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Property (NL) for group actions on hyperbolic spaces

Sahana H. Balasubramanya, Francesco Fournier-Facio, and
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(with an appendix by Alessandro Sisto)

Abstract. We introduce Property (NL), which indicates that a group does not admit any (isometric)
action on a hyperbolic space with loxodromic elements. In other words, such a group G can only
admit elliptic or horocyclic hyperbolic actions, and consequently its poset of hyperbolic structures
F(G) is trivial. It turns out that many groups satisfy this property, and we initiate the formal study
of this phenomenon. Of particular importance is the proof of a dynamical criterion in this paper that
ensures that groups with “rich” actions on compact Hausdorff spaces have Property (NL). These
include many Thompson-like groups, such as V, T and even twisted Brin-Thompson groups, which
implies that every finitely generated group quasi-isometrically embeds into a finitely generated sim-
ple group with Property (NL). We also study the stability of the property under group operations
and explore connections to other fixed point properties. In the appendix (by Alessandro Sisto), we
describe a construction of cobounded actions on hyperbolic spaces starting from non-cobounded
ones that preserves various properties of the initial action.
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1. Introduction

Among the techniques provided by geometric group theory in the study of groups, con-
structing and exploiting (isometric) actions on hyperbolic spaces is one of the most fruitful
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and has received a lot of attention in the last decades (see [8] for a recent survey). In this
article, we focus on groups that are not reachable by such a strategy. The approach can
be compared with the study of Kazhdan’s Property (T), which forbids isometric actions
on Hilbert spaces without global fixpoints and exhibits interesting behaviors of rigidity.
Several families of groups are known to have few or no interesting actions on hyperbolic
spaces, including higher-rank lattices [4, 43], Thompson’s group V' [36], and Gromov’s
random monsters [40], but so far a systematic study of such behaviors has not been con-
ducted. In this spirit, we introduce the following property and dedicate most of this article
to its study.

Definition 1.1. A group G satisfies Property (NL)—standing for No Loxodromics—if no
action by isometries of G on a hyperbolic space admits a loxodromic element. A group
has Property Hereditary (NL) if all of its finite-index subgroups have Property (NL). We
will often simply say that G is (NL), or hereditary (NL).

In other words, a group is (NL) if its only possible actions on hyperbolic spaces are
elliptic or horocyclic (see Theorem 2.1). These are the only types of actions we cannot for-
bid since every group admits elliptic actions (e.g., the trivial action on a single point) and
every countably infinite group admits horocyclic actions (e.g., combinatorial horoballs on
Cayley graphs [38] or trees in case the group is not finitely generated [63]). Thus, a group
is (NL) if it admits as few types of actions on hyperbolic spaces as possible.

While Property (NL) is preserved by certain group operations like directed unions,
direct sums, extensions, etc. (see Theorem 1.8), it is sensitive to commensurability, that
is, a group may be (NL) and contain finite-index subgroups with rich actions on hyper-
bolic spaces (see Example 4.8). This is the first motivation in the introduction of property
hereditary (NL)—it turns out that the hereditary version of the property is also preserved
under many group operations, including commensurability. A second one is that this is
the re-enforcement needed to imply fixed point theorems in spaces “built from hyperbolic
spaces” (see Section 6).

An additional motivator is the relation to the structure of the poset # (G)-the poset of
hyperbolic structures first introduced in [1] (see Section 6). It is easy to see that a group
with Property (NL) has trivial #(G) poset. In general, the structure of this poset is not
stable under taking finite-index subgroups (see Example 6.8), but this issue does not occur
with the property of being hereditary (NL): such a group and all its finite-index subgroups
have trivial #(G).

1.1. First examples

We start by mentioning a few examples that are already available in the literature. First of
all, since loxodromic elements must have infinite order, every torsion group is (NL), and
even hereditary (NL). This includes finite groups, Burnside groups, several branch groups
such as Grigorchuk’s group, and Tarski monsters.

A more interesting class of examples can be found in higher-rank lattices.



Property (NL) for group actions on hyperbolic spaces 3

Theorem 1.2 ([43]). Let G be a product of higher-rank algebraic groups over local fields,
each of which is almost simple and has finite center. Then every lattice in G is hereditary

(NL).

In [43], the theorem is stated in a manner equivalent to Property (NL), but since a
finite-index subgroup of a lattice is a lattice, the hereditary property follows directly. This
result has been strengthened in [4], where the authors show that, roughly, in the presence
of rank 1 factors, the only possible actions on a hyperbolic space are those that factor
through them.

In another direction is the following result.

Theorem 1.3 ([36]). Thompson’s group V is hereditary (NL).

In [36], the result is stated in a manner that excludes general type actions for V' (see
Theorem 2.1 for classification of hyperbolic actions). However, Property (NL) easily fol-
lows from the fact that V' is uniformly perfect (see Proposition 2.16), and hereditary (NL)
then follows from the fact that V' is simple. The strategy used to prove this result is part of
a much wider picture, that we will expand and present in this paper (see Section 5).

For amenable groups, the absence of free subgroups easily implies that they cannot
admit general type actions. From here, we exploit the rigidity properties of their quasi-
morphisms in order to obtain certain conditions that describe when amenable groups
admit hyperbolic actions with loxodromics. For focal or oriented lineal actions, this can
be classically achieved via the Busemann quasimorphism [54]. In this paper, we gen-
eralize this to encompass non-oriented lineal actions: The resulting object is called a
Busemann quasicocycle (see Proposition 2.10). Some of the results we deduce from this
are as follows.

Theorem 1.4 (Proposition 3.1). Let G be an amenable group. Then G is (NL) if and only
if every homomorphism G — R X Z /27 has image of order at most 2. In particular:

(1) An abelian group is (NL) if and only if it is torsion.
(2) A nilpotent group is (NL) if and only if every homomorphism to R is trivial.

Corollary 1.5. Let G be a finitely generated amenable group. Then G is (NL) if and only
if it does not surject onto Z or Do.

1.2. Groups of homeomorphisms

The main class of examples that is explored in this paper comes from groups of home-
omorphisms. Given a compact Hausdorff space X and a group G acting faithfully by
homeomorphisms on X, we produce a criterion that ensures that G cannot admit general
type (isometric) actions on hyperbolic spaces under the assumption that the action has cer-
tain dynamical properties (see Theorem 5.1). This is a dynamical version of an algebraic
criterion from [36], which in certain cases can be combined with uniform perfection to
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obtain strong results about certain groups having (NL). The statements are natural, but a
little too technical for this introduction, so we refer the reader to Section 5 for the general
results. Here, we limit ourselves to a list of examples we produce in this paper.

Theorem 1.6 (Section 5). The following groups are hereditary (NL):
(1) Higman-Thompson groups V, (r);
(2) Some Rover—Nekrashevych groups, including Neretin’s group;
(3) Twisted Brin—Thompson groups SVt whenever S is a countable faithful I"-set;

(4) Higman—Stein-Thompson groups Ty, ... n,, With k>landn; =2,n, = 3;

.....

(5) The golden ratio Thompson group Tr;

(6) The finitely presented group S of piecewise projective homeomorphisms of the
circle, from [51]; and

(7) Symmetrizations of Higman—Thompson groups QV,(r) and QT .

In particular, the result on twisted Brin—Thompson groups shows that there are plenty
of hereditary (NL) groups, in the following sense.

Corollary 1.7. Every finitely generated group quasi-isometrically embeds into a finitely
generated simple group, which is moreover hereditary (NL).

We warn the reader that our criterion ensures Property (NL) under the existence of
flexible enough actions on compact Hausdorff spaces, and it is not saying that in general
all “Thompson-like” groups have Property (NL). For instance, Braided Thompson groups
have rich actions on hyperbolic spaces [31].

1.3. Stability properties

An advantage of our systematic approach is that it naturally leads to the study of the sta-
bility of these properties under natural group-theoretic operations. The following theorem
summarizes some of our results from Section 4.

Theorem 1.8 (Section 4). The class of (hereditary) (NL) groups is closed under the
following operations:

(1) Quotients;

(2) Directed unions;

(3) Extensions, and

(4) Certain permutational wreath products.

The property hereditary (NL) is also preserved under commensurability.

The case of permutational wreath products is analyzed in detail, and the precise con-
ditions that ensure that the resulting group is (hereditary) (NL) are both necessary and
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sufficient. They are expressed in terms of existence of quasimorphisms of the base group
with some specific properties (see Section 4.3).

These stability results are useful to construct some further examples: indeed, the
stability under extensions is explicitly used to cover some of the items of Theorem 1.6.

1.4. Connection to other properties

Throughout this paper an important role will be played by two weaker properties:
(NGT)—for No General Type—which prevents the existence of general type actions,
and (NNE)—for No Non-Elementary—which prevents the existence of non-elementary
actions. In certain situations, such as the dynamical criterion, establishing these properties
first is more natural, and the passage from Property (NGT) to (NNE) to (NL) can be done
separately by means of more analytic considerations, mostly relating to the absence of
unbounded quasimorphisms.

The last section of this paper aims at initiating the discussion of Property (hereditary)
(NL) as it relates to other popular areas of study in geometric group theory. This includes
fixed point properties like Property (FA), Property (FR), hierarchical hyperbolicity, and
actions on products of hyperbolic spaces. While we study some implications—mostly to
record our observations and serve as motivation—a full investigation of the extent of this
connection is beyond the scope of this paper, and so we leave it to future work to explore
more thoroughly.

Lastly, we study the relationship between these properties and the poset of hyperbolic
structures introduced in [1]; in particular, we will see that Property (NL) is equivalent to
a version of Property (NL) for cobounded actions. This will follow from the work con-
tained in the appendix—a general result about associating cobounded actions to arbitrary
actions on hyperbolic spaces, while preserving several useful properties, which is also of
independent interest.

1.5. Outline of the paper

We start with some preliminaries in Section 2, covering the definitions and relations
between the properties (NGT), (NNE), and (NL). In Section 3, we investigate amenable
groups, and prove Theorem 1.4. In Section 4, we study stability properties and prove
Theorem 1.8. The dynamical criterion and the examples from Theorem 1.6 are dealt
with in Section 5. Finally, we explore connections to other properties in Section 6. The
appendix outlines a method to pass from arbitrary actions to cobounded ones.

2. Preliminaries
Unless mentioned otherwise, all actions on hyperbolic spaces considered in this paper are

by isometries. However, in Section 5 we will consider groups acting by homeomorphisms
on compact Hausdorff spaces. In this section, we shall recall some necessary background
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information as well as state some basic results and examples about the properties con-
sidered in this paper. These results will also be of relevance in later sections of this
paper.

We begin by recalling some standard facts and definitions pertaining to isometric
group actions on hyperbolic spaces, which we sometimes call hyperbolic actions. Given a
hyperbolic space X, we denote by dX its Gromov boundary. In general, X is not assumed
to be proper, and its boundary is defined as the set of equivalence classes of sequences
convergent at infinity. Given a group G acting on a hyperbolic space X, we denote by
A(G) the set of limit points of G on dX. That is,

A(G) =3X NGx,

where G x denotes the closure of a G-orbit in X U dX, for any choice of basepoint x € X.
This definition is independent of the choice of x € X; for details the reader is referred
to [37]. The action of G is called elementary if | A(G)| < 2 and non-elementary otherwise.
The action of G on X naturally extends to a continuous action of G on 9X.

2.1. Classification of isometries and hyperbolic actions

Given any action of a group G on a hyperbolic space X, isometries can be of exactly one
of the following three types. An element g € G is called

(1) elliptic if (g) has bounded orbits;

(ii) loxodromic if the map n — g"x,n € Z is a quasi-isometric embedding for some
(equivalently any) x € X; and

(>iii) parabolic otherwise.

Every loxodromic element g € G has exactly two fixed points g¥*° on 09X, where
g7 (resp., g~%) is the limit of the sequence (g"X)nen (resp., (g7 X)nen) for any fixed
x € X. Thus, A({g)) = {g*°°}. In a similar vein, a parabolic element has exactly one
fixed point £ on dX, which is the limit of both sequences (g"x),en and (7" X)eN-

The following theorem summarizes the standard classification of groups acting on
hyperbolic spaces due to Gromov [37, Section 8.2] and the results [24, Propositions 3.1
and 3.2].

Theorem 2.1. Let G be a group acting on a hyperbolic space X. Then exactly one of the
following conditions holds.
(1) |A(G)| = 0. Equivalently, G has bounded orbits. In this case, the action of G is
called elliptic.
(2) |A(G)| = 1. In this case, the action of G is called horocyclic (or parabolic). A
horocyclic action cannot be cobounded.
3) |A(G)| = 2. Equivalently, G contains a loxodromic element and any two loxo-

dromic elements have the same limit points on 0X. In this case, the action of G
is called lineal. A lineal action of a group G on a hyperbolic space is orientable
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if no element of G permutes the two limit points of G on 0X, and non-orientable
otherwise.

@) |A(G)| = 0. Then G always contains loxodromic elements. In this case, the
action of G is called non-elementary. In turn, this case breaks into two subcases.

(a) G fixes a point of 0X. Equivalently, any two loxodromic elements of G have
a common limit point on the boundary. In this case, the action of G is called
focal (or quasiparabolic).

(b) G does not fix any point of 0X. In this case, the action of G is said to be of
general type.

Remark 2.2. In the case of non-orientable lineal actions, the action on the set of limit
points of G induces a surjective homomorphism G — Z/2Z. The kernel of this homo-
morphism has index 2, and the restriction of the action to this kernel is lineal and
orientable.

In addition to Property (NL) defined in Section 1, we are also interested in the
following related properties.

Definition 2.3. We say that a group has property
(1) (NGT) if it does not admit an action of general type on a hyperbolic space; and

(2) (NNE) if it does not admit a non-elementary action on a hyperbolic space.

In other words, (NGT) excludes general type actions and (NNE) excludes focal and
general type actions. These can be thought of as fixed point properties as either the group
has a bounded orbit (in case of elliptic actions) or it has an orbit in the boundary of size
at most 2 (in case of lineal or focal actions). Property (NGT) was considered in [36] with
the name hyperbolically elementary.

2.2. The Busemann quasimorphism

A function g: G — R is a quasimorphism (or quasicharacter) if there exists a constant
D such that |q(gh) — q(g) — q(h)| < D for all g, h € G. The infimum of such D is
called the defect of g and is denoted D(q); in particular, D(g) = 0 if and only if ¢ is
a homomorphism. If, in addition, the restriction of g to every cyclic subgroup of G is a
homomorphism, ¢ is called a homogeneous quasimorphism (or pseudocharacter). Every
quasimorphism ¢ gives rise to a homogeneous quasimorphism f defined by the following
limit, which always exists. For any g € G:

B(g) := lim —Q(gn).

n—oo n
The function B is called the homogenization of g. It is straightforward to check that

|B(g) —q(g)| < D(q) for all g € G. In particular, § is also a quasimorphism, and more-
over it follows directly from the definition that it is homogeneous [23, Section 2.2.2]. Note,
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moreover, that any bounded homogeneous quasimorphism is trivial; therefore, it follows
that the homogenization of ¢ is the unique homogeneous quasimorphism at a bounded
distance from q.

In some sense, unbounded quasimorphisms on a group detect properties of negative
curvature of the group, as discussed below. In the opposite direction, the following holds
true.

Proposition 2.4 (see, e.g., [23, Proposition 2.65]). Let G be an amenable group. Then
every homogeneous quasimorphism on G is a homomorphism.

We will discuss hyperbolic actions of amenable groups in detail in Section 3; the reader
is referred there for reminders about the definition of amenability and relevant subclasses.

Given any action of a group G on a hyperbolic space X fixing a point & on the bound-
ary, one can associate a natural homogeneous quasimorphism B called the Busemann
quasimorphism (based at £). We will briefly go over the definition and main properties
of B, and refer the reader to [37, Section 7.5.D] and [54, Section 4.1] for further details.

Let x = (x,)xr>0 be a sequence converging to § € dX. We define ¢4 : G — R by the
rule

gx(g) = limsup(d(gxo, xn) — d(xo, Xn)).

n—>oo

Proposition 2.5 ([54, Section 4.1]). With the above setup, the following properties hold:
(1) gx is a quasimorphisms.
(2) The homogenization of qx is independent of x: We call it the Busemann quasi-

morphism and denote it by Bg, or simply by B when it is clear from the
context.

(3) B(g) # 0 if and only if g is loxodromic. In particular, B is not identically zero
whenever G ~, X is focal or orientable lineal.

If B is a homomorphism, then the action G ~, X is called regular.
Conversely, given a quasimorphism on a group G, one can always construct an
orientable lineal action.

Lemma 2.6 ([1, Lemma 4.15]). Let p: G — R be an unbounded homogeneous quasi-
morphism. Let C be any constant such that D(p) < C/2 and there exists a value of p in
the interval (0, C /2). Let

X =Xpc=1{gcGCG|[|p@l<C}

Then X generates G and the map p: (G, dx) — R is a quasi-isometry. In particular, if
I'(G, X) denotes the Cayley graph of G with respectto X, G ~, I'(G, X) is an orientable
lineal action.

An immediate corollary is the following implication for groups with Property (NL).
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Corollary 2.7. If G has Property (NL), then G has no unbounded quasimorphisms. In
particular, if G is finitely generated and (NL), then G has finite abelianization.

2.3. The Busemann quasicocycle

The Busemann quasimorphism is classically defined only for actions fixing a point
in the boundary. Here, we introduce a generalization to non-orientable lineal actions,
where instead two points on the boundary are fixed setwise. This entails the notion of
a quasicocycle.

Definition 2.8. Let ¢ : G — ({£1}, X) be a homomorphism. An e-quasicocycle is a map
¢ : G — R such that there exists a constant D with

lp(gh) —o(g) —e(g)e(h)| < D

for all g,h € G. The infimum of such D is called the defect of ¢ and is denoted D (p).

Note that if ¢ is the trivial homomorphism, we recover the usual definition of quasi-
morphism. Just as with quasimorphisms and homomorphisms, there is a simplest type of
e-quasicocycle.

Lemma 2.9. Let ¢ be an e-quasicocycle. Then D(¢) = 0 if and only if the map G —
R x {1} : g+ (¢(g).e(g)) is a homomorphism. In this case, ¢ is called an e-cocycle.

The proof of the above lemma is an immediate application of the definition, and we
leave it to the reader as an exercise. This setup allows us to get the following proposition.

Proposition 2.10. Let G be a group with a non-orientable lineal action on the hyperbolic
space X, with limit points §1. Define e(g) = —1 if g swaps €4, and e(g) = 1 otherwise.
Let K be the kernel of e. Then the Busemann quasimorphism Bg, : K — R extends to an
e-quasicocycle ¢ on G of defect at most 2D(Bg_ ). In particular, ¢ is a cocycle if and only
if the action of K on X is regular.

Proof. Since we are assuming the action to be non-orientable, we can fix an element
s € G such that e(s) = —1. To start, we will show that for every g € K, it holds
Be, (sgs™') = —B¢, (g) (notice that K is normal in G, thus sgs™! € K). If g is not
loxodromic, then neither is sgs ™!, so the above equality follows from Proposition 2.5 (3).
Otherwise, if g is loxodromic, for a fixed x € X we have g*"x — £ (up to replacing the
indices on £1). Denote these sequences by x1. We then compute, for k > 1:

gx(8¥) = limsup d(g¥x. g™"x) —d(x.g7"x)

n—>oo

= limsupd(g"x, g *x) —d(g"x,x)

n—>oo

=gx, (g75).
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On the other hand,

qX+(sgks_1) = limsupd(sgks™'x, g"x) — d(x, g"x)

n—>oo

1

= limsup d(g¥s™x, s 1g"x) —d(s 'x,s 1 g"x)

n—>o0
= gs-1x, (£5).

By Proposition 2.5 (2), we can use both s~!x; and x_ to compute Be_ (since both
sequences converge to £_). Using the above computations, we obtain

k—1 k
) . Gx, (sgfs™h) . qs1x, (89)
= 1 T = =1 - r - -
R L
k —k
. gx_(g7) . qx . (877)
Pe(g) = lim == koo k

=Be. (g7 = —PBe. (9).

as desired. As a corollary, we obtain

Be, (s%) = Bg, (ss%s71) = —Bg, (s7)

and thus B¢, (s?) = 0. (Notice that K has index 2 in G, so s* € K.)

Now we are ready to define the quasicocycle. We set B := Bg, fpr simplicity for the
rest of the proof. Each element in G may be uniquely written as ks*, where k € K and
i €{0,1}. We set ¢(ks’) := B(k), and we claim that this is an e-quasicocycle, where &
is as defined in the statement of the proposition. Let g; = kys'!, go = kos2 € G. We
compute

0(2182) = pkis" kas™) = @(ky.s" kps ™ s"1772),

Suppose first that i; 4 i, = 0 or 1. Then it is easy to check that the above equals

Blk1.s"kas ™) ~ Blkr) + e(s)Bk2) = p(g1) + £(81)9(g2),

where ~ denotes an error of at most D(f). Otherwise, if i; = i, = 1, then the above
equals

Blky.skas™!.s%) ~ B(ki) + e(s)Bk2) + B(s%) = p(g1) + e(g1)¢(g2) + 0,

where ~ denotes an error of at most 2D (). We conclude that ¢ is a quasicocycle of defect
at most 2D (). Lastly, § is the restriction of ¢ to K, and so D(8) < D(¢). In particular,
D(¢) = 0if and only if D(B) = 0, so the last statement follows from Lemma 2.9. |

We record the following special case.

Corollary 2.11. Let G be a group with the property that every homogeneous quasi-
morphism on G or an index-2 subgroup of G is a homomorphism. Then every lineal action
of G on a hyperbolic space X defines a homomorphism ¥ : G — R x Z /27 such that:
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(1) If the image of ¥ has order greater than 2, then it contains a non-trivial (thus
unbounded) subgroup of R.

(2) The projection of Y (g) onto Z. /27 is non-trivial if and only if g swaps the pair of
points in dX fixed by G.

In particular, this holds if G is amenable.

Proof. This is a direct consequence of Proposition 2.10, together with the fact that every
subgroup of R x Z /27 of order greater than 2 intersects R non-trivially. The last state-
ment then follows from Proposition 2.4, and the fact that (index 2) subgroups of amenable
groups are amenable. ]

Remark 2.12. While the Busemann quasimorphism is canonically defined (Proposi-
tion 2.5), the Busemann quasicocycle we constructed in Proposition 2.10 is not. Indeed,
we could have chosen any element s’ € G swapping £, and this would have lead to an
e-quasicocycle ¢’ such that ¢’(s”) = 0. This choice is due to the fact that every identifica-
tion of Isom(R) with R x Z /27 comes with a choice of basepoint, that is, of the fixpoint
of the distinguished Z /27 factor.

Remark 2.13. There is a strong relation between quasimorphisms and bounded cohomol-
ogy [23,33], namely quasimorphisms modulo homomorphisms and bounded functions—
or equivalently homogeneous quasimorphisms modulo homomorphisms—represent those
classes in H7(G;R) that lie in the kernel of the natural comparison map HZ(G:R) —
H?(G;R). Similarly, given a homomorphism & : G — Z /27, we denote by R, the G-
module R endowed with the linear isometric action defined by ¢. Then e-quasicocycles
modulo e-cocycles and bounded functions represent those classes in H bz (G; R;) that lie
in the kernel of the natural comparison map HZ(G;R;) — H?*(G:R,).

It follows that the conclusion of Corollary 2.11 also holds under the assumption that
this comparison map is injective, without assuming anything about finite-index subgroups.
This is the case, for instance, for all amenable groups [33], some high-rank lattices [16,17],
and some lamplighters and Thompson groups [56]. However, we preferred to state Corol-
lary 2.11 in a way that requires no understanding of bounded cohomology, and that is still
sufficient for our purposes.

Further in the non-orientable case, the correspondence between lineal actions and
quasicocycles continues to hold. The following lemma is an analogue of Lemma 2.6.

Lemma 2.14. Lets: G — {*1} be a homomorphism with kernel K, and let ¢ : G — R be
an unbounded e-quasicocycle, which restricts to a homogeneous quasimorphism on K. Let
C > 0be suchthat D(¢) <C/2and o(K) N (0,C/2) # @ and p(G\ K)N[0,C/2) # @.
Let X :={g € G ||p(g)| < C}. Then X generates G and the map ¢ : (G,dx) — Risa
quasi-isometry.
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Note that any e-quasicocycle is at a bounded distance from one that restricts to a homo-
geneous quasimorphism on the kernel of ¢: It suffices to replace ¢ with its homogenization
on K, and keep it equal on G \ K.

Proof. Let Y := X N K. By Lemma 2.6 [1, Lemma 4.15], we know that Y gener-
ates K, and that the map ¢ : (K, dy) — R is a quasi-isometry. By assumption, there
exists s € G \ K N X, and every element of G may be uniquely written as k.s* for
k € K,i € {0, 1}. It follows that X generates G, and

lk.s'lx < [klx + 1 < |kly +1 < lo(k)| < lp(k.s")| + D(p) + o (s)],

where < denotes the inequality from the quasi-isometry ¢ to R. For the other direction,
let g € G and let g = x; - - - x, be an expression in X of shortest length. Then

lp(@)| = lo(x1 - xn)| < |@(x1 - Xp—1)| + [@(xn)| + D(¢) < ---

= nmax|p(x;)| + (n — D D(p) = 2C|glx. u
Similar to Corollary 2.7, we obtain the following.
Corollary 2.15. If G has Property (NL), then G has no unbounded quasicocycle.

2.4. Relations between the properties

As mentioned before, we are also interested in the properties (NGT) and (NNE)
(see Definition 2.3). Clearly, hereditary (NL) implies (NL) and it follows easily from
Theorem 2.1, that (NL) = (NNE) = (NGT). We record additional relations between
these properties in this section, which will also be used later in this paper.

Proposition 2.16 (From (NGT) to (NL)). Let G be a group with Property (NGT). If G
admits no unbounded quasimorphisms, then G has Property (NNE). If moreover no index
2 subgroup of G admits unbounded quasimorphisms, then G has Property (NL).

Proof. Let X be a hyperbolic space on which G acts. Since G has property (NGT), the
action is elliptic, horocyclic, lineal, or focal. In the focal case, G fixes a point on dX
and has a loxodromic element; therefore, the Busemann quasimorphism is an unbounded
quasimorphism on G—a contradiction. In the lineal case, G preserves a pair of points
on 0X, so it admits a subgroup K < G of index at most 2 that fixes both. This latter sub-
group now fixes a point at infinity and has a loxodromic element; therefore, once again the
Busemann quasimorphism is an unbounded quasimorphism on K—a contradiction. ]

Cases of special interest for us, especially in Section 5, will be groups that fall into the
following framework.
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Definition 2.17. Letn > 1. A group G is said to be n-uniformly perfect if every element
in G can be written as a product of at most n# commutators. It is said to be n-uniformly
simple if for every pair of elements g, h € G, h can be written as a product of at most n
conjugates of g, g~ 1.

We say that G is uniformly perfect (resp., uniformly simple) if there exists n > 1 such

that G is n-uniformly perfect (resp., n-uniformly simple).

It is straightforward to verify that every uniformly perfect group is perfect, and every
uniformly simple group is both simple and uniformly perfect (as one can take g to be a
commutator in the definition).

Corollary 2.18. Let G be a group with Property (NGT). If G is uniformly perfect, then
G has (NL). If G is uniformly simple, then G is hereditary (NL).

Proof. Every quasimorphism of a uniformly perfect group is bounded [23, Section 2.2.3],
so the first statement follows from Proposition 2.16. Indeed, (NNE) follows immediately.
It is easy to check that since index 2 subgroups are normal, such a subgroup would also be
uniformly perfect and thus have no unbounded quasimorphisms, implying Property (NL).
Lastly, a uniformly simple group is uniformly perfect, and being simple has no finite-index
subgroups, so hereditary (NL) follows automatically. |

2.5. Factorization of actions

A common problem considered in geometric group theory is to reduce a given action of
a group to a well-understood action of the same group or a subgroup. A related problem
is the extension problem, where one tries to build a hyperbolic action of G starting from
a hyperbolic action of a subgroup H, such that the extended action still “witnesses” the
action of H. In this paper, we shall make use of the following notions of factorization of
actions and essential actions.

In what follows, a subspace X’ of a geodesic metric space (X, d) is called quasiconvex
if there is a constant A > 0 such that for every x, y € X’, every geodesic connecting x, y in
X lies in the A-neighborhood of X’. It is well known that quasiconvex subspaces of hyper-
bolic spaces are themselves hyperbolic. A subspace X’ C X is called quasidense if there
is a constant C > 0 such that for every x € X, thereisa y € X’ such that d(x, y) < C.

Definition 2.19. Let G, H be two groups and ¢ : G — H a homomorphism. An action
G ~ X factors through ¢ if there exists a G-invariant quasiconvex X’ C X, an action
H ~ Y, and a ¢-equivariant quasi-isometry X’ — Y.

In other words, an action of G factors through H via ¢ up to perturbing the hyperbolic
space a little bit and extracting an invariant quasiconvex subspace.

Definition 2.20. An action on a hyperbolic space is essential if every invariant quasi-
convex subspace is quasidense.
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It is worth noticing that hyperbolic actions can be assumed to be essential without loss
of generality. Indeed, the following lemma is well known to experts; we add a sketch of
the proof for the reader’s convenience.

Lemma 2.21. Let G be a group acting on a hyperbolic space X. Assume that the limit
set A C 0X of G contains at least two points. There exist constants A, B > 0 such that
the union of all the (A, B)-quasigeodesics between any two distinct points in A\ is a
quasiconvex subspace on which G acts essentially.

Sketch of proof. Fix two constants A, B > 0 very large compared to the hyperbolicity con-
stant of X and let Y C X denote the union of all the (A4, B)-quasigeodesics between any
two distinct points in A.

Given two points p,q € Y, we claim that any geodesic between p and g stays in a
controlled neighborhood of Y. By definition, there exist two (A, B)-quasigeodesic lines
«, B, respectively, passing through p, g and connecting points «*, 8% in A. Fix two points
a* € a (resp., b*) very far from p (resp., ¢) in such a way that p (resp., ¢) belongs to
the subsegment g C & between at and a~ (resp., Bg C B between b™ and b™). As a
consequence of [11, Section 6.4], there exists a subtree 7 C X containing p, q,a™, b+
and roughly embedded (i.e., the metric on 7 differs from the metric induced by X only
by an additive constant (independent of our points)). It follows from the Morse property
[14, ILLH Theorem 1.7] that a geodesic in X between p and g must stay close to the arc in
T between p and ¢, which is itself in a controlled neighborhood of a9 U B¢ and a fortiori
of Y.

Thus, we have proved that Y is quasiconvex and hence hyperbolic. Clearly, G pre-
serves Y so we may restrict the action to Y. It remains to show the action on Y is essential.
For this, assume that Z C Y is a G-invariant quasiconvex subspace. Fix a point z € Z.
Then dZ has to contain the accumulation points of the orbit G.z in 0X, namely the limit
set A. Because Z is quasiconvex, any two points in dZ are connected by a quasigeodesic,
so it follows from the Morse property that Z is quasidense in Y. Therefore, G acts on Y
essentially. ]

3. Amenable groups

In this section, we focus on Property (NL) in the context of amenable groups. A group
G is amenable if there exists a finitely additive probability measure on G that is invariant
under left translation. The structure of amenable groups allows us to prove strong results
for this class of groups. A first result in this vein is the following.

Proposition 3.1. Every amenable group G satisfies (NGT). Moreover, G satisfies (hered-
itary) (NL) if and only if every homomorphism from (a finite-index subgroup of) G to
R % Z /27 has image of order at most 2. If G is finitely generated, this amounts to saying
that it does not (virtually) surject onto 7. nor D .
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Proof. 1t follows from the standard Ping-Pong argument, that a group admitting a gen-
eral type action on a hyperbolic space contains a non-abelian free subgroup. However,
any amenable group G contains no free subgroups, and so it satisfies (NGT). If G admits
a focal action or a lineal action, then we know from Corollary 2.11 that there exists a
homomorphism G — R x Z /27 (which just takes values in R if the action is focal or
lineal and oriented) whose image has order greater than 2. Conversely, given a group
homomorphism G — R x Z /27, there exists an isometric action on R, simply because
R x Z /27 = Isom(R). This action has loxodromic elements if and only if the restric-
tion to the subgroup of elements whose projection to Z /27 is trivial is unbounded. In
turn, this occurs whenever the image of the homomorphism is of order greater than 2. The
statement for hereditary (NL) follows since subgroups of amenable groups are amenable.
This concludes the proof of the second statement.

Lastly, suppose that G is finitely generated. Clearly, if G surjects onto Z or Dy, then
there exists a homomorphism of G to R x Z /27 such that the image has order greater than
2. Conversely, let ¥ : G — R x Z /27 be such a homomorphism. Let H be the subgroup
of elements whose image lands in R, which has index at most 2. Then ¥ (H) is a finitely
generated unbounded subgroup of R, which implies that it is isomorphic to Z" for some
integern > 1. If H = G, then we can produce a surjective homomorphism G — Z. Other-
wise, let s € G be such that ¥/ (s) has order 2. Then ¥ (G) = (Y (H), V¥ (s)) = Z" X Z/27.
Since the action of the involution preserves each factor of Z”", this in turn surjects onto
ZXZL)27 = Dyo. |

3.1. Abelian and nilpotent groups

Abelian and nilpotent groups are widely studied classes of groups among amenable
groups. The rigid structure of both these classes of groups allows us to prove even stronger
results about them and Property (NL).

Proposition 3.2. Let G be a group with no non-abelian free sub-semigroup. Then G sat-
isfies (NNE). If G is amenable and admits a lineal action, then the action factors through
a homomorphism G — R x Z /2.

Proof. Let G be a group with no non-abelian free sub-semigroups, and let G acts on
some hyperbolic space X. The action cannot be of general type nor focal, as the standard
Ping-Pong argument will produce free subgroups or free sub-semigroups, respectively.
Therefore, G satisfies (NNE).

For the second statement, let G be an amenable group. First suppose that G ~, Z
is an orientable lineal action. Let {§_, &} C X be the finite orbit at infinity. The
corresponding Busemann quasimorphism ¢ : G — R is a homomorphism, by Corol-
lary 2.11. By Lemma 2.6, there is a generating set X C G such that ¢ : (G,dx) - R
is a G-equivariant quasi-isometry. Further, it follows from Lemma 2.6, that the orbit
map q: (G, dxy) — Z defines a G-equivariant quasi-isometry. Consequently, there is a
@-equivariant quasi-isometry between the orbit Z’ = G.z and R (given by g.z — ¢(g)).
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As the action of G is lineal, Z’ is quasiconvex and G-invariant in Z. A similar explanation
holds in the non-orientable case, using the Busemann quasicocycle, Proposition 2.10, and
Lemma 2.14. ]

Remark 3.3. As a direct consequence of the above result, the following groups have
(NNE): groups of subexponential growth, virtually nilpotent groups [53], and supra-
menable groups [61].

Corollary 3.4. Let G be an abelian group. Every action of G on a hyperbolic space is
elliptic, horocyclic, or lineal and oriented. In the latter case, the action factors through a
homomorphism G — R.

Proof. Every lineal action of an abelian group is necessarily orientable: This follows from
Corollary 2.11 and the fact that the only abelian subgroups of R x Z /27 are either of order
2 or contained in R. The result now follows from Proposition 3.2. ]

Corollary 3.5. An abelian group G is (hereditary) (NL) if and only if it is a torsion group.

Proof. Let T denotes the torsion subgroup of G. So G/ T is a torsion-free abelian group.
As a consequence, G/T embeds into the tensor product G/T ®z Q where G/ T is
thought of as a Z-module. This tensor product is naturally a vector space over Q, so,
as an abelian group, it is a direct sum of copies of Q. It follows that either G/ T is triv-
ial, which amounts to saying that G is a torsion group, or G/ T (and a fortiori G) has a
non-trivial homomorphism to Q (and a fortiori to R). In this case, G cannot be (NL), by
Corollary 2.7.

By Corollary 3.4, we conclude that an abelian group is (NL) if and only if it is a torsion
group. As being virtually a torsion group amounts to being a torsion group, the complete
statement of the corollary follows. ]

Corollary 3.6. Let G be a nilpotent group. Every action of G on a hyperbolic space is
elliptic, horocyclic, or lineal and oriented. In the latter case, the action factors through a
homomorphism G — R. Consequently, a nilpotent group G is (NL) if and only if every
homomorphism to R is trivial.

Proof. The fact that every action is elliptic, horocyclic, or lineal follows from Proposi-
tion 3.2 since nilpotent groups contain no free sub-semigroups (see [53]). So it remains to
exclude non-oriented lineal actions.

Suppose that ¢ : G — R x Z /27 is a homomorphism that contains an unbounded
subgroup of R. By Corollary 2.11, it suffices to show that such a homomorphism nec-
essarily lands in R. Otherwise, there exists an element g € R of infinite order, and an
element s of order 2, such that (g, s) < ¢(G). But (g, s) = Dy, which is not nilpotent
(for instance because it has trivial center). Moreover, it is a subgroup of a quotient of G,
and this contradicts the fact that G itself is nilpotent. ]
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3.2. Solvable groups

Solvable groups are another well-studied class of amenable groups, which include abelian
and nilpotent groups. However, unlike abelian and nilpotent groups, these can admit
(many) focal actions. Indeed, recent results from [2,3,6] have classified the actions of well-
studied solvable groups, including Lamplighter and solvable Baumslag—Solitar groups, all
of which admit focal actions. Thus, we prove a result that classifies which solvable groups
admit focal actions.

Proposition 3.7. A finitely generated solvable group is either virtually nilpotent or
contains a finite-index subgroup admitting a focal action.

Proof. The proposition is essentially a consequence of [39] (see also [13, Theorem 1.6]),
which states that a finitely generated group that is just non-virtually nilpotent (i.e., not vir-
tually nilpotent but all of whose proper quotients are virtually nilpotent) must be virtually
metabelian. Moreover, in case it is metabelian, it has to embed in the affine group Aff(k)
over some local field k with cocompact image.

Now, let G be a finitely generated solvable group that is not virtually nilpotent. Then
G admits a quotient G that is just non-virtually nilpotent (see, for instance, [13, Claim 2,
page 961]). As a consequence of the result mentioned above, G contains a metabelian
subgroup H of finite index. Because G is not virtually nilpotent, so is H, which implies
that H also surjects onto some just non-virtually nilpotent group H. As a quotient of a
metabelian group, ‘H must be metabelian, so it embeds into Aff(k) over some local field
k with cocompact image.

Thus, G contains a finite-index subgroup (namely, the pre-image of H under G —» G)
that surjects onto H, and the latter admits a focal action either on a real or complex
hyperbolic space (if k = R or C, see [55, Chapter 2]) or on a Bruhat-Tits tree (if k is
non-Archimedean, see for instance [63, Section II.1.3] or [26, Section 4]). [

The following corollary is now an easy consequence.

Corollary 3.8. A finitely generated solvable group is hereditary (NNE) if and only if it is
virtually nilpotent.

4. Stability under operations

In this section, we study the question of when the properties (NL), (NGT), (NNE) are
preserved under group operations. We start with the simplest ones.

Proposition 4.1. The properties (NGT), (NNE), (NL) as well as their hereditary versions
are preserved under taking

(i) Quotients
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(ii) Directed unions

(iii) Direct sums

We will prove each part of the proposition in a series of results. In order to prove sta-
bility under quotients, we will make use of the following result which is straightforward
to verify.

Lemma 4.2. Let N be a normal subgroup of G and ¢ : G — G/ N be the quotient map.
If G/N ~ X is a hyperbolic action, then the action of G ~, X defined by g.x = ¢(g).x
is a well-defined hyperbolic action of the same type. In particular, if G/N ~, X contains
a loxodromic element, then so does G ~ X.

Proof of Proposition 4.1 (i) and (ii). The proof of (i) follows from Lemma 4.2 and the fact
that finite-index subgroups of G/ N are of the form H/N, where H < G is a finite-index
subgroup suchthat N < H < G.

The assertions in (ii) follows from the fact that only finitely many elements are needed
to determine whether a given action is of general type, non-elementary, or contains a
loxodromic (namely, two independent loxodromic isometries, two loxodromic isometries
with distinct quasiaxes, one loxodromic isometry), and from the fact that a finite-index
subgroup in a directed union of groups is a directed union of finite-index subgroups. m

In order to deal with direct sums, we will need the following general results.

Lemma 4.3. Let G be a direct sum @; H; acting on a hyperbolic space X . If there exists
some i such that the restriction of the action to H; is not elliptic, then the actions of G
and H; on X have the same type.

Proof. An element h € H; is loxodromic for the restricted action H; ~ X if and only if
its image in G is loxodromic for the action G ~, X . This immediately implies that if the
action of H; has general type, then the action of G has general type.

If the action of H; is focal, then it fixes a point at infinity &, and it contains two lox-
odromic elements /1, h, with distinct limit sets at infinity. Since H; commutes with H;
for all i # j, the point £ must be fixed by the other H; as well, and therefore also by G.
Moreover, G contains /1, ho, which are two loxodromic elements with distinct limit sets
at infinity, and so the action of G is also focal.

If the action of H; is lineal, then it preserves a quasiline, which has to be preserved by
each H; for j # i, and so the action of G is also lineal.

Finally, suppose that the action of H; is horocyclic. Then it has a unique fixed point
¢ at infinity, which is fixed by all of G by commutativity. If there existed a loxodromic
element g € H; for some j # i, then H; would preserve both g+, which is not possible
by hypothesis. Therefore, no H; can contain a loxodromic element, which implies that
the action of Hj is either horocyclic or elliptic.
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Now consider an element g € G, such that g = (h;) acts as h; € H;, where all but
finitely many entries are the identity element. If all components /; are elliptic, then it
is straightforward to check that g is elliptic. As H; contains no loxodromic elements, it
suffices to consider the case when some component /; is parabolic. Then for any n € Z,
g" contains a parabolic component h;’, which fixes the unique fixed point £. By commu-
tativity, all components of g” fix £ and therefore so does g” for every n. Consequently, g
is a parabolic element. Thus, the action of G is horocyclic, as it has an unbounded orbit
(since H; does) and no loxodromic elements. ]

The only case the previous lemma does not cover is when every H; is elliptic. This is
taken care of by the following lemma.

Lemma 4.4. Let A, B be two groups acting on a metric space X with bounded orbits. If
every isometry in A commutes with every isometry in B, then (A, B) has bounded orbits
inX.

Proof. Fixapoint x € X. Let M (resp., N) denote the diameter of A.x (resp., B.x). Then
d(x,ab.x) <d(x,a.x)+d(x,b.x) <M+ N

for every a € A, b € B. But A and B commute, so (4, B) = AB. We conclude that the
orbit of x under (A, B) has diameter <M + N. ]

We are now ready to complete the proof of Proposition 4.1.

Proof of Proposition 4.1 (iii). Let A, B be two groups. If A @ B acts on some hyperbolic
space X, then it follows from Lemmas 4.3 and 4.4 that the action A @ B ~ X has the
same type as A ~, X or B ~, X. More precisely, A @ B is elliptic if and only if A and B
are elliptic by Lemma 4.4. If either A or B is not elliptic, then A @ B has the same type.
This implies that the properties (NGT), (NNE), and (NL) are preserved by finite direct
sums.

For the hereditary version, let H < A @& B be a finite-index subgroup. Consider the
projections A’, B’ of H to each factor. As H is finite index in A & B, it follows that
A’ < A and B’ < B subgroups of finite index and H is a finite-index subgroup of A’ & B’,
with surjective projections to each factor. By Goursat’s lemma, there exist subgroups
N < A’,M < B’, and an isomorphism 6 : A’/N — B’/M such that H can be iden-
tified with the graph of the map 6. As A, B are hereditary (NL), so are A’, B’. As the
property survives under quotients, A’/ N, B’/ M are also hereditary (NL). As H is the
graph of the isomorphism 8, it follows that H is also hereditary (NL).

Thus, the proposition holds for finite direct sums. The general case now follows from
Proposition 4.1 (ii) about stability under directed unions. ]

It is worth noting that only the hereditary versions of the properties are preserved
under commensurability. Recall that two groups G, H are commensurable if they contain
isomorphic finite-index subgroups.
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Lemma 4.5. Let Gy < G be a subgroup of finite index. If Go is (NL) (resp., (NNE),
(NGT)), then G is (NL) (resp., (NNE), (NGT)).

Proof. This follows easily from the fact that, if g € G is loxodromic for an action on a
hyperbolic space X, then gl¢:%0] € G is loxodromic with the same axis. ]

Proposition 4.6. Property hereditary (NL) (resp., hereditary (NNE), hereditary (NGT))
is stable under commensurability.

Proof. Let G, H be commensurable groups, so there exist finite-index subgroups Go < G
and Hp < H that are isomorphic. Suppose that G is hereditary (NL). Then Gy is (NL),
and thus Hj is also (NL). It then follows from Lemma 4.5 that H is also (NL). The same
proof works for the other hereditary properties in the statement. ]

The following example shows that, in contrast, Property (NL) need not be preserved
under commensurability. We will go into much more detail about permutational wreath
products in Section 4.3, and this example may be considered as a warm-up.

Example 4.7. A group which is (NL) but not hereditary (NL). Let G = (Doo @ Do) %
(Z/2Z), where the generator ¢t of Z /27 swaps the factors of the direct sum. Obviously,
H = Dy @ Dy has finite index in G and it fails to have (NL). This implies that G is
not hereditary (NL). However, it is (NL). By Proposition 3.1, since G is finitely generated
and amenable, it suffices to show that G does not surject onto Z nor Ds,. We will prove
that every homomorphism G — Dy, has finite image, which implies both statements at
once.

We start by noticing that the only elements of order 2 in Do, are the reflections,
and two reflections commute if and only if they are equal. Now let ¢ : G — D, be a
homomorphism. A presentation for the group G is as follows:

G:(a,b,x,y,t|a2:b2:x2:y2:tzzl,

[a,x] = [b,X] = [Cl,y] = [b»y] = 17

1

tat™' = x,tht™! = y).

If p(a) = 1, then p(x) = 1 as well, so ¢ factors through (G | a, x) = Z /27 Z/27Z,
which is finite. A similar conclusion holds if any of ¢(b), ¢(x), ¢(y) equal 1. Therefore,
we may assume that none of a, b, x, y lies in the kernel of ¢. By the previous remark, it
follows that ¢(a), ¢(x) are commuting reflections; therefore, ¢(a) = ¢(x). Repeating the
argument with a, y and then with b, y, we obtain that each of a, b, x, y have the same
image. Thus, ¢ factors through (G |a = b = x = y) =~ Z /27 x Z/27Z, which is also
finite.

The following example shows that (NNE) and (NGT) are not preserved under
commensurabilty. Again, the reader should consider this as a warm-up to Section 4.3.
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Example 4.8. A group which is (NNE) but not hereditary (NGT). Let F be a non-abelian
free group. It is easy to see that the group G := (F @ F) x Z/2Z is not hereditary (NGT).
Assume that G acts on a hyperbolic space X . If the left copy of F in G contains two lox-
odromic elements a¢ and b, then so does the right copy of F because the two copies of
F are conjugate. Thus, a and b commute with a common loxodromic isometry, which
implies that they share the same quasiaxis. Thus, the actions of the two copies of F' must
be elementary. It follows from Lemma 4.3 that F @ F ~, X is elementary, and therefore
s0is G ~, X (see the proof of Lemma 4.5). Hence, G is (NNE).

4.1. Stability under extensions

In this section, we shall study the stability of the properties (NGT), (NNE), (NL) and their
hereditary versions under extensions. The main result of this section is the following.

Proposition 4.9. Let G be a group that fits in a short exact sequence
l-N—->G—>Q0—1.
If N and Q are both (hereditary) (NL), then so is G.

In order to prove the above result, we need the following lemmas about factoring
actions through quotients.

Lemma 4.10. Let G be a group, N <1 G a normal subgroup, and X a hyperbolic space
on which G acts. If N has bounded orbits, then G ~, X factors through G — G/N.

Proof. Up to replacing X with the graph whose vertex-set is X and whose edges connect
two points x, y of X whenever d(x, y) < 1, we can assume without loss of generality
that X is a graph. Fix a constant of hyperbolicity § > 0 of X. Let F denote the set of
all the vertices whose N -orbits have diameters <2§. We claim that F is non-empty and
12§-quasiconvex.

The fact that F is non-empty is given by [12, Lemma 2.1]. More precisely, given a
bounded subset S C X and a vertex x € X, define r, := min{r >0| S C B(x,r)}. A cen-
ter of S is a vertex x € X satisfying r, = min{r; | z € X}. According to [12, Lemma 2.1],
the set of all the centers of S has diameter <2§. (It is assumed in [12, Lemma 2.1] that the
hyperbolic space is proper. But this assumption is only required for the existence of cen-
ters, which is clear in our case as X is a graph.) Thus, given an arbitrary N -orbit, which
is bounded by assumption, it is easy to check that the orbit of a center must have diameter
<26. Hence, F is non-empty, as this center will belong to F.

Next, to see that F is 12§-quasiconvex, fix two vertices x, y € F and a geodesic [x, y]
connecting x to y. We know from [28, Corollary 10.5.3] that the metric of X is 86-convex,
that is, for any two constant-speed parametrizations y1, y» : [0, 1] = X of two geodesics,

d(yi(ta + (1 —1)b).y2(ta + (1 —1)b))
< td(y1(a). y2(a)) + (1 = 1)d(y1 (D). y2(D)) + 85
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foralla,b € [0,1] and ¢ € [0, 1]. As a consequence, for every z € [x, y], we have
d(z,nz) <d(x,nx) +d(y,ny) + 85 <128

for every n € N. In other words, the N-orbit of z has diameter <12§. Fixing a cen-
ter ¢ of N -z, we have ¢ € F and consequently d(c,z) < 126. Thus, [x, y] lies in the
128-neighborhood of F, proving our claim.

Now, let Y denote the graph obtained from X by first adding a new vertex xg, an apex,
for every subset S C X of diameter <2§, which we connect to all the vertices in S, and
then by connecting two apices xg, xs with an edge whenever d(R, S) < 12§. Clearly,
the inclusion map X < Y is a quasi-isometry that sends F at finite Hausdorff distance
from the subgraph Z C Y induced by all the apices fixed by N. Because F' is G-invariant
(as N is normal), non-empty and quasiconvex, it is quasidense in X. It follows that Z is
quasidense in Y, and therefore it is a non-empty, connected, hyperbolic graph on which G
naturally acts. Moreover, by construction, N lies in the kernel of this action. This proves
that G ~, X factors through G — G/N. |

Corollary 4.11. Let G be a group and N <1 G a normal subgroup. If N is (NGT), then
every action of general type of G on some hyperbolic space factors through G — G/ N.

Proof. 1f the restricted action N ~, X is horocyclic, lineal, or focal, then N fixes one or
two points in dX, which are preserved by G since N is normal. In particular, in this case
G ~ X cannot be of general type. Consequently, N ~, X must be elliptic and the desired
conclusion follows from Lemma 4.10. ]

Proof of Proposition 4.9. Let G act on some hyperbolic space X . Up to replacing X with
the quasiconvex hull of the limit set of G, we assume that the action is essential. Because
N has (NL), the induced action N ~, X is either elliptic or horocyclic. In the former case,
we know from Lemma 4.10 that G ~, X factors through Q, and we can conclude that
G ~ X has no loxodromic elements since Q has (NL). So we may assume that N ~, X
is horocyclic.

The unique point at infinity fixed by N has to be fixed by G as well, so G ~, X
is horocyclic, lineal, or focal. In the first case, G has no loxodromic. The second case
is impossible because there is no horocyclic action on a quasiline. In the third case, the
Busemann quasimorphism (Proposition 2.5) is an unbounded quasimorphism G — R. The
restriction to N is bounded, because N has (NL), and therefore it has no unbounded quasi-
morphisms (Corollary 2.7). So the Busemann quasimorphism descends to an unbounded
quasimorphism Q — R [23, Remark 2.90], which is impossible by Corollary 2.7, since
0 has (NL). Thus, we have proved that G ~, X cannot contain a loxodromic element, as
desired.

Next, if N and Q have hereditary (NL) and if H < G is a finite-index subgroup, then
there exist finite-index subgroups N < N and QO < Q such that H fits into a short exact
sequence

1> N—>H—> Q — 1.
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Because N and Q have (NL), it follows from what we have just proved that A has (NL).
Thus, G is hereditary (NL). |

4.2. Central extensions

In addition to the situation considered above, some of the properties are also preserved
under central extensions, which we prove here.

Lemma 4.12. Let G be a group. Every non-elementary action of G on a hyperbolic space
factors through G — G/ Z(G).

Proof. By Lemma 2.21, up to replacing X with a G-invariant quasiconvex subspace we
can assume that G ~ X is essential. Let £ € A(G) be a point in the limit set of G. We can
write £ as the limit of (g,.x),eN for some basepoint x € X and some sequence (g )neN
of elements of G. For every z € Z(G), we have

z.E =z lim gy x = lim g,.zx =§.
n—>oo n—00

Thus, Z(G) fixes pointwise A(G). Since A(G) is infinite and the action of G essential,
it follows that there exists some K > 0 such that Z(G) moves every point of X at dis-
tance at most K. In particular, Z(G) is elliptic, so the desired conclusion follows from
Lemma 4.10. ]

Corollary 4.13. A group G is (NGT) (resp., (NNE)) if and only if G/ Z(G) is (NGT)
(resp., (NNE)).

4.3. Permutational wreath products

In this section, we study the stability of Property (NL) under taking permutational wreath
products. This can be precisely characterized by the following theorem.

Theorem 4.14. Let B be a group acting on a set S and {As}ses a B-invariant family of
groups. Let G be the semidirect product @,cg As ¥ B where B acts on the direct sum by
permuting the factors according to its action on S. Then G is (NL) if and only if all of the
following conditions are satisfied:

(1) Bis (NL);
(2) foreverys € S fixed by B, Ag is (NL),
(3) forevery s € S with a finite B-orbit, As has no unbounded quasimorphism; and

(4) for every s € S with an infinite B-orbit, As has no unbounded homomorphism
to R.

Before turning to the proof of the theorem, we record the particular case of permuta-
tional wreath products.
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Corollary 4.15. Let A, B be two groups and S a set on which B acts. The wreath product
As Bis (NL) if and only if B is (NL) and one of the following conditions hold:

(1) S contains a point fixed by B, and A is (NL);

(2) No point in S is fixed by B but S contains a finite B-orbit, and A has no
unbounded quasimorphism; and

(3) All the B-orbits in S are infinite, and A has no unbounded homomorphism to R.

Notice that the third item covers standard wreath products, when B is infinite. As a
first step towards the proof of Theorem 4.14, we focus on the weaker property (NNE).

Proposition 4.16. Let B be a group acting on a set S and {Ag}ses a B-invariant family
of groups. Let G be the semidirect product @ cg As X B where B acts on the direct sum
by permuting the factors according to its action on S. If B is (NL) and Ay is (NNE) for
every s € S fixed by B, then G is (NNE).

Proof. Assume that B has (NL) and that A for s € S fixed by B has (NNE). Let G act on
some hyperbolic space X. Without loss of generality, we assume that G acts essentially
on X, by Lemma 2.21. Indeed, if the action of G is elliptic or horocyclic, then we are
done. In all other cases, G admits at least two limit points on dX, and so we may apply
the lemma to construct an essential action.

We consider the restriction of this action to the normal subgroup P, As. If P, As ~
X is elliptic, then we know from Lemma 4.10 that G ~, X factors through B. Conse-
quently, G ~ X must be elementary. If @s As ~ X is horocyclic or lineal, then the finite
set stabilized at infinity must be stabilized by G as well. In the lineal case, G ~, X must
also act lineally, as it fixes two distinct points on the boundary. In the horocyclic case,
the action of G can be horocyclic or focal, as G fixes a unique point on the boundary.
In the former case, we are done. In the latter case, B must admit a loxodromic element
for the action on X, which contradicts (NL).

It remains to consider the case when @S As ~ X is non-elementary. We deduce from
Lemma 4.3 that there exists some s € S such that Ay ~ X is non-elementary. Necessarily,
Ay contains two loxodromic isometries, say g and /&, with an infinite Hausdorff distance
between their quasiaxes. If s is not fixed by B, say b.s # s for some b € B, then bhb~!
is a loxodromic isometry commuting with both g and %, which implies that g and # must
share the same quasiaxis, namely the quasiaxis of hp2bh~1. This contradicts our assumption
about g and 4, so s has to be fixed by B. But this contradicts the assumption that for such
ans € S, Ay ~ X must be elementary. [

Remark 4.17 (Partial converse). Note thatif s € § is fixed by B, then B and A are both
quotients of G. By Proposition 4.1 they must have (NNE) if G does. We may consider
the following question to consider the converse of Proposition 4.16: If A is non-trivial and
if B admits a lineal action, does A ¢ B admits a focal action? While a positive answer is
reasonable to expect, providing a complete proof is beyond the scope of this paper.
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We record the following particular case of Proposition 4.16, before proceeding to the
proof of Theorem 4.14.

Corollary 4.18. Let A, B be two groups and S a set on which B acts. If no point of S is
fixed by B, then As B is (NNE) if B is (NL).

Proof of Theorem 4.14. Suppose G is (NL). If s € S is fixed by B, then B and A; are
quotients of G. Proposition 4.1 implies that they are (NL), proving that conditions (1)
and (2) hold. If there exists an index r € S and a map ¢ : A, — R which is either an
unbounded quasimorphism in case r has a finite B-orbit or an unbounded homomorphism
in case r has an infinite B-orbit, then

((as)ses.b) = Y olay)

seB.r

defines an unbounded quasimorphism or homomorphism G — R, respectively. Therefore,
by Corollary 2.7, conditions (3) and (4) must hold as well.

Conversely, assume that the four conditions in the statement of Theorem 4.14 are sat-
isfied. Let X be a hyperbolic space on which G acts. We know from Proposition 4.16 that
G ~ X must be elementary. To prove that G has (NL), we only need to rule out the lineal
case. Assume by contradiction that G ~, X is lineal. The induced action of the normal
subgroup P, As; ~ X is either elliptic or lineal. (Indeed, it cannot be horocyclic as that
would imply G fixes a unique point of dX.) In the former case, the action factors through
B according to Lemma 4.10 and we conclude that G ~, X has no loxodromic element as
B has (NL). So we may assume that @, A; ~ X is lineal for the remainder of the proof.
By Lemma 4.3, there must exist some r € S such that A, ~, X is lineal. Observe that, as
a consequence of our assumption, B.r must be infinite.

Because G ~, X is lineal and the restriction to 4, is non-elliptic, there exists a quasi-
morphism ¢ : H — R for some subgroup H < G of index at most 2 that is unbounded
on H N A,. The only case where H needs to be a proper subgroup is when G stabilizes
a quasiline and inverts its endpoints at infinity. In this case, we claim that A, lies in H,
that is, it does not invert the two points at infinity. Indeed, if R € A, is such a reflection,
then there exists a constant D > 0 (controlled by the hyperbolicity constant of X') such
that {x € X | d(x, Rx) < D} is non-empty and bounded. This set has to be stabilized by
Ag for every s € B.r \ {r}, so A; must be elliptic, contradicting the fact that A, ~ X is
lineal. Thus, we know that A, always lies in H.

Up to replacing H with one of its subgroups (namely, (B N H, A; N H (s € S))), we
can write H as P g A% x B’ for some subgroups A% < As and B’ < B of indices at most
2. From now on, we think of ¢ as defined on the subgroup (4,, B’) = @P,cp , As X B’.
(Note that since A, C H as proved in the previous paragraph, we have A, = A/..) Up to
replacing ¢ with a quasimorphism at finite distance, we assume that ¢ is homogeneous
and zero on B’. As a consequence of [23, Section 2.2],

(1) ¢ is conjugacy-invariant;
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(2) ¢(ab) = p(a) + ¢(b) whenever a and b commute; and
(3) its defectis D(¢p) = sup, p|¢([a,b])|.

It follows from the first two properties that there exists a homogeneous quasimorphism
¥ : A, — R such that the restriction p of ¢ on @), A, is given by

p:(as)sep .r = Z V(as).
SEB’.r
According to the third property, there exists a,b € A, such that ¥ ([a, b]) > D(y¥)/2. Fix
a finite subset O C B’.r of the orbit. As the collection of the Ay is B-invariant, the A
with s € O are all copies of the same group. By an abuse of notation, we identify all these
groups and define

a ifse 0, b ifse O,
Qs> and fB:s—
1 otherwise, 1 otherwise,

which we see as tuples in P, A,. Then

D(p) = p(l. B) = Y ¥([a.b]) = [O|D(¥)/2.

s€0

Because O can be chosen arbitrarily large, as B’.r is infinite, we must have D(y) = 0. In
other words, A, admits an unbounded homomorphism to R, which is a contradiction. =

Theorem 4.14 allows us to prove a weaker version of Corollary 1.7. One can think of
this result as evidence of existence of many diverse groups with Property (NL).

Corollary 4.19. Every finitely generated group quasi-isometrically embeds into a finitely
generated hereditary (NL) group.

Proof. Let G be a finitely generated group. First, quasi-isometrically embed G into a
finitely generated perfect group G*; for instance, one can choose G to be a twisted
Brin—Thompson group [7, 68]. Next, fix a finitely generated infinite group H which
is hereditary (NL), for instance a finitely generated infinite torsion group. Then, G
quasi-isometrically embeds into the standard wreath product Gt ¢ H.

We claim that Gt ¢ H is hereditary (NL). Since G is perfect and H is infinite,
it follows from [41] that every finite quotient of G ¢ H factors through the quotient
GT ! H — H. Since every finite-index subgroup contains a finite-index normal sub-
group, it follows that every finite-index subgroup of G ? H contains the base group
@G ™. Therefore, for every finite-index subgroup K < G H, there exists a finite-index
subgroup Hy < H such that K is the pre-image of H; under the quotient G H — H.
Thus, we can explicitly describe K as the permutational wreath product G 2 Hy, where
Hj acts on H by left multiplication. Since H is infinite, and H; < H has finite index,
all orbits for this action are infinite. Finally, since Gtis perfect, it has no unbounded
homomorphism to R. Therefore, Corollary 4.15 (3) applies, and K is (NL). ]
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Remark 4.20. Note that the first step of the proof above consists in embedding G into a
twisted Brin—-Thompson group G+. We will see later that this is already enough to prove
the above result, as twisted Brin—Thompson groups are simple and we will show that they
have (NL) in Corollary 5.23.

Along the same lines as Theorem 4.14, one can show that various groups acting on
rooted trees satisfy (NNE) because they naturally decompose as permutational wreath
products. In order to make this assertion precise, we need to introduce some vocabulary.

Let G be a group acting on a rooted tree (7, 0). For every n > 1, the nth level of T
refers to the vertices at distance n from o. Notice that G stabilizes each level of T since
it fixes the root 0. The G-stabilizer of the nth level is denoted by stg (n). Given a vertex
v € T, the rigid stabilizer rigg (v) of v is the subgroup of G which permutes the vertices
below v (i.e., separated from o by v) and fixes all the other vertices of 7. For every n > 1,
we denote by rigs; (1) the subgroup generated by the rigid stabilizers of all the vertices in
the nth level; notice that rig; (n) decomposes as the product of these rigid stabilizers. If,
for every n > 1, G acts transitively on the nth level of T and rigg (n) has finite index in
G, then G is called a branch group.

We will prove the following result, which will yield implications for branch groups.

Proposition 4.21. Let G be a group acting on a rooted tree (T, 0). If there exists some
n > 1 such that G acts transitively on the nth level of T and rigg (n) has finite index in G,
then G satisfies (NNE).

We defer the proof of the proposition for a bit as it will be an immediate consequence
of our next result, which is proved following the lines of Proposition 4.16.

Lemma 4.22. Let G be a group. Assume that G contains pairwise commuting and pair-
wise conjugate subgroups A1, ..., Ar,r > 1 generating a finite-index subgroup of G, then
G satisfies (NNE).

Proof. Let G act on a hyperbolic space X. Because the A; are pairwise conjugate, their
induced action on X has the same type.

If Ay contains two loxodromic elements a and b, then A, contains a conjugate of a
commuting with both a and b. Because two commuting loxodromic isometries must have
the same quasiaxes up to finite Hausdorff distance, it follows that the quasiaxes of this
conjugate, a, and b all coarsely coincide. Thus, the A; must all act elementarily on X .

If all the A; are elliptic, it follows from Lemma 4.4 that G is elliptic. If all the A; are
lineal, then they must stabilize the same quasiline because they pairwise commute, which
implies that the action of G is also lineal. Finally, if all the A; are horocyclic, then their
elements are all elliptic or parabolic and they all fix a common point at infinity.

This implies that the action of G must be horocyclic as well. Indeed, G must fix the
same unique point on 0X that is fixed by all the A;. Further, if G contains a loxodromic
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element, then so does the group generated by Ay, ..., A,, as it has finite index in G. How-
ever, as the A; commute, (Aq,..., A;) = Ay --- A,. Thus, at least one of the A;s must
contain a loxodromic element (see the argument at the end of the proof of Lemma 4.3),
which is a contradiction. So G has no loxodromic elements. [

Proof of Proposition 4.21. The desired conclusion follows by applying Lemma 4.22 to
the rigid stabilizers of the vertices from the nth level of T'. ]

We now prove the following corollary that additionally deals with branch groups with
the congruence subgroup property. A group acting on a rooted tree satisfies the con-
gruence subgroup property if every finite-index subgroup contains the stabilizer of some
level.

Corollary 4.23. Branch groups are (NNE). Branch groups satisfying the congruence
subgroup property are hereditary (NNE).

Proof. The result is an immediate consequence Proposition 4.21. Indeed, if K is finite
index in G, then it contains stg(n) for some level n of the tree. For this n, rigg (n) has
finite index in G and hence in K, since it is a subgroup of K. As K also acts transi-
tively on the nth level (as G does so and K setwise stabilizes the nth level), we can apply
Proposition 4.21 to K and conclude that K has (NNE). [ ]

It is worth noticing that, even though many branch groups are famously torsion groups
(e.g., the Grigorchuk groups and the Gupta—Sidki groups) and consequently obviously sat-
isfy (NNE) (and even hereditary (NL)), there exist branch groups containing non-abelian
free subgroups [64], for which Property (NNE) is not so clear at the first glance.

5. A dynamical criterion for groups of homeomorphisms

The goal of this section is to provide a dynamical criterion for a group acting on a compact
Hausdorff space by homeomorphisms to have Property (NGT). This will then be applied
to a variety of Thompson-like groups to show that they are hereditary (NL). We warn the
reader that we consider compact Hausdorff spaces that are not endowed with a metric, so
the actions are merely by homeomorphisms, while actions on hyperbolic spaces are still
assumed to be isometric.

Before stating the main result of this section, we recall some basic terminology that
will be used in this section. Let G ~, X. The action is faithful if gx = x forall x € X
implies that g is the identity. Equivalently, for each non-identity element g, there is an
x € X such that gx # x. A group G is said to be boundedly generated by A C G if there
exists an integer n € N such that every g € G can be expressed as a product of at most n
elements in A.

Suppose a group G acts faithfully on a compact Hausdorff space X. Given g € G, the
support of g is the set of elements not fixed by g, that is, supp(g) = {x € X | gx # x}.
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Note that two elements g, 7 € G commute whenever supp(g) N supp(h) = &, although
this is not necessary (take, for instance, g = 4). Throughout this section, by g”, we denote
the conjugate hgh™! of g, and by [g, /] the commutator ghg ~'h~!.

Given a collection I of subsets of X, we denote by T the set of ordered n-tuples of
elements of .I with pairwise disjoint closures whose union is not dense in X . Our criterion
will involve transitivity on I (. therefore, the added condition that the union is not dense
will be necessary for this to ever be satisfied, as G sends dense sets to dense sets. Our
main result in this section is the following.

Theorem 5.1. Let G be a discrete group acting faithfully on a compact Hausdorff space
X. Suppose that there is a basis I of non-dense and non-empty open sets in X, such that
the following holds:

(1) (C: Complements) For every I € I there exists J € I such that I€ C J.
p ry

(2) (2T: Double transitivity) G preserves I and acts doubly transitively on it: for
every two pairs (I, J),(I',J') € ID, there exists g € G such that (g1, gJ) =
,J.

(3) (3T: Weak triple transitivity) For every g, h € G there exist (M, N, P) € I® such
that (M, N, P) and (gM, hN, P) are in the same G-orbit in T,

(4) (L: Local action) Let (I, J,K) € I®, and let g,h € G be such that gI = I
and hJ = J. Then there exists b € G such that b|; = g|; and bly = h|j and
bk = id|k.

Then G has Property (NGT).

Condition (3T) is strictly weaker than 3-transitivity: we will see in Corollary 5.28 that
it is also satisfied by some groups acting on the circle. On the other hand, it is easy to see
that having actual 3-transitivity on the circle prevents the action from being orientation-
preserving. Some condition stronger than double transitivity is needed, as the following
example shows (we will go through similar examples in Section 5.2).

Example 5.2. Let G be the group of isometries of a locally finite regular tree 7', and let
X := 0T be the boundary at infinity of 7. Then G acts faithfully by homeomorphisms on
X, which is a Cantor set; in particular, it is compact and Hausdorff. Given a finite subtree
of F C T, the complement 7\ F determines a partition By U --- LI By of X. Let .I denote
the set of subsets of X obtained as finite disjoint unions of such B;s. Then one can easily
check that I satisfies (C), that the action of G satisfies (2T) and (L). However, the action
of G on T is of general type, so G does not have Property (NGT). This does not contradict
Theorem 5.1, because the action of G on X does not satisfy (3T).
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5.1. Proof of Theorem 5.1

In order to prove the theorem, we will use the following algebraic criterion due to the
third author [36]. Our strategy is to show that the dynamical hypotheses from Theorem 5.1
imply the algebraic conditions of this theorem.

Theorem 5.3 ([36, Theorem 1.1]). Let G be a group. Suppose that there exist subsets
A, B C G and an integer r > 1 such that:

(1) G is boundedly generated by A.

(2) For every b,b’ € B there exist g, h € G such that b commutes with b8, which in
turn commutes with b", which in turn commutes with b’.

(3) Forevery g, h € G there exist b,by, ...,b, € B such that for every a € A there
exists f € (by)---(b,) such that each of a’b,a’bg,a’ bh belongs to B.

Then G has Property (NGT).

Let G, X, I be as in the statement of Theorem 5.1. If X is finite, then so is G as the
action is faithful, in which case every action on a hyperbolic space has bounded orbits. So
we may assume that X is infinite. We will show that there exist subsets A, B C G and
r > 1 satisfying the three properties in Theorem 5.3. We start with the following remark.

Remark 5.4. Double transitivity (2T) implies transitivity, namely G acts transitively on
1. Indeed, if I, I’ € I, then using that I is a basis and that I, I" are not dense, we can
choose J, J' € I such that (I,J),(I',J") € I®. Then, (2T) gives an element g € G
such that (g/,gJ) = (I',J’), in particular gI = I'.

Similarly, (L) implies an analogous statement for two sets: Let (1, J) € I? and let
g,h € Gbesuchthat g/ = I and hJ = J. Then there exists b € G such that b|; = gl
and b|; = h|;. Once again, this follows by simply fixing K to be any set in I such that
(I,J,K)e IO,

We can immediately define B and show that Property (2) of Theorem 5.3 holds for
this choice of B.

Definition 5.5 (Choice of B). We define B to be the set of elements of G that fix pointwise
some [ € I.

Lemma 5.6 (Property (2)). Forevery b,b’ € B, there exist g,h € G such that b commutes
with b8, which in turn commutes with b", which in turn commutes with b'.

Proof. Let I € I be fixed by b and let J € I be fixed by »’. By (C), there exists I’ € T
suchthat /¢ C I’. Let K € I be a subset of 1, and let g be an element such that g/’ = K,
which exists by (2T) (Remark 5.4). Using that I is a basis, we may choose K in such a
way that K U J€ is not dense. Since b is supported on I’, the conjugate b¥ is supported
on gI’ C I, which is fixed pointwise by b, so b and b8 commute.
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Next, let L € I be disjoint from both K and J¢, which is possible since their union is
not dense. Using (2T) again, we find & € G such that 11" = L. Then by the same argument
b" commutes with both »% and b’, since each of these pairs have disjoint support. ]

For Properties (1) and (3) we need to define the set A. For this, we first specify a
particular subcollection #4 of the basis .I, as in the following lemma.

Lemma 5.7 (Choice of ). There exists a finite subcover A C I such that for every
I,J € A there exists K € 4 such that K disjoint from T U J.

Proof. Since X is infinite, there exist three distinct points x, y,z € X. Since X is com-
pact and Hausdorff, it is normal, and since 1 is a basis there exist U, V, W € I containing
X, y,z, respectively, whose closures are pairwise disjoint. Now cover X by elements I € T
whose closures intersect at most one of U, V, W. By compactness, let 4 be a finite sub-
cover of such elements, to which we add the three sets U, V, W. By construction A C I,
and A is a finite cover of X. Finally, let I, J € +4. Since each intersects at most one of
U,V,W, without loss of generality we may assume that they are both disjoint from U.
Then U € + is such that U is disjoint from both 7 and J. ]

Definition 5.8 (Choice of A). We fix a choice of A C I asin Lemma 5.7 and define A to
be the set of elements in G that fix pointwise some / € .

Note that it follows from the definition that A C B. We now show that Property (1) of
Theorem 5.3 holds for this choice of A.

Lemma 5.9 (Property (1)). G is boundedly generated by A. In fact, every element of G
may be written as a product of at most 3 elements of A.

Proof. Let g € G and let x, y € X be such that gx = y. Suppose that x € / € A and
y € J € 4 (where I could be equal to J). Let I’ € I be small enough so thatx € I’ C I
and g/’ = J’' C J; notice that J' € I since G preserves I. Let K € 4 be such that
K is disjoint from 7 U J: This exists by the choice of # in Lemma 5.7. In particu-
lar, neither J U K nor I’ U K is dense, so we can apply (2T) to obtain ag € G such
that (aoJ,aoK) = (I’, K). By (L) applied to a¢ and the identity acting on J and K,
respectively (see Remark 5.4), there exists an element b € G such that b|g = ag|g and
b|; = id|;. Then the element a := aogh~! satisfies a|x = id|x and aJ = I, still. In
particular, this implies a € A.

Now we have gaJ = J'. Applying (2T) to the pair (J', K), (J, K), there exists an
element ¢ € G such that (coJ’, oK) = (J, K). Using (L) as before, we may modify cq to
obtain an element ¢ such that cJ’ = J and ¢|g = id|g, in particular ¢ € A. Now we have
cgaJ = J; therefore, using (L) one more time, we obtain d € G such that d|x = id|g
and d|y = cgaly.Inparticular, d € A. Thus, e := d~'c € A, and moreover ega|; = id|s
so ega € A. We conclude by observing that g = e~ !.ega.a™! € 43, n
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Lastly, we prove that Property (3) of Theorem 5.3 holds for our choice of A, B, which
will conclude the proof of Theorem 5.1.

Lemma 5.10 (Property (3)). There exists r > 1 with the following property: For every
g, h € G thereexistb,by,...,b, € B such that for every a € A there exists f € (by)---(b;)
such that each of a’ b, a’ bg, a’ bh belongs to B.

Proof. Let g, h € G. By (3T), there exist (M, N, P) € I® and by € G such that
bogM = M,bghN = N and by P = P. Now we use (L) twice to strengthen this. Apply-
ing (L) to the actions of by and bpg on P and M, respectively, gives an element ¢y € G
such that colp = bolp, colm = boglm, colny = id|n. Again (L) applied to the actions
boh and the identity on N and M, respectively, gives an element ¢; € G such that
c1|ly = boh|n,cilm = id|y, and ¢1|p = id|p. Setting b := cl_lco_lbo, we obtain that
blp =id|p,bg|ym = id|p, and bh|y = id|n.

Let / € 4 be fixed. Let Y € I be such that Y is disjoint from M, N, P: Since their
union is not dense in X by definition of I®, such a Y exists by the fact that I is a basis
and that X is a normal space. By (C) there exists J € I such that Y¢ C J, which is equiv-
alent to J¢ C Y. By (2T), there exists f € G such that f1 = J (see Remark 5.4), which
yields f(I€) = (f1)¢ = J¢ CY.Notice that f is chosen in terms of / and J, J is chosen
in terms of Y, and that Y is chosen in terms of (M, N, P), which in turn are determined
by g and h. We denote the dependence as f = f(g, h, I). Then for every elementa € G
fixing I pointwise, the element a’ fixes pointwise M, N, P C Y¢ C fI. It follows that
a’ b is the identity on P, a’ bg is the identity on M, and al bh is the identity on N; in
particular, they are all in B.

Now the set of f = f(g, h, I) that realize Property (3) for the pair (g, #) may be
chosen to be finite, since / varies in the finite set . Moreover, each element of G may
be written as a product of at most 3 elements in +4, by Property 1. It follows that there
exist 3|+| elements in A such that each f = f(g, h, I) belongs to the product of the cor-
responding cyclic groups. Since A C B, and this bound is uniform, we obtain the desired
conclusion. |

5.2. Groups acting on Cantor sets

The first application of the criterion from the last section is for group actions on Cantor
sets. We start with the following definition.

Definition 5.11. Let G be a group acting on a Cantor set X . The fopological full group of
G, denoted by [G], is the group of all homeomorphisms f* with the following property:
For every x € X, there exists an open neighborhood U of x and an element g € G such
that |y = g|v. Note that G < [G].

We say that G is a topological full group if G = [G]. It follows from the definitions
that for every G, the group [G] is a topological full group, that is, [[G]] = [G].
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Remark 5.12. The above definition can be equivalently given in terms of a basis. More
precisely, suppose that I is a basis of X. Then [G] is equal to the group of all homeomor-
phisms f with the following property: for every x € X, there exists x € U € I and an
element g € G such that f|y = glu.

Corollary 5.13. Let G be a group acting faithfully on the Cantor set X. Suppose that
there exists a basis I of proper non-empty clopen subsets of X that is closed under taking
complements, and is such that G acts transitively on I®). Suppose moreover that G is a
topological full group. Then, G has Property (NGT).

Proof. We apply Theorem 5.1 for the action of G on X with the basis I. By assumption,
I satisfies (C), and the action of G satisfies (2T) and (3T). We are left to prove (L). Let
(I,J,K)ye I® andletg,h € G besuchthat g/ = [ andhJ = J. Defineb : X — X by
bly = gl1,bly = hly and b|x\;us = id|x\7uy. Since G is a topological full group and
1, J are clopen, we obtain b € G. [

Corollary 5.14. Keep the assumptions from Corollary 5.13. Suppose moreover that G
has finite abelianization, and that it acts transitively on I9. Then G is hereditary (NL).

Remark 5.15. It will be apparent from the proof below that if G is perfect, then the proof
can be streamlined further. Also, in that case the assumption of transitivity on I will be
not necessary; instead, transitivity on I (3 will be sufficient.

Proof. We will show that the commutator subgroup G’ is simple and (NL); in particular,
it is hereditary (NL). This then exhibits G as an extension of a hereditary (NL) group and
a finite group, which is of course hereditary (NL) by Proposition 4.9.

We start by showing that G’ also satisfies the criterion of Theorem 5.1. Observe that
G’ also acts faithfully on X. We will show that G’ acts transitively on I®, and that its
action on I satisfies (L), which is sufficient for our goal. (Note that we are not claiming
that G’ is a topological full group.)

First, we prove that G’ acts transitively on 1. As a first step, we focus on the spe-
cial case in which (I, J, K), (I’, J', K') € I® are such that the union of the six sets
is not dense in X. Since I is a basis and it is closed under complements, there exist
(M,N)e I @ guch that 7, J, K C M. Since G is transitive on J® by assumption, there
exists g € G such that g(I,J, K, N) = (I’,J', K’, N). Since G is a topological full
group, we may assume that g fixes N pointwise. Let & € G be such that AN = M.
Then hg='h~! fixes M pointwise, and therefore [g, h] = g(hg~'h™') is an element
of G’ that sends (I, J, K) to (I',J’, K'). Now let (I,J,K),(I',J',K') € I® be
arbitrary. Then there exist (I, J1, K1), (12, J2, K2) € T () such that each of the pairs
{1, J.K), (I, J1, K)}: AU, I, K, (T2, T2, K2) AT, J2, Ko), (17, J7, K')} falls into
the special case treated above: This follows from the fact that I is a basis, and that
by definition each triple has non-dense union (see the proof of Lemma 5.6). Then we
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can apply the special case three times to obtain an element of G’ sending (Z, J, K) to
(I',J’, K'), which concludes the proof that the action of G’ on I® is transitive.

We are left to prove (L). This follows from an argument similar to one given before.
Namely, let (I, J, K) € I® and let g, h € G’ be such that g/ = I and hJ = J.
Since the union of /, J, K is not dense, once again we find (M, N) € T @ guch that
I,J,K CM.Defineb: X — Xbybl; =glr,b|l; = h|y and b|x\jus =id|x\sus. Let
¢ € G be such that cN = M. Then [b,c] = b(ch™'c™!) is an element of G’ such that
[c.b]lr = glr.[c.blls = hly and [c,b]|x = id|k.

It follows from Theorem 5.1 that G’ has Property (NGT). We complete the proof by
showing that G’ is uniformly simple, which shows that G’ is hereditary (NL) by Corol-
lary 2.18. For this, we can apply the criterion from [34, Theorem 5.1], which states that
if the action of G on X is extremely proximal, then G is uniformly simple. By extremely
proximal we mean: For every pair U, V' of non-empty proper clopen subsets, there exists
f € Gsuchthat fU C V. Solet U, V be non-empty proper clopen subsets. Since I is a
basis and it is closed under taking complements, there exist /, J € I such that U C I and
J C V. By transitivity, there exists g € G suchthat g/ = J,andthusgU Cc gl =J C V.
This shows that G is extremely proximal and concludes the proof. ]

We now present a few notable examples of groups to which the above criteria apply.
We remain a little superficial for now as details are provided in the next subsection on
twisted Brin—Thompson groups; the arguments contained therein can be easily adapted
for each of these examples as well.

Example 5.16 (Higman—-Thompson groups V;,(r) [44,67]). Letn > 2,r > 1,1let 7, be a
rooted n-ary tree, and 7, (r) the forest given as the disjoint union of r copies of 7;. Let
X be the boundary of 7;,(r), so that X is a Cantor set. For each finite subtree F in one
of the copies of 7, the complement 7, \ F induces a partition of 7;, C X into finitely
many clopen sets Cy, ..., Cg, one for each connected component. We set I to be the
set of C; that can be obtained this way, and we set I to be the set of proper disjoint
unions of finitely many elements in I¢. Identifying 7, with {1,...,n}~ induces a natural
identification of each C € Iy with d7,. Composing these identifications yields canon-
ical homeomorphisms between any two elements of Iy. The Higman—Thompson group
Vi (r) is the group of homeomorphisms of X obtained by fixing two finite partitions (of
the same size) of X into elements of I and permuting them according to those canonical
homeomorphisms. When r = 1, we denote simply V,.

It follows from the definitions that V},(r) is a topological full group, that I is preserved
by V},(r), and that I is stable under taking complements (the latter property is why we use
I and not Iy). Moreover, given two elements in I it is easy to construct by hand an
element of V,(r) sending one to the other. Therefore, the conditions of Corollary 5.13 are
satisfied. Moreover, V,,(r) has abelianization of order at most 2 [44, Theorem 5.4], and
therefore Corollary 5.14 applies.
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As a special case, we recover Thompson’s group V = V,(1). However, we note that
it was already shown in [36] that V' is (NGT), and it is well known that V' is uniformly
simple (see, e.g., [34]).

Example 5.17 (Colored Neretin groups [49]). Let T be a (d + 1)-regular (unrooted) tree,
where d > 2, and let F be a subgroup of the symmetric group of D :={0,...,d}. We
fix a proper coloring ¢ : E(T) — D, meaning that for all v € V(T), the restriction to the
edges adjacent to v is a bijection ¢, : E(v) — D. Given an element g € Aut(T), and a
vertex v € V(T'), we denote by o (g, v) the local action of g at v, namely the permutation:

et g Cgv
D — E(v) > E(gv) — D.

The Burger—Mozes universal group associated with F, denote by U(F), is the subgroup
of Aut(T) consisting of those elements g such that (g, v) € F forall v € V(T) [18]. The
colored Neretin group associated with F, denoted by N, is the topological full group of
the action of U(F) on 0T . By definition it is a topological full group of homeomorphisms
of the Cantor set 07, and moreover it has finite abelianization [49, Theorem 1.2]. Now
dT is naturally isomorphic to 075 (d + 1), with the notation of the previous example, and
the action of NF preserves the same basis I. Finally, if F is transitive, then NF contains
a copy of V441 whose action on 07 is conjugate to its action on 07 (d + 1) described
in the previous example [49, Remark 3.18] (see also [25,47]). Therefore, the transitivity
properties are also satisfied, and Corollary 5.14 applies: NF is hereditary (NL).

Example 5.18 (Rover—Nekrashevych groups [57, 62]). Let 7, be again a rooted n-ary
tree, and let G < Aut(7;,) be self-similar (i.e., for every g € G, if (g1, - .., gn,0) denotes
the image of g under the canonical isomorphism Aut(7,) — Aut(7,) ¢1,....n Su, then
g1,--.,8n also belong to G). Then we can modify the definition of V}, as given above, by
including not only canonical homeomorphisms between elements of I, but also canoni-
cal homeomorphisms twisted by the action of G on 7;,. Namely, while the canonical home-
omorphisms are given by the canonical identifications C; — 07, — C,, homeomorphisms
twisted by G are given by
1 — 07, 2% 97, - .

This defines the Rover—Nekrashevych group V,(G). Such groups interpolate between
Thompson groups V,, and Neretin’s groups AAut(T,) := V,(Aut(Ty,)); see [35] or [48]
for an introduction to the topic.

Since V;, is a subgroup of V,,(G) and both preserve I, the transitivity properties are
carried over from V;, to V,,(G). Moreover, it again follows from the definitions that V;,(G)
is a topological full group, so Corollary 5.13 applies and V},(G) is (NGT) for all n and
all G.

Finally, many Rover—Nekrashevych groups have finite abelianizations, or even are vir-
tually simple [57, 58, 66]. Concrete examples include Neretin’s groups [45], Thompson’s
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groups V;, (as above), and the groups V,, (&) constructed from Grigorchuk groups & [62].
It follows from Corollary 5.14 that all these examples are hereditary (NL).

Example 5.19 (Symmetrizations QV,,(r) [50]). Let n > 2,r > 1 and let 7, (r) denote
the forest given by the disjoint union of r copies of rooted n-ary trees. We endow each
vertex with a fixed total order on its children. Let QV},(r) denote the group of bijections of
the vertex-set 75, (r) preserving adjacency and orders with only finitely many exceptions.
The group of finitely supported permutations of the vertices of 7 (r), which we denote by
S0, yields a normal subgroup in OV, (r). The corresponding quotient is isomorphic to
Thompson’s group V;,(r). Thus, OV, (r) fits in the short exact sequence

1 = Soo = OQVyu(r) = Vy,(r) = 1.

By combining Example 5.16 (and the fact that torsion groups are hereditary (NL)) with
Proposition 4.9, it follows that QV;,(r) is hereditary (NL).

Remark 5.20 (Other Thompson-like groups). Many other variations of V' are present
in the literature, in particular the Stein—-Thompson groups Vy, . n,, or more generally
the Stein—-Higman—Thompson groups Vy, .. n, (r) [67], and the golden ratio Thompson
group V. However, these groups are defined in terms of tree pair diagrams that do not fit
into a natural infinite rooted tree, and so they have no natural interpretation as groups of
homeomorphisms of Cantor sets. This is discussed in [21, Section 1] for V7, and similar
discussions apply to the other groups.

Nevertheless, we believe that it should be possible to verify the algebraic criterion from
Theorem 5.3 for such groups, in terms of tree pair diagrams with rich enough dynamics.
Together with the fact that they have finite abelianization [21, 67], this would lead to a
proof that they are hereditary (NL). However, one main goal for this paper was to high-
light the dynamical approach to Property (NL), that works beyond Cantor sets as we
will later see. A combinatorial criterion in terms of tree pair diagrams would be of great
interest, but it falls out of the scope of this paper.

We end with one last example that serves as the basic building block for twisted
Brin—Thompson groups.

Example 5.21 (Brin—-Thompson groups sV [15]). Let s > 1 be a natural number. Let
C C [0, 1] be the middle-third Cantor set, which can be identified with {0, 1} via ternary
expansion. Then X := C¥ is also a Cantor set, seen as a subset of [0, 1]* with the product
topology. A subdivision of X into clopen subsets obtained by consecutively dividing X
in half along one of the s coordinates is called a pattern, and the corresponding clopen
subsets are called bricks. Elements of sV are homeomorphisms of X obtained by fixing
patterns with the same number of bricks on domain and codomain, and sending each brick
of the domain pattern to a brick of the codomain pattern affinely and preserving the orien-
tation. For s = 1, we get the classical Thompson group V. We refer the reader to [15] for
more details.
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Again, it follows easily from the definitions that sV is a topological full group. For
each pattern with bricks By, ..., B,, we declare a proper disjoint union of finitely many
B; tobe in I, and let I be the set of all clopen subsets of X obtained this way. Then I is
closed under taking complements, and again transitivity on 7*) may be easily checked.
Finally, it is known that sV is simple [15, Theorem 1]; in particular, it is perfect. Therefore,
it follows from Corollary 5.14 that sV is hereditary (NL).

5.3. Twisted Brin—-Thompson groups

In this section, we aim to prove the following result, which is related to Corollary 4.19.

Theorem 5.22. Every finitely generated group quasi-isometrically embeds into a finitely
generated simple (NL) group.

This will be a direct consequence of properties of the twisted Brin—Thompson groups,
and the following application of Corollary 5.14, which we prove below.

Proposition 5.23. Let I be a group, S a countable set on which T acts faithfully. Then
the twisted Brin—Thompson group SVr is hereditary (NL).

We start with the definitions, while referring the reader to [7,68] for more details. Let
C := {0, 1}N be the standard binary Cantor set, and let X := C S , Which is a Cantor set
when equipped with the product topology. We denote its elements as functions k : S — C.
Let {0, 1}* be the set of all finite binary sequences, including the empty word &. The sup-
port of amap ¥ : S — {0, 1}* is the set of s € S such that ¥ (s) # @. Given a function
¥ S — {0, 1}* with finite support, the corresponding (dyadic) brick is defined as

B() = {K eC’ | ¥(s) is a prefix of x(s) for all s € S}.

Since v has finite support, this imposes clopen conditions on only finitely many coordi-
nates, and therefore each B(v/) is a clopen subset of X . Every brick is canonically home-
omorphic to C¥, via the map hy CS — B(y) defined by hy (k) (s) = ¥ (s)k(s) (con-
catenation). This defines, for each pair of functions with finite support ¥, ¢, a canonical
homeomorphism £, o h;l : B(y) — B(p).

A pattern is a partition of X into finitely many bricks. We define SV to be the group
of homeomorphisms of X obtained by fixing patterns with the same numbers of bricks
on domain and codomain, and sending each brick of the domain pattern to a brick of the
codomain pattern via a canonical homeomorphism /4, o h;l . This is a direct generalization
of the Brin—Thompson group sV to an infinite-dimensional setting.

Now let I' be a group acting faithfully on S. For each y € T', let 7, be the homeomor-
phism of X defined by 7, (k)(s) = k(y~'.s). This defines, for each pair of functions of
finite support ¥, ¢ and each y € I', a twist homeomorphism hy, o T, o h;l : B(y) — B(p).
The twisted Brin—-Thompson group SVt is defined like SV above, but bricks are sent to
each other via twist homeomorphisms instead of only canonical homeomorphisms.



S. H. Balasubramanya, F. Fournier-Facio, and A. Genevois 38

Remark 5.24. In [7], the group is defined in terms of dyadic partitions, which are
more restrictive than patterns. However, the above description yields the same group [7,
Remark 1.1].

Example 5.25. When I = {1}, we have SV = SV. Therefore, Brin—-Thompson groups
sV and the classical Thompson group V' are special cases of twisted Brin—Thompson
groups.

Proof of Theorem 5.22. Assuming we have proven Proposition 5.23, Theorem 5.22 fol-
lows by using the following facts:

(1) SVr is simple [7, Theorem 3.4].

(2) If T is finitely generated and the action of I" on S has finitely many orbits, then
S Vr is finitely generated [7, Theorem A].

(3) In the above case, the embedding I' — SVr : y — 1, is quasi-isometric [7,
Theorem B].

Therefore, in order to obtain a quasi-isometric embedding of an arbitrary finitely gen-
erated group I" into a twisted Brin—-Thompson group, one may take S = I acting on itself
by left translation. ]

It therefore remains to prove Proposition 5.23.

Proof of Proposition 5.23. We will show that the action of G := SVr on X = C* satis-
fies the hypotheses of Corollary 5.14. We have already mentioned that SVt is simple, and
in particular it is perfect (in fact, the proof [7, Theorem 3.4] works by verifying conditions
similar to those that we are going to check now).
Let
I:= {B = By U---U By | B; is adyadic brick, @ # B # X}

Then I is a basis, and it is closed under taking complements, since every set of disjoint
bricks can be completed into a set of disjoint bricks forming a partition of X. Every g € G
is defined in terms of a pattern By LI --- LI By being sent to another pattern, where each
brick is sent to a brick. Any other brick B can be partitioned in terms of its intersection
with each B;, which shows that B is sent to a finite disjoint union of bricks. Therefore,
G preserves I. Since I is a basis, the same argument implies that G is a topological full
group (see Remark 5.12).

Finally, consider sets of disjoint bricks Bi,..., By and B7,..., Bl/c whose union is
not all of X. Each of them can be completed into a partition of X of the form By, ..., B;
and BY,..., B with [ > k: The fact that the cardinality is the same may be achieved by
taking refinements. Then there exists an element of SV < SVr = G sending B; to B].
This shows that the action is highly transitive on proper disjoint unions of bricks, and it
follows that the action on I is transitive for all 1 > 1. This concludes the verification
of the hypotheses of Corollary 5.14, and thus the proof. ]
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5.4. Groups acting on the circle

In this subsection, we apply Theorem 5.1 to groups acting on the circle. Here, we also
need to take into account the orientation, which is why the statement of Theorem 5.1 only
requires a weak version of triple transitivity. The proof is essentially the same as in the
case of Cantor sets, but some extra care has to be taken at various steps, in particular the
proof of property (3T) from Theorem 5.1, and in the proof of virtual uniform simplicity.

Throughout this section, we will denote the circle by X, which will be endowed with
a fixed orientation. Given a # b € X, we denote by (a, b) the open arc oriented from a to
b, that is the set of all x € X such that (a, x, b) is positively oriented. Similarly, we define
[a,b] = (a, b) the closed arc oriented from a to b.

Definition 5.26. Let G be a group acting faithfully on a circle X preserving the orienta-
tion. Let @ C X be a subset preserved by G. We say that G is an O-piecewise full group if
it contains all homeomorphisms f with the following property: There exists a positively
oriented tuple (01,...,0,) € O", such that forevery i = 1,...,n there exists g; € G such
that f (o ,0:111 = &illo;,0i41] (Where of course we read n + 1 = 1).

Remark 5.27. The above definition is not standard. Topological full groups can be de-
fined for actions on the circle as well, but for our purposes we also need to be able to glue
together local actions on closed arcs that agree at their endpoints.

Corollary 5.28. Let G be a group acting faithfully on the circle X preserving the ori-
entation. Suppose that there exists a dense orbit O C X such that G acts transitively on
positively oriented n-tuples in O, for n < 6. Suppose moreover that G is an O-piecewise
full group. Then, G has Property (NGT).

Proof. Let I be the set open arcs in X with (distinct) endpoints in @; in symbols
I ={(a,b)|a,b,e @,a # b}. I is abasis because O is dense and all of its elements are
neither dense nor empty. Further it clearly satisfies (C). As G preserves O, so it also pre-
serves I.Let (I,J) € I®,say I = (a,b) and J = (c,d). Since their closures are disjoint,
the tuples (a,b,c,d) and (c,d,a,b) are positively oriented, so they are in the same G-orbit
by the assumption on high transitivity. Choosing g € G such that g(a,b,c,d) = (c,d,a,b)
gives gl = J and proves (2T).

For (3T), let g, h € G. Without loss of generality we may assume that g # h. Let
x € O be such that gx # hx: This exists because O is dense. Then, (gx, hx) is an open
arc between two distinct points; thus, it is not the whole circle X: Let § be the diameter
of the complement, for some fixed metric on X. Then, for y close enough to x in the
positive direction, the arc (x, y) has diameter less than §/3, and the arc (gx, hy) still
has complement of diameter more than 2§/3. It follows that there exists z € X such that
(x,y,z) and (gx, hy, z) are both positively oriented, by choosing z in the complement of
[x,y] U [gx,hy] # X.Now we let M, N, P be small neighborhoods of x, y, z in I that
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are pairwise disjoint, have non-dense union, and such that gM,hN, and P are also pair-
wise disjoint. The same proof as in the previous paragraph, using transitivity on sextuples,
allows us to find b € G such that bgM = M,bhN = N and bP = P, proving (3T).
We are left to prove (L). Let (I, J, K) € I® and let g,h € Gbesuchthat gl =1
and hJ = J. Let a,b,c,d € O be such that I = (a,b) and J = (c, d). The tuple
(a, b, c,d) is positively oriented, and since G acts preserving the orientation, both end-
points of I are fixed by g, and both endpoints of J are fixed by . We definez : X — X
by t|r = glr.t|ly = hly and t|x\sus = id|x\suJs, from which it follows that ¢|x = id|k.
This is well defined and a homeomorphism, since g and / fix the endpoints of / and J.
Since G is an @-piecewise full group, ¢ € G. This concludes the proof. ]

As in the case of Cantor sets, our next corollary will add some hypotheses to ensure
that the group G is virtually uniformly simple, and thus hereditary (NL). For the sake of
completeness, we prove a general criterion based on rigid stabilizers: which are the sub-
groups G(x) for some point x € X consisting of elements in G that fix pointwise some
open neighborhood of x. However, let us point out that in some of the specific cases that
we will consider, uniform simplicity results are already available in the literature (see,
e.g., [30,42]).

Corollary 5.29. Keep the assumptions from Corollary 5.28. Suppose moreover that there
exists x € O such that G(x) has finite abelianization, and that G acts transitively on
positively ordered n-tuples in O, for n < 8. Then, G is hereditary (NL).

Remark 5.30. As in the case of Corollary 5.14, it will be apparent from the proof below
that if G(x) is perfect, then the proof can be streamlined. Also, in that case the assumption
on transitivity on 8-tuples is not needed as transitivity on 6-tuples is sufficient.

Proof. Let H := (G(x)' | x € @) < G. Notice that gG(x)'g~! = G(g.x)’; therefore, H
is normal in G. We will show that H is simple and (NL) and has finite index in G. Once
again, this exhibits G as an extension of hereditary (NL) groups, and so Proposition 4.9
will give us the required conclusion.

We start by showing that H has (NGT) by applying Theorem 5.1. We cannot directly
apply Corollary 5.28, since H need not be an (-piecewise full group. So to prove that it
has (NGT) we will show that H acts transitively on positively ordered 6-tuples in @, and
that it satisfies (L). This is enough, since (C) is given, and (2T) and (3T) just follow from
6-transitivity (see the proof of Corollary 5.28).

As a first step to show transitivity on 6-tuples, let (xq, ..., x¢), (V1,..., V6) be
positively ordered 6-tuples such that there exists z € @ such that (z, xq, ..., x¢) and
(z, y1,..., ye) are still positively ordered. Choose elements z_, z4, w—, w4+ € @ such

that the 11-tuple
(Z_,Z, W, W4, Z4, X175 ,Xs)

is positively oriented, and the same holds for the y;. By 8-transitivity, there exists g € G
such that g(z—,z4,x1,...,X¢) = (z—, 2+, ¥1,- - -, V¢), and since G is an O-piecewise full
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group, we may assume that g is the identity on [z_, z4], in particular g € G(z). Now by
4-transitivity there exists # € G such that h(z—, w—, w4, z4) = (z—, w—, X1, Xg). Again,
we may assume that / is the identity on (z—, w_) and so & € G(z). Then hg='h~! is the
identity on [x, x¢]; in particular, it fixes all of the x;, and so [g, h] = g(hg='h™1) is an
element of G(z)' that sends (x1,...,x¢) to (y1,..., ys). For the general case, it suffices
to notice that any two triples may be sent to each other by a sequence of instances of the
above special case, just as in the proof of Lemma 5.6. The proof of (L) is similar to the
one provided in the previous proof (see also the proof of Corollary 5.14).

It follows that H has Property (NGT). We now show that H has finite index in G.
First, we claim that if g € G and x, y € O are distinct points such that g(y) ¢ {x, y}, then
g € G(x)G(y). Indeed, let I € I besuchthat y € I,x ¢ I, and x,y ¢ gl. Since G(x)
is transitive on ordered pairs in @ \ {x} by the previous paragraph, we find an element
f € G(x)suchthat fI = gI.Leth be an element supported on I suchthath|; = f~lg|;,
which exists because G is an ©-piecewise full group: This way & € G(x), since x & 1.
We then have h~! f ~1g|; = id|;, in particular 1~ f~!g € G(y), and since fh € G(x)
weobtain g = (fh)(h™! f~1g) € G(x)G(y).

Now, fix distinct points x, y and let s € G be such that sx, sy ¢ {x, y}.If g € G is
such that gy € {x, y}, then (sg)y ¢ {x, y}. It follows from the above claim that G =
G(x)G(y) U s71G(x)G(y). Moreover, by hypothesis there exist finite sets F, C G(x),
F, C G(y) such that G(x) = FxG(x)" and G(y) = F,G(y)'. Thus,

G = G(x)G(y) Us"'G(x)G(y)

:{1,s—1}.( g fo(x)/).( U fyG(y)’)
fx€Fx fy€F)
={1s"y U AGWAGHY

fXEFx’nyFy

={Ls"y.  |J  AAGUTXGH) C{lsT ) FeFy H.

fxEFnyyEFy

It follows that H has finite index in G. More precisely, the above equations show that there
exists a finite set F and xz, yy € @ foreach f € Fsuchthat G = Jscfp fG(xr)'G(yr)".
But if ¢ = fG(xr)'G(yr) € H, then it follows that f € H too. Therefore, H =
Usernm fG(xr)'G(ys)'. Since F N H is finite, from the definition of H we obtain
that H is boundedly generated by the subgroups {G(x)’' | x € O}.

We end by showing that H is uniformly simple, which implies that H is hereditary
(NL) by Corollary 2.18, and allows to conclude the proof. This will follow the same out-
line as the proof of uniform simplicity of 7/ from [29] and implies the conclusion by an
argument similar to the one given in the proof of Corollary 5.14.

We can see G(x) as a subgroup of the homeomorphism group of the open interval
Y := X \ {x}, which is moreover boundedly supported, in the sense that every element
has support contained in a compact subset of Y. Moreover, the action of G(x) on Y is
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transitive on ordered quadruples in @ N Y': This follows from the fact that G is transitive
on positively ordered sextuples in X, and it is an @-piecewise full group. We can now
apply [34, Theorem 3.1], which states that if a group with a boundedly supported action
on a linearly ordered set is proximal, then its commutator subgroup is 6-uniformly simple.
By proximal we mean: For all @ < b and all ¢ < d, there exists a group element g such
that ga < ¢ < d < gb. Proximality is easily implied by high transitivity on a dense subset,
similarly to the proof of Corollary 5.14, so we conclude that G(x)’ is 6-uniformly simple
for every x € O.

Finally, to show uniformly simple, let g € H. We will show that for every x € @
and every f € G(x)’, we can write f as a product of at most 24 conjugates of g, g~!.
Since H is boundedly generated by subgroups of the form G(x)’, it will then follow
that H is uniformly simple, which concludes the proof. For this, let / € I be such
that I N gl = @, and x ¢ I Ugl. Let h € G be a non-trivial element supported on
I.Since I N gl = @, it follows that k = [g, h] = h8.h~! is non-trivial, and supported
on I U g, in particular k € G(x). Notice that k = g.(g~")" is a product of two conju-
gates of g, g~ 1. Choosing an element s € G(x) that does not commute with k we have
that / := [s, k] € G(x)" and [ can be written as a product of four conjugates of g, g~ ! as
follows: [ = [s, k] = kk~' = g*.(g~")".g".g~'. By six-uniform simplicity of G(x)’,
we can write f as a product of 6 conjugates of [, /~!. Therefore, f is a product of 24
conjugates of g, g~ !, which concludes the proof. ]

Example 5.31 (Stein—-Thompson groups [67]). Letny,na,...,ng > 1andlet A := [[n;.
« 1s the group of orientation-preserving homeomor-
phisms of the circle that preserve O := Z[A]/Z C R/Z = X, are piecewise linear
functions with breakpoints in @, and slopes in P := (ny,...,ng).

Suppose that n; = 2 and n, = 3. Then, 75 3, . ,, acts highly transitively on O and is
an (9-piecewise full group: The high transitivity can be proven as in [32, Example 3.7],
and relies on the fact that one of the slope generators is 2. Moreover, 7% 3 n,,... 0, (X) is
perfect for all x € @: This follows from the perfection criterion in [10, Theorem 2.14],
as is verified in [42, Lemma 7.2]. Therefore, Corollary 5.29 implies that 7% 3 55,...n, 1S
hereditary (NL).

In a simpler way, the above arguments hold for Thompson’s group 7' = 75, where all
of the necessary results are well known and can also be found in [10, 32,42]. Therefore,
T is hereditary (NL), which gives a strong positive answer to [36, Question 1.5].

The Stein—Thompson group Ty, ... n

Note that for the above examples, uniform simplicity was already proven in [42].

Example 5.32 (The symmetrization Q7). We saw in Example 5.19 how to define sym-
metrizations QV = QV>(1). A similar construction is possible for Q7. The shortest
definition is to take the pre-image of 7 < V in QV under the projection QV — V.
Equivalently, this amounts to fixing an embedding of the rooted binary tree 7 into R? and
to considering the group of bijections 7@ — 7 induced by isotopies of the plane and
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preserving adjacency and left-right orders on children with only finitely many exceptions.
Because of the short exact sequence

1> S > 0T > T — 1,

the combination of the previous example with Proposition 4.9 shows that QT is hereditary
(NL).

Remark 5.33 (A note on other Thompson-like groups). For slopes other than 2, our argu-
ments do not apply because of the lack of high transitivity. For instance, consider the group
F3 acting on the interval (0, 1). The action preserves Z[1/3] N (0, 1), but there are two
orbits: {a/3¥ | a even} and {a/3¥ | a odd}. The corresponding T-like group is 73, which
acts on the circle preserving Z[1/3]/Z. This time the presence of rotations implies that the
action is transitive; however, it is not doubly transitive, because the action of the stabilizer
of 0 on (R/Z \ {0}) is conjugate to the action of F3 on the open interval described above,
which has two orbits in Z[1/3] N (0, 1).

Similar arguments apply for other slopes. For the same reason we cannot adapt our
results to groups such as Q T,,. Therefore, in this case one needs a more careful argument
in order to prove property (NL), and even (NGT).

Example 5.34 (Golden ratio Thompson group 77 [21]). Let 7 be the small golden ratio:

T = @ Let O := Z[t]/Z C R/Z, and let T; be the group of orientation-preserving
homeomorphisms of the circle that preserve O, are piecewise linear with breakpoints in
O, and slopes in 7Z, By results from [20,27,30], T acts highly transitively on @, is an O-
piecewise full group, and has abelianization of order 2. Therefore, Corollary 5.29 implies

that 77 is hereditary (NL).

We end with an example that goes beyond the piecewise linear setting, to showcase
the flexibility of our criterion. Since the definitions and structural properties of the groups
involved go beyond the scope of this paper, we limit ourselves to giving precise references
for each statement.

Example 5.35. Let S be the finitely presented simple group of piecewise projective home-
omorphisms of the circle constructed by Lodha in [51]. By definition, Thompson’s group
T is a subgroup of S, seen in its piecewise projective realization preserving the set O of
rational points on the projective line, and S preserves @ as well. Therefore, S acts highly
transitively on O, since T does.

Given x € O, the group S(x) is a subgroup of the finitely presented piecewise projec-
tive group G constructed by Lodha and Moore in [52]. In fact, it follows by comparing the
standard forms for S described in [51, Section 3.2] to the standard forms for G described
in [51, Section 2.5], that S(x) coincides with the subgroup of G consisting of elements
with compact support, such that the total sum of exponents of the y-generators equals O.
By [19, Proposition 2.2], this is precisely the group G}, which is simple; in particular, it
is perfect [19, Theorem 2(1)]. Thus, Corollary 5.29 applies, and S is hereditary (NL).
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6. Connections with other properties

In this last section, we summarize the relations between Property (NL) and other proper-
ties of groups. Some of these connections are fairly easy to deduce from the contents of
this paper, but we record them here for possible future work.

6.1. Fixed point properties

Since simplicial (resp., real) trees are hyperbolic spaces, Property (NL) is related to
Property (FA) (resp., (FR)), that is, every action of the group under consideration on a
simplicial (resp., real) tree has a global fixed point. This is recorded in the next lemma.

Lemma 6.1. Suppose G has Property (NL). Then G does not split non-trivially as an
HNN extension or an amalgamated free product. Moreover, if G is not the directed union
of countably many proper subgroups (in particular, if G is finitely generated), then it
satisfies the properties (FA) and (FR).

Proof. The first assertion follows from the fact that (non-trivial) amalgamated free prod-
ucts and HNN extensions act on simplicial trees with loxodromics; see for instance [63].
Next, let G act on a real tree 7. Because G has (NL), the action must be either elliptic or
horocyclic. In the former case, G has a global fixed point. In the latter case, G globally
fixes a point at infinity £ € 97 and all its elements are elliptic (as there are no parabolic
isometries for an action on a tree). As a consequence, every element of G fixes pointwise
some infinite ray pointing to £. Fixing an infinite ray p pointing to &, it follows that G can
be written as the union of the fixators Fix(p,), where p, denotes the infinite ray obtained
from p by removing an initial segment of length n. Thus, if G is not the directed union of
countably many proper subgroups, then there exists some n > 0 such that Fix(p,) = G,
which therefore has a global fixed point. |

A fixed point property can also be deduced from (NL) for higher-dimensional ana-
logues of trees, namely finite-dimensional CAT(0) cube complexes. As an immediate
consequence of [36, Theorem 5.1], we have the following.

Proposition 6.2. If a group is hereditary (NL), then every action on a finite-dimensional
CAT(0) cube complex has a global fixed point.

As shown in [36], this proposition is a consequence of the fact that finite-dimensional
CAT(0) cube complexes are built from hyperbolic spaces. In the same spirit, one can rea-
sonably expect that every action of an (NL) group on a hierarchically hyperbolic space
has no loxodromic. This assertion does not follow immediately from the existing litera-
ture, and a proof would go beyond the scope of this article, so we only record the following
observation.

Proposition 6.3. A hierarchically hyperbolic group is hereditary (NL) if and only if it is
finite.
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Proof. Finite groups are obviously hereditary (NL). So let (G, @) be a hierarchically
hyperbolic group, and suppose that & contain an unbounded domain. According to [60,
Theorem 3.2], there exists a finite and G-invariant collection of pairwise orthogonal
domains & (G) := {W1,..., W, } C @ such that every unbounded domain in & is nested in
some element of &(G). Let H < G be a finite-index subgroup. We may assume without
loss of generality that H stabilizes each domain in §(G). So H acts on each hyperbolic
space €W;. Because the projection G — €W; is coarsely surjective by definition, this
action must be cobounded. Since H is (NL) and cobounded actions are never horocyclic,
it follows that each € W; is bounded, which is a contradiction. Thus, & does not contain
an unbounded domain. We conclude (for instance, from the distance formula) that G is
bounded, which amounts to saying that G is finite. ]

6.2. Actions on products

Given an integer kK > 1, say that a group G satisfies Property (NLy) if every isometric
action on a product of <k hyperbolic graphs has no loxodromic element. Here, we equip
the product space [] X; with the £! metric and by a loxodromic element, we mean an
element g € G such that the orbit map n — g".x is a quasi-isometric embedding for some
(equivalently any) basepoint x € [] X;.

Proposition 6.4. A group G has (NLy) if and only if every subgroup of index <k in G
has (NL).

Proof. Assume that G does not have (NLg), that is, G admits an action on a product
X = X1 x--+x X, of r <k hyperbolic graphs with some loxodromic element g € G.
According to [22, Theorem 6.1], G preserves the product structure of X, possibly permut-
ing the isomorphic factors. Consequently, the stabilizer H of a factor, which has index
<r in G, acts on a hyperbolic graph with a loxodromic element (namely, a power of g
belonging to H). So G contains a subgroup of index <k which does not satisfy (NL).
Conversely, assume that G contains a subgroup H of index r < k admitting an action
on a hyperbolic space X with a loxodromic element 7 € H. Up to replacing X by the
graph whose vertices are the points in X and whose edges connect any two points at dis-
tance <1, we can assume without loss of generality that X is a graph. Then, the action of
H on X classically extends to an action of G on X”, and & remains loxodromic. So G
fails to have (NLg). L]

Corollary 6.5. A group is hereditary (NL) if and only if every isometric action on a
product of finitely many hyperbolic graphs has no loxodromic element.

6.3. Hyperbolic structures

In [1], the authors study the poset of hyperbolic structures on a group G, denoted #(G).
The poset consists of equivalence classes of cobounded isometric actions on hyperbolic
spaces, with a partial order that roughly corresponds to collapsing equivariant families of
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subspaces to get the smaller action from the larger. Equivalently, one can also think of
hyperbolic structures as equivalence classes of (not necessarily finite) generating sets of
G. As the precise definition of the poset is not necessary for this paper, we refer the reader
to [1, Section 3] for definitions and state only the following relevant result here.

Theorem 6.6 ([1, Theorem 4.6]). For any group G,
H(G) = He(G) U H(G) U Hyp(G) U Hei(G),

where Ho(G), Hy(G), Hyqp(G), He: (G) denote the subposets of elliptic, lineal, focal, and
general type actions. Moreover, #.(G) = {[G]} for any group G, and this is referred to
as the trivial structure.

As the discussion of hyperbolic structures involves considering only cobounded ac-
tions, we could define cobounded versions of the properties considered in this paper. For
instance, Property (NGT), is the property that no cobounded action of a group on a hyper-
bolic space is of general type, and (NNE), and (NL),, defined analogously. However, it
turns out that these cobounded versions of the properties are equivalent to the proper-
ties themselves—this will be proved in the appendix (Corollary A.3), since the result and
proof are of independent interest. The result also has strong implications for the relation
between the properties studied in this paper and the structure of J(G), summarized by
the following corollary.

Corollary 6.7. The following assertions hold:
(1) G has Property (NGT) if and only if Hq:(G) = @.
(2) G has Property (NNE) if and only if #H(G) = H.(G) U H¢(G).
(3) G has Property (NL) if and only if #(G) is trivial.

Proof. For each implication, one direction is immediate; the other implication is a direct
application of Corollary A.3. ]

It is also worth noting that the structure of the poset # (G ) is not necessarily preserved
by finite-index subgroups.

Example 6.8. The group Dy, x Do has three hyperbolic structures. However, it con-
tains an index 4 subgroup isomorphic to Z x Z, which has uncountably many hyperbolic
structures (see [1, Theorem 2.3 and Example 4.23]).

An open question from [1] consequently seeks to explore under what conditions the
structure of #(G) might be preserved by finite-index subgroups. A partial answer is
provided by the following easy observation.

Corollary 6.9. Let G be a hereditary (NL) group. Then the structure of #(G) is
preserved by finite-index subgroups.
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A. Passing to a cobounded action (by Alessandro Sisto)

The goal of this appendix is to describe a construction of cobounded actions on hyperbolic
spaces starting from possibly non-cobounded ones. This construction preserves many
properties of the original action, such as being of general type. The key result is the fol-
lowing, whose proof roughly speaking says that, starting with an action on a hyperbolic
space and a quasiconvex subset of an orbit, we can cone-off all geodesics far away from
the orbit to obtain a new hyperbolic space that still contains a copy of the quasiconvex set,
and furthermore geodesics are “preserved” by this coning-off.

Proposition A.1. Let the group G act on the hyperbolic space X, let o € X, and let Q > 0.
Then there exists K > 0, some hyperbolic space Y with a cobounded G-action and a G-
equivariant coarsely Lipschitz map 7w : X — Y such that 7|z is a (K, K)-quasi-isometric
embedding for any Q-quasiconvex subspace Z of G - o. Moreover, there exists D such
that given any geodesic [x, y] in X, we have that w([x, y]) lies at Hausdorff distance at
most D from any geodesic with endpoints 7 (x), 7(y).

Proof. Up to replacing X with the graph whose vertex-set is X and whose edges connect
any two points at distance <1, we can and shall assume that X is a graph for convenience.

For any given R > 0, let Yr denote the graph obtained from X by adding an edge
between any two vertices lying on some geodesic disjoint from Ng(G - 0). Note that there
is a natural 1-Lipschitz map g : X — Yg. In view of [46, Corollary 2.4] (which roughly
speaking says that coning-off quasiconvex subspaces in a hyperbolic space yields another
hyperbolic space with the “same” geodesics), we have that Y is hyperbolic and that the
“moreover” part holds for any R. In fact, the same corollary yields that the “moreover”
part holds with constant D independent of R. Note also that G acts on Yg, that wp is
G-equivariant, and that the action on Yg is cobounded.

Therefore, fixing Q > 0, what is left to show is that given a Q-quasiconvex subspace
Z of G -0 C X, for any sufficiently large R we have that wg restricts to an isometric
embedding on Z (recall that we modified X to be a graph at the beginning of the proof,
and this is why the conclusion of the theorem only gives a quasi-isometric embedding).
We can in fact take any R > Q + D, since geodesics in Y = Y with endpoints on 7z (Q)
cannot then cross any edge of Yg which is not an edge of X . Indeed, it is readily seen that
the wr-image of the R-neighborhood of G - o is the R-neighborhood of G - wg(0) in
Y, and the “moreover” part and quasiconvexity imply that any geodesic in ¥ connecting
points of 7r(Z) is contained in the R-neighborhood of G - wg(0). ]

We now point out that the proposition actually allows us to conclude that the action on
Y satisfies analogous properties to those of the action of X.

Corollary A.2. Let the group G act on the hyperbolic space X, and let g1, ...,g, € G.
Consider the following properties:

(1) The elements g; are loxodromic.
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(2) The elements g; are loxodromic WPD.
(3) The elements g; are independent loxodromic elements.

There exists some hyperbolic space Y with a cobounded G-action, and such that each
Property (1)—(3) holds in Y if it holds in X .

We do not know whether the construction in Proposition A.1 preserves acylindricity,
meaning that if G ~ X is acylindrical, we do not know if G ~, YR is also acylindrical,
for Yg as in the proof of the proposition. However, it follows from [59, Theorem 1.2] that
if G has an acylindrical, general type action on a hyperbolic space, then it also admits a
cobounded, acylindrical, general type action on a (different) hyperbolic space (or even a
quasitree; see [5, 9]). Related to this, we note that the fact that a group admits an action
with loxodromic WPD elements on a hyperbolic space if and only if it admits one such
action which is furthermore cobounded (a direct consequence of Corollary A.2 (2)) is an
important part of the proof of [59, Theorem 1.2], but our argument is more elementary.

Proof of Corollary A.2. Ttem (1) follows from the proposition taking Q large enough that
the orbits of all (g;) are Q-quasiconvex. For item (3), the union of the orbits of all {g;) is
Q-quasiconvex for some Q, and the fact that this quasi-isometrically embeds in Y implies
that the limit points of the g; in Y are distinct.

Item (2) is slightly more complicated (and not needed later). For ease of notation,
let us consider a single loxodromic WPD element g and consider a space Y from the
proposition where g still acts loxodromically, with the associated constant D, and suppose
that the equivariant map 7 is D-coarsely Lipschitz. It is a consequence of, for example,
[65, Corollary 4.4] that there exists a virtually cyclic subgroup E(g) containing g and
with the property that there exists C > 0 such that for any & ¢ E(g) any two geodesics
y1, ¥2 from h{g)o to {g)o contain points p; € y; with dx(p1, p2) < C.

Let us now verify the WPD property for g acting on Y. Fix any R > 0, and consider
any integer n > 0 such that dy (o', g"0’) > DC + 3D + 2R, where o’ = 7 (0). We want to
show that there are only finitely many /& € G such that dy (o', ho'),dy (g"0’,hg"o’) < R.
It suffices to show that any such & must belong to E(g), as within each right (g)-coset in
E(g) there are only finitely many elements £ satisfying dy (o', ho') < R.

Suppose by contradiction that & ¢ E(g), and consider geodesics y; from o to ho
and y, from g"o0 to hg"o (both geodesics in X). On one hand, the “moreover” part
of Proposition A.1 implies that dy (7 (y1), 7(y2)) > DC + D. On the other hand, the
discussion above and the fact that  is D-coarsely Lipschitz yield points p; € y; with
dy (m(p1), w(p2)) < DC + D, a contradiction. Hence, & € E(g), as required. |

Corollary A.3. Let G be a group acting on some hyperbolic space X, and assume that
the action is not horocyclic. Then there exists a hyperbolic space Y on which G acts
coboundedly such that G ~ X and G ~, Y have the same type.
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Proof. If G ~ X is elliptic, lineal, or focal, then its orbits are quasiconvex and there exists
a Cayley graph of G quasi-isometric to the orbit—this follows from a slightly altered ver-
sion of the Svarc—Milnor Lemma applied to quasigeodesics of a fixed quality. This gives
us the required cobounded action. If the action is of general type, then this follows from
item (3) of the previous corollary. |
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