

�sn/ D �sn;1:
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In particular, by applying Proposition 3.3, we obtain

@g1;g1E;m;q.G@
g1;gsn
E;m;q

�sn/



L2�m;qC1.A;E jA;g1jA;�jA/

D k�sn;1kL2�m;qC1.A;E jA;g1jA;�jA/

�
p
�k�sn;1kL2�m;qC1.A;E jA;gsn jA;�jA/ �

p
�c:

Moreover, by Lemma 3.4, we have

G
@
g1;gsn
E;m;q

�sn



L2�m;q.A;E jA;g1jA;�jA/

D


G

@
g1;gsn
E;m;q

�sn;1



L2�m;q.A;E jA;g1jA;�jA/

�
1

�
g1;gs
m;q

k�sn;1kL2�m;qC1.A;E jA;gsn jA;�jA/ �

p
�

�
g1;g1
m;q

c

for each n 2 N. We have just shown that
®
G
@
g1;gsn
E;m;q

�sn
¯
� B

g1;g1
m;q is a bounded sequence

with respect to the graph norm of @
g1;g1

E;m;q . Since G
@
g1;g1
E;m;q

is compact, there exists a

subsequence ¹rnºn2N � ¹snºn2N and elements  2 L2�m;q.A; EjA; g1jA; �jA/ and
� 2 L2�m;qC1.A;EjA; hjA; �jA/, such that

G
@
g1;g1
E;m;q

�rn;1 !  in L2�m;q.A;EjA; g1jA; �/ as n!1

�rn;1 ! � weakly as n!1:

Now, to complete the proof, we have to show that

 2 Bg1;hm;q and @
g1;h

E;m;q;max D � D �1:

Let � 2 �m;qC1c .A;EjA/ be arbitrarily fixed. By Lemma 3.1, we have˝
 ; @

g1;h;t

E;m;q�
˛
L2�m;q.A;E jA;g1jA;�jA/

D lim
n!1

˝
G
@
g1;grn
E;m;q

�rn;1; @
g1;grn ;t

E;m;q �
˛
L2�m;q.A;E jA;g1jA;�jA/

D lim
n!1

˝
@
g1;grn
E;m;q.G@

g1;grn
E;m;q

�rn;1/; �
˛
L2�m;qC1.A;E jA;grn jA;�jA/

D lim
n!1

˝
�rn;1; �

˛
L2�m;qC1.A;E jA;grn jA;�jA/

D h�; �iL2�m;qC1.A;E jA;h;�jA/:

This shows that  2 D.@
g1;h

E;m;q;max/ and that @
g1;h

E;m;q;max D �. Now, considering any

˛ 2 ker.@
g1;h

E;m;q;max/ and keeping in mind that ker.@
g1;h

E;m;q;max/ D ker.@
g1;gs

E;m;q/ for each
s 2 .0; 1�, we have˝

˛; 
˛
L2�m;q.A;E jA;g1jA;�jA/

D lim
n!1

˝
˛;G

@
g1;grn
E;m;q

�rn;1
˛
L2�m;q.A;E jA;g1jA;�jA/

D 0:
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Hence, we can conclude that 2Bg1;hm;q and that @
g1;h

E;m;q;max D �. We are left to show that

�1D �. Let � 2 im.@
g1;h

E;m;q;max/ be arbitrarily fixed. Keeping in mind that im.@
g1;h

E;m;q;max/�

im.@
g1;gsn
E;m;q/ for each n 2 N, we have

h�; �iL2�m;qC1.A;E jA;hjA;�jA/ D lim
n!1
h�; �rn;1iL2�m;qC1.A;E jA;grn jA;�jA/

D lim
n!1
h�; �rniL2�m;qC1.A;E jA;grn jA;�jA/

D h�; �iL2�m;qC1.A;E jA;hjA;�jA/

D h�; �1iL2�m;qC1.A;E jA;hjA;�jA/:

In conclusion, for each � 2 im.@
g1;h

E;m;q;max/, we have

h�; �iL2�m;qC1.A;E jA;hjA;�jA/ D h�; �1iL2�m;qC1.A;E jA;hjA;�jA/

and so we can conclude that �1 D �. Therefore, we have shown that  2 Bg1;hm;q and

that @
g1;h

E;m;q;max D � D �1, that is,  D G
@
g1;h

E;m;q;max
�. Summarising, given a weakly

convergent sequence �sn ! � as n!1 with �sn 2 L
2�m;qC1.A; EjA; gsn jA; �jA/ and

� 2 L2�m;qC1.A;EjA; hjA; �jA/, we have proved the existence of a subsequence ¹rnºn2N

such that
G
@
g1;grn
E;m;q

�rn ! G
@
g1;h

E;m;q;max
�

in L2�m;q.A; g1jA; EjA; �jA/ as n ! 1. Now if we fix an arbitrary subsequence
¹`nºn2N � ¹snºn2N and we repeat the above argument with ¹�`nºn2N , we obtain
a further subsequence ¹tnºn2N � ¹`nºn2N such that G

@
g1;gtn
E;m;q

�tn ! G
@
g1;h

E;m;q;max
� in

L2�m;q.A; g1jA; EjA; �jA/ as n!1. Clearly, this allows us to conclude that

G
@
g1;gsn
E;m;q

�sn ! G
@
g1;h

E;m;q;max
� in L2�m;q.A; g1jA; EjA; �jA/ as n!1

and therefore,
G
@
g1;gsn
E;m;q

! G
@
g1;h

E;m;q;max
compactly as n!1:

The next goal is to establish the compact convergence of the sequence
®
G
@
gsn ;h

E;m;q;max

¯
to G

@
h;h

E;m;q;max
. To do this, we need other auxiliary results.

Lemma 3.5. Let � 2 �m;qC1c .A; EjA/ and let ¹snºn2N � .0; 1� be a sequence tending
to 0 as n!1. Then

@
gsn ;h;t

E;m;q � ! @
h;h;t

E;m;q�

strongly as n!1.

Proof. As a first step, we want to show that over A and for each s 2 Œ0; 1� the

operator @
gs ;h;t

E;m;q can be written as the composition of @
g1;h;t

E;m;q with an endomorphism
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of ƒm;q.A/˝E that depends smoothly on s. We then use this decomposition to tackle
the above limit. As usual, let p W A � Œ0; 1� ! A be the left projection and let Sm;qs 2

C1.A� Œ0;1�;End.p�ƒm;q.A/˝p�E// be defined as Sm;qs WD det.G1;0C;s/˝G
0;q
C;s ˝ Id.

Note that Sm;qs is the family of endomorphisms of p�ƒm;q.A/ ˝ p�E such that
g�s;m;q;�.�; �/ D g

�
1;m;q;�.S

m;q
s �; �/. The previous equality tells us that

g�s;m;q;�..S
m;q
s /�1�; �/ D g�1;m;q;�.�; �/;

which in turn implies that .Sm;qs /�1 is fiberwise self-adjoint with respect to g�s;m;q;� for
each fixed s 2 Œ0; 1�. Besides Sm;qs , let us also introduce Tm;qs WD Id˝G0;qC;s ˝ Id. Clearly,
also Tm;qs 2 C1.A � Œ0; 1�; End.p�ƒm;q.A/ ˝ p�E//. Given any ' 2 �m;qc .A; EjA/

and � 2 �m;qC1c .A;EjA/, we have˝
@E;m;q'; �

˛
L2�m;qC1.A;E jA;hjA;�jA/

D
˝
'; @

g1;h;t

E;m;q�
˛
L2�m;q.A;E jA;g1jA;�jA/

D

Z
A

g�1;m;q;�.'; @
g1;h;t

E;m;q�/ dvolg1

D

Z
A

g�s;m;q;�
�
.Sm;qs /�1'; @

g1;h;t

E;m;q�
�
det�

1
2 .Fs/ dvolgs

D

Z
A

g�s;m;q;�
�
'; .Sm;qs /�1.@

g1;h;t

E;m;q�/
�
det�

1
2 .Fs/ dvolgs

D

Z
A

g�s;m;q;�
�
';
�
det.G1;0C;s/˝G

0;q
C;s ˝ Id

��1
.@
g1;h;t

E;m;q�/
�
det�

1
2 .Fs/ dvolgs

D

Z
A

g�s;m;q;�
�
'; .Id˝G0;qC;s ˝ Id/�1.@

g1;h;t

E;m;q�/
�

dvolgs

D

Z
A

g�s;m;q;�
�
'; .Tm;qs /�1.@

g1;h;t

E;m;q�/
�

dvolgs

D
˝
'; .Tm;qs /�1.@

g1;h;t

E;m;q�/
˛
L2�m;q.A;E jA;hjA;gs jA/

:

Summarising, we have shown that for each ' 2 �m;qc .A;EjA/ and � 2 �m;qC1c .A;EjA/,
we have˝

@E;m;q'; �
˛
L2�m;qC1.A;E jA;hjA;�jA/

D
˝
'; .Tm;qs /�1.@

g1;h;t

E;m;q�/
˛
L2�m;q.A;E jA;gs jA;�jA/

and thus we can conclude that, for each s 2 Œ0; 1�, it holds

@
gs ;h;t

E;m;q D .T
m;q
s /�1 ı @

g1;h;t

E;m;q : (18)

In particular, for s D 0, we have

@
h;h;t

E;m;q D .T
m;q
0 /�1 ı @

g1;h;t

E;m;q :



Compact convergence, L2-@-complex and K-homology classes 23

We are now in position to show that given any arbitrarily fixed � 2�mC1;qc .A;EjA/ and a

sequence ¹snºn2N � .0; 1�with sn! 0 as n!1, we have @
gsn ;h;t

E;m;q �! @
h;h;t

E;m;q� strongly
as n!1. To put it differently, thanks to (18), Proposition 3.5 and Corollary 3.1, we have
to show that

lim
n!1



.Tm;qsn
/�1.@

g1;h;t

E;m;q�/ �ˆ
m;q
sn
..T

m;q
0 /�1.@

g1;h;t

E;m;q�//



L2�m;q.A;E jA;gsn jA;�jA/

D 0:

Let us denote  WD @
g1;h;t

E;m;q�. Since

ˆm;qsn
W L2�m;q.A;EjA; hjA; �jA/! L2�m;q.A;EjA; gsn jA; �jA/

is nothing but the continuous inclusion induced by the identity Id W �m;qc .A; EjA/ !

�
m;q
c .A;EjA/, the above limit amounts to proving that

lim
n!1



..Tm;qsn
/�1 � .T

m;q
0 /�1/. /




L2�m;q.A;E jA;gsn jA;�jA/

D 0:

Let us define the function f W A � Œ0; 1�! R as

f .p; s/ WD
ˇ̌
..Tm;qs /�1 � .T

m;q
0 /�1/. /

ˇ̌2
g�s;m;q;�

.p/:

In other words, f is the function that assigns to each p 2 A and s 2 Œ0; 1� the square of
the pointwise norm of the section .Tm;qs /�1. / � .T

m;q
0 /�1. / in p with respect to gs

and �. Note that f 2 C1c .A � Œ0; 1�;R/ and for each fixed p 2 A we have

lim
s!0

f .p; s/ D 0: (19)

In this way, we obtain

lim
n!1



.Tm;qsn
/�1.@

g1;h;t

E;m;q�/ � .T
m;q
0 /�1.@

g1;h;t

E;m;q�/


2
L2�m;q.A;E jA;gsn jA;�jA/

D lim
n!1



..Tm;qsn
/�1 � .T

m;q
0 /�1/. /



2
L2�m;q.A;E jA;gsn jA;�jA/

D lim
n!1

Z
A

ˇ̌
..Tm;qsn

/�1 � .T
m;q
0 /�1/. /

ˇ̌2
g�sn;m;q;�

dvolgsn

D lim
n!1

Z
A

f .p; sn/
p

det.Fsn/ dvolg1 :

Observe now that det.Fs/ 2 C1.A� Œ0; 1�;R/ and therefore, we have f .p; s/
p

det.Fs/ 2
Cc.A � Œ0; 1�;R/. Thus, by the fact that volg1.A/ <1, we can apply the Lebesgue dom-
inated convergence theorem and (19) to conclude that

lim
n!1

Z
A

f .p; sn/
p

det.Fsn/ dvolg1 D
Z
A

lim
n!1

f .p; sn/
p

det.Fsn/ dvolg1 D 0:

Summarising, we proved that @
gsn ;h;t

E;m;q � ! @
h;h;t

E;m;q� strongly as n!1, as required.
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Lemma 3.6. Let ¹snºn2N � .0; 1� be a sequence with sn ! 0 as n!1. Let ¹ snºn2N ,

with  sn 2 ker.@
gsn ;h

E;m;q;max/, be a weakly convergent sequence to some

 2 L2�m;q.A;EjA; hjA; �jA/

as n!1. Then  2 ker.@
h;h

E;m;q;max/.

Proof. To prove that  2 ker.@
h;h

E;m;q;max/, we have to show that˝
 ; @

h;h;t

E;m;q�
˛
L2�m;q.A;E jA;hjA;�jA/

D 0

for each � 2 �m;qC1c .A;EjA/. Thanks to Lemma 3.5, we have˝
 ; @

h;h;t

E;m;q�
˛
L2�m;q.A;E jA;h;�/

D lim
n!1

˝
 sn ; @

gsn ;h;t

E;m;q �
˛
L2�m;q.A;E jA;gsn jA;�jA/

D lim
n!1

˝
@
gsn ;h

E;m;q;max sn ; �
˛
L2�m;qC1.A;E jA;gsn jA;�jA/

D 0

as  sn 2 ker.@
gsm ;h

E;m;q;max/.

To state the next result, we need some auxiliary notations. Let s 2 Œ0; 1� and let us
consider the orthogonal decomposition

L2�m;q.A;EjA; gsjA; �jA/ D ker.@
gs ;h

E;m;q;max/˚
�
ker.@

gs ;h

E;m;q;max/
�?
: (20)

We denote by �s and �s the orthogonal projection on ker.@
gs ;h

E;m;q;max/ and
�
ker.@

gs ;h

E;m;q;max/
�?,

respectively.

Lemma 3.7. Let � 2
�
ker.@

h;h

E;m;q;max/
�?. Then given any sequence ¹snºn2N � .0; 1� with

sn ! 0 as n!1, we have
�sn
�
ˆm;qsn

.�/
�
! �

strongly as n!1.

Proof. Let  sn WD �sn.ˆsn.�//. Then  sn 2 ker.@
gsn ;h

E;m;q;max/ and in order to prove the
above lemma, we have to show that  sn ! 0 strongly as n!1, that is,

lim
n!1
k snkL2�m;q.A;E jA;gsn jA;�jA/ D 0:

Thanks to (16), we know that ¹ snº is a bounded sequence as

k snkL2�m;q.A;E jA;gsn jA;�jA/ � kˆsn.�/kL2�m;q.A;E jA;gsn jA;�jA/

� ak�kL2�m;q.A;E jA;hjA;�jA/
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for each n 2 N and thus there exists a subsequence ¹ rnº � ¹ snº such that  rn !  

weakly as n!1 to some  2 L2�m;q.A;EjA; hjA; �jA/. We claim now that  D 0 and
that  rn ! 0 strongly as n!1. Indeed, we have

lim
n!1
k rnk

2
L2�m;q.A;E jA;grn jA;�jA/

D lim
n!1
h rn ; �rn.ˆrn.�//iL2�m;q.A;E jA;grn jA;�jA/

D lim
n!1
h rn ; ˆrn.�/iL2�m;q.A;E jA;grn jA;�jA/

D h ; �iL2�m;q.A;E jA;hjA;�jA/ D 0:

Note that the second-to-last equality above follows by the fact that  rn !  weakly and

ˆrn.�/! � strongly while the last equality follows by the fact that �2
�
ker.@

h;h

E;m;q;max/
�?

and  2 ker.@
h;h

E;m;q;max/, see Lemma 3.6. Now, if we fix an arbitrary subsequence
¹ s0nº � ¹ snº and we repeat the above argument with respect to ¹ s0nº, we find a sub-
sequence ¹ r 0nº � ¹ s0nº such that

lim
n!1
k r 0nkL2�m;q.A;E jA;gr 0n jA;�jA/

D 0:

Summarising, every subsequence of ¹ snº has a further subsequence strongly convergent
to 0. We can thus conclude that  sn ! 0 strongly as n!1.

We now have all the ingredients to prove the next result.

Theorem 3.2. Let ¹snºn2N � .0; 1� be any sequence such that sn! 0 as n!1 and let

G
@
gsn ;h

E;m;q;max
W L2�m;qC1.A;EjA; hjA; �jA/! L2�m;q.A;EjA; gsn jA; �jA/

be the Green operator of

@
gsn ;h

E;m;q;max W L
2�m;q.A;EjA; gsn jA; �jA/! L2�m;qC1.A;EjA; hjA; �jA/:

If
G
@
h;h

E;m;q;max
W L2�m;qC1.A;EjA; hjA; �jA/! L2�m;q.A;EjA; hjA; �jA/

is compact and im.@
h;h

E;m;q;max/ D im.@
g1;h

E;m;q;max/, then

G
@
gsn ;h

E;m;q;max
! G

@
h;h

E;m;q;max
compactly as n!1:

Proof. First, we observe that by the assumption im.@
h;h

E;m;q;max/ D im.@
g1;h

E;m;q;max/, we

obtain immediately im.@
h;h

E;m;q;max/ D im.@
gs ;h

E;m;q;max/ for each s 2 .0; 1�, as gs and gs0 are
quasi-isometric for every s; s0 2 .0; 1�. Now, let ¹˛nºn2N � L

2�m;qC1.A;EjA; hjA; �jA/

be a weakly convergent sequence to some ˛ 2 L2�m;qC1.A; EjA; hjA; �jA/, that is,
˛n * ˛ in L2�m;qC1.A; EjA; h; �jA/ as n!1. Let us define ˇn WD G

@
h;h

E;m;q;max
˛n and

ˇ WD G
@
h;h

E;m;q;max
˛. Since we assumed that

G
@
h;h

E;m;q;max
W L2�m;qC1.A;EjA; hjA; �/! L2�m;q.A;EjA; hjA; �jA/
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is compact, we know that ˇn ! ˇ in L2�m;q.A; EjA; hjA; �jA/ as n!1. Let us now
define ˇsn WDˆsn.ˇn/2L

2�m;q.A;EjA;gsn jA;�jA/. Thanks to Proposition 2.1, we know

that ˇsn 2 D.@
gsn ;h

E;m;q;max/ and

@
gsn ;h

E;m;q;maxˇsn D @
h;h

E;m;q;maxˇn D ˛n;1

with ˛n;1 the orthogonal projection of ˛n on im.@
h;h

E;m;q;max/. Note that the above equalities

and the fact that im.@
h;h

E;m;q;max/ D im.@
gsn ;h

E;m;q;max/ for each n 2 N imply

�sn.ˇsn/ D G@
gsn ;h

E;m;q;max
˛n

for each n2N, with �sn defined in (20). We are in a position to prove thatG
@
gsn ;h

E;m;q;max
˛n!ˇ

strongly as n!1. Thanks to Proposition 3.5 and Corollary 3.1, this means that we have
to show that

lim
n!1



ˆsn.ˇ/ �G@gsn ;hE;m;q;max
˛n



L2�m;q.A;E jA;gsn jA;�jA/

D 0:

We have 

ˆsn.ˇ/ �G@gsn ;hE;m;q;max
˛n



L2�m;q.A;E jA;gsn jA;�jA/

D


ˆsn.ˇ/ � �sn.ˇsn/

L2�m;q.A;E jA;gsn jA;�jA/

D


ˆsn.ˇ/ � �sn.ˆsn.ˇ//C �sn.ˆsn.ˇ// � �sn.ˇsn/

L2�m;q.A;E jA;gsn jA;�jA/

�


ˆsn.ˇ/ � �sn.ˆsn.ˇ//

L2�m;q.A;E jA;gsn jA;�jA/
C


�sn.ˆsn.ˇ// � �sn.ˇsn/

L2�m;q.A;E jA;gsn jA;�jA/

�


ˆsn.ˇ/ � �sn.ˆsn.ˇ//

L2�m;q.A;E jA;gsn jA;�jA/
C


ˆsn.ˇ/ �ˆsn.ˇn/

L2�m;q.A;E jA;gsn jA;�jA/

.by (16)/ �


ˆsn.ˇ/ � �sn.ˆsn.ˇ//

L2�m;q.A;E jA;gsn jA;�jA/
C a



ˇ � ˇn

L2�m;q.A;E jA;hjA;�jA/:
We have already seen above that

lim
n!1



ˇ � ˇn

L2�m;q.A;E jA;h;�/ D 0:
Moreover, by applying Lemma 3.7, we know that

lim
n!1



ˆsn.ˇ/ � �sn.ˆsn.ˇ//

L2�m;q.A;E jA;gsn jA;�/ D 0:
Summarising, we proved that

lim
n!1



ˆsn.ˇ/ �G@gsn ;hE;m;q;max
˛n



L2�m;q.A;E jA;gsn jA;�/

D 0

and so, we can conclude that G
@
gsn ;h

E;m;q;max
! G

@
h;h

E;m;q;max
compactly as n!1.
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As in Theorem 3.2, we continue to assume that im.@
h;h

E;m;q;max/ D im.@
g1;h

E;m;q;max/. For
each s 2 .0; 1� let us consider the following orthogonal decomposition:

L2�m;q.A;EjA; gsjA; �jA/

D
�
ker.@

gs ;h

E;m;q;max/ \ ker.@
g1;gs ;t

E;m;q�1/
�
˚ im.@

g1;gs

E;m;q�1/˚ im.@
gs ;h;t

E;m;q;min/
(21)

and let

�
m;q
K;s W L

2�m;q.A;EjA; gsjA; �jA/! ker.@
gs ;h

E;m;q;max/ \ ker.@
g1;gs ;t

E;m;q�1/

and
�
m;q
I;s W L

2�m;q.A;E; gs; �/! im.@
g1;gs

E;m;q�1/

be the orthogonal projections on ker.@
gs ;h

E;m;q;max/ \ ker.@
g1;gs ;t

E;m;q�1/ and im.@
g1;gs

E;m;q�1/

induced by (21). For s D 0, we consider the orthogonal decomposition

L2�m;q.A;EjA; hjA; �jA/

D
�
ker.@

h;h

E;m;q;max/ \ ker.@
g1;h;t

E;m;q�1;min/
�
˚ im.@

g1;h

E;m;q�1;max/˚ im.@
h;h;t

E;m;q;min/
(22)

and the corresponding orthogonal projections

�
m;q
K;0 W L

2�m;q.A;EjA; hjA; �jA/! ker.@
h;h

E;m;q;max/ \ ker.@
g1;h;t

E;m;q�1/

and
�I;0 W L

2�m;q.A;EjA; hjA; �jA/! im.@
g1;h

E;m;q�1/:

The last goal of this subsection is to show that �m;q
k;sn
! �

m;q

k;0
compactly, as n!C1.

Lemma 3.8. Let ¹snºn2N � .0; 1� be a sequence with sn ! 0 as n ! 1. Let  2

ker.@
h;h

E;m;q;max/ \ ker.@
g1;h;t

E;m;q�1;min/ be arbitrarily fixed. Then

�
m;q
K;sn

.ˆm;qsn
. //!  

strongly as n!1.

Proof. Thanks to Corollary 3.1, we know that ˆm;qsn . / !  strongly as n ! 1.
Thus, we need to show that both �m;qI;sn

.ˆ
m;q
sn . // and ˆm;qsn . / � �

m;q
K;sn

.ˆ
m;q
sn . // �

�
m;q
I;sn

.ˆ
m;q
sn . // converge strongly to 0 as n ! 1. By Proposition 2.1, we know that

ˆ
m;q
sn . / 2 ker.@

gsn;h
E;m;q;max/ for each n. Hence,

ˆm;qsn
. / � �

m;q
K;sn

.ˆm;qsn
. // � �

m;q
I;sn

.ˆm;qsn
. // D 0

for each n and consequently

ˆm;qsn
. / � �

m;q
K;sn

.ˆm;qsn
. // � �

m;q
I;sn

.ˆm;qsn
. //! 0
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strongly as n!1. Concerning �m;qI;sn
.ˆ

m;q
sn . //, we know that

�m;qI;sn

.ˆm;qsn
. //




L2�M;q.A;E jA;gsn jA;�jA/

�


ˆm;qsn

. /



L2�M;q.A;E jA;gsn jA;�jA/

� a


 



L2�M;q.A;EA;hjA;�jA/
;

see (16). Thus, ¹�m;qI;sn
.ˆ

m;q
sn . //ºn2N is a bounded sequence and therefore by Proposi-

tion 2.2 there exists a subsequence
®
�
m;q

I;s0n
.ˆ

m;q

s0n
. //

¯
n2N
�
®
�
m;q
I;sn

.ˆ
m;q
sn . //

¯
n2N

and

an element  0 2 L2�m;q.A;EjA; hjA; �jA/ such that

�
m;q

I;s0n
.ˆ

m;q

s0n
. //!  0

weakly as n ! 1. Since �m;q
I;s0n

.ˆ
m;q

s0n
. // 2 im.@

g1;gs0n
E;m;q�1/ and �m;q

I;s0n
.ˆ

m;q

s0n
. // !  0

weakly as n ! 1, we can argue, as in the proof of Theorem 3.1, to conclude that

 0 2 im.@
g1;h

E;m;q;max/. We want to show that 0D 0 and that �m;q
I;s0n

.ˆ
m;q

s0n
. //! 0 strongly

as n!1. Let ˇ 2 im.@
g1;h

E;m;q;max/ be arbitrarily fixed. We have˝
 0; ˇ

˛
L2�m;q.A;E jA;hjA;�jA/

D lim
n!1

˝
�
m;q

I;s0n
.ˆ

m;q

s0n
. //;ˆ

m;q

s0n
.ˇ/

˛
L2�m;q.A;E jA;gs0n

jA;�jA/

D lim
n!1

˝
�
m;q

I;s0n
.ˆ

m;q

s0n
. //C �

m;q

K;s0n
.ˆ

m;q

s0n
. //;ˆs0n.ˇ/

˛
L2�m;q.A;E jA;gs0n

jA;�jA/

D lim
s!1

˝
ˆ
m;q

s0n
. /;ˆ

m;q

s0n
.ˇ/

˛
L2�m;q.A;E jA;gs0n

jA;�jA/

D
˝
 ; ˇ

˛
L2�m;q.A;E jA;hjA;�jA/

D 0:

Note that the first equality above follows by the fact that �m;q
I;s0n

.ˆ
m;q

s0n
. //!  0 weakly

and ˆ
m;q

s0n
.ˇ/ ! ˇ strongly. The second equality is a consequence of the fact that

ˆ
m;q
s .ˇ/ 2 im.@

g1;gs

E;m;q/ as im.@
g1;h

E;m;q;max/ � im.@
g1;gs

E;m;q/ for each 0 < s � 1. Finally, the
third equality follows by the fact thatˆm;q

s0n
. /� �

m;q

K;s0n
.ˆ

m;q

s0n
. //� �

m;q

I;s0n
.ˆ

m;q

s0n
. //D 0

for each n. We can thus conclude that  0 D 0 as h 0; ˇiL2�m;q.A;E jA;hjA;�jA/ D 0 for any

arbitrarily fixed ˇ 2 im.@
g1;h

E;m;q;max/. We are left to show that �m;q
I;s0n

.ˆs0n. //! 0 strongly
as n!1. To this aim we have

lim
n!1

˝
�
m;q

I;s0n
.ˆ

m;q

s0n
. //; �

m;q

I;s0n
.ˆ

m;q

s0n
. //

˛
L2�m;q.A;E jA;gs0n

jA;�jA/

D lim
n!1

˝
�
m;q

I;s0n
.ˆ

m;q

s0n
. //; �

m;q

K;s0n
.ˆ

m;q

s0n
. //C �

m;q

I;s0n
.ˆ

m;q

s0n
. //

˛
L2�m;q.A;E jA;gs0n

jA;�jA/

D lim
n!1

˝
�
m;q

I;s0n
.ˆ

m;q

s0n
. //;ˆ

m;q

s0n
. /

˛
L2�m;q.A;E jA;gs0n

jA;�jA/

D
˝
 0;  

˛
L2�m;q.A;E jA;hjA;�jA/

D 0:

In conclusion, �m;q
I;s0n

.ˆ
m;q

s0n
. // ! 0 strongly as n ! 1. Now, if we fix an arbitrary

subsequence ¹rnºn2N � ¹snºn2N and we repeat the above argument, we conclude that
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there exists a subsequence ¹r 0nºn2R � ¹rnºn2N such that �I;r 0n.ˆ
m;q

r 0n
. //! 0 strongly as

n!1. We can thus conclude that �m;qI;sn
.ˆ

m;q
sn . //! 0 strongly as n!1 and hence

that �m;qK;sn
.ˆ

m;q
sn . //!  strongly as n!1.

Lemma 3.9. If dim.Hm;q

@E
.M;E// D dim.Hm;q

2;@max
.A;EjA; hjA; �jA//, then for each s 2

.0; 1� the linear map

�
m;q
K;s ıˆ

m;q
s W ker.@

g1;h;t

E;m;q�1;min/ \ ker.@
h;h

E;m;q;max/! ker.@
g1;gs ;t

E;m;q�1/ \ ker.@
gs ;h

E;m;q;max/

is an isomorphism.

Proof. By assumption, we know that g1 and gs are quasi-isometric for each s 2 .0; 1� and

that im.@
g1;h

E;m;q�1;max/D im.@
h;h

E;m;q�1;max/ inL2�m;q.A;EjA;hjA;�jA/. This tells us that for

each s 2 .0;1�we have im.@
g1;h

E;m;q�1;max/D im.@
gs ;h

E;m;q�1;max/ inL2�m;q.A;EjA;hjA;�jA/
and thus

ˆm;qs W L2�m;q.A;EjA; hjA; �jA/! L2�m;q.A;EjA; gsjA; �jA/

induces an injective linear map between the L2-@-cohomology groups

ˆm;qs W ker.@
h;h

E;m;q;max/=im.@
g1;h

E;m;q�1;max/! ker.@
gs ;h

E;m;q;max/=im.@
g1;gs

E;m;q�1/: (23)

Note that we have

dim
�
H
m;q

2;@max
.A;EjA; hjA; �jA/

�
D dim

�
ker.@

h;h

E;m;q;max/=im.@
g1;h

E;m;q�1;max/
�

� dim
�
ker.@

gs ;h

E;m;q;max/=im.@
g1;gs

E;m;q�1/
�

� dim
�
ker.@

g1;g1

E;m;q/=im.@
g1;g1

E;m;q�1/
�

D dim
�
H
m;q

@E
.M;E/

�
D dim

�
H
m;q

@max
.A;EjA; hjA; �jA/

�
:

We can thus conclude that (23) is an isomorphism for each 0 < s � 1. Thanks to (21) and
(22) we have isomorphisms

ker.@
g1;h;t

E;m;q�1;min/ \ ker.@
h;h

E;m;q;max/ Š ker.@
h;h

E;m;q;max/=im.@
g1;h

E;m;q�1;max/ (24)

and
ker.@

g1;gs ;t

E;m;q�1/ \ ker.@
gs ;h

E;m;q;max/ Š ker.@
gs ;h

E;m;q;max/=im.@
g1;gs

E;m;q�1/: (25)

It is easy to check that if ˛ 2 ker.@
g1;h;t

E;m;q�1;min/ \ ker.@
h;h

E;m;q;max/ is the unique represent-

ative in ker.@
g1;h;t

E;m;q�1;min/ \ ker.@
h;h

E;m;q;max/ of Œ˛� 2 ker.@
h;h

E;m;q;max/=im.@
g1;h

E;m;q�1;max/,

then �m;qK;s .ˆ
m;q
s .˛// is the unique representative in ker.@

g1;gs ;t

E;m;q�1/ \ ker.@
gs ;h

E;m;q;max/ of

Œˆ
m;q
s .˛/� 2 ker.@

gs ;h

E;m;q;max/=im.@
g1;gs

E;m;q�1/. The conclusion now follows immediately by
(23), (24) and (25).
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Theorem 3.3. In the setting of Theorem 3.2, assume in addition that dim.Hm;q

@
.M;E//D

dim.Hm;q

2;@max
.A;E; h; �//. Let ¹snºn2N � .0;1� be a sequence with sn! 0 as n!1. Then

�
m;q
K;s ! �

m;q
K;0

compactly as n!1.

Proof. Let ¹ 1; : : : ;  `º be an orthonormal basis of ker.@
g1;h;t

E;m;q�1;min/ \ ker.@
h;h

E;m;q;max/

and for each j 2 ¹1; : : : ; `º let  j;sn WD �
m;q
K;sn

.ˆ
m;q
sn . j //. Then, by Lemmas 3.8 and 3.9

we know that ¹ 1;sn ; : : : ;  `;snº is a basis for ker.@
g1;gsn ;t

E;m;q�1/ \ ker.@
gsn ;h

E;m;q;max/ and

 j;sn !  j strongly as n!1. Let ¹�1;sn; : : : ; �`;snº be the basis of ker.@
g1;gsn ;t

E;m;q�1/\

ker.@
gsn ;h

E;m;q;max/ made by pairwise orthogonal elements obtained by applying the Gram–
Schmidt procedure to the basis ¹ 1;sn ; : : : ;  `;snº. Explicitly, we have

�1;sn D  1;sn

�2;sn D  2;sn � pr�1;sn . 2;sn/

: : :

�j;sn D  j;sn �

j�1X
kD1

pr�k;sn . j;sn/

: : :

�`;sn D  `;sn �

`�1X
kD1

pr�k;sn . `;sn/;

where

pr�k;sn . j;sn/ WD
h j;sn ; �k;sniL2�m;q.A;E jA;gsn jA;�jA/

h�k;sn ; �k;sniL2�m;q.A;E jA;gsn jA;�jA/
�k;sn (26)

for each j 2 ¹1; : : : ; `º and k 2 ¹1; : : : ; j � 1º. Looking at (26) and arguing by induction
it is easy to check that

lim
n!1

pr�k;sn . j;sn/ D 0

strongly and consequently
�j;sn !  j

strongly as n!1 for each j D 1; : : : ; `. In particular,

k�j;snkL2�m;q.A;E jA;gsn jA;�jA/ ! 1 D k j kL2�m;q.A;E jA;hjA;�jA/

as n!1 for each j D 1; : : : ; `. Therefore, by defining

'j;sn WD �j;sn=k�j;snkL2�m;q.A;E jA;gsn jA;�jA/;
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we obtain an orthonormal basis of ker.@
g1;gsn;t

E;m;q�1/\ ker.@
gsn;h

E;m;q;max/made by ¹'1;sn; : : : ;' ;̀snº
such that 'j;sn !  j strongly as n ! 1 for each j D 1; : : : ; `. Let now ¹ˇsnºn2N ,
ˇsn 2 L

2�m;q.A; EjA; gsn jA; �jA/, be a weakly convergent sequence to some ˇ 2

L2�m;q.A;EjA; hjA; �jA/ as n!1. We want to show that �m;qK;sn
ˇsn ! �

m;q
K;0 ˇ strongly

as n!1. We have

�
m;q
K;sn

ˇsn D
X̀
jD1

h'j;sn ; ˇsniL2�m;q.A;E jA;gsn jA;�jA/'j;sn :

Thanks to the first part of the proof, we know that 'j;sn !  j strongly as n ! 1.
Since ˇsn converges weakly to ˇ as n!1, we get that

h'j;sn ; ˇsniL2�m;q.A;E jA;gsn jA;�jA/ ! h j ; ˇiL2�m;q.A;E jA;hjA;�jA/

as n!1. Therefore, we can conclude that

X̀
jD1

h'j;sn ; ˇsniL2�m;q.A;E jA;gsn jA;�jA/'j;sn !
X̀
jD1

h j ; ˇiL2�m;q.A;E jA;hjA;�jA/ j

strongly as j !1, that is,
�
m;q
K;sn

ˇsn ! �
m;q
K;0 ˇ

strongly as n!1.

3.2. From compact convergence to convergence in norm operator

As in Lemma 3.5, let p W A � Œ0; 1�! A be the left projection and let

Sm;qs 2 C1.A � Œ0; 1�;End.p�ƒm;q.A/˝ p�E//

be defined as Sm;qs WD det.G1;0C;s/˝G
0;q
C;s ˝ Id. We recall that Sm;qs is the family of endo-

morphisms of p�ƒm;q.A/˝ p�E such that g�m;q;�;s.�; �/ D g
�
m;q;�;1.S

m;q
s �; �/. It is not

difficult to see that there exists �m;qs 2 C.A � Œ0; 1�;End.p�ƒm;q.A/˝ p�E//, that is, a
continuous section of End.p�ƒm;q.A/˝ p�E/! A � Œ0; 1�, such that

(1) .�m;qs /2 D S
m;q
s ;

(2) g�1;m;q;�.�
m;q
s �; �/ D g�1;m;q;�.�; �

m;q
s �/, that is, �m;qs is fiberwise self-adjoint

w.r.t. g�1;m;q;�;

(3) g�1;m;q;�.�
m;q
s �; �/ > 0 whenever � ¤ 0, that is, �m;qs is positive definite w.r.t.

g�1;m;q;�;

see, e.g., [21, Problem 2-E, p. 24]. Note that g�1;m;q;�.�
m;q
s �; �

m;q
s �/ D g�s;m;q;�.�; �/.

In other words, �m;qs is a fiberwise isometry between p�ƒm;q.A/ ˝ p�E endowed
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with g�s;m;q;� and p�ƒm;q.A/˝ p�E endowed with g�m;q;�;1. Now let us define ‰m;qs 2

C.A � Œ0; 1�;End.p�ƒm;q.A/˝ p�E// as

‰m;qs WD .det.F 1;0C;s//
1
2 ˝ �m;qs : (27)

Let us check that

‰m;qs W L2�m;q.A;EjA; gsjA; �jA/! L2�m;q.A;EjA; g1jA; �jA/

is an isometry for each s 2 Œ0; 1�. Let �; ! 2 �m;qc .A;EjA/. We have˝
‰m;qs �;‰m;qs !

˛
L2�m;q.A;E jA;g1jA;�jA/

D

Z
A

g�1;m;q;�.‰
m;q
s �;‰m;qs !/ dvolg1

D

Z
A

g�1;m;q;�.�
m;q
s �; �m;qs !/ det.F 1;0C;s/ dvolg1

D

Z
A

g�1;m;q;�.S
m;q
s �; !/.det.Fs//

1
2 dvolg1

D

Z
A

g�s;m;q;�.�; !/ dvolgs

D h�; !iL2�m;q.A;E jA;gs jA;�jA/:

We now prove various properties concerning ‰m;qs .

Lemma 3.10. Given any � 2 L2�m;q.A;EjA; hjA; �jA/, it holds

lim
s!0



‰m;qs .ˆm;qs .�// �‰
m;q
0 .�/




L2�m;q.A;E jA;g1jA;�jA/

D 0:

Proof. First, we deal with the case � 2 �m;qc .A;EjA/. In this case

‰m;qs .ˆm;qs .�// �‰
m;q
0 .�/



2
L2�m;q.A;E jA;g1jA;�jA/

D

Z
A

g�1;m;q;�.‰
m;q
s � �‰

m;q
0 �;‰m;qs � �‰

m;q
0 �/ dvolg1 :

Since � 2 �
m;q
c .A; EjA/, ‰

m;q
s 2 C.A � Œ0; 1�; p�End.p�ƒm;q.A/ ˝ p�E// and

volg1.A/ <1, we can apply the Lebesgue dominated convergence theorem:

lim
s!0



‰m;qs .ˆm;qs .�// �‰
m;q
0 .�/



2
L2�m;q.A;E jA;g1jA;�jA/

D lim
s!0

Z
A

g�1;m;q;�.‰
m;q
s � �‰

m;q
0 �;‰m;qs � �‰

m;q
0 �/ dvolg1

D

Z
A

lim
s!0

g�1;m;q;�.‰
m;q
s � �‰

m;q
0 �;‰m;qs � �‰

m;q
0 �/ dvolg1

D 0:
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Now, we consider the general case � 2 L2�m;q.A; EjA; hjA; �jA/. Let " > 0 be arbitrar-
ily fixed and let ' 2 �m;qc .A; EjA/ be such that k� � 'kL2�m;q.A;E jA;hjA;�jA/ < ". Let a
be the positive constant appearing in (16). Since ‰m;qs W L2�m;q.A; EjA; �jA; gsjA/!

L2�m;q.A;EjA; �jA; g1jA/ is an isometry for each s 2 Œ0; 1�, we have

‰m;qs .ˆm;qs .�// �‰
m;q
0 .�/



2
L2�m;q.A;E jA;g1jA;�jA/

D


‰m;qs .ˆm;qs .�// �‰m;qs .ˆm;qs .'//C‰m;qs .ˆm;qs .'//

�‰
m;q
0 .�/



2
L2�m;q.A;E jA;g1jA;�jA/

�


‰m;qs .ˆm;qs .�// �‰m;qs .ˆm;qs .'//




L2�m;q.A;E jA;g1jA;�jA/

C


‰m;qs .ˆm;qs .'// �‰

m;q
0 .�/



2
L2�m;q.A;E jA;g1jA;�jA/

D


� � '



L2�m;q.A;E jA;gs jA;�jA/

C


‰m;qs .ˆm;qs .'// �‰

m;q
0 .'/C‰

m;q
0 .'/ �‰

m;q
0 .�/



2
L2�m;q.A;E jA;g1jA;�jA/

� a


� � '



L2�m;q.A;E jA;hjA;�jA/
C


‰m;qs .ˆm;qs .'// �‰

m;q
0 .'/




L2�m;q.A;E jA;g1jA;�jA/

C


‰m;q0 .'/ �‰

m;q
0 .�/



2
L2�m;q.A;E jA;g1jA;�jA/

� a"C


‰m;qs .ˆm;qs .'// �‰

m;q
0 .'/




L2�m;q.A;E jA;g1jA;�jA/

C ":

Since � 2 �m;qc .A;EjA/, we can conclude as above that

lim
s!0



‰m;qs .ˆm;qs .'// �‰
m;q
0 .'/




L2�m;q.A;E jA;g1jA;�jA/

D 0

which in turn gives us

lim sup
s!0



‰m;qs .ˆm;qs .�// �‰
m;q
0 .�/



2
L2�m;q.A;E jA;g1jA;�jA/

� .aC 1/":

Since " is arbitrarily fixed, we can conclude that

lim
s!0



‰m;qs .ˆm;qs .�// �‰
m;q
0 .�/



2
L2�m;q.A;E jA;g1jA;�jA/

D 0

as desired.

Lemma 3.11. Let ¹snºn2N � .0; 1� be a sequence such that sn ! 0 as n ! 1.
Let � 2 L2�m;q.A; EjA; hjA; �jA/ and let ¹�snºn2N be a sequence such that �sn 2
L2�m;q.A;EjA; gsn jA; �jA/. Then �sn ! � strongly as n!1 if and only if

lim
n!1



‰m;qsn
�sn �‰

m;q
0 �




L2�m;q.A;E jA;g1jA;�jA/

D 0: (28)
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Proof. Let us assume that �sn ! � strongly as n!1. We have

‰m;qsn
�sn �‰

m;q
0 �




L2�m;q.A;E jA;g1jA;�jA/

D


‰m;qsn

�sn �‰
m;q
sn
.ˆm;qsn

.�//C‰m;qsn
.ˆm;qsn

.�// �‰
m;q
0 �




L2�m;q.A;E jA;g1jA;�jA/

�


‰m;qsn

�sn �‰
m;q
sn
.ˆm;qsn

.�//



L2�m;q.A;E jA;g1jA;�jA/

C


‰m;qsn

.ˆm;qsn
.�// �‰

m;q
0 �




L2�m;q.A;E jA;g1jA;�jA/

D


�sn �ˆm;qsn

.�/



L2�m;q.A;E jA;gsn jA;�/

C


‰m;qsn

.ˆm;qsn
.�// �‰

m;q
0 �




L2�m;q.A;E jA;g1jA;�jA/

:

As �sn ! � strongly as n!1, we know that

lim
n!1



�sn �ˆm;qsn
.�/



L2�m;q.A;E jA;gsn jA;�jA/

D 0:

Furthermore, Lemma 3.10 tells us that

lim
n!1



‰m;qsn
.ˆm;qsn

.�// �‰
m;q
0 �




L2�m;q.A;E jA;g1jA;�jA/

D 0:

We can thus conclude that

lim
n!1



‰m;qsn
�sn �‰

m;q
0 �




L2�m;q.A;E jA;g1jA;�jA/

D 0:

Conversely, let us assume (28). We want to show that �sn ! � strongly as n!1, that is,

lim
n!1



�sn �ˆm;qsn
�



L2�m;q.A;E jA;gsn jA;�jA/

D 0:

We have

�sn �ˆm;qsn
�



L2�m;q.A;E jA;gsn jA;�jA/

D


‰m;qsn

�sn �‰
m;q
0 �C‰

m;q
0 � �‰m;qsn

.ˆm;qsn
�/



L2�m;q.A;E jA;g1jA;�jA/

�


‰m;qsn

�sn �‰
m;q
0 �




L2�m;q.A;E jA;g1jA;�jA/

C


‰m;q0 � �‰m;qsn

.ˆm;qsn
�/



L2�m;q.A;E jA;g1jA;�jA/

:

We assumed that

lim
n!1



‰m;qsn
�sn �‰

m;q
0 �




L2�m;q.A;E jA;g1jA;�jA/

D 0

and by Lemma 3.10 we know that

lim
n!1



k‰m;q0 � �‰m;qsn
.ˆm;qsn

�/kL2�m;q.A;E jA;g1jA;�jA/


 D 0:

We can thus conclude that �sn ! � strongly as n!1.
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Lemma 3.12. Let ¹snºn2N � .0; 1� be a sequence such that sn ! 0 as n ! 1.
Let � 2 L2�m;q.A; EjA; hjA; �jA/ and let ¹�snºn2N be a sequence such that �sn 2
L2�m;q.A;EjA; gsn jA; �jA/. Then �sn ! � weakly as n!1 if and only if

‰m;qsn
�sn * ‰

m;q
0 �

in L2�m;q.A;EjA; g1jA; �jA/ as n!1.

Proof. Assume that �sn ! � weakly as n ! 1. Let ! 2 L2�m;q.A; g1jA; EjA; �jA/.
Thanks to Lemma 3.11, we know that .‰m;qsn /�1! ! .‰

m;q
0 /�1! strongly as n ! 1.

Thus, we obtain

lim
n!1
h‰m;qsn

�sn ; !iL2�m;q.A;E jA;g1jA;�jA/ D lim
n!1
h�sn ; .‰

m;q
sn
/�1!iL2�m;q.A;E jA;gsn jA;�jA/

D h�; .‰
m;q
0 /�1!iL2�m;q.A;E jA;hjA;�jA/

D h‰
m;q
0 �; !iL2�m;q.A;E jA;g1jA;�jA/

as required. Conversely, let us assume that‰m;qsn �sn*‰
m;q
0 � inL2�m;q.A;EjA;g1jA;�jA/

as n ! 1. Let ¹�snºn2N be a sequence such that �sn 2 L
2�m;q.A; EjA; gsn jA; �jA/

and �sn ! � strongly to some � 2 L2�m;q.A; EjA; hjA; �jA/ as n!1. Lemma 3.11
tells us that k‰m;qsn �sn �‰

m;q
0 �kL2�m;q.A;E jA;g1jA;�jA/ ! 0 as n!1. Hence, we obtain

lim
n!1
h�sn ; �sniL2�m;q.A;E jA;gsn jA;�jA/ D lim

n!1
h‰m;qsn

�sn ; ‰
m;q
sn
�sniL2�m;q.A;E jA;g1jA;�jA/

D h‰
m;q
0 �;‰

m;q
0 �iL2�m;q.A;E jA;g1jA;�jA/

D h�; �iL2�m;q.A;E jA;hjA;�jA/

as desired.

Lemma 3.13. Let ¹snºn2N � .0; 1� be a sequence such that sn ! 0 as n!1. Then

lim
n!1



‰m;qsn
ıG

@
gsn ;h

E;m;q;max
ı .‰

m;qC1
0 /�1 �‰

m;q
0 ıG

@
h;h

E;m;q;max
ı .‰

m;qC1
0 /�1




op D 0

and
lim
n!1



G
@
g1;gsn
E;m;q

ı .‰m;qC1sn
/�1 �G

@
g1;h

E;m;q;max
ı .‰

m;qC1
0 /�1




op D 0:

Proof. The first limit above follows immediately by Proposition 2.4, Theorem 3.2
and Lemmas 3.11 and 3.12. The second one follows immediately by Proposition 2.4,
Theorem 3.1 and Lemmas 3.11 and 3.12.

Lemma 3.14. Let ¹snºn2N � .0; 1� be a sequence such that sn ! 0 as n!1. Then

lim
n!1



‰m;qC10 ıG
@
gsn ;h;t

E;m;q;min
ı .‰m;qsn

/�1 �‰
m;qC1
0 ıG

@
h;h;t

E;m;q;min
ı .‰

m;q
0 /�1




op D 0

and
lim
n!1



.‰m;qC1sn
/ ıG

@
g1;gsn ;t

E;m;q

� .‰
m;qC1
0 / ıG

@
g1;h;t

E;m;q;min




op D 0:
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Proof. Note that�
‰m;qsn

ıG
@
gsn ;h

E;m;q;max
ı .‰

m;qC1
0 /�1

��
D ‰

m;qC1
0 ıG

@
gsn ;h;t

E;m;q;min
ı .‰m;qsn

/�1

and �
‰
m;q
0 ıG

@
h;h

E;m;q;max
ı .‰

m;qC1
0 /�1

��
D ‰

m;qC1
0 ıG

@
h;h;t

E;m;q;min
ı .‰

m;q
0 /�1:

Analogously, �
G
@
g1;gsn
E;m;q

ı .‰m;qC1sn
/�1

��
D .‰m;qC1sn

/ ıG
@
g1;gsn ;t

E;m;q

and �
G
@
g1;h

E;m;q;max
ı .‰

m;qC1
0 /�1

��
D .‰

m;qC1
0 / ıG

@
g1;h;t

E;m;q;min
:

The conclusion now follows by Lemma 3.13.

Let �m;qK;s and �m;qK;0 be the projections defined in (21) and (22), respectively.

Lemma 3.15. Let ¹snºn2N � .0; 1� be a sequence such that sn ! 0 as n!1. Then

lim
n!1



‰m;qsn
ı �

m;q
K;sn
ı .‰m;qsn

/�1 �‰
m;q
0 ı �

m;q
K;0 ı .‰

m;q
0 /�1




op D 0:

Proof. This follows by Proposition 2.4, Theorem 3.3 and Lemmas 3.11 and 3.12.

Now for each s 2 Œ0; 1� let us consider the following complex:

L2�m;0.A;EjA; g1jA; �jA/
@
g1;g1
E;m;0

����! : : :
@
g1;g1
E;m;q�2

�����! L2�m;q�1.A;EjA; g1jA; �jA/

@
g1;gs
E;m;q�1;max
��������! L2�m;q.A;EjA; gsjA; �jA/

@
gs ;h

E;m;q;max
������! L2�m;qC1.A;EjA; hjA; �jA/

@
h;h

E;m;qC1;max
��������! : : :

@
h;h

E;m;m�1;max
��������! L2�m;m.A;EjA; hjA; �jA/: (29)

In other words, from 0 up to q � 1 we have the L2-@E -complex with respect to g1 and
.E; �/, from q C 1 up m we have the maximal L2-@E -complex with respect to h and
.E; �/ and the connecting piece is given by

@
g1;gs
E;m;q�1;max
��������! L2�m;q.A;EjA; gsjA; �jA/

@
gs ;h

E;m;q;max
������! L2�m;qC1.A;EjA; hjA; �jA/:

Let us now introduce the following complex:

L2�m;0.A;EjA; g1jA; �jA/
@
g1;g1
E;m;0

����! : : :
@
g1;g1
E;m;q�2

�����! L2�m;q�1.A;EjA; g1jA; �jA/

D
g1;gs
m;q�1

�����! L2�m;q.A;EjA; g1jA; �jA/
D
gs ;h
m;q

���! L2�m;qC1.A;EjA; g1jA; �jA/

D
h;h
m;qC1

�����! : : :
D
h;h
m;m�1

�����! L2�m;m.A;EjA; g1jA; �jA/ (30)
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with
D
g1;gs
m;q�1 WD ‰

m;q
s ı @

g1;gs

E;m;q�1;max;

Dgs ;h
m;q WD ‰

m;qC1
0 ı @

gs ;h

E;m;q;max ı .‰
m;q
s /�1;

Dh;h
m;r WD ‰

m;rC1
0 ı @

h;h

E;m;r;max ı .‰
m;r
0 /�1

for each r D q C 1; : : : ; m. Let

Pm;qs W L2�m;�.A;EjA; g1jA; �jA/! L2�m;�.A;E; g1; �/ (31)

be the rolled-up operator of the complex (30), see [8, p. 91–92]. This means nothing but

Pm;qs jL2�m;r .A;E jA;g1jA;�jA/ WD @
g1;g1

E;m;r C @
g1;g1;t

E;m;r�1; r D 0; : : : ; q � 2

Pm;qs jL2�m;q�1.A;E jA;g1jA;�jA/ WD D
g1;gs
m;q�1 C @

g1;g1;t

E;m;q�2

Pm;qs jL2�m;q.A;E jA;g1jA;�jA/ WD D
gs ;h
m;q C .D

g1;gs
m;q�1/

�

Pm;qs jL2�m;qC1.A;E jA;g1jA;�jA/ WD D
h;h
m;qC1 C .D

gs ;h
m;q /

�

Pm;qs jL2�m;r .A;E jA;g1jA;�jA/ WD D
h;h
m;r C .D

h;h
m;r�1/

�; r D q C 2; : : : ; m:

Note that Pm;q0 D P
m;q�1
1 for each q 2 ¹1; : : : ; mº. Moreover, we have .Dg1;gs

m;q�1/
� D

@
g1;gs ;t

E;m;q�1;min ı .‰
m;q
s /�1, .Dgs ;h

m;q /
� D ‰

m;q
s ı @

gs ;h;t

E;m;q;min ı .‰
m;qC1
0 /�1 and .Dh;h

m;r�1/
� D

‰
m;r�1
0 ı @

h;h;t

E;m;r�1;min ı .‰
m;r
0 /�1 with r D qC 2; : : : ;m. Furthermore, we point out that

when qDm and sD 1, the complex (30) is nothing but theL2-@E -complex onM w.r.t. g1
and � whereas when q D 0 D s, the complex (30) is unitarily equivalent to the maximal
L2-@E -complex on A with respect to h and .E; �/. Consequently, in the case q D m

and s D 1, the operator (31) is the Dirac–Dolbeault operator on M w.r.t. g1 and .E; �/,
whereas in the case q D 0 D s, the operator (31) is unitarily equivalent to the rolled-up
operator of the maximal L2-@E -complex over A with respect to h and .E; �/. We have
now the following property.

Lemma 3.16. In the setting of Theorem 3.3, the operator Pm;qs is self-adjoint and has
entirely discrete spectrum for each q 2 ¹0; : : : ; mº and s 2 Œ0; 1�.

Proof. The fact that Pm;qs is self-adjoint follows immediately by its definition because
it is the rolled-up operator of a Hilbert complex, see [8, p. 92]. The discreteness of its
spectrum is an easy consequence of the fact that the complex (29) has finite cohomology,
and each operator has a compact Green operator.

We are now in a position to prove the main result of this subsection.

Theorem 3.4. In the above setting we have

lim
s!0
k.Pm;qs C i/�1 � .P

m;q
0 C i/�1kop D 0

for each q D 0; : : : ; m.
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Proof. According to Lemma 2.1, it suffices to show that

lim
s!0
kGPm;qs

�GPm;q0
kop D 0;

lim
s!0
k�K;Pm;qs

� �K;Pm;q0
kop D 0;

where �K;Pm;qs
W L2�m;�.A;EjA; g1jA; �jA/! L2�m;�.A;EjA; g1jA; �jA/ stands for the

orthogonal projection on ker.Pm;qs /. Since Pm;qs is the rolled-up operator of the complex
(30), it is easy to check that

ker.Pm;qs / D

mM
rD0

ker.Pm;qs jL2�m;r .A;E jA;g1jA;�jA//

GPm;qs
D

mM
rD0

GPm;qs
jL2�m;r .A;E jA;g1jA;�jA/:

(32)

Concerning ker.Pm;qs /, we obtain the following decomposition:

ker.Pm;qs / D
�q�2M
rD0

ker.@
g1;g1

E;m;r / \ ker.@
g1;g1;t

E;m;r /
�
˚
�
ker.Dg1;gs

m;q�1/ \ ker.@
g1;g1;t

E;m;q�2/
�

˚
�
ker.Dgs ;h

m;q / \ ker..Dg1;gs
m;q�1/

�/
�
˚
�
ker.Dh;h

m;qC1/ \ ker..Dgs ;h
m;q /

�/
�

˚

� mM
rDqC2

ker.Dh;h
r / \ ker..Dh;h

r /�/
�
:

Note that ker.Dg1;gs
m;q�1/ is independent on s 2 Œ0; 1�. Moreover, also ker..Dgs ;h

m;q /
�/ does not

depend on s 2 Œ0; 1�. This latter assertion follows because by assumption im.@
g1;h

E;m;q;max/D

im.@
h;h

E;m;q;max/ which in turn implies that im.@
gs ;h

E;m;q;max/ D im.@
h;h

E;m;q;max/ for each

s 2 Œ0; 1�. Thus, im.Dgs ;h
m;q /D im.Dh;h

m;q/ for each s 2 Œ0;1� and eventually we can conclude

that ker..Dgs ;h
m;q /

�/ does not depend on s 2 Œ0; 1� since ker..Dgs ;h
m;q /

�/D .im.Dgs ;h
E;m;q//

? in
L2�m;qC1.A;E; h; �/. Thus, in the above decomposition the only term depending on s is
ker.Dgs ;h

m;q / \ ker..Dg1;gs
m;q�1/

�/ and so the limit

lim
s!0
k�K;Pm;qs

� �K;Pm;q0
kop D 0 (33)

boils down to proving that

lim
n!1



‰m;qsn
ı �

m;q
K;sn
ı .‰m;qsn

/�1 �‰
m;q
0 ı �

m;q
K;0 ı .‰

m;q
0 /�1




op D 0; (34)

where �m;qK;s is the orthogonal projection defined in (21). By Lemma 3.15, we already
know that (34) holds true and thus (33) holds true as well. Let us go back to the second
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half of (32). Looking at (30), we note that the only terms in the decomposition of GPm;qs

that depend on s are

GPm;qs
jL2�m;r .A;E jA;g1jA;�jA/; r D q � 1; q; q C 1:

We have

GPm;qs
jL2�m;q�1.A;E jA;g1jA;�jA/ D G@

g1;g1
E;m;q�2

CG
.D

g1;gs
m;q�1/

� W

L2�m;q�1.A;EjA; g1jA; �jA/!

L2�m;q�2.A;EjA; g1jA; �jA/˚ L
2�m;q.A;EjA; g1jA; �jA/I

GPm;qs
jL2�m;q.A;E jA;g1jA;�jA/ D GDg1;gs

m;q�1
CG

.D
gs ;h
m;q /�

W

L2�m;q.A;EjA; g1jA; �jA/!

L2�m;q�1.A;EjA; g1jA; �jA/˚ L
2�m;qC1.A;EjA; g1jA; �jA/I

GPm;qs
jL2�m;qC1.A;E jA;g1jA;�jA/ D GDgs ;h

m;q
CG

.D
h;h
m;qC1/

� W

L2�m;qC1.A;EjA; g1jA; �jA/!

L2�m;q.A;EjA; g1jA; �jA/˚ L
2�m;qC2.A;EjA; g1jA; �jA/:

Therefore,

GPm;qs
�GPm;q0




op

D




 mM
rD0

GPm;qs
jL2�m;r .A;E jA;g1jA;�jA/ �

mM
rD0

GPm;q0
jL2�m;r .A;E jA;g1jA;�jA/





op

�

qC1X
rDq�1



GPm;qs
jL2�m;r .A;E jA;g1jA;�jA/ �GPm;q0

jL2�m;r .A;E jA;g1jA;�jA/




op

�


G

.D
g1;gs
m;q�1/

� �G
.D

g1;h
m;q�1/

�




op C



G
D
g1;gs
m;q�1

�G
D
g1;h
m;q�1




op

C


G

.D
gs ;h
m;q /�

�G
.D

h;h
m;q/�




op C



G
D
gs ;h
m;q
�G

D
h;h
m;q




op:

Clearly, for each s 2 Œ0; 1�, we have

G
D
g1;gs
m;q�1

D G
@
g1;gs
E;m;q�1;max

ı .‰m;qs /�1;

G
.D

g1;gs
m;q�1/

� D ‰
m;q
s ıG

@
g1;gs ;t

E;m;q�1;min
;

G
D
gs ;h
m;q
D ‰m;qs ıG

@
gs ;h

E;m;q;max
ı .‰

m;qC1
0 /�1;

G
.D

gs ;h
m;q /�

D ‰
m;qC1
0 ıG

.@
gs ;h;t

E;m;q;min/
�
ı .‰m;qs /�1:

Thanks to Lemmas 3.13 and 3.14, we know that

lim
s!0



G
D
g1;gs
m;q�1

�G
D
g1;h
m;q�1




op D 0; lim

s!0



G
.D

g1;gs
m;q�1/

� �G
.D

g1;h
m;q�1/

�




op D 0;

lim
s!0



G
D
gs ;h
m;q
�G

D
h;h
m;q




op D 0; lim

s!0



G
.D

gs ;h
m;q /�

�G
.D

h;h
m;q/�




op D 0:
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We can thus conclude that

lim
s!0
kGPm;qs

�GPm;q0
kop D 0

as required.

4. Resolutions and canonical K -homology classes

Let .M; g/ be a compact complex manifold of complex dimension m endowed with a
Hermitian metric g. Let .E; �/!M be a Hermitian holomorphic vector bundle over M .
For each p 2 ¹0; : : : ; mº let us consider the Hilbert space L2�p;�.M;E; g; �/ endowed
with the grading induced by the splitting in L2 E-valued .p; �/-forms with even/odd
antiholomorphic degree. Furthermore, we consider the corresponding Dirac–Dolbeault
operator ðE;p WD @E;p C @

t

E;p

ðE;p W L2�p;�.M;E; g; �/! L2�p;�.M;E; g; �/

and the C �-algebra C.M/ WD C.M; C/ acting on L2�p;�.M; E; g; �/ by pointwise
multiplication:

C.M/ 3 f 7! mf 2 B.L2�p;�.M;E; g; �// given by mf  WD f  (35)

for every  2 L2�p;�.M; E; g; �/. Finally, let us consider as a dense subalgebra
A WD C1.M/. It is well known that the triplet .L2�p;�.M; E; g; �/; m; ðE;p/ is an
even unbounded Fredholm module, see, for example, [13, §10], and thus the triplet
.L2�p;�.M;E; g; �/; m; ðE;p ı .IdC.ðE;p/2/�

1
2 / gives a class in KK0.C.M/;C/, see

Proposition 2.6. We denote this class with

ŒðE;p� 2 KK0.C.M/;C/

and when p D m we call it the canonical analytic K-homology class of M and E. In
particular, when pDm andE is the trivial holomorphic line bundleM �C!M , we call
the above class the canonical analyticK-homology class ofM . This terminology is based
on the fact that ƒm;0.M/ is called the canonical bundle of M . We remark that since M
is compact, the class ŒðE;p� depends neither on g nor on � since all Hermitian metrics
onM , as well as all Hermitian metrics on E, are quasi-isometric, see, e.g., [14]. Now, we
briefly recall the notion of Hermitian complex space. Complex spaces are a classical topic
in complex geometry, and we refer, for instance, to [10] for definitions and properties.
We recall that a paracompact and reduced complex space X is said to be Hermitian if
the regular part of X carries a Hermitian metric 
 such that, for every point p 2 X there
exists an open neighbourhood U 3 p in X , a proper holomorphic embedding of U into a
polydisc � WU !DN �CN , and a Hermitian metric g on DN such that .�jreg.U //

�gD 
 ,
see, e.g., [24]. In this case, we will write .X; 
/ and with a little abuse of language, we
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will say that 
 is a Hermitian metric on X . Clearly, any analytic subvariety of a complex
Hermitian manifold endowed with the metric induced by the ambient space metric is an
example of Hermitian complex space. Note that whenX is compact, all Hermitian metrics
onX belong to the same quasi-isometry class. This follows easily by the lifting lemma see
[11, Remark 1.30.1, p. 37]. Let now F ! X be a holomorphic vector bundle of complex
rank s. We assume that F jreg.X/ is equipped with a Hermitian metric � such that for each
point p 2 X , the following property holds true: there exists an open neighbourhood U , a
positive constant c and a holomorphic trivialisation WEjU !U �Cs such that, denoting
by � the Hermitian metric on reg.U / �Cs induced by � through  , we have

c�1�std � � � c�std; (36)

where �std is the Hermitian metric on reg.U / � Cs that assigns to each point of reg.U /
the standard Euclidean Kähler metric of Cs . In order to state the next results, we also need
to recall the existence of a resolution of singularities see [15,16]. Let X be a compact and
irreducible complex space. There then exists a compact complex manifold M , a divisor
with only normal crossings D �M , and a surjective holomorphic map � WM ! X such
that ��1.sing.X// D D and

�jMnD WM nD ! X n sing.X/

is a biholomorphism. Consider now the maximal L2-@F -complex

0! L2�m;0.reg.X/; F; 
; �/
@

;


E;m;0;max
������! : : :

@

;


E;m;m�1;max
��������! L2�m;m.reg.X/; F; 
; �/! 0

and let
ðF;m;abs W L

2�m;�.reg.X/; F; 
; �/! L2�m;�.reg.X/; F; 
; �/

be the corresponding rolled-up operator. Note that we can write

ðF;m;abs D @

;


F;m;max C ð
;
;tF;m;min (37)

with
@

;


F;m;max W L
2�m;�.reg.X/; F; 
; �/! L2�m;�.reg.X/; F; 
; �/

defined by
@

;


F;m;maxjL2�m;r .reg.X/;F;
;�/ WD @

;


E;m;r;max

for each r D 0; : : : ; m and with @

;
;t

F;m;min defined in the obvious analogous way. We have
now the following.

Proposition 4.1. Let .X; 
/ be a compact and irreducible Hermitian complex space of
complex dimension m such that dim.sing.X// D 0. Let .F; �/! X be a Hermitian holo-
morphic vector bundle over X which satisfies (36). Then the triplet�

L2�m;�.reg.X/; F; 
; �/;m;ðF;m;abs
�
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defines an even unbounded Fredholm module for C.X/ and thus a class

ŒðF;m;abs� 2 KK0.C.X/;C/:

Moreover, this class does not depend on the particular Hermitian metric 
 that we fix
on X .

Proof. The proof follows by arguing as in [7, Proposition 3.6]. In particular, we use Sc.X/
defined as

Sc.X/ WD
®
f 2 C.X/ \ C1.reg.X// such that for each p 2 sing.X/ there exists an

open neighbourhood U of p with f jU D c 2 C
¯

as a dense �-subalgebra of C.X/. Moreover, we recall that m denotes the pointwise mul-
tiplication see (35). The only point that needs an explanation is the discreteness of the
spectrum of ðF;m;abs. This is settled in the next lemma.

Lemma 4.1. Let .X; 
/ be a compact and irreducible Hermitian complex space of com-
plex dimension m with dim.sing.X// D 0. Then

ðF;m;abs W L
2�m;�.reg.X/; F; 
; �/! L2�m;�.reg.X/; F; 
; �/

has entirely discrete spectrum, with .F;�/!X any Hermitian holomorphic vector bundle
over X which satisfies (36).

Proof. Let sing.X/ D ¹p1; : : : ; p`º. First, we prove this lemma under some additional
requirements: the holomorphic vector bundle F is endowed with a Hermitian metric � 0

such that, for each pk 2 sing.X/, k D 1; : : : ; ` there exists an open neighbourhood Uk
and a trivialisation �k W F jUk ! Uk � Cn, with n WD rnk.F /, such that ��.�std/ D � 0,
with �std defined in (36). Clearly, we can always endow F with such a metric. Thanks to
[2, Theorem 5.2] and [22, Theorem 1.2] we know that

ðm;abs W L
2�m;�.reg.X/; 
/! L2�m;�.reg.X/; 
/

has entirely discrete spectrum. From this, we get immediately that the twisted Dirac–
Dolbeault operator with respect to the trivial holomorphic vector bundle reg.X/ � Cn

endowed with the standard Euclidean Kähler metric �std

ðCn;m;abs W L
2�m;�.reg.X/; reg.X/ �Cn; 
; �std/!

L2�m;�.reg.X/; reg.X/ �Cn; 
; �std/
(38)

has entirely discrete spectrum as well. Let now U0 be an open subset of reg.X/ such
that ¹U0; U1; : : : ; U`º is an open covering of X . We also assume that U0 \ sing.X/ D ;
and that Ui \ Uj D ; for each 1 � i < j � `. Let ¹�0; : : : ; �`º be a partition of
unity subordinated to ¹U0; U1; : : : ; U`º such that �i 2 C1.reg.X// \ C.X/ for each
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i D 0; : : : ; `. Note that for every 1 � i � ` there exists an open neighbourhood Vi
of pi with Vi � Ui and �i jVi D 1. In particular, we have d0�i 2 �1c.reg.Ui //. Con-
sider now a sequence ¹�j ºj2N � D.ðF;m;abs/, which is bounded with respect to the
corresponding graph norm. Clearly, the sequence ¹�0�j ºj2N still lies in D.ðF;m;abs/

and is bounded with respect to the corresponding graph norm. Moreover, the support
of �0�j is contained in U0 for each j 2 N. Since U0 is relatively compact in reg.X/,
we can use elliptic estimates see, e.g., [19, Lemma 1.1.17], and a Rellich-type com-
pactness theorem to deduce the existence of a subsequence ¹�0;j ºj2N � ¹�j ºj2N such
that ¹�0�0;j ºj2N converges in L2�m;�.reg.X/; F; 
; � 0/. Consider now the sequence
¹�1 0;j ºj2N � L

2�m;�.reg.X/; reg.X/�Cn; 
; �std/ with  0;j WD .��11 /
�.�0;j jreg.U1//.

It is clear that the sequence ¹�1 0;j ºj2N lies both in the domain of

@

;


Cn;m;max W L
2�m;�.reg.U1/; reg.X/ �Cn; 
 jreg.U1/; �stdjreg.U1//!

L2�m;�.reg.U1/; reg.X/ �Cn; 
 jreg.U1/; �stdjreg.U1//

and
@

;
;t

Cn;m;min W L
2�m;�.reg.U1/; reg.X/ �Cn; 
 jreg.U1/; �stdjreg.U1//!

L2�m;�.reg.U1/; reg.X/ �Cn; 
 jreg.U1/; �stdjreg.U1//

and it is bounded in the corresponding graph norm. From the definition of minimal domain
we get immediately that ¹�1 0;j ºj2N lies in the domain of

@

;
;t

Cn;m;min W L
2�m;�.reg.X/; reg.X/ �Cn; 
; �std/!

L2�m;�.reg.X/; reg.X/ �Cn; 
; �std/:

Moreover, since �1 has compact support contained in U1, it is not difficult to see that
¹�1 0;j ºj2N lies also in the domain of

@

;


Cn;m;max W L
2�m;�.reg.X/; reg.X/ �Cn; 
; �std/!

L2�m;�.reg.X/; reg.X/ �Cn; 
; �std/:

Summarising, we shown that ¹�1 0;j ºj2N lies in the domain of (38), and it is bounded
in the corresponding graph norm. Therefore, there exists a subsequence ¹ 1;j ºj2N �

¹ 0;j ºj2N such that ¹�1 1;j ºj2N converges in L2�m;�.reg.X/; reg.X/ � Cn; 
; �std/.
Eventually, we can conclude that there exists a subsequence ¹�1;j ºj2N � ¹�0;j ºj2N ,
which satisfies .��11 /

�.�1;j jreg.U1//D 1;j , such that the sequence ¹�1�1;j ºj2N converges
inL2�m;�.reg.X/;F;
;� 0/. Repeating this procedure up to n, we construct a subsequence
¹�n;j ºj2N � ¹�j ºj2N such that ¹�i�n;j ºj2N converges in L2�m;�.reg.X/; F; 
; � 0/ for
each i D 0; : : : ; n. We can thus conclude that the sequence ¹�n;j ºj2N converges in
L2�m;�.reg.X/; F; 
; � 0/ and this completes the first part of the proof. Note that, as a
by-product of this first part of the proof we get that im.@


;


F;m;q;max/ is a closed subspace of
L2�m;q.reg.X/; F; 
; � 0/ for each q D 0; : : : ; m,�

ker.@

;


F;m;q;max/ \ ker.@

;
;t

F;m;q�1;min/
�
Š ker.@


;


F;m;q;max/=im.@

;


F;m;q�1;max/
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is a finite-dimensional vector space and

G�
0

@F;m;q;max
W L2�m;qC1.reg.X/; F; 
; � 0/! L2�m;q.reg.X/; F; 
; � 0/

is a compact operator where we have denoted with G�
0

@F;m;q;max
the Green operator of

@

;


F;m;q;max W L
2�m;q.reg.X/; F; 
; � 0/! L2�m;qC1.reg.X/; F; 
; � 0/:

Let now � be an arbitrarily fixed Hermitian metric on F ! X which satisfies (36). Since
� and � 0 are quasi-isometric, we know that for each q D 0; : : : ; m,

@

;


F;m;q;abs W L
2�m;q.reg.X/; F; 
; �/! L2�m;qC1.reg.X/; F; 
; �/

has closed range and�
ker.@


;


F;m;q;max/ \ ker.@

;
;t

F;m;q�1;min/
�
Š ker.@


;


F;m;q;max/=im.@

;


F;m;q�1;max/

is a finite-dimensional vector space. Let us now consider the followingL2-decomposition:

L2�m;q.reg.X/; F; 
; �/

D
�
ker.@


;


F;m;q;max/ \ ker.@

;
;t

F;m;q�1;min/
�
˚ im.@


;


F;m;q�1;max/˚ im.@

;
;t

F;m;q;min/:

We already know that ker.@

;


F;m;q;max/ \ ker.@

;
;t

F;m;q�1;min/ is finite dimensional. Since

D.ðF;m;abs/ D

mM
qD0

�
D.@


;


F;m;q;max/ \D.@

;
;t

F;m;q�1;min/
�

ker.ðF;m;abs/ D

mM
qD0

�
ker.@


;


F;m;q;max/ \ ker.@

;
;t

F;m;q�1;min/
�

im.ðF;m;abs/ D

mM
qD0

�
im.@


;


F;m;q;max/˚ im.@

;
;t

F;m;q�1;min/
�
;

we know that ker.ðF;m;abs/ has finite dimension and im.ðF;m;abs/ is closed. Thus, in
order to conclude that ðF;m;abs W L

2�m;�.reg.X/; F; 
; �/ ! L2�m;�.reg.X/; F; 
; �/
has entirely discrete spectrum, it is enough to prove that the corresponding Green operator
is compact see Proposition 2.5. Thanks to (37), this boils down to show that the Green
operators of @


;


F;m;q;max and @

;
;t

F;m;q;min with respect to � :

G�
@F;m;q;max

W L2�m;qC1.reg.X/; F; 
; �/! L2�m;q.reg.X/; F; 
; �/ (39)

and
G�
@
t

F;m;q�1;min
W L2�m;q�1.reg.X/; F; 
; �/! L2�m;q.reg.X/; F; 
; �/ (40)
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are both compact for each q D 0; : : : ; m. Note that the compactness of (40) follows
from the compactness of (39). Indeed, @


;
;t

F;m;q�1;min D .@

;


F;m;q�1;max/
� and consequently

G�
@
t

F;m;q�1;min
D
�
G�
@F;m;q�1;max

��. Thus, we are left to prove the compactness of (39). To this

aim, we point out that since � and � 0 are quasi-isometric, we have an equality of topolo-
gical vector spaces L2�m;q.reg.X/; F; 
; � 0/ D L2�m;q.reg.X/; F; 
; �/. In particular,
the identity map

Id W L2�m;q.reg.X/; F; 
; � 0/! L2�m;q.reg.X/; F; 
; �/

is bijective, continuous with continuous inverse. Moreover, it is clear that the identity
induces a continuous isomorphism, that we denote by Kq , with continuous inverse

L2�m;q.reg.X/; F; 
; � 0/ � im.@

;


F;m;q�1;max/
Kq
��!

im.@

;


F;m;q�1;max/ � L
2�m;q.reg.X/; F; 
; �/;

with Kq defined as the restriction of Id on im.@

;


F;m;q�1;abs/ � L
2�m;q.reg.X/; F; 
; � 0/.

Furthermore, let us introduce the map Jq :

L2�m;q.reg.X/;F;
; � 0/� im.@

;
;t

F;m;q;min/
Jq
�! im.@


;
;t

F;m;q;min/�L
2�m;q.reg.X/;F;
; �/

defined as Jq WD��q ı Id with ��q the orthogonal projection ��q WL
2�m;q.reg.X/;F;
;�/!

im.@

;
;t

F;m;q;min/. Using again the fact that � and � 0 are quasi-isometric, it is not difficult to
check that Jq is bounded, bijective with bounded inverse and that

G�
@F;m;q;max

jim.@

;


F;m;q;max/
W im.@


;


F;m;q;max/! L2�m;q.reg.X/; F; 
; �/

equals

Jq ıG
� 0

@F;m;q;max
ıK�1qC1 W im.@


;


F;m;q;max/! L2�m;q.reg.X/; F; 
; �/:

Since both Jq and K�1q are continuous and

G
@
� 0

F;m;q;max
W L2�m;qC1.reg.X/; F; 
; � 0/! L2�m;q.reg.X/; F; 
; � 0/

is compact, we obtain that

G�
@F;m;q;max

jim.@

;


F;m;q;max/
W im.@


;


F;m;q;max/! L2�m;q.reg.X/; F; 
; �/

is compact. Finally, this implies immediately that also (39) is compact.

We have now the main result of this paper.
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Theorem 4.1. Let .X; 
/ be a compact and irreducible Hermitian complex space of
complex dimension m such that dim.sing.X// D 0. Let .F; �/! X be a Hermitian holo-
morphic vector bundle over X which satisfies (36). Let � WM ! X be a resolution of X
and let E ! M be the holomorphic vector bundle defined as E WD ��F . We then have
the following equality in KK0.C.X/;C/:

��ŒðE;m� D ŒðF;m;abs� 2 KK0.C.X/;C/:

In order to prove the above theorem, we need some preliminary results.

Lemma 4.2. Let .X; 
/ be a compact and irreducible Hermitian complex space of com-
plex dimension m with dim.sing.X// D 0. Let .F; �/! X be a Hermitian holomorphic
vector bundle over X which satisfies (36). Let � W M ! X be a resolution of X and
let g be an arbitrarily fixed Hermitian metric on M . Let E ! M be the holomorphic
vector bundle defined as E WD ��F and let h D ��
 , � WD ��� and A WD ��1.reg.X//.
Consider the operators

@
g;h

E;m;q;max W L
2�m;q.A;EjA; gjA; �jA/! L2�m;qC1.A;EjA; hjA; �jA/

and

@
h;h

E;m;q;max W L
2�m;q.A;EjA; hjA; �jA/! L2�m;qC1.A;EjA; hjA; �jA/:

Then for each q D 0; : : : ;m, the following equalities hold inL2�m;qC1.A;EjA; hjA; �jA/:

im.@
h;h

E;m;q;max/ D im.@
h;h

E;m;q;max/ D im.@
g;h

E;m;q;max/ D im.@
g;h

E;m;q;max/:

Moreover,
dim

�
H
m;q

@
.M;E/

�
D dim

�
H
m;q

2;@max
.A;EjA; hjA; �jA/

�
:

Proof. First, we note that when F D reg.X/�Cn and � D �std, the above chain of equal-
ities is an immediate consequence of [24, Theorem 1.5]. We now tackle the general case.
To this aim, we introduce the following presheaves Cm;qF;
 on X given by the assignments

C
m;q
F;
 .U / WD

®
D.@


;


F;m;q;max/ on reg.U /
¯
I

in other words, to every open subset U of X we assign the maximal domain of @F;m;q
over reg.U / with respect to F jU , 
 jreg.U / and � jreg.U /. We denote by C

m;q
F;
 the corres-

ponding sheafification. Finally, let .Cm;�F;
 ; @

;


F;m;�/ be the complex of sheaves where the

action of @

;


F;m;� is understood in the distributional sense. Let � be the Hermitian metric
on reg.X/ defined as � WD ..�jA/�1/�g. Let us consider the corresponding complex of

sheaves .Cm;�F;� ; @
�;�

F;m;�/. Thanks to Proposition 2.1, it is easy to check that the continu-
ous inclusion I W L2�m;q.reg.X/; F; 
; �/ ,! L2�m;q.reg.X/; F; �; �/ gives rise to a
morphism of sheaves

	 W .C
m;�
F;
 ; @


;


F;m;�/! .C
m;�
F;� ; @

�;�

F;m;�/: (41)
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Let KM .E/ be the sheaf of holomorphic sections of KM ˝ E ! M . Since we assumed
(36), we can argue as in the proof of [24, Theorem 1.5] to show that both .Cm;�F;
 ; @


;


F;m;�/

and .Cm;�F;� ; @
�;�

F;m;�/ are fine resolutions of ��.KM .E//. This in turn implies that the
morphism (41) induces an isomorphism, still denoted with 	, between the cohomology
groups:

	 W H q.X;C
m;�
F;
 .X//! H q.X;C

m;�
F;� .X//; q D 0; : : : ; m; (42)

where, by H q.X; C
m;�
F;
 .X// and H q.X; C

m;�
F;� .X//, we mean the cohomology groups

of the complexes of global sections of C
m;�
F;
 and C

m;�
F;� , that is, the cohomology of the

complexes:

0! C
m;0
F;
 .X/

@

;


F;m;0

����! : : :
@

;


F;m;m�1

������! C
m;m
F;
 .X/! 0

0! C
m;0
F;� .X/

@
�;�

F;m;0

����! : : :
@
�;�

F;m;m�1

������! C
m;m
F;� .X/! 0:

It is clear that on X we have the equalities C
m;q
F;
 .X/ D ¹D.@


;


F;m;q;max/ on reg.X/º and

analogously C
m;q
F;� .X/ D

®
D.@

�;�

F;m;q;max/ on reg.X/
¯
, which in turn imply the equalities

H q.X;C
m;�
F;
 .X// D H

m;q

@

;


F;max
.reg.X/; F; �; �/

H q.X;C
m;�
F;� .X// D H

m;q

@
�;�

F;max
.reg.X/; F; �; �/:

Therefore, by the fact that (42) is an isomorphism, we obtain that the continuous inclu-
sion I W L2�m;q.reg.X/; F; 
; �/ ,! L2�m;q.reg.X/; F; �; �/ induces an isomorphism
between the L2-@ cohomology groups

H
m;q

2;@max
.reg.X/; F; 
; �/ Š Hm;q

2;@max
.reg.X/; F; �; �/: (43)

By using (43), we get immediately that im.@

;


F;m;q;max/ D im.@
�;


F;m;q;max/ and therefore,

im.@
h;h

E;m;q;max/ D im.@
g;h

E;m;q;max/, as required. Moreover, since Hm;q

2;@max
.reg.X/; F; 
; �/

is finite dimensional, we have that im.@
h;h

E;m;q;max/ is closed. Hence, im.@
g;h

E;m;q;max/ D

im.@
g;h

E;m;q;max/ as required. Finally, as remarked above, we know that both the complexes

.C
m;�
F;
 ; @


;


F;m;�/ and .Cm;�F;� ; @
�;�

F;m;�/ are fine resolutions of the sheaf ��.KM .E//. Hence,

dim
�
H
m;q

2;@max
.A;EjA; hjA; �jA/

�
D dim

�
H
m;q

2;@max
.reg.X/; F; 
; �/

�
D dim

�
H q.X;C

m;�
F;
 .X//

�
D dim

�
H q.X;C

m;�
F;� .X//

�
D dim

�
H
m;q

2;@max
.reg.X/; F; �; �/

�
D dim

�
H
m;q

2;@max
.A;EjA; gjA; �jA/

�
D dim

�
H
m;q

@
.M;E/

�
;

where the last equality follows by Proposition 3.1. The proof is thus complete.
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In order to continue, we need to introduce various tools. Let � WM!X be a resolution
of X with A WD ��1.reg.X//. As in the previous section, we consider M � Œ0; 1� and the
canonical projection p WM � Œ0; 1�!M . Let gs 2 C1.M � Œ0; 1�;p�T �M ˝ p�T �M/

be a smooth section of p�T �M ˝ p�T �M !M � Œ0; 1� such that:

(1) gs.JX; J Y / D gs.X; Y / for any X; Y 2 X.M/ and s 2 Œ0; 1�;

(2) gs is a Hermitian metric on M for any s 2 .0; 1�;

(3) g1 D g and g0 D h with h WD ��
 ;

(4) there exists a positive constant a such that g0 � ags for each s 2 Œ0; 1�.

Let us also denote by p W reg.X/ � Œ0; 1�! reg.X/ the left projection and let

�s 2 C
1.reg.X/ � Œ0; 1�; p�T � reg.X/˝ p�T � reg.X//

be the smooth section of p�T � reg.X/˝ p�T � reg.X/! reg.X/ induced by gs and � .
Note that �s is the Hermitian metric over reg.X/ given by �s WD ..�jA/�1/�gs for each
s 2 Œ0; 1�. In particular, �1 D ..�jA/�1/�g whereas �0 D 
 . Let us consider the following
complex:

L2�m;0.reg.X/; F; �1; �/
@
�1;�1
F;m;0

����! : : :
@
�1;�1
F;m;q�2

�����! L2�m;q�1.reg.X/; F; �1; �/

@
�1;�s
F;m;q�1;max
��������! L2�m;q.reg.X/; F; �s; �/

@
�s ;


F;m;q;max
������! L2�m;qC1.reg.X/; F; 
; �/

@

;


F;m;qC1;max
��������! : : :

@

;


F;m;m�1;max
��������! L2�m;m.reg.X/; F; 
; �/: (44)

Let �m;qs 2 C.reg.X/ � Œ0; 1�; End.p�ƒm;q.reg.X// ˝ p�F // be the family of endo-
morphisms defined as �m;qs WD .��/�1 ı ‰

m;q
s ı ��, see (27) for the definition of ‰m;qs .

Clearly, �m;qs W L2�m;q.reg.X/;F; �s; �/! L2�m;q.reg.X/;F; �1; �/ is an isometry for
each s 2 Œ0; 1�. Let also define the following family of endomorphisms:

�m;�s 2 C.reg.X/ � Œ0; 1�;End.p�ƒm;�.reg.X//˝ p�F //; �m;�s WD

mM
rD0

�m;rs :

It is clear that �m;�s W L2�m;�.reg.X/; F; �s; �/! L2�m;�.reg.X/; F; �1; �/ is an iso-
metry. Following (30), we introduce the following complex:

L2�m;0.reg.X/; F; �1; �/
@
�1;�1
F;m;0

����! : : :
@
�1;�1
F;m;q�2

�����! L2�m;q�1.reg.X/; F; �1; �/

D
�1;�s
m;q�1

�����! L2�m;q.reg.X/; F; �1; �/
D
�s ;

m;q

����! L2�m;qC1.reg.X/; F; �1; �/
D

;

m;qC1

�����! : : :

D

;

m;m�1

�����! L2�m;m.reg.X/; F; �1; �/ (45)

with D
�1;�s
m;q�1 WD �

m;q
s ı @

�1;�s

F;m;q�1;max, D�s ;

m;q WD �

m;qC1
0 ı @

�s ;


E;m;q;max ı .�
m;q
s /�1 and

D

;

m;r WD �

m;rC1
0 ı @


;


F;m;r;max ı .�
m;r
0 /�1 for each r D q C 1; : : : ; m. Finally, let

Qm;q
s W L2�m;�.reg.X/; F; �1; �/! L2�m;�.reg.X/; F; �1; �/ (46)
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be the rolled-up operator of the complex (45). Note that Qm;q�1
1 D Q

m;q
0 for each

q 2 ¹1; : : : ; mº see (31). The next lemma is the key tool to prove Theorem 4.1.

Lemma 4.3. In the setting of Theorem 4.1, the following properties hold true:

(1) The triplet
.L2�m;�.reg.X/; F; �1; �/;m;Qm;q

s /

is an even unbounded Fredholm module over C.X/. We denote by ŒQm;q
s � the

corresponding class in KK0.C.X/;C/.

(2) For each q 2 0; : : : ; m and s 2 Œ0; 1�, we have the equality in KK0.C.X/;C/:

ŒQm;q
s � D ŒQ

m;q
1 �:

Proof. Let f 2 C.X/. Since in particular f 2 L1.X/, we obtain immediately that
mf W L

2�m;r .reg.X/; F; �s; �/! L2�m;r .reg.X/; F; �s; �/ is bounded for each r 2

¹0; : : : ;mº and s 2 Œ0; 1�. Let us now fix Sc.X/ as a dense �-subalgebra of C.X/. Clearly,
we have @f 2 �0;1c .reg.X// and therefore the map @f ^ given by

L2�m;r .reg.X/; F; �s1 ; �/ 3 � 7! @f ^ � 2 L2�m;rC1.reg.X/; F; �s2 ; �/ (47)

is continuous for any choice of r 2 ¹0; : : : ;mº and s1; s2 2 Œ0; 1�. Consequently, the adjoint
map .@f ^/� given by

L2�m;rC1.reg.X/; F; �s2 ; �/ 3 ' 7! .@f ^/�' 2 L2�m;r .reg.X/; F; �s1 ; �/

is continuous as well. Note that we can write the above map .@f ^/� as .Um;rs1 /�1 ı

i.r1f /0;1 ı U
m;rC1
s2 with

Um;rs WD .��/�1 ı Sm;rs ı ��; Sm;rs 2 C1.A � Œ0; 1�;End.p�ƒm;q.A/˝ p�E//

defined in the proof of Lemma 3.5, r1f the gradient of f w.r.t. �1, .r1f /0;1 the .0; 1/
component of r1f and i.r1f /0;1 the interior multiplication w.r.t. .r1f /0;1. Since f 2
L1.X/ and df 2 �1c.reg.X//, we can argue, as in [4, Proposition 2.3], to conclude that
mf preserves the domain of

@
�1;�2

F;m;r;max W L
2�m;r .reg.X/; F; �s1 ; �/! L2�m;rC1.reg.X/; F; �s2 ; �/:

Moreover, it is also easy to see that mf preserves the domain of

@
�1;�2;t

F;m;r;min W L
2�m;rC1.reg.X/; F; �s1 ; �/! L2�m;r .reg.X/; F; �s2 ; �/: (48)

Indeed, if � lies in the domain of (48) and ¹�kºk2N 2�
rC1
c .reg.X/;F / is a sequence con-

verging to � in the graph norm of @
�1;�2;t

F;m;r , then f �k! f � inL2�m;rC1.reg.X/;F;�2; �/

as k ! 1 and @
�1;�2;t

F;m;r .f �k/ D f @
�1;�2;t

F;m;r �k � .@f ^/
��k ! f @

�1;�2;t

F;m;r;min� � .@f ^/
��
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in L2�m;r .reg.X/; F; �2; �/ as k !1. Hence, we can conclude that also f � lies in the
domain of (48). Consider now the complex (44)

L2�m;0.reg.X/; F; �1; �/
@
�1;�1
F;m;0

����! : : :
@
�1;�1
F;m;q�2

�����! L2�m;q�1.reg.X/; F; �1; �/

@
�1;�s
F;m;q�1;max
��������! L2�m;q.reg.X/; F; �s; �/

@
�s ;


F;m;q;max
������! L2�m;qC1.reg.X/; F; 
; �/

@

;


F;m;qC1;max
��������! : : :

@

;


F;m;m�1;max
��������! L2�m;m.reg.X/; F; 
; �/

and let Lm;qs be the corresponding rolled-up operator. By the above discussion it is now
clear that mf preserves the domain of Lm;qs and that ŒLm;qs ; mf � D @f ^ �.@f ^/� is
continuous for each f 2 Sc.X/. Since �m;rs is a vector bundle isometric endomorphism,
we have �m;rs ımf Dmf ı �

m;r
s and .�m;rs /�1 ımf Dmf ı .�

m;r
s /�1 for each s 2 Œ0; 1�,

r D 0; : : : ;m and f 2 C.X/. Therefore, using the above arguments, we can also conclude
that for each f 2 Sc.X/ the operator mf preserves the domain of Qm;q

s and

ŒQm;q
s ; mf � W L

2�m;�.reg.X/; F; �1; �/! L2�m;�.reg.X/; F; �1; �/

is continuous. Furthermore, the operator Qm;q
s is unitarily equivalent to the operator de-

fined in (31) through the isometry �� WL2�m;�.reg.X/;F;�1; �/!L2�m;�.A;E;g1; �/.
By Lemma 3.16, we can thus conclude that Qm;q

s W L2�m;�.reg.X/; F; �1; �/ !
L2�m;�.reg.X/;F;�1; �/ has entirely discrete spectrum and this is equivalent to the com-
pactness of the resolvent. Finally, it is clear that the grading of L2�m;�.reg.X/;F; �1; �/,
which is induced by the splitting in L2 F -valued .m; �/-forms with even/odd anti-
holomorphic degree, commutes with m and anti-commutes with Qm;q

s . We can therefore
conclude that the triplet

.L2�m;�.reg.X/; F; �1; �/;m;Qm;q
s /

is an even unbounded Fredholm module over C.X/. This concludes the proof of the
first part. Now, we tackle the second part of the proof, and to do that, we use Pro-
position 2.7. Note that for each s 2 .0; 1� the metrics �s and �1 are quasi-isometric.
Hence, the continuity of the map .0; 1� ! B.L2�m;�.reg.X/; F; �1; �// given by
s 7! .Q

m;q
s C i/�1 with respect to the operator norm follows by arguing as in [14].

As remarked above, we have Qm;q
s D .��/�1 ı P

m;q
s ı �� with Pm;qs defined in (31)

and �� W L2�m;�.reg.X/; F; �1; �/! L2�m;�.A;E; g1; �/ the isometry induced by the
resolution map � WM ! X . Hence, we have

.Qm;q

s C i/�1 � .Q
m;q
0 C i/�1




op

D


�� ı .Pm;qs C i/�1 ı .��/�1 � �� ı .P

m;q
0 C i/�1 ı .��/�1




op

D


.Pm;qs C i/�1 � .P

m;q
0 C i/�1




op:

Thanks to Lemmas 4.1 and 4.2, we are in a position to apply Theorem 3.4 and hence, we
obtain

lim
s!0



.Pm;qs C i/�1 � .P
m;q
0 C i/�1




op D 0:
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We can thus conclude that the map Œ0; 1� ! B.L2�m;�.reg.X/; F; �1; �// given by
s 7! .Q

m;q
s C i/�1 is continuous with respect to the operator norm. This settles the

second requirement of Proposition 2.7. We are left to show that for each f 2 Sc.X/
the map Œ0; 1�! B.L2�m;�.reg.X/; F; �1; �// given by s 7! ŒQ

m;q
s ; mf � is continuous

with respect to the strong operator topology. To this aim, it is enough to show that for any
arbitrarily fixed r D 0; : : : ; m and � 2 L2�m;r .reg.X/; F; �1; �/ we have

lim
s!0

ŒQm;q
s ; mf �� D ŒQ

m;q
0 ; mf �� in L2�m;r .reg.X/; F; �1; �/: (49)

If 0 � r � q � 2, then

ŒQm;q
s ; mf �� D Œ@

�1;�1

F;m;r C @
�1;�1;t

F;m;r�1; mf �� D ŒQ
m;q
0 ; mf ��

for each s 2 Œ0; 1�. Thus, (49) is obviously satisfied. If r D q � 1, then

ŒQm;q
s ; mf �� D ŒD

�1;�s
F;m;q�1 C @

�1;�1;t

F;m;q�2; mf ��

D Œ�m;qs ı @
�1;�s

F;m;q�1;max C @
�1;�1;t

F;m;q�2; mf ��

D Œ�m;qs ı @
�1;�s

F;m;q�1;max; mf ��C Œ@
�1;�1;t

F;m;q�2; mf ��

D �m;qs ı Œ@
�1;�s

F;m;q�1;max; mf ��C Œ@
�1;�1;t

F;m;q�2; mf ��

D �m;qs .@f ^ �/C Œ@
�1;�1;t

F;m;q�2; mf ��:

Note that the term Œ@
�1;�1;t

F;m;q�2; mf �� is independent on s while the equality

lim
s!0

�m;qs .@f ^ �/ D �
m;q
0 .@f ^ �/ in L2�m;q.reg.X/; F; �1; �/

follows easily by the Lebesgue dominated convergence theorem and the fact that @f 2
�
0;1
c .reg.X// and �m;qs 2 C.reg.X/ � Œ0; 1�;End.p�ƒm;q.reg.X//˝ p�F //. Since

ŒQ
m;q�1
0 ; mf �� D �

m;q
0 .@f ^ �/C Œ@

�1;�1;t

F;m;q�2; mf ��;

we can conclude that (49) also holds true in the case r D q � 1. If r D q, then

ŒQm;q
s ; mf �� D ŒD

�s ;

F;m;q C .D

�1;�s
F;m;q�1/

�; mf ��

D Œ�
m;qC1
0 ı @

�s ;


F;m;q;max ı .�
m;q
s /�1 C @

�1;�s ;t

F;m;q�1;min ı .�
m;q
s /�1; mf ��

D Œ�
m;qC1
0 ı @

�s ;


F;m;q;max ı .�
m;q
s /�1; mf ��C Œ@

�1;�s ;t

F;m;q�1;min ı .�
m;q
s /�1; mf ��

D �
m;qC1
0 ı Œ@

�s ;


F;m;q;max; mf � ı .�
m;q
s /�1�C Œ@

�1;�s ;t

F;m;q�1;min; mf � ı .�
m;q
s /�1�

D �
m;qC1
0 .@f ^ .�m;qs /�1�/C i.r1f /0;1.U

m;q
s ..�m;qs /�1�//:

Again, by the fact that @f 2 �0;1c .reg.X//, Um;qs and

.�m;qs /�1 2 C.reg.X/ � Œ0; 1�;End.p�ƒm;q.reg.X//˝ p�F //
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and the Lebesgue dominated convergence theorem, we have

lim
s!0

�
m;qC1
0 .@f ^ .�m;qs /�1�/

D �
m;qC1
0 .@f ^ .�

m;q
0 /�1�/ in L2�m;qC1.reg.X/; F; �1; �/

and
lim
s!0

i.r1f /0;1.U
m;q
s ..�m;qs /�1�//

D i.r1f /0;1.U
m;q
0 ..�

m;q
0 /�1�// in L2�m;q�1.reg.X/; F; �1; �/:

Since

ŒQ
m;q
0 ; mf �� D �

m;qC1
0 .@f ^ .�

m;q
0 /�1�/C i.r1f /0;1.U

m;q
0 ..�

m;q
0 /�1�//;

we can conclude that (49) holds true also in the case r D q. If r D q C 1 we have

ŒQm;q
s ; mf ��

D ŒD

;

F;m;qC1 C .D

�s ;

F;m;q/

�; mf ��

D Œ�
m;qC2
0 ı @


;


F;m;qC1;max ı .�
m;qC1
0 /�1 C �m;qs ı @

�s ;
;t

F;m;q;min ı .�
m;qC1
0 /�1; mf ��

D Œ�
m;qC2
0 ı @


;


F;m;qC1;max ı .�
m;qC1
0 /�1; mf ��C Œ�

m;q
s ı @

�s ;
;t

F;m;q;min ı .�
m;qC1
0 /�1; mf ��

D�
m;qC2
0 ı Œ@


;


F;m;qC1;max; mf � ı .�
m;qC1
0 /�1�C �m;qs ı Œ@

�s ;
;t

F;m;q;min; mf � ı .�
m;qC1
0 /�1�

D�
m;qC2
0 .@f ^ .�

m;qC1
0 /�1�/C �m;qs ..Um;qs /�1.i.r1f /0;1.U

m;qC1
0 ..�

m;qC1
0 /�1�////:

Note that the first term does not depend on s whereas for the second term we have

lim
s!0

�m;qs ..Um;qs /�1.i.r1f /0;1.U
m;qC1
0 ..�

m;qC1
0 /�1�////

D �
m;q
0 ..U

m;q
0 /�1.i.r1f /0;1.U

m;qC1
0 ..�

m;qC1
0 /�1�////

in L2�m;q.reg.X/; F; �1; �/ for the same reasons explained in the previous cases. Since
for r D q C 1 we have

ŒQ
m;q
0 ; mf ��

D�
m;qC2
0 .@f ^ .�

m;qC1
0 /�1�/C �

m;q
0 ..U

m;q
0 /�1.i.r1f /0;1.U

m;qC1
0 ..�

m;qC1
0 /�1�////;

we can conclude that (49) holds true also in the case r D q C 1. Finally, if r � q C 2 we
have

ŒQm;q
s ; mf �� D ŒD


;

F;m;r C .D


;

F;m;r�1/

�; mf �� D ŒQ
m;q
0 ; mf ��

for each s 2 Œ0; 1�. Thus, (49) is obviously satisfied for r � q C 2, which completes the
proof of this lemma.
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Remark 4.1. The condition dim.sing.X// D 0 allows us to use Sc.X/ as a dense
�-subalgebra of C.X/ and thus the map (47) is bounded even when s1 ¤ 0 and s2 D 0.
If dim.sing.X// > 0, it is not clear to us how to define a dense �-subalgebra of C.X/ such
that the map (47) is bounded when s1 ¤ 0 and s2 D 0. This problem might be overcome
if one can replace Theorems 3.1 and 3.2 with a stronger convergence result, namely

G
@
gs ;gs
E;m;q

! G
@
h;h

E;m;q;max
(50)

compactly as s! 0. Indeed, in this case one can simply consider as a dense �-subalgebra
of C.X/ the space of smooth functions on X see [7, Definition 1]. Unfortunately, at the
moment, we do not know how to prove (50).

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. We start by pointing out that �� W L2�m;�.reg.X/; F; �1; �/ !
L2�m;�.A;E; g1; �/ is an isometry that makes the even bounded Fredholm modules

.L2�m;�.reg.X/; F; �1; �/;m;Q
m;m
1 ı .IdC .Qm;m

1 /2/�
1
2 /

and
.L2�m;�.M;E; g; �/;m ı ��;ðE;m ı .IdC .ðE;m/2/�

1
2 /

unitarily equivalent. Therefore, ��ŒðE;m� D ŒQ
m;m
1 �. Thanks to Lemma 4.3, we know

that ŒQm;m
1 �D ŒQ

m;m
0 � and by construction, see (46), we have ŒQm;m

0 �D ŒQ
m;m�1
1 �. Again

by Lemma 4.3, we have ŒQm;m�1
1 � D ŒQ

m;m�1
0 � and therefore, ŒQm;m

1 � D ŒQ
m;m�1
0 �.

Applying this procedure iteratively, we can conclude that ŒQm;m
1 � D ŒQ

m;r
0 � for each

r D 0; : : : ; m. In particular, we have ŒQ
m;m
1 � D ŒQ

m;0
0 �. Finally, note that �m;�0 W

L2�m;�.reg.X/; F; 
; �/! L2�m;�.reg.X/; F; �1; �/ is an isometry that turns the even
bounded Fredholm modules

.L2�m;�.reg.X/; F; �1; �/;m;Q
m;0
0 ı .IdC .Qm;0

0 /2/�
1
2 /

and
.L2�m;�.reg.X/; F; 
; �/;m;ðF;m;abs ı .IdC .ðF;m;abs/

2/�
1
2 /

unitarily equivalent. Therefore, ŒQm;0
0 � D ŒðF;m;abs� and so, we can thus conclude that

��ŒðE;m� D ŒðF;m;abs� in KK0.C.X/;C/

as desired.
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