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Compressible fluid limit for smooth solutions
to the Landau equation

Renjun Duan, Dongcheng Yang, and Hongjun Yu

Abstract. Although the compressible fluid limit of the Boltzmann equation with cutoff has been
extensively investigated in Caflisch [Comm. Pure Appl. Math. 33 (1980), 651-666] and Guo, Jang,
and Jiang [Comm. Pure Appl. Math. 63 (2010), 337-361], obtaining analogous results in the case
of the angular non-cutoff or even in the grazing limit which gives the Landau equation, still remains
largely open, essentially due to the velocity diffusion effect of the collision operator such that 1.°°
estimates are hard to obtain without using Sobolev embeddings. In this paper, we are concerned
with the compressible Euler and acoustic limits of the Landau equation for Coulomb potentials
in the whole space. Specifically, over any finite time interval where the full compressible Euler
system admits a smooth solution around constant states, we construct a unique solution in a high-
order weighted Sobolev space for the Landau equation with suitable initial data and also show the
uniform estimates independent of the small Knudsen number ¢ > 0, yielding the O(¢) convergence
of the Landau solution to the local Maxwellian whose fluid quantities are the given Euler solution.
Moreover, the acoustic limit for smooth solutions to the Landau equation in an optimal scaling is
also established. For the proof, by using the macro-micro decomposition around local Maxwellians,
together with techniques for viscous compressible fluid and properties of Burnett functions, we
design an e-dependent energy functional to capture the dissipation in the compressible fluid limit
with the feature that only the highest-order derivatives are most singular.
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1. Introduction

In plasma physics, the spatially inhomogeneous Landau equation is a fundamental math-
ematical model at the kinetic level. It is used to describe the time evolution of the unknown
density distribution function F' = F (¢, x,v) > 0 of particles in plasma with space position
x = (x1, X2, x3) € R3 and velocity v = (vy,v3,v3) € R3 at time ¢ > 0, written as

3 F +v-V,F = lQ(F,F). (1.1)
I

Here, the dimensionless parameter £ > 0 is small and reciprocal to logarithm of the Debye
shielding length, and it plays the same role as the Knudsen number in Boltzmann theory;
cf. [11,61]. We have omitted the explicit dependence of the solution F (¢, x, v) on & for
brevity whenever there is no confusion. The Landau collision operator Q(, -) is a bilinear
integro-differential operator acting only on velocity variables of the form

O(F1, F)(v) =V, - /]1&3 d(v — v*){Fl(v*)Vsz(v) - Vu. F1 (v*)Fz(v)} dvx,

where for the Landau collision kernel ®(§) = [®;;(§)] with § = v — v, (cf. [28,38]), we
consider only the case of the physically most realistic Coulomb interactions throughout
the paper, namely,

1 §i§ -
@) = (85 - 52). 150 =3,
Y &1 1§12
with §;; being the Kronecker delta.
On the other hand, the hydrodynamic description for the motion of plasmas at the fluid
level is also given by the compressible Euler system

atﬁ + V- (/312) =0,
0:(pu) + Vy - (put @ it) + Vi p = 0, (1.2)

at[ﬁ<é+%|ﬁ|2)] [ <e+—|u )]+vx-(pa) —0,

with the equation of state p = R,(')é These are the local conservation laws of mass,
momentum, and energy. Here e = e(t x) > 0 is the internal energy Wthh is related to the
temperature § = 0(¢,x) by é = 2 R¢9 = 6, with the gas constant R = 2 ta.ken for conveni-
ence, and p = p(t, x), U = u(t, x) are the mass density and bulk Velomty, respectively.

It is well known that the compressible Euler system (1.2) can be formally derived from
the Landau equation (1.1) through the first-order approximation to the famous Hilbert
expansion when the Knudsen number ¢ > 0 is close to zero, which is similar to the case
of the Boltzmann equation; see [23, 27, 60]. The rigorous mathematical justification of
establishing such a limit in a general setting, particularly for general initial data in three
dimensions, is still a challenging subject in kinetic theory, although it has been extensively
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studied for the Boltzmann equation with cutoff; see for instance [7, 34, 35,49, 58, 65] and
the references therein.

In what follows we review some specific results on the compressible Euler limit of
the Boltzmann equation with cutoff so as to make a comparison with the Landau case
later. Note that there are few analogous results on the issue for the non-cutoff Boltzmann
equation. First of all, based on the truncated Hilbert expansion, Caflisch [7] showed that,
if the compressible Euler system has a smooth solution which exists up to a finite time,
then there exist corresponding solutions to the Boltzmann equation with a zero initial
condition for the remainder term in the same time interval such that the Boltzmann solu-
tion converges to a smooth local Maxwellian whose fluid dynamical parameters satisfy
the compressible Euler system as ¢ — 0. Due to this zero initial condition, the obtained
Boltzmann solution may be negative. The result was extended later by Lachowicz [49] to
the case allowing for the initial layer. Following Caflisch’s strategy, together with a new
L?-L™> approach developed in [30], Guo-Jang—Jiang [34, 35] removed the restriction
with zero initial condition so that the positivity of the Boltzmann solution can be guar-
anteed. Recently, Guo—Huang—Wang [31] and Jiang—Luo-Tang [44,45] made significant
progress on the topic by making use of the L?—L interplay technique to generalize the
results of [7,34,35] to the half-space problem with different types of boundary conditions,
including specular reflection, diffuse reflection, and even the mixed Maxwell reflection.
We also mention recent progress by Guo—Xiao [36] for an application of the L?—L>
approach to the global Hilbert expansion to the relativistic Vlasov—Maxwell-Boltzmann
system.

The compressible Euler limit of the Boltzmann equation is also studied in other con-
texts. Based on the abstract Cauchy—Kovalevskaya theorem and the spectral analysis of
the semigroup generated by the linearized Boltzmann equation, Nishida [58] constructed
the local solution of the cutoff Boltzmann equation in the analytic framework and proved
that the solution tends to the solution of the Euler system as ¢ — 0. Later, Ukai—Asano [65]
improved Nishida’s result by using the classical contraction mapping principle on a space
with a time-dependent analytic norm, and also considered the case with the initial layer.
Moreover, in the special setting of one space dimension, regarding the hydrodynamic limit
of the Boltzmann equation with cutoff to the compressible Euler system, which admits
specific solutions of basic wave patterns, such as rarefaction waves, contact discontinu-
ities, and shock waves, there have been extensive studies by [40, 41, 69,70, 72] and the
references therein.

As is well known, the linearization of compressible Euler equations around constant
states gives the acoustic system, see (3.23), to be specified later. For inviscid compress-
ible fluids, the acoustic system could be the simplest one describing essentially the wave
propagation, which can be formally derived from the Boltzmann equation. Under Grad’s
angular cutoff assumption, Bardos—Golse—Levermore [5] proved the convergence in the
acoustic limit from the DiPerna—Lions [15] renormalized solutions of the Boltzmann
equation with a restriction on the size of fluctuations. The restriction was relaxed later
by Golse—Levermore [25] and Jiang—Levermore—Masmoudi [43], and finally removed by
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Guo-Jang—Jiang [35] via the Hilbert expansion with the help of the L2-L* interplay
approach as mentioned before. Concerning the limit to other fluid equations from the
Boltzmann equation with cutoff, see [3,4,6, 16,21,22,26,29,33,42,46,51,57] and the
references cited therein. We also mention the recent work [59] on the incompressible fluid
limit from the Landau equation.

However, despite a lot of great progress mentioned above, the hydrodynamic limit to
the compressible Euler or acoustic system for the Landau equation has remained largely
open and a similar situation occurs for the Boltzmann equation in the non-cutoff case.
The main reason is that those long-range collision operators expose the velocity diffu-
sion property so that the strategy in [7, 35, 58] cannot be directly adopted. In particular,
trouble arises from the action of the transport operator on local Maxwellians, inducing
large velocity growth in the L? framework; cf. [35]. To overcome it, a robust idea is to
combine L2 estimates with the velocity-weighted L estimates which strongly rely on the
Grad’s splitting of the linearized Boltzmann operator with cutoff. For either the non-cutoff
Boltzmann or Landau equation, it seems still very hard to obtain any L°° estimate uniform
in the fluid limit ¢ — 0 without using Sobolev imbedding, although one may observe sev-
eral recent important results [2,32,48] on the global existence of low-regularity solutions
in L° space around global Maxwellians for ¢ = 1. Therefore, one has to develop some
new ideas to deal with the problem whenever the direct L estimates are not available.

Finally, we further mention some early and recent results on the global existence and
large-time behavior for the Landau equation (1.1) with ¢ = 1, for instance, global existence
of weak solutions by Lions [50] and Villani [67,68], the grazing collision limit of the non-
cutoff Boltzmann to the Landau equation by Desvillettes [14] and Alexandre—Villani [1],
spectrum analysis by Degond-Lemou [13], global existence of classical solutions near
global Maxwellians by Guo [28] for the torus and Hsiao—Yu [39] for the whole space,
large-time behavior of classical solutions near global Maxwellians by Strain—Guo [62,63],
and see also [8-10, 17], global classical solutions near vacuum by Luk [55], regularity of
solutions by Golse—Imbert—-Mouhot—Vasseur [24] and Henderson—Snelson [37]. See also
more recent works [18-20,71] by the authors of this paper for the one-dimensional Landau
equation around local Maxwellians with rarefaction wave and contact wave.

In this paper, we will construct a unique solution in a high-order weighted Sobolev
space for the Landau equation with suitable initial data over any finite time interval where
the full compressible Euler system admits a smooth solution around constant states. We
will obtain uniform estimates independent of the small Knudsen number ¢ > 0, which
yields O(g) convergence of the Landau solution to the local Maxwellian whose fluid
quantities are the given Euler solution. In the meantime, we also will establish the acous-
tic limit for smooth solutions to the Landau equation in optimal scaling. We believe
that the same results hold for the non-cutoff Boltzmann equation even with soft poten-
tials. For the proof, a key point is to use the macro-micro decomposition around local
Maxwellians to design the e-dependent temporal energy functional and its correspond-
ing energy dissipation functional, such that uniform estimates can be obtained under the
smallness assumption. More details will be specified later on.
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The rest of this paper is organized as follows. In Section 2 we present the macro-micro
decomposition for the Landau equation in order to study the compressible fluid limit for
smooth solutions to the Landau equation. In Section 3 we state two main results of this
paper, namely, Theorems 3.4 and 3.9 for the compressible Euler limit and the acoustic
limit, respectively. In the meantime, we also list key points for the strategy of the proof
throughout the paper for the convenience of readers. To advance the proof of the main
results, in Section 4 we first prepare some basic estimates. Section 5 is the main part of
the proof for establishing the a priori estimates of both the fluid part and the kinetic part.
The proofs of Theorems 3.4 and 3.9 are given briefly in Section 6. In Appendix A we give
details of the derivation of identity (5.7) for completeness.

Notation. Throughout this paper, generic positive constants are denoted by either ¢ or
C, varying from line to line, and they are independent of other small parameters such as
the Knudsen number and the amplitude of Euler solutions. The notation (-, -) denotes the
standard L? inner product in R3 with its corresponding L?-norm | - |, and (-, -) denotes
the L? inner product in either R3 or R3 x R3, with its corresponding L?-norm || - ||.
We use the standard notation H¥(R3) to denote the Sobolev space W*2(R3) with its
corresponding norm || - || 7, and also use || - || » to denote the L -norm with p € [1, +o0].
The norm of V’; f means the sum of the norms of functions 9% f with |«| = k. Let « and
B be multi-indices o« = (x1, @2, @3) and B = (B1, B2, B3), respectively. As in [28], it is
convenient to denote
— 991922923 9B1 92 9B3

X1 X2 X3V "2 "U3”
If each component of § is not greater than the corresponding one of /§ , we use the standard

notation 8 < . And B < B means that 8 < B and 18| < |,3_|. The constant Cg is the usual
binomial coefficient.

2. Macro-micro decomposition

In this section we will present the macro-micro decomposition for the Landau equation
(1.1) in order to study the compressible fluid limit for smooth solutions to the Landau
equation.

We first recall a basic property of the Landau collision operator. It is well known that
the Landau collision operator admits five collision invariants:

1
Vo) =1, vi(v)=v; (=12.3), vYa(v)= §|U|2,
namely, it holds that
/ Yi(w)Q(F,F)dv =0, fori=0,1,2,3,4. 2.1
]R3

The macro-micro decomposition of the solution with respect to the local Maxwellian
was initiated by Liu-Yu [54] and developed by Liu—Yang—Yu [52] in the context of
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Boltzmann theory, and it can be analogously carried over to the Landau equation. Indeed,
associated with a solution F (¢, x, v) to the Landau equation (1.1), we introduce five mac-
roscopic (fluid) quantities: the mass density p(z, x) > 0, momentum p(¢, x)u(t, x), and
energy density e(z, x) + %|u(t x)|2, given as

p(t,x) = / Yo(W)F(t, x,v)dv,

R3
o(t, Xx)u;(t,x) = / Yi(v)F(t, x,v)dv, fori =1,2,3, (2.2
R3
1
p.)[e(t.) + 3t 0P = [ s F.x.v)do.
R3

and the corresponding local Maxwellian,

_ o p(t, x) v —u(t, x)|?
M = Mipuan(t,5.0) =~ exp{ - RO boooedy

Here, e(t, x) > 0 is the internal energy, which is related to the temperature 6(¢, x) by
e = %RG = 6,and u(t, x) = (u1,uz,u3)(t, x) is the bulk velocity.
Note that the L? inner product in v € R3 is denoted by

(h,g) = /R h(v)g(v) dv.

Then the macroscopic space is spanned by the following five orthonormal basis functions:

1
xo(v) = —M,

o
2iv) = =2y, fori = 1,2.3,

VR , 2.4)

1 /lv—ul

= — -3)M,

xa(v) 6p( RO
<Xi7%>=8ij, fori,j =0,1,2,3,4.

In view of the orthonormal basis above, we define the macroscopic projection Py and
microscopic projection P; as

4
Xi
Poh = Z<h Ml>Xi» Pih = h — Pyh, 2.5)
i=0
where the operators Py and P, are orthogonal projections, that is,
PoPy = Py, P1P1 =P, P1Py= PP =0.

A function A (v) is called microscopic or non-fluid if

(h(v), ¥i(v)) =0, fori=0,1,2,3,4. (2.6)
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Using the notation above, the solution F = F (¢, x, v) of the Landau equation (1.1) can
be decomposed into the macroscopic (fluid) part, i.e. the local Maxwellian M = M (¢, x,v)
defined in (2.3), and the microscopic (non-fluid) part, i.e. G = G(¢, x, v):

F=M+G, P)F=M, PF=0G. @.7)

Then the Landau equation (1.1) can be rewritten as
1 1
(M +G)+v-Vi(M +G) = ;LMG—i-gQ(G,G), 2.8)

due to the fact that Q(M, M) = 0. Here, Ly is the linearized Landau collision operator
with respect to the local Maxwellian M, given by

Lyh = Q(h, M) + Q(M. h), 2.9)

and its null space N is spanned by the macroscopic variables y;(v) (i =0,1,2,3,4).

Let us now decompose the Landau equation into the macroscopic system and micro-
scopic system. Multiplying the Landau equation (2.8) by the collision invariants y; (v)
(i =0,1,2,3,4) and integrating the resulting equations with respect to v over R3, one
has the following macroscopic (fluid) system:

3z,0 + Vi - (pu) =0,

3. (pu) + Vs - (pu ® u) + Vip =—/

v®v-V,Gdv,
R3

(2.10)
8,[p(9+%|u|2)]+vx . [,ou<9+%|u|2)+pu] = _/1;{3 %sz -VxG dv,

with the pressure p = Rpf = %p&. Here we have used (2.1), (2.2), and the fact that 9,G
is microscopic by (2.6).

Since the projection of collision terms under Py is zero, it holds that P1LysG = Ly G
and P1Q(G,G) = Q(G, G). Itis also clear that P10, M = 0 and P;0;G = 9;G in terms
of (2.6) and (2.5). With these facts, one has the following microscopic (non-fluid) system:

1 1
3G + Pi(v-V5G) + Po(v-VeM) = ~LyG + ~0(G.G). 2.11)

by applying the microscopic operator P; to the Landau equation (2.8). Since Ly is invert-
ible on N1, we can rewrite (2.11) to present G as

G =Ly} [P1(v-ViM)] + L3/ 0O, (2.12)

with
O :=¢£0;G 4+ e¢P1(v-V,G)— 0(G,G). (2.13)



R.-J. Duan, D.-C. Yang, and H.-J. Yu 8

Plugging (2.12) into (2.10) and using the two identities

3
_/]R3 Vv - Vi L [P1(v - VM) dv = Zaxj (w(@)Di;], i=1,2,3,
j=1

3 3
_/]R3 %|v|2v VL3 [P1(v-VieM)]dv = Z Ox; (k(8)0x,; 0) + Z x; [1(O)u; Dij],

j=1 i,j=1

with the viscous stress tensor D = [D;;]1<;,j<3 given by

2
Dij = 0x;u;i + Ox,uj — 58,-ij “u, (2.14)
we further obtain the compressible Navier—Stokes-type equations

3tp + Vi - (P”) =0,
0:(pu;) + Vi - (pu;u) + dx, p

3
=) 0y [n(0)Dy] —/Ra vi(v- Vel ®)dv, =123,
j=1
o[ o(0 + %W)] + V- [pu(6+ %Iulz) + pu] 2.15)
3 3
=) 0y (k(0)dy;0) +& Y Oy [1(O)u; Dyl

Jj=1 i,j=1

1
—/RS §|v|2v-VxL;,Il®dv.

Here (0) > 0 and «(6) > 0 are the viscosity coefficient and heat conductivity coeffi-
cient respectively, and they are smooth functions depending only on the temperature 6,
represented by

1(0) = —R@/H;3 E,-j(v\/;_;’)Bij(i/;_Z) dv>0, i+ ],

k(0) = —R20 /W A_,(%)Aj(%) dv > 0,

where /ij (-) and §,~,~ (-) are Burnett functions, cf. [3,4,20,29, 66], defined by

lv[* -5
2
and A4; (-) and B;; (-) satisfy PoA;(-) = 0 and Py B;;(-) = 0, given by

. ~ 1
Aj(v) = v;j and B;j(v) = v;vj — §5ij|v|2, fori,j =1,2,3, (2.16)
A;j(v) = Ly [A;(v)M] and Bj;(v) = Ly} [Bi; (v)M]. (2.17)

Some elementary properties of the Burnett functions are summarized in the following
lemma; cf. [3,4,20,29,66].
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Lemma 2.1. The Burnett functions have the following properties:

. —(/fi, A;) is positive and independent of i,

. (/fi,Aj) = 0foranyi # j; (/fi, Bji) =O0foranyi, j, k;

. (§ij, Bij) = (ékl» Bi;) = (Eﬁ, By ), which is independent of i, j, for fixed k, I;
* —(Bjj, Bij) is positive and independent of i, j wheni # j;

. (Eii, Bjj) is positive and independent of i, j wheni # j;

. —(§,~,~, B;;) is positive and independent of i ;

. (ﬁij, By1) = O unless either (i, j) = (k,l) or (I,k), ori = j andk =1;

. (Eiiv Bii) — (E,'i, Bj;) = 2(§,~j, Bij) holds foranyi # j.

To make a conclusion, we have decomposed the Landau equation (1.1) as the coupling
of the viscous compressible fluid-type system (2.15) and the microscopic equation (2.11),
which is similar to the case of the Boltzmann equation; cf. [52]. In this way, one advantage
is that the viscosity and heat conductivity coefficients can be expressed explicitly so that
the energy analysis in the context of the viscous compressible fluid can be applied to
capture the dissipation of the fluid part. The other advantage is that the non-linear term
0(G,G) in (2.11) depends only on the microscopic part G so that the trilinear estimate is
easily obtained without treating the fluid part, which is essentially different from the one
in [28] with respect to a given global Maxwellian.

As pointed out in [52], when the Knudsen number ¢ and the microscopic part G are
set to zero, the system (2.15) becomes the compressible Euler system. If only the micro-
scopic part G is set to zero, the system (2.15) becomes the compressible Navier—Stokes
system with the parameter ¢. These fluid systems can also be derived from the Boltzmann
(Landau) equation through the Hilbert and Chapman—-Enskog expansions; cf. [12]. This
means that the macro-micro decomposition (2.7) in some sense can be viewed as a unific-
ation of the classical Hilbert and Chapman—Enskog expansions up to the second-order
approximation. Therefore, this decomposition gives a good framework for rigorously
deriving the compressible fluid system from collisional kinetic equations.

3. Main results

In this section, we employ the macro-micro decomposition introduced in the previous
section to establish our main results on the compressible fluid limit for smooth solutions
to the Landau equation.

3.1. Compressible Euler limit

The first goal of the present paper is to establish the compressible Euler limit of the Landau
equation. Precisely, we will construct the solution F¥(¢, x, v) of the Landau equation (1.1)
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which converges to a local Maxwellian

1\7[EM

p(t, x) lv—a(, x)?
D) ot
J@rRA@, x))? 2RO, x)

as the Knudsen number ¢ > O tends to zero, where the fluid parameters (p, u, é)(t, X)
satisfy the compressible Euler system (1.2).

(t,x,v) = 3.

15,i,0]

3.1.1. Smooth solutions for the Euler system. To solve (1.2), we supplement it with
prescribed initial data

(.1, 6)(0. x) = (fo. 0. 6o) (x). (32)
Then we have the following existence result.

Proposition 3.1. Let t > 0 be a fixed finite time; then there is a sufficiently small constant
ne > 0 and a constant C; > 0 such that if the initial data (py, g, 60)(x) around the
constant state (1,0, 3/2) satisfies

w0 = [ (o)~ 10 B0~ 2) | < e

for k > N + 2 with integer N > 3 as in (3.17), then the Cauchy problem on the com-
pressible Euler system (1.2) and (3.2) admits a unique smooth solution (p,u, 0)(t, x) over
[0, 7] x R3 such that

inf__ p(t.x) >0, 1nf é(l,x)>0,

t€[0,t],xeR t€[0,t],xeR

and the following estimate holds true:

sup
t€l0,7]

Ceno. (3-3)

(p(t x) — 1t x),0(t,x) — = HHk <

The proof of Proposition 3.1 can be obtained by a straightforward modification of the
arguments as in [35, Lemmas 3.1 and 3.2], so we omit the details for brevity. We remark
that for any given v > 0 we always let n; > 0 be small enough such that C;n9 > 0 can
be sufficiently small since the smallness of C;no is crucially used to close the a priori
assumptions (4.1).

3.1.2. Reformulated system. Let us now define the macroscopic perturbation around the
smooth solution (p, i, ) (¢, x) by

p(t, x) = p(t,x) — p(t, x),
i, x) =u(t,x)—u(t, x), 3.4
6(r,x) = 0(t,x) — 6(1, x),
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where (p, u, 0)(¢, x) satisfies (2.15), defined by (2.2). Subtracting (1.2) from system
(2.15), one obtains the system for the perturbation (p, i, 6)(t, x) as follows:
0ep+u-Vep+ pVy-ti +i-Vyp+ pVy-u =0,

- . 20 . 2. ~ . _
0 +u-Vyll; + S_ﬁaxip + gaxie + 1 - Vyii;

ORI

3
1 1 -1 .
= o= 3 0 [1(6)Dy] - - /R v VoL ®dv, i=12.3,

j=1
(3.5)

- . 2 _ 2.
at0+u-vx9+§evx-a+a-vxe+ gevx-u

3 1 3
Y 0 (k(0)3x,0) + e~ Y 1u(6)dx,ui Dy
j=1

ij=1

=¢

o=

1 1
——/ §|v|2v-VxL;,Il®dv
P JR3
1
+;u-/3v®v-vxL;;®dv.
R

Throughout the paper we fix a normalized global Maxwellian with the fluid constant state
(1,0,3/2),
_3 lv]?
=My 03() = @m) 73 exp(—5-) (3.6)
as the reference equilibrium state. Then we define the microscopic perturbation f(¢, x, v)
by
St x,v) = G(t,x,v) —G(t,x,v), 3.7

where the function é(l, x,v) is defined as

[v—ul2Vil (v —u)- Vi M

2R0? RO ) }’
which corresponds to the first-order correction term in the Chapman—Enskog expansion;
see (2.12) and (2.15). Note that a similar correction function G (¢, x, v) was first intro-
duced by Liu—Yang—Yu—Zhao [53] for the stability of the rarefaction wave to the one-
dimensional Boltzmann equation with cutoff. Some detailed comments on introducing the
subtraction G — G in our case will be given later on.

To derive the equation of the microscopic perturbation f(, x, v) in (3.7), by the prop-
erties of P; in (2.5) and the definition of G, we have from a direct computation that

[v—ul?V,0 (v—u)-Veu
2R62 RO

|v—u|2Vxé (v—u)-Vyu
2R62 RO

G(t,x,v) = sL;,llPl{v . ( (3.8)

Pi(v- VM) = Pl{v N )M}

- Pl{v ( )M} n %LMG. 3.9)
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With this and the fact that Ly G = Ly (G + /I f), we can rewrite (2.11) as

v—u|2Vxé (v—u)-Vyu
2R6? r )M

= Lu(Jif) + - 0(G.G) (3.10)

39,G + Pi(v-VxG) + Pl{v-(|

Inspired by [28], we denote

1
Lh.g) = o OWfih Viig). Lhi= Db V@) + TN, (G

which together with (2.9) immediately gives rise to

1 1
— L - —_{oM, M
ﬂM(ﬂf) ﬂ{Q( Vi) + O(/if. M)}
M —pu M —pu
=$f+1“( T ,f)+r(f, T ) (3.12)

With these and the fact that G = G + /I [, (3.10) implies that f satisfies

f g = g r (M) () 4 ()

Ji : Vi VR
L Pl Vel VEN]  P@-:G) 9,6
N Vi Vi
1 |v—u|2Vx§ (v—u)-Vyu
- e T LA N

Remark 3.2. It is well known that the linearized operator £ in (3.13) is self-adjoint and
non-positive definite, and its null space ker &£ is spanned by the basis { \/It, v /&, |[v|* /11 };
cf. [28].

Remark 3.3. It should be pointed out that the unknown f(¢, x, v) in (3.13) is purely
microscopic since G and G are purely microscopic, namely f(z, x,v) € (ker £)*. This
is essentially different from the one in [28] since f(¢, x, v) used in [28] involves the
macroscopic part. More comments will be given in Section 3.3.

Motivated by the fundamental work Guo [28], we introduce a velocity weight function

w=w) =W (@) =V1+]?> (3.14)

This weight function is designed to deal with the velocity derivatives of the free streaming
term v - V. f; see (5.80). With (3.14), for £ € R we denote the weighted L? norms as

as

= [ wiPdo, 11B= [ 1/B,dx
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Corresponding to the reference global Maxwellian p in (3.6), the Landau collision fre-
quency is given by

o”@y=¢U*M=/1¢Uw—ugM@gdm, (3.15)
R3

where [0/ (v)]1<i,j<3 is a positive-definite self-adjoint matrix. In terms of linearization
of the non-linear Landau operator around p (cf. [28]), with (3.15), we define the weighted
dissipation norms as

7= 3 [ w o s g+ L v 1p = [ 1

i,j=1

where | fls = | flo0 and || flle = || f|lo,0. Moreover, we have from [28, Corollary 1,
p-399] that

3, fx (3.16)

Flo 2 10174 flz o+ [0)7EVo -+ |0 ol |2

The notation A &~ B means that there exists C > 1 such that C"'B < A < CB.

In order to prove the uniform-in-¢ existence of smooth solutions for the Landau equa-
tion, a key point is to establish uniform energy estimates in the high-order Sobolev space.
For this, we define the instant energy functional &y () as

En@) =Y AI°G.a. 0O+ 10°fOIP+ D 105,O13,
le|<N -1 Iala—glllillsN

+e” > {10%(B. @ O)O)I* + [10* £ (3.17)

la|=N

Correspondingly, the dissipation energy functional Dy (¢) is given by

On@)=e Y [0°G.a.0)@I+e Y [0 f(OI2

1<|e|<N le|=N

1 1

LD DN (VIO S D [ FLOTHPE (3.18)
le|<N—1 \alﬁéllﬂ\lsN

Throughout this article, we assume N > 3. A crucial feature of the above instant energy
&n (¢) is that the highest N th-order space derivatives are much more singular with respect
to ¢ than those derivatives of order up to N — 1, and it occurs similarly to the dissipation
rate Dy (¢) for the non-fluid component.

3.1.3. Main result. With the above preparation, our first result on the compressible Euler
limit can be stated as follows.
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Theorem 3.4. Let © > 0 be given and (p, i, 0)(t, x) be the smooth solution of the com-
pressible Euler system (1.2) and (3.2) given in Proposition 3.1. Construct the local Max-

wellian M ; a1 (t.x,v) from (p, 11, 0)(t, x) as in (3.1). Then there exists a small constant

P,
&9 > 0 such that for each € € (0, &¢), the Cauchy problem on the Landau equation (1.1)

with non-negative initial data
F%(0,x,v) = M[ﬁﬁé](o,x,v) (3.19)

admits a unique smooth solution Fé(t, x,v) > 0 over [0, t] x R3 x R3, satisfying the
estimate

1 [t 1
Ex() + = [ Dy (s)ds < ~&2, (3.20)
2 Jo 2

for any 0 <t < 1. In particular, there exists a constant C; > 0 independent of & such that

Fé(t,x,v)— M[‘3 i é](t,x, V)
sup — ‘
ref0,1] N L3L3
Feé(t,x,v) — M- - 5(t,x,v)
4 sup Lp.it,6) H = Ce 3.21)
tefo,z] I LPL2

Remark 3.5. We point out that the energy inequality (3.20) holds true at ¢ = O under
the choice of the initial data (3.19). For this, one can claim that the initial data (3.19)
automatically satisfies

EN(1)|i=0 < Crge’. (3.22)

In fact, we have M|, 61(0, x,v) = M[b’ﬁ,é](o, x,v) and G(0, x,v) = 0 in terms of the
decomposition F(t, x, v_) = Mipu0(t, x,v) + G(t,x,v) and (3.19). This implies that
(p,u,0)(0,x) = (p,u,0)(0,x) and G(0, x,v) + /i f(0, x,v) = 0. Then it holds that

G(O,x,v)

With these and Lemma 4.3, we see directly that (3.22) holds. Therefore, (3.20) for # = 0
follows by letting 19 > 0 be small enough.

(ﬁ,ﬁ,é)(O,x) =((p—p,u—1u,0 —0)(0,x) =0 and f0,x,v) =—

Remark 3.6. As pointed out in the aforementioned relevant literature, all those known
results [7,31, 34, 35, 44, 45,49, 58, 65] on the hydrodynamic limit from the Boltzmann
equation to the compressible Euler system treat only the angular cutoff case, and obtain-
ing similar results for both the non-cutoff Boltzmann equation and the Landau equation
still remains largely open, essentially due to the effect of the grazing singularity of the
collision operator. To the best of our knowledge, Theorem 3.4 seems the first result con-
cerning the hydrodynamic limit for smooth solutions of the Landau equation to those of
the compressible Euler system in the whole space over any finite time interval. Moreover,
one may expect that a similar result should also hold for the non-cutoff Boltzmann equa-
tion.
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Remark 3.7. It should be pointed out that all the results [31, 34, 35, 44, 45] are based
on the Hilbert expansion and an L2—L% interplay method developed by Guo [30] for
the Boltzmann equation with cutoff in a general bounded domain. Recently Kim—Guo—
Hwang [48] also developed an L?—L* approach to the Landau equation around global
Maxwellians in the torus domain, where initial data are required to be small in L;f’v but
additionally belong to H ;’v, and this result was improved later by Guo—-Hwan—Jang—
Ouyang [32] in a general bounded domain. However, these methods seem difficult to
carry over directly to our problem on the compressible Euler limit of the Landau equation

in the whole space.

Remark 3.8. Our analysis tool is mainly the combination of techniques for viscous com-
pressible fluids, properties of Burnett functions, and the elaborate energy approach based
on the macro-micro decomposition of the solution for the Landau equation with respect
to the local Maxwellian that was initiated by Liu—Yu [54] and developed by Liu—Yang—
Yu [52] in the Boltzmann theory. Thus, the idea we will adopt for the proof is different
from the approach used by Caflisch in [7] via the truncated Hilbert expansion and by
Guo-Jang—Jiang in [35] via the Hilbert expansion and the L2—L interplay estimates.

3.2. Acoustic limit

The second goal of the present paper is to establish the acoustic limit of the Landau equa-
tion. The acoustic system is the linearization around the uniform equilibrium p = RO = 1
and u = 0 for the compressible Euler system. After a suitable choice of units to be con-
sistent with the notation in [35], the fluid fluctuations (o, ¢, ¥) = (0, ¢, ¥)(z, x) satisfy

0:0+ Vx -9 =0,
drp + Vx(o+0) =0, (3.23)

2
To solve (3.23), we supplement it with prescribed initial data
(0.¢.9)(0.x) = (0o.¢0. Do) (x) € H*(R?), fors > 0. (3.24)

It is well known that the Cauchy problem on the acoustic system (3.23)—(3.24) admits a
unique global-in-time classical solution (o, ¢, %)(t,x) € C([0, +00); H*(R?)). Moreover,
the solution satisfies

o0y 300, = (a0 320} rane =0

On the other hand, the acoustic system (3.23) can also be formally derived from the
Landau equation (1.1) by letting

Fe(t,x,v) = n+ 8./ (1, x, v), (3.25)
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where p is the global Maxwellian given by (3.6). The fluctuation amplitude § is a function
of ¢ satisfying
§—0, ase—0. (3.26)

For instance, one may take
§ =¢%, foranyo > 0.

With the above scalings, ¢ = f¢(¢, x, v) formally converges to

[v>-3
2

fz{g—i-v-(p—i-( )z?}f, ase — 0, (3.27)

where (o, ¢, ) is the solution of the acoustic system (3.23). For a detailed formal deriva-
tion, see [3,4,25].

As in [35], to get the optimal scaling, we use § to denote the fluctuation amplitude and
assume that in addition to (3.26),

g —0, ase—0. (3.28)

We now state the second result on the acoustic limit.

Theorem 3.9. Let v > 0 be given and (09, 9o, %0)(x) € HNT2(R3) with N > 3 be initial
data for the acoustic system (3.23). Construct the local Maxwellian

M,8 0,x,v) =

1 4+ 800(x) exp{— [v — 8go(x)|? }
V27 (1 + 886(x))] 2(1 + 8%o(x))

in terms of the initial datum 1 + 800, 8¢g, and 1 + 6. Then there exist small constants
g9 > 0and 6o > 0 such that for any € € (0,&¢) and any § € (0, 8o) satisfying the restrictions
(3.26) and (3.28), the Cauchy problem on the Landau equation (1.1) with non-negative
initial data

F2(0,x,v) = 1?0, x,v)

admits a unique smooth solution F®(t,x,v) > 0 over [0, t] x R3 x R3. Moreover, let
Fe(t,x,v) = pu+ 8 /i £8(t, x, v) in terms of (3.25); then the following convergence
estimate holds:

sup |5, x,v) —£(t, x,v)| 2,2 + sup [f5(r, x,v) —£(z, x,0) | ooy 2
r€0,7] TV tefo,0] e

< c(g +9), (3.29)

where £(t, x, v) is defined in (3.27) and the constant C; > 0 is independent of € and §.

Remark 3.10. The convergence rate obtained in (3.29) should be optimal, similarly to the
one in [35] for the acoustic limit of the Boltzmann equation with cutoff.
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3.3. Strategy of the proof

In what follows we give some key points in the proof of the main results. As mentioned
above, the L%—L*° framework in [35] cannot be directly carried over to our problem on the
compressible fluid limit of the Landau equation in the whole space because their analysis
depends crucially on Grad’s splitting of the linearized Boltzmann operator with cutoff,
which fails for the angular non-cutoff case or even in the grazing limit giving the Landau
equation. Therefore, we have to develop new ideas instead of the L?—L* framework.

Our strategy is based on the pure high-order energy estimates framework developed in
[28,52, 54] to construct global solutions in the perturbative framework for kinetic equa-
tions. Note that the energy method in [52, 54] is based on the macro-micro decomposition
with respect to the local Maxwellian M determined by the solution of kinetic equations.
We can make use of such macro-micro decomposition to rewrite the Landau equation as
a Navier—Stokes-type system with the non-fluid component appearing in the conservative
source terms, cf. (2.15), coupled with an equation for the non-fluid component, cf. (2.11).

In order to carry out the energy estimate of the non-fluid component, we have to over-
come some major difficulties. First of all, we need to subtract G in (3.8) from G so as to
remove the troublesome term

1 - [v—ul?V,8  (v—u)- Vi
ZLMG:PI{”'( 2R02 RO )M}
when estimating the linear term P;(v - VM) in (2.11); see the identity (3.9). Other-
wise, a troublesome term &(|| V0| + || Vyit|?) appears in the L2 estimate. This term
is bounded by CnZe in terms of (3.3), and it is out of control by O(g?) corresponding
to (4.1) so that the energy estimate cannot be closed. To further decompose G — G, if
one sets VM f = G — G, the equation for f includes the large-velocity growth term
VM - (0; + v - Vx)v/M f, which involves the cubic power of v and this creates a key
analytical difficulty in the L? estimate similar to the one in [35]. To avoid this difficulty,
weset Juf =G — G to deduce the microscopic equation for f as (3.13) and then per-
form the energy estimate for f.

One of the most important points in the proof is that f € (ker £)* in (3.13) is purely
microscopic such that the estimate

Lernzaltise
& £

holds true, which is again not true for the one in [28]. Indeed, [28] used the decomposition
F = p + /i f with the perturbation f involving the macroscopic part, namely f ¢
(ker £), and as such one has to decompose f = P f + {I — P} f with P the projection
on the kernel space of £, so that one can only obtain

_l(;gf, )= cllII{I—P}in-
& &
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This results in the appearance of a difficult term %HP f112 that we would not be able
to control since it involves a strong singularity about % The main reason is that the ¢-
dependent coefficient of the hydrodynamic part P f in the energy dissipation functional
is just ¢ instead of 1/e. Therefore, the fact that f € (ker £)* as in (3.13) is the most
important point in the whole proof. In this case, the trilinear estimate %(F( £ f), f)can
be obtained easily because the difficult term %(F Pf,Pf),{I-P}f) would no longer
appear. Moreover, many known estimates of &£ and I" in [28] can be directly employed;
for instance, see Lemmas 4.4 and 4.5.

Note that the linearized Landau operator &£ in (3.13) lacks a spectral gap, which results
in the very weak velocity dissipation by (4.10) and (3.16). The velocity derivatives of
the free streaming term v - Vy f in the L? estimate cannot be directly bounded by the
dissipation of £. So we adapt techniques in [28] based on the velocity weight function
as (3.14) to overcome this difficulty. To treat the N th-order space derivative estimate, we
need to deal with a complicated term %(éﬁB"‘f, af/ﬁ )= %(éﬁa"‘f, f/—“ﬁ) + %(:ﬁ&o‘f, %)
in (5.54) and (5.55). The linear term %(:68"‘ £ j_%) cannot be directly estimated since a
significant difficulty occurs with it. The key technique for handling this term is to use
the properties of the linearized operator &£ and the relation between M and u as in (4.2),

as well as the smallness of ¢ and 7¢. In particular, to estimate the term %(268"‘ f Ii;) in
%(i a* f, j—“ﬁ), we must move one derivative from the N th-order derivative £9% f to the
other component of the inner product by integration by parts; see (5.56). In the end, we
can obtain the estimate

()

1 1 - = 1 ’
< Cln+ D L (10° £ 12 + 10 G DI + 5107 FI2 +67). 330)

for |&'| = N — 1; see (5.55)—(5.60) for detailed calculations. Similar difficulties also arise

elsewhere, such as %(F (MJ_HM ,0% 1), af/%) in (5.62). Because of the ¢! factor in front of

the fluid part [|d%(5, 7, 8)||2 in (3.30), one has to multiply the estimate (3.30) by &2 so that
the fluid term can be controlled by Dy (¢) in (3.18). Hence, this motivates how we include
the Knudsen number ¢ in the highest-order derivative || = N for the energy functional
En(t)in (3.17).

On the other hand, to make the energy estimate for the fluid component, we need
to treat those integral terms in (5.9) involving the inverse of the linearized operator L s
around the local Maxwellian M, such as the terms

/viij;,}@dv, /vi|v|2L;,Il®dv, (3.31)
R3 R3

where ® is defined in (2.13). Those terms in (3.31) are difficult to estimate in a direct
way since they involve the polynomial velocity growth. To bound them, we follow the
strategy developed in [18,20] based on the Burnett functions A; and B;; as in (2.16).
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Indeed, in terms of the basic properties of the Burnett functions, the integral terms in
(3.31) can be represented as the inner products of A; and B;; with ©, where A; and B;;
defined in (2.17) are the inverse of A; and B; 7 under the linear operator Lz, respectively;
see the identities (5.17), (5.18), and (5.19) for details. Hence, any polynomial velocity
growth in ® can be absorbed since A; and B;; enjoy fast velocity decay; see (5.20). In
addition, we notice that any smooth solution of the compressible Euler system (1.2) and
(3.2) given in Proposition 3.1 does not enjoy an explicit time decay rate. One then has
to use the smallness of C; 7 in (3.3) to control those hard terms as in (5.10). This kind
of technique will be used for the energy estimates of both the fluid-type system and the
non-fluid system.

Combining the energy estimates of the non-fluid component and the fluid component,
we are able to obtain the uniform a priori estimate (3.20) and then derive the convergence
rate (3.21) as stated in Theorem 3.4. Following the same strategy to above, we can obtain
similar arguments to (3.20) and (3.21) under the assumptions in Theorem 3.9, and then
derive the convergence rate (3.29).

4. Basic estimates

In this section we first make the a priori assumption in order to perform energy analysis
conveniently. Then we estimate the correction term and the complicated collision terms.
Finally, we derive an estimate of the fluid quantities involved with the temporal derivat-
ives. We should emphasize that in all estimates below, all constants C > 0 at different
places may depend on t but do not depend on either of the small parameters ¢ and 7.

4.1. A priori assumption

Since the local existence of the solutions to the Landau equation near a global Maxwellian
is well known in the torus or the whole space, cf. [28,39], by a straightforward modifica-
tion of the arguments there one can construct a unique short-time solution to the Landau
equation (1.1) under the assumptions in Theorem 3.4. The details are omitted for simpli-
city of presentation. In order to extend the short-time solution to any finite time where
Proposition 3.1 is satisfied, we only need to close the a priori assumption

sup En(t) < &2, “4.1)

0<t<T

for an arbitrary time 7' € (0, t] with t as in Proposition 3.1, where &y (¢) is given by
(3.17).

Under the a priori assumption (4.1), we have from the imbedding inequality and (3.17)
that

sup [[p(, )L = € sup [|p(@, )z < Ce,

t€f0,7] telo,7]
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which together with (3.3) and (3.4) yields

lp(z, x) = 1] = [p(z, x) = p(z, X)[ + [p(t, x) = 1] < Ci(e + o).

Similar estimates also hold for u(¢, x) and (¢, x). Therefore, for sufficiently small & and
1o, it holds that

3
lp(t, x) — 1] + u(z, x)| + ‘Q(LX) - 5’ <Cile+mo). 1<0tx)<2, (42
uniformly in all (¢, x) € [0, 7] x R3.

4.2. Sobolev inequalities
We list several basic inequalities frequently used throughout this paper.
Lemma 4.1. For any function h = h(x) € H'(R?), we have

2l Lswsy < ClIVxhll.

1 1

I2llL3@sy = ClAlZ[IVxhl>,

12l @sy < Cllkllgr. 2<p <6,
and for any function h = h(x) € H*(R3), it holds that

Il < CIIVih||2 [ V22

Here, C is a positive constant independent of h(x).

4.3. Estimates of the correction term G

To perform the energy estimates for the equations (3.13) and (3.5), one has to treat those
integral terms involving L;ll and G. For this, we need to give the estimate concerning the
inverse of the linearized operator, whose proof can be found in [20, Lemma 6.1].

v

Lemma 4.2. Suppose that U(v) is any polynomial of flé such that U()M e (ker L )t

for any Maxwellian M = M[A N 9](1)) where L g is as (2.9). For any € € (0, 1) and any
multi-index B, there exists a constant Cg > 0 such that

|9 L} (UW)I)| < Cp(p. 2. 6)M ',

In particular, under the condition of (4.2), there exists a constant Cg > 0 such that
v—u
i ()| + 2020 (s
g \/R_ AW
where A;(-) and B;j(:) are defined in (2.17).

)| = com', 4.3)

Based on the properties of the Burnett functions and Lemma 4.2, we can prove the
following lemma, which will be used frequently in the energy analysis later on.
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Lemma 4.3. Assume (4.1) and (4.2) hold. Let G be defined in (3.8) and (v) = /1 + |v|?;
then for anyl > 0, |B| = 0, and |¢| < N, one has

o5 (), s ()

Proof. In view of (2.16) and (2.17), the term G in (3.8) can be represented precisely as

G:s—eiTj ( )+8228”’ ,( ) (4.5)

< Cnoe. 4.4
o8l No 4.4

3

and
o= S )7 B )
%z )7
aif;“;k () 3 e ™o i
_ii g? ;fkvvg,-j(%).%}. @7)

<
Il
-

Likewise, 3; G has a similar expression to (4.7). For any |8| > 0, any / > 0, and sufficiently
small € > 0, we can deduce from (4.2), (3.14), and (3.16) that

_1 _ _1 _
() wlp=z M=, + () w2 M < C. 4.8)

For any | 8] > 0, we get by (4.3), (4.5), and similar arguments to (4.6), (4.8), and (3.3) that

Jran( )L+ lran( 21

8 = Ce>(IVxit]* + [V201I?) < Cnge?,
a,
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For |a| = 1, we use (4.7), (4.8), (4.3), (4.1), and (3.3) to get

2

o8l

s (S, + Joras(5)

< CSZ/ (18°Vxit|* + 19V + (IVait]? + [V 013 (10%ul® + [0961?) dx
R3

= CSZ(”(aavxaa aavxé)”2 + [[(Vxu, Vxé)”iw”(aaua 30‘9)”2)
< Cmoe®(1 +mp + &%) < Cige?.

Similar arguments also hold for the cases 2 < || < N. Therefore, we can prove that the
desired estimate (4.4) holds true. This ends the proof of Lemma 4.3. [
4.4. Estimates of collision terms £ and T’

Next we summarize some refined estimates for the linearized Landau operator £ and
the non-linear collision terms I'(gy, g2) defined in (3.11). We start by collecting some
known basic estimates. The following two lemmas can be found in [28, Lemma 6] and
[64, Proposition 1], respectively.

Lemma 4.4. Let |o| > 0 and |B| > O; then for w defined in (3.14) and any small n > 0,
there exist co > 0 and Cy > 0 such that

—(052g. w105 g) = coldgglZ g —n D 1058125, — Cald®gla. (4.9
|B11=<IB]

If |B| = 0, then for any g € (ker £)*, there exists a generic constant ¢y > 0 such that
—(£0%g.9%g) = c1]9%g |3 (4.10)
Lemma 4.5. Let |@| > 0 and |B| > O; then for arbitrarily large constant b > 0, one has

(0T (g1, 82),8%€3)| < C D 1{v) "0 g11210° 1 25 10% 3o (4.11)

o <o
Moreover, for w defined in (3.14) and | > 0, one has
(05T (21,82), w™ 95g3) [ <C D Y [(v)770% 11210575 €2l0.410% 83000 (4.12)
ar=a p'<pi<p

With Lemma 4.5, we now prove some non-linear energy estimates. We first consider

estimates of linear collision terms F(M\/%“ f ) and T < f. %) in (3.13), which will be

used in Section 5.

Lemma 4.6. Let || + || < N with |B| = 1 and w = (1 + |v|?)™V2, as in (3.14). Let
F=M+G + ﬂf be the solution to the Landau equation (1.1) and (3.19), and assume
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(4.1) and (4.2) hold. If we choose ng > 0 in (3.3) and € > 0 in (4.1) small enough, then
for any n > 0, one has

|G (S ) s ) |+ Sl (1 = 2w 1)

1 1
= Cn= 1195 15,151 + Cn(no + £2) Dy (1), (4.13)

Moreover, for |B| = 0 and |a| < N — 1, one has

A (E 5 ) )|+ Sl e (=) o)

1 1
< Co_ 19 £115 + Cylno + £ Dy (1), (4.14)

Here, Dy (1) is defined by (3.18).

Proof. For the first term on the left-hand side of (4.13), since w2lAl < w2!B=B1l for B —
B1l < |B|, we have from this and (4.12) that

(e (5 ) g )

&

: - M—p _
=% / ()3, 105_%. flo.1g—p:1105 f lo, 1 dx. (4.15)
Saéxﬁ/gﬁﬂ R3 B ( \/ﬁ )‘2 B—5B1 1

In order to further compute (4.15), for any || > 0 and / > 0 we claim that

’(U)IBE(M\/_HM) + ]<v)laﬁ-(MJ_ﬁ“)(2 < Clno + 9. (4.16)

In fact, for any | ,3 | > 0and/ > 0, using (3.16), we know that there exists a small constant
€1 > 0 such that

g

)(”>135(M¢_,7M) 4 )<”>13E(M\/_,—LM)E

< Y /M—ﬂaﬁ,(M_”)(zdv.

— _ 3
IBI=<IB'I=IBI+1 Vi

Thanks to (4.2), we can choose a suitably large constant R > 0 such that

frat”
[v[=R

aﬁ/(MJﬁ“)\zdv <C(lo= 11+ =0 410 —31)" = Como + )2

aﬂ/(MJﬁ“ ) av < cmo+ o7

and

Jye™
[v|<R
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By these estimates, we can get the desired estimate (4.16), and thus ends the proof of
(4.16).
First, from direct calculation we have

0up  (v—u)-0yu lv—u|> 3\0y0
0 M = M(— ! —=)=). 4.17
i <p+ RO +(2R9 2)9) @17
Then for || > 2 and 9% =8°‘/3xi,itholds that
(v—u)-0% lv—ul> 3\0%0
o [E— —
M = M(p+ RO +(2R9 2)9)
1 ’ V—Uu ’
o1 (5} - ' —aq aq . e’ —ag
+1<§l£a/c&, € (Mp)a 3y, + 9 (M Re) 919,y
v —ul? -
o _ Q& —o]
+ 0 (M s 29)8 0,9). (4.18)

We now turn to computing (4.15). Note that |o;| < |a| < N — 1 since we only consider
the case |a| 4+ |B] < N and |B| > 1. If |a; | = 0, we get from (4.16), the Cauchy—Schwarz
inequality, and (3.18) that

Lo

1 1, o
< =195 1 12,5, + Cn(no + &>~ 195_5 f1I7,
2198 Ml ) e 198-p1/ 18—

g (M =1\ sam
P (5 5 odn95 b

1
= 77;”a f2 18+ Cn(no + )’ Dy (1).

Ifl1<|on|<|e| <N —1 then|a—ai| <N —2and e —a1| + |8 — B1| < |a| + [B] - 1.
Taking the L°—L3-L? Holder inequality and using (4.2) and the Cauchy—Schwarz and
Sobolev inequalities, we get

1 —b q M — H
ngs (v) 3,&( ‘ |05, flo.18—pi1105 f 1o dx

scéﬂvvr"a%*(%“)z

1 1 _
< O+ 81575 Vi £ loip—pu 15 £ it

575 Flog—pai el 195 £ 1ol

1
= 77—”3 f||o’|ﬂ| + Cy(no +£2)> D (1),

where we have used (3.3), (4.1), (4.17), (4.18), and the fact
M—pu

H ‘ badl

1
5= C(no + £2),
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since one has to deal with |a;| = N — 1,

107 (o, u, 0) |13 < C [0 (5.1, O)l|s + C 0% (5.1, 6)]| 5
< Cio + C13% (.11, )12 | V<™ (5. 11. B) |
< C(no + &2).
Therefore, substituting the above estimates into (4.15) and using the smallness of 1y and
£, we obtain
1
£

((aﬁr(MJﬁ“ )35 1) < Cr i £ 120+ Colno + D) Dy (0). @19)

For the second term on the left-hand side of (4.13), it is straightforward to see by (4.12)
that

é‘(agr(f, M—J_ﬁ“),wzwagf)’
jae—a (M

1 e
Y D ND SR I [

a1=a B'<p<pB ‘/_

), 1185 7 espr dx. (4209

Estimate (4.20) can be treated in a similar way to (4.15). First note that |o1| < |a| < N — 1
due to || + |B] < N and |B] = 1. If |o — 1| = 0, we use (3.16), (4.16), the Cauchy—
Schwarz inequality, and (3.18) again, to obtain

1 —b qo1 a—a] M—pn o
L[ o (FZ M, 198t
T
< Clmo+ o) )05 £ 15 £ o

1
= C(no + 8);|I3§3fllo,lﬂ’|||3%f||a,|ﬂ|

1
= 77;||3%f||§,\ﬁ| + Cy(o + €)>Dn (7).

Here we have used (v)~? < (v)_%(v)"ﬁ/| by choosing b > N +1/2 > |f'| + 1/2. If
lo — | # 0, thatiis || < |a| =< N — 1, then || + [B'] < |on| + [B] < || = 1 + [B] =
N — 1, and it holds that

1 —b a1 o—a — K o
2]t 050 () 5 o
1 —b a1 o—a] M_/’L o
= Co )95 flalles | |55 ( 7 | A

1 1
< Ug||3%f||§,|ﬂ| + Cy(no +£2)> D (1).



R.-J. Duan, D.-C. Yang, and H.-J. Yu 26

All in all, plugging the above estimates into (4.20) yields

(o (ﬁ”i%“)uﬁm%f)(<cn-m FI2,5 + Colno + 3Dy (1), @21

In summary, the desired estimate (4.13) follows from (4.19) and (4.21). This concludes the
proof of (4.13). By (4.11) and similar arguments to (4.19) and (4.21), we can prove that
(4.14) holds, and details are omitted for brevity. This ends the proof of Lemma 4.6. ]

Next we consider estimates of the non-linear collision term I ( Ui f) which will
be used in Section 5.

Lemmad.7. Let x| + |B| < N with || > 1 and the conditions of Lemma 4.6 be satisfied;
then for any n > 0, one has

G G
o 2|ﬂ| o
£105 (f Z7) v )|
< Cn;llaﬁflli,w + Cp(o + ) Dy (1) + Cy(i0 + £2)e>. (4.22)
Moreover, for |B| = 0 and |a| < N — 1, it holds that
l/wf G G o
2|0 M) /)|
1 1 1
< Cn 0I5 + Cylno +6) DN (1) + Cymo +£2)e>. (423)

Proof. We only prove estimate (4.22) since estimate (4.23) can be handled in the same
way. Let || + || < N with || > 1; weuse G = G + /it f to show

(L) = r(; ;) a"‘r(%,f)JragF(f,%)

We take the inner product of the above equality with %wz‘ﬂ |8% f and then compute each
term. In view of (4.12), Lemma 4.3, the Cauchy—Schwarz and Sobolev inequalities, (3.3),
and (4.1), we arrive at

é\(a‘éf(%’%)’wz'ﬂ'aﬁf)\

+T(f, /).

at)t 3}

30“ b1 (jﬁ)

(x1<aﬁ/<ﬂ <B ‘/I_L)‘

< n—na FI2, 5 + Cylio + £7)e2. (4.24)

4% dx
U,Iﬁ—ﬂlll 5/ loip
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Using (4.12) again gives

(@ () 05 r)

ey ¥ o)

a1=e pr<pi<p

_ G _ o
(v) bagi(ﬁ))zwg_;‘;‘lf 811195 floyp1 dx . (4.25)

J1

Note that for |a| + |8| < N with || > 1, one has || < N — 1. To estimate the term Jy,
we consider the following two cases. If | — a1| + |8 — B1]| < M, we derive from the
Cauchy—Schwarz and Sobolev inequalities, (4.4), (3.3), (4.1), and (3.18) that

nee!orm (5,

1 _ _
< 0105 715181 + Conoel Vxd o o611 V2055, f lols—pi

575 Flog—pai a1l 185 flogpill 2

1 1
< 77g||3%f||c2;,|3\ + Cp(no + €2)Dn (7).

1f 2Bl o — | + | — B1| < |a| + |B], then it holds that

G

N
1 1

=< 77;||3‘§f||(2f,|,3\ + Cy(no + €2)Dn (2).

e

- ¢

), L1525 Floisputll21185 f loipi o

Consequently, plugging the above estimates into (4.25) implies

1

g\(a‘;r(%, 1) wlag £)| = Cnéllaﬁfllf,,w +Cyo + DN (D). (4.26)

Carrying out similar calculations to (4.26), one has the following same bound:
L (gar( 50 w28l Lioa o2 1
@ (7 ) w105 1) < Col15 11 + Cotro + Dy 0. 420)
Similarly, one has from (4.12) that
1
—|@FT (£ ). wPlag £
€

1 — — o
SCY X o [ MO0 RIS S leipp |95 S e .

a1 =a B/<pi<B

J2
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la|+181

The term J; can be treated in a similar way to the term J1. If @ —ay | + | — B1] = =5

using the Cauchy—Schwarz and Sobolev inequalities, (4.1), and (3.18), we get

1
J2 = Cll[(v)” P85 Flall2 1105-5 loip—puillze 105 f Lo N2
1 1 o 2 o—0o 20—
< 0105113181 + Co 1350 S 15,160 1 Vx 55  lois—pul | V2055 S loip—p

1 1
= 77;||3‘§f||§,|,3\ + Cpe2 D (1).

Here we have used (v) ™ < (v)~8' by choosing b > N > |B/]. If M <o —ai| +
|B — B1| < || + |B]|, we also have

1
Jr < Cgll [{v)™ ba‘”‘flzllell 1055, floi8—puillL2 11105 f o811l 2
1 1
= 77;||3%f||¢27,|,3\ + Cpez2 D (1).
Therefore, with these estimates in hand, it follows that
1
—I(B“F(f 1. w?Plag 1)) <Cn—||a FlG g+ Cre2 DN (@), (428)

In summary, the desired estimate (4.22) follows from (4.24), (4.26), (4.27), and (4.28).
By similar arguments, we can prove that (4.23) holds and we omit the details for brevity.
This completes the proof of Lemma 4.7. ]

4.5. Estimates of fluid quantities

In what follows we give the estimates of the fluid quantities involving the temporal deriv-
atives, which will be used in Section 5.

Lemma 4.8. For |a| < N — 1, one has
180, (3. 7. 6)I* < Cl13*Vx(p. 7. D) + Cll(v) 20"V fI* + Clo + £2)¢”. (429
For |a| < N — 2, it also holds that
19%9; (5,1, 0)||*> < C&2. (4.30)
Proof. Subtracting (1.2) from system (2.10) yields

0:p+u-Vip+pVyx-ti +1-Vip+ pVy-u=0,
20 2 200 6
o +u-Vyuu + —=Vyp+ = VQ—i—u Vil + = (———)pr
3p 3\p P
1
=—— -VxG dv,
,O/R3v®v xGav 4.31)
~ -~ 2 L -~ 2~
8t9+u-Vx9+§9Vx-u+u-Vx9+§¢9Vx-u
L[ 1, 1
=—— —|v|*v-VyGdv + —u- v®v-VyGdv.
pJrs 2 p Jrs
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Applying 0% with |¢| < N — 1 to the second equation of (4.31) and taking the inner
product of the resulting equation with d%d,, we arrive at

(0%0,i, 0%0,i1) = —(a“[u Vil + i—ivxﬁ + %vxé iV
-G n)

1
_ (8“(;/ v®v-VdeU)vaaatﬁ)
R3

< Clld%d,it|* + Cyl|8% (Vafp, Vi, Vi0) |2
+ Cyll(v) 20V £ 112 + Cy (0 + £2)6°

Similar estimates also hold for 0%9d;p and 3*9,0. Therefore, choosing sufficiently small
n > 0, we can obtain the desired estimate (4.29). If |¢| < N — 2, we can deduce from (4.1)
that

10% (V. Vit Vi) |2 + [[(v) 207V f||? < Ce?.

This and (4.29) together give (4.30) by using the smallness of 1y and ¢. Thus the proof of
Lemma 4.8 is completed. ]

5. A priori estimates

This section is a core part in preparation for the proofs of the main results. We will obtain
the desired a priori estimate (3.20) of the solution step by step in a series of lemmas in
order to close the a priori assumption (4.1). In all the lemmas below, F = M + G + Jf
is assumed to be the smooth solution to the Landau equation (1.1) and (3.19) for ¢ € [0, T']
with T' € (0, 7], and all derived estimates are satisfied for any 0 < ¢ < T'. In the meantime,
we assume that (4.1) and (4.2) are valid.

5.1. Zeroth-order estimate of the fluid part

We start from the zeroth-order energy estimates of the fluid part (p, #, é) by the entropy
and entropy flux motivated in [52]. We show that the energy and energy dissipation for the
fluid part are bounded by the dissipation up to first order for the non-fluid part. The proof
also makes use of the dissipation mechanism for the Navier—Stokes-type equations (2.15),
as well as the Euler-type equations (2.10).

Lemma 5.1. It holds that
~ t ~
(3. . 0)(@)|I> + 68/0 Ve (p. 1. 6)(s)|1* ds

<Ce /0 (SO + [V /) 2) ds + CA + D0 + ). (5.1
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Proof. As in [52], we define the macroscopic entropy S by

3
——pS = M In M dv.
2 R3

By plugging in (2.3) and integrating, it follows that

2 1 2
S=-—Inp+InQ@rRO)+1, p=Rpd=—piexp(S), R==. (52
3 2me 3

Multiplying (2.8) by In M and integrating over v, direct computations give

3 3 Gv-VyM
—28:(pS) — 2V, - (puS) + Vs / vGInM dv = / AR LN
2 2 R3 R3 M
We denote
T u?\\T
m = (Mo, my,Mp, M3, My) = (p,pul,puz,pua,p(G + T» ,
= (ng.n1,nz.n3.ng)"
|u|? T
(pu puuy + ply, puus + pla, puus + pﬂs,pu((? + T) + pu) .
where I; = (1,0,0)", 1, = (0,1,0)", I3 = (0,0,1)", and (-, -, -)" is the transpose of a row
vector. Then the conservation law (2.15) can be rewritten as

0
63721 05 [1(0) D] — [y vi(v - Vi L3/ ©) dv
dm+ Vy-n = £Y7_1 0y, [1(0) Do)l — [a v2(v - VL3 ©) dv ,
1 0x, [1(0) D3] — [rav3(v- Vi L3} ©) dv
eVx - (k(0) Vi) + &Vy - [w(@)u - D] — [gs 31v|?v - ViL}/ O dv
where D = [Dj;]1<;,j<3 is given in (2.14). Define a relative entropy-entropy flux pair

(n.9)(t. x) around the local Maxwellian M = M; ; 5 with § = —31Inp + In(27RO) + 1
as

00 =8{-2pS + 3 pS+ 2T (08)] (m_m)},
3 (5.3)
2P

3 _ .
q;(t,x)= { ou;S +— pu,S+ Vm(pS)‘ (nj —nj)}, j=123.

Here, m = (p, pil1, pil2, piiz, p(0 + 5|u|2))T. Since

ul> 5 Ui 1
mo(pS) - S+ 29 _33 am,(/oS) = _?7 1= 172737 am4(pS) = 5’ (54)

an elementary calculation leads to

=Yoo (5= 52

_ p@qj(g) + gpéqj(g) + pr —al,

qj(t, x) = u;n(t,x) + (u; —ii;)(p6 — ph), j=123,
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where W(s) = s —Ins — 1 is a strictly convex function around s = 1. By these facts and
(3.4), for X in any closed bounded region in Y, = {X: p > 0, 6 > 0}, there exists a
constant C > 1 such that

C7H(p. . ) < n(t.x) < C|(5.7.6). (5.5)
Using (5.3) and making a direct calculation, it holds that

at’?(t,x) + VX q(tax)
- 3 —_
= Viasn(t.x) - 0,(5.1.8) + Y Visa.54 (. %) 0x, (5. 1. S)
j=1

_( 3 3 3.
+ 9{—58,(,0S) ~ Vs (,ouS)} +50Vn(0S)| __@m+Vim). (56)

In order to further estimate (5.6), we first claim that the following identity holds:

3
V[,-,,,;,g]n(l, x) - 9:(p.u. S) + Z V[ﬁ,a,S‘]Qj (t,x) - 0x; (p. ul, S)
j=1

- —;pft (i - Viil) — épé(vx -ﬁ)ll’(g) — 06(V, u)\I’(g)

3 -~ /2 D 0
whose proof is given in the appendix. Note that
21 1 21 1
;S =—=-0 —0:0, Vi§=—=- — Vi 0,
t 30 P+ ) t x 30 xP + g

due to (5.2), then we deduce from this and (2.15) that

B-20008) = 3 Vs~ (ouS)) = é{—33<ate Vi)~ pVe )

=———e{zax,(x(9>ax,9)+ 3™ ()i s D)

i,j=1

——{/ —|v|2v \Y LMl®dv—Zul/ viU‘VxL;;@dU}«

In view of the conservation law and similar arguments to (5.4), one has

3
EQVm(pS)|m=,7,(3tm 4+ Vi -n)

3
3 _ _ 3 1 _ 3
= E E U; /1R3viv-VxLMl®dv—5/IR3 z|v|zv-VxLMl®dv+ESVX-(K(Q)VxO)

l\)lw

3
¢ 30wl Dy + 2oV [w(@u- D).
2
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Therefore, plugging these estimates into (5.6) and making a direct computation, we get

36 -
den(t.x) + Vi - q(t. %) + e 25 1(0) Z Oy i (0, i+ O — Si,-vx i)
L,j=1

3_ 012

- gsvx-[u(e)a-D]Jr%svx-(gx(e)vxe) zpu (i - Vi)
- %pé(vx -a)xp(é) — pB(Vy -a)xp(z) - ;pvxé : u<§ 1n§ +1n g)

2392K(9)V 6-V.0 sy 39 23K (O)Vx -V, 9+e— Z [0, i; 1(0) Dij]
lj 1
9 Z M(@)ax,u,(a 1+ Ol — Sijvx-a)Jrll. (5.8)

i,j=1

Here I, is given as

3 0 1 B 3 . _
hi==3Vx (5 /1;3(5“”2 i U)ULMl®dv) A (Zul /]R3 vivLMl@dv)

3_ /6 30 o
+§Vx<§) /R3(_|v|2_v u)vLM1®du Eégv"u’ A3U,ULM1®dU
36 &
- -1
—§§vaui-fR3 vivLy O dv. (5.9)

To complete the estimate of (5.8), we integrate it with respect to x over R and then
compute the resulting equation for each term. Thanks to (3.4) and (4.1), one has

\p(/_’j) ~ |p|%, \IJ(%) ~ |62, ’ln§| ~ |p|,

By taking the L.2—L2—L™ estimate, we get from this, (4.2), (3.3), (4.1), and the imbedding
inequality that

‘ln%| ~ |9~‘

[ o @ 9ai+ 3009, zz)\P(g) + o8V w(3)
+ %pV;ﬁ-ﬁ(%lnE + ln%)) dx

< C(||Vxitllzo + |V lLoo) (5, 1, 0)]|> < Cnoe®. (5.10)
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Since both (6) and «(0) are smooth functions of 6, there exists a constant C > 1 such
that ;£ (9), k() € [C~1, C]. It follows from this, (4.2), (3.3), and (4.1) that

/Ra() 202 +’ 262 «6]) dx

=< C8||Vxé” V<01 + C8||Vx9||L°°||é” V6]l < Cno + ).

Recall D;; in (2.14); then similar calculations to above lead us to

ol

39

Z [ax] u;ju(0) Dij]| dx

1/1

30 . - 2 _
e ,Zl 0)0 1 (D 15 + 1 — S8V i)
< C(no + &)&>.

+ dx
]R3

Applying the above estimates together with (5.15), whose proof will be postponed to
Lemma 5.3 later, we have from (5.8) that

dr
< Cellfll; + Cno + &)>. (5.11)

d d - =
— | n@.x)dx = —E(t) + ce(|Vxil]|* + [ V20 ])
R3 dt

Here, the following crucial estimate has been used:

3é 3 . - - 2 -
e/Rz ﬁﬂ(e) > ijui(ax;ui + O0x;j — §5ijvx “) dx

i,j=1

—823:/ 30 )@ ft-)zdx—i—a/ 39 O) LV, i1y dx
= s 201170t s 201730

—eZ/ . zeuw) ax,uu,dx+82/ o wuw) i

i,j=1 i,j=1
> ce||Vxit]|*> — C(no + )&

Recall E(t) in (5.16). Then we employ (5.20), (3.3), and (4.1) to obtain

E@)] = Ce{Hvx(g)H LA+ 90 0F 1+ NVt 160 1 £ 1
< C(no + &)&>.
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Integrating (5.11) with respect to ¢ and using (3.22), (5.5), and the above estimate of E(¢),
we have

~ t ~
1G. 7.0 (O] + ce /0 IV (L. B)(s) |12 ds
t
< Ce/ | £F$)IZ ds + C(1+ 1) (no + )& (5.12)
0

Remark 5.2. Instead of the above proof based on the entropy-entropy flux method, one
can also simply use the usual L? energy method similar to the one in the space derivative
estimate of the fluid part in Lemma 5.6 in order to get the same estimate as (5.12), since
the estimate is restricted to only the finite time interval [0, 7].

It should be noted that there are no dissipation terms for the density function in (5.12).
For this, we turn to the Euler-type equations (2.10). Recall that the difference system
(4.31) is derived from subtraction of (2.10) and (1.2). We then take the inner product of
the second equation of (4.31) with V,p to get

20 _ . o .2 -
(3—/5pr, pr) = —(0s1, Vxp) — (u - Vil + §Vx97 pr)

— (i Vaii + %(% - %)pr, )

1
—(—/ v®v-Vdev,Vx,5).
o JR3

Using integration by parts and the first equation of (4.31), one gets
N d . _ . R
—(0:u, Vxp) = _E(u’ Vip) — (Vxit, 9:p)
d _ . - - .. _
= —E(u, Vip) + (Vitl,u - Vyp+ pVy - ti + 1 - Vi p + pVyx - u)
d . ~ - -
= =5, W Vap) + CllVxpl? + CylIVxit||> + C o + )¢,

where in the last inequality we have used the Cauchy—Schwarz inequality, (4.2), (3.3), and
(4.1). Likewise, we have

(- Vit + %vxé, Vep) |+ |7 Vet + g(% - %)vxp, )

< ClIVepl? + Co(IV<&|)* + I Vx0]%) + Cy(no + £)s”.

On the other hand, by the fact that G = G + /I f and (4.4), it holds that

1
‘(—/ v®v-Vdev,Vxﬁ)
p JRr3

< Cnl|Vxpll? + CylI Vi fIl5 + Cyno + e)e.
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Collecting the above estimates and taking a small constant n > 0, one has

d B B B ~
2780 Vap) + celVxpl? < Ce(|Vxil|” + V58> + | Vx £ 1) + C 1o + )&, (5.13)
Integrating (5.13) with respect to ¢ and using the estimate
el(@, Vxp)| < Celli]| ||Vxp] < Ce’,

as well as (3.22), we have

8/0 VX)) ds < Ce/O {1V (@i, 0)(SI* + Vi f 112} ds
+ C(1+1)(no + &) (5.14)

In summary, a suitable linear combination of (5.12) and (5.14) gives the desired estim-
ate (5.1). This completes the proof of Lemma 5.1 for the zeroth-order energy estimates of
the macroscopic component (p, i, 6). |

To deduce (5.11) in the proof of Lemma 5.1 above, we have used the following estim-
ate on the basis of the Burnett functions.

Lemma 5.3. Recall (5.9) for 1. It holds that
d
/ I dx < EE(I) + Ce| f1I2 + C(no + &)e*. (5.15)
]R3

Here, E(t) is given by

E(t) =2 Z/w[ N (RG)zA(F)gffdvdx

3 L= vV—u\ e/l
+§”Z=:1/R} R38xjulRGB,,(m>7fdvdx

3 3
_zi;:l/ / O, RQB,,(m)sffdvdx 5.16)

Proof. In order to estimate f]R3 I dx, we only need to estimate the last three terms in (5.9)
since other terms vanish after integration. First note that the following identities hold:

/R3<%v,~|v|2—v,~u.v)LXJI®dv = /]1&3 L;,,l{Pl(%vi|v|2—viu-v)M}%dv
:/R3 L;j{(R@)g/f,-(i/;_Z)M}%dv

3 v—u\ ®
— (R6)> [R3 Ai(ﬁ)ﬁdv (5.17)
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and

®
/viij;;@dvzf Ly {P1(viv; M)} — dv
R RS M

- /R3 L;,}{RGE,-J-(%)M}% dv

v—u\ ®
= RO Biji| ——)—dv, 5.18
R3 '](VRQ)M 0 G189

fori, j = 1,2,3, in terms of the self-adjoint property of L;ll, (2.5), (2.16), and (2.17).
Hence, the third term in (5.9) can be rewritten as

/Rs ;Vx<§)'A3(l|v|2—v'“)UL;41®dvdx
_Z/ { (R@) / (%)% dv}dx. (5.19)

Before computing (5.19), we give the following desired estimate that, for any multi-index
Band k > 0,
) LD A (TP faﬂBlJ( )12
/ dv + /
R3 M?2 R3 M?
in terms of (4.3) and (4.2). Recall that ® in (2.13) is given by

dv<C, (520

© = 23,G + eP1(v - VxG) — O(G, G). (5.21)

We now estimate (5.19) associated with (5.21). For the first term of (5.21), noting that
G =G + /i f, we use (5.20) and similar arguments to (4.4) to obtain

/W{%ax,.(g)(mﬁ/]w A,»(\/R_G)’Ba (G dv}dx

0 B - o
03, (5) [{(Vx00. V20,0)| + (V. V)| - (0. 0,6) } dx

< Cé?

< Ce2([|0x, 0 + 1108, 0IDLN(Vadyit, Vi, 0) || + [|(Vit, Vi)l oo || (3,1, 3, 0) |}
< Cnoe’,

where in the last inequality we have used (4.1) and the fact that
10:(u,O)|| < C, 9:(p,u, é)”Hk <Cno, fork >3, (5.22)

due to (4.30), (3.3), and (1.2). We use an integration by parts about 7 to get

[ @t [ ;< T,
~ar /R3 /1;3 20 ( (R9)2A (7= )w_fdvdx
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/W/w (Re)zA li/R_Z)Sf}fdvdx
/R3 A (RQ) A \/R_Z)%f}dvdx—l-C(?]o—i-s)ez,
with the help of the following estimates:
/RJRB (R9)2A li/R_Z)e‘/_}fdvdx
< Cefos, ( )H||f||+Cs ()17l 12: (o, 0]

<C(no + 8)8

Collecting the above estimates, we obtain

Z/ { (R@)z/ ('i/R_;‘)S?WG dv}dx

—u
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Similarly, it is straightforward to check that

= L i Gt [ 4 )

—Z[ { (RG)Z[ (:}/R_Z)s[v VG Afo(v Vi G)] }dx

< C(no + e)&>.

For the third term of (5.21), applying (3.11), (4.11), and (5.20) yields that

3. /6 ; (v—u\ 0(G.G)
/R3{§3xi(5)(R9) /]R3Al(_\/R_0> = dv}dx‘

3 6 3 (v-u\Jr G G
/Rs{zam(—)“w) /RsAl( /—R9>7F(ﬁ’ﬁ)d”}d’c
¢ LIS o)) o
R3

=C sup ( ﬁ\z * |f|2)(HﬁHc +171k)

x€R3

< Cell £1Z + Clno + )¢,

I/\

v (0)]
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where in the last two inequalities we have used G = G + /I f,Lemma 4.3, the Cauchy—
Schwarz inequality, (3.3), and (4.1). Recalling (5.21) and plugging the estimates above
into (5.19) leads to

ot L g

£/
SEEZ/W/ . (RQ)ZA (J_> fdvdx
+Cg||f||§+c(no+s)e ) (5.23)

The estimation of the last two terms in (5.9) can be done similarly to (5.23) because they
have the same structure. It follows that

3 _
3 0. . -
Ei;: /]1&3 gaxjui /]1{3 v;vj Ly ®dvdx

0. . v—u\ ©
=2 Z [ /ngaxjuiRQBij(ﬁ)ﬁdvdx

l]l

555 Z/ N R@B,,(ﬁ)gffdvdx

+ Ce|| f1IZ + C(no + &)&>,

and

3 ..
3 -1
_5 Z /IR3 9 1/1\{3 vlijMdedx
3 6. v—u\ ©
_—EIZ_: /R3 /]1{3 EBXJ.u,-RQB,-j(—_Rg)Mdvdx

S_EE Z /R3 [ o RGB,,(F)Sffdvdx

+ C8||f||§ +C(10 + £)e”.

With the above two estimates and (5.23) in hand, the desired estimate (5.15) follows. This
then completes the proof of Lemma 5.3. ]

5.2. Zeroth-order estimate of the non-fluid part

Next we make use of the microscopic equation (3.13) to derive the zeroth-order energy
estimates of the non-fluid part f by using the properties of the linearized operator. We
should emphasize that the fact that f € (ker £)* is crucial in these estimates.
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Lemma 5.4. It holds that
1 t
AP +erz [ (171 ds

< Ce /0 1Vt VB) ) + (Ve £ 2) ds + C(1+ (o + )6 (5.24)

Proof. Recall the microscopic equation (3.13) together with Remarks 3.2 and 3.3. Taking
the inner product of (3.13) with f over R* x R? and using (4.10), one has

1d 1
——IIfI|2+Clg||f||§

2dt
L) () (G ) )
v- VG ;G Polv - V(I f)]
- (PO ) - (B ) + (R )

_ (ﬁpl{v . (|U ;:z;xg I (v —1;)9 an)M},f). (5.25)

We will deal with each term in (5.25). For the first term on the right-hand side of (5.25),
in view of (4.11), (4.16) and (3.16), we get

A () (£ ) )
<o [ (s + 0 [ 108l (ol dx

1
= Cle+no)< 1 F12.

For the second term on the right-hand side of (5.25), we first note that

G G G G G G

F(—, —) — F(—, —) + F(—,f) + F(f, —) LT f).
NN NN Ji N

Then, using (4.11), Lemma 4.3, the Cauchy—Schwarz and Sobolev inequalities, (3.3),

(4.1), and (4.2), we get

(S L) )= Ce [ .0 V.B)PIf ko dx = CoolLF I + Conoe®

AN N i
é‘(r(%,f),f)‘ +|(r(s %),f)\ S ARV

<Cnol f13.
and

SN = CLN el 1 < LI
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With these, it follows that

\(F(; j—) £)| = €t +ersir 2 + Cae®

For the fourth term on the right-hand side of (5.25), applying similar arguments to (4.4),
(3.16), (5.22), and the Cauchy—Schwarz inequality, we get

186

‘(%,f)‘ < w7 1P + Cpe |0

1 o L
< CnE”f”(zr + Cye? 43{|8t(vxu,vx9)l + [(Vxit, V0)| 13, (u, 0)])* dx

1
< Cn;llflli + Cy(no + €)%

The third term on the right-hand side of (5.25) shares a similar bound to

() (5 0) - (e )

1
< Cu_If I3+ Cylno + )6

For the fifth term on the right-hand side of (5.25), we deduce from (2.5), (2.4), (4.2),
(3.16), and the Cauchy—Schwarz inequality that

‘<Po[v-vjéﬁf)]’f)‘=‘(fz< VE -V f xu )‘

éxjﬁlg(f \/ﬁ'vva %)Xi

2

<aol )17+ Ce

1
< CnZ |15 + Crell Ve f 13

where we have used the fact that |(v)lu_% M|, < C forany [ > 0 by (4.2). The last term
of (5.25) can be handled in the same manner and it is bounded by

‘(Lpl{v ) (|v — u|2Vx§ N (v—u)- Vﬂ])M}’ f)‘
JH 2R0? RO

1 o
< Cngllfllﬁ + Cyel (Vait, V2 0) |2

In summary, we substitute the above estimates into (5.25) and choose n > 0, n9 > 0, and
e>0 suitably small to get

c

1
2dt ||f||2 = ||f||g < Ce(|(Vxit, VxO)|* + [ Vx f1I5) + Cno + ). (5.26)

Integrating (5.26) with respect to ¢ and using (3.22) yields the desired estimate (5.24).
This then completes the proof of Lemma 5.4. ]
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Combining Lemma 5.4 with Lemma 5.1 immediately implies the following result,
which gives the estimates of the zeroth-order energy norm for both the fluid and non-fluid
parts.

Lemma 5.5. It holds that
. t . 1 t
1B, @, )OI + I F (D> + cs/o IV (B, . 0)(s)]|> ds + CE/O I f()|IZ ds
t
< Cs/ Vs f()1% ds + C(1 +t)(no + £2)e2. (5.27)
0

Proof. Multiplying (5.1) by a large constant C > 0 and then adding the resultant equation
to (5.24), one can obtain (5.27) by using the smallness of €. This completes the proof of
Lemma 5.5. [

5.3. Space derivative estimate of the fluid part up to (N — 1)th order

This subsection is devoted to deriving the space derivative estimate up to the (N — 1)th
order for the fluid part (p, u 9) As in Section 5.1, the proof is based on the fluid-type
systems (3.5) and (4.31).

Lemma 5.6. It holds that

S G hOR v Y / 1% (5.7, B)(s) 12 ds

1<|a|<N-1 2<|a|<N
<Ce > (105> + [0 FOI) + Ce / 8% £ ()15 ds
la|=N 1<|x|<N
t
+C(no + s%)/ Dy (s)ds + C(1+1)(no + £2)&>. (5.28)
0

Proof. 1t is divided into six steps as follows. In the first three steps we make the direct
energy estimates of p, 1, and 6 in terms of the Navier—Stokes-type system (3.5) and then
obtain the combined estimate in Step 4. In Step 5 we use the Euler-type system (4.31) to
obtain the energy dissipation of p as in Section 5.1 for the zeroth-order estimate. In the
last step we combine those results to deduce the desired estimate (5.28).

Step 1. Applying 0% with 1 < |e| < N — 1 to the first equation of (3.5) and taking the
inner product of the resulting equation with = 20 > 0% D, one has

%di(a“:ﬁa“ )—-(a“ia,( 9)8"‘ ) (ﬁvx-a“ﬁ,%a"ﬁ)

+ > cgl(aalpv gy, %aa )

1<a;<a
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20 20
— o . ~ — o~ _ o~ . = — o~
= —(0°0e- Vp). 550%5) = (3G Veh). 559%)
20
— ‘X A . — aN
(a (390, 5250 p). (5.29)

Let us now deal with (5.29) term by term. By the Sobolev inequality, (5.22), and (4.1),
one has

(20 _ - _ N
(#5.0:(552)2P) | = U AL + 1011351 = CrollF“FIP < Cnos?.

Performing a similar calculation to the above estimate implies

¥ a

1<a1=a

20
(a‘hpvx gaenyy, ﬁaaﬁ)) < Cnoe?.

The first term on the right-hand side of (5.29) can be written as
20, 220 .
—(8“(14 . pr), ﬁaap) = —(u . anap, ﬁao‘p)
20
- Y e (8"“14 V97T g, —_B"‘[)).
302
1<o1<a
By virtue of integration by parts, the Sobolev inequality, (3.3), and (4.1), we obtain
220, 1/, - 20\ g -
(v 5508) | = |5 (6. 92 (u555)0%)|
- - = - ~ 1
< C(IVx(p, i, )|z + | Vxit[l ) 095> < Cno + 2)e?,
where we have used the fact that
|Vaiillze < CIIV3il|)2 | V3a|> < Ce2. (5.30)
For 1 < || < ||, it is clear to see that
20 20
<8a1u . anozfal ﬁ, __aaﬁ) — <aa1ﬁ . anozfal ﬁ’ __aaﬁ)
352 352

n (am i - V99 p, %8"‘,5).

If 1 < |oq| < |o|/2, we use similar arguments to (5.30) and (4.1) to get

26
(09t 25500 | < Nl V0 7 051 < e
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If |¢|/2 < |o1] < ||, we have the same bound as

20
(o1 Vo5, ﬁa“ﬁ) < CJ|0% | | V0% fll Lo 093] < CeZe?.

Thanks to these estimates, it follows that

> c

1<a;<a

26
(aala V8% G, ﬁaaﬁ)( < Csde?,

On the other hand, we can obtain

¥ a

1<a1<a

260
ar s, a—0o] ~ a ~ 2
(8 u-Vyd 0, —3/528 p)) < Cnoe”.

Collecting the above estimates, we thereby obtain

((a“(u Vx,o) a“ )( < C(no + 7). (5.31)

The second term on the right-hand side of (5.29) is relatively easy and it is bounded by
(9@ Vep). 5 a“ P)| =€ 0 IVx0" T Bllue [0l 13761 < Coe®. (5.32)
o] <o

We divide the last term of (5.29) into three parts:
26 26
_(a2(5 . S aas) — (5 Jaa~ SY aa “Y qa
(a (B 0. 5550 ,o) (pVx 90150 ) (a (Y - u) a )

- Y e (aal GV - 92y, 3%3“,3).

1<o; <«

The last two terms of the above equality can be treated in the same way as (5.31) and
(5.32), so that we obtain

>

1<a;<a

(aalpV LYY g, —8"‘ }+‘ 8 (AVy - u) 30‘ )’ SC(ﬁ0+S%)£2.
Applying the Cauchy—Schwarz and Sobolev inequalities together with (4.1) gives

~ (x~2é(x~ o~ 12 1~2 o~ 2 o~ 2 3
(P 0% S59%5) | < nell V- 37ilP + Co B w10 BI” < mell V371 + Cpe
It follows from the above estimates that

20
(7 V-, 3—/328“/3)\ < Cnel| Vi - %0 + Cy (0 + £3)e%, (533)
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For 1 < |a| < N — 1 and any small n > 0, we substitute the above estimates into (5.29)
to get
1d 26
-2 0%pI2 dx + (Vi - 9, —a“ )
57 I pI”dx +
< C778||Vx 0% % + Cy(no + 82)8 . (5.34)

Step 2. Next we concentrate on the second equation of (3.5). Applying 0% with 1 < |a| <
N — 1 to the second equation of (3.5) and taking the inner product of the resulting equation
with 0%; yields

1d 9% 2 2é o ~ qo~ [ o 2é o—a ~ qo~

5 7718l + (3—/38 0. 00 ) + Y. € (o (3_/3)3 MRS

1o =<«

2 .
+ (ga“axie, a“ai) (% (- Viily) + 990 - Vit ), 0%0;)

(e BG-Fmelr
- ez(a“( o [1(0)D1). 8%

1
- (8“(—/ viv-VxLX41®dU),3aﬁi)- (5.35)
P JR3

We will estimate each term for (5.35). Following the same method as in (5.31) and (5.32),

we get
(o (i—z)aa—“l 02, 01 )

>
o
<C(no + 8%)82-

+ (0% (u - Vxtti) + 0% (i - Vi), 0%u;)|

1<a1<a

Carrying out similar calculations to (5.33), one can arrive at

(GHE Y

We will carefully deal with the first term on the right-hand side of (5.35). By the definition
of D;;j in (2.14), we first write

P 23:(8“ (%3;@- [M(Q)Dij])7 3%7;')
j=1
32 (5 (520 0 0 s~ 3525 ) )

j=1

23:( ( x][u(e)(a i+ il — si,-vx-a)]),a“ai) =1+ I5.

< Cnel| 0y, 341 || + Cylno + 2)&>.

™
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By integration by parts, the term I, can be reduced to

I, = —ei(aa[%u(e)(axja,- + il — ésijvx u)] a“axjﬁ,-)
j=1

- si(aa[axj (%)M(e)(axja,- + Oyl — éai,-vx : a)], a“a,-)
j=1
=1 + I3

To compute the term /5, it only suffices to estimate /. 21 and / 22 Note that

3
1= —SZ(%M(G)(aaaxja,- + 0% 1l — éaijvx : a“a), aaaxjai)
j=1

—823: 3 cgl(aal[%u(e)]aa—“l(axjai+axia,-—gsi,vx-a),aaax,.ﬁ,-).

j=11<a1<«

Applying the Sobolev inequality, (3.3), and (4.1), we have, with 1 < |a | < |«|/2,

e (i [%M(e)]aa—“l (9 + Bty = 305V 0). 00,

<Ce¢

o [ )] IV 13, |

< CI{18% (p, 0)] + -+ + [Vi(p, )11} || oo?
< C(no +£7)&>.

Likewise, the case |o|/2 < |a1| < || has the same bound:

g‘(aal [%M(e)]a“—“l (B, s + D11, — %5,-,»vx ), a“ax,a,-)

<Ce¢

1
0 [ @] | IV 6107 0y 12

P L3 !

< C(no + £2)e>.
By the three estimates above, we can obtain the estimation for [ 21 as
3 1 2 1
I} < —ez(zu(e)(aaaxjai 05,1 — 561 Vi - aaa), a“axjai) + C(no + £7)e2.
j=1

The term /7 can be handled in a similar manner and it can be controlled by C (1o + s%)ez.

We thereby obtain

3
1 - ~ 2 ~ ~ 10 5
I < —s;(gu(e)(aaaxju,- 0%y — 561 Vi 8“14), a“axjui) 4 Cno + £7)62.
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The estimation for /3 is easier and it is dominated by C(no + £2)&2. Hence, we can
conclude from the above estimates of I, and /5 that

si(aa(lax,[u(ewij]),a“a,-)
Jj=
—ez( M(@)(aaax,u,waa i — si_ivx-a“a),a“axjﬁi)
+ Clno + £7)e>. (5.36)

We still need to estimate the last term of (5.35). In light of (5.18) and the integration
by parts, we write

(L[ woevargdon] )
=23 o)y o) )
2 () forom (i )

s Y RICI Ty R

Consider the first term on the right-hand side of (5.37) associated with © = ¢d,G +
eP1(v-VyG)— Q(G,G). Thanks to 1 < |a| < N — 1, applying (5.20), similar arguments
to (4.4), Lemma 4.8, (5.22), (3.3), (4.1), as well as the Cauchy—Schwarz and Sobolev
inequalities, we arrive at

3 —
1 —

243{8(1 |:8x1' (;) [1;3 R@BU (%) S%G dv]a"‘ﬁi} dx < C(nO + 8%)82.

Jj=1

We use an integration by parts about 7 to get

;A@{aa[a%(%)ég R@Bij(%)w dv "‘ﬁ,-}dx

/ a“{[axj(%)ReB,-j(v_”)Eﬂ]f}a“ai dv dx

(o33

3
—X_:/ /Rsa“ Dy, )RGBij(i/;_Z)g;‘/lﬁ]f}B“ﬁidvdx

o{ [0, )RGB,J( ”)8ﬂ]f}aaa,aidvdx.
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Denote 9% = 0, with |e;| = 1. We have from this and the integration by parts that

° a EVIT ) e
_;/s[ﬂ@a )RQB”(«/R9> M Sy
3
22[3/]1@3 " el ( )RQB”< RZ)Sf]f}aa+eiﬁi dvdx
j=1
= 715||3a+eiﬁ'||2

+ C77 dx

oo () om (2 ]

=< C7I8||8avxui“2 + Cn(nO + 85)827

according to (5.20), Lemma 4.8, (5.22), (3.3), and (4.1). Similarly, it also holds that

—Z/}R@ [ ( R@B,,(ﬂ) */_] £} 05ii; dv dx

=< 778||aaatu'”2

b (L) ko8 () Y o

< Cne(na“vx(p,u, D)% + 118V £112) + Cy(n0 + 2)¢>.

With these estimates, it is clear to see that

é/ﬂ@{aa[aw(;—)) /R R@Bij(%)w du}aaﬁi}dx

3 %/};{3 N aa{[axj (%)R@Bij(%)gﬁf]f}aaai dv dx
e

+ Cne(|0°Vy (B, i, 0)|2 + 0%V £112) + Cylno + 7).

=

We therefore can conclude from the above estimates and G = G + I f that

g/ﬂv{a“[axj(%)[ RGB,,(@)E(LG dv}a"‘ﬁi}dx

S o o () 5 s

+ Cne(|0°V (B, i, 0)|> + 0% Vy £112) + Cylno + 7).

=

1

47
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The second term in ® can be handled in a similar manner and it can be controlled by

3
1 v—u\ePi(v-V,G) - 1. 5
o _ . o~
Z;/R}{a [axj(p) ASRQB,,(W) = dv}a u,}dx < C(no + £2)é%.
J=

For the last term in ®, it holds by using (3.11), (4.11), (5.20), Lemma 4.3, (3.3), and (4.1)
that

L) o)

“ L) o e G g

<C(mo + 8%)82 + C(no + 8%)£N(t).

Collecting the above estimates, we can obtain with any small > 0 that

> (#[ou (2) [ Romo (S & ] v

j=1
3
d o 1 v—u\ e/ o~
S;E/Rs /Rsa {[8xj(;)R6B,j<—R9) 2 ]f}a ii; dv dx
+ Cne(||0Ve(p, i1, 0) > + 9%V f1|2)
+ Cy(n0 + £2)e% + C(no + £2) Dy (¢). (5.38)

The second term of (5.37) has the same structure as the first term and it shares the same
bound. For brevity, we give the following computations directly:

3

1 v—u\ed;G -
Z(aa[; /1%3 RGBU(E) i dv},aaaxjui)

j=1
idr /R3 [ oo R@Bz,(ﬂ)gff]a“” bdvdx

Cnel| 0V (B, 1, 0) > + Cpe 0%V f 2 + C(o + £2)s?

and

3
o 1 B V—Uu SPI(U-VXG) " _
Sl )

< Cnel| 0 Vit || + Coell 3V £ 112 + Colno + £2)62,
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as well as

3 o 1 — Q(G,G) 3 )
; (8 [E/R RQBU(I«)/R_Z)TM}’B a)‘

< Cne|d°Vyit|® + Cy (1o + £2)&> + Cy (0 + £7) Dy (1).

Then, for any small n > 0, the second term of (5.37) is bounded by
3

1 v—u\ ©
P -/ ROB. (V=4 —dv],a“ax.ﬁi)
J;( [p R3 j(«/RO)M !
3
d o 1 V—uUN\ESIS g -
5—254343{3 ij[;RQB,,(m) | dv dx
+ Cnel| 3%V (p, i1, 0)|* + Cyel Vi £ |2
+ Cy(no + £2)8% + Cy (0 + 62) D (0).

This estimate, combined with (5.38), as well as (5.37), gives

1
- (8“[—/ viv-VxL;,Il(H)dv],B“ﬁi)
p JR3

<_Zdt /RS [ (5o R@B,,(\/_G)E\/A;f)]aaﬂi}dvdx

+ Cnel| 3V (5, i, 9>||2 + Cyel Vi £ )2
+ Cyno + £2)8% + Cy (0 + £2) D (1).

49

For 1 < |a| < N — 1 and any small 5 > 0, plugging all the estimates above into (5.35) and

summing i from 1 to 3, we obtain

2 (e e s (Zaew § e o
EEIIG"‘ i) + (—a V.p, 0 )+(—8°‘Vx9,8“u)+cs||8 v,

B L LT G S s

< Cnena“vx(p, . 0)]> + Cnsna“vxfuﬁ
+ Cy(m0 + £2)e> + Cy 0 + £2) D (1),
Here, the following crucial inequality has been used:

¢ Z ( (9)(80‘3xju, 0%y 0l — si,vx-aaa),a“axjai)

L,j=1

=& Z (M;G)aaax]uz,aaa u) ;8 Z Z(Mi)e)aaax]u]’aota M)

Lj=1 Lj=1

(5.39)
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_p 23: (axj[%e)]aaaxiﬁ,,a“ﬁi) + aiél(axi[@]aaaxjaj,aaai)

i,j=1
. ay ~12 1y.2
> cel|d* Vxul|” — C(no + e2)e”.

Step 3. Let us now turn to considering the third equation of (3.5). Applying 9% with 1 <
|@| < N —1 to the third equation of (3.5) and taking the inner product of the resulting

equation with %B“é yields

(2,048, %a“é) + (%vx %0, 0°9) + 15&2}9 cgl( UGV, - 92 3“9)
—(80‘(14 V,0), l_a“é) - (aa(a V), %aaé) — (%aa(évx ), %aaé)

i( [ N (K(e)ax,e)],faa)
i( [ 1(0)05,u; ,,],_8“9)

—|v| v-V LMl®dv],:8°‘9)

(5

1
+ (3“|:—u-/ v Uv-ViLy @dvi|,:8“9) (5.40)
p o Jrs 0
We will estimate each term for (5.40). We use the Sobolev inequality, (5.22), and (4.1) to
get
wi Logz) _1d ~ 1, .= o I\ o7
(9.0 6,50 7) = 55(8 f. 50" 0)——(8 6.9 ()a )
1d ~ 1~
——(9%0, =060 9:000]|0%6]2
> 55 (346, 50%6) = C 0B locll0%6]
1d « 1 o 2
> Ed—(a g, 5 9)—0;708 .

Performing calculations similar to those for (5.31), (5.32), and (5.33), we get

3 oo (%aalévx Loy, %a“é)( A CRCRAS %3“9))

1<o1<«a

+ ‘(30‘(12 . V.0), %aaé)) + ‘(%aa(évx ), %aaé)‘

< Cpe|| Vi - 8% |1% + Cy(no + 2)&>.
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The fourth term on the right-hand side of (5.40) can be handled in the same way as in
(5.36); it follows that

EZ(B“[ 0y, (k ()0, 9)], ~990 )

3
Z( €(0)9%0,,0, Loep, 9)+C(no+82)s

D

The fifth term on the right-hand side of (5.40) is controlled by C(no + 8%)82. Since the
structure of the last two terms in (5.40) is almost the same as (5.37), we thus arrive at

1 1 1 -
_ of = - 2. —1 _aa
(8 |:p /H§32|v| v VxLM®dvi|,é8 9)
1 . 1=
+ [ 0% —u-/ VQU-VyLyOdv |, =0%0
p o Jre 0
? 1 1 1 -
_ _Z(aa s (/R3(§|v|2vi —u'vvi>L;41®dv)j|,58“9)
l Ox; U - VV; Ly, @dvi|,:8°‘9)
p Jr3 0
1 3 v—u\ ® 1.~
—0,. | (RO)2 Ai|—)—dv )|, =0%0
P ’(( )/R3 («/RG)M )} 6 )
o v—u R
— Z (3 I: 3xlu1R9/ 1] dv:la 58 9)3
i,j=1

which can be further bounded by

N RPN CERIC=IE O

_ Z dt/RSAv 8x,u1R6?BU<m) fe ]9 “0} dv dx

+ Cnel| 3V (B, i1, 0)]|* + Cyel| 9V £ |12
+ Cyno + £2)e% + Cy (0 + £2) D (1).

9 é}dvdx
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Hence, substituting the above estimates into (5.40), we have established, for 1 < || <
N — 1 and any small n > 0,

%%(aaé, %aaé) + (%vx L34, a“é) + 8<%K(9)aavxév %8“Vx§)

° - ~
* ; % /R3 A3{8“[%3xi ((RQ)%A,- (li/R—Z)E\/Aff)]%aae} dv dx

3
d 1 v—uyeSif1 -
— 0% —0x.u; ROB;; | —— —0%0tdvd
+ijz=ldt>/ﬂ;3-/]R3{ [p i J(«/RQ) M ]9 } nax
< Cnelld* Vi (B, i1, 0)[1> + Cyell 0V £ |2
+ Cy(no + £2)8% + Cy (0 + £2) D (0). (5.41)

Step 4. In summary, for any 1 < || < N — 1 and any small n > 0, adding (5.34), (5.39),
and (5.41) together, and combining with the estimates

((vx 9%, i—iaaﬁ) + (i—ia“vx,a, a“a) + (%aavxé, a“a) n (%vx 9%, a“é))
= |(2. v (52)9) | = CIV(a. D)1 01 157 = e,

the summation of the resulting equation over |«| through a suitable linear combination
gives

1 d 20 1 o=
- — ——|0%p|% + |0%u]® + =]0%6)* ) d
S 5 L (Gl + el + 2100 ax

1<|a|<N-1

d N
+ B +ee Yo 07@.0))
2<|a|=N

<Cne Y 0G0+ Che Y (0% ]2

2<|a|<N 2<|a|=N

+ Cy(no + £2)e% + Cy(no + £2) Dy (1). (5.42)
Here we have denoted

o= 53 [l (e () =50

1<le|<N—-1i,j=1

: o 3 vV—Uu\ & f o
2 ] fe [%ax,-((Re)zA,-(m) L))z avax

1<la|<N-1i=1

Sz
—_——
QU
<
U
=
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+ fRs/W a“ ax,u,ReB,,( 9)8‘/1\;][]

1<|o¢|<N 1i,j=1

1 .
x 58"‘9} dv dx. (5.43)

Step 5. As before, to get the dissipation rate for the density function, we apply 0% to the
second equation of (4.31) with 1 < |@| < N — 1 and then take the inner product of the
resulting equation with V0% 5 to obtain

~ o~ Zé o~ o~
(0%0,1, V% F) + (—_vxa 5,V ,o)

=— > co(om( i)v 0= 5, V%)

1<a;<a

- (8“(14 Vi) + %vxa“é 9% - Vi) + a“[%(g . %)vxp],vxaaﬁ)

0
1
—(80‘(;/ v®v-Vdev),Vx8°‘,5).
R3

Thanks to 1 < |a| < N — 1, we follow a similar strategy to (5.13) to claim that
i o~ o~ o ~2
Sdt (0%11, V0% p) + cel| V5 0% 0|
< Co(|[Vad® i + V<0011 + V0% £ 112) + Clno + £2)e>. (5.44)

For any 1 < |o|] < N — 1, the summation of (5.44) over |«| through a suitable linear
combination gives

d
e D, OV ) +ee Y 076
1=<le|=N-1 2<a|=N
<Ce Yo (I3%l> + 1301 + [3°F13) + Clpo + £2)e>. (5.45)

2<|a|<N

Step 6. Multiplying (5.42) by a large constant C, > 1 and adding the resulting equation
to (5.45), by choosing 1 > 0 small enough we have

~ d
_C2 Z dt/ |8°‘P|2+|80‘u|2 |80{9|2) d.x+C2EE1([)
1<|a|<N-1
d -
te o Y @@V fee Y 9GO
I<|a|<N-1 2<la|<N

<Ce > [I8fI2 + Clno +2)e® + C(no + £2) D (1) (5.46)

1<|ae|<N
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Recall E;(¢) in (5.43). We then employ (5.20), (3.3), and (4.1) to get

Ex@l<Cn Y 0B 0)| + Cpe® Y (107 £ 17 + Cylno + £2)e?.
1<|a|<N-1 le|=N

By integrating (5.46) with respect to ¢, we deduce the desired estimate (5.28) from the
above estimate of Eq(¢) with a small > 0 and (3.22), as well as (4.1). This then completes
the proof of Lemma 5.6. ]

5.4. Space derivative estimate of the non-fluid part up to (N — 1)th order

Next we deduce the space derivative estimate up to (N — 1)th order for the non-fluid part
f(t, x,v). As before, the proof is based on the microscopic equation (3.13).

Lemma 5.7. It holds that

o 2 l ' o 2
3 (na F0l +c£/0 19 f(S)Ilods)

1<|e¢|<N-1
<Ce > / 1(0%@. 0°6)(s)||* ds + Ce Y / 0% £(s)||2 ds
2<|a|<N |la|=N
t
+C(no+e%)/ D (s)ds + C(1 + 1)(no + £2)&>. (5.47)
0

Proof. Applying 0% to (3.13) with 1 < |e¢| < N — 1 and taking the inner product of the
resulting equation with 3% f over R? x R3, we obtain

S I + eI 12

L r (U ) () ) o (S )

3% Py ( Vif) o V.G) .
(R ) - (R - ()
_ (ﬁaapl{u ) (Iv —Z;I(;Vxé n (v —L;)e. Vﬂ])M}’aaf)' (5.48)

We now compute (5.48) term by term. With Lemmas 4.6 and 4.7 in hand, it is clear to see
that

S (M) e (M

1 1
)5) = Co 3 LI+ Calino + £2) D (1),

Sl (o 25)-17)] = Ot 1 4 Cotro + )Py () + Cotno 4 £hye
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In view of (2.5), (2.4), (3.16), (3.3), (4.1), and the Cauchy—Schwarz and Sobolev inequal-
ities, we arrive at

)(%Wpo@ﬂ Vef). 1)

< 1ol )20 f 12 + o) jﬁaap"(”*/ﬁ' vl

1 1
< Cn;lla"fllﬁ + Coel 3V f 15 + Cy(no + £2)e”.

To deal with the term involving G, we use Lemmas 4.3 and 4.8, (2.5), (3.3), (3.16), and
(4.1) to get

(FRO )| | (22 )

< nill) 20 717 + Coe( |

N

R B
NG
< o0 £ + Cylo + )%

Thanks to (2.5) and (2.16), the following identity holds true:

|v—u|2Vx§ (v—u)-Vyu
Pyv- M
! { 2R62 RO }

\/_Zae ( — )M+Zzaxl'§_,(”¢__”)M

j=li=1

We then see that the last term of (5.48) can be bounded by

(Gl (" )

1 _1
< ngll(v) 20 f?

reul ! Ly (B oty

1 - = 1
=< C’l;llaaflli + Coell 0% Vi, V)1 + Cy 0 + )6,

Therefore, substituting all the above estimates into (5.48) and choosing a small n > 0, we
get

||3"‘f||2 IIE)"‘fII2 < Ce([19(Vxit, VaO)|* + 19°Vx £113)

1+ Cno + £2)Dn (1) + C(o + £2)2. (5.49)
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Integrating (5.49) with respect to ¢ and using (3.22), the summation of the resulting equa-
tion over || with 1 < |¢| < N — 1 with a suitable linear combination gives the desired
estimate (5.47). This completes the proof of Lemma 5.7. ]

From Lemmas 5.7 and 5.6, we immediately have the full energy estimate of the space
derivatives up to (N — 1)th order for both fluid and non-fluid parts.

Lemma 5.8. It holds that

3 (ua“(ﬁ,ﬁ,émuz 10O + o [ ||8“f(s)II§ds)

1<|a|<N-1
5> / 10(5.1, 6)(s) ds

2<|a|<N

e Y (1B + 10* fFOIP) + Ce > / 19% f()IIZ ds

la|=N |la|=N
t
+ C(no + e%)/ D (s)ds + C(1 +1)(no + £2)&2. (5.50)
0

Proof. Taking the summation of (5.47) with (5.28) multiplied by a large constant C3 > 0
and using the smallness of ¢ gives (5.50) directly. ]

5.5. Nth-order space derivative estimate

To complete the estimate of the space derivatives of all orders, we need to treat the highest
Nth-order space derivatives more carefully. Note that for || = N, we cannot directly
obtain the dissipation of [|d* f |2 in terms of (3.13) since the estimate of the transport term

\/LEE)“ Po[v- Vi (/L f)]. 9% f) induces (N + 1)th-order derivatives so that the estimates
cannot be closed. For this, we must use the original equation (1.1) to deduce the N th-order
energy estimates. In fact, in view of (3.11) and (3.12), the original equation (1.1) can be
equivalently rewritten as

(L) ern( ) Les
1

_ lr(%,f) +-1(f, MJ_EM) + ér(%%)

+ﬁpl{v.(|”_2’;|;j"é n (v_’;)e' v"L_‘)M}. (5.51)

Using the above formulation, the corresponding linear transport term induces the inner
product (ﬁv -V 0*F } 0% F'), which Vamshes by 1ntegrat10n by parts. Extra effort has
to be made to estimate all other terms, such as = éﬁ f, F( £, and 9, (L= ) because
of the singularity of the highest-order space derlvatlves In partlcular, we need to develop
delicate estimates of the inner products —%(:68“ 1, *F ) nd %(F(%, a“f), *F ) for
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|@| = N. Thus, we first obtain the following lemma, and the characterization of a lower
bound for the energy norm || l F(t) |? in terms of ||3% (5. i 9)||2 + ||0% £]|? will be treated
in Lemma 5.10 later on.

Lemma 5.9. It holds that
e > (19%(3. 7. ) + 0% fOI) +ce Y [ 10% £ (s)[12 ds
le|=N le|=N

t
<C(no + e%)/ D (s)ds + C(1 +1)(no + £7)e2. (5.52)
0

Proof. Applying 0% to (5.51) with |o| = N and taking the inner product of the resulting

equation with % over R3 x R3, we obtain

9 F P
Zdt‘ H __( f)
1aM— o M—p\ ®F\ 1/, .G G\ &
:E(a r( ﬂ“,f>+a r(f’_ \/ﬁu>’ ﬂ)+2<8 F(ﬁﬁ) ﬂ)
+ (ﬁa‘”m{v : ('v ;;'{;V"e + O _;’2)9' V’“’Z)M}, ajg) (5.53)

We now compute (5.53) term by term. By the fact that F = M + G + /I f, the second
term on the left-hand side of (5.53) becomes

1 ( *F 1 My 1 1 “G
(Lo f, ) = ——(ia"‘f, —) (200 f0% f) — (0% S, —) (5.54)
& I e v/ e & < I

We first present the calculations for the last two terms of (5.54), since the first term of
(5.54) is more complex and is thus left to the end. Thanks to f € (ker £)*, one has from
(4.10) that

1 1
== (LS9 f) = er =19 f 5.
e €
By the definition £ f = T'(\/i, f) + ['(f. /i) in (3.11), one has from (4.11), Lemma
4.3, (3.16), (3.3), and (4.1) that

l((zaaf, %)\ < c§<||a“f||g + ) {v) 1a“fn)(

&

%G H

1
=< 7705||8af||§ + Cnoe.

Now we estimate the first term of (5.54). Recalling (4.17), one has

P + (v—u)-dxu + (|U_u|2 _%)ame)'

Ox;
M =M d
O ( 0 RO 2RO 0
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Let 0% = 3% 9y, with |@’| = N — 1 due to |a| = N; then

3ep  (W—u)-0%0yu  slo—ul> 3\0%dy0
M =M i ' - '
( 0 + RO +( 2R0 2) ] )
1 ’ V—Uu ’
231 (05} - o' —aq (V3% .o —ay
+1<a§1<:a,ca, (a (M )a Oy p+ 0 (M =5 ) 3% %19, u
T | u|2 3 ’_
(5} _ o —o
+ 0 (M = M )0 axie)
=14+ Is. (5.55)

Note that the linear term %(i’,a"‘ i I—‘I‘L) presents a significant difficulty and cannot be
estimated directly. The key technique to handle this term is to use the properties of the
linearized operator £ and the smallness of M — p. For this, we denote

%o  (v—u)-0%u v —ul? 0%0
+ + (%o 2)

= (ot (M =) (=F o o)=L+ I

Since —+= f € ker &£, it follows that (&£ f, f) = 0. As for 12, we further decompose it as

13 =M — /L)( + 0 _qu)e iakign (|v2;zg|2 - 5) 828)_
n (M_“)(T i (v—:)e- 0%u n (|v2;g|2 _ %)?) = 12! 4 22,

Thanks to £ f* = I'(/it, f) + I'(f, J/it), we deduce from (4.11), (3.16), and (4.16) that

U(gae s 1) < c Lo 19 £ D10 (5,11, 0
(£ £ 20)] = €O+ 210 Pl + )71 0% 7 D1 .. D))
1 -
< Clno + &)= (19 £ I + 10" (5. 7. ).

Let 0% = 8"‘/8x,. with |o/| = N — 1 due to |@| = N; we have from integration by parts,
(4.11), (3.16), (3.3), and (4.1) that

122
i)
¥ 95 —u)- 9% v —ul? 36
= (v ax,.xf,%{fﬂv o+ ("5 5)7 )
9

, _ @ ). aa 2 ]
= e nan [M 2T S (- ) T D)

(e

&
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1 ! ’ - - -
< C; /1;3(|3a flo + 1)1 f12){(10x,0%p| + |8, 0%i| + |3, 0%6])
+ (10%p] + [0%4] + 106])
X (|axip| + |8xiu| + |8x;9|)} dx

L o L1 o
< Co+ 210 fllo = Clno + &)< (107 712 + ). (5.56)

Combining the above estimates of /] and 17, we obtain that for [@'| = N — 1,

G R ]

1 Y 1 /
< Clno+e)- (10 F 12+ 10,7, D)2+ 107 £ 12 +¢2). (5.57)

In order to get the estimates of s, we first write /s = 12 + 12 with

He B () () o
+ 9 (M |112;9142|2 B M%>aa/—(¥1 By, é)
and
pi (Mg 2y, 5).

For 12, using £ f = L/, f) + T (f, /1), (4.11), (3.16), and (4.2) again, we see that
1 1} .
S 1(L£3* f, T%)| is bounded as

1 , IS
c X ‘/ 10% 1o 10% =1 0, (B, 1, )1 (19" (p, w, )] + - + [V p, u, 0)[*1]) dx.
& JRr3

1<o)<o’

If ;| = |@'| = N — 1, then |&’ — a1 | = 0; we take the L°—L3—L? Holder inequality and
use Lemma 4.1, (3.3), and (4.1), as well as the Cauchy—Schwarz and Sobolev inequalities,
to get

1 , o )
= I el 00, 5 ) (o, 6)] -+ (9.0, 0]

1 o~
< C19* o2z 105 (5. )15 1107 (00, O)] + -+ + [Vx(py 10, )] 1

il o ~ ~ il o
< COno +62) 10 g 195, (5. 7. ) [+ < Clno + )~ (15 f 115 + 7).
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If 1 <|ai| < |a’| = N — 1, we also have

1 , -
'f 0% £ 16 10% 10y, (B, i, 0)](10% (o, u, O)| + -+ + |V (o, u, 0)[*1)) dx
& JR3

< Co10° 1o 2000, 5.7, D)l
x [1(18% (o u. O)] + -+ + |V (.10, )] “11) [ v
< Clno +eb) (IS 13 + &)
It follows from the above three estimates that

1 o4 151 % 1 o4 2 2
(20722 = can+ e 1 + (558)

The term [ 52 can be treated in a similar way to (5.56) and it holds that

! oy 13 t Lol g oo 2
(g s o) = o+ by (G107 11 +22).
This estimate together with (5.58) yields
1 o Is 11 a £2 Lo 2 2
-/ (0 ﬂﬁ)‘ < Clno + )= (1 712 + 5107 £ 12 +¢2). (5.59)

Combining (5.55), (5.57), and (5.59), we get

1 *M 11 I 1 /
(g )| = Cor e (10011 + 100 GBI + 1 f 1 + %)
1
< Clno +£2) 5 Dn (1) + Clno + ). (5.60)

Recalling (5.54) and collecting all estimates above, we thereby obtain

1
€

cl 11 1
(0. ==) = 51 f12 = Clno + &) Dw (1) = Clo + ed)e. (561

J*F )
Vi
Let us now consider the terms on the right-hand of (5.53). First note that

BaF<MJ—ﬁM’f> = r(M\/—ﬁM,aaf) n ls;sa Cglr<aa1(ﬁjﬁ— “),8"““1f),

By the fact that F = M + G + I f , one writes

_ P - 9 *G
é(r(Mﬁ“,a“f),Ti) =é(F(Mﬂ“,8“f),Tf+ \/g +8°‘f). (5.62)
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Recalling (5.55), the first term of (5.62) can be denoted as

— o 0% - o 4 5
). T ) ),

Using the definition of /4 in (5.55) again, one has
1 M — I
() 75)
eV \ VR N

- (Mt ). ST e (5

£ JR JI Ré 2RO 2/ 6
— 5 _ L] — 2 )
) e ()% D)

1 L= 1 /
= Clno + &) (19 £ 12 + 19 6. 7. 6) |2 + 107 /12 +¢2).

where we have used similar arguments to (5.57) and 9% = 8% dy; with |&’| = N — 1. On
the other hand, performing similar calculations to (5.59) gives

(P ). ) = Cno ey (10713 + 10 115 + 7).

With the help of the above two estimates, the first term of (5.62) is bounded by

A ) 7 )

. v - 1,
= Clno + &) (1 £12 + 1 G DI + 19 £ 12 +¢2).

for |o’| = N — 1. The estimates of the last two terms of (5.62) will be much easier and
they are controlled by

_ G
(M) S )
G

1/ M—pu
<C-
& JRr3 J_

= C(no + 8)g(||3°‘f||§ +110%(5. @, 6) 1> + &),

=] 101 (|

+ |8"‘f|0)dx

according to (4.11), (4.16), Lemma 4.3, (3.3), and (4.1). Plugging the above estimates into
(5.62) gives

(P2 ). 20|

11 -~ |-
= Clno+ )2 (1712 + 1% G DI + 107 F 12 +¢2)

1
<C(npo + s%)g—zi)N(z) + C(no + £2)e. (5.63)
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Using (4.11) again, it is straightforward to see that

o o — oa—a 9*
D X a(r( () ) )

1<o; <«

1 _ M —pu
sc ¥ o Jorten (F2E
15;5018 R3 ( ﬂ

*F
NG

)|, Ao

‘de.

J3

Let us carefully deal with the term J3. If 1 < || < ||/2, we use the Cauchy—Schwarz
and Sobolev inequalities, (4.17), and (4.18), as well as (3.3) and (4.1), to get

o (e e T,

1 —a
< Col[ 108 (o1, )] + -+ + [ V(oo O D 137 £ o

1
heel]
&

*F
i
< Clto+65) 210 1 (1% {1 +110° 5. D) + 10 + )

< Clno+ 65) {112 + 1B BYIP + 518 112 + 20 + )
< Clno + 643 DN () + Clno + e,

where we have used the smallness of ¢ and 79, as well as the following estimate for
la| = N:

’ *F - ‘ o /nf ’ %G ‘ *M
7 i B P OV P BVl
= CU* flloe + 110%(p. 1, )l + 1o + &) (5.64)
If |a|/2 < |ay| < || — 1, one takes the L—L3—L? Holder inequality to claim
1 M—pu IF
el () i |2
s= e o (S e Alelo| =2

1 1 _ -~ 5
= C-(no +e2)[Vad™™ fllo (19 fllo + 10%(p. 22, O)]| + 1o + &)
1
< Clno + )5 D () + Clno + £2)e.
If |@1| = |e|, then | — 1| = 0 and it is easy to check that

()11l

3

1, 3 3
< C—(e721Vaf ol V2 llo + &

“F
ﬂ“a

0% F |2
7l

1
J3<C-
&

1
< CeZ 5Dy (1) + Clio + e)e>.
&
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We thus conclude from the above estimates of J3 that
0“F )

IMM —p) o
—7301 Ollf),
NG

> an(n("

€ 1<a1<a
< C(no + az)—:DN(z) + C(no + 62)e2. (5.65)
With (5.63) and (5.65) in hand, we get
1 p M iy 3aF 1 1 1.1
g((a r( v 1) ﬁ>‘ Clno +8) Dy (1) + Clno +ehet.  (5.66)
The second term on the right-hand side of (5.53) can be treated in the same way as (5.66)
It follows that
1 M —pN 0°F 101 1
“l(er(f 2=, ‘<c 5= Dy (1) +C Heb (5.67
(0 (£=25) )| = Cln e 5D @ + Cno+ ehiet. (567
Next we will concentrate on the third term on the right-hand side of (5.53). By G =
G + I f, we see that
(G ) ) = 1 (G ) - ()
& VI VI N

(5.68)

N

T\ VR

FooT (f, ﬁ> +8"‘I‘(ﬁf),a%j).

We compute (5.68) term by term. By (4.11), Lemma 4.3, the Cauchy—Schwarz and Sobo-
lev inequalities, (5.64), (3.3), and (4.1), one has
H@WQEVWI
E NN
cl > [ Jore (i) |
e i/l

< Clmo + e%)s—zc@N(z) +Clno + e2)e?

0“F
Vi

g

()

g

Using (4.11) again, the second term on the right-hand side of (5.68) is bounded by

G (f f) a})\

laal ‘ |8a a1f| ‘

o <oz
Ja
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If |o1| < ||/2, we can deduce from Lemma 4.3, the Cauchy—Schwarz and Sobolev
inequalities, (3.3), (4.1), and (5.64) that
*F

[3] (_; 9%—%
#(Fl ol 1o
=< C770||8a_a1f”0(”aaf”0 +110%(5, 1, 0) || + 1o + €)

1
J4SC—H
s

g

< C(no + ez)—@m + C(no + e2)e7.

If |¢|/2 < |oq| < || then it holds that

J4§C

il

a‘“( )H I o2 £, ||Loo\

<C(no + 85)8—2<=@N(l) + C(no + 85)85~

It follows from the above estimate of J4 that

1 ‘(aar( f) 80‘F)‘ < Clno + e5) =D (1) + Clo + 46

- = ) = 0 S5 UN 0 .
AW/ AN/ =

The third term on the right-hand side of (5.68) can be handled in the same manner and it
shares the same bound. We still compute the last term of (5.68). It is clear to see by (4.11)
that

J*F
o <c / )7Lom flploee £, dx
}( o¢12<:a 2 ﬂ o

Js

The term Js is treated in the same way as the term J4. For |ay| < ||/2, we have

°F 1.1 101
o Ha < COno + 64 Dy (1) + Clno + e4)e.

1
Js = Cl0™ Sl l9%7 fllo

In case of |@|/2 < |a1| < |«], it follows that

o

*F 1
i HU < Clno+£2) 5 DN (1) + Clno + £2)e.

1 -
Js = C= [0 £ 0% flo x|

With these estimates, we can obtain
1 “F
(@ S5 = co e 5 Dw 0 + Con + et
£ I

Consequently, plugging the above estimates into (5.68) leads us to

é a“(r(%, %) 85/;)‘ < C(no + ez)—i)N(t) +Cpo+e2)ez.  (5.69)
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The last term of (5.53) can be controlled by

i (P o 17
< CF 712 + 1B O)I + o + )
< Clmo + 643 D (0) + Clno + £4), (570)

where the Cauchy—Schwarz and Sobolev inequalities, (3.16), (3.3), (4.1), and (5.64) have
been used.

As a consequence, substituting (5.61), (5.66), (5.67), (5.69), and (5.70) into (5.53),
and using the smallness of ¢ and 719, we get

1d
i |
la|l=N

To further estimate (5.71), using (5.73), whose proof will be postponed to Lemma 5.10
later on, one has

“F
NG

2 1 1
Hem DI SI2 = Clno + 1) 5 Dy (1) + Clng + £2). (5.71)
ssz &

&2 Z Ha F() HZ 26’382 Z (||80l(ﬁ,ft,é)||2+ ”8af”2)_c(f]0+8%)82. (5.72)
la|=N VI la|=N

Therefore, by integrating (5.71) with respect to ¢ and multiplying the resulting equation
by &2, and then using (5.72), (3.22), and the estimate
a* M (0) H2>
JE

” 9% £(0)
o T ccr § ([ STLOF

o0,

NG
< C(no + £2)€2.
we thus arrive at the desired estimate (5.52). This completes the proof of Lemma 5.9. =

To apply (5.72) in the proof of Lemma 5.9 above, we need the following result.

Lemma 5.10. There is a constant ¢, > 0 such that

for any a with |a| = N.

0“F 2 N 1
A0 " = a1 2. 0)1 + 10 17) ~ Clno + e, 613
NG

Proof. Let |¢| = N. In view of the macro-micro decomposition F = M + G, it holds
that

dvdx. (5.74)

9 F (1) Hz B / (B M)? + (3%G)? + 20°G* M
VI ~ Jre Jrs s
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First of all, we write

(0*M)? _/ @M)? 1 1N,
/R3 RS M dvdx = rR3Jrz M +(ﬁ ﬁ)w M)"dvdx.  (5.75)

Since 0* M = I4 + I5 holds in terms of (5.55), one has

o 2 2 2
[ (0*M) do dx =/ (12)* + (Is)* + 21415 dvdox.
R3 JR3 R3 JR3 M

Recalling the definition of /4 in (5.55), we can deduce from (2.4) and (3.3) that

2
/ () dvdx
R3 M

R3
p  (v—u)-0% [v—u|> 3\0%0,2
= ml=£ _2\2Y
/1‘{3 /R3 { 0 + RO +( 2R6 2) 0 } dvdx

= [Ty (T () O v

which is further bounded from below as

cl|9%(p.u, 0)| = c|3* (5, i, 0) > — Cl|3%(p. 11, 0)[1* = c[|3* (5, i, B)]|* — Cro.

By the definition of /s in (5.55), we see that [ [g3 % dv dx is given by

1 1 ) B /

/1;3 /Rs M {1<§<a/ Cot [80“ (M/_)>8a M0y, p + 0% (M UR9u> L Y
_ul? / 2

+ 0% (M|U2R9uz| _M%)aa —ot1axi9:|} dvdx.

which can be further bounded by C(ny + e%). Similarly, using the definitions of /4 and
I5 in (5.55) again, we claim that

2,1
/ / 425 dvdx < C(no + €2).
R3JrR3 M

It follows from the above estimates that

9% M)? i
/R3 Rz( M) dvdx = ¢ (p. i, )|1> = Cno +&2).

On the other hand, it holds that

1 1 o 2 1
/]1&3 [;(; M)(a M)“dvdx < C(no + €2).

Plugging the above two estimates into (5.75), we obtain

9% M )2 i
/ﬂ“ R3( u) dvdx = c|lo* (5.7, 6)|> = C(no + &2).
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Thanks to G = G + /it f, one has

o 2
/ (9°G) dvdx
R3 JR3

7
0% 0%G)?
=/ (Vo™ f +9G) dvdx
R3 JR3 w
R3 JR3 R3 JR3 124

1
= 10 FI2 = Cno + o).

where in the last inequality we used Lemma 4.3, (3.3), (4.1), and the smallness of ¢ and
no. For the last term of (5.74), we see that

20Go*M 20Go*M 1 1
/ / ——dvdx = / / —_—+ (— - —)28°‘G8°‘M dvdx.
R3 JR3 M R3 JR3 M M M

First note that

20°G1
/ / * dvdx
R3JrR3 M

o  (v—u)-0%u lv—ul> 3\0%
- 2006 (L — )= =
/]1;3 /1;3 9 G( o + RO + ( 2R6 2) % )dv dx =0,

due to (5.55) and (2.6). Then it holds by this and the definition of /5 in (5.55) that

/ / 20*GI*M dvdx:/ / 20°G (14 + I5) dv dx
R3 JR3 M R3 JR3 M

204G 1
= / / > dv dx,
R3JrRZ M

which can be bounded by C(no + 8%). On the other hand, it is easy to check that

I Iy )
A&s As(ﬁ_ﬁ>2a Go"M dvdx < C(no + €2).

20°Go* M
/ / —dvdxfC(no+8%).
R3 JR3 12

Consequently, substituting all the above estimates into (5.74), the desired estimate (5.73)
follows. This then completes the proof of Lemma 5.10. ]

It follows that

Combining the estimates in Lemmas 5.9 and 5.8, we are able to obtain all the space
derivative estimates for both the fluid and non-fluid parts.
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Lemma 5.11. It holds that

> i dor e sor o [ ol )

1<|a|<N-1
t ~
+ee Y / 10%(5. 11, 0)(s) |2 ds
2<|a|=N
~ 1 [t
+Ce ) {II<‘9°‘(/3,ﬁ,9)(t)II2 + 19 F (O + 05/0 18% £ ()3 dS}
la|l=N
t
< C(no + s%)/ Dy (s)ds + C(1 + 1)(no + £2)e2. (5.76)
0

Notice that Lemma 5.11 does not include the zeroth-order energy estimate. Therefore,
adding (5.76) to (5.27), we conclude the energy estimate of solutions without velocity
derivatives.

Lemma 5.12. It holds that
U0 w OO + 10 fOIP) + & Y (10%(B. & O OI> + [10% £ )]

le|<N—-1 la|=N
e Y / 1945, @, 6)(s)|? ds
1<\a|<N
'y /na" @I ds+ce 3 / 16% £ ds
\Ol|<N 1 le|=N
gc(no+s%)/ Dy (s)ds + C(1 + 1)(no + £2)2. (5.77)
0

5.6. Mixed derivative estimate

This subsection is devoted to deriving the mixed derivative estimate of the microscopic
component f. We follow the iteration technique for velocity derivatives as in [28].

Lemma 5.13. It holds that

> 1O+t [ 1500 05}

lee]+|BI<N
[B1=1
<t 16 £(5)12 ds
|a|<N 1/
e Y / {10% FGIZ + 105, 7, B)(s)|1} ds
1<|a|<N

+C(no + a%)/ Dy (s)ds + C(1 +1)(no + £2)2. (5.78)
0
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Proof. Let |a| + < N with > 1 and w be defined in (3.14); then we apply 9% to
pply 0g

(3.13) and take the inner product of the resulting equation with w?2/#! 8% f over R3 x R3
to get

1d

2d[ ”aaf”z 8l + (U v, aozf w2|/3\aaf) + (Cﬂ et8€l aot-i-e,f 2|l3\3%f)

_ ;(ang, w?P1o% f)
LB ) )
(e ) )

N/
ga [ POV V)T sipiga o\ _ (e[ P10 V26T ipiga
(@[T ety r) - ([ e )

- (3(55)w57)

B (a‘;{%m[v _ (Iv —zzl;vx N (v —1;)9 Vi M>M]}’w2|ﬂ|3%f>, (5.79)

Here, 8;" =1ife; < Bor 8;; = 0 otherwise.

We now compute (5.79) term by term. The second term on the left-hand side of (5.79)
vanishes by integration by parts. Thanks to |8 —e;| = |B] — 1 and ||w%w|5|8%f|| <
C| 8% S llo,1p) for w = (v) ™!, the third term on the left-hand side of (5.79) can be estimated
as

(Ch 85 05 et frw? o )] < Cllw s PDaET e i wlf 205 |
= Cllwzwf=elgs*e ri w2 w!flo% £ |

= TI—||3 T2 +Cn8||a‘;+5,f||g\,e —er- (580
In view of (4.9), it is easy to see that
1 o 2|8 qo 1 o 1 o 2
@ L0052 N0 Wy =y 3 8 SN2 — oy IS 12,
1B11<IB|

For the first two terms on the right-hand side of (5.79), we use (4.13) and (4.22) respect-
ively, to get

é((aﬁr(%’f)w%r(f’ )

1
= Cn—||8 f||o’|ﬂ| + Cy(no +e2)Dn (1)
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and

é\(aﬁr(%%)wﬂ'a%f)\

< Cn—na F1I2, 5 + Colino + €2) D (1) + Cylo + £7)&2.

The term involving G in (5.79) can be estimated, by Lemma 4.3, (3.16), Lemma 4.8, the
Cauchy—Schwarz and Sobolev inequalities, (3.3), and (4.1), as

\(8‘5[1%'7,?@]»“)”'8%1’)\ \(3“@;) w?Pog 1)
= ([t Tt () g
< Cn 15 £ 12,51+ oo + )2

For the third term on the right-hand side of (5.79), we can deduce from (2.5), (3.16), the
Cauchy—Schwarz and Sobolev inequalities, (3.3), and (4.1) that

5[ oo v ven] w25 )

i(( )% |ﬂ|3“[<vﬁ-vxﬁ %)%],w)—iwlﬂlaﬁf)’

Jj=0

1 1
< Cn;llaﬁflli,w + Cpel|Vxd* f 13 + Cylno + £2)e”,

where we have used the fact that |(v)l,u_% 0gM|, < C forany ! > O and |B]| > 0 by (4.2).
Likewise, the last term of (5.79) is dominated by

1 5 oA i
C_ 1355121 + Crell (V53 Vad D) + Cylno + ).

Hence, for |«| + || < N with |8] > 1 and any small > 0, we can deduce from the above
estimates that

1d

2dtna“fnﬂmc 195 £1215

<cnt D 105, F12 50 + CoelI52E F1Z 15
1B11=IBI
1 ~ apn o
+ G107 f 115 + Coe (| (Vxd® i, Vxd*O)|> + | Vd” £ 1)

+ Cpno + ) DN (1) + Cy(0 + €762 (5.81)
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We will use induction on | 8] to cancel the first and second terms on the right-hand side
of (5.81). By a suitable linear combination of (5.81) for all cases such that |e| + || < N
with |B| > 1 and then taking 1 > 0 and & > 0 small enough, we see that there exist constants
Cy,p > 0 such that

d o l o
Y G CaplOf S gy + e 105 £12)
Ia\ﬂél‘fillsN

L= 1
<Cs ). (||3°‘f||§+|I3“(P,M79)||2)+C; hOR kv

1<|ae|<N le]<N-1
£ C(no + £2)Dn (1) + Clno + £2)e2. (5.82)

Integrating (5.82) with respect to ¢ and using (3.22), we can obtain the desired estimate
(5.78). This then completes the proof of Lemma 5.13. ]

6. Proofs of the main results

In this section we will prove our main results, Theorems 3.4 and 3.9, by the energy estim-
ates derived in the previous section. First of all, we prove Theorem 3.4 on the compressible
Euler limit for the Landau equation.

6.1. Proof of Theorem 3.4

Multiplying (5.77) by a large positive constant C and then adding the resultant inequality
to (5.78), we get, by letting 9 > 0 and ¢ > 0 be small enough, that

1 [t 1
En(r) + —/ Dy (s)ds < ~&2, ©.1)
2 Jo 2

fort € (0, T] with T € (0, t]. Here, &y () and Dy (z) are defined in (3.17) and (3.18),
respectively.

Note that the a priori assumption (4.1) can be closed since the estimate (6.1) is strictly
stronger than (4.1). Therefore, by the uniform a priori estimates, the local existence of the
solution, and the standard continuity argument, we can immediately derive the existence
and uniqueness of smooth solutions to the Landau equation (1.1) with initial data (3.19) as
stated in Theorem 3.4. Moreover, the desired estimate (3.20) holds true in terms of (6.1).

To finish the proof of Theorem 3.4, we still need to prove the uniform convergence
rate in ¢ as in (3.21). Note from (4.2) that (p, u, 0) and (p, u, 6) are close enough to the
state (1,0, 3/2); we can deduce from this, (6.1), and (3.17) that

H (M[p,u,B] - M[,;,,;,é])(t) ‘ H (M[p,u,é'] - M[/‘)’g,é])(t)
NG NG
< C(|(p. 1. )OI + (3. 11, 6)(1)]| ) < Cre.

LiL3 LPL}
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for any ¢ € [0, t]. Similarly, it holds that

SE;ID](IIf(I)lleL2 F 1/ OlLgerz) = Cee.

With Lemma 4.3, it is easy to check that

w (1%

<
Lg%%) < Cenos.

L3212 + H ﬂ
Therefore, by these facts and F = M + G + I f, we immediately get

H (F - M[ﬁ,g,é])([) (F - M[ﬁ,g,é])([)

te[O 7]

<C
N/ 1212 + H N/ Loz =
for any ¢ € [0, t]. This, combined with the fact F = F*(¢, x, v), gives (3.21) and hence
ends the proof of Theorem 3.4. ]

6.2. Proof of Theorem 3.9

We are now in a position to prove Theorem 3.9. We first give the following lemma on
the existence result of the compressible Euler system (1.2) and the initial data associated
with (3.24) and § in (3.26). It can be found in [35, Lemma 3.1]. Readers may also refer to
[47,56] and the references cited therein.

Lemma 6.1. Consider the compressible Euler system (1.2) with initial data
- - = 3 3
(5.11.6)(0.x) = (1+ 800.8¢0. 5 + 589 ) () 62)

for any given (0o, 9o, 90)(x) € H¥(R3) with integer k > 3, where § > 0 is a parameter.
Choose a suitable constant §; > 0 so that for any § € (0, 81], the positivity of 1 + 800
and % + %8190 is guaranteed. Then for each § € (0, 81, there exists a family of classical
solutions (p°, %, 0%)(t, x) € C([0, 7%); H*) N C' ([0, t%); H*=Y) of the compressible
Euler system (1.2) and (6.2) such that the following conditions hold true: ,68 (t,x) >0,
é‘g(t, x) > 0, and

H( (t,x)— 1,78 (1, x), 0%z, x)——)H <.

c([0,z8];HF)NC L ([0,8]; Hk-1) —
Moreover; the life span t° has the following lower bound:

C
§ 1
%> —.
]
Here, the positive constants Co and Cy are independent of 8, depending only on the H*-

norm of (o, ¢o. Vo) (X).
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In what follows we give a refined estimate of two solutions to compressible Euler and
acoustic systems. Let (%, i, 8%)(z, x) be the compressible Euler solutions as obtained in
Lemma 6.1 and (p, ¢, #)(t, x) be the solutions of acoustic system (3.23)—(3.24). Then we
define

1 _ 1 _ 21 /- 3 3
oh =5 —1-50). ¢h=g =8p). 9h=35(8"-3-389).

342 2
Following the same strategy as [35, Lemma 3.2], we know that (Q‘fl, <p2, ﬁ(‘;)(t) satisfies
sup [1(0, ¢, 9D 17 < C. (6.3)
tef0,7]

for k > 3, where the constant C > 0 depends only on t and on the H k+1_porm of
(00, 90, Po)(x).

In terms of (9%, %, #%)(z, x) as obtained in Lemma 6.1, we denote the local Max-
wellian by

(1, x) lo—a’(t, %))
exp{——}.

V2R3 (1, x)]2 2RO (1, x)

Using (6.3), we can choose a sufficiently small constant 8y > 0 such that (5%, @19, 6%)(1, x)
with any 0 < § < § satisfies (3.3). With these facts, by using the same arguments as in
Theorem 3.4 we can prove the existence and uniqueness of smooth solutions to the Landau
equation (1.1) under the assumptions in Theorem 3.9. The details are omitted for brevity
of presentation. Therefore, similarly to Theorem 3.4, there exists a small constant g9 > 0
such that for each ¢ € (0, &¢), the following holds:

M5 = M[ﬁg’ﬁg,g‘g](l‘,x, U) =

Fe(t) — M? Fe(t) — M?

()— ()— < < C,e. 6.4)

€f0,7] VI ref0,7] VI LPL}

Following the same method used in [35, Lemma 3.3], it holds that
up MP (1) — o — 8. /uf(r) ‘
te€[0,7] VI LIL}
Mo (1) —

+ sup < C.82, (6.5)

ref0,7] VI L¥L} i

where f(¢) is given in (3.27). Hence, we can deduce from (3.25), (6.4), and (6.5) that
sup [[£5(6) — 1) | 012

t€[0,7]
- Fe(1) — i — 8. /ik(2)
t€l0,7] 8\/_ LPL}
< sup Fe(t)—M‘g M) —
tef0,7] re[0,7] 81 LPL2

< C,(g +5).
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Similar estimates also hold for sup, ¢jo -1 [[f(z) —£(¢) |12 .2, and then the desired estimate
(3.29) holds. We consequently finish the proof of Theorem 3.9. ]

A. An estimate of the relative entropy

In this appendix, for completeness, we give the details of the derivation of estimate (5.7).

2
3

Proof of (5.7). Note that 8 = %ﬁp exp(S) due to (5.2); then we have

20 31
Os = =
22me

1
0, :=0,0 = —p*% exp(S) = ,0% exp(S) = 6.

2e 3p°
Using this together with (5.3) and (5.4), direct computations give
0~ _ 5 - _ 3 _
np=—=0(S=8)—Z0(pb—p), na=—5pu—u),
0 3p 2
3o e A
ng = —§P9(S —8)—0(p—p).
Similarly, it also holds that
[N = Su- . 5= _
45 =—u=0(S = 8)— —0(p—p) — 0 —u),
o 3p 3

Gja; = —%u;p(u; —ii;) — pf + pb,
q5 = —gupé(S -8+ ﬁéﬁ — upé.
On the other hand, one gets from (1.2) that
8:p = —it - Vp— pVi - i,
20 _ 2 -

atu =—Uu- Vxﬁ — 55 xP — §Vx9,

_ _ 2
In view of these facts, we have from straightforward computations that
Vig.a,571(X) - 0:(p, 1, S) = n3d:ep + Nadeit + 059;S

(2] 3 3 _ _
= (=P = Splu =) Byt - {§p<s —§)+(p— P}

5 ~ 0 - -
g(p—ﬁ)évx-ﬁ + E,ou-Vx,5+pu-Vx9 —uf - Vyp

3 - 3 - 2
+Ep(u—ﬁ)-(ﬁ-vxﬁ)—ﬁﬁ-vxe—Ep(S—S)(zZ-VXO—i-§9Vx-12). (A1)
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Likewise, it also holds that
3

3
> Vipasidi (6.x) 0y, (5.1, S) = qp - Vap+ Y gja; Ox;ilj + qg - VS
j=1 j=1

- 7 -
=pOVy-u—pOVy-u——pu-Vyp—pu-Vy0 + 0u-Vyp
p
3 3 _ _
— Ep(u — i) (u- Vi) + pu- V0 + Epu(S — S)V,H6. (A.2)

Combining (A.1) and (A.2) yields

3
Vipas1( %) - 0:(5. 1. 8) + > Viz 2519 (1 %) - 0, (5. 10, S)
j=1

5 - 2 _- 3

3 . - 2. N3 _ )
—3p(S - S)(u Vil + 56V, -u) + 5pu(S = $)V26 = pOV, i

2 i G Vi) — 2 Vs ”‘1’(5) oV ()

3 - /2 P 0
—EpVXQ-u(gln; +1n5), (A3)
where we have used U(s) =s—Ins—land S — S = —% In % —In %. Hence the desired
estimate (5.7) follows from (A.3) and then the proof is completed. [
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